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Abstract

Advances in Video Coding Based on Principles of Optimal Estimation

by

Bohan Li

This dissertation focuses on the predictive coding of video contents based on

optimal prediction principles.

In the first part of the dissertation, the prediction scheme of error-resilient

video coding with lossy networks is investigated. With packet-based networks suf-

fering from potential packet loss, the prediction quality may be severely impacted

not only by the loss of information, but also by the error propagation through

the prediction loop. To account for such influence of lossy channels, the accurate

estimation of end-to-end distortion (EED) is crucial for the encoder to perform op-

timal decisions. Although the recursive per-pixel optimal estimate (ROPE) and

the spectral coefficientwise optimal recursive estimate (SCORE) serve as well-

know solutions to optimally estimate EED in the pixel domain and the transform

domain, their performance is also constrained by the incompatiblity with recent

advanced coding tools. As a first step in this dissertation, the SCORE calculations

are modified in order to enable the encoder to consider channel losses accurately

while being able to maintain the performance improvement due to the variable
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block sizes. Furthermore, it is recognized that the existing tools are not designed

for lossy networks, and thus a novel framework specifically tailored for this sit-

uation is proposed with a soft-reset prediction mode. With the accurate EED

estimation approach of such mode established, the encoder is able to fine-tune the

error propagation and thus achieves a significant performance gain. As another

example, we also establish EED estimation recursions for state estimation of wire-

less sensor networks and proposed an adaptive approach to account for channel

errors in Kalman filter, which further proves the significance of EED estimation.

The second part of the dissertation shifts focus to the bi-directional motion

compensated prediction in video coding. It is first pointed out that the con-

ventional scheme of bi-directional motion compensation is sub-optimal, since the

existing motion information among the reference frames are not efficiently utilized

and the block-based motion estimation is overly crude. To overcome this issue, a

novel framework with the co-located reference frame (CLRF) is proposed, where

a reference frame (CLRF) is interpolated by the motion field estimated between

the reference frames at the decoder, without explicit transmission of such motion

field. An extra step of block-based motion estimation is then performed on top of

CLRF to correct possible motion offsets. Performance gains shown by experimen-

tal results prove the effectiveness of the framework. Estimating motion field at

the decoder, however, suffers from quantization error and significant complexity

rise. Therefore, we then propose to apply an estimation-theory based approach

viii



to utilize the motion vectors (MVs) already available to the decoder, and treat

the associated reference pixels as observations of the current block. An optimal

linear estimator is then derived and used to interpolate the CLRF. With greatly

reduced complexity, this approach also provides significant coding performance

improvement. The available MV candidates are then also utilized to predict the

MV of the current block, in order to remove redundancy when coding MVs. In-

stead of a linear estimator, a novel scheme is designed to find the MV prediction

that is most consistent with the MV candidates (observations) given a certain

pixel correlation model. Experimental results show that the proposed scheme also

achieves a boost in coding performance.
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Chapter 1

Introduction

Recently, the amount of video contents has seen dramatic growth and video coding

applications such as video streaming, sharing and real-time conferencing are play-

ing more and more important roles. The increasing demand of high-quality video

contents and limitations in network bandwidth and storage present challenges to

the video compression field. Over the years, various techniques for efficient video

coding have been proposed and utilized in terms of more advanced predictive

coding, transform coding, entropy coding, etc. While significant improvements

in coding performance have been achieved, it should be stressed that many com-

ponents of the main-stream video coding standards are still sub-optimal due to

ad-hoc designs and compromises for complexity.

This dissertation focuses on predictive coding, one of the most crucial com-

ponents of video compression. Prediction is widely used in nearly every video

coding application in order to remove redundant information. In most recent
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Figure 1.1: Illustration of prediction loop in a typical video coder.

video codecs, close-loop prediction is utilized, where previously reconstructed pix-

els are used to predict the current pixels being compressed, where intra-mode

predicts from reconstructed pixels within the same frame and inter-mode from

pixels in previously reconstructed frames (reference frames). As also can be seen

in figure 1.1, a prediction loop exists as the result of this close-loop prediction

design.

In the first part of this dissertation, the sub-optimality of prediction for lossy

packet networks is investigated. Due to the prediction loop, any potential loss of

information not only impacts the current packet, but also the future pixels that

could predict from the lost information, causing a severe and continuous degrade in

the reconstruction quality. Without considering such effect accurately, the encoder

may make sub-optimal decisions even with ad-hoc error-resilient techniques such

as random intra refreshing, resulting in sub-optimal coding performance. The
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key, therefore, is for the encoder to accurately estimate the end-to-end distortion

(EED), which is the distortion between the original video content at the encoder

end and the reconstruction at the decoder end, capturing both the distortion from

quantization errors and channel errors.

An established solution, the recursive optimal per-pixel estimate (ROPE), does

so by tracking the first and second moments of decoder-reconstructed pixels. An

alternative estimation approach, the spectral coefficient-wise optimal recursive

estimate (SCORE), tracks instead moments of decoder-reconstructed transform

coefficients, which enables the encoder to account for transform domain opera-

tions. However, recent advances in video coding introduce various techniques that

present challenges in the EED estimation using ROPE or SCORE, limiting their

performance. To demonstrate the importance of accurate EED estimation with

such tools, we first propose an extended scheme with SCORE and transform do-

main temporal prediction (TDTP) utilizing adaptive transform block sizes. With

the ability to estimate EED accurately even with the variable block size scheme,

it is experimentally shown that the encoder is able to take advantage of TDTP

and significant performance improvement is achieved.

Furthermore, it should be recognized that the existing tools in recent video

coding applications are mostly not specifically designed for error-resilient video

coding. Although with accurate EED estimation, the encoder is able to perform

optimal decisions (for example, to decide between intra and inter prediction), the

3



lack of properly designed tool results in sub-optimal prediction quality. Therefore,

we propose a novel framework that significantly expands the options available to

counter error propagation by introducing optimally controlled soft resets, wherein

intra and inter predictions are combined with adjustable weights to control the

dependency on previous frames while accounting for the overall rate and distor-

tion. The key aspect of the proposed framework lies in the estimation of EED,

which is tackled by various extensions on top of ROPE. Experimental results show

significant coding perforance improvement, proving the capacity of the proposed

framework for error-resilient video coding.

Apart from video coding applications, the importance of EED estimation for

communication over lossy channels in general also inspires our work on sensor

networks. The EED estimation recursions similar to ROPE are developed for

smart sensors networks, which utilize Kalman filters to perform state estimation.

The proposed approach enables the smart sensors to optimally switch between

predictive coding modes and therefore significantly improve the state estimation

accuracy with limited complexity.

The next chapter of the dissertation focuses on the bi-directional prediction of

video coding based on optimal estimation principles. With the hierarchical coding

structure , bi-directional motion compensation approaches are widely utilized in

many modern video codecs for a better coding efficiency. Conventionally, matching

blocks in the two-sided reference frames are selected at the encoder, and then the
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corresponding motion vectors (MVs) are transmitted to the decoder, which largely

ignores the motion information already available at the decoder. Techniques to

utilize such motion information have been proposed, which usually assume certain

motion models that may be invalid in many scenarios.

Firstly, we propose a novel bi-directional motion compensation framework that

extracts such existing motion information and interpolates a largely co-located

reference frame candidate for the current frame. In the proposed approach, a

dense motion field is estimated by performing optical flow estimation to capture

complicated motions without any side information, while an offset motion vector

is transmitted to correct possible offset from the assumed linear motion model.

Various optimization schemes specifically tailored for the video coding framework

are presented to further improve the performance. To account for situations where

the complexity at the decoder side is constrained, a block-constrained speed-up

algorithm is also proposed. Experimental results show that the proposed approach

and optimization methods brings significant coding gains across a large set of video

sequences. The trade-off between performance and complexity is also tested and

discussed, and it is shown that our proposed speed-up algorithm is able to reduce

the complexity by a large factor while still maintaining most of the performance

improvements.

It should be noted that performing motion estimation at the decoder suffers

from degraded reference frame quality due to quantization errors, as well as sig-
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nificantly increased complexity at the decoder. Therefore, a novel bi-directional

motion compensation mode is then proposed, which efficiently utilizes the motion

information that is already available to the decoder (calculated at the encoder

with high-quality references), without recourse to extensive search. An estimation

theory based approach is proposed and utilized to provide a high quality predic-

tion, which adaptively combines contributions from multiple motion-compensated

references. Experimental results show that the proposed method, while yielding

a negligible decoder side complexity, introduces a significant coding gain for a

diverse set of video sequences.

Lastly, motion vector prediction is investigated, which also plays an important

role in the overall performance of video codecs. With bi-directional references and

previously available motion vectors, a novel motion vector prediction scheme based

on estimation theory is also introduced in this part of dissertation. The approach

determines a motion vector prediction that is mostly consistent with the available

observations, and hence provides a better prediction than existing linear motion

vector reference schemes.
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Chapter 2

Error-Resilient Predictive Coding
with EED Estimation

In most current video coding systems [1, 2, 3, 4], predictive coding is employed to

exploit redundancies. However, due to the temporal and spatial error propagation

via the prediction loop, it also increases the vulnerability to packet loss through

channels. To mitigate this problem, many error resilience tools and paradigms

have been employed, including forward error correction, intra refresh, multiple

description coding, and macro block re-transmission [5]. These error resilience

methods typically introduce redundancies in the compressed signal, and hence

incur additional bit-rate costs. Therefore, the fundamental optimization problem

that underlies the coder is formulated in terms of the trade-off between bit-rate

and the distortion experienced at the decoder, also referred to as end-to-end dis-

tortion (EED). It is thus obvious that the encoder’s ability to accurately estimate

the EED, accounting for all factors including compression, packet loss and error
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propagation, is crucial for the optimization of encoding decisions.

In this chapter, we first review the basic recursive formulas of recursive opti-

mal per-pixel estimation (ROPE) [6, 7], which estimates EED in pixel domain.

Recognizing the contraints of ROPE working with transform domain based tech-

niques (an example, the transform domain temporal prediction (TDTP) [8], is

also presented), the spectral coefficient-wise optimal recursive estimate (SCORE)

[9] is introduced and an block-size adaptive approach is then introduced to extend

SCORE to the variable block size scheme, as an illustration of the importance of

accurate EED estimation in terms of utilizing efficient techniques while consider-

ing channel losses. Furthermore, a novel error-resilient video coding framework

is proposed to further enable the encoder to optimize EED with fine-tuned error

propagation using the soft-reset combined prediction mode. Lastly, an method of

state estimation for sensor networks is derived and presented based on adaptive

EED estimation with Kalman filter recursions.

2.1 Relevant Background

2.1.1 Basic Recursive Formulas of ROPE

Consider point-to-point video communication, assuming that packet loss is

statistically uniformly distributed with packet loss rate p available to the encoder

(for simplicity but without loss of generality, since extensions of ROPE have been

8



developed for different network models [10, 11] and can be generalized to the

EED estimation methods introduced in this chapter). For optimal performance,

the encoder must optimize its decisions with respect to the decoder reconstructed

video quality. However, the decoder reconstruction is a random process as far as

the encoder is concerned, with the influence of channel loss greatly complicated

by error propagation through the prediction loop, error concealment efforts at the

decoder, etc.

Therefore, ROPE considers the decoder reconstruction of each pixel as a ran-

dom variable, and estimates the expected EED. Let the uncoded value of the pixel

at location m in block k of frame n be denoted as fmn,k, and the decoder recon-

struction of the pixel as f̂mn,k. With mean squared error (MSE) distortion, the

expected EED of fmn,k can be formed as:

E{(fmn,k − f̂mn,k)
2
} = (fmn,k)

2 + 2fmn,kE{f̂mn,k}+ E{(f̂mn,k)
2
},

which clearly only requires the first and second moments of the decoder recon-

struction f̂mn,k.

Thus in order to accurately estimate EED, ROPE recursively tracks the mo-

ments of the decoder reconstruction. Note that different decoder error conceal-

ment methods and encoder schemes may result in different ROPE recursion formu-

las. In this chapter, we employ the simple ‘slice copy’ error concealment method,
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where if the packet containing the current slice is lost, the co-located reconstruc-

tion in the previous frame is copied as the reconstruction of the current slice. We

further assume each packet contains one frame for simplicity.

Two prediction modes are considered here: the intra refresh mode which pre-

dicts from reconstructed pixels within the current frame, and the inter prediction

mode, which predicts from pixels in other reference frames. Note the intra refresh

mode is also constrained to only predict from other pixels that also uses the intra

refresh mode, and thus serves as a full refresh of error propagation, while the inter

mode may introduce errors into the temporal prediction loop, resulting in less

robustness to channel loss.

For the ‘intra refresh’ mode, since the current block is only predicted using

other pixels encoded by the intra refresh mode in the same packet, as long as the

packet containing the current frame is correctly received, the decoder will be able

to reconstruct the current block exactly as the encoder reconstruction (denoted

as f̄mn,k). Therefore, the recursion formula to track the first and second moments

are:

E{f̂mn,k} = (1− p)f̄mn,k + pE{f̂mn−1,k},

E{(f̂mn,k)
2
} = (1− p)(f̄mn,k)

2
+ pE{(f̂mn−1,k)

2
}

(2.1)

For the inter prediction mode, the current block k is predicted by the decoder

reconstruction of another block k′ in the previous frame (first-order inter pre-

10



diction is assumed here simply for easy presentation, without loss of generality).

Denoting the quantized residual as r̂mn,k, it can be shown that the ROPE recursions

for inter prediction are:

E{f̂mn,k} = (1− p)(E{f̂mn−1,k′}+ r̂mn,k) + pE{f̂mn−1,k},

E{(f̂mn,k)
2
} = (1− p)(E{(f̂mn−1,k′)

2
}+ 2r̂mn,kE{f̂mn−1,k′}

+ (r̂mn,k)
2) + pE{(f̂mn−1,k)

2
}

(2.2)

As shown in (2.1) and (2.2), the first and second moments of decoder recon-

structed pixels in the current frame depends only on the moments of decoder

reconstructions in the previous frame, thus establishing a recursive method to

track the moments, and therefore accurately estimate the EED. In practice, it

is only necessary for the encoder to keep track of the first and second moments

recursively, yielding minimal complexity yet optimal EED estimation.

2.1.2 Transform Domain Temporal Prediction

Since ROPE estimates the EED via pixel-domain calculations, it is inherently

restricted to account for error propagation due to operations performed in the pixel

domain. However, various source coding approaches of significant interest involve

recursive operations in the transform domain. Particularly, estimation-theoretic

approaches were proposed wherein substantial compression gains were achieved
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by recursively operating in the transform domain, which is typically the discrete

cosine transform (DCT) domain. For example, in [12, 13], a transform-domain

based approach for scalable video coding is proposed, where the quantization

levels of transform coefficients at the based layer are utilized to provide a better

estimation for the enhancement layer. In this chapter we are specifically interested

in another example, the transform domain temporal prediction (TDTP) [8, 14],

which is used in our experiments to demonstrate the importance of transform-

domain EED estimation.

Conventional motion-compensated prediction assumes that a sequence of pix-

els (from consecutive frames) along a motion trajectory form a temporal AR

process, and that such sequences are independent of each other. This assumption

clearly ignores the inter-pixel (spatial) correlation that exists among neighboring

pixels in the same frame. To address such problem, instead, the TDTP approach

models a pair of transform coefficients at a given frequency location m, denoted

by (xmn,k, x
m
n−1,k′), of an inter-coded block k and its motion compensated reference

block k′ in frame n and n − 1 respectively, as two successive samples of a scalar

AR process, i.e.,

xmn,k = ρmx
m
n−1,k′ + zmn,k, (2.3)

where ρm is the correlation coefficient corresponding to that frequency, and zmn,k

is the innovation sequence. The advantage of such model lies in the fact that the
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transform largely de-correlates the neighboring pixels inside the transform block,

hence account for the spatial correlation as well as the temporal correlation.

In this model, the correlation coefficient ρm at each frequency coefficient can

be estimated from the video statistics. The matrix of correlation coefficients

for 4x4 blocks in the case of coastguard qcif.yuv is provided in table 2.1 as an

example. Note that the correlation is close to 1 for the DC term, but quite

different otherwise, which is also observed by other video sequences with different

block sizes. Since pixel-domain prediction is equivalent to constant weight for

every coefficient location, such phenomenon further proves the effectiveness of

TDTP, which accounts for different correlations for different coefficient locations.

Table 2.1: Matrix of correlation coefficients for the 4x4 DCT coefficients in
coastguard qcif.yuv

0.9998 0.9946 0.9916 0.9470

0.9893 0.9424 0.9068 0.8056

0.9807 0.9215 0.8696 0.7717

0.9680 0.9015 0.8309 0.7317

With the knowledge of the correlation coefficient matrices, TDTP employs

motion-compensated prediction in a unique way. Unlike the conventional ap-

proach that applies spatial transformation on the residual pixel domain block, in

TDTP, each block and its motion compensated reference are individually trans-

formed, the DCT coefficients of the latter are weighted by frequency-appropriate

correlation coefficients, and the prediction residue directly calculated in the trans-

13



form domain.

Note that although TDTP involves transform blocks, it has no additional re-

quirement on the transform block size of the referenced frame (e.g, referenced

block should have the same block size as the predicted block), since the motion

compensated transform coefficients from the previous frame are calculated by ap-

plying the transform to the corresponding reconstructed pixels, thus the transform

parameters in the previous frame have no impact on TDTP in the current frame.

It should also be noted that since TDTP estimates the prediction in the transform

domain, ROPE is not capable of accurately estimating EED with it.

2.2 Block-Size Adaptive Transform Domain EED

Estimation

2.2.1 Fixed-Block-Size Transform Domain EED Estima-

tion with TDTP Using SCORE

Transform domain based approaches, such as TDTP, inspired SCORE. In this

section, we first introduce the fixed-block-size SCORE and form the basic recursive

formulas.

Let the uncoded value of transform coefficient m in block k of frame n be

denoted as, xmn,k, and the encoder and decoder reconstructions of the coefficient
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as, x̄mn,k, and x̂mn,k, respectively. Let umn,k denote the uncoded value of coefficient m

in this reference block1. Note that this reference block is possibly off-grid. The

decoder reconstruction of the coefficient is denoted as ûmn,k. In a lossy channel,

similar to ROPE, the encoder considers x̂mn,k and ûmn,k as random variables. The

expected distortion at coefficient xmn,k is

E{(xmn,k − x̂mn,k)2} = (xmn,k)
2 − 2xmn,kE{x̂mn,k}+ E{(x̂mn,k)2}, (2.4)

which, similar to ROPE, clearly requires the first and second moments of the

decoder reconstruction x̂mn,k.

As also similar with ROPE, for the cases of intra refresh and inter prediction

coding, SCORE deploys the following recursions to estimate the moments:

Intra refresh: The recursions are the same as in ROPE, but in the transform

domain.

E{x̂mn,k} = (1− p)(x̄mn,k) + pE{x̂mn−1,k},

E{(x̂mn,k)2} = (1− p)(x̄mn,k)2 + pE{(x̂mn−1,k)2}.
(2.5)

Inter prediction with TDTP: Let ẑmn,k denote the quantized transform coeffi-

1While umn,k is indexed by n and k to indicate the location in the current frame n, it is in
fact a function of pixels in frame n− 1
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Figure 2.1: An example of a off-grid motion compensated block in the fixed
block size setting.

cient residual. It can be shown that,

E{x̂mn,k} = (1− p)(ẑmn,k + ρmE{ûmn,k}) + pE{x̂mn−1,k},

E{(x̂mn,k)2} = (1− p)((ẑmn,k)2 + 2ρmẑ
m
n,kE{ûmn,k}

+ ρm
2E{(ûmn,k)2}) + pE{(x̂mn−1,k)2},

(2.6)

As shown in (2.6), employing TDTP in SCORE is very simple and straight-

forward, while basic ROPE cannot account for this transform domain method.

Note that, E{ûmn,k} and E{(ûmn,k)2} may not be immediately available from the

reference frame, since the motion compensated block could be potentially off-grid

of the transform blocks in the reference frame. Thus these moments need to be

calculated from the first and second moments in the reference frame.

If the block size is fixed, any off-grid block in a frame overlaps with at most four

on-grid blocks (as illustrated in Fig. 2.1). Let block Un,k shown in the figure denote

the reference block for the current block k in frame n, and it overlaps with on-grid
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blocks Xn−1,ki in frame n − 1. Since DCT is a linear transformation, there exist

constants ai,lm, named construction constants, such that, decoder reconstruction of

block Un,k can be calculated as,

ûmn,k =
4∑
i=1

∑
l

ai,lmx̂
l
n−1,ki . (2.7)

These constants only depend on the position of Un,k relative to the on-grid blocks.

Given (2.7), the first and second moments of ûmn,k are:

E{ûmn,k} =
4∑
i=1

∑
l

ai,lmE{x̂ln−1,ki};

E{(ûmn,k)2} =
4∑
i=1

4∑
i′=1

∑
l

∑
l′

ai,lma
i′,l′

m E{x̂ln−1,kix̂
l′

n−1,ki′}.
(2.8)

Although cross-correlations are required, the advantage of operating in transform

domain is that it largely decorrelates the block. Specifically, as mentioned in [9],

the following assumption of ‘uncorrelatedness’ holds well in the DCT domain:

E{x̂ln,kix̂
l′

n,ki′
} ≈ E{x̂ln,ki}E{x̂

l′

n,ki′
}, (2.9)

if l 6= l′, or i 6= i′. In this chapter, we further assume that the cross correlation

between DC coefficients, x̂0n,ki and x̂0n,ki′ , is 1.
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2.2.2 Generalization to the Variable Block Size Scheme

In the fixed block size setting in section 2.2.1, the construction constants re-

quired to estimate moments for the reference block depended only on the position

of the reference block, which limited the number of such transforms. Hence they

could all be calculated offline and stored to avoid addition of significant complex-

ity to calculate them on the fly during encoding. However, in the variable block

size setting, different transform block sizes could be employed along a motion tra-

jectory. Example illustrations of such off-grid reference blocks is shown in Fig. 2.2.

Similar to the fixed block size setting, due to the linearity of DCT, a set of con-

struction constants can be obtained for each pattern to calculate the moments of

ûmn,k via (2.8), however, with different number of blocks and size of each block.

Unfortunately, the construction constants depend not only on the position of the

block Un,k, but also on the size of the block Un,k, and the size and position of

the blocks Xn−1,ki it spans. This dramatically increases the number of possible

Figure 2.2: Examples of off-grid motion compensated blocks in the variable
block size setting.
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off-grid patterns and storing all such construction constants is impractical.

To overcome this challenge, we propose a general approach to account for any

arbitrary combination of block sizes and positions, while still leveraging the advan-

tages observed in the fixed block size setting, based on the following observations:

1. The moments of ûmn,k can be derived from the moments of x̂mn−1,ki if the

corresponding construction constants are available;

2. The complexity of calculating and maintaining the construction constants

depends on the number of possible patterns;

3. Possible patterns are very limited for the fixed block size setting.

With these observations, we propose to break the estimation of moments for the

reference block into multiple steps (as shown in Fig. 2.3):

Step 1: We break the blocks Xn−1,ki to a regular grid of blocks with the

minimum transform block size (which is 4x4 in our experiments), and calculate

the moments of the new transform coefficients. Let Yn−1,kij and ŷqn−1,kij denote

the small block j and its coefficients, respectively. Again due to linearity of DCT,

a set of constants blj,q exists for each coefficient q, such that,

ŷqn−1,kij =
∑
l

blj,qx̂
l
n−1,ki . (2.10)

Thus the first and second moments of ŷqn−1,kij are calculated via equations similar
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Figure 2.3: Illustration of the proposed method. For each off-grid reference
block, the blocks it spans are broken into 4x4 blocks, off-grid adjusted, and
finally combined to the required block size. Note that each step is an estimation
of the first and second moments of the corresponding transform coefficients.

to (2.8).

Step 2: We perform motion compensation in this fixed block size setting.

Given the moments of ŷqn−1,kij , we calculate moments of the potentially off-grid

coefficients according to sectionb 2.2.1. The motion compensated blocks and their

coefficients are denoted as, Vn,kh , and v̂qn,kh , respectively.

Step 3: We finally combine the small blocks Vn,kh back to the required size,

and calculate the moments of the new coefficients. The block we need, Un,k, and

the coefficients ûmn,k can be represented in terms of v̂qn,kh as:

ûmn,k =
∑
h

∑
f

ch,qm v̂qn,kh , (2.11)

where ch,fm is another set of construction constants. Using these relations we

calculate the moments of ûmn,k.

Overall we require three sets of construction constants, one set that is same
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as section 2.2.1, and two additional sets for step 1, blj,q, and step 3, ch,qm . However,

breaking and combining blocks results in very limited patterns, leading to re-

duction of complexity and simplification of implementation. Note that similar to

Sec. 2.2.1, we make an assumption of ‘uncorrelatedness’ in each step for estimation

of second moments, which is shown as a valid assumption in the results.

Within the encoder, we perform step 1 right after a frame is encoded, and

moments of ŷqn,kij are buffered for the next frame. That is, the first and second

moments are maintained in a fixed block size manner, and step 2 and 3 are em-

ployed to adapt them to variable block sizes. Given the moments for ûmn,k, EED

is estimated according to (2.6).

Note that in this section, we constrain the encoder to full-pixel motion com-

pensation to demonstrate the potential of the proposed approach while extension

of fixed-block-size SCORE to sub-pixel precision has been presented [15] and can

be combined with our proposed variable block size scheme.

2.2.3 Simulation Results

In our experiments, ROPE, fixed-block-size SCORE (f-SCORE) and variable-

block-size SCORE (v-SCORE) are implemented in an HEVC encoder. TDTP

is employed in SCORE based coders. Slice-copy error concealment is employed

in all the coders. In the fixed block size setting, the transform block size is

set to 4x4, while in variable block size setting, the transform block size may
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vary from 4x4 to 16x16. Note that in this section, we constrain the encoder

to full-pixel motion compensation to demonstrate the potential of the proposed

approach. Very recent advances in TDTP [14] extended its ability to provide

considerable gains to the setting of sub pixel motion, and while the results herein

are in conjunction with the original full pixel TDTP to provide the proof of concept

for block size adaptive TDTP with efficient EED estimate, the approach is also

extendable to be combined with sub-pixel TDTP.

We first evaluate the EED estimation accuracy of v-SCORE in coders that

employ the ‘random intra’ error-resilience technique, where in each frame, 10% of

coding units are randomly selected to be intra-coded. That is, the coders do not

employ the distortion estimates for any optimization of encoding decisions. Here,

TDTP is employed in both ROPE and v-SCORE coders, and we calculate the

distortion in ROPE by averaging the per-pixel EED estimate, and in v-SCORE

by averaging the per-coefficient estimate. We also simulate the transmission of

the bitstream over 100 different realizations of a lossy channel, and average the

distortion over realizations for each frame to obtain a simulation result. The

ROPE and SCORE estimates are compared with the simulation result to evaluate

their accuracy. The PSNRs obtained by simulation, ROPE, and v-SCORE are

shown in Fig. 2.4. It can be seen that ROPE is not capable of accounting for

the transform domain operations of TDTP, hence it significantly underestimates

the quality at the decoder. However, v-SCORE yields fairly accurate estimation
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Figure 2.4: Comparison of PSNR estimates and simulated PSNR averaged over
100 simulated packet loss patterns for the BQTerrace sequence (1920x1080) at
the PLR of p = 5%.

compared to the simulation result.

Next, we compare the R-D performance of employing ROPE, f-SCORE and

v-SCORE for mode-selection optimization. The TDTP correlation coefficients

employed were estimated via methods presented in [14], from a training set outside

the test set for which results are reported. Note that TDTP is not employed in

ROPE for this experiment. In Fig. 2.5a and Fig. 2.5b, the R-D curves at PLR

of 5% for the competing coders are shown for two video sequences of different

resolutions, CIF and HD. BD-PSNR improvement [16] obtained by v-SCORE,

over f-SCORE (Exp v-f) and over ROPE (Exp v-R), at PLR of 1% and 5% are

presented in Table 2.2. By comparing the results of v-SCORE and f-SCORE, it

can be concluded that significant gains can be achieved by generalizing SCORE to

the variable block size setting via the proposed approach. Note the performance
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Table 2.2: BD-PSNR improvement (dB) of v-SCORE compared to f-SCORE
and ROPE

PLR p = 1% PLR p = 5%

Sequence Exp v-f Exp v-R Exp v-f Exp v-R

coastguard cif 0.98 0.26 0.80 0.12

bus cif 0.55 0.13 0.46 0.13

foreman cif 0.53 0.21 0.57 0.17

flower cif 0.39 0.37 0.23 0.17

BasketballDrive 1.16 0.02 1.17 0.18

BQTerrace 0.75 0.54 0.48 0.43

Kimono 1.25 0.03 1.02 0.07

ParkScene 0.53 0.63 0.51 0.29

Average 0.76 0.27 0.66 0.20

gain is more substantial for HD sequences, since unlike low-resolution sequences,

where a 4x4 block size itself may be optimal, the block sizes may vary to a large

extent for high-resolution sequences. Note that ROPE out-performing f-SCORE

also demonstrates the severe limitation of fixed block size coding, where in despite

employing TDTP, f-SCORE lags behind ROPE without TDTP but with variable

block sizes. Finally, the gains of v-SCORE over ROPE demonstrates the utility of

employing transform domain based techniques, specifically, TDTP in this chapter.
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Figure 2.5: R-D curves for HEVC coders with mode decision optimization via
v-SCORE, f-SCORE, and ROPE, at PLR p = 5%, for two sequences of different
resolutions.

2.3 Error-Resilient Video Coding Framework with

Soft Reset and EED Optimization

As explained in Section 2.1, with the ability to accurately estimate EED,

the encoder is capable of optimally switching between the inter prediction mode,

which causes error propagation through the temporal prediction loop, and the

intra refresh mode, which fully stops the propagation at that instant. These two

modes in effect serve merely as an on/off switch for temporal error propagation,

providing a very crude control to the encoder, when in fact with accurate estimate

of EED in hand, the encoder can optimally control the extent of error propagation.

Therefore, in this section, we propose an error-resilient video coding frame-

work, where besides the inter and intra refresh modes, more options of controlling
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the error propagation are allowed, and the encoder decisions are based on the

EED estimation, thus providing a more flexible control over the trade-off between

error-resilience and compression. Specifically, in addition to the inter mode and

the intra refresh mode, the unconstrained intra prediction mode is first included

to provide the option of allowing error propagation through the spatial predic-

tion loop. More importantly, we propose to include the soft-reset joint inter-intra

prediction mode in order to provide a finer control over error propagation. In

the rest of this section, the above two modes and their corresponding methods to

overcome the challenges of accurately estimating EED are presented.

2.3.1 Unconstrained Intra Prediction

While the constrained intra prediction (intra refresh) mode is widely used by

error-resilient video coding applications, the unconstrained intra prediction mode,

wherein the current block is allowed to be predicted from previously reconstructed

inter-predicted pixels within the same frame, is usually the default intra prediction

method in non error-resilient coders. The unconstrained intra mode is more effi-

cient in exploiting spatial correlations between blocks, but unlike the constrained

intra mode, it suffers from error propagation through the spatial prediction loop,

i.e., errors in spatial neighbors of the current block (potentially through temporal

error propagation) will influence its intra prediction. We introduce the uncon-

strained intra mode into our proposed framework as an optional mode to let the
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encoder have control over the possible error propagation paths. Moreover, as to

be seen in section 2.3.2, it is also part of our proposed soft reset joint prediction

mode.

The EED estimation of unconstrained intra prediction is obviously different

from that of constrained intra prediction shown in (2.1). If the packet containing

the current frame is received, the unconstrained intra prediction x̃mn,k(I) is a filtered

output of previous decoder reconstructions of its neighboring blocks:

x̃mn,k(I) =
∑
i

vix̂
mi
n,ki

(r), (2.12)

where vi are the filter coefficients. The decoder reconstruction of the ith reference,

given the current frame is correctly received, is denoted as x̂mi
n,ki

(r). If e.g., this

sample was reconstructed via inter prediction mode in (2.2), x̂mi
n,ki

(r) = x̂mi

n−1,k′i
+

r̂mi
n,ki

.

For the unconstrained intra mode, the moment estimation recursions can then

be expressed as:

E{x̂mn,k} = (1− p)(E{x̃mn,k(I)}+ r̂mn,k) + pE{x̂mn−1,k},

E{(x̂mn,k)
2} = (1− p)(E{(x̃mn,k(I))2}+ 2r̂mn,kE{x̃mn,k(I)}

+ (r̂mn,k)
2) + pE{(x̂mn−1,k)

2}.

(2.13)

Note that substituting (2.12) into the second moment E{(x̃mn,k(I))2} shows re-
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quirement of the cross correlation term E{x̂mi
n,ki

(r)x̂
mj

n,kj
(r)}. Since only the first

and second marginal moments are available, we need to approximate the spa-

tial correlation coeffcient ρs. In [7], the ‘exponential decay’ correlation model is

presented for EED estimation:

ρs(d) ≈ exp(−αd), (2.14)

where α is a parameter whose typical value is around 0.05, and d is the distance

between the pixels. With this model utilized, we can now estimate the first and

second moments of pixels predicted by the unconstrained intra mode, and thus

estimate EED accordingly.

2.3.2 Soft Reset Joint Inter-Intra Prediction

As discussed in Section 2.3.1, the unconstrained intra prediction mode provides

the encoder with an alternate error propagation path, but still does not provide

the encoder with a fine control over the degree of error propagation.

To provide a controllable ‘soft reset’ for the error propagation, we propose to

utilize the weighted average of unconstrained intra prediction and inter prediction,

namely the joint inter-intra prediction. The joint prediction of pixel fmn,k can be

expressed as:

f̃mn,k = wm(P )f̃mn,k(P ) + wm(I)f̃mn,k(I), (2.15)
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where f̃mn,k(P ) is the inter prediction and f̃mn,k(I) is the unconstrained intra pre-

diction, and wm(P ), wm(I) are the weights for the two predictions, respectively.

Although similar joint inter-intra prediction methods (also referred to as com-

bined inter-intra prediction) have been previously proposed [17, 18], we emphasize

here that we are proposing to perform joint inter-intra prediction with both a dif-

ferent motivation and a different optimization approach.

First, our goal of using the joint prediction is not for a better prediction.

Rather, we average intra and inter prediction in order to provide a soft reset

for error propagation. Recognizing the difference in motivation, we refer to our

proposed prediction mode as the ‘soft reset joint prediction mode’. Also, due to the

different motivations, the weights should not be targeted to address the correlation

between the referenced and the predicted pixels, but should be designed for the

balance between error resilience and coding efficiency.

Furthermore, since our soft-reset joint prediction is intended for video coding

over a lossy channel, establishing a ROPE-like EED estimation method for the

joint prediction is crucial for optimal rate-distortion (R-D) decisions in our frame-

work. However, extending ROPE to account for the proposed mode is not trivial.

To overcome the challenges, we propose the following methods to estimate EED

accurately for the soft-reset joint inter-intra prediction mode.

Similar to (2.13), we first establish the moment estimation recursions as fol-
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lowing:

E{f̂mn,k} = (1− p)(E{f̃mn,k}+ r̂mn,k) + pE{f̂mn−1,k},

E{(f̂mn,k)
2
} = (1− p)(E{(f̃mn,k)

2}+ 2r̂mn,kE{f̃mn,k}

+ (r̂mn,k)
2) + pE{(f̂mn−1,k)

2
}.

(2.16)

It is obvious that the first and second moments of the joint prediction are needed.

Substuting (2.15) into the moments we have:

E{f̃mn,k} =wm(P )E{f̃mn,k(P )}+ wm(I)E{f̃mn,k(I)},

E{(f̃mn,k)
2} =(wm(P ))2E{(f̃mn,k(P ))

2}

+(wm(I))2E{(f̃mn,k(I))
2}

+2wm(P )wm(I)E{f̃mn,k(P )f̃mn,k(I)},

(2.17)

where the first and second moments of f̃mn,k(I) are given in Section 2.3.1 and

moments of f̃mn,k(P ) are given by moments of pixels in the previous frame.

However, note that the correlation term is still not directly available to the

encoder. Moreover, the inter prediction is a reconstructed pixel in the previous

frame along the motion trajectory, while the intra prediction is a reconstruction

in the current frame located at the boundaries of the current block. Therefore,

unlike the correlation term in Section 2.3.1, this correlation of inter and intra

prediction, E{f̃mn,k(P )f̃mn,k(I)}, is actually a combination of spatial correlation and
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temporal correlation.

In order to approximate the correlation term with both satisfactory accuracy

and complexity, we make the ‘separate correlation’ assumption, wherein the cor-

relation coefficient ρ is given by the product of the temporal correlation coefficient

ρt and the spatial correlation coefficient ρs:

ρ(t, d) ≈ ρt(t)ρs(d). (2.18)

For the temporal correlation, the Markov model can be applied to pixels along

the motion trajectory. Since first order temporal prediction is assumed, the time

difference t is a constant, thus in this chapter we apply ρt as a constant (typically

0.95-0.98). The spatial correlation coefficient can be calculated through (2.14),

where the distance d is defined as the distance from the boundary to the predicted

pixel along the predicting direction for angular prediction, and the average dis-

tance to the upper and left boundary for DC and planar prediction. As will be

shown in section 2.3.3, with properly set parameters, this simple approximation of

cross correlation is sufficient for accurate EED estimation. With the correlation

term estimated, we can finally estimate the moments in (2.17), and thus estimate

the EED for the soft reset joint prediction mode.

Note that for the soft reset joint prediction mode, the unconstrained intra is

used rather than intra refresh. This decision is based on the following considera-
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tions. First, if the boundaries or even a portion of them are reliable (e.g., coded by

the intra refresh mode), the unconstrained intra prediction portion will reasonably

reset the error propagation through spatial prediction loop. Second, even when

the boundaries are not reliable, the spatial error propagation path usually pro-

vides better error-resilience, which ensures the effectiveness of the joint prediction

mode to serve as a soft reset. Finally, using intra refresh in joint prediction would

severely constrain its ability since it would have significant bit-rate overhead due

to the very limited availability of boundaries with no impact of error propagation.

It should also be noted that the purpose of adding the unconstrained intra

mode and the soft reset joint prediction mode is to demonstrate the potential of

our proposed error resilient video coding framework with EED estimation. The

framework is general and effective even if other possible methods to control error

propagation are introduced with proper EED estimation.

2.3.3 Simulation Results

In our experiments, the proposed framework and methods of EED estimation

were implemented in the High Efficiency Video Coding (HEVC) [2] reference soft-

ware and used for the R-D optimization of mode selection. A wide range of video

sequences with resolutions ranging from 240P to 1080P were tested. For each

video sequence, the first 100 frames were encoded with QP values of 27, 32, 37

and 42. The channel loss was simulated with 100 realizations at a packet loss rate
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of 5%. The decoder was implemented with the simple ‘slice copy’ error conceal-

ment method and the video coding performance was assessed by averaging the

MSE of the decoder reconstructions over the 100 realizations for each sequence

and each QP.

To show the performance of our proposed error-resilient video coding frame-

work, three sets of experiments were conducted with different availability of modes.

First, the baseline includes only the inter and intra refresh modes. In the second

set of experiments (denoted as base+UI ), the unconstrained intra mode is en-

abled in addition to the two modes in baseline. Finally, in the third set (denoted

as base+UI+soft), the proposed soft reset joint prediction mode is enabled along

with the inter, intra refresh and unconstrained intra modes. For the soft reset

mode in the third set, the weights of inter and intra prediction are both set to

be 0.5, in order to provide a soft reset where both the predictions have the same

importance.
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Figure 2.6: EED estimation compared with simulated ground truth.
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We first show results to compare the estimated EED of each frame with the

simulated EED (which can be viewed as the ground truth) to illustrate the ac-

curacy of our proposed EED estimation methods. As shown in Fig. 2.6, EED

estimation of both the base+UI and base+UI+soft settings is quite accurate and

follows the general trend seen in simulated results, which confirms that the various

assumptions and models introduced in section 2.3.2 are valid for our purpose.
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Figure 2.7: R-D curves of the proposed base+UI+soft set compared to the baseline.

Next, to demonstrate the performance of our proposed framework, compared

to the baseline, the BD-PSNR [16] improvement of the base+UI set and base+UI+soft

set are shown in Table 2.3. As seen in the table, with unconstrained intra mode

enabled we achieve an average BD-PSNR improvement of 0.06 dB. On the one

hand, this performance gain shows the potential of our framework which benefits

from the ability to switch between error propagation paths while accounting for
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Table 2.3: BD-PSNR improvement (dB) compared to baseline

Sequence base+UI base+UI+soft

mobile (CIF) 0.06 0.52

foreman (CIF) 0.06 0.24

flower (CIF) 0.01 0.15

BasketballPass (416×240) 0.09 0.16

BlowingBubbles (416×240) 0.07 0.43

PartyScene (832×480) 0.02 0.42

FourPeople (1280×720) 0.08 0.21

Johnny (1280×720) 0.18 0.27

BQTerrace (1920×1080) 0.01 0.09

ParkScene (1920×1080) 0.01 0.17

Average 0.06 0.33

the channel loss with EED estimation. On the other hand, the relatively small

gain also illustrates the need for a better designed error-resilient prediction mode.

This need is confirmed by the results of the base+UI+soft set, which achieves

a significant average BD-PSNR gain of 0.33 dB due to the introduction of

the proposed soft reset joint prediction mode. The R-D curves comparing the

base+UI+soft set to the baseline of two sequences are also shown in Fig. 2.7,

which confirm its effectiveness for a wide range of operating points. Overall,

the results show that with properly designed options, our framework provides

considerable performance gain for video streaming over lossy networks.

Note in our experiments, the parameter α in (2.14), as well the value of tem-

poral correlation coefficient ρt are manually selected for each sequence and are set
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as constants for the test 100 frames. This is clearly suboptimal since it not only

requires manual adjustment, but also ignores the fact that video content statis-

tics are not guaranteed to be stationary, either within a single frame or across

multiple frames. To address this problem, one possible future focus of research

is to estimate even these parameters recursively for every pixel, which allows the

encoder to capture the local statistics.

It should also be noted that, in our experiments, the weights in the soft reset

joint prediction mode are chosen as a constant value of 0.5. Although the current

results already show a significant performance gain, the weights should be better

designed to accommodate different video content, block size, bit-rate, packet loss

rate, etc. Hence, on another front, future work may focus on various approaches

of designing the weights, which could be introduced as multiple options of weight

combinations in the proposed framework.

2.4 Adaptive State Estimation over Lossy Sen-

sor Networks Accounting for EED

Wireless sensor networks, wherein wireless channels are used to communicate

between sensors and actuators, have been the subject of growing interest in recent

years [19]. While wireless networks eliminate the need for wiring and hence are

much easier to deploy in many applications, they also pose several significant chal-
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lenges. A main challenge lies in the unreliable nature of wireless networks which,

when combined with constrained transmitting power due to limited embedded

battery life, could result in high packet loss rates and limited channel bandwidth.

Various paradigms for state estimation over unreliable channels have been pro-

posed from a variety of perspectives. In [20], a framework was proposed to capture

the effect of channel noise on conventional control systems, coupled with the corre-

sponding stability analysis. Kalman filtering with intermittent observations (i.e.,

due to packet losses) is studied in [21], where convergence conditions were derived

given the observation arrival probability. In [19], different lossy network models

were considered and the corresponding optimal estimate was derived along with

stability analysis. Moreover, the use of error correcting codes in sensor networks

was studied in [22] with respect to its power efficiency.

On another front, to satisfy the data rate constraint, quantization and sam-

pling were introduced into conventional control systems [23]. The minimum

rate needed to stabilize different systems through various channels was studied

in [24, 25]. To further improve the compression performance, predictive coding

was employed in [26], wherein only the sign of the innovation is transmitted,

while [27] proposed an extension where the innovation is coded with a multi-level

quantizer.

Clearly, there is an inherent conflict between the need to reduce the data rate

and the objective of better error control. On the one hand, to achieve robustness
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to network errors, redundant information is usually needed which increases the

rate. On the other hand, to substantially reduce the rate, one may need to employ

predictive coding which exacerbates the impact of packet loss on the state esti-

mate due to error propagation through the prediction loop, which could critically

compromise performance [28].

Therefore, the tradeoff between compression efficiency and robustness to chan-

nel errors is crucial to the problem of state estimation over unreliable channels.

To control this tradeoff, [29] proposes two coding modes for smart wireless sen-

sors, where at each time instant the sensors select one of the modes according to

a cost function involving the receiver’s long-term average estimation error covari-

ance and the transmission energy. To mitigate the excessive computational load

due to the mode selection procedure, another solution is also proposed in [29] to

provide simpler but suboptimal decisions.

In this section, a novel approach to account for the tradeoff between rate and

state estimation quality is proposed. Instead of the long-term average estimation

error, we proposed to consider the end-to-end distortion (EED), which is the dis-

tortion between the encoder estimated state and the decoder estimated state. Since

each channel realization is not available to the encoder, we recursively estimate

the mean and correlation matrix (averaging over channel realizations, not state re-

alizations) of the EED at the encoder (sensor), leveraging a simple approach that

originated from ROPE, which enables explicit rate-distortion (R-D) optimization
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to decide the current optimal coding mode for a specific realization of the state

process. Simulation results show that the proposed method is capable of providing

considerable gains in signal-to-noise ratio of state estimation over lossy networks,

given a prescribed rate constraint.

2.4.1 Problem Setup

Figure 2.8: The basic setup for state estimation with a single wireless smart sensor

Consider the basic state estimation scheme shown in Fig. 2.8, with a single

wireless smart sensor carrying an embedded processing unit. Let the state process

be the following auto-regression (AR) process:

xk+1 = Axk + wk, (2.19)

where xk ∈ Rn is the state vector at time instant k, A ∈ Rn×n is the system

matrix and wk is Gaussian white vector noise with covariance matrix Q.

The measurement process at the sensor is given by:

yk = Cxk + vk, (2.20)
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where yk ∈ Rm is the observation vector at time instant k, C ∈ Rm×n and vk is

Gaussian white vector noise with covariance matrix R.

At each time instant, the sensor generates an observation yk and the processor

chooses from available coding modes, denoted by tk (details of these modes will

be discussed in section 2.4.2), to encode the information and transmit the packet

via a lossy channel.

In this section we consider channels with packet loss, where the model is given

by a random process δk. δk = 0 indicates a lost packet at time instant k, and

δk = 1 otherwise. In the setting we consider, the encoder has no feedback from

the channel, and thus has no access to δk. It only knows the channel statistics. The

receiver, on the other hand, has direct access to δk. For simplicity, it is assumed

that δk is an independent and identically distributed (i.i.d.) process, noting that

the proposed approach can easily be extended to more complex packet loss models.

The packet loss rate is denoted as p. After decoding, the receiver calculates and

outputs its state estimate x̂k. Approaches to calculate x̂k naturally depend on the

coding mode of the current packet, and whether or not it was received, as will be

detailed in section 2.4.2.

At the encoder, different coding modes provide different tradeoffs between

compression efficiency and its robustness to channel loss. How the encoder ac-

counts for this tradeoff and determines the best mode at each time instant, given

the sensor observations, is our main concern in this chapter.
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From a compression perspective, this tradeoff is equivalent to achieving the

best state estimation performance over a lossy network given a target rate, and

is a constrained optimization problem often referred to as rate-distortion (R-D)

optimization. Thus we propose to select the coding mode tk by minimizing a

Lagrangian cost function, i.e., tk = arg minτ J(τ) where,

J(τ) = E{De(τ)}+ λRate(τ), (2.21)

where Rate(τ) is the bitrate needed for mode τ , and λ is the Lagrangian param-

eter. De is the end-to-end distortion (EED), which is defined as the distortion

between the receiver-end state estimate x̂k and the sensor-end state estimate x̄k.

Since the encoder does not know which packets were lost it does not know De

exactly, hence it instead uses its best estimate, its expected value, as will shortly

be explained in detail. Here, x̄k is given by a local steady-state Kalman filter

operated at the sensor’s embedded processing unit:

x̄k = Ax̄k−1 +Ks(yk − CAx̄k−1), (2.22)

where Ks is the steady state Kalman filter gain, given by: Ks = PsC
T (CPsC

T +

R)−1 and Ps is the steady state error covariance which satisfies the Riccati equa-

tion: Ps = APsA
T +Q− APsCT (CPsC

T +R)−1CPsA
T .
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In (2.21), De is introduced to account for the state estimation error associated

with channel loss and quantization error, and is the state estimation mismatch

between the encoder and decoder. We adopt the mean square error as criterion:

De = ||x̄k−x̂k||22. Note that by focusing onDe instead of the overallD = ||xk−x̂k||22

we are neglecting the estimation error xk − x̄k introduced at the sensor, before

quantization and transmission. We will next show that by making the assumption

that the sensor estimation error is uncorrelated with the state estimate mismatch

between encoder and decoder, we ensure that E{De} = E{D} − c and the R-D

decision based on E{De} is the same as if it were based on the expected overall

state estimation error.

Lemma 1 If the sensor estimation error xk − x̄k is uncorrelated with the state

estimate mismatch between encoder and decoder x̄k − x̂k, then using De in (2.21)

yields the same decision as using the overall state estimation error D = ||xk−x̂k||22.

Proof: E{D} = E{||xk − x̄k||22}+E{De}+E{(xk − x̄k)
T (x̄k − x̂k)}, where

E{||xk− x̄k||22} is a constant c given A,C,Q,R. By the assumption, the last term

is 0 since E{(xk − x̄k)} = 0. Therefore E{D} = E{De}+ c and will produce the

same decision to minimize (2.21).

From Lemma 1, it follows that if the assumption holds approximately, then

EED, while directly accounting for the channel loss for a specific realization, also

represents approximately the overall state estimation performance.
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Recall that we use E{De} in (2.21), rather than the exact De. The encoder

does not have access to the decoder estimated state x̂k and its best recourse is

to estimate EED given its knowledge of the channel statistics. The estimation is

given by:

E{De(τ)} = Ec{||x̄k − x̂k||22 | tk = τ} (2.23)

where we use the streamlined notation Ec{·} to represent expectation conditioning

on past observations and coding modes, i.e., Ec{·} = E{· | ti,yj : i = 0, 1, ..., k −

1; j = 0, 1, ..., k}. Since the estimation is conditioned on the sensor observations,

it is still able to capture the effects of channel loss for a specific measurement from

the sensor.

Note that calculating E{De(τ)} is not a simple task considering the prop-

agation of errors from possible lost packets in the past, through the prediction

loop and the Kalman filter recursions. In section 2.4.2 we will introduce an EED

estimation approach which optimally estimates E{De(τ)} with a reasonable com-

plexity via a recursive formula.

2.4.2 Coding Modes and EED Estimation

As presented in section 2.4.1, the encoder needs to obtain an EED estimate

for each mode to determine the optimal via (2.21). However, due to the predic-

tion loop introduced by some encoding modes, as well as the recursive nature of
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Kalman filters, estimating EED in (2.23) is not straightforward, since the number

of possible error propagation scenarios increases exponentially with the number

of transmitted packets. Furthermore, a Monte Carlo simulation at the sensor is

impractical due to its excessive computational load.

In this section, we introduce the encoding and decoding procedure for each

mode, as well as a recursive technique to optimally estimate EED at low to mod-

erate complexity.

Observation Mode

We first introduce the prevalent “observation” mode (tk = 0), where the quan-

tized observation yqk is sent to the decoder. The decoder generates its receiver-end

state estimate by:

x̂k = Ax̂k−1 + δkKd(y
q
k − CAx̂k−1), (2.24)

which is a steady-state Kalman filter with intermittent observations, where Kd =

PdC
T (CPdCC

T +R)−1CPdA
T and Pd satisfies the modified Riccati equation [30]:

Pd = APdA
T +Q−(1−p)APdCT (CPdC

T +R)−1CPdA
T . The steady state Kalman

filter accounts for the channel loss and ignores the quantization noise since it is

assumed to be dominated by the observation noise and channel errors.
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At the encoder, the EED estimation is given by:

Ec{||x̄k − x̂k||22} = x̄Tk x̄k − 2x̄TkEc{x̂k}+ Tr(Ec{x̂kx̂Tk }), (2.25)

where Tr(·) denotes the trace. Note that the sensor state estimate x̄k is known

to the encoder and is not considered random for the estimation.

It is evident from (2.25) that the encoder only needs to obtain the first moment

Ec{x̂k} and the matrix of second moments Ec{x̂kx̂Tk } (equivalently the mean

vector and covariance matrix of x̂k).

For the observation mode (tk = 0), we derive the following recursive formulas

to calculate the first and second moments given the known decoder procedure

(2.24):

Ec{x̂k} = AEc{x̂k−1}+ (1− p)Kd(y
q
k − CAEc{x̂k−1});

Ec{x̂kx̂Tk } = pAEc{x̂k−1x̂Tk−1}AT + (1− p)

(FEc{x̂k−1x̂Tk−1}F T +Kdy
q
kEc{x̂

T
k−1}F T+

FEc{x̂k−1}(yqk)
TKT

d +Kdy
q
k(y

q
k)
TKT

d ),

(2.26)

where F = A−KdCA.

As can be seen from (2.26), only the moments from the previous time instant

(k−1) are needed to calculate the moments at time k. Therefore, via the recursive

update of (2.26), we can track the moments of x̂k and hence optimally estimate
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the EED associated with the observation mode.

Innovation Mode

To achieve a better compression performance, in the innovation mode (tk = 1),

we choose to send the quantized innovation zqk, where the innovation is zk =

yk − CAx̃k−1, where x̃k is the receiver-end state estimation at no channel loss,

which can also be obtained at the sensor. The decoder generates the receiver-end

state estimate by:

x̂k = Ax̂k−1 + δkKdz
q
k. (2.27)

Ideally, the innovation should contain all the new information from the obser-

vation yk. Therefore, with proper coding, the innovation mode requires a much

lower rate. However, in the presence of channel loss, the encoder and decoder may

“drift apart” and have different prior estimated states. This may severely com-

promise the usefulness of the innovation information. Hence, this mode is more

heavily impacted by channel loss. The introduction of this mode largely targets

the rate side of the tradeoff, and it is crucial to be able to estimate the EED to

judiciously activate this mode at the encoder.

Similar to (2.26), we also establish the EED estimation procedure by recur-

sively estimating the first and second moments of x̂k for the innovation mode:
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Ec{x̂k} = AEc{x̂k−1}+ (1− p)Kdz
q
k;

Ec{x̂kx̂Tk } = AEc{x̂k−1x̂Tk−1}AT+

(1− p)(Kdz
q
kEc{x̂

T
k−1}AT+

AEc{x̂k−1}(zqk)
TKT

d +Kdz
q
k(z

q
k)
TKT

d ),

(2.28)

Here too the updates only require the first and second moments of the previous

receiver-end state estimate x̂k−1, enabling an efficient EED estimation for the

innovation mode.

Sensing State Mode

While the innovation mode is particularly sensitive to channel loss, the ob-

servation mode also suffers from error propagation due to the recursive nature of

Kalman filters. To introduce a “full reset” of the mismatch between the sensor

and receiver, the sensing state mode is included, where the sensor-end state es-

timation x̄k (sensing state) is quantized and sent to the decoder. The decoder

simply uses the quantized sensing state to reset its state estimation, if the packet

is received:

x̂k = δkx̄
q
k + (1− δk)Ax̂k−1. (2.29)
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The recursive EED estimation is straightforward:

Ec{x̂k} =(1− p)x̄qk + pAEc{x̂k−1};

Ec{x̂kx̂Tk } =(1− p)x̄qk(x̄
q
k)
T + pAEc{x̂k−1x̂Tk−1}AT ,

(2.30)

which again only requires the first and second moments of x̂k−1.

The sensing state mode stops all error propagation from previous state es-

timation, and thus is most robust to channel loss. However, coding the state

estimation directly often requires a significantly higher rate.

In summary, the three modes introduced in this section offer differing oper-

ating points in terms of the tradeoff between robustness to packet loss and data

rate. The optimal EED estimation approach proposed here enables the encoder

to minimize (2.21) to determine the optimal coding mode at each time instant.

2.4.3 Simulation Results

(a) Observation mode (b) Innovation mode (c) Sensing state mode

Figure 2.9: Comparison of simulated EED with the EED estimation by the
proposed method
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(a) Set 1 (b) Set 2

Figure 2.10: Rate-SNR plots of the proposed method compared to single mode
coding with packet loss rate p = 0.05.

To achieve preliminary proof of concept and evidence for the power of the ap-

proach we consider a simple setting where the system, observation and covariance

matrices are in fact scalar:

A = 0.96, C = 0.6, Q = 0.5, R = 0.05.

We assume an i.i.d. packet loss process with loss rate p.

Scalar uniform quantizers are designed for each different mode. The quanti-

zation levels are entropy coded by Huffman coding according to their probability

of occurrence.

First, we evaluate the EED estimation accuracy of the proposed approach.

Fig. 2.9 compares the encoder’s EED estimate with actual decoder EED measure-

ments obtained by averaging over 200 random channel realizations. The packet
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loss rate is set to p = 0.05. It is evident that the proposed EED tracking technique

provides the encoder with an accurate EED estimate for all three modes, which

is critical to enable effective mode selection at the encoder.

Next, the effectiveness of the proposed mode-switching decision based on EED

estimation, is presented. Here we consider two sets of comparisons. In set 1, the

observation baseline (denoted by base-mode0) is given by using only the observa-

tion mode where different quantization intervals are used to generate the rate-SNR

curve. The innovation baseline is also presented similarly (base-mode1). The pro-

posed method considers both the observation and innovation modes, and switches

between them according to the estimated EED and bitrate needed for each mode

(side information to specify the mode is included in the rate calculation). The

SNR versus rate curve is obtained by varying the Lagrange parameter λ in (2.21),

where quantization intervals are separately designed for each λ. Set 2 considers a

similar comparison, where the sensing state mode replaces the observation mode

in both baseline (base-mode2) and the proposed method.

The rate-SNR curves are shown in Fig. 2.10. Note the SNR here is the

signal-to-noise ratio of the ultimate state estimation which considers the actual

state estimation distortion, instead of EED. The results reflect averaging over 200

signal realizations and 200 channel realizations with p = 0.05.

From the figure, it is evident that the proposed method enables the encoder

to effectively switch between two different modes and considerably enhance the
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ultimate state estimation for a prescribed data rate (∼2 dB gain for set 1 and

∼1 dB gain for set 2). Moreover, this SNR gain is observed consistently across

a wide range of rates, which further proves the reliability and effectiveness of the

approach.

It should be emphasized that the experiments with scalar states and obser-

vations establish the proof of concept, and similar benefits are expected in the

vector case, which is currently under investigation.

2.5 Conclusion

In this chapter, error-resilient predictive coding with EED estimation is in-

vestigated. A scheme to perform EED estimation in the transform domain with

variable block sizes is first introduced to demonstrate the importance of accurately

estimated EED.

Moreover, a novel error-resilient frame work with soft reset is proposed, which

introduces the unconstrained intra mode and the soft-reset combined mode with

their respective EED estimation approaches, allowing the encoder to finer con-

trol the error propagation through various paths as well as with softly-controlled

strength. It is experimentally shown that the performance is significantly im-

proved by the proposed framework.

Recognizing that state estimation of lossy sensor networks may also benefit
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from such principles, EED estimation methods of various coding modes for smart

sensors are also proposed. Experimental results prove that the proposed methods

estimate EED accurately even with the complication of Kalman filter recursions

and considerable gains are achieved.
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Chapter 3

A Novel Framework of
Bi-directional Motion
Compensated Prediction for
Video Coding

3.1 Introduction

One of the key components in video compression is the motion compensated

prediction, which exploits the temporal correlation between frames to reduce cod-

ing redundancy. Conventionally, motion compensation is done by performing a

block-based motion search, where a matching block in the reference frame is se-

lected as the prediction of the current block. The associated motion vector as well

as the prediction residual is then coded and transmitted to the decoder. In many

recent video codecs[1, 2, 3, 4], the hierarchical coding structure is also utilized,

where the video codec does not encode the frames according to the display order,
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but instead in a pre-defined order with a layered coding structure. This enables

the video codec to predict the current frame from not only previous frames, but

also future frames that are already reconstructed before the current frame, which is

referred to as the bi-directional motion compensated prediction. For block-based

bi-directional motion compensation, two motion vectors, pointing from the current

block to the two reference frames are calculated using block-matching algorithms

(BMAs)[31, 32, 33]. The prediction is usually generated by a combination of the

two reference blocks. Then the two motion vectors and the prediction residual are

coded and transmitted.

However, such BMAs largely assume the movement of each pixel in the cur-

rent block is identical, therefore limiting its efficacy to only tracking translational

motions, while more complex motions such as rotation and scaling are beyond its

capability. Although the variable block size scheme [34] utilized in recent video

codecs could mitigate this incapability by dividing the current block into smaller

blocks, it also introduces additional overhead.

Unlike the block-based motions utilized by BMAs, it is possible to capture

complicated motions using a dense per-pixel motion field, where every pixel is

associated with one motion vector. To determine such per-pixel motion fields,

optical flow estimation methods are widely used. The basic optical flow estimation

was proposed in [35]. Over the years, various techniques are developed to improve

the optical flow estimation accuracy [36, 37, 38, 39, 40]. Recently, optical flow
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estimation based on deep learning techniques are also proposed with a satisfactory

performance [41, 42, 43]. Such techniques have been widely implemented in various

contexts, including vision systems[44], object segmentation[45], video frame rate

up-conversion (FRUC)[46], etc.

For motion compensated prediction in video coding, the per-pixel motion field

can be generated by optical flow estimation in order to overcome the limits of

BMAs. However, due to the much denser per-pixel motion field, it also yields

a larger overhead to transmit to the decoder. In order to maintain the motion

field information within a reasonable rate cost, it can be further compressed and

then transmitted. In [47], the estimated dense motion field is compressed using a

hierarchical finite element (HFE) representation. Alternatively in [48], the discrete

cosine transform (DCT) is performed to efficiently compress the motion field.

Although such methods are effective as to compress the motion field, they also

introduce distortions in the motion field, degrading the overall prediction quality.

To further reduce the overhead introduced by the motion field, the optical flow

estimation principals are utilized in [49] to generate a block-level motion field.

While it improves the BMAs by incorporating optical flow like techniques, the

limits of block-based motions still persists.

Note that with the hierarchical coding structure, for the current frame, there

exist reference frames at both directions, which are available not only at the en-

coder, but also the decoder. This suggests that at the decoder, certain motion
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information is already available between the bi-directional references and can be

utilized for the current frame. To exploit such motion information, in [50], block-

based decoder-side motion estimation is performed between the reference frames at

both the encoder and decoder and the estimated motion is projected to the current

frame. The projected motion vectors are then used to generate a motion compen-

sated prediction for the current frame. Similarly, instead of block-based motion

vectors, a dense motion field can be estimated between the reference frames, and

the motion compensated prediction can be generated accordingly [51, 52]. In this

way it is not necessary to compress the dense motion field since no side information

is needed for it to be estimated at the decoder.

With the similar intuition to exploit the motion information between the refer-

ence frames at the decoder, the Bi-directional Optical Flow (BIO) was proposed in

[53, 54]. In BIO, instead of directly estimating the motion vectors at the decoder,

the conventional block-based motion vectors are still calculated at the encoder

and transmitted, but are then refined by performing optical flow based techniques

utilizing the two-sided reference frames. The refined motion vectors are in a per-

pixel fashion (forming a dense motion field), therefore are able to capture complex

motions. Note that, the two conventional block-based motion vectors essentially

provide a better initialization for the motion estimation/refinement process, but

at the cost of extra rate redundancy, since the two motion vectors may contain mo-

tion information that is already available from the bi-directional reference frames.
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It also needs to be noted that, when estimating the per-pixel motion field

between the reference frames, the above approaches need to rely on certain motion

models (e.g. linear motion) in order to project the motions between the reference

frames to the motions of pixels in the current frame. However, in many scenarios,

the actual movement may not necessarily follow the presumed motion trajectory.

Therefore the prediction interpolated by such assumption may suffer from an offset

from the actual source, resulting in degradation of prediction quality.

Firstly in this chapter, a novel approach to generate a co-located reference

frame (CLRF) via optical flow estimation is proposed, which utilizes the hierar-

chical coding structure in a different manner. First, the optical flow between the

two-sided reference frames is estimated and a per-pixel motion field is built up

without any extra overhead. Then a reference frame (i.e. CLRF) is interpolated

according to the motion field and the two-sided references, which should be at

the same location as the current frame in the time line assuming linear motion.

Note that CLRF naturally captures both translational and more complex non-

translational motions due to the per-pixel motion field. Next, instead of using

CLRF directly as prediction, the proposed approach treats it as an extra candi-

date reference frame in addition to other existing reconstructed reference frames.

Regular block matching motion compensation techniques are then performed on

CLRF in order to effectively compensate any potential offset in the optical flow

estimation and refine the prediction quality. In addition to the basic approach,
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since complexity, especially on the decoder side, is nearly always a concern for

video coding applications, in section 3.3.5, we first analyzed the complexity of

the proposed method as well as the impact of various parameters. Then, a block-

constrained optical flow estimation algorithm is presented as a speed optimization

method, which serves as an effective tool in the trade-off between coding perfor-

mance and complexity. It is experimentally shown that the proposed approach

achieves significant coding performance improvements, and with the proposed

optimization techniques the complexity is substantially scaled down at limited

expense of coding performance.

Note that besides the benefits of decoder-side motion estimation, in terms of

redundancy removal, there are also disadvantages, namely, the impact of quantiza-

tion error in the reference frames, and considerable increase in decoder complexity.

The rest of the chapter builds on the realization that the motion information avail-

able at the decoder not only lies in the reconstructed reference frames themselves,

but also in the previously transmitted explicit motion information obtained from

the encoder. Such motion information may be of higher quality since the encoder

has direct access to the source, uncorrupted by quantization errors. Moreover,

since this information has already been decoded, there is no need for extensive

motion estimation at the decoder, with the important benefit of maintaining low

decoder complexity.

Therefore, we further propose the following estimation-theoretical method
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with three main steps. First, we utilize the motion vectors that were already

transmitted to the decoder between the reference frames and form a set of motion

vector candidates for every pixel location in the current frame. Then, from an

estimation theory perspective, we treat their corresponding motion compensated

references as observations that are correlated with the current pixel. An optimal

linear estimator is adaptively determined using local statistics, and the predic-

tion of the current pixel is calculated accordingly. Finally, the predictions form

a CLRF and a motion vector is transmitted in order to eliminate possible offsets

from the assumed linear motion. Experimental results demonstrate that without

recourse to extensive motion search (i.e., at minimal complexity increase), the

proposed scheme provides high quality prediction, and yields significant coding

gains.

3.2 Proposed Scheme with the Co-located Ref-

erence Frame

With the hierarchical coding structure, when processing frame fn located at

time n, assume there exist bi-directional reference frames fn0 and fn1 (n0 < n <

n1) that are previously reconstructed. Note that the reconstructed references

f̂n0 and f̂n1 are available to both the encoder and decoder when processing fn.

As also mentioned in section 3.1, there exists motion information between the
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(a) Estimate motion field

(b) Interpolate CLRF

(c) Correct offset

Figure 3.1: Illustration of the proposed prediction scheme with CLRF.
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reference frames that is not fully utilized in conventional bi-directional motion

compensation schemes.

To account for such motion information, as represented by the dash line in

figure 3.1a, it is natural to assume linear motion between the reference frames and

then estimate such motion field by performing optical flow estimation. With the

estimated motion field of frame fn, we interpolate a new frame accordingly. Since

if the motion field is estimated accurately, and if the linear motion assumption

is valid (i.e. objects moving with constant velocity), then the interpolated frame

should be exactly co-located as fn. Therefore we refer to the interpolated frame

as the “co-located reference frame” (CLRF), as shown in figure 3.1b. The CLRF

extracts the motion information between fn0 and fn1 , and is capable of capturing

complicated non-translational motions thanks to the estimated per-pixel motion

field. It is worth emphasizing that generating the CLRF does not require any

extra side information.

However, it would not be ideal if the CLRF is used directly as the prediction of

fn. This is because the linear motion assumption is generally not satisfied exactly,

resulting in an offset from the interpolated frame to the ground truth. This offset,

even though it can be quite small, could potentially degrade the prediction quality

by a large factor.

To compensate for this offset from the assumed linear motion, as illustrated in

3.1c, an offset motion vector is calculated and sent per coding block in accordance
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to the block-based scheme commonly used in modern video codecs, which in our

experiments, proves to be effective in correcting possible offsets. In this manner,

the CLRF is treated as a regular reference frame and the offset motion vectors

are treated as regular motion vectors associated with CLRF. Therefore, the inte-

gration into video codecs is quite straight-forward, and will be discussed in detail

in section 3.2.1.

It should be noted that although linear motion is assumed in our implemen-

tation, one could also refer to more sophisticated motion models. However, it is

still highly unlikely that the pixels will follow the model exactly, and the offset

motion vectors are still needed. To adapt our proposed method to such models,

one just needs to modify the way CLRF is generated to follow certain estimated

trajectories, and the rest of the algorithm should stay the same.

Also note that we explain CLRF in this section based on motion field (optical

flow) estimation, which is presented in detail in section 3.3. It is important to

stress that the proposed scheme is a general bi-directional motion compensation

scheme, and various methods to generate the co-located reference frame are pos-

sible. In section 3.4, we further introduce a novel approach based on the optimal

linear estimator, which comes from a very difference angle but also shares the

same basic concept of the proposed scheme using CLRF.

The overall algorithm of predicting from CLRF is provided in algorithm 1.
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Algorithm 1 Overall algorithm of the proposed bi-directional prediction scheme

1: for every frame fn do
2: Determine the reference frames fn0, fn1
3: if fn0 or fn1 does not exist then
4: Continue to next frame
5: end if
6: Generate the CLRF fCLRF
7: for every block b in fn do
8: Get mvoffset associated with b
9: Find block b′ in fCLRF given by mvoffset

10: Set prediction b̃← b′

11: end for
12: end for

3.2.1 Video Codec Integration

As mentioned, the CLRF is used as a candidate reference frame along with

other reconstructed reference frames. Considering that the CLRF is already a

blended frame, it is used only for single reference inter prediction, and is not

considered for the compound reference mode (multi-reference inter prediction).

At the encoder, for every frame, first determine if the CLRF is available. It is

available when there exists two reference frames in the reconstructed frame buffer,

such that the current frame is in between them. If not available, regular coding

scheme is used. When CLRF is available, interpolate the CLRF and used it as a

candidate for single reference motion compensation.

In the bit-stream, to signal the reference frame used for a certain inter block, a

flag is first sent (if CLRF is available for the current frame) to signal whether the

block is using the CLRF as the reference frame. If using CLRF, the regular coding
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scheme is used for the CLRF for the associated motion vector, residuals, etc. If

CLRF is not used for the block, regular bit-stream syntax for other reference

frame candidates will then be coded.

The decoder, same as the encoder, can also infer the availability of CLRF for

every frame. If not available, regular routine follows. When the CLRF is available,

the decoder also generate the CLRF and for every block, read the signaled flag

first to determine its usage of CLRF reference frame. Other regular decoding

schemes stay unchanged.

It is clear that by design, our proposed scheme with CLRF requires minimal

change in the video codec, since the CLRF is used just as a regular reference

frame. Also the same as for regular reference frames, block based motion search

is also performed for the CLRF, and the selected offset motion vectors are just

treated as regular motion vectors.

In this chapter, we implement the proposed approach in the AV1 codec, while

the integration into other video codecs is also possible and should be fairly simple.
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3.3 Co-located Reference Frame Based on Opti-

cal Flow Estimation

3.3.1 Background on the Basic Formulation of Optical Flow

Estimation

The optical flow estimation is usually formed as a Lagrangian optimization,

with its cost function J given by:

J = Jdata + λJspatial, (3.1)

where the data term, Jdata, represents the cost of certain optical flow with respect

to the data (pixel intensities) it is associated with. The spatial term Jspatial rep-

resents the spatial constraint on the optical flow. λ is the Lagrangian parameter

and controls the influence of the spatial constraint (λ ≥ 0). For the rest of this

section, we briefly recap the basic formulations of the two terms that are used in

this chapter.

Let I(x, y, t) denote the pixel intensity at location (x, y) and time instant t. For

a certain pixel, let (u, v) denote its motion, where u is the horizontal component

and v is the vertical component. Assuming linear motion and constant brightness

65



of the same object, given 0 ≤ td ≤ 1, we have:

I(x− tdu, y − tdv, t− td) = I(x+ (1− td)u, y + (1− td)v, t+ (1− td)). (3.2)

This equation relates to our interested scenario where in the current frame at

time t, for some pixel at (x, y) with motion vector (u, v), its predictions from the

two bi-directional reference frames at t− td and t+ (1− td) should be located at

(x− tdu, y − tdv) and (x+ (1− td)u, y + (1− td)v).

As introduced in [35], expanding (3.2) around (x, y, t) by Taylor series expan-

sion and eliminating higher order terms, we arrive at the following equation after

reordering terms:

Ixu+ Iyv + It = 0. (3.3)

Here Ix, Iy and It denote the partial derivatives with respect to x, y and t. There-

fore a possible choice of the data term is given by:

Jdata =
∑

(Ixu+ Iyv + It)
2, (3.4)

where the summation is over every pixel in the current frame.

As for the spatial term, the simple 4-directional 2-D Laplacian filter is consid-
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ered in this chapter:

∆ux,y = −4ux,y + ux−1,y + ux+1,y + ux,y−1 + ux,y+1, (3.5)

and the spatial term is given by:

Jspatial =
∑
{(∆u)2 + (∆v)2}. (3.6)

Given N pixels of interest, we can form the horizontal and vertical motion com-

ponents of the pixels as a 2N by 1 vector x = (u0, u1, ..., uN−1, v0, v1, ..., vN−1)
T .

Then (3.4) becomes:

Jdata = xTDTDx− 2bTdatax + cdata, (3.7)

where D,bdata and cdata can be derived from (3.4). Similarly, the spatial term

(3.6) becomes:

Jspatial = xTLTLx− 2bTspatx + cspat. (3.8)

Here L,bspat and cspat can be derived from the Laplacian filter mask in (3.5).

Note that (3.5) only defines the Laplacian filter for a general location. For the

boundary pixels, different strategies will result in different bspat and cspat.

67



From (3.7) and (3.8), the total cost function can be written as:

J = xTAx− 2bTx + c, (3.9)

where A = DTD + λLTL, b = bdata + λbspat and c = cdata + λcspat.

From the definition, it is easy to see that A is a symmetric semi-positive

definite matrix, thus making it a quadratic convex optimization problem. Setting

the gradient of J to 0, we have:

Ax = b. (3.10)

To solve the linear equations in (3.10), due to the symmetric semi-positive

definite nature of A, the conjugate gradient (CG) method [55] naturally serves as

a desirable approach.

Alternatively, instead of solving the linear equations via CG, there also exist

iterative approaches to optimize the cost function. For example, as described in

[35], observing that the data term only involves the motion of the current pixel

while the spatial term introduces the cross terms between pixels, we can estimate

the spatial term of a current pixel by using the motion vectors from the last

iteration to avoid such cross terms.

From (3.5), we have ∆u = wc(ū − u) and ∆v = wc(v̄ − v), where ū is the
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average of the horizontal components of the neighboring motion vectors (similar

for v̄ too), and wc is the center weight of the Laplacian filter mask (for example, in

(3.5), wc = −4). For iteration k+ 1, this iterative approach uses the average from

last iteration ū(k) to approximate ū(k+1). Since ū(k) is considered as a constant for

iteration k+ 1, we can optimize every pixel individually. The solution at iteration

k + 1 for a certain pixel is given by:

u(k+1) = ū(k) − Ix(Ixū
(k) + Iyv̄

(k) + It)

(w2
cλ+ I2x + I2y )

;

v(k+1) = v̄(k) − Iy(Ixū
(k) + Iyv̄

(k) + It)

(w2
cλ+ I2x + I2y )

;

(3.11)

Note that this iterative approach is very similar to the Jacobi iterative method

to solve linear equations, and is essentially a stationary iterative method, which,

compared to Krylov subspace methods like CG, may suffer from slower conver-

gence. However, with more complicated (e.g. non-linear) cost functions, such

iterative approaches may yield a more straight-forward yet effective form.

In this section, we consider the CG method as our cost minimization method

and stick with linear cost functions. Complexity analysis of the approach is pro-

vided in section 3.3.5.
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3.3.2 Optical Flow Estimation and CLRF Interpolation

As the core of the proposed scheme, the optical flow estimation accuracy plays

a crucial part in the overall prediction quality. Note that the cost optimization

method introduced in section 3.3.1 depends on the assumption that the brightness

of the same object stays constant, and that the spatial derivatives Ix and Iy are

also stationary. However, in practice the scene is usually quite complex and such

assumptions are only largely valid in a very small local area, potentially resulting

in poor optical flow estimation accuracy especially with motions of large scales.

A commonly utilized technique, the pyramid structure, is helpful for such sce-

narios. With the pyramid structure, the reference frames are re-sized to different

scales to form a pyramid, and the optical flow is first calculated for the smaller

scale to initialize the optical flow estimation of the next level (with a larger scale).

In this way, it is easier to capture large motions at the smaller scale, while at

larger scales the details are further refined.

Observing that re-sizing the pixels potentially could lose details, and also that

calculating the derivatives at a small scale increases the chance that the derivative

filter mask spanning out of the stationary local areas, in this chapter we use a

slightly different approach for the pyramid structure. Instead of re-sizing the

pixels, we first calculate the derivatives at the original scale, and then re-size the

derivatives to the desired scale.

In addition, at each pyramid level, multiple warping steps are also performed
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to further improve the estimation accuracy. After calculating the optical flow at a

certain step, we warp the reference frames accordingly towards the current frame

fn. Then at the next step, the motion field is updated by estimating the optical

flow between the warped reference frames, and will be used for future warping

steps. In this way noises in derivative calculation can be gradually attenuated,

and the motion field is refined at each warping step.

To interpolate the CLRF, we warp the two reference frame according to the

final optical flow estimated, and then blend them with the weighted average of

the warped references:

ICLRF (x, y) = (1− td)In0(xn0 , yn0) + tdIn1(xn1 , yn1), (3.12)

where ICLRF (x, y), In0(x, y) and In1(x, y) denote the pixel intensity at location

(x, y) in fCLRF , fn0 and fn1 respectively. The relative ratio td is defined as td =

(n− n0)/(n1− n0). Denoting the motion vector associated with location (x, y) in

the CLRF frame as (u, v), then xn0 = x−tdu, xn1 = x+(1−td)u, and yn0 = y−tdv,

yn1 = y + (1− td)v.

3.3.3 Motion Field Initialization

The optical flow estimation, as also stated in section 3.3.2, relies on the pixel

intensity constancy condition. In practice such condition is only largely valid
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in local areas for a short time interval. Therefore, when the motion vector for

a certain object is of a larger scale than the local area, it would be very hard

to estimate the optical flow since the intensity constancy condition is violated.

When performing optical flow estimation for our proposed scheme, such scenario

frequently appears due to dramatic motions in the video content. Also, if the

two-sided reference frames are far apart in the hierarchical coding structure, the

resulting motion between the reference frames is also often quite large.

The above problem can be mitigated by applying a better initialization of the

motion field, with which the regions pointed by the initialized motion already

belong to the same local area and the intensity constancy condition is satisfied.

Thus performing optical flow estimation on top of such initialization yields much

higher accuracy.

In many optical flow estimation applications, motion search is performed be-

tween the interested frames first to provide a good initialization. However, it is

not favored for our proposed method considering the facts that: 1) motion search

at the decoder adds much complexity and is not a desirable approach for video

coding; 2) different from many other applications where just the two reference

frame are available, in video coding, with our scheme, the two reference frames

are already analyzed by the encoder and useful information may have already

been extracted and buffered for the current frame.

Therefore, we instead propose the following initialization method which does
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not engage extensive motion search. instead, it utilizes the motion vectors asso-

ciated with the reference frames which are already available for both the encoder

and decoder.

Still consider the scenario with the current frame fn and the two-sided reference

frames fn0 and fn1 . First, since the initialization essentially tries to coarsely

estimate the motion between fn0 and fn1 , we look at every inter-predicted block

in the two reference frames, and if the associated motion vector for the block

points to the other reference frame, then this motion vector is considered as part

of the initialization of the motion field. We refer to such motion vectors that are

directly obtained between the reference frames as the direct MVs.

Although the direct MVs serve as a high quality initialization of the motion

field, there is the possibility that some blocks in the reference frames fn0 and fn1

do not refer from the other reference frame, resulting in many uninitialized regions

in the current frame.

In [56], a method based on linear projection (developed from a motion vector

reference scheme proposed in [57]) is used to reduce the number of uninitialized

regions. As shown in figure 3.2a, taking fn0 as an example, if the motion vector

of a certain block in fn0 does not point to fn1 , we project this motion vector to

fn1 by assuming linear motion. Such motion vectors are referred to as projected

MVs.

However, although the projected MVs may fill in the uninitialized regions, the
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quality of them may not be satisfactory when the motion is not linear (note how

the projected MVs differ from the desired initialization in figure 3.2a).

(a) Calculation of the projected MVs

(b) Calculation of the proposed derived MVs

Figure 3.2: Examples of different methods to calculate the motion field ini-
tialization. For a certain block in fn0 , if its associated motion vector does not
point to fn1 , but other frames fk or fj , we can calculate the projected MVs
or the proposed derived MVs, and use them as initialization. Note how the
proposed derived MVs in figure 3.2b serve as a better initialization when the
motion is non-linear.

Recognizing this problem, in this section, we propose another approach to pro-

vide more reliable alternative initialization in addition to the direct MVs. Figure

3.2b illustrates how this approach works. Still taking fn0 as an example, if the mo-
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tion vector of a certain block, mvn0,k, is not pointing to fn1 , but block bk in frame

fk, we check whether there exists any motion vector mvn1,k that lies between fn1

and fk, pointing to/from bk. If such motion vector exists, then the difference (or

sum, depending on the direction of mvn1,k) of the two motion vectors represents

the motion between fn0 and fn1 , and thus can be used as initialization. We refer

to these motion vectors as the derived MVs. As can be seen from 3.2b, the derived

MVs do not rely on the linear motion assumption, and hence are more reliable

than the projected MVs.

In our proposed scheme, we use the direct MVs together with the derived MVs

to initialize our motion field. As such a motion vector crosses the current frame,

we find the nearest pixel to the crossing location and assign the motion vector as

the initialization of the motion field for this pixel. The remaining uninitialized

regions are filled by copying the initialized motion vector of the nearest available

pixel.

In conclusion, we recognize that motion search and selection are already per-

formed by the video coder, and thus utilize the information already extracted

to provide a high quality motion field initialization without extensive complexity

cost.
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3.3.4 MV Prediction with CLRF and Offset MVs

In section 3.2.1, we proposed to integrate the CLRF into video codecs as a

regular reference frame, and also regard its associated offset motion vectors as

regular motion vectors. However, note that the offset motion vectors, though

treated as regular, do not represent the motion of the block, but rather the offset

from the assumed linear motion.

In this section, we point out that such difference in physical meaning between

the offset motion vector and the regular motion vectors could result in problems

for the motion vector prediction scheme, and provide a novel approach to perform

motion vector prediction with CLRF to overcome these issues.

In video coding, the motion vector of every inter-predicted block is transmitted

to the decoder. To improve the coding efficiency, the motion vectors are first

predicted and the prediction residuals are then coded. In many video codecs, the

motion vectors of the spatial and temporal neighboring blocks are used as the

prediction. The motion field initialization introduced in section 3.3.3 can also

serve as a temporal prediction of motion vectors.

However, with our proposed scheme with CLRFs, the motion vector we predict

from could be an offset motion vector associated to a CLRF, while the motion

vector to be predicted is a regular motion vector. As we have explained, these

two motion vectors represents different physical meaning, and hence could result

in low-quality prediction, potentially breaking the motion vector prediction loop.
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Figure 3.3: Predicting regular motion vectors from an offset motion vector.

To solve this problem, notice that although the offset motion vector do not

represent the actual motion, together with the estimated optical flow, the actual

motion can be derived for that neighboring block. As shown in figure 3.3, which

takes the spatial motion vector prediction as an example (assuming the CLRF

and the current block share the same reference frames), the derivation is done by

the following steps:

First, find the adjusted location given by the location of the neighboring CLRF

block and its offset motion vector mvoffset. At the adjusted location, find its mo-

tion field given by the optical flow estimation. By averaging the motion field in the

adjusted region, form the motion vectors pointing from this adjusted location to
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fn0 and fn1 , denoted as mvmf,0 and mvmf,1. Lastly, the motion vector predictions

are given by concatenating mvoffset with mvmf,0 and mvmf,1.

Figure 3.4: Predicting an offset motion vector from regular motion vectors.

Similarly, there are also situations where we try to predict an offset motion

vector from regular vectors. For such situations, we incorporate the same idea, but

in a reversed manner. As illustrated in figure 3.4, the motion offset prediction is

derived by calculating the linearly weighted average of the regular motion vectors

mvreg,0 and mvreg,1:

mv′offset = (1− td)mvreg,0 + tdmvreg,1. (3.13)

By the above approach, we are able to perform motion vector prediction for

our proposed scheme with CLRF, which significantly reduces the motion vector
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coding redundancy.

3.3.5 Complexity Analysis and Speed Optimization with

the Block-Constrained Algorithm

From (3.10), given N pixels, x is a vector with 2N variables. Therefore min-

imizing the cost J in (3.9) involves solving 2N linear equations. Directly solving

the inverse of a 2N × 2N matrix A would result in O(N3) complexity with simple

approaches such as the Gaussian elimination method.

However, since the accuracy requirement of our calculation is not quite strict,

iterative solutions such as the conjugate gradient (CG) method can be naturally

more efficient. Generally, the complexity of CG is O(N2M), where M is the

number of iterations and can be chosen as a much smaller number than 2N for

our precision requirement.

Furthermore, note A is a sparse matrix with O(N) number of non-zero ele-

ments. This is mainly because when applying the Laplacian filter mask, for every

pixel, only a constant number of its neighbors (define by the mask) can affect the

variables (u, v) associated with the current pixel. Further proof of sparsity of A is

not included in this dissertation, but should be fairly straight-forward by writing

out DTD and LTL in (3.7) and (3.8).

Therefore, considering that at each iteration for CG, the dominant complexity
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cost lies in calculating the product of A and a 2N × 1 vector, and that such

multiplication now takes only O(N) complexity due to the sparsity, the total

complexity of optimizing J becomes O(NM).

Therefore, the complexity of optical flow estimation depends on the number

of pixels N , as well as number of iterations M . It should also be noted that for

larger N , it also takes more iterations to converge to a certain precision, thus M

should also increase as we increase N 1.

In addition, as discussed in section 3.3.2, the number of pyramid levels numP

and the number of warping steps numW at each pyramid level are also factors

influencing the overall complexity. Use of median filter to the motion field, which

improves the optical flow estimation accuracy, also involves more complexity.

In this section, we present an alternative block-constrained algorithm to lower

the complexity of the proposed scheme.

The basic idea of the block-constrained algorithm is simple: instead of per-

forming optical flow estimation for the whole frame, we first divide the current

frame fn into blocks of size h × w, and then perform optical flow estimation for

each block independently.

At the encoder end, before encoding the current frame, we calculate the optical

flow for each such block, and combine the optical flow of each block together to

1In fact, it is proven that when M = 2N , CG is guaranteed to converge to the exact solution
assuming no precision loss. However in our application, such high precision is not required and
we still choose M � N .
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form a frame-level motion field. Then, CLRF interpolation and further encoding

scheme of the current frame stays the same as in section 3.3.2.

At the decoder, however, the optical flow estimation is not done before decod-

ing the current frame. Instead, as we decode and reconstruct some coding block,

only if it uses the CLRF as reference frame for motion compensation, will we per-

form optical flow estimation for the h×w blocks in fCLRF that are needed by the

current coding block. These h × w blocks are determined by the location of the

current block, the offset motion vector, and the length of sub-pixel interpolation

filter L (as illustrated in figure 3.5). If a certain h×w block in the CLRF is already

interpolated for a previously decoded coding block, then skip its calculation and

use the previously interpolated result.

The above block-constrained algorithm greatly improves the speed of the pro-

posed scheme because of the following reasons. First, the complexity of performing

optical flow estimation for a block is O(NbMb), where Nb is the number of pixels

in a block (Nb = hw), and Mb is the number of iterations needed. Therefore

the total complexity of processing all blocks in the frame is O(
∑
{NbMb}) =

O(
∑
{Nb}Mb) = O(NMb). As mentioned, since Nb is much smaller than N , the

number of iterations (Mb) needed to converge to a certain precision is also much

smaller than M , thus reducing the total complexity by a large factor. Second, at

the decoder, only a portion of h×w blocks will need optical flow estimation, since

there may be many other coding blocks predicting from other references rather
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Figure 3.5: Illustration of the block-based algorithm at the decoder. For the
current coding block, the h×w blocks that requires optical flow estimation are
marked by the gray blocks, which are determined by the offset motion vector
mvoffset and the length of sub-pixel interpolation filter L.

than the CLRF. The decoder complexity is further reduced in this way. Lastly,

the optical flow estimation of each block should not interfere with each other,

which ensures simple parallel design of the algorithm and can be quite helpful for

the hardware design.

The key aspect of the block-based algorithm lies in the fact that the optical

flow estimation of each block does not rely on other blocks. This enables the de-

coder to selectively skip certain blocks according to the usage of CLRF. To ensure

such independence, the estimated optical flow of neighboring blocks should not

affect the current block through the spatial constraint term. Therefore, we treat
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the initialization of the neighboring blocks’ motion field as their actual motion.

Since the initialization is already available to the decoder before the optical flow

estimation, it is considered as part of the constant term cspat in (3.8), effectively

relaxing the spatial constraint across the block boundary compared to the frame-

based algorithm. Moreover, noting the initialization is not accurate, we apply a

lower confidence level to the initialization to decrease its influence on the current

block.

Apart from the spatial term, for the data term, the calculation of derivatives

also depend on neighboring blocks, since the derivative filter may span out of

block. Similarly, the initialization is also used here to generate the derivatives

near the block boundaries.

It should be noted that the block-constrained algorithm depends more on the

quality of motion field initialization. On the one hand, as we discussed, this is

because the initialization is used to handle the block boundaries. On the other

hand, the block-constrained algorithm by its nature works only at local areas,

thus requiring the initialization to match the current block to the same local area

for a better accuracy.

3.3.6 Experimental Results

The proposed scheme with the various design optimizations is integrated with

the AV1 framework according to section 3.2.1. Various video sequences were tested
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with resolutions including low-res (240p, CIF, etc.), mid-res (480p, 4CIF) and hd-

res (720p, 1080p. etc.). In this section, we will discuss experimental results from

two aspects: the peak performance and the trade-off between complexity and

performance.

For peak performance, frame-based optical flow is utilized with a three-level

pyramid structure (numP = 3). The number of warping steps is also set to 3

(numW = 3). Each video sequence is encoded with 150 frames at various target

bit-rates (resulting in quality ranging between 35 and 50 dB approximately).

The bit-rate reduction compared to baseline AV1 encoder is shown in table 3.1.

It is evident that substantial coding gains are obtained and that the coding gain is

consistent across the extensive set of testing video clips with various resolutions.

The overall bit-rate reduction is 3%, 3.8% and 3.5% for low-res, mid-res and hd-

res respectively. Especially, note the relatively larger gains (approximately 8%-

10%) for sequences with very complicated moving subjects (such as crowd run,

rush field cuts, ice, etc.) and sequences with non-translational motions (such as

station2, blue sky, city, etc.). This further proves that our proposed algorithm

utilizes the motion information more efficiently, and confirms the capability of the

estimated per-pixel optical flow.

Recognizing the practical constraints for video coding applications, the addi-

tional complexity of performing optical flow estimation (especially at the decoder)

is also an important factor. As discussed in section 3.3.5, various parameters could
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Table 3.1: Peak performance BD-rate reduction (%) of the proposed method
Low-res Mid-res HD-res

akiyo -2.97 BQMall -4.45 basketballdrive -3.02
basketballpass -6.32 BasketballDrillText -3.45 blue sky -8.41
blowingbubbles -2.55 BasketballDrill -4.21 bqterrace -1.34

bowing -3.78 Flowervase -2.52 cactus -6.17
bqsquare -2.50 Keiba -0.57 chinaspeed -1.19

bridge close -0.57 Mobisode2 -2.79 city -3.25
bridge far 0.13 PartyScene -2.65 crew -3.80

bus -2.69 RaceHorses -4.26 crowd run -9.76
cheer -2.59 aspen -4.11 cyclists -3.35
city -5.67 city -8.38 dinner -3.62

coastguard -1.04 controlled burn -1.67 ducks take off -0.71
container -2.01 crew -5.38 factory -4.16

crew -3.93 crowd run -8.98 fourpeople -3.93
deadline -3.89 ducks take off -1.06 in to tree -3.89
flower -2.36 harbour -2.75 jets -7.25

flowervase -2.94 ice -7.26 johnny -2.15
football -2.59 into tree -4.94 kimono1 -5.13
foreman -4.80 old town cross -6.73 kristenandsara -3.67
garden -2.27 park joy -3.13 life -4.96

hallmonitor -1.45 red kayak -0.18 mobcal -0.65
harbour -1.56 rush field cuts -8.70 night -4.36
highway -1.92 sintel trailer 2k -1.22 old town cross -4.21
husky -1.63 snow mnt -0.10 parkjoy -3.64

ice -7.75 soccer -3.05 parkrun -1.24
keiba -0.51 speed bag -1.14 parkscene -5.20

mobile -2.88 station2 -8.01 ped -1.45
mobisode2 -2.33 tears of steel1 -2.84 riverbed -0.22

motherdaughter -5.76 tears of steel2 -5.13 rush hour -3.23
news -3.05 touchdown pass -4.17 sheriff -1.27

pamphlet -3.40 west wind easy -0.55 shields -1.86
paris -5.29 station2 -6.32

racehorses -6.01 stockholm ter -2.40
signirene -3.01 sunflower 0.51

silent -3.10 tennis -0.84
soccer -2.42 tractor -3.11
stefan -1.70 vidyo1 -3.92

students -4.40 vidyo3 -4.64
tempete -1.18 vidyo4 -4.55
tennis -2.23

waterfall -3.13
Average -3.00 Average -3.81 Average -3.48
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influence the complexity of the proposed approach. First, as presented in 3.3.5,

the additional complexity should be linear to the the number of iterations for CG,

M and Mb. This is confirmed by figure 3.6, which clearly demonstrate such linear

relationship for sequence city cif. Note that, as also shown in the figure, even with

the same number of iterations (M = Mb), the block-constrained algorithm yields

a low complexity. This is because for the block-constrained algorithm, the relaxed

condition at block boundaries effectively lowers the number of total non-zero ele-

ments in the sparse matrix by a constant factor. Furthermore, the decode is able

to skip blocks that is not referred to, which also lowers the complexity. Moreover,

it should be noted that as the number of iterations increases, the complexity for

the block-constrained algorithm eventually becomes a bit lower than the linear

trend. This is due to the fact that we terminate the algorithm when a certain

precision is reached, and that the block-constrained algorithm with fewer variables

converges much faster. In our experiment, we notice that such relationship and

similar trend also exists for other tested sequences, and therefore for the rest of

the section, we use the complexity of city cif as a coarse approximation of the

average complexity.

Next in figure 3.7, the relationship between the coding performance gain for the

low-res test set and the additional decoder complexity is presented (the number

of iterations, M or Mb, is shown as the label of each data point). For both frame-

based and block-constrained algorithm, the performance improves with increasing
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Table 3.2: Table of BD-rate reduction (%) with various complexity trade-offs

set num P num W method lowres midres HDres relative
complexity

1 (peak) 3 3 Frame -3.001 -3.813 -3.483 1
2 3 3 Block -2.293 -3.056 -2.916 0.026
3 1 1 Frame -2.274 -2.955 -2.883 0.134
4 1 1 Block -1.879 -2.663 -2.647 0.010

init only 0 0 - -1.227 -2.076 -2.238 0

Figure 3.6: The linear relationship of decoder side complexity v.s. number of
iterations for solving linear equations (M or Mb).

complexity until it reaches a certain level. Also note that the block-constrained

algorithm reaches such level much faster than the frame-based algorithm, but its

max performance gain is lower, due to its limit of ignoring the correlation across

block boundaries. It can be concluded that, when the desired decoder complexity

is limited, the block-constrained algorithm serves as a good alternative in terms

of the trade-off between complexity and overall performance.

Such trade-off is also influenced by other parameters, here in table 3.2, we
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Figure 3.7: Trade-off between performance and complexity for both
frame-based and block-constrained algorithms. The label associated with each
data point represents the number of iterations M or Mb.

present the average coding gain for a few experiment sets, each with difference

choices of numP , numW and use of the block-constrained algorithm. Obviously,

by changing the parameters, different trade-offs of performance and complexity

can be achieved. With the fastest setting (set 4), more than 60% of the coding

gains are maintained, while the additional complexity is only 1% as compared to

the peak performance.

It is also worth noting that, for the “init only” set, we do not perform optical

flow estimation at all, and use the initialization of motion field directly to generate

the CLRF (hence yielding nearly no additional complexity). As shown, it also

provides a large bit-rate reduction. This clearly shows the effectiveness of our

motion vector initialization scheme, and how it lays a great foundation for the
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following optical flow estimation.

3.4 Co-located Reference Frame Using the Op-

timal Linear Estimator

The CLRF generation method in section 3.3 based on per-pixel motion field

estimation potentially suffers from quantization errors in the reconstructed refer-

ence frames as well as drastically increased complexity due to extensive motion

search. Furthermore, some video contents (such as the ones containing object

occlusion, gradual change of brightness, etc.) violates the brightness constancy

assumption for optical flow estimation and thus resulting in distorted motion field

and sub-optimal performance.

In this section, we propose a novel bi-directional motion compensation mode

that efficiently utilizes the motion information that is already available to the de-

coder, without recourse to extensive search. An estimation theory based approach

is proposed and utilized to provide a high quality prediction, which adaptively

combines contributions from multiple motion-compensated references.

3.4.1 Problem Setup

To interpolate each pixel in the CLRF, the first step of the proposed scheme

is to generate candidate motion vectors for this pixel location. Similar to the
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method introduced in section 3.3.3, we utilize the previously transmitted and

decoded MVs, and project them linearly between the reference frames fn0 and

fn1 . However, instead of using the one that intersects the current frame by the

closes pixel location to the current pixel, we collect M candidate MVs ( mvi,

i = 1, 2, ..,M), whose intersection pixel locations are closest to the current pixel,

to form a candidate MV set.

Given the candidate motion vectors, M references can be generated by linearly

combining each reference pair of pixels from the respective frames fn0 and fn1 (de-

noted as y
(0)
i and y

(1)
i ). The combined references are denoted x = (x1, x2, ..., xM)T .

For now let us assume the simple case where n − n0 = n1 − n to illustrate the

basic idea (then xi = 0.5y
(0)
i + 0.5y

(1)
i ), noting that derivation for a general setup

is straightforward.

From an estimation theory perspective, we regard the references xi as M

observations correlated with y. A linear estimator with weight vector w =

(w1, w2, ..., wM)T is used to generate an estimate of y:

ỹ = wTx. (3.14)

The weights w are determined such that they minimize the mean squared
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prediction error:

w = argminw{E{(y − ỹ)2}}. (3.15)

A standard result in linear estimation theory, obtained by simple calculus,

converts the problem into a set of linear equations:

E{xxT}w − E{xy} = 0, (3.16)

where E{xxT} is the M ×M correlation matrix of x, and E{xy} is the M × 1

vector containing the cross correlations of xi and y.

However, how to obtain the proper correlation matrix and the cross correlation

vector still remains a challenging problem. As presented in [58] and [59], offline

training of the weights can be performed by collecting relevant data from the video

codecs to provide estimates of the relevant correlations. In section 3.4.2, we pro-

pose a different online adaptive method that utilizes the bi-directional prediction

scheme to estimate such correlations on-the-fly to better adapt to local statistics.
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3.4.2 CLRF Interpolation Based on Optimal Design of

Adaptive Linear Estimators

First, let us consider the actual motion trajectory of the pixel of interest. As

shown in Figure 3.8, the motion trajectory is represented by the dashed line, and

the pixel values of the pixels at frame fn0 and fn1 are denoted by y(0) and y(1).

Let us further assume an auto-regressive (AR) model along the motion trajectory.

Since n− n0 = n1 − n, the correlations are symmetric, and we have:

y = ρty
(0) + v,

y(1) = ρty + v(1),

(3.17)

where ρt is the temporal correlation coefficient. Assuming constant variance σ2
y,

we have: ρt = E(y(0)y)
σ2
y

= E(yy(1))
σ2
y

. v and v(1) are white noise random variables that

are uncorrelated with y, y(0) and y(1).

Given the AR model of (3.17), the correlation coefficient between y(0) and y(1),

denoted ρ12, is:

ρ12 =
E(y(0)y(1))

σ2
y

= ρ2t . (3.18)

Now consider a motion vector candidate mvi, which in general may not be the

same as the true motion trajectory as illustrated in figure 3.8. Here, the separable

spatial-temporal correlation model is further assumed, such that the correlation
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Figure 3.8: Illustration of cross correlation calculation. Along the real motion
trajectory (the dashed line), ρt denotes the temporal correlation coefficient. For
each of the MV candidates mvi, the cross correlation coefficient ρi is given by
the separable model: ρi = ρtρs,i, where ρs,i is the spatial correlation coefficient.

coefficient, ρi =
E{y(0)i y}

σ2
y

=
E{yy(1)i }

σ2
y

is given by:

ρi = ρtρs,i, (3.19)

where ρs,i is the spatial correlation coefficient relevant to the distance between

y(0) and y
(0)
i (which equals the distance between y(1) and y

(1)
i in this setting due

to symmetry).

Analogous to (3.18), the correlation coefficient between y
(0)
i and y

(1)
i , denoted

ρ12,i can be related to ρi:

ρ12,i = ρ2i . (3.20)

Now, for a given mvi, the reference pixel value is xi = 0.5y
(0)
i + 0.5y

(1)
i . With
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the same pixel value variance σx = σy = σ, we obtain:

E{xiy} = ρiσ
2 =
√
ρ12,iσ

2. (3.21)

Since the two reference frames are already reconstructed, we propose to esti-

mate ρ12,i on the fly by collecting neighboring data (a 5× 5 patch) around pixels

y
(0)
i and y

(1)
i . Once ρ12,i is calculated for each i = 1, 2, ...,M , the cross correlation

vector is calculated according to (3.21).

Next, the remaining ingredient needed to determine the linear estimator by

solving (3.16), is the correlation matrix, i.e., we need the correlations between

candidates E{xi1xi2} for any i1 and i2. From (3.21), for a given i, we can write

xi as:

xi = ρiy + zi, (3.22)

where zi is the “innovation” in xi, that is, what is uncorrelated with y. Therefore,

E{xi1xi2} = ρi1ρi2σ
2 + E{zi1zi2}, (3.23)

where E{zi1zi2} is the correlation of the innovations relative to y. We propose to

model this correlation with an exponential decay model, i.e., the correlation drops

exponentially with the distance from the referred pixels. Note that this distance

equals the difference between the two candidate motion vectors, therefore we have:
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E{zi1zi2} = exp(−α||∆mvi1,i2||)σz1σz2 , (3.24)

where ∆mvi1,i2 = mvi1−mvi2 , and the variance of zi is given by σ2
zi

= (1−ρ2i )σ2.

Substituting (3.24) into (3.23), we obtain an estimate for the correlation ma-

trix, and (3.21) provides the cross correlation vector. Therefore the corresponding

linear estimator weights can now be obtained by (3.16) (note that the variance

σ2 cancels out and thus is not needed). The resulting linear estimator is used to

generate the interpolated motion compensated prediction for this pixel location.

We re-emphasize that we assumed n−n0 = n1−n in the above derivations for

simplicity of presentation. It is straightforward to derive the results for other set-

tings using the same logic, and the details are omitted here for conciseness. Also,

the derivation assumed zero-mean random variables, which can be approximated

by subtracting a local mean or a constant bias.

3.4.3 MV Prediction Scheme Based on Correlation Model

Consistency

Conventionally, the motion vectors are predicted by another neighboring mo-

tion vector, or by a projected motion vector from other existing motion vectors.

Inspired by the method introduced in section 3.4, in this section, we proposed

an innovative approach, which considers multiple existing MVs as observations of
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the current MV and generates an MV prediction based on such observations and

statistical models of the pixel values associated with such MV observations.

Similar to the method in section 3.4, first, a set of MV candidates, denoted

as mvi, are generated. Note the motion vector candidates are all projected such

that they points from reference frame fn0 to fn1 , intersecting the current frame.

As shown in figure 3.9, such MV candidates are treated as observations of the

actual motion vector (mvt, represented by dash line), which is unknown and to

be predicted.

Figure 3.9: Illustration of motion vector candidates.

Now let us consider the reconstructed pixels associated with each MV candi-

date mvi, denoted as y
(0)
i and y

(1)
i . As shown in (3.20), assuming that the pixels

form an AR process and that the pixel correlation follows the separated correlation

model, the correlation coefficient between them, ρi, is given by the multiplication
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of the temporal correlation coefficient ρt and the spatial correlation coefficient ρs,i.

Note that the temporal correlation captures the correlation along the motion

trajectory, and thus ρt should also be the temporal correlation coefficient between

the pixels associated with mvt. Assuming stationary statistics of pixels, such ρt

can be estimated from previous decoded frames and MVs.

Moreover, with the exponential decay model of the spatial correlation, similar

to (3.24), ρs,i depends on the spatial distance of the associated pixel location of

mvi to that of mvt, which can be calculated as:

ρs,i = exp(−β||mvi −mvt||2), (3.25)

where β is a parameter controlling the speed of decay that can also be estimated

from previously reconstructed pixels.

Then, on the one hand, with the estimated ρt and β available, it can be

concluded from (3.20) and (3.25) that ρi is a function of the actual motion vector

of the current pixel, denoted as ρi(mvt).

On the other hand, it is possible to estimate ρi by collecting neighboring

pixels around y
(0)
i and y

(1)
i and treating the neighboring pixels as realizations of

the associated pixel. These estimated values of correlation coefficients associated

with each candidate motion vector is denoted as ρ̄i

Therefore we propose to generate the prediction the actual motion vector,
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denoted as m̃vt of the pixel by the following cost minimization formula:

m̃vt = argmin
mvt

∑
i

||ρi(mvt)− ρ̄i||. (3.26)

It is not straight-forward to derive a closed-form solution for (3.26). Instead,

we propose to perform a “greedy search” of mvt using existing motion search

methods to provide a good prediction. It is very important to stress here that we

only utilize the search patterns of such motion estimation methods, but do not

suffer from their dramatic complexity cost, due to the fact that for every search

iteration, it is not necessary for us to compare pixel values of the neighboring

block or to perform sub-pixel interpolation filters. The only calculation needed

for each iteration is merely calculate ρi(mvt), which involves minimal complexity.

3.4.4 Experimental Results

The proposed method was implemented in the AV1 video coding software [4].

Two sets of experiments were conducted, where the baseline set utilizes the regular

compound mode in the AV1 codec, while the proposed set adds one extra predic-

tion mode that predicts from the co-located reference frame interpolated by our

proposed method. The performance was evaluated over a diverse set of sequences

that vary in resolution and motion characteristics, and results are provided for a

wide range of bit rates. For each sequence, 100 frames are encoded. Also, in our
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Table 3.3: BD-rate reduction using the proposed method.
Sequence BD-rate change (%)

coastguard -1.53
mobile -4.37

foreman -7.17
flower -3.19
bus -2.96

BasketballPass -4.81
container -3.95
tempete -1.30
Average -3.75

experiments, we set the parameters M = 9 and α = 0.1.

The BD-rate reduction [16] of the proposed method compared to the baseline

is shown in Table 3.3. It can be clearly seen that significant improvement (3.75%

BD-rate reduction on average) is obtained with the proposed method. As an

example, the rate-distortion (R-D) curve of bus cif.yuv (which contains dramatic

motions across the sequence) is shown in Figure 3.10. As can be seen, consistent

gain is achieved for a wide range of bit-rate, which further proves the effectiveness

of the method.

It should be emphasized that our method not only brings significant bit-rate

reduction, but does so at minimal complexity cost to the decoder, since we do

not require it to perform motion search, but use previously decoded information

instead.

Moreover, while the effectiveness of the proposed method was evidenced by

the above AV1 results, it must be stressed that the design principles are generally
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Figure 3.10: The R-D curve for bus cif.yuv.

applicable to other video codecs that employ motion-compensated prediction with

hierarchical structures, such as H.264, HEVC, etc.

3.5 Conclusion

This chapter focuses on the bi-directional motion compensated predictive cod-

ing scheme with CLRF.

The CLRF scheme is first introduced to account for available motion informa-

tion to the decoder, while providing a practical yet effective method to address

the problem of possible offset from the assumed linear motions.

To generate the CLRF, we first propose an approach based on optical flow
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estimation, which extracts per-pixel motion from the available reconstructed ref-

erence frames. Various optimization techniques, including motion field initializa-

tion, motion vector prediction with the offset motion vector are also presented.

Recognizing the increased complexity, a block-constrained fast algorithm is also

introduced, which requires much less calculation with an acceptable trade-off of

performance.

Based on the optimal estimation principles, we further proposed another ap-

proach which generates the CLRF using optimal linear estimators. Without

extensive motion estimation, existing transmitted motion vectors are re-used,

where their associated reference blocks are treated as observations of the pre-

dicted blocks. A method of estimating the cross-correlation matrix as well as the

correlation vector is derived, which enables the encoder to adaptively design op-

timal linear estimators on-the-fly. Moreover, inspired by such approach, a novel

approach of motion vector prediction is also proposed, where the prediction is

given by the motion vector that is most consistent with the observed statistics.

As illustrated by the experimental results, both methods brings significant

bit-rate reduction and the effectiveness of such bi-directional motion compensated

prediction scheme is proved.

101



Bibliography

[1] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, Overview of the
h. 264/avc video coding standard, IEEE Trans. Circ. Sys. Video Tech. 13
(Jul, 2003) 560–576.

[2] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, Overview of the
high efficiency video coding (hevc) standard, IEEE Trans. Circ. Sys. Video
Tech. 22 (Dec, 2012) 1649–1668.

[3] J. Bankoski, R. S. Bultje, A. Grange, Q. Gu, J. Han, J. Koleszar,
D. Mukherjee, P. Wilkins, and Y. Xu, Towards a next generation
open-source video codec, in Proc. SPIE 8666, Visual Information Processing
and Communication IV, 866606, Feb, 2013.

[4] Y. Chen et al., An overview of core coding tools in the av1 video codec, in
Picture Coding Symposium (PCS), pp. 24–27, 2018.

[5] Y. Wang, S. Wenger, J. Wen, and A. K. Katsaggelos, Error resilient video
coding techniques, IEEE Sig. Proc. Mag. 17 (Jul, 2000) 61–82.

[6] R. Zhang, S. L. Regunathan, and K. Rose, Video coding with optimal
inter/intra-mode switching for packet loss resilience, IEEE Jrnl. Sel. Areas
Comm. 18 (Jun, 2000) 966–976.

[7] H. Yang and K. Rose, Advances in recursive per-pixel end-to-end distortion
estimation for robust video coding in h. 264/avc, IEEE Trans. Circ. Sys.
Video Tech. 17 (Jul, 2007) 845–856.

[8] J. Han, V. Melkote, and K. Rose, Transform-domain temporal prediction in
video coding: exploiting correlation variation across coefficients, in IEEE
ICIP, Sep, 2010.

[9] J. Han, V. Melkote, and K. Rose, A recursive optimal spectral estimate of
end-to-end distortion in video communications, in Proc. Packet Video, Dec,
2010.

102



[10] B. A. Heng, J. G. Apostolopoulos, and J. S. Lim, End-to-End
Rate-Distortion Optimized MD Mode Selection for Multiple Description
Video Coding, EURASIP Jrnl. App. Sig. Proc. (2006).

[11] Y. Liao and J. D. Gibson, Rate-distortion based mode selection for video
coding over wireless networkswith burst losses, in 17th International Packet
Video Workshop, May, 2009.

[12] K. Rose and S. L. Regunathan, Toward optimality in scalable predictive
coding, IEEE Trans. Img. Proc. 10 (Jul, 2001) 965–976.

[13] J. Han, V. Melkote, and K. Rose, Estimation-theoretic delayed decoding of
predictively encoded video sequences, in Proc. IEEE DCC, Mar, 2010.

[14] S. Li, T. Nanjundaswamy, Y. Chen, and K. Rose, Asymptotic closed-loop
design for transform domain temporal prediction, in IEEE ICIP, Sep, 2015.

[15] J. Han, V. Melkote, and K. Rose, A spectral approach to recursive
end-to-end distortion estimation for sub-pixel motion-compensated video
coding, in IEEE ICASSP, May, 2011.

[16] G. Bjontegaard, Calcuation of average psnr differences between rd-curves,
Doc. VCEG-M33 ITU-T Q6/16, Austin, TX, USA, 2-4 (Apr, 2001).

[17] J. Xin, K. N. Ngan, and G. Zhu, Combined inter-intra prediction for high
definition video coding, in Picture Coding Symposium, 2007.

[18] Y. Chen, K. Rose, J. Han, and D. Mukherjee, A pre-filtering approach to
exploit decoupled prediction and transform block structures in video coding,
in IEEE ICIP, Oct, 2014.

[19] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, A survey of recent results in
networked control systems, Proceedings of the IEEE 95 (Jan, 2007) 138–162.

[20] J. H. Braslavsky, R. H. Middleton, and J. S. Freudenberg, Feedback
stabilization over signal-to-noise ratio constrained channels, IEEE
Transactions on Automatic Control 52 (Aug, 2007) 1391–1403.

[21] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and
S. S. Sastry, Kalman filtering with intermittent observations, IEEE
Transactions on Automatic Control 49 (Sept, 2004) 1453–1464.

[22] S. L. Howard, C. Schlegel, and K. Iniewski, Error control coding in
low-power wireless sensor networks: When is ecc energy-efficient?,
EURASIP Journal on Wireless Communications and Networking 2006
(2006), no. 2 29–29.

103



[23] M. Fu and C. E. de Souza, State estimation for linear discrete-time systems
using quantized measurements, Automatica 45 (2009), no. 12 2937–2945.

[24] W. S. Wong and R. W. Brockett, Systems with finite communication
bandwidth constraints. II. stabilization with limited information feedback,
IEEE Transactions on Automatic Control 44 (May, 1999) 1049–1053.

[25] S. Tatikonda and S. Mitter, Control under communication constraints,
IEEE Transactions on Automatic Control 49 (July, 2004) 1056–1068.

[26] A. Ribeiro, G. B. Giannakis, and S. I. Roumeliotis, Soi-kf: Distributed
kalman filtering with low-cost communications using the sign of innovations,
IEEE Transactions on Signal Processing 54 (Dec, 2006) 4782–4795.

[27] K. You, L. Xie, S. Sun, and W. Xiao, Multiple-level quantized innovation
kalman filter, IFAC Proceedings Volumes 41 (2008), no. 2 1420–1425.

[28] S. Dey, A. Chiuso, and L. Schenato, Remote estimation with noisy
measurements subject to packet loss and quantization noise, IEEE
Transactions on Control of Network Systems 1 (2014), no. 3 204–217.

[29] M. Nourian, A. S. Leong, S. Dey, and D. E. Quevedo, An optimal
transmission strategy for kalman filtering over packet dropping links with
imperfect acknowledgements, IEEE Transactions on Control of Network
Systems 1 (2014), no. 3 259–271.

[30] Y. Boers and H. Driessen, Modified riccati equation and its application to
target tracking, IEEE Proceedings - Radar, Sonar and Navigation 153 (Feb,
2006) 7–12.

[31] L.-K. Liu and E. Feig, A block-based gradient descent search algorithm for
block motion estimation in video coding, IEEE Transactions on Circuits and
Systems for Video Technology 6 (1996), no. 4 419–422.

[32] S. Zhu and K.-K. Ma, A new diamond search algorithm for fast
block-matching motion estimation, IEEE Transactions on Image Processing
9 (2000), no. 2 287–290.

[33] Y.-W. Huang, C.-Y. Chen, C.-H. Tsai, C.-F. Shen, and L.-G. Chen, Survey
on block matching motion estimation algorithms and architectures with new
results, Journal of VLSI signal processing systems for signal, image and
video technology 42 (2006), no. 3 297–320.

[34] G. J. Sullivan and R. L. Baker, Efficient quadtree coding of images and
video, IEEE Transactions on Image Processing 3 (1994), no. 3 327–331.

104



[35] B. K. Horn and B. G. Schunck, Determining optical flow, Artificial
intelligence 17 (1981), no. 1-3 185–203.

[36] D. Sun, S. Roth, and M. J. Black, A quantitative analysis of current
practices in optical flow estimation and the principles behind them,
International Journal of Computer Vision 106 (2014), no. 2 115–137.

[37] T. Brox and J. Malik, Large displacement optical flow: descriptor matching
in variational motion estimation, IEEE transactions on pattern analysis
and machine intelligence 33 (2011), no. 3 500–513.

[38] L. Xu, J. Jia, and Y. Matsushita, Motion detail preserving optical flow
estimation, IEEE Transactions on Pattern Analysis and Machine
Intelligence 34 (2012), no. 9 1744–1757.

[39] J. Xiao, H. Cheng, H. Sawhney, C. Rao, and M. Isnardi, Bilateral
filtering-based optical flow estimation with occlusion detection, in European
conference on computer vision, pp. 211–224, Springer, 2006.

[40] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid, Deepflow: Large
displacement optical flow with deep matching, in Proceedings of the IEEE
International Conference on Computer Vision, pp. 1385–1392, 2013.

[41] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. Van Der Smagt, D. Cremers, and T. Brox, Flownet: Learning optical flow
with convolutional networks, in Proceedings of the IEEE International
Conference on Computer Vision, pp. 2758–2766, 2015.

[42] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
Flownet 2.0: Evolution of optical flow estimation with deep networks, in
IEEE conference on computer vision and pattern recognition (CVPR),
vol. 2, p. 6, 2017.

[43] Z. Ren, J. Yan, B. Ni, B. Liu, X. Yang, and H. Zha, Unsupervised deep
learning for optical flow estimation., in AAAI, vol. 3, p. 7, 2017.

[44] F. Kendoul, I. Fantoni, and K. Nonami, Optic flow-based vision system for
autonomous 3d localization and control of small aerial vehicles, Robotics
and Autonomous Systems 57 (2009), no. 6 591–602.

[45] A. G. Bors and I. Pitas, Optical flow estimation and moving object
segmentation based on median radial basis function network, IEEE
Transactions on Image Processing 7 (1998), no. 5 693–702.

105



[46] R. Krishnamurthy, J. W. Woods, and P. Moulin, Frame interpolation and
bidirectional prediction of video using compactly encoded optical-flow fields
and label fields, IEEE transactions on circuits and systems for video
technology 9 (1999), no. 5 713–726.

[47] R. Krishnamurthy, P. Moulin, and J. Woods, Optical flow techniques applied
to video coding, in International Conference on Image Processing, vol. 1,
pp. 570–573, IEEE, 1995.

[48] S. Lin, Y. Q. Shi, and Y.-Q. Zhang, An optical flow based motion
compensation algorithm for very low bit-rate video coding, in IEEE
International Conference on Acoustics, Speech, and Signal Processing,
vol. 4, pp. 2869–2872, IEEE, 1997.

[49] Y. M. Chi, T. D. Tran, and R. Etienne-Cummings, Optical flow
approximation of sub-pixel accurate block matching for video coding, in
IEEE International Conference on Acoustics, Speech and Signal Processing,
vol. 1, pp. I–1017, IEEE, 2007.

[50] S. Klomp, M. Munderloh, Y. Vatis, and J. Ostermann, Decoder-side block
motion estimation for h. 264/mpeg-4 avc based video coding, in 2009 IEEE
International Symposium on Circuits and Systems, pp. 1641–1644, IEEE,
2009.

[51] Y. Chin and C.-J. Tsai, Dense true motion field compensation for video
coding, in 2013 20th IEEE International Conference on Image Processing
(ICIP), pp. 1958–1961, IEEE, 2013.

[52] S. Klomp, M. Munderloh, and J. Ostermann, Decoder-side hierarchical
motion estimation for dense vector fields, in Picture Coding Symposium
(PCS), 2010, pp. 362–365, IEEE, 2010.

[53] A. Alshin, E. Alshina, and T. Lee, Bi-directional optical flow for improving
motion compensation, in 28th Picture Coding Symposium, pp. 422–425, Dec,
2010.

[54] A. Alshin and E. Alshina, Bi-directional optical flow for future video codec,
in 2016 Data Compression Conference (DCC), pp. 83–90, March, 2016.

[55] J. Nocedal and S. J. Wright, Conjugate gradient methods, Numerical
optimization (2006) 101–134.

[56] B. Li, J. Han, and Y. Xu, Co-located reference frame interpolation using
optical flow estimation for video compression, in 2018 Data Compression
Conference, pp. 13–22, March, 2018.

106



[57] J. Han, J. Feng, Y. Teng, Y. Xu, and J. Bankoski, A motion vector entropy
coding scheme based on motion field referencing for video compression, in
2018 25th IEEE International Conference on Image Processing (ICIP),
pp. 3618–3622, IEEE, 2018.

[58] W. Lin, T. Nanjundaswamy, and K. Rose, Adaptive interpolated motion
compensated prediction, in IEEE International Conference on Image
Processing (ICIP), pp. 943–947, 2017.

[59] W. Lin, T. Nanjundaswamy, and K. Rose, Adaptive interpolated
motion-compensated prediction with variable block partitioning, in Data
Compression Conference, pp. 23–31, 2018.

107


	Curriculum Vitae
	Abstract
	List of Figures
	List of Tables
	Introduction
	Error-Resilient Predictive Coding with EED Estimation
	Relevant Background
	Basic Recursive Formulas of ROPE
	Transform Domain Temporal Prediction

	Block-Size Adaptive Transform Domain EED Estimation
	Fixed-Block-Size Transform Domain EED Estimation with TDTP Using SCORE
	Generalization to the Variable Block Size Scheme
	Simulation Results

	Error-Resilient Video Coding Framework with Soft Reset and EED Optimization
	Unconstrained Intra Prediction
	Soft Reset Joint Inter-Intra Prediction
	Simulation Results

	Adaptive State Estimation over Lossy Sensor Networks Accounting for EED
	Problem Setup
	Coding Modes and EED Estimation
	Simulation Results

	Conclusion

	A Novel Framework of Bi-directional Motion Compensated Prediction for Video Coding
	Introduction
	Proposed Scheme with the Co-located Reference Frame
	Video Codec Integration

	Co-located Reference Frame Based on Optical Flow Estimation
	Background on the Basic Formulation of Optical Flow Estimation
	Optical Flow Estimation and CLRF Interpolation
	Motion Field Initialization
	MV Prediction with CLRF and Offset MVs
	Complexity Analysis and Speed Optimization with the Block-Constrained Algorithm
	Experimental Results

	Co-located Reference Frame Using the Optimal Linear Estimator
	Problem Setup
	CLRF Interpolation Based on Optimal Design of Adaptive Linear Estimators
	MV Prediction Scheme Based on Correlation Model Consistency
	Experimental Results

	Conclusion

	Bibliography



