
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Engineering Dissipation to Generate Entanglement Between Remote Superconducting 
Quantum Bits

Permalink
https://escholarship.org/uc/item/5tt47927

Author
Schwartz, Mollie Elisheva

Publication Date
2016
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5tt47927
https://escholarship.org
http://www.cdlib.org/


Engineering Dissipation to Generate Entanglement Between Remote
Superconducting Quantum Bits

by

Mollie Elisheva Schwartz

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Physics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Irfan Siddiqi, Chair
Professor Holger Müller

Professor K. Birgitta Whaley

Fall 2016



Engineering Dissipation to Generate Entanglement Between Remote
Superconducting Quantum Bits

Copyright 2016
by

Mollie Elisheva Schwartz



1

Abstract

Engineering Dissipation to Generate Entanglement Between Remote Superconducting
Quantum Bits

by

Mollie Elisheva Schwartz

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Irfan Siddiqi, Chair

Superconducting quantum circuits provide a promising avenue for scalable quantum com-
putation and simulation. Their chief advantage is that, unlike physical atoms or electrons,
these “artificial atoms” can be designed with nearly-arbitrarily large coupling to one another
and to their electromagnetic environment. This strong coupling allows for fast quantum bit
(qubit) operations, and for efficient readout. However, strong coupling comes at a price: a
qubit that is strongly coupled to its environment is also strongly susceptible to losses and
dissipation, as coherent information leaks from the quantum system under study into inac-
cessible “bath” modes. Extensive work in the field is dedicated to engineering away these
losses to the extent possible, and to using error correction to undo the effects of losses that
are unavoidable.

This dissertation explores an alternate approach to dissipation: we study avenues by
which dissipation itself can be used to generate, rather than destroy, quantum resources. We
do so specifically in the context of quantum entanglement, one of the most important and
most counter-intuitive aspects of quantum mechanics. Entanglement generation and stabi-
lization is critical to most non-trivial implementations of quantum computing and quantum
simulation, as it is the property that distinguishes a multi-qubit quantum system from a
string of classical bits. The ability to harness dissipation to generate, purify, and stabilize
entanglement is therefore highly desirable.

We begin with an overview of quantum dissipation and measurement, followed by an in-
troduction to entanglement and to the superconducting quantum information architecture.
We then discuss three sets of experiments that highlight and explore the powerful uses of dis-
sipation in quantum systems. First, we use an entangling measurement to probabilistically
generate entanglement between two qubits separated by more than one meter of ordinary
cable. This represents the first achievement of remote entanglement in a superconducting
qubit system, which will be a critical capability as quantum computers and simulators scale.
We then use a nearly-quantum limited amplifier to unravel individual quantum trajectories
of the system under that entangling measurement, performing the first systematic explo-
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ration of entangled trajectories in any physical implementation. We finally demonstrate
deterministic entanglement by engineering a lossy quantum environment to efficiently gen-
erate and stabilize entangled states with both frequency and symmetry selectivity. These
experiments provide evidence that explicitly building dissipation into an engineered quan-
tum system can enable, rather than hinder, the study of fundamental quantum mechanics
and complex many-body Hamiltonians.
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Nothing works unless you do.
Maya Angelou
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Chapter 1

Introduction

All the mental effort of an assiduous investigator must indeed
appear vain and hopeless, if he does not occasionally run across
striking facts which form incontrovertible proof of the truth he
seeks, and show him that after all he has moved at least one step
nearer to his objective.

Max Planck, The Origin and Development of the Quantum Theory,
1920

Entanglement is perhaps the most puzzling component of quantum theory, one that
challenges classical conceptions of causality and locality. Two quantum objects that are
entangled with one another carry coherent quantum information in their joint correlations,
rather than in their individual states. The information shared between the two quantum
systems remains entangled, even if the systems are separated by light years. As a result,
making a measurement of one of the system causes an instantaneous projection of the other.
This “spooky action at a distance”, as famously described by (and philosophically reviled
by) Albert Einstein, is at the heart of quantum physics.

In addition to the fascinating philosophical questions raised by the existence of entangle-
ment, it also is fundamental to a number of very practical applications of quantum mechanics.
Quantum computation, networking, cryptography, and simulation all rely on the ability to
generate, manipulate, and measure entangled states. However, bringing entanglement out
of the abstract world of thought-experiments and into the physical realm of experimental
apparatuses requires us to grapple with the inevitable nonidealities of the physical world.
Even the most highly-isolated quantum systems must interact with their environment in
some way, and therefore gradually lose information to it in dissipative processes. Moreover,
a perfectly isolated and noninteracting quantum object by definition cannot be measured,
and therefore cannot be useful for the study of fundamental physics or for more practical
applications. We therefore need to develop an understanding of how noisy processes affect
entangled states.
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In this dissertation, we will explore the interfaces between entanglement, measurement,
and dissipation. We will see that entanglement is critical to the process of measurement, even
as measurement of an entangled state generally destroys that entanglement. We will also
discover that dissipation and measurement are complementary processes: they both involve
carrying information away from a quantum system, and either observing or losing that
information. We will then describe a series of experiments that demonstrate the potential
for noisy processes to serve as a resource for generating and stabilizing entanglement. We
will do all of this in the context of the superconducting quantum circuit architecture, which
represents a promising approach to scalable quantum experiments.

1.1 Superconducting Qubits

In order to study fundamental quantum mechanics or to work toward a practical quantum
computer or simulator, we must move beyond the realm of gedanken experiments and build
a physical apparatus for trapping, stabilizing, and manipulating single quantum degrees of
freedom. Deep interest in exploring the details of quantum physics has led to an explosion
of experimental efforts dedicated to designing and perfecting long-lived, addressable quan-
tum systems. This is no mean task: we do not feel quantum effects in daily life because
quantum information is quickly destroyed when a coherent quantum system is brought into
contact with the larger classical world occupied by bulk experimental equipment and brutish,
macroscopic physicists.

Most practical quantum systems are based around conceptual building blocks of quantum
systems that are restricted to two levels. In analogy with classical computational building
blocks, these are known as quantum bits, or qubits: these are two-level quantum systems
that, unlike their classical binary counterparts, are able to exist in a superposition of their two
states and to become entangled with one another so that information is distributed across the
entire qubit array. There are a broad range of physical qubit implementations, all of which
have advantages and disadvantages. A number of quantum information implementations,
including trapped ions [1–6], neutral atoms [7–11], nitrogen-vacancy (NV) centers in diamond
[12, 13], and semiconductor quantum dots [14–16] utilize a physical atom or electron to carry
quantum information. The advantage of these approaches is that the system under study is
inherently a fully quantum object, whose well-defined energy levels are unevenly spaced such
that individual transitions can be readily and uniquely addressed. However, electrons and
atoms are inherently tiny, and have a small scattering cross-section. Generating large dipole
interactions between the qubit and a macroscopic electromagnetic measurement apparatus
can therefore be quite challenging [17–19]. Similarly, generating significant couplings between
these spins in order to create entanglement can be difficult; these systems typically require
relatively long gate times.

Superconducting qubits [20–22], the physical system that we will use to study quantum
physics in this dissertation, represent an artificial atom generated from the collective behavior
of Cooper pairs as they tunnel across a weak barrier. The superconducting qubit is a
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macroscopic object that, rather amazingly, behaves like a single quantum degree of freedom.
Because of its macroscopic nature, it is straightforward to design the superconducting qubit
circuit to have an intrinsically large dipole moment: its physical extent can be on the order
of millimeters (in comparison to the nanometer-sized dipole of a physical atom). As we will
see in Chapter 4, the designability of the form factor in the superconducting qubit is one of
its chief strengths and defining features. The strong coupling limit, in which the qubit-cavity
coupling gqc is larger than the cavity leakage rate κ and the qubit decay rate γ can be met
using superconducting qubits with minimal design effort.

1.2 Strong Coupling: A Blessing and a Curse

The inherent strong coupling in the superconducting qubit architecture is one of its greatest
strengths. The ease of generating strong interactions means that performing single-shot qubit
state readout mediated by a cavity (Chapter 4.3) is relatively straightforward [9, 23–25]. In
addition, two-qubit gates can be accomplished quickly: qubits that can be strongly coupled
to the environment can also be strongly-coupled to one another, either directly or via cavity-
mediated coupling [26–31]. As a result, single- and multiple-qubit gates can be performed on
the nanosecond timescale. The ease of readout and tunable multi-qubit coupling have made
superconducting qubits one of the most promising avenues for scalable quantum computation.
This is evidenced by growing investment in the technology on the part of profit-driven
industrial leaders, building on decades of fundamental research in universities and national
laboratories.

While strong coupling is critical to the operation of superconducting qubits, it also comes
with significant drawbacks. Superconducting qubits couple not only to one another and to
a carefully engineered readout mechanism: they couple strongly to virtually everything!
Although the collective behavior of Cooper pairs in an aluminum substrate causes them to
act like a single quantum object, the physical circuit can extend over hundreds of micrometers
to millimeters. The qubit interacts with defects in the silicon or sapphire substrate, with
impurities in the superconductor, with quasiparticle excitations, with residual photons in
the cavity, and with any number of other spurious quantum systems that form the qubit’s
environment. These local interactions carry quantum information away from the system,
storing it instead in “bath” modes. This information still exists, but it is no longer in a
form that the experimenter can capture or utilize; from our perspective, it is lost. Often,
these inacessible degrees of freedom fluctuate stochastically: as qubits interact with a noisy
variable, they themselves take on random behavior that makes it increasingly difficult to
reliably prepare and maintain a desired state.

From the standpoint of the observer, local interactions that cannot be detected appear as
dissipation, or lost information. Dissipation generally manifests as qubit decay (if the dissipa-
tion is caused by the qubit directly exchanging photons with a lossy mode) or as decoherence
(if the interaction causes un-measured shifts in the qubit frequency). For superconducting
qubits, state-of-the-art coherence times are in the tens to hundreds of microseconds [32–35].
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This is orders of magnitude longer than the lifetime of coherent oscillations observed in the
first Cooper pair box qubit [36], but still well short of the lifetimes in atomic systems. Qubit
decoherence and decay puts a ceiling on the achievable fidelity of a quantum gate, which
is performed in finite time. The effects of dissipation diminish the quality of quantum ma-
nipulations in operations that require multiple gates and a significant fraction of the qubit
coherence times. As superconducting qubit circuits grow to include tens of qubits in increas-
ingly sophisticated circuits, perhaps including several chips organized in a quantum network,
dissipation therefore rapidly becomes a limiting effect.

1.3 Complementary Approaches to Dissipation

Dissipation, unsurprisingly, is almost universally viewed as the enemy of coherent quantum
computation. Great efforts are taken to prevent, mitigate, and correct for the effects of
dissipation. Historically, this has taken the form of improved microwave engineering [32, 37–
40], intelligent sculpting of the electromagnetic environment [41, 42], and detailed materials
study in order to limit quasiparticle and dielectric loss [43–49]. If the intrinsic error rate is
sufficiently limited (even to 1% for some applications), it then becomes possible to introduce
active error correction in order to extend the effective lifetime of the qubits and perform
extended algorithms [50–52]. There are already a number of exciting experiments that
implement active error correction [53–57].

In this dissertation, we will take a complementary and somewhat counterintuitive ap-
proach. We take dissipation as a given in our system, and explore ways in which we can
actively use that dissipation as an asset, rather than as a liability. This is a methodology
inspired by the axiom “if you can’t beat them, join them”: understanding that one can never
fully eliminate dissipation from a physical system, it behooves us to find ways to explicitly
build dissipation into our quantum protocols and take advantage of its presence. This dis-
sertation will probe a number of powerful contexts in which dissipation can be channeled
and harnessed to generate and stabilize entanglement between superconducting qubits. We
focus particularly on generating entanglement between remote qubits.

We utilize dissipation in two primary ways, the first of which is in the form of measure-
ment. It may be slightly odd at first to think of measurement as a form of dissipation.
However, measurement, as we will see in Chapter 2, is achieved by entangling a quantum
system of interest with a noisy degree of freedom, and then recording the fluctuations of
that degree of freedom. From the standpoint of the quantum system, the dynamics are iden-
tical to information being dissipated in a lossy mode; the only difference is that when the
observer monitors that lossy channel, she is able to reconstruct the effects of the dissipation
and update her estimate of the quantum state accordingly. We will utilize a carefully de-
signed measurement, coupled with a high-efficiency amplification chain, to probabilistically
generate entanglement between remote superconducting qubits. This is a critical capabil-
ity: generating entanglement between quantum objects that do not directly interact with
one another is not a trivial task, but may play an important role in a distributed quantum
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network.
We are also interested in using purely dissipative protocols to generate entanglement.

This approach is often referred to as “bath engineering” for its reliance on tailoring the
spectrum of the lossy bath modes. Bath engineering, which originated in the ion trapping
community [58, 59] and has seen a recent resurgence in the superconducting qubit community
[60–64], typically relies on Raman-type scattering processes: we off-resonantly drive the bath
mode(s) such that the detuning between the drive and the bath corresponds to a relevant
transition in the qubit system. Suppose the drive is red-detuned from the bath: In order for
a drive photon to dissipate into the bath, it must first absorb the requisite energy from the
system in order to satisfy the conservation of energy. When the photon is absorbed in the
bath, it projects the quantum system into its lower energy state. This is the equivalent of
cooling the system. If instead the drive is blue-detuned from the bath, emitting a photon
requires exciting a transition in the system, or bath-mediated heating. Should the system, via
some other fluctuating interaction, decay to its original state, the drive re-pumps the system
into the target state at a rate limited by the dissipation rate in the bath mode. Thus, bath
engineering relies explicitly on dissipative processes in order to stabilize the quantum system
into a target state. In this dissertation, we will use bath engineering to deterministically
generate and stabilize entanglement, thus harnessing dissipation to preserve entanglement
rather than to destroy it.

1.4 Overview and Summary of Results

In this dissertation, we explore the uses and limitations of dissipation, through the lens
of generating entanglement in superconducting quantum systems. In Chapter 2, we will
provide an introduction to a fully quantum treatment of dissipation, as well as to a more
sophisticated mathematical and conceptual understanding of quantum measurement. In
doing so, we will uncover the deep connections between dissipation and measurement, which
will be critical for understanding the remainder of the dissertation. In Chapter 3, we will
review quantum entanglement: what it is, what it is not, and how we can quantify it in a
physical system. Chapter 4 is a broad overview of the constituents of the superconducting
qubit toolbox: the Josephson junctions and transmon circuits that form the qubits we utilize
in this dissertation; the coupling of those qubits to microwave cavities that we use to perform
sensitive, non-demolition measurements; and the parametric amplifiers that we use to bring
those measurements into the nearly quantum-limited regime.

In Chapters 5-7, we present a range of experiments in which we utilize dissipation to
generate, stabilize, and study entanglement. Chapter 5 describes the first demonstration
of entanglement between distant superconducting qubits: we house two qubits in cavities
that are separated by more than one meter of ordinary copper cable, and use a finely-tuned
measurement in order to probabilistically entangle them. In Chapter 6, we take a deep dive
into this measurement-induced entanglement scheme: we use highly-sensitive quantum am-
plifiers to unravel the instantaneous back-action of the measurement on the cascaded qubit
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system, peering into the ensemble to study the distribution of individual system trajectories.
In Chapter 7, we utilize a purely dissipative protocol (requiring no measurement) to gen-
erate and stabilize bipartite entanglement. By engineering the symmetry of the dissipative
environment, we are able to selectively stabilize entangled states of a dynamically tunable
symmetry, while suppressing states of the opposite symmetry due to parity selection rules.
This demonstrates the power of engineering not just the energetic density of states, but also
the symmetry profile of lossy modes in a system. In Chapter 8, we discuss several avenues
for future developments of this work.

The original work reported in Chapters 5-7 was initially published in the following pub-
lications:

• Chapter 5: Roch, N. et al. Observation of measurement-induced entanglement and
quantum trajectories of remote superconducting qubits. Phys. Rev. Lett. 112, 170501
(2014).

• Chapter 6: Chantasri, A., Kimchi-Schwartz, M. E., Roch, N., Siddiqi, I. & Jordan,
A. N. Quantum trajectories and their statistics for remotely entangled quantum bits.
(2016). at http://arxiv.org/abs/1603.09623

• Chapter 7: 1. Kimchi-Schwartz, M. E. et al. Stabilizing Entanglement via Symmetry-
Selective Bath Engineering in Superconducting Qubits. Phys. Rev. Lett. 116, 240503
(2016).

Other research undertaken and published during the course of the author’s Ph.D training,
but not substantially included in this dissertation, include:

• Macklin, C. et al. A near-quantum-limited Josephson traveling-wave parametric am-
plifier. Science 350, 307-10 (2015).

• Weber, S. J., Murch, K. W., Kimchi-Schwartz, M. E., Roch, N. & Siddiqi, I. Quantum
trajectories of superconducting qubits. Comptes Rendus Phys. 17, 766-777 (2016).

• McClean, J. R., Kimchi-Schwartz, M. E., Carter, J. & de Jong, W. A. Hybrid Quantum-
Classical Hierarchy for Mitigation of Decoherence and Determination of Excited States.
(2016). http://arxiv.org/abs/1603.05681
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Chapter 2

Dissipation and Continuous
Measurement

[O]ne can hardly view the quantum theoretical description as a
complete representation of the physically real. If one attempts,
nevertheless, so to view it, then one must assume that the physically
real in B undergoes a sudden change because of a measurement in
A. My physical instincts bristle at that suggestion.

Albert Einstein, Letter to Max Born, 1948

This dissertation, at its heart, is an exploration of the connections between measurement
and dissipation and the ways in which those connections can be harnessed. Quantum mea-
surement is typically thought of as a process, more or less mysterious, that brings a system
from an initial superposition state into a single, final state: an electron exists everywhere
until it is detected, a quantum bit is simultaneously in its ground and excited state until it
is stochastically projected into one or the other. Dissipation plays a similar role in reducing
quantum coherence, by carrying quantum information away from the system under study
and storing it instead in inaccessible environmental degrees of freedom. Key to both of these
processes is a lack of fore-knowledge about what the ultimate state of the quantum system
will be. One could therefore speculate that perhaps there is a connection between dissipative
processes and measurement.

In this chapter, we will see that indeed, dissipation and measurement are intimately con-
nected. We will show that measurement can be considered a special case of a dissipative
process, one in which the environmental modes into which information dissipates can be
monitored, and the information thus extracted and preserved. In order to elucidate this
connection, we will require a more sophisticated understanding of quantum measurement,
and particularly of continuous quantum measurement. We will begin with a phenomenolog-
ical overview of quantum measurement in both the strong and weak regimes, and then will
present two mathematical formalisms - the quantum Bayesian approach, and the stochastic
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master equation - that allow us to treat and understand both measurement and dissipative
processes. This will provide us with a foundation and a context for the studies of entangle-
ment under measurement and dissipation that will follow in this dissertation.

2.1 Introduction to Weak Quantum Measurements

In a typical quantum mechanics course, measurements are introduced as an instantaneous,
fully projective process. As we will see, this is a gross over-simplification of the physical
processes that underlie an experimentally-realizable quantum measurement. However, it is
useful to briefly review the physics of projective measurements in order to provide a starting
point for the more complicated discussion of continuous measurements.

2.1.1 Projective Measurements

For a measurement operator Â with measurement outcomes an and non-degenerate eigen-
states |ψn〉, we can construct projection operators Πn = |ψn〉〈ψn|. The postulates of quan-
tum mechanics [66] then provide the following relations, for an arbitrary initial pure state
|ψi〉 =

∑
cn |ψn〉:

Pan =
〈ψi|Πn|ψi〉
〈ψi|ψi〉

; (2.1a)〈
Â
〉

=
〈ψi|Â|ψi〉
〈ψi|ψi〉

=
∑
n

anPn; (2.1b)

|ψf〉 |an =
Πn |ψi〉√
〈ψi|Πn|ψi〉

. (2.1c)

These postulates state that the probability of measurement outcome an is given by the
normalized matrix product of the starting state with the n-th projector [Eq. (2.1a)]; that
the expectation value of Â is given by the weighted sum of the measurement outcome prob-
abilities [Eq. (2.1b)]; and that the final state of the system after measuring the outcome an
is given by the n-th projector acting on the initial state [Eq. (2.1c)]. The final postulate
represents the famous ”collapse” postulate [67].

In order to discuss mixed states, it is useful to translate these postulates into the language
of density matrices. The density matrix construction of these postulates, for arbitrary pure
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or mixed initial density matrix ρi is given by the following:

Pan = Tr{ρiΠn}; (2.2a)

〈Â〉 = Tr
{
ρiÂ

}
; (2.2b)

ρf |an =
ΠnρiΠn

Tr{ΠnρiΠn}
. (2.2c)

In order to create a quantum non-demolition (QND) measurement, the eigenstates |ψn〉
of Â must be identical to the eigenstates of the unperturbed system Hamiltonian Ĥ0. Equiv-
alently, Â must commute with Ĥ0. If |ψn〉 is a simultaneous eigenstate of Ĥ0 and Â, then
a system that begins in an eigenstate of the un-measured Hamiltonian will be projected
deterministically into that same state by the measurement operator. This is not to say that
a QND measurement has no effect at all - if the system were to begin in a superposition
of several eigenstates, the QND measurement would project it stochastically into one of the
eigenstates, thus destroying the superposition. However, once the system is in one of those
eigenstates, repeated measurements will not drive the system out of that state.

Thus far we have discussed only non-degenerate measurement operators. However, con-
sider the case of a degenerate measurement operator, in which two or more eigenstates
correspond to the same eigenvalue, or measurement outcome. This is particularly interest-
ing in the QND case, as it implies that several eigenstates of Ĥ0 may generate the same
measurement outcome. In this case, the measurement projects onto a multidimensional
eigenspace En, rather than onto a single eigenvector. The projection operator is built of a

linear sum of eigenvectors that span En, such that for
{
k
∣∣∣Â |ψk〉 = an |ψk〉

}
,

Πn =
∑
k

|ψk〉〈ψk|
〈ψk|ψk〉

. (2.3)

This projection operator can be represented as a matrix whose rank corresponds to the
degeneracy of the eigenspace. As we will see in Chapter 5, such a degenerate measurement
can be exploited to project onto coherent superposition states, rather than onto a single
eigenstate.

2.1.2 The Stern-Gerlach Experiment: Projective Regime

Until this point, we have discussed projection operators in their mathematical sense. But
how do we physically implement a quantum measurement? The Stern-Gerlach experiment
[68] is an oft-discussed example of a projective quantum measurement (Figure 2.1). In this
experiment, a furnace is used to produce a collimated beam of silver (Ag) atoms, which have
one unpaired electron that carries spin S = 1/2. The beam is unpolarized, and comprises
an incoherent mixture of |↑〉 and |↓〉. The initial spin state of the beam can be represented
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by a density matrix

ρspin =

(
1/2 0
0 1/2

)
, (2.4)

in a basis for which the eigenvectors are the |↑〉 and |↓〉 eigenstates of the Pauli spin matrix
σZ . We will also need to account for spatial degrees of freedom, which we will indicate by a
state |z̄〉 where z̄ represents the expectation value of the vertical position of the beam. Since
the beam is initially collimated, we can write the total density matrix as

ρi = ρspin ⊗ ρz =

(
1/2 0
0 1/2

)
⊗ |0〉〈0| (2.5)

The collimated beam is passed through an inhomogeneous magnetic field B, which in-
teracts with the spins via the Zeeman effect:

Uint = −µ · B = −gµbSzBz. (2.6)

Here, g is the gyromagnetic ratio of the silver atom, µb is the Bohr magneton, and Sz is
the spin moment of the unpaired electron, which can take values of ±1/2. The force in the
z-direction is given by

Fz =
∂U

∂z
= gµbSz

∂Bz

∂z
= ±1

2
gµb

∂Bz

∂z
(2.7)

As the ion beam travels through the inhomogeneous magnetic field, the |↑〉 and |↓〉
components are deflected in opposite directions. In effect, the presence of the magnetic field
entangles the spin degree of freedom with the positional degrees of freedom (we will discuss
entanglement more in Chapter 3). The state of the system can now be represented as

ρ =
1

2

[(
1 0
0 0

)
⊗ |−z̄〉〈−z̄|+

(
0 0
0 1

)
⊗ |+z̄〉〈+z̄|

]
, (2.8)

where |±z̄〉 corresponds to the position of the upward (+) and downward (-) deflected beams.
After exiting the magnetic field, the Ag atoms impinge on a detector screen, which makes

a projective measurement of the position. If the ion beams corresponding to |↑〉 and |↓〉 are
sufficiently well-separated, the screen simultaneously makes a projective measurement of the
spin degrees of freedom. Thus, we see that the positional degree of freedom acts as an
ancilla: it is a macroscopically-measurable quantity that can be used to infer the state of a
quantum degree of freedom. If we were to move the screen such that it blocked the lower
beam and allowed the upper beam alone to propagate, a second Stern-Gerlach measurement
of the spin moment would show the resultant propagating beam to be fully polarized, having
been projected into the |↓〉 spin state.

Suppose instead we were to start in a pure quantum state polarized along σX , such that
|ψspin〉 = |↑〉+|↓〉√

2
or

ρspin =
1

2

(
1 1
1 1

)
(2.9)
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Figure 2.1: The Stern-Gerlach experiment. A beam of unpolarized Ag atoms passes through
an inhomogeneous magnetic field, and emerges as two spatially-separated, spin-polarized
beams. The position of the atoms is recorded at a detector screen, where the position of the
atom is used to infer its spin.

with
〈
σX
〉

= +1. At the end of the measurement, the spins will be fully polarized into
σZ = ±1, but the coherent phase relationship between |↑〉 and |↓〉 has now been de-
stroyed:

〈
σX
〉

= 0. This is what we mean by “measurement destroys coherence”: by
measuring a quantum system via a given operator, we scramble information contained in a
non-commuting observable.

2.1.3 The Stern-Gerlach Experiment: Weak Measurement
Regime

So far, we have neglected the intrinsic uncertainty in the z-component of the individual
atoms in the atom beam. In fact, the atoms propagate in a Gaussian beam with standard
deviation σ. In the limit where the separation between the centers of the |±z̄〉 beams is much
larger than σ, we can safely ignore the uncertainty in z (Figure 2.2b): the wavepackets are
very well-separated, and one can draw a line of discrimination that well-separates the two
spin-polarized beams. We refer to this regime as the projective measurement regime, as the
measurement has effectively projected the system into two fully spin-polarized sub-ensembles.
However, if the magnetic field gradient is weak or the propagation length short (Figure 2.2a),
there is no good discrimination line; any such line of discrimination will inevitably lead to
many post-selection errors. We refer to this as a weak, or non-projective measurement. It is
also sometimes described as a partial measurement.

It is important to note that these post-selection errors do not mean that the measurement
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Figure 2.2: The Stern-Gerlach experiment in the weak- (a) and strong- (b) measurement
regimes. Here, we show the measurement profile of an un-polarized input beam (blue)
as a line, and the expected profile of a polarized |↑〉 (green) and |↓〉 (purple) state as a
shaded object. By varying the propagation length, the separation between the spin-polarized
beams can be varied continuously. In the strong-measurement regime (b), the ensembles are
well-separated, and we can effectively post-select a spin-polarized ensemble. In the weak-
measurement regime (a), the separation is on the order of the intrinsic beam width; a
post-selected ensemble will not be fully projected into either spin polarization.

is bad : a bad measurement would be one in which a quantum observer, one with access to all
of the fluctuations in the system, would have been able to do an accurate post-selection, but
our measurement apparatus is too noisy to accomplish the same feat. In a weak measurement,
there is no quantum or classical observer that is able to do an accurate post-selection, because
there is insufficient quantum information to do so. This means that the system has been
perturbed, but not projected, by the measurement. In a bad measurement, the system has
been projected by the measurement, but the experimenter is not able to determine into
which state it has been projected.

To understand weak measurement in the context of the Stern-Gerlach experiment, sup-
pose we were to to cut a small hole in the detector screen at position z = 0, such that the
fraction of the beam that is undeflected is allowed to propagate. A second Stern-Gerlach
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device operating in the projective regime would measure this beam to have
〈
σ̂Z
〉

= 0, just
as the original beam was. This is because the Gaussian amplitude for both the |±z〉 beams
is equal at this point. Although the beam has passed through a measurement device, it
has not projected onto an eigenstate of the measurement. If we instead cut a small hole
at z = +ε, a second projective Stern-Gerlach device will find that the propagating beam is
slightly polarized in the |↓〉 direction, but still contains significant amplitude in the |↑〉 state.

Rather than implementing a projection operator, the Stern-Gerlach device in the weak
measurement case implements an operation known as a positive operator-valued measurement
(POVM), which we will label Ω(z). POVMs are a non-orthogonal set of operators that span
the Hilbert space of the measurement, but are generally made of linear combinations of the
traditional projection operators. In the particular case of the Stern-Gerlach experiment, the
POVMs are given by

Ω(z) =f(z,+z̄, σ)Π↓ + f(z,−z̄, σ)Π↑; (2.10a)

f(z, z̄, σ) =
1

σ
√

2π
e

(z−z̄)2

2σ2 . (2.10b)

In other words, the extent to which the measurement projects onto |↑〉 or |↓〉 becomes a
continuous function of position, and the measurement in general projects into a combination
of both eigenstates of the measurement operator.

The Stern-Gerlach experiment begins with an incoherent (mixed) starting state, so the
weak measurement described here will itself only allow postselection mixed states with vary-
ing proportions of the two spin polarizations. However, we could just as easily have begun our
experiment with an ensemble of atoms all in the coherent superposition state |ψi〉 = |↑〉+|↓〉√

2

or ρspin =
1

2

(
1 1
1 1

)
, which has the same net-zero spin polarization but is a pure state. In

this case, we can see that the POVM actually preserves the purity of the state, as measured
by Tr{ρ2}. This is an surprising result, as we are accustomed to considering measurement
a process that decoheres a quantum superposition into a classical mixture of measurement
eigenstates. However, here we see that performing a POVM and accurately recording its
outcome z allows us to precisely predict the back-action of the measurement “kick” on the
quantum system, thus ensuring no information about the quantum state is lost. The POVM
formalism, along with the continuous, stochastic state tracking that it implies, suggests the
need for an alternative method of conceptualizing the measurement process. Two such useful
methods, the quantum Bayesian formalism (QB) and the stochastic master equation (SME),
will be reviewed in the next sections.

Note that thus far we have considered an atom beam comprised of many individual
atoms, providing to a probability distribution in z as the atoms hit the detection screen. We
also will be interested, however, in exploring the effect of the measurement on a single atom
within that ensemble. Additionally, the Stern-Gerlach experiment performs a destructive
measurement, in that once an atom hits the detector screen, no further measurements of
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its state can be made. We will be interested in measurements that are both weak and
continuous, allowing for multiple sequential measurement of the same quantum state that
allow us to track an individual quantum trajectory.

2.2 The Quantum Bayesian Formalism

The quantum Bayesian (QB) formalism [69–73] is a straightforward extension of classical
Bayesian conditional probabilities to a coherent quantum system. The QB formalism takes a
personalist view of the state vector and the density matrix: it posits that the density matrix
represents the current state of the observer’s knowledge about the state of the quantum
system under study, but makes no claims of objective realism.

The classical Bayes rule describes the conditional probability of event A, given the oc-
currence of event B:

P (A|B) =
P (A)P (B|A)

P (B)
. (2.11)

This rule states that a prior assessment of the probability of event A - that is, P (A) -
must be updated by the probability of B given A, normalized by the prior probability of
B. Since the diagonal elements of a density matrix similarly represent the probability that
the quantum system is in the given state, we can guess a similar rule for a quantum system.
Let’s specialize to a single two-level system, whose density matrix is given by

ρ =

(
ρg,g ρg,e

ρe,g ρe,e

)
, (2.12)

where g and e represent the ground and excited states of the two-level system. Let’s sup-
pose we know the measurement probability distributions p±(V ), where V is a generalized
measurement outcome. In the Stern-Gerlach experiment, for example, we would replace V
with z, and p±(V ) with Eq. (2.10b). We can then write an equivalent quantum Bayes rule
for the diagonal terms:

(ρg,g|V ) =
ρg,gp+(V )

p+(V ) + p−(V )
; (ρe,e|V ) =

ρe,ep−(V )

p+(V ) + p−(V )
. (2.13)

Here, we update the diagonal density matrix elements based on the measurement result,
and our prior knowledge of the probability of that result assuming that the system was
in the respective eigenstates. If the measurement being performed is nondestructive and
continuous, one can use the output of one Bayesian update step as the input to the next,
resulting in a trajectory of updates due to the full measurement record V = {V1, V2, ..., VN}.
In the special case that the noise giving rise to the measurement distributions is colorless
and memoryless - the Markov approximation - one can equivalently average the measurement
record and perform an update based on the integrated measurement.
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The diagonal density matrix elements are in some sense trivial to predict via probability
rules, since they represent classical probabilities of finding the system in their respective
states. The off-diagonal elements, which contain information about the phase coherence and
thus the purity of a superposition state, have a less obvious equivalent to the Bayes rule.
However, here as well we can be equally obvservationalist in our approach. The Bayes rule
for the off-diagonal elements becomes

(ρg,e|V ) = (ρ∗e,g|V ) = ρg,e

√
(ρg,g|V )(ρe,e|V )

ρg,gρe,e

e−γt (2.14)

where γ is a damping term which goes to zero for a perfectly efficient measurement system
and for a quantum system with infinite lifetime [69]. We will see in Section 2.4 how to handle
the effects of inefficient measurement. Eq. (2.14) states that, in the absence of additional
unitary dynamics, the off-diagonal density matrix elements can be determined simply by
updating the diagonal density matrix elements. It is also possible to include deterministic
evolution at rate ω into the Bayesian formalism [74], as long as we perform a Bayesian update
in timesteps τ � 1/ω. This formalism generalizes naturally to a higher-dimensional Hilbert
space according to

(ρi,i|V ) =
ρi,ipi(V )∑
j pj(V )

(ρi,j|V ) = ρi,j

√
(ρi,i|V )(ρj,j|V )

ρi,iρj,j

e−γijt
(2.15)

where i and j are eigenstates of the Hamiltonian and γij is a generalized decoherence rate
between states i and j. Eq. (2.15) reduces to the general statement, applicable to both on-
and off-diagonal elements

(ρi,j|V ) =
ρi,j∑
k pk(V )

√
pi(V )pj(V )e−iγijt. (2.16)

We will derive a Bayesian update rule for a half-parity entangling measurement in Chapter
5, where we will see its power in understanding and interpreting a noisy measurement signal.

Everything that we have developed in this section has been perfectly empirical - we have
assumed knowledge of an arbitrary measurement distribution (conditioned on the eigen-
states), and also have assumed knowledge of the starting state of the system. The physics,
of course, comes in predicting these distributions, based on a quantitative understanding of
the measurement processes being utilized, and the quantum noise that is associated with
them. In Chapter 4, we will present the dispersive measurement of a superconducting quan-
tum bit embedded in a resonator, in order to provide a concrete example of this process.

The chief advantage of the QB approach is its mathematical and conceptual simplicity.
One must only know an estimated starting state, and an expected distribution of mea-
surement outcomes given the eigenstates of the system, in order to update the (diagonal)
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density matrix elements based on the measurement outcome. From a philosophical stand-
point, however, it requires a major concession: we cede any notion that the density matrix
represents the true state of the system, or of an ensemble of identically prepared systems,
instead stipulating that it is specific to the observer, and that another observer with more or
less information might construct a different density matrix to which the quantum Bayesian
update can just as reasonably be applied.

2.3 The Stochastic Master Equation

The stochastic master equation is a powerful, minimal, and general formalism for understand-
ing and interpreting the effects of the interaction between a quantum system of interest and
a fluctuating degree of freedom (i.e. quantum noise). There are many resources [9, 75–78]
for deriving and understanding SMEs, but here we will closely follow a wonderful introduc-
tion from Jacobs and Steck [79]. Our goal is to gain intuition for the relationship between
quantum fluctuations and measurement outcomes; for how to infer a quantum trajectory
from a continuous measurement record; and for how to account for an inefficient measure-
ment process. Along the way, we will see that dissipation - broadly, any process that reduces
the purity of a quantum system - is intimately related to the measurement process, and we
will learn to quantify that relationship. In this section we will derive the SME completely
generally; later, we will see its connection to physical measurement processes.

We first consider the unitary evolution of the quantum state, beginning with the Schroedinger
equation:

i~
∂

∂t
|ψ〉 = Ĥ |ψ〉 (2.17)

Written in differential form and considering a short time interval, we have

d |ψ〉 =

(
− i
~
Ĥ dt

)
|ψ〉 (2.18)

If we make the approximation that the system evolves slowly (the Born approximation), the
evolution of a pure state vector in the time interval is given by

|ψ′〉 = |ψ〉+ d |ψ〉 =

(
1− i

~
Ĥ dt

)
|ψ〉 (2.19)

A similar transformation will apply to the density matrix:

ρ′ = ρ+ dρ =

(
1− i

~
Ĥ dt

)
ρ

(
1 +

i

~
Ĥ dt

)
= ρ− i

~

[
Ĥ, ρ

]
dt . (2.20)

This defines the instantaneous evolution of the density matrix under a unitary Hamiltonian,
and is the Schroedinger equation for density matrices.
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2.3.1 Dissipation via Fluctuation: Lindblad Operators

Eq. (2.20) completely describes the instantaneous evolution of a density matrix for which
all dynamics are described by a unitary Hamiltonian, and represents a completely positive
transformation of the form ρ→ ÂρÂ†, where Â = 1− i

~Ĥ dt. However, as noted in Section
2.1, we often must account for the interaction between a system of interest and a fluctuating
degree of freedom. Therefore, let us add two terms - completely generally - to our transfor-
mation:

Â = 1− i

~
Ĥ dt+ b̂ dt+ ĉ dW (2.21)

Here, we have an additional deterministic evolution operator b̂, which we assume to be Her-
mitian, and a stochastic evolution term ĉ that grows with dW , which represents a Wiener
process. A Wiener process is equivalent to a classical random walk centered at the origin.
Random walks can be represented by a normal distribution whose width scales with

√
t, such

that the probability density is given by

P (W, t) =
1√
2πt

e−W
2/2t. (2.22)

Thus, we can consider the additional term in our evolution operator

dŷ = b̂ dt+ ĉ dW (2.23)

to be the equivalent of a drifting random walk operator where the increment dW is the “step”
taken in time increment dt. In the quantum context, the “walker” can be any fluctuating
quantity, such as position and momentum, electromagnetic field quadrature amplitudes, or
other zero-point fluctuating modes. Just as P (W, t) represents a Gaussian distribution, dW
is itself a normally-distributed random variable with a distribution width of

√
dt. The Wiener

process is a white-noise process, such that dW (t) is statistically independent of dW (t′) for
all t 6= t′.

There are a number of useful properties of Wiener processes which we will cite here but
will not prove [80]:

〈〈dW 〉〉 = 0 (2.24a)

dW 2 = dt (2.24b)

〈〈ŷ dW 〉〉 = 〈〈dW 〉〉 = 0 (2.24c)

Here, we define the ensemble average 〈〈 〉〉 as the mean over all possible Wiener processes.
Eq. (2.24a) simply reflects that the random variable has zero mean; Eq. (2.24b) is a
formulation of the Itô Rule that is the foundation of stochastic calculus; and Eq. (2.24c)
states that the expectation value of ŷ is statistically independent from 〈〈dW 〉〉.
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With this context for the Wiener process, we substitute (2.21) into (2.20) and keep terms
only up to first-order in dt (that is, we throw out terms proportional to dW dt and dt2, and
use Eq. (2.24b) to substitute dW 2 = dt), and find

dρ = − i
~

[
Ĥ, ρ

]
dt+

{
b̂, ρ
}
dt+ ĉρĉ† dt+

(
ĉρ+ ρĉ†

)
dW , (2.25)

where {A,B} is the anticommutator AB +BA.
We now are interested in the ensemble average of all possible Wiener processes in this

system. Using Eq. (2.24c) to set
〈〈(

ĉρ+ ρĉ†
)
dW
〉〉

= 0, we have

d 〈〈ρ〉〉 = − i
~

[
Ĥ, 〈〈ρ〉〉

]
dt+

{
b̂, 〈〈ρ〉〉

}
dt+ ĉ 〈〈ρ〉〉 ĉ† dt . (2.26)

Note that Eq. (2.26) represents an average over all possible realizations of a the density
matrix under the stochastic evolution process we are studying, and therefore 〈〈ρ〉〉 itself is
a density matrix. Specifically, it must maintain unit trace over all realizations, such that
dTr[〈〈ρ〉〉] = Tr[d 〈〈ρ〉〉] = 0. We have defined Ĥ to be a unitary operation, so we know
this condition holds for the first term. For the terms containing b̂ and ĉ, we use the cyclic
property of the trace to find

Tr
[
b̂ 〈〈ρ〉〉+ 〈〈ρ〉〉 b̂+ ĉ 〈〈ρ〉〉 ĉ†

]
= Tr

[(
2b̂+ ĉ†ĉ

)
〈〈ρ〉〉

]
= 0. (2.27)

In order for Eq. (2.27) to hold for arbitrary density matrix, this provides a restriction on b̂
and ĉ:

b̂ = − ĉ
†ĉ

2
. (2.28)

We can use this relationship to define [81] the Lindblad superoperator D [ĉ] ρ

D [ĉ] ρ ≡ ĉρĉ† − 1

2

(
ĉ†ĉρ+ ρĉ†ĉ

)
, (2.29)

which we can use to rewrite Eq. (2.26):

d 〈〈ρ〉〉 =

(
− i
~

[
Ĥ, 〈〈ρ〉〉

]
+D [ĉ] 〈〈ρ〉〉

)
dt . (2.30)

This is in fact the unconditioned master equation for ensemble evolution in the presence
of a noisy process. Note that the evolution of the ensemble of fluctuation realizations is
purely deterministic (proportional to dt), and that while we have required that Tr[〈〈ρ〉〉] =
1, we have made no such requirement of Tr

[
〈〈ρ〉〉2

]
. In fact, a Lindblad term is almost

always associated with a reduction in the square trace of the ensemble density matrix. This
represents a reduction in the purity of the density matrix, as it becomes an average over
a noisy ensemble. Lindblad superoperators are often referred to as Lindblad dissipators for
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this reason. Also note that one can trivially multiply ĉ by a constant to increase or decrease
the rate at which the dissipation occurs; we will examine the effects of the measurement rate
in Section 2.4.

For example, suppose we neglect the unitary dynamics (i.e. set Ĥ = 0) and apply a
Lindblad operator with ĉ = σ̂Z

√
γφ/2. Dropping the ensemble average notation, we then

see that the density matrix evolution is given by

dρ =
[γφ

2
σ̂Zρσ̂Z − γφ

4

(
(σ̂Z)2ρ+ ρ(σ̂Z)2

)]
dt

=
γφ
2

[
σ̂Zρσ̂Z − ρ

]
dt

= γφ

(
0 −ρg,e

−ρe,g 0

)
dt

(2.31)

Integrating, we find

ρ(t) =

(
ρg,g ρg,ee

−γφt

ρe,ge
−γφt ρe,e

)
(2.32)

The diagonal density matrix elements remain constant, but the off-diagonal terms decay to
zero. If we were to begin in a pure x-polarized state, it would decay under the back-action of
a σ̂Z dissipation into an incoherent mixture of |g〉 and |e〉, with Tr[ρ2(t→∞)] = 1/2. Thus,
a Lindblad operator with ĉ ∝ σ̂Z represents dephasing.

2.3.2 Measurement in the SME formalism

We now return to the un-averaged form of the master equation, which in light of Eq. (2.28)
we can write as:

dρ = − i
~

[
Ĥ, ρ

]
dt+D [c] ρ dt+

(
ĉρ+ ρĉ†

)
dW . (2.33)

The first two terms, as we have determined, are trace-preserving; however, because ĉ is
still arbitrary, the final term does not in general preserve the trace. In order to allow ĉ to
remain an arbitrary operator, we will renormalize ρ by the term

− Tr
[(
ĉρ+ ρĉ†

)
dW
]

= −Tr
[
ρ
(
ĉ+ ĉ†

)]
dW = −

〈
ĉ+ ĉ†

〉
dW . (2.34)

We define the measurement superoperator H [ĉ] ρ:

H [ĉ] ρ ≡ ĉρ+ ρĉ† −
〈
ĉ+ ĉ†

〉
ρ (2.35)

and rewrite the nonlinear master equation as

dρ = − i
~

[
Ĥ, ρ

]
dt+D [ĉ] ρ dt+H [ĉ] ρ dW (2.36)

In the case ĉ is a Hermitian operator (as is required for any observable), Eq. (2.36) is the
stochastic master equation (SME) describing the evolution of the density matrix under a
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single “trajectory” of randomly-sampled steps dW , representing fluctuations in the expecta-
tion value of the observable ĉ. More intuitively, H [ĉ] ρ represents the stochastic back-action
of the measurement on the state of the quantum system. Critically, this back-action is pro-
portional to dW , so if we know the measurement operator that is being applied and have
a means to collect information about the quantum fluctuations, we can update our density
matrix to follow the state evolution, thus effectively “undoing” the dissipation caused by the
D [ĉ] ρ term.

Note that though we are using the language of density matrices here, the SME formalism
derived here does not represent an ensemble of realizations; rather, it allows us to derive the
stochastic evolution of a single instantiation of the quantum system of interest, and a single
noise record. In principle, if we have full access to the measurement record, it is possible to
continually update the density matrix in a way that preserves not just trace-normalization,
but also the purity of the quantum state, thus turning a dissipative process into a coherent
process.

2.4 Measurement Rate and Inefficient Measurements

In any physically realizable system, we cannot hope to have a perfect collection of the
measurement record. Whether due to photon scattering, resistive losses, or external noise
sources, the measurement record we collect with macroscopic, room-temperature, classical
equipment will inevitably be corrupted to some degree, even using the most state-of-the-art
detectors. We therefore must consider the effect of measurement efficiency on our ability to
accurately track the evolution of the density matrix.

First, we would like to draw a more physical connection between the distribution of
measurement outcomes and the strength of the measurement back-action. To do so, we will
return to a more physically-motivated derivation of the SME formalism. Recall that the
partial measurement performed by a weak Stern-Gerlach apparatus can be written per Eq.
(2.10b) as a sum of Gaussian-weighted POVM partial projectors. For a general two-level
system in which we measure σ̂Z by tracking a variable z, we can write

Ω(z) =
1

N

(
|g〉〈g| e−

1
2( z−zgσ )

2

+ |e〉〈e| e−
1
2( z−zeσ )

2
)

(2.37)

where N is a normalization and zi is the centroid of the Gaussian distribution for state |i〉.
Since we have restricted our measurement to the Markovian approximation, we expect the
variance of the distributions to decrease as 1/t. Let us therefore define σ2 = 1/2Γ∆t, for
reasons that will soon become apparent. We then have

Ω(z) =
1

N

(
|g〉〈g| e−Γ∆t(z−zg)2

+ |e〉〈e| e−Γ∆t(z−ze)2
)
. (2.38)

The probability of measurement outcome z is given by

P (z) = Tr
[
Ω(z)ρΩ†(z)

]
= P (g)e−2Γ∆t(z−zg)2

+ P (e)e−2Γ∆t(z−zg)2

(2.39)
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In the limit where ∆t� 1/Γ such that σ � |zg − ze|, we can approximate P (z) as a single
Gaussian, centered at z =

〈
σ̂Z
〉
:

P (z) ≈ 1

N
e−2Γ∆t(z−〈σ̂Z〉)2

(2.40)

Alternatively, we can write z as a stochastic variable given by

z =
〈
σ̂Z
〉

+
∆W√
4Γ∆t

, (2.41)

where W as usual is a zero-mean Wiener variable. Substitution into Eq. (2.40) gives P (z)
as a normally distributed stochastic variable with variance ∆t, as desired. Thus we can see
that Γ defines a measurement “strength” or measurement rate. Sending ∆W,∆t→ dW , dt
and generalizing back to an arbitrary measurement operator, we can define the measurement
record according to a series of increments

dz = 〈ĉ〉 dt+
dW√

4Γ
, (2.42)

Thus, we see that the measurement output z evolves with a deterministic component, which
is proportional to the true expectation value of the measurement operator, and a stochastic
component, whose magnitude is scaled by Γ. In the limit where Γ is very small, the measure-
ment record is dominated by noise and the expectation value is washed out by fluctuations,
such that the measurement occurs slowly; when Γ is large, the measurement quickly resolves
to the true eigenvalue of the measured operator. By following a procedure similar to Section
2.3, we can derive the master equation with a measurement strength built in organically:

dρ = ΓD [ĉ] ρ dt+
√

ΓH [ĉ] ρ dW . (2.43)

The details of this derivation can be found in Ref. [79]; however, note that in that text one
must make the substitution Γ = 2k. Thus, we see that the measurement rate enters linearly
into the dissipation term, and as a square root into the measurement update operator. In
general, Γ is set by the signal-to-noise ratio of the ancilla that is used to measure the system:
the better separated the histograms become in unit time, the stronger the measurement
back-action.

Now that we have understood how to translate from a quantum noise distribution to the
SME formalism, we can consider the effects of inefficient collection. This derivation is again
adapted from Ref. [79]. Suppose the system now has two observers, Alice and Eve (the
latter of whom represents the environment). Alice measures observable â at rate Γ1, and
Eve measures the same observable at rate Γ2. Alice’s knowledge of the state of the system
is denoted by ρ1, and Eve’s by ρ2. From the perspective of Alice, the measurement made
by Eve is lost information, so Γ2 enters into her master equation as a pure dissipation term.
The opposite is true for Eve. Thus, the SMEs for the two systems are given by

dρ1 = Γ1D [â] ρ1 + Γ2D [â] ρ1 +
√

Γ1H [â] ρ1 (2.44)

dρ2 = Γ1D [â] ρ2 + Γ2D [â] ρ2 +
√

Γ2H [â] ρ2 (2.45)
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The measurement signals at the two ports are given by

dy1 = 〈â〉1 dt+
dW1√

4Γ1

(2.46)

dy2 = 〈â〉2 dt+
dW2√

4Γ2

(2.47)

where the notation 〈â〉i denotes the expectation value from the standpoint of ρi, and because
the measurement/dissipation rates are different on the two channels we do not in general
expect 〈â〉1 = 〈â〉2. Notice also that dW1 and dW2 are independent noise sources - we expect
the fluctuations observed by Alice and Eve to be uncorrelated.

Now let Γ = Γ1 + Γ2 and η = Γ1/Γ. We can then rewrite Alice’s SME according to

dρ1 = ΓD [â] ρ1 +
√

ΓηH [â] ρ1

dy1 = 〈â〉1 dt+
dW√
4Γη

(2.48)

The dissipation rate is governed, as we expect, by the total leakage rate of information
from the system; however, the back-action and the effective measurement rate are scaled
by a factor of η. Since η < 1 by definition, this means that if the system begins in an
initial superposition state, the purity of ρ1 will in general decrease under the influence of the
measurement. For example, if we measure σ̂Z at rate Γ with efficiency η, the off-diagonal
elements ρe,g, ρg,e will decay at an additional rate Γ(1 − η), leading to an overall dephasing
effect that is mitigated, but not completely undone, by the state update protocol. Only
when the quantum efficiency is unity and all fluctuations captured by the observer can
the square-trace purity of the density matrix after measurement match the purity before
measurement.

2.5 Summary of Measurement and Dissipation

In this chapter, we have developed a sophisticated understanding of quantum measurements,
dissipation, and the connections between the two. In Section 2.1, we saw the difference
between strong (fully projective) and weak (partially projective) measurement, and intro-
duced the POVM formalism that describes a partial measurement. In Section 2.2, the
quantum Bayesian formalism was developed, and we saw its strength as a mathematically-
straightforward, fully empirical approach to continuous measurement. In Section 2.3, we de-
rived a more mathematically rigorous approach to continuous measurement via the stochastic
master equation, which captures both the dissipative effects of measurement and the ability
to “undo” that dissipation by performing a state update conditioned on the measurement
outcome. Finally, in Section 2.4 we explored the connection between the physical measure-
ment distributions and the measurement rate, which allowed us to understand the effects of
inefficient measurement on the quantum state update. These concepts will be critical for
understanding the experiments and developments presented throughout this dissertation.
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Chapter 3

Entanglement: A Primer

If two separated bodies, about which, individually, we have maximal
knowledge, come into a situation in which they influence one
another and then again separate themselves, then there regularly
arises that which I just called entanglement [Verschränkung] of our
knowledge of the two bodies. At the outset, the joint catalogue of
expectations consists of a logical sum of the individual catalogues;
during the process the joint catalogue develops necessarily according
to the known law... Our knowledge remains maximal, but at the
end, if the bodies have again separated themselves, that knowledge
does not again decompose into a logical sum of knowledge of the
individual bodies.

Erwin Schrödinger, Die gegenwärtige Situation in der
Quantenmechanik, 1935

Entanglement, a special class of quantum superposition, is perhaps the strangest and
most defining aspect of quantum mechanics. Strange, because the idea of an action on
one quantum system instantaneously affecting a second, isolated system runs counter to all
classical intuition; most defining, because the ability to generate entanglement allows us to
directly test predictions of quantum mechanics that are in conflict with concepts of locality.
Since generating and characterizing entanglement will be at the heart of this dissertation,
we present here a brief summary of entanglement, specifically: what it is and is not; how it
is generated; and how it is quantified. We will pay special attention to measures of bipartite
entanglement, or entanglement between two quantum objects. Our goal here is not to make
a comprehensive review of the history of entanglement, but rather to provide context and
background for the remainder of the dissertation.
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3.1 Introduction to Entanglement

Suppose a linearly-polarized photon of frequency 2ω is spontaneously converted into two
photons of frequency ω. Conservation of angular momentum require that the photons are
comprised of one horizontally (H-) polarized and one vertically (V-) polarized photon. How-
ever, because they are indistinguishable photons, the photons (labeled A and B) are in fact
converted into a superposition state given by

|ψ〉 =
|H〉A |V 〉B + |V 〉A |H〉B√

2
(3.1)

This process, known as parametric down-conversion, is precisely the process used to produce
some of the first experimental entangled pairs to convincingly violate Bell’s inequality [82–
84].

Let us recall the basic physics of such entangled Bell pairs. If we create many such
entangled pairs, but only interrogate the state of photon A, we will find that it has a 50%
chance of being in state |H〉 and 50% chance of being in state |V 〉, but we cannot predict
into which state it is projected for each photon. This is the equivalent of reaching into
a bag of blue and red balls and choosing one at random - a perfectly classical probability
problem. If we were to measure the system along a perpendicular axis —say, along the linear
combination ε̂ = (x̂ + ŷ)/

√
2 —we would similarly find the expectation value to be zero. No

coherent information is contained along any single-qubit measurement axis. The same holds
for photon B. It is only by examining the two photon states together that we see that the
state of the system is in fact highly correlated: each time system A is found to be in state
|V 〉, system B will be found in state |H〉 (and vice versa). In addition, there are also perfect
correlations for simultaneous measurements along ε̂: this state contains higher correlations
than a pair of blue and red balls that are arbitrarily given to A and B.

These correlations in theory exist even if the photons are space-like separated and mea-
sured in an interval brief enough that the event cones do not intersect, such that there is
insufficient time for one system to “signal” to the other, at sub-light speeds, what the out-
come of its measurement was. Entanglement is thus considered to violate local realism and
classical notions of causality [85–87]. Although there are a number of challenging experi-
mental loopholes that must be closed in order definitively demonstrate nonlocal correlations
in excess of what is classically possible, several recent experiments report to have done just
that [88–90].

The high levels of correlation inherent in entangled states make them attractive for a
number of purposes. Entanglement has inspired the concept of a universal quantum in-
formation processor that could efficiently factor large numbers [91] and perform efficient
searches [92]. Such a processor must generate entanglement across an array of hundreds,
or perhaps thousands, of individually addressable quantum systems. In addition, quantum
cryptography protocols rely on the distribution and correlated measurement of entangled
pairs across a secure network [93–95]. Recently, there has been growing interest in develop-
ing specialty quantum processors that, although not capable of universal computation, are
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nevertheless able to surpass classical devices in the simulation of high-dimensional problems
in chemistry and physics [96–99]; these processors again harness the power of entanglement
to handle matrices that stretch the capabilities of supercomputers. More fundamentally,
entanglement itself is a subject of intrinsic interest - putting aside any technological appli-
cations of entanglement, physicists are interested in generating, manipulating, and studying
entangled states of matter.

3.2 Defining Entanglement

Given its importance to the enterprise of quantum mechanics, entanglement is surprisingly
difficult to define. The clearest definition comes as a negative - that is, we define entangle-
ment by defining what it is not. For pure states, the definition is fairly straightforward. For
N quantum systems, each spanning a Hilbert space Hi ∈ {H1,H2, ...,HN}, a pure entangled
state is any state which cannot be written as a separable product state

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψN〉 . (3.2)

In other words, an entangled state is one in which quantum information exists within inter-
qubit correlations, rather than in single-qubit states. An entangled state is therefore a
superposition of multi-qubit, correlated states.

To specialize to a bipartite (subspaces HA and HB), two-level system with eigenstates
|gg〉 , |ge〉 , |eg〉 , and |ee〉, we can examine two exemplar states for an illustration. Suppose

we prepare both systems in an X-polarized state, |ψ〉 = |g〉+|e〉√
2

. Then the full quantum state
is given by

|ψ〉 =
|gg〉+ |ge〉+ |eg〉+ |ee〉

2
=
|g〉+ |e〉√

2
⊗ |g〉+ |e〉√

2
(3.3)

While this is a highly coherent quantum state with a high degree of quantum super-
position, it is not an entangled state: the fact that we can perform the direct product
decomposition on the right indicates that the systems are in a separable state. If we instead
consider the singlet state

|ψ〉 =
|ge〉 − |eg〉√

2
, (3.4)

we can immediately see that there is no decomposition in which we can write Eq. (3.4)
as a product of states |ψA〉 ⊗ |ψB〉. Indeed, the singlet state is a maximally-entangled Bell
state. Other often-referenced entangled states in three-particle systems include variants of
the Greenberger-Horne-Zeilinger (GHZ) state,

|ψGHZ〉 =
|ggg〉+ |eee〉√

2
, (3.5)

and the W-states,

|W 〉 =
|gge〉+ |geg〉+ |egg〉√

3
. (3.6)
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These states generalize in the obvious way to many-qubit systems.
What about quantum systems that are not in a pure state, but rather must be represented

as a statistical mixture of pure states? For these, we can write a similar rule: the density
matrix represents an entangled state if there is no density matrix decomposition such that

ρ =
∑
i

giρ
i
1 ⊗ ρi2 ⊗ ...⊗ ρiN (3.7)

where gi are real-valued degeneracy indices. The density matrix definition allows us to define
entanglement even for partially mixed states, which will be critical for studying entanglement
in experimental systems, where we often generate an ensemble of identically-prepared states
and reconstruct the density matrix representing their average.

3.3 Useful Measures of Entanglement

We now have a definition for entanglement; however, verifying that a particular state meets
the definition can be a complicated task. When studying entanglement, however, it is critical
to be able to quantify the degree of entanglement. There are a number of useful entanglement
measures that one can use for this purpose. Here we present several such measures, and
briefly discuss the advantages, disadvantages, and implications of each. Again, this list is
representative of measures we will use or reference in this dissertation; Refs. [87, 100, 101]
contain a more comprehensive list.

3.3.1 Von Neumann entanglement entropy

In some senses the entanglement entropy is the essential measurement of the “amount” of
entanglement in a bipartite system. It measures how much information is lost if the system
is divided into two subspaces HA and HB, and subspace B is traced over (averaged out,
from the perspective of subspace A). For an unentangled system made up of product states,
tracing over the degrees of freedom in B has no effect on A, and no information is lost from
the perspective of HA. For maximal entanglement between the two subspaces, tracing over
B takes A into a fully mixed state, and all phase coherence is lost.

Quantitatively, the entanglement entropy of subspace A is given by

S(ρA) = −Tr{ρA log2 ρA}
ρA = TrB{ρ}

(3.8)

where S(ρ) is the von Neumann entanglement entropy and TrB is the partial trace over sub-
space HB. S(ρ) is zero for a density matrix representing a pure state, because there is only
one configuration in which the system can exist. Nonzero entanglement entropy indicates
that the partial trace has caused mixing - an indication that information was contained in
multi-qubit correlations, and therefore that entanglement exists. Of course, nonzero von
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Neumann entanglement entropy indicates nonseparability only if acting on a pure initial
state in HA ⊕ HB, because a mixed state intrinsically has nonzero entanglement entropy
regardless of whether or not the state is in fact separable. In addition, we’ve arbitrarily
chosen the subdivision of spaces, while a general multi-qubit system will have many pos-
sible subdivisions. Nonzero entanglement entropy therefore does not confirm or reject the
hypothesis that the system as a whole is in a non-separable state.

3.3.2 Entanglement of formation

The entanglement of formation is designed to extend the entanglement entropy to better
capture the entanglement in a mixed state. It represents the minimum total entanglement
entropy according to the following:

E(ρ) = inf
gk,|φk〉

∑
k

pkS[(ρA)k] (3.9)

ρ =
∑
k

gk |φk〉〈φk| (3.10)

Here, the summed term in Eq. (3.9) represents the weighted entanglement entropy of pure
states in the non-unique decomposition (Eq. (3.10)) of the density matrix ρ. The infimum
represents the greatest lower bound of that entropy across all possible decompositions of ρ
into a weighted sum of pure states [101, 102]. If there is no possible decomposition of the
density matrix such that the entropy of entanglement is zero, then subspace HA is entangled
with subspace HB.

In order to see the difference between entanglement entropy and the entanglement of
formation, consider the density matrix spanning two two-level systems, given by

ρ =
1

4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (3.11)

This is obviously a highly mixed, completely separable state. The von Neumann entangle-
ment entropy of this density matrix, however, is S = 2 ln 2, which is manifestly nonzero.
However, we can make the decomposition

ρ =
1

4
|gg〉〈gg|+ 1

4
|ge〉〈ge|+ 1

4
|eg〉〈eg|+ 1

4
|gg〉〈gg| (3.12)

such that ρ represents an equally weighted sum of pure separable states. We immediately
see that E(ρ) = 0 in this case, and therefore there is no entanglement according to this
measure. This demonstrates why E(ρ) may be a more informative measure of entanglement
in mixed density matrices.



CHAPTER 3. ENTANGLEMENT: A PRIMER 28

The advantage of the entanglement of formation is that it can be applied to a system
of arbitrary size. However, evaluating it generally requires doing a full tomographic recon-
struction of the density matrix, which can be experimentally prohibitive. Therefore, it is not
often practical to calculate the entanglement of formation for a multiqubit epxeriment.

3.3.3 Entanglement witnesses

Entanglement witnesses are a class of useful measurements Ŵ which take on a negative value
(Tr{ρŴ} < 0) if and only if ρ is an entangled state. Entanglement witnesses are generally
linear combinations of correlation measurements between HA and HB, such that the witness
is evaluated using joint probability distributions within the quantum state. Witnesses are
extremely useful in that they are observables, and can therefore be constructed without prior
knowledge of the quantum state; however, they are not in general universal measures - for
a given witness, there may be an entangled state for which Tr{ρŴ} ≥ 0. Entanglement
witnesses can therefore be used to confirm entanglement, but not to rule it out [101]. A
useful method to optimize entanglement witnesses is provided in Ref. [103].

3.3.4 CHSH measurement

The CHSH inequality, originally derived by Clauser, Horne, Shimony and Holt [104, 105] as
a generalization of the Bell inequality experiment [106] is perhaps the most famous of all
bipartite entanglement witnesses. The Bell inequality showed for the first time that one could
design an experiment to directly test the hotly debated question of whether the presence of a
local hidden variable, shared between two distant quantum systems, could suffice to restore
determinism to quantum mechanics. The violation of a Bell-type inequality is a direct
indication of stronger correlations than are possible in a classically deterministic system; if
the violation were to occur in a loophole-free manner, this would provide confirmation of
quantum non-locality. Several recent landmark experiments [88–90] claim to have done just
that, although the completeness of these experiments is still the subject of some scrutiny.

A Bell witness is constructed by preparing many copies of a test state spanning two-level
Hilbert spaces HA and HB that are separately addressable and measurable. For each copy,
a random decision is made to measure the two systems on one of two axes n̂A ∈ {n̂A,1, n̂A,2},
n̂B ∈ {n̂B,1, n̂B,2}. Here, the unit-length measurement axis defines a measurement operator

M̂i,j = n̂i,j · σ̂i, where σ̂i ≡ σ̂Xi x̂ + σ̂Yi ŷ + σ̂Zi ẑ. One then constructs the Bell witness,

B =
〈
M̂A,1M̂B,1

〉
+
〈
M̂A,1M̂B,2

〉
+
〈
M̂A,2M̂B,2

〉
−
〈
M̂A,2M̂B,1

〉
(3.13)

It can be shown that no system which is classical or respects local realism can produce
measures |B| ≤ 2; however, an entangled state can produce up to |B| ≤ 2

√
2 due to quantum

correlations. The equality holds when the system is in a pure entangled state, the local
measurement axes are perpendicular (n̂i,1 · n̂i,2 = 0), and the measurement axes are rotated



CHAPTER 3. ENTANGLEMENT: A PRIMER 29

between the two systems by θ = π/4. Thus, a CHSH outcome with B > 2 indicates that the
system under study is indeed entangled.

A chief advantage of the CHSH approach is that it involves a set of direct measurements
of the quantum system. Unlike other measures we will see later in this section, one need
not infer the full density matrix of the quantum system in order to show CHSH inequality
violation using a Bell witness. However, a CHSH inequality violation is a more stringent
requirement than other entanglement measures. Entanglement is a necessary but insufficient
condition for violating the CHSH inequality; or, violating local realism is more difficult than
proving entanglement.

3.3.5 Tomographic methods

There are a number of useful measures of entanglement that require the reconstruction of
the full density matrix. At first glance, these methods might seem to be redundant - after
all, once one knows the full quantum state of a system, it would seem trivial to declare
whether or not that state is entangled. However, when we consider a partially mixed density
matrix that perhaps resembles, but is not perfectly identical to, a known entangled state, it
is useful to be able to quantitatively analyze the degree of entanglement within that system
and compare it to the entanglement in other mixed states.

The concurrence C, first derived by Wootters [107], is a oft-cited measure of entanglement
in two-qubit systems. Concurrence is a monotone of two-qubit entanglement: it ranges from
zero, for a state that cannot be distinguished from a classical mixture, to unity, for a pure
entangled state. As with the entanglement of formation, any nonzero concurrence is evidence
of a nonseparable density matrix. Concurrence is generated by first reconstructing the full
density matrix via tomographic methods (which will be discussed in greater detail in the
experimental chapters to follow). We then take the ranked eigenvalues λ1, ...λ4, in increasing
order, of the matrix ρρ̃, where ρ̃ is the time-reversed density matrix1 generated by

ρ̃ = σ̂Y Y ρ∗σ̂Y Y (3.14)

and σij represents the joint Pauli operator σ̂iA ⊗ σ̂
j
B. The concurrence is then given by

C = max
[
0,
√
λ4 −

√
λ3 −

√
λ2 −

√
λ1

]
(3.15)

This formula, while exact, is rather opaque. To provide a more intuitive understanding
of concurrence, we note that there are two entangled subspaces of a two-qubit system: the
odd-parity subspace, spanned by |ge〉 and |eg〉, and the even-parity subspace, spanned by

1 As Sakurai shows on pp. 277-280 of Ref. [108], “time-reversed” equivalently means spin-flipped. As
noted by Wootters in [109], the spin-flip operation takes a density matrix representing a product state into
an orthogonal state, such that ρρ̃ goes to zero. A pure entangled state, however, is invariant under this
operation (up to a global phase). This gives some intuition for the utility of the product ρρ̃ in quantifying
entanglement.
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|gg〉 and |ee〉. In the special case that we know into which subspace we expect the system
to fall, we can use a more transparent approximation for the concurrence [110]. Writing the
density matrix as

ρ =
∑

ij,kl=g,e

ρij,kl |ij〉〈kl| , (3.16)

we approximate the concurrence as:

C = 2 max
[
0, |ρge,eg| −

√
ρgg,ggρee,ee

]
(Odd parity) (3.17)

C = 2 max
[
0, |ρgg,ee| −

√
ρge,geρeg,eg

]
(Even parity) (3.18)

These formulae are most valid when the off-diagonal elements outside the target subspace
are all negligible: that is, when ρge,eg is the only significant off-diagonal [Eq. (3.17)] or when
ρgg,ee is the only significant off-diagonal [Eq. (3.18)].

Now the meaning of the concurrence becomes clear: it is in essence the balance between
the amplitude of the coherent off-diagonal element within the desired subspace on the one
hand, and the residual population in the subspace of opposite parity on the other. These
formulae are valid when the system under study is well-projected into either the even- or
the odd-parity subspace, such that the off-diagonal elements not included in the concurrence
calculation become negligible.

Concurrence is extremely useful as a quantitative measure of entanglement in a bipartite
system, and we will use it extensively in this dissertation (Chapters 5 and 6 in particular).
The drawback of concurrence, however, is that it does not provide information about which
entangled state is generated, given that Eq. (3.17)-(3.18) rely only on the magnitude of the
off-diagonal element and not on its phase. For applications in which we are interested not
in generating entanglement per se but in generating a specific entangled state, concurrence
may not be a useful measure.

For experiments in which we require the generation of a specific entangled state, the
fidelity F becomes the most natural measure. Here, we simply take the projection of the
density matrix onto the pure entangled state of choice [111]:

F|ψ〉(ρ) = 〈ψ|ρ|ψ〉 . (3.19)

In the case that the density matrix represents a pure state |ψ〉〈ψ|, state vector normalization
gives Fmax = 1. One can also show that a fully mixed state in the subspace of interest
will give Fmixed = 0.5. Thus if 0.5 < F ≤ 1, we have both confirmed the existence of
entanglement and further shown that we have produced, with varying quality, the entangled
state of our choice. We will us fidelity in Chapter 7, where we will be interested in preparing
specific entangled states.

Fidelity can also be a useful measure if we are comparing our density matrix not to a
pure state, but to another mixed or pure density matrix. In this case, letting ρt represent
the target density matrix, the generalized fidelity is given by [111]

F(ρt, ρ) =
[
Tr
{

(
√
ρtρ
√
ρt)

1/2
}]2

. (3.20)
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One can show that this reduces to Eq. (3.19) in the special case that ρt represents a pure
state. We should also note that some papers use F ′ =

√
F to represent fidelity, so one should

be careful to note which convention is in use when assessing and comparing claims.
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Chapter 4

The Superconducting cQED
Architecture

The theory of quantum electrodynamics describes Nature as absurd
from the point of view of common sense. And it agrees fully with
experiment. So I hope you accept Nature as She is —absurd.

Richard Feynman, QED: The Strange Theory of Light and Matter,
1985

In this chapter, we review the experimental building blocks of the superconducting qubit
architecture. Specifically, we discuss the quantum circuits used to generate an approximate
two-level system with lifetimes sufficient to do coherent quantum operations [20, 35, 36,
39, 113–117]; the light-matter interactions used to control, couple, and read out the state
of the qubits [23, 75, 118, 119]; and the amplifiers used to transport the quantum-limited
signals used to make measurements from their 30 mK base temperature through to room
temperature electronics while adding minimal noise.

Superconducting quantum information is a rapidly developing experimental field, and
it is beyond the scope of this dissertation to provide a comprehensive review of the field.
Instead, we will focus here on the techniques and circuits used to implement the experiments
in this dissertation: the transmon qubit, coupled dispersively to a linear resonator, and read
out using a Josephson parametric amplifier. There are a number of extremely useful texts
which provide a more in-depth accounting of the scope of techniques in superconducting
circuit and cavity quantum electrodynamics (cQED) [22, 119–123]. In this review chapter,
we will not present detailed derivations, but rather will outline the mathematics required
to derive and understand the system and provide references to original and pedagogical
resources, such that the reader will have sufficient context for understanding the remainder
of this dissertation.
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Figure 4.1: Josephson junctions, defined by (a) a superconducting phase difference across
the junction, which is equivalently a nodal flux. (b) If two junctions are joined in parallel
by a closed loop, the flux can be tuned by the introduction of an external magnetic field.

4.1 Superconducting Qubits

The field of superconducting quantum information has exploded since the observation of
the first coherent quantum oscillation in a Cooper pair box (CPB) circuit [36]. There are a
multitude of superconducting qubit implementations with relative strengths and weaknesses,
but all rely on the Josephson junction [124], a weak link that creates a tunneling barrier for
Cooper pairs between two (or more) superconducting islands. The Josephson current and
voltage relations for a superconducting tunnel junction give

I = I0 sin δ =
2π

Φ0

EJ sin δ; (4.1a)

V =
~
2e

dδ

dt
=

Φ0

2π

dδ

dt
(4.1b)

where Φ0 is the flux quantum h/2e, EJ is the Josephson energy, and δ is the difference
in superconducting phase between the two islands (Figure 4.1a). I0 sets the current above
which the tunneling gap is crossed and normal (resistive) current can propagate. The phase
δ can be written alternatively as

δ = 2π
Φ

Φ0

, (4.2)

where Φ is the nodal flux at a fixed point in the circuit. This definition becomes particularly
useful if we join two Josephson junctions in parallel by a closed loop; then, Φ represents the
flux through the loop, which is typically an externally controllable parameter (Figure 4.1b).

We can re-arrange these equations to find the nonlinear Josephson inductance

LJ =
~
2e

1

I0 cos δ
=

(
Φ0

2π

)2
1

EJ cos δ
≡ LJ0

cos δ
. (4.3)

The Hamiltonian describing the Cooper pairs moving through junction is given by

Ĥ = 4EC(n̂− ng)2 − EJ cos δ̂ (4.4)
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where EC = e2/2C is the charging energy required to move a single electron from one island
to the next, C is the total capacitance of the junction (including that intrinsic to the junction
and any additional geometric capacitance), n̂ is the number of Cooper pairs on one of the
islands, and ng represents an offset charge due to external electrical field or native charge

impurities. The EJ cos δ̂ term emerges from a tight binding model of Cooper pair tunneling.
If we take δ to be small and consider only the linear inductance, this Hamiltonian can be
rewritten as a simple Harmonic oscillator,

Ĥ =
1

2C
Q̂2 +

1

2LJ0

Φ̂2, (4.5)

where Q̂ and Φ̂, representing charge and flux, are conjugate variables [125]. This represents
a linear resonator with transition energy

ωq =

√
1

LJ0C
=

1

~
√

8EJEC . (4.6)

Of course, a linear resonator, whose quadratic potential produces a harmonic oscillator
with evenly spaced excitations, will not serve our purposes as a quantum bit. We require
a nonlinearity in the energy required to excite nearest-neighbor level transitions in order
to have any hope of isolating the lowest two levels |g〉 and |e〉 and treating them as an
approximate two-level system. In order to see the effects of the nonlinearity we must consider
higher order terms by evaluating the full Hamiltonian Eq. (4.4), whose eigenfunctions are
given by the Mathieu functions. As shown in Figure 4.2, these functions are periodic in
ng, and so we expect a qubit based on this Hamiltonian to be sensitive to charge noise,
particularly at bias points detuned from the charge degeneracy points at ng = ±m/2 (where
m is an integer). Indeed, the first coherent oscillations seen in a superconducting circuit were
performed in a CPB, and had a phase coherence time of only 2 ns [36]. The wide range of
qubit designs developed over the last nearly twenty years aim to overcome this charge noise
without introducing other sources of noise sensitivity.

4.1.1 The transmon qubit

The transmon qubit, which we will use exclusively in this dissertation, uses a large external
capacitance to ameliorate the charge noise sensitivity in the CPB. Koch et al. showed
that the charge dispersion for the k-th level is exponentially suppressed in the ratio EJ/EC
according to [114]

Ek(ng) = Ek +
εk
2

cos(2πng); (4.7a)

Ek ≈ −EJ +
√

8EJEC

(
k +

1

2

)
− EC

12

(
6k2 + 6k + 3

)
; (4.7b)

εk ≈ (−1)k
24k+5

k!

√
2

π
EC

(
EJ

2EC

) k
2

+ 3
4

e−
√

8EJ/EC . (4.7c)
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Figure 4.2: The CPB spectrum, as a function of ng, for a range of EJ/EC . We see that
as this ratio increase (from panels a - d), the undulations of the bands as a function of ng
decrease, indicating an amelioration of charge-noise sensitivity. Reproduced with permission
from Ref. [114].

The modulation of the energy spectrum as a function of offset charge is now approximated
as a sinusoidal term whose amplitude is given by εk. Eq. (4.7c) indicates that this amplitude
is exponentially damped by the ratio EJ/EC ; reducing EC therefore ought to be a straight-
forward route to damping the charge dependence of the energy level splittings. Figure 4.2
shows this damping for a range of EJ/EC ; we see that when this ratio is greater than 50,
the oscillations are effectively flat and the circuit has been made charge-insensitive. This is
referred to as the transmon regime of the CPB architecture.

the transmon qubit is implemented by shunting the CPB by a large parallel capacitance,
such that EC/h ≈ 200 MHz. The addition of a shunt capacitance leads to a renormalization
of the resonant frequency of the circuit; the bare energy levels in Eq. (4.7b) indicate that the
resonant qubit frequency becomes ~ωq = E1 −E0 ≈

√
8EJEC −EC . In Figure 4.3, we show

a circuit and schematic design for a transmon qubit, and a SEM micrograph of Josephson
junctions similar to those used in this dissertation to implement the transmon circuit.

With a typical Josephson energy given by EJ/h ≈ 20 GHz, the transmon EJ/EC ≈
100 is sufficient to dramatically reduce the charge sensitivity, and thus to ameliorate a
critical source of dephasing. Because typical ωq/2π ≈ 6 GHz has a characteristic transition
temperature TQ = ~ωq/kB ≈ 300 mK, we perform experiments in a dilution refrigerator
with base temperature TB ≈ 10 − 30 mK in order to limit spurious thermal excitations of
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b ca

Figure 4.3: Transmon qubit. a) The circuit design for a transmon qubit, with EC � EJ
in order to suppress charge noise. b) The schematic design of a typical transmon qubit
implementation (not to scale), with a large dipole moment ~p aligned with the axis of the
antenna pads as shown. c) A SEM micrograph at 50,000x of the central SQUID junction,
which provides the nonlinear inductance required for a well-isolated two level system. SEM
image courtesy of Vinay Ramasesh.

the qubit.
The price that we pay for the reduction in charge sensitivity in the transmon qubit is

the anharmonicity. While the un-shunted CPB can have anharmonicity on the order of
several GHz at the charge-insensitivity bias point, the transmon anharmonicity is reduced to
α ≡ ωef − ωge = −EC/~, where ~ωij = Ej −Ei and {g, e, f} represent the first three energy
levels of the transmon. An anharmonicity of several hundred MHz is sufficient to allow us to
drive transitions between |g〉 and |e〉 without exciting off-resonant transitions to the second
excited state |f〉, provided that the pulses used to drive the transitions are sufficiently long,
on the order of τ > 20 ns such that 1/τ � |α|. However, additional pulse shaping [126–129]
can be used to relax this limit, so the reduced anharmonicity is not a critical barrier.

The transmon qubit and its variants, because of their simplicity and straightforward
design, have become one of the workhorses of the superconducting qubit community. (Other
qubit geometries - most notably the flux qubit [116, 130–132] - are also in use and have
some comparative advantages, most notably an increased anharmonicity.) Transmon qubits
can be designed and fabricated using now-standard techniques and are easily integrated into
complex circuits for readout and coupling. They also are readily tunable via the application
of external flux. In this dissertation, we implement the 3D transmon architecture [115]: we
fabricate transmon qubits on undoped silicon, and load them in a resonant microwave cavity.
Placing the qubit in a cavity is useful both for providing shielding from the electromagnetic
environment (enhancing qubit lifetime via the Purcell effect), and as we will see in the
upcoming sections, for enabling us to perform a QND measurement of the qubit state.
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4.2 The Jaynes Cummings Hamiltonian

The elongated design of the capacitor pads that we use to shunt the Josephson junction(s)
in our qubits, shown in Figure 4.3b, allows them to serve a dual purpose. They reduce EC ,
providing a qubit well into the transmon regime of EJ � EC , while also providing an electric
dipole moment that enhances the qubit’s coupling to its local electromagnetic environment.
Effective qubit control and readout relies on understanding and control of this coupling.
The minimal description of atom-light interactions is provided by the Jaynes-Cummings
Hamiltonian, which we will derive and describe in this section.

4.2.1 Derivation

The interaction between a dipole and an electric field is given classically by1

Ĥint = −~E(t) · ~p = −ε̂E(t) · ~p (4.8)

Quantum mechanically, a microwave cavity’s field modes can be described as quantum har-
monic oscillators [9] with creation and annihilation operators â† and â and resonant frequency
ωc. The vacuum fluctuations of the field are given by [125]

~E = ε̂EZPF (â+ â†) (4.9)

where EZPF = (~ωc/2ε0V ) is the RMS amplitude of the field fluctuations, and V is the
effective mode volume. The Hamiltonian describing the interaction between the field mode
and a dipole with two states {|g〉 , |e〉} is thus given by

Ĥint =
∑
i,j=g,e

−EZPF 〈i|~p · ε̂|j〉 (â+ â†) |i〉〈j| (4.10)

By parity arguments, we know that the dipole-field coupling cannot have diagonal density
matrix elements; if we (without loss of generality) assume the off-diagonal matrix element
to be real, we can then write the interaction Hamiltonian as2

Ĥint = ~gqc(â+ â†)σ̂X (4.11a)

gqc = −1

~
〈ψg|~p · ε̂|ψe〉EZPF (4.11b)

1 There is an ambiguity in the notation here that we inherit from physics conventions. Both geometric
unit vectors and Hamiltonian operators are indicated with a “x̂” circumflex diacritic. The two rarely ap-
pear together in this dissertation, but for the sake of clarity we distinguish them by showing unit vectors
additionally in bold.

2 We use the notation gqc here to denote the qubit-cavity coupling rate. The standard notation for this
coupling is g; however, since we use {g, e, f} to index qubit states, we add a subscript to the coupling term
to avoid ambiguity.
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It is convenient to rewrite the qubit terms using raising and lowering operators σ̂± ≡
(σ̂X ± iσ̂Y )/2. The Hamiltonian then becomes Ĥint = ~gqc(â + â†)(σ̂+ + σ̂−). The full

(nondissipative) system Hamiltonian is given by the sum of the bare resonator terms (Ĥa),
the bare qubit terms (Ĥq), and the interaction (Ĥint):

Ĥtot = Ĥa + Ĥq + Ĥint

= ~ωcâ†â+
~ωq

2
σ̂Z + ~gqc(âσ̂+ + â†σ̂−) + ~gqc(âσ̂− + â†σ̂+)

(4.12)

where |g〉 has been chosen to represent the
〈
σ̂Z
〉

= −1 state and |e〉 the
〈
σ̂Z
〉

= +1 state.
In Eq. (4.12) we have grouped the terms according to excitation-conserving and excitation
non-conserving terms. If ωc and ωq are reasonably close to one another, then going into
a rotating frame with respect to either will lead to rapid oscillations in the âσ̂− and â†σ̂+

terms; it is thus customary to drop these terms (the rotating wave approximation, RWA).
While the RWA is not always appropriate [133], it is usually a good approximation at the
single-photon levels we will typically use in this work. We will refer to the Hamiltonian
under the RWA as ĤJC , the Jaynes-Cummings (JC) Hamiltonian:

ĤJC = ~ωcâ†â+
~ωq

2
σ̂Z + ~gqc(âσ̂+ + â†σ̂−) (4.13)

Defining ∆ ≡ ωq − ωc, there are two useful limits to the JC Hamiltonian: near-resonant
(|∆| � gqc) and dispersive (|∆| � gqc). We will generally work within the dispersive limit
in this dissertation, but we can gain useful intuition by first examining the opposite limit,
|∆| � gqc.

4.2.2 Near-resonant case

The JC Hamiltonian is well-parametrized by states |n, g/e〉, where n represents the Fock
state of the resonator. Under the RWA, the Hamiltonian is block-diagonal, coupling terms
of the form |n, e〉 ↔ |n+ 1, g〉. In a two-dimensional subspace indexed by the n-th Fock
state, the Hamiltonian is

ĤJC(n) = ~ωc

(
n+

1

2

)
σ̂I +

~(ωq − ωc)

2
σ̂Z + ~gqc

√
n+ 1σ̂X (4.14)

where σ̂Z = +1 now corresponds to |n, e〉 and σ̂Z = −1 corresponds to |n+ 1, g〉. If gqc → 0,
the eigenvalues become ~ωc ± ~ωq

2
as expected. If the qubit and cavity are near resonance

such that |∆| ≡ |ωq − ωc| � gqc, nearly-degenerate perturbation theory shows that there is
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an avoided crossing between the qubit and cavity modes according to [134]

E±(n) = ~ωc

(
n+

1

2

)
± ~

2

√
∆2 + 4g2

qc(n+ 1) (4.15a)

|n,+〉 = sin

(
Θn

2

)
|n+ 1, g〉+ cos

(
Θn

2

)
|n, e〉 (4.15b)

|n,−〉 = cos

(
Θn

2

)
|n+ 1, g〉 − sin

(
Θn

2

)
|n, e〉 (4.15c)

tan(Θn) =
2gqc
√
n+ 1

∆
(4.15d)

When ∆ = 0 and the qubit and resonator modes are degenerate, the dressed eigenstates be-
come symmetric and antisymmetric combinations of the bare eigenstates |n,±〉 = (|n+ 1, g〉±
|n, e〉)/

√
2 with energies E±(n) = ~(nωc± gqc). An excitation that is initialized in the qubit

(or in the cavity) will coherently oscillate between the two systems at a rate 2gqc
√
n+ 1.

For transmon qubits with gqc on the order of tens to hundreds of MHz and qubit lifetimes
in excess of 10 µs, the upper and lower polaritons defined by E± can be well-resolved in
frequency-domain spectroscopy, leading to a vacuum Rabi splitting well into the strongly-
coupled regime (gqc � κ, 1/T1, 1/Tφ).

4.2.3 Dispersive (far-detuning) limit

When we go to the limit of ∆ � gqc, we intuitively no longer expect coherent swapping
of excitations between the cavity and the qubit, but the effect of the finite coupling must
still manifest in some way. To determine the effect of the coupling, we will transform to a
rotating frame in which the off-diagonal terms in the |n, e〉 , |n+ 1, g〉 subspace go to zero,
such that there are no undriven transitions between the two states. For this purpose, we will
treat the coupling as a perturbation:

Ĥ = Ĥ0 + Ĥ1; (4.16a)

Ĥ0 = ~ωcâ†â+
~ωq

2
σ̂Z ; (4.16b)

Ĥ1 = ~gqc(â†σ̂− + âσ̂+) (4.16c)

We would like to find a unitary rotation that cancels the perturbation to lowest order. In
the rotated frame, the Hamiltonian will be given by Ĥ ′ = ÛĤÛ †, where Û is a unitary
transformation Û = eĉ. The Baker-Hausdorff relation

eĉĤe−ĉ = Ĥ +
[
ĉ, Ĥ

]
+

1

2!

[
ĉ,
[
ĉ, Ĥ

]]
+ ... (4.17)

suggests that a good unitary transformation will be one in which the perturbation is cancelled
at lowest order: in other words, we need an operator ĉ such that the first commutator satisfies
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[
ĉ, Ĥ0

]
= −Ĥ1. This condition is met when we use

ĉ =
~gqc
∆

(
âσ̂+ − â†σ̂−

)
. (4.18)

Since we are treating gqc as a perturbative term, we keep only terms in Eq. (4.17) that are
up to quadratic in gqc. Defining the dispersive cross-Kerr term χ = g2

qc/∆, we are thus left
with the JC Hamiltonian in the dispersive limit:

Ĥ ′JC/~ = ωcâ†â+
ωq

2
σ̂Z + χ

(
â†â+

1

2

)
σ̂Z . (4.19)

The factor of (χ/2)σ̂Z represents the Lamb shift of the qubit frequency due to the interaction
with the cavity mode; the interaction in the rotated frame is given by Ĥ ′int = ~χâ†âσ̂Z .

The dressed eigenstates in this approximation are identical to the bare eigenstates, al-
though there is in general some weak mixing of the eigenstates given by Eq. (4.15). For
a transmon qubit, whose weak nonlinearity makes the two-level system approximation less
valid, the dispersive shift is slightly renormalized [114] by

χ =
g2
qc

∆

α

α + ∆
. (4.20)

We can interpret Ĥ ′int in two useful ways. The coupling between the qubit and the
resonator manifests equivalently as a qubit-state dependent shift in the resonator frequency
(ωc → ωc + χσ̂Z); or as a resonator-occupation dependent shift in the qubit frequency
(ωq → ωq + χâ†â). Critically, Ĥ ′int commutes with the qubit state such that, as long as
the dispersive approximation holds, we can use the Jaynes-Cummings interaction to non-
destructively read out the state of the qubit by probing the resonant frequency of the cavity.
In the next section, we will explore how this is achieved.

4.3 Dispersive Readout

Performing a measurement of the resonant frequency of the cavity in the dispersive regime is
the chief method we use in this dissertation to infer the state of the qubit. In this section, we
will first provide a semiclassical introduction to dispersive readout in order to gain intuition
for the the measurement process, and then will discuss a fully quantum treatment of the
measurement using both the Bayesian and the SME formalisms developed in Chapter 2.

Our dispersive measurements are carried out by fabricating a 3D copper resonator in
which we place a transmon qubit (shown schematically in Figure 4.4). The cavities generally
have two ports: one weakly coupled (input) port for transmission measurements, and one
strongly coupled (output) port such that virtually all photons, and thus all qubit state
information, leaks from the cavity via the latter. We will monitor the output port to read
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Transmission Reflection

Figure 4.4: Schematic of a 3D cavity containing a transmon qubit, with weakly- and strongly-
coupled ports (κin and κout, respectively) for transmission and reflection measurements.

out the state of the qubit. The two ports are labeled by their bandwidths (κin � κout); we
neglect internal losses. The bandwidths of the ports are set by their position in the cavity
(closer to a modal field maximum for stronger coupling), and by the extension of an antenna
coupler into the cavity (the longer the coupling pin, the stronger the coupling of the port).

4.3.1 Semiclassical treatment

To understand the mechanism of the dispersive readout, we will first treat the resonator as
a classical harmonic oscillator with a precisely defined amplitude and phase. We denote the
complex field amplitude inside the resonator as A±, where +(-) indicates the intra-cavity
field associated with the qubit in state |e〉 (|g〉). We can write the equations of motion for a
cavity with frequency ωc, probed at frequency ωd with an input drive amplitude Ain as

Ȧ± = −κ
2
A± − i(ωc ± χ− ωd)A± +

√
κdAin. (4.21)

Here, κ ≡ κin + κout and κd is the decay rate of the driving port, which can be chosen from
the weakly coupled port for transmission measurements or the strongly coupled port for
reflection measurements (Figure 4.4). The steady state internal field solution is given by

A± =

√
κdAd

κ
2

+ i(ωc ± χ− ωd)
. (4.22)
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When driven on resonance (ωd = ωc), the amplitude of the internal field is not qubit-state
dependent (A+ = A−), but there is a state-dependent phase shift given by

φ ≡ Arg {A±} = arctan(∓2χ/κ). (4.23)

For a transmission measurement, the field propagating from the cavity is given by A±,out =√
κoutA± and therefore contains the same conditional phase shift as the intracavity field; the

output field in reflection interferes with the input drive according to A±,out =
√
κoutA±−Ain,

yielding a net doubling of the phase shift in the propagating reflected field in comparison to
the intracavity field. By measuring the phase shift of the propagating field using standard
homodyne or heterodyne detection methods, we can thus infer the state of the qubit.

A measurement of the phase shift is typically the most effective means of inferring the
qubit state in the weak-measurement limit, where χ/κ � 1 such that the resonance profile
of the cavity conditioned on the qubit in state |g〉 is very close to the resonance profile
conditioned on |e〉. In the opposite limit, χ/κ� 1 (often referred to as the number-resolved
regime, as the qubit will have well-resolved spectral peaks conditioned on the Fock state in the
cavity), qubit state information can be inferred from transmission amplitude measurements.
The transmission amplitude at ωd = ωc−χ will be large if the qubit is in |g〉, but vanishing
if the qubit is in |e〉. In Chapters 5 and 6 we will work in the small χ/κ limit and will
use homodyne detection to infer the phase shift. In Chapter 7 we will work in the number-
resolved regime but will use high-power readout [135] rather than dispersive readout of the
field amplitude.

To this point, we have considered the field to have a well-defined amplitude and phase
with no uncertainty, and have further neglected to consider the implications of the qubit
existing in a superposition state of |g〉 and |e〉. However, to understand the dispersive
measurement properly we must consider the intracavity field as a quantum object, one with
conjugate variables that enforce a Heisenberg uncertainty relationship, and we further must
allow the qubit to exist in a coherent superposition. In fact, we will see that it is precisely
the quantum uncertainty in the intracavity field mode that causes the qubit to stochastically
collapse into one of the measurement eigenstates

〈
σ̂Z
〉

= ±1.

4.3.2 Coherent states and measurement uncertainty

As we have seen, a quantized electromagnetic field can be represented as a harmonic oscil-
lator. The “in-phase” [Î = (â + â†)/2] and “quadrature” [Q̂ = (iâ − iâ†)/2] components of
the field, corresponding to the real and imaginary components of the complex amplitude,
are incompatible observables with ∆Î∆Q̂ ≥ 1/4. Î and Q̂ are the field equivalents of x̂ and
p̂ in a physical quantum oscillator.

If the uncertainty in Î and Q̂ is equally distributed between the two quadratures such
that ∆Î = ∆Q̂ and the variance is isotropic in the IQ plane, the field is represented by
a coherent state. A coherent state [136] is a minimum-uncertainty state represented by a
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superposition of photonic Fock states,

|β〉 = e−|β|
2/2
∑
n

βn

(n!)1/2
|n〉 , (4.24)

where β is a complex displacement coefficient. The average photon number in the cavity
is given by n = |β|2, and the photon number fluctuations are Poissonian: ∆(â†â) =

√
n.

These photon-number fluctuations are the source of the uncertainty in the field quadra-
ture amplitudes. Coherent states are generated mathematically by applying a displacement
operator

D(β) = exp
(
βâ† − β∗â

)
(4.25)

to the vacuum state |0〉, and they are eigenstates of the lowering operator according to

â |β〉 = β |β〉 . (4.26)

4.3.3 Unconditioned master equation

With this background on coherent states, we can now consider the effect of a cavity drive on
the qubit density matrix, both in the unconditioned (dissipated) and conditioned (measured)
case. Here, we follow Gambetta et al. [118] and sketch the important pieces of the derivation;
for a full development, see the original paper. Our goal here is not to perform an exhaustive
derivation, but rather to elucidate the connection between the experiments performed in this
dissertation and the stochastic measurement formalism described in Chapter 2.

The cavity drive Hamiltonian is described by

Ĥd = ~εd[â†e−iω
dt + âeiω

dt], (4.27)

where for simplicity we have treated the drive amplitude as real. The drive rate εd is
connected to the classical drive amplitude Ain in Section 4.3.1 by εd =

√
κdAin. The non-

dissipative Hamiltonian, in the dispersive limit and in a frame rotating at ωd, is given by

Ĥeff/~ =
ωq

2
σ̂Z + ∆cdâ†â+ χâ†âσ̂Z + εd(â† + â), (4.28)

where ∆cd ≡ ωc − ωd is the cavity-drive detuning.
To study the full dynamics of the system, we must now include several loss mechanisms.

Photons leak from the cavity at a rate κ ≈ κout; the qubit decays from the excited state to
the ground state at a rate Γ1; and phase coherence in the off-diagonal elements in the qubit
subspace occurs at a rate Γφ. In the absence of a measurement, the Lindblad form of the
master equation including each of these decay channels is given by [136]

dρ

dt
= − i

~

[
Ĥeff, ρ

]
+ κD [â] ρ+ Γ1D

[
σ̂−
]
ρ+

Γφ
2
D
[
σ̂Z
]
ρ

= Ltotρ
(4.29)
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Figure 4.5: Schematic representation of the dispersive measurement. The cavity is initialized
in a minimum-uncertainty coherent vacuum state (Panel a); a drive is applied to displace
the vacuum along the in-phase quadrature (Panel b); and the dispersive interaction leads
to a conditional phase accumulation that entangles the phase of the intra-cavity field with
the state of the qubit (Panel c). The blurred “lollipops” represent the intrinsic quantum
uncertainty of the intracavity field.

Here, D [ĉ] ρ is the Lindblad superoperator introduced in Section 2.3, and the density matrix
spans both the two-dimensional qubit space and the infinite-dimensional Fock space of the
cavity mode. We will shortly examine the dynamics in just the qubit sector (which is our
primary system of interest).

If we neglect qubit decay and make a fast-cavity approximation (i.e. assume the cav-
ity reaches steady state quasi-instantaneously and neglect transient dynamics), the density
matrix evolution is described by [118, 137]

ρ(t) =
∑
i,j=g,e

ρi,j(t) |i〉〈j| ⊗ |βi〉〈βj| . (4.30)

Here |βi〉 are coherent states whose mean displacement amplitudes and phases are identical
to those derived semiclassically in Eq. (4.22). Evidently, the qubit state is entangled with
the coherent state amplitude and phase within the cavity. We expect the measurement rate
to be related to the overall phase shift (governed by χ and κ), and to the total displacement
(governed by εd).

The diagonal density matrix elements are given by their initial values ρi,i(t) = ρi,i(0),
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consistent with a QND measurement, and the off-diagonal terms evolve as

ρg,e(t) = ρg,e(0) exp[iωqt− Γφt]
e−i2χβeβ

∗
g

〈βg|βe〉
ρe,g(t) = ρ∗g,e(t)

(4.31)

The quantum description of the unconditioned effect of the measurement drive is now clear.
The intracavity coherent state serves as a pointer state for the qubit degree of freedom,
precisely as we expect given our semiclassical intuition. We begin in a vacuum state (Figure
4.5a), apply a drive amplitude εd to generate a displaced coherent state (Figure 4.5b), and
allow the qubit and field to interact such that the qubit state information becomes encoded
on the average phase of the coherent state (Figure 4.5c). In the small χ/κ limit, the phase
can be well-approximated by the projection onto the Q̂ quadrature, and the amplitude of
the field (and thus the mean and fluctuating photon number) is given by projection onto the
Î quadrature. If we measure the fluctuations in Q-quadrature of the field propagating from
the cavity, we expect to be able to make a continuous measurement of the qubit state.

Let us now consider the unconditioned effects of the cavity drive on the qubit. To isolate
the evolution in the qubit sector, we make a unitary transformation ÛρÛ †, where Û is given
by

Û = |e〉〈e|D(βe) + |g〉〈g|D(βg). (4.32)

This transformation is the equivalent of an unconditioned displacement of the coherent state
back to the vacuum, and is often referred to as the polaron transformation. Under the
polaron transformation, one can straightforwardly trace over the cavity degrees of freedom,
yielding a reduced qubit master equation

dρq
dt

= −i ω̃
q

2

[
σ̂Z , ρq(t)

]
+ Γ1D

[
σ̂−
]
ρq(t) +

Γφ + Γd
2
D
[
σ̂Z
]
ρq(t)

= Lqρq(t)
(4.33)

Here, ρq(t) = Trc{ρ(t)} is the reduced qubit density matrix traced over the cavity degrees
of freedom, ω̃q is the ac Stark-shifted qubit frequency, and Γd is a measurement-induced
dephasing rate. These are given by

ω̃q = ωq + 2χRe{βgβ∗e} (4.34)

Γd = 2χ Im{βgβ∗e} =
κ

2
|βg − βe|2 (4.35)

Thus, we have derived the unconditioned effects of the measurement drive on the qubit:
the qubit frequency shifts, and an initial coherent superposition of |g〉 and |e〉 dephases at
an additional rate Γd. The additional dephasing is caused by the fundamental uncertainty in
the coherent pointer state, which provides the fluctuations that generate a stochastic back-
action on the qubit. In the unconditioned case, we average over these fluctuations, leading
to an overall dephasing.
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4.3.4 Dispersive measurement: Bayesian approach

Now that we understand the unconditioned interaction between the qubit and the cavity
drive, we can consider a measurement process that monitors the output of the cavity mode.
As in Chapter 2, we can apply either a phenomenological Bayesian approach, or a more
fundamental stochastic master equation. We will begin here with the Bayesian approach,
outlined by Korotkov [138].

Suppose we monitor the Q̂ quadrature of the light, which in Figure 4.5 contains the qubit
state information. We expect the instantaneous homodyne measurement voltage VQ(t) to be
proportional to

VQ(t) =
V̄e − V̄g

2

〈
σ̂Z
〉
t
+ ξ(t) (4.36)

where the spectral density of the fluctuating ξ(t) is related to the photon shot noise and
V̄i is the mean value of V̂ if the qubit is prepared in state i. Here we have introduced
the conditional expectation value

〈
σ̂Z
〉
t
, which denotes the updated expectation value of

σ̂Z given the measurement record up until time t. The Markovian approximation and the
QND nature of the measurement allow us to assess this expectation value using the mean
integrated signal,

V̄Q(t) =
1

t

∫ t

0

VQ(t′) dt′ . (4.37)

In other words, we can update our estimate of the density matrix without regard to the
specific path of the instantaneous VQ(t), but rather by considering only the accumulated
signal as of time t. The conditional probability for the outcome V̄Q given the qubit eigenstate
|i〉 is given by the Gaussian function

pi(V̄Q) =
1√
2πσ

e(V̄Q−V̄i)2/2σ2

. (4.38)

If we choose ωd = ωc and operate in the small-angle limit appropriate for weak measurements,
we can approximate V̄g = (2χ/κ)

√
n and V̄e = −V̄g ≡ −V̄ ; we now need only determine the

variance σ2. Recalling that ∆Î∆Q̂ ≥ 1/4, and that in a coherent state the fluctuations are
symmetric in the two quadratures, we can denote the single-quadrature variance as σ2

0 = 1/4.
As we integrate the signal, the variance decreases as σ2(t) = σ2

0/(ηκt): information leaks
from the cavity at rate κ, with a total efficiency η, which is related to the collection efficiency
ηcoll by η = κout

κ
ηcoll. The SNR of the measurement is thus given by

SNR2 ≡ S(t) =

(∣∣Q̄g − Q̄e

∣∣
σ(t)

)2

=
64χ2nηt

κ

(4.39)

Given the nondimensional measurement strength S(t), we can now calculate the conditional
probabilities in Equation (4.38), and can perform the Bayesian update as outlined in Section
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2.2. Because the measurement is QND, we can integrate the signal continuously and perform
a Bayesian update at each timestep in order to reconstruct the full quantum trajectory. The
measurement-induced evolution in the qubit state is given by〈

σ̂Z
〉

(t, V̄Q) = tanh

[
V̄Q

(
S2(t)

4V̄

)]
(4.40)〈

σ̂X
〉

(t, V̄Q) =

√
1−

[
〈σ̂Z〉 (t, V̄Q)

]2
e−Γt (4.41)

Γ =
1

T ∗2
+

8χ2n

κ
(1− η) (4.42)

In the case where the collection efficiency is unity, there is no measurement-induced dephasing
and the purity of the density matrix is degraded only by intrinsic dephasing in the qubit. This
was the approach used by Murch et al. [61] in the first continuous trajectory reconstruction
in superconducting qubits.

Notice that we have only considered here the fluctuations in the Q̂ quadrature - but as
we know, there are additional fluctuations in the Î quadrature that should contribute to
the dynamics. In the small-angle limit, fluctuations in Î correspond to fluctuations in the
amplitude |β|, which Eq. (4.34) tells us causes a Stark-shift of the qubit frequency and
therefore causes a stochastic accumulation of phase between |g〉 and |e〉. However, if we
use a nearly quantum-limited parametric amplifier that is sensitive to only one quadrature
(Section 4.4), the fluctuations in the Î quadrature are effectively “erased”, and therefore
do not contribute to the dynamics of the system. We will see in Section 4.4 how such an
erasure is accomplished. If instead we use a phase-preserving amplifier, which amplifies
both quadratures of the light, we will need to record both VQ and VI , using VQ to update
the projection onto σ̂Z and VI to update the azimuthal phase on the Bloch sphere. For a
detailed description of quantum noise and amplification, see Ref. [75].

4.3.5 Dispersive measurement: Master equation approach

While the Bayesian approach is powerful in its simplicity, it is also useful to understand
quantum trajectories in cQED using the master equation approach. Let us therefore return
to the master equation formalism of Section 4.3.3, and now add the conditional dynamics
that arise from monitoring the cavity decay channel. Again, we will use homodyne detection
to measure the Q̂ quadrature of the propagating field. The measurement signal in this case
can be represented by [136, 139]

VQ(t) =
√
κη
〈
iâ− iâ†

〉
t
+ ξ(t) = 2

√
κη
〈
Q̂
〉
t
+ ξ(t), (4.43)

where ξ(t) again represents a Gaussian approximation for the photon shot noise and
〈
Q̂
〉
t

represents the expectation value of Q̂ given the continuously updated estimate of the density
matrix. Note the difference between this equation and Eq. 4.36: here, the deterministic
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component of the signal is related directly to the observed field quadrature, where in Eq.
4.36 the deterministic component is scaled phenomenologically to the expected voltages given
the two qubit states. The Bayesian approach in effect skips the intermediate step of deriving
the transformation between the field quadrature signal and the qubit state; in the SME
formalism we must explicitly derive that scaling.

Given the stochastic quadrature signal, we can update the unconditioned master equation
Eq. (4.29) to include a measurement back-action term:

dρ

dt
= Ltotρ+ ξ(t)

√
κηH

[
Q̂
]
ρ

= Ltotρ+ ξ(t)
√
κηH [iâ] ρ

(4.44)

Since dρ
dt

now depends on a stochastic term, we consider ρ to now be a conditioned density
matrix. The stochastic master equation contains a measurement superoperator defined in
Chapter 2 corresponding to monitoring photon leakage from the cavity. Just as in Section
4.3.3, we can apply the unitary transformation in Eq. (4.32) which, if all the qubit state
information is contained in the Q-quadrature, yields3

dρ

dt
= Lqρq(t) + ξ(t)

√
ηΓmH

[
σ̂Z
]
ρq (4.45a)

Γm =
κ

4
|βg − βe|2 = Γd/2 (4.45b)

Ignoring intrinsic qubit decay, the full conditioned qubit state evolution is thus given by

dρq
dt

= −i ω̃
q

2

[
σ̂Z , ρq(t)

]
+

Γd
2
D
[
σ̂Z
]
ρq(t) +

√
ηΓmH

[
σ̂Z
]
ρqξ(t). (4.46)

Thus, we can correlate the instantaneous homodyne measurement current VQ(t) with a
stochastic evolution of the qubit state. However, notice that the measurement rate saturates
to half the dephasing rate as defined in Eq. (4.35), leading to a maximum effective quantum
efficiency ηeff = ηΓm/Γd of 1/2. This is because half of the fluctuations to which the qubit
is exposed are in the unmeasured Î quadrature. The formalism developed in Ref. [118]
implicitly assumes the use of a phase-preserving amplifier, after which only one quadrature
is recorded; half of the fluctuations are therefore lost, and half of the qubit state evolution
is untraceable and manifests as dissipation.

4.4 Parametric Amplification

In both the Bayesian approach and the SME formalism, continuous state tracking depends
critically on near-unity quantum efficiency. If η � 1, the conditioned dynamics are essen-
tially indistinguishable from the pure measurement-induced dephasing seen in Section 4.3.3;

3 Observant readers will note a difference between Eq. (4.45b) and the equivalent in Ref. [118]. This
is due to a difference in the definition of the measurement operator. The translation is given by H [ĉ] ρ =
2M[ĉ]ρ, where M[ĉ]ρ is the measurement operator used in the original source.
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only when the quantum efficiency is high can we hope to perform continuous state tracking.
Efficient measurement requires amplifying the signal, whose quantum fluctuations give it
an effective temperature TQ = ~ωd/2kb ≈ 170 mK, enough to overcome room-temperature
thermal fluctuations that are five orders of magnitude larger. This amplification must be
accomplished without adding significant uncorrelated noise in order to reconstruct the quan-
tum state with high fidelity. Needless to say this task is technically challenging - but it can
be accomplished using an amplifier circuit that is quite similar to the transmon circuit itself.

4.4.1 The lumped Josephson parametric amplifier

The amplifier we use in this dissertation is the lumped Josephson parametric amplifier
(LJPA) [120, 140, 141]. It consists of a pair of Josephson junctions with relatively large
critical current (several µA) fabricated in a parallel loop, shunted by a correspondingly large
capacitance (several pF) such that the zero-flux resonant frequency is near the measurement
frequency (near 8 GHz) and can be tuned down to resonance if desired. The large shunt ca-
pacitance means that the anharmonicity is relatively small such that when the intra-resonator
photon number is low, the LJPA acts as a linear resonator. However, when the amplifier is
biased with a large pump tone, its resonance bends to lower frequencies due to the negative
anharmonicity of the circuit, as in Figure 4.6a. When the bias exceeds a critical power, the
resonance bifurcates. The parametric amplification regime requires a bias pump power just
below the bifurcation point, such that the resonant frequency of the resonator is maximally
dependent on the power. We combine the pump tone with our small experimental signal
and reflect the total field off of the LJPA. The phase response of the reflected field (Figure
4.6b) provides the amplification we desire.

When the amplifier is biased with a large pump, its weak nonlinearity generates a χ(3)

dispersive medium that is able to do four-wave mixing. Specifically, a coherent pump drive
at ωp modulates the effective Josephson inductance, and thus the resonant frequency, of
the circuit. This modulation, which occurs at 2ωp, can be accomplished either by the
combination of two degenerate pump photons, or of two detuned photons at ωp ± ωIF .
Conservation of energy requires that the two photons generated by the four-wave mixing
process, labelled the signal and idler photons, satisfy 2ωp = ωs + ωi. In the case where
ωs = ωi = ωp, the amplifier performs doubly-degenerate four-wave mixing. This is the regime
in which we will operate. Typical LJPAs operate with> 20 dB of gain over a bandwidth of 10-
50 MHz; recent advances in impedance matching and microwave engineering [142, 143] enable
similar gain over 500-700 MHz of bandwidth. There are other useful Josephson junction-
based amplifier designs, notably including the Josephson parametric converter (JPC) [144–
147] which is another resonant superconducting amplifier that performs three-wave mixing.
Recently, a nearly quantum-limited Josephson traveling-wave parametric amplifier (TWPA)
was demonstrated [148], which exhibits 20 dB of gain over several GHz of bandwidth. For
a full derivation of the JPA amplification and performance properties, see Refs. [120] and
[140].
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Figure 4.6: LJPA characteristics. (a) Resonant frequency: as pump power increases, the
resonant frequency of the amplifier (ωp0) bends downward, eventually bifurcating after a
critical point (ωc, Pc). (b) Phase response: as injected power increases, the reflected phase
changes accordingly. Adapted from Ref. [120].

We briefly note that 20 dB of gain is not yet sufficient to overcome room-temperature
fluctuations. In order to provide the necessary additional amplification, we follow the LJPA
with a low-noise HEMT (η ≈ 1/10) at the 4 K stage of the dilution refrigerator, which pro-
vides 30 dB of amplification, and utilize additional room-temperature amplifiers. However,
the noise temperature of the full amplification chain is dominated by the quantum efficiency
of the lowest stage, provided that its amplification is large enough [120]. Therefore, the
quantum efficiency of the overall measurement chain depends critically on the quality of the
first cryogenic amplifier.

4.4.2 Phase-sensitive amplification

One of the features that makes the LJPA an attractive choice in comparison to the JPC
and the TWPA is its ability to perform phase-sensitive amplification, amplifying a single
quadrature of light while de-amplifying, or squeezing, the other. Phase sensitive amplification
occurs when ωi and ωs are degenerate with ωp, such that the input signal adds coherently
with the pump tone. Figure 4.7 illustrates the phase sensitivity of the amplifier at degeneracy.
The component of the measurement signal that is in-phase (or 180◦ out of phase) with the
pump increases (or decreases) the intra-cavity power directly by vector addition, causing an
amplified phase shift in the reflected field. The components of the signal that are ±90◦ out
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Figure 4.7: Schematic demonstration of phase-sensitive amplification. a) A strong pump
tone combines with a much weaker readout signal via vector addition. b) If the signal is
directly parallel or antiparallel to the pump tone (A, C), the total power in the nonlinear
resonator changes maximally, and the phase response is maximized. Weak signals that are
out of phase with the pump (B, D) do not affect the total power to first order; therefore, the
out-of-phase signal is reduced. c) After passing through an LJPA operating in phase-sensitive
mode, a coherent state is reflected as a squeezed state.

of phase with the drive, however, only cause a change in the intra-cavity power at second
order, since the pump tone is much larger than the signal. In this case, the out-of-quadrature
components of the signal are actually de-amplified, or squeezed. If the amplification and
squeezing are sufficiently large, the LJPA essentially “erases” the fluctuations in the out-of-
phase quadrature, such that they no longer cause a back-action on the qubit state. This is
precisely the situation we described in Section 4.3.4, which allows us to effectively perform a
single-quadrature measurement while ignoring the back-action caused by fluctuations in the
complementary quadrature.

The squeezing performed in phase-sensitive amplification additionally enables noiseless
amplification. If the gain of the amplifier is given by G and the input signal represented by
the bosonic modes â, then we can represent the output of the amplifier as b̂, where

b̂ =
√
Gâ;

b̂† =
1√
G
â†.

(4.47)

It is straightforward to show that
[
b̂, b̂†

]
= 1, such that the outgoing amplified field need

contain no additional fluctuations. This noiseless amplification is useful for efficient readout,
and is critical for the reconstruction of quantum trajectories. In contrast, phase-preserving
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amplification (in which both quadratures are equally amplified, for example by an LJPA
operating off of degeneracy or by a TWPA) requires the addition of, at minimum, one
photon of uncorrelated noise in order to preserve the unitary commutation of b̂ and b̂†. This
additional noise reduces the rate at which a projective measurement can be performed, and
limits the ability to reliably reconstruct a quantum trajectory (since at minimum half of
the fluctuations observed by the experimenter are uncorrelated with the back-action on the
qubit). For an intensive treatment of quantum noise and parametric amplification, see Ref.
[75].

4.5 Summary: The Superconducting Qubit Toolbox

We now have a basic understanding of all the elements required to perform quantum ex-
periments using superconducting circuits. The superconducting Josephson junction creates
a nonlinear inductance that, when embedded in an LC circuit, generates a nonlinear res-
onator with unequal spacing between neighboring energy levels (Section 4.1). The capacitive
element in the qubit LC circuit can be designed with a significant electric dipole moment,
allowing the qubit to couple strongly to the electromagnetic field modes inside a resonator
via the Jaynes-Cummings Hamiltonian (Section 4.2). When the qubit and cavity are far-
detuned from one another, this interaction enables us to use a displaced coherent state inside
the cavity as a pointer state for the qubit; by monitoring the reflected or transmitted phase
of a measurement signal passing through the cavity, we can continuously infer the qubit state
(Section 4.3). The qubit state inference can be done continuously and with high fidelity by
employing a nearly-quantum limited amplifier, in this case an LJPA, which squeezes fluctua-
tions in the undesired quadrature and amplifies the quadrature containing qubit information
(Section 4.4). Thus, we have all the tools we need to create, manipulate, and measure
coherent quantum circuits.
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Chapter 5

Remote Measurement-Induced
Entanglement

I cannot seriously believe in [quantum mechanics] because the theory
cannot be reconciled with the idea that physics should represent a
reality in time and space, free from spooky actions at a distance.

Albert Einstein, Letter to Max Born, 1947

We now proceed to investigate a first practical use of dissipation in our superconduct-
ing cQED architecture: we use a carefully-tailored measurement to generate entanglement
between qubits that are separated from one another by many wavelengths, have no local
coupling, and are therefore functionally remote. Entanglement schemes for superconduct-
ing qubits have traditionally relied on direct qubit-qubit coupling [26, 27, 39, 149–151],
cavity-mediated interactions [28–30, 152–154], or local photon-mediated interactions [155].
However, the creation of a quantum network requires the distribution of coherent informa-
tion across macroscopic distances. Measurement-induced entanglement (MIE) [156–161] is
a particularly important resource in these spatially-separated quantum systems, for which
no local interactions and therefore no direct methods of creating entanglement exist. Such
remote entanglement has been demonstrated using optical photons in several atomic systems
[162–164] and nitrogen vacancy centers [88, 165], but has remained elusive for superconduct-
ing qubits, which operate in the microwave regime.

In this chapter, we demonstrate measurement-induced entanglement between two super-
conducting qubits, each dispersively coupled to a separate cavity for readout and separated
by 1.3 meters of ordinary coaxial cable, by engineering a continuous measurement for which
one of the three outcomes is a Bell state [166]. This measurement constitutes a half-parity
measurement, in which the odd-parity states (|ge〉 and |eg〉) are indistinguishable from one
another, but the even-parity states (|gg〉 and |ee〉) are distinguishable both from the odd-
parity manifold and from each other. The use of continuous measurements allows us to access
the ensemble-averaged dynamics of entanglement generation, which are well-described by a
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statistical model and by a full master-equation treatment. As we will see in Chapter 6, our
measurement efficiency is sufficiently high to resolve the individual quantum trajectories in
the ensemble, thus enabling the observation of the stochastic evolution of a joint two-qubit
state under measurement. This functionality sheds new light on the fundamental interplay
between entanglement, measurement, and decoherence in a quantum network. This work
was originally published as Ref. [167].

5.1 Historical Perspective

Using a continuous measurement to generate entanglement remotely represents one of the
chief innovations in our approach to remote measurement-induced entanglement. To under-
stand why this development is important, we first must understand previous MIE schemes,
which rely on photon-counting and post-selection, necessarily reducing the success rate of
the protocol. For quantum architectures building upon transitions at optical frequencies [88,
162, 164, 165], MIE has typically been achieved by relying on the correlated detection of
photons at the output of a beam-splitter [168] to herald an entangled state. While powerful,
this measurement protocol is binary and practically instantaneous, and allows no insight into
the dynamical processes underlying the generation of the entangled state. In solid state sys-
tems with transitions in the microwave, there has been tremendous interest in continuously
generating bipartite [156, 158, 169–171] and multi-partite [160, 161, 172] entangled states,
using weak measurements that slowly interact with the qubits, in such a way that enables
the resolution of the dynamical aspects of the entangling backaction. Such a measurement
was demonstrated in a local system (two qubits housed within the same cavity) concurrent
with this work [154]; our work represents the first use of continuous measurement to generate
entanglement between quantum objects separated by many wavelengths of their character-
istic frequencies. The use of weak measurements additionally opens the door to feedback
stabilization [139, 173–176], bringing the protocol from a probabilistic to a deterministic
method of generating entanglement [171, 177, 178].

A second critical difference between photon detection and continuous measurement for
the purpose of generating entanglement is the effect of losses. Photon detection-based experi-
ments typically exploit the Hong-Ou-Mandel Effect [168], which states that identical photons
simultaneously incident on two input arms of a 50/50 beam splitter will emerge on the same
output arm. One can understand this trivially by considering the time-reversed case: two
photons simultaneously arriving on one arm of such a beam splitter must emerge with equal
amplitude on both arms. Equivalently, one can coherently add the four transmission and
reflection possibilities as shown in Figure 5.1; the negative signs come from reflection from
the bottom of the beam splitter. If the incoming photons are indistinguishable, the second
and third amplitudes cancel, leading to photon bunching.

In a photon detection MIE experiment, the two qubits are each prepared in an x-polarized
state |ψ〉 = |g〉+|e〉√

2
, after which a Raman scattering mechanism is used to stimulate emission of

a photon into a traveling mode conditioned on the qubit in state |e〉 such that the total system
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+ --

Figure 5.1: An illustration of the Hong-Ou-Mandel effect which is typically used for
measurement-induced entanglement in photon-counting experiments. Two photons incident
on opposite arms of the beam splitter can emerge in four possible arrangements. Due to an
overall phase shift of π caused by reflection from the bottom of the beam splitter, the second
and third possibilities interfere destructively, leading to photon bunching.

state becomes 1
2

[|g, 0〉+ |e, 1〉]A⊗ [|g, 0〉+ |e, 1〉]B. The photons act as “flying qubits”: they
interfere with one another at the beam splitter, and are then counted at photon detectors
coupled to both output modes of the beam splitter.

If the transmission and detection efficiencies are both unity such that all photons arrive
at the beam splitter and are accurately counted at the detectors, there are three possible
outcomes. A measurement of zero photons at either node projects the qubits into the state
|gg〉; two photons detected at either node projects into |ee〉. However, a single photon
detected at either node does not provide which-path information: the photon could have
been emitted from either sample, and therefore from the standpoint of the measurement has
come simultaneously from both. This projects the system into the degenerate odd-parity

subspace, leading to an entangled state |ge〉±e
iφ|eg〉√
2

, where φ is determined by the path length
and the ± phase is heralded by the arm of the detector on which the photon emerged. Thus,
a single photon detection event can be said to “herald” an entangled state.

The chief effect of transmission loss in such a system is clearly to reduce the success rate
of the experiment. For experimental iterations in which a single photon is emitted, but is
absorbed by fiberoptic cable before reaching the photodetector, from the standpoint of the
experimentalist there was never a photon emitted at all. This iteration is excluded from
the heralded ensemble, although it would have otherwise generated an entangled state (and
if the photon dissipated after the beam-splitter, in fact did generate entanglement). Thus,
the entanglement generation rate is diminished. If the qubits are in |ee〉 and two photons
are generated, but one is absorbed and one detected, there is the possibility of an error:
the experimentalist may include this experiment in the heralded ensemble, leading to an
excess of |ee〉 population and degrading the quality of the ensemble. To protect against this
decoherence mode, however, one can perform bit flips on the two qubits and then repeat
the experiment. If the qubits were in |ee〉, the bit flip takes the system to |gg〉 and no
photons will be detected; if a single photon is detected again, the entanglement is confirmed.
If the fiberoptic cable and the detectors are reasonably high in transmission and detection
efficiency, the odds of a double absorption error are vanishingly small. Thus, the chief effect



CHAPTER 5. REMOTE MEASUREMENT-INDUCED ENTANGLEMENT 56

of inefficiency in a photon counting experiment is to diminish the heralding rate; the ensemble
of measurements that pass the herald will be reasonably pure.

For a continuous dispersive measurement using a coherent state, however, the effects of
losses are different. Recall that coherent states are eigenstates of the annihilation operator â:
even in the case of a photon scattering event, a measurement signal will reach the homodyne
detector, and the experimentalist will be able to make an estimate of whether or not the
outcome is consistent with an entangled state. The advantage here is that the entanglement
generation rate is preserved, and can be orders of magnitude larger than the rate in photon
counting case. However, any photons absorbed before the detector will carry away with
it information about the qubits, and unlike in the photon counting case we cannot post-
select away the effects of spurious photon absorption. As we will see, photon scattering on
the path between the two cavities leads to an unavoidable measurement-induced dephasing
of the entangled ensemble. This effect provides us an opportunity to study in detail the
interplay between measurement and dissipation in a quantum system.

5.2 Design of an Entangling Continuous Measurement

Our experimental apparatus consists of two superconducting transmon qubits placed in
spatially separated copper waveguide cavities (3D transmon architecture) [115]. Each cavity
is wound with a superconducting bias coil to enable tuning of the qubit frequency. A weakly
coupled port is used for transmission measurements and single qubit control, and a strongly
coupled port enables qubit state readout. The strongly coupled ports of the two cavities are
connected via two microwave circulators and 1.3 meters of coaxial cable to enable directional
transfer of information from Cavity 1 to Cavity 2 (Figure 5.2).

5.2.1 Joint dispersive measurement

A joint qubit state measurement can be performed by sequentially driving the cavities in
reflection with a near-resonant microwave tone at frequency ωm that can be described semi-
classically as a complex coherent drive Ad, as in Section 4.3.1. For clarity, we use A(t) and
B(t) to represent the intracavity fields in Cavity 1 and Cavity 2, respectively, and Aout, Bout

to represent the propagating fields traveling from the respective cavities. For a single qubit
in an eigenstate, measured in reflection, the output state is given by Aout = r±Ad, where

r± =
κ− 2i(ωc − ωm ∓ χ)

κ+ 2i(ωc − ωm ∓ χ)
, (5.1)

and the signifier + (-) represents the single qubit state |g〉 (|e〉). Here, ωc is the bare cavity
frequency; κ is the total cavity decay rate; and χ is the dispersive shift due to the interaction
between the qubit and the cavity. The measurement tone acquires a qubit state-dependent
phase shift φ± = Arg

{
A±out

}
. For the following analysis it is convenient to define the average

and relative phase shifts, δ = 1
2
(φ++φ−) and ∆φ = φ+−φ−, respectively (See Figure 5.2.1a).
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Figure 5.2: Simplified representation of the experimental setup. Panel (a) displays a
schematic representation of the measurement path as an input signal is reflected off of a
first cavity; transmitted through a 1.3 m delay cable; reflected off of a second cavity; and
then routed to a parametric amplifier. Panel (b) is a picture of the base-temperature setup,
showing the two copper cavities, two circulators, and the coiled delay cable.
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Figure 5.3: Schematic representation of the joint qubit measurement. Panel (a) displays the
output of a dispersive measurement at a single cavity, defining the angles ∆φ and δ. Panel
(b) shows the joint dispersive measurement in the general case ∆φ1 6= ∆φ2: all four states
are distinguishable. In Panel (c), we see that a half-parity measurement is accomplished
when ∆φ1 = ∆φ2.

For a sequential reflective measurement of two qubits, the output coherent state becomes
Bout =

√
ηlossr

±
1 r
±
2 Ad, where ηloss represents the efficiency of power transfer between the two

cavities. In the general case, ∆φ1 6= ∆φ2 and the phase shifts corresponding to the four basis
states |gg〉, |ge〉, |eg〉 and |ee〉 are all distinct (Figure 5.2.1b); the associated measurement
decoheres any quantum superposition of states and projects the system into one of the four
basis states. However, if we carefully engineer the cavities and the dispersive coupling, there
exists ωm such that ∆φ1 = ∆φ2. In this situation, the phase shifts associated with states
|ge〉 and |eg〉 are identical and equal to δ1 + δ2; the measurement therefore cannot decohere
a quantum superposition of |01〉 and |10〉 (Figure 5.2.1c). Because the states |ge〉 and |eg〉
are odd eigenvalues of the parity operator σ̂ZZ = σ̂Z1 ⊗ σ̂Z2 , this measurement is referred
to as a half-parity measurement. Equivalently, the odd-parity states span one of the three
eigenspaces of the half-parity operator σ̂Z1 + σ̂Z2 .



CHAPTER 5. REMOTE MEASUREMENT-INDUCED ENTANGLEMENT 59

7.14 7.16 7.18 7.2 7.22 7.24 7.26

0

π

2π

Frequency (GHz)

Ph
as

e 
Sh

ift

 

 

gg
ge
eg
ee

-2π

-π

 

 

7.185 7.19 7.195 7.2
π

0

π

ωm

Figure 5.4: Double-reflection phase shift calculated for the four prepared states |gg〉, |ge〉,
|eg〉, and |ee〉. The reflection curves pass through a 4π, indicating reflection from two
sequential cavities. The inset shows the crossing between the reflected phases for |ge〉 and
|eg〉 at ωm = 7.19326 GHz.

5.2.2 Tuning the entangling measurement

How, then, do we make such a half-parity measurement? If we were able to engineer the
qubit and cavity parameters ωc, χ, and κ to be identical, the condition ∆φ1 = ∆φ2 would
be met automatically. However, even careful design and machining only allows us to match
these parameters within a 5-10% margin of error; we require an in-situ tuning mechanism
to allow us to finely tune the cavity phase shifts. Allowing for qubit and cavity parameters
to vary between the cavity, we find

Bout =
κ1

2
− i (ωc

1 − ωm ∓ χ1)
κ1

2
+ i (ωc

1 − ωm ∓ χ1)
×

κ2

2
− i (ωc

2 − ωm ∓ χ2)
κ2

2
+ i (ωc

2 − ωm ∓ χ2)
×√ηlossAd (5.2)

We have assumed that Qint � Qext, such that we can neglect internal losses. This leads
to four distinct cavity resonance curves conditioned on the qubits in states |gg〉 , |ge〉 , |eg〉 ,
and |ee〉 (Figure 5.4). Solving for the frequency at which B

(ge)
out = B

(eg)
out results in a quadratic

equation in ωm that has real solutions if the following inequality is satisfied:

(ωc
1 − ωc

2)2 ≥
(

1

4

κ1κ2

χ1χ2

+ 1

)[
(χ1 − χ2)2 − χ1χ2

κ1κ2

(κ1 − κ2)2

]
. (5.3)
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Careful manufacture of qubits and cavities enables us to match κ1 and κ2 within 2-3 MHz, and
χ1 and χ2 within several hundred kHz. As a result, this condition is fairly straightforward
to meet by adjusting the cavity frequencies such that |ωc

1 − ωc
2| ∼ κ. It is possible to

theoretically calculate the correct ωm; in practice, we sequentially prepare the computational
states |gg〉 , |ge〉 , |eg〉 , and |ee〉, and adjust ωm until the single-shot Gaussian measurement
histograms for the |ge〉 and |eg〉 states completely overlap.

5.2.3 Verification of the half-parity measurement

Before studying the dynamics of the measurement-induced entanglement process, we first
would like to verify that the measurement does not distinguish between |ge〉 and |eg〉. To
do so, we sequentially prepare the states |gg〉 , |ge〉 , |eg〉 , and |ee〉, and integrate the mea-
surement signal for a variable time t. Repeating this process several thousand time yields
measurement histograms for each of the four states (Figure 5.5). For short integration time,
the weak, continuous nature of the measurement is evident: the four histograms are all
indistinguishable from one another. As t increases, the measurement Gaussians begin to
separate and we see that the measurements corresponding to |gg〉 and |ee〉 become distin-
guishable, but the |ge〉 and |eg〉 histograms are identical. At longer t, the histograms further
separate, and we begin to see the effects of qubit decay (manifesting as the shoulder on the
|ee〉 histogram). The near-perfect overlap between the |ge〉 and |eg〉 histograms provides
a preliminary confirmation that the measurement should be able to perform an entangling
projection.

5.3 Bayesian Theory of the Entangling Measurement

Here, we briefly describe a simplified phenomenological method of understanding and predict-
ing the back-action of this half-parity measurement using a Bayesian approach. For a more
rigorous demonstration using equivalent stochastic master equation method, see Ref. [179]
and the supplement to Ref. [167]. As we will see in Section 5.5, despite its phenomenologi-
cal nature this theory reproduces the experimental data quantitatively, with some potential
deviations at short timescales that are accounted for by the full stochastic master equation
approach.

Writing the two qubit density matrix as

ρ =
∑
ijkl

ρij,kl |ij〉 〈kl| , (5.4)

we can estimate concurrence [107] as described in Section 3.3 using the simplified formula
[110]

C ≈ max
(
0, |ρge,eg| −

√
ρgg,ggρee,ee

)
(5.5)

This formulation implies that for simplicity we can neglect the off-diagonal elements ρgg,ge,
ρgg,eg, ρee,ge, ρee,eg, and ρee,gg (which should be small in the interesting regime).
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Figure 5.5: Measurement histograms for the four fiducial states, at increasing integration
times of (a) 0.010 µs, (b) 0.650 µs, and (c) 1.61 µs. Solid lines represent a Gaussian fit.

To find ρgg,gg, ρee,ee, and ρge,eg after the measurement, we first consider the case without
energy relaxation or intrinsic dephasing of the qubits; then the dynamics of the two-qubit
state are only due to measurement. For each of four initial fiducial states of the qubits (|gg〉,
|ge〉, |eg〉, |ee〉) it is easy to calculate the evolution of the classical field amplitudes A(t) and
B(t) in the first and second resonators,

Ȧ = −κ1

2
A− i(ωc

1 ∓ χ1 − ωm)A+
√
κs,1Ad(t), (5.6)

Ḃ = −κ2

2
B − i(ωc

2 ∓ χ2 − ωm)B +
√
κs,2
√
ηloss Aout(t), (5.7)

Here the rotating frame (e−iω
mt) is based on the measurement drive, the time for B(t)

is shifted by the ”flying time” between resonators, and κi = κs,i + κw,i + κl,i is the total
bandwidth of the resonators including the bandwidth due to strongly (κs) and weakly (κw)
coupled ports - see Fig. 5.6 - and to dissipative loss in the cavity (κl). The energy decay for
the microwave propagation between the resonators is described by the efficiency ηloss. Notice
that in Eqs. (5.6) and (5.7) the resonator field amplitudes A and B are normalized such
that |A|2 and |B|2 are equal to the average number of photons in the corresponding coherent
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states, while for the propagating field Ad the squared amplitude |Ad|2 is equal to the average
number of photons per unit time.

Similar normalization is used for the propagating field

Aout(t) = −Ad(t) +
√
κs,1A(t), (5.8)

and the field
Bout(t) = −√ηloss Aout(t) +

√
κs,2B(t), (5.9)

which goes from the second resonator through the circulator to the amplifier. In the steady-
state limit (Ȧ = 0) and for κs � κw + κl, we recover the expression in Equation 5.1 for the
amplification coefficient, and additionally find the photon number population inside Cavity
1:

n̄±1 =
κs,1

(κs,1/2)2 + (ωc
1 − ωm ∓ χ1)2 |Ad|

2 . (5.10)

To produce the entangled state in our experiment, the steady-state fields B
(ge)
out and B

(eg)
out

for the states |ge〉 and |eg〉 should be indistinguishable, B
(ge)
out = B

(eg)
out , while they should

be sufficiently well distinguishable from the fields B
(gg)
out and B

(ge)
out . For amplification and

homodyne measurement of the field quadrature eiφ, the average time-integrated measurement
result for the state |ij〉 is

Sij =
1

t

∫
Re
{
B

(ij)
out (t′) e−iφ

}
fw(t′) dt′, (5.11)

where fw(t) is the weight function, which we take to be a constant-weight integration with
an offset to account for cavity ring-up. The amplifier noise is also accumulated during
this time-integration, so that for the two-qubit state |ij〉 the random measurement result
is characterized by the Gaussian distribution with the mean value of Sij and the standard
deviation

σ =
1

2
√
ηmeas

√
1

t

∫
f 2
w(t) dt, (5.12)

where ηmeas is the quantum efficiency of the measurement setup, which includes quantum
efficiency of the phase-sensitive amplifier and losses in the circulators and cables. Notice
that the noise σ does not depend on the two-qubit state. In our experiment, the homodyne
detection phase φ is chosen to be perpendicular to the output states for |ge〉 and |eg〉,
φ = Arg

{
B

(ge)
out

}
= Arg

{
B

(eg)
out

}
.

Because our entangling process is probabilistic and not deterministic, we must post-select
only realizations for which the integrated signal falls within a certain range, centered near
(Sge+Seg)/2. The total probability of selection in our model (assuming no energy relaxation
of qubits) is then

pent =
∑
i,j

ρij,ij(0) psel(i, j), (5.13)
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where ρ(0) is the two-qubit density matrix before the measurement and psel(i, j) is the
selection probability for the initial state |ij〉. The probability psel(i, j) is equal to the integral,
within the selection range, of a Gaussian with mean value Sij and standard deviation σ, such
as those in Figure 5.5.

Since the two-qubit state evolution is only due to measurement, the diagonal matrix
elements of the final density matrix ρ(t) should obey [69] the classical Bayes rule

ρij,ij(t) =
ρij,ij(0) psel(i, j)

pent

. (5.14)

For the main off-diagonal matrix element ρge,eg(t) needed to calculate concurrence, the quan-
tum Bayesian approach [69] cannot be applied rigorously; however, we can modify it phe-
nomenologically by using the following approximation:

|ρge,eg(t)| = |ρge,eg(0)|
√
ρge,ge(t)ρeg,eg(t)√
ρge,ge(0)ρeg,eg(0)

× exp

[
−1

2

∫
(1− ηmeas)

∣∣∣B(ge)
out (t)−B(ge)

out (t)
∣∣∣2dt]

× exp

[
−1

2

∫
[(1− ηloss)κs,1 + κw,1 + κl,1]

∣∣A(ge)(t)− A(eg)(t)
∣∣2dt]

× exp

[
−1

2

∫
(κw,2 + κl,2)

∣∣B(ge) −B(eg)
∣∣2dt] , (5.15)

where the last three factors describe the dephasing due to potential distinguishability of states
|ge〉 and |eg〉 in the field Bout and ”lost” fractions of the fields A and B from the first and sec-
ond resonators. The form of these dephasing factors directly follows from the overlap between
two coherent states |A1〉 and |A2〉 in a resonator [136]: |〈A1|A2〉| = exp(−|A1 − A2|2/2).

The remaining off-diagonal elements can also be calculated by substituting the respective
states for (ge) and (eg). In the analysis to follow, we will neglect these elements for two
reasons. First, the diagonal elements ρgg,gg and ρee,ee go to zero as we successfully post-select
the entangled subspace, such that the first term in Eq. (5.15) goes to zero. Additionally, the

term in which the exponent is proportional to
∣∣∣B(ge)

out −B
(eg)
out

∣∣∣2 is negligible in the odd-parity

subspace, but represents significant distinguishability between all other states. Thus, the
off-diagonal matrix terms outside the odd-parity subspace are doubly suppressed. For the
terms ρgg,ge, ρgg,eg, ρeg,ee, ρge,ee, and their conjugates, these terms follow straightforwardly
from the single-qubit Bayesian formalism developed in Section 4.3.4. The application of this
formula to the even-parity coherence factor ρgg,ee is a phenomenological extension of this
theory, just as ρge,eg is.

Only the absolute value of ρge,eg(t) is needed to calculate the concurrence (5.5). For
completeness, the phase change of ρge,eg due to measurement can be approximately calculated
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Table 5.1: Calibrated system parameters

System Parameters
Qubit 1 Qubit 2

ωq/2π 4.31143 GHz 4.46143 GHz
ωc/2π 7.1864 GHz 7.1984 GHz
κ/2π 18.5 MHz 21 MHz
χ/2π −1.275± 0.025 MHz −1.085± 0.035 MHz
T1 27± 5 µs 20± 3 µs
T ∗2 16± 3 µs 12± 2 µs
ηloss 0.81± 0.05
ηmeas 0.4± 0.10
Gchain 19.8± 1.6

using the master equation result [118]

Arg {ρge,eg(t)}−Arg {ρge,eg(0)} =

2χ1

∫
Re
{
A(ge)(t)A(eg)(t)∗

}
dt− 2χ2

∫
Re
{
B(ge)(t)B(eg)(t)∗

}
dt.

(5.16)

(Here we use a rotating frame with respect to bare frequencies of the qubits.)
So far we have assumed absence of intrinsic decoherence of the qubits. Pure dephasing of

the qubits with the corresponding dephasing time Tϕ,1 and Tϕ,2 can be easily included into the
calculation of concurrence by multiplying the main off-diagonal element ρge,eg(t) by the factor
exp(−t/Tϕ,1 − t/Tϕ,2), where t is the total duration of the measurement procedure. Including
the energy relaxation is not so easy, but since its contribution is quite small in the experiment,
this can be done in a very crude way. For example, instead of the energy relaxation occurring
during the measurement, we can phenomenologically introduce the energy relaxation for time
tbefore before the measurement and then for time tafter after the measurement. A better way
can be realized by assuming energy decay at a specific random time, and then adding two
corresponding parts of the signal integration (5.11); however, we do not apply this protocol
to our data. We account for intrinsic dephasing, but not for intrinsic qubit decay.

5.4 Full Calibration of the Experimental Apparatus

Armed with a Bayesian theory for the back-action of the measurement on a cascaded pair
of qubits, we turn to a full characterization of the experimental apparatus. Section 5.3 has
providd a comprehensive list of experimental parameters that we will need to calibrate in
order to quantitatively understand the experiment. These parameters are tabulated in Table
5.1, and a full calibration methodology is provided in this section.
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5.4.1 Detailed experimental setup

In Figure 5.6, we show a detailed schematic of the room- and base-temperature experimental
setup. The joint measurement requires the use of two GHz microwave generators (to act as
local oscillators for qubit and readout pulses); one MHz generator (for double-pumping a
cryogenic amplifier); three DC current sources (for biasing the qubits and the amplifier); and
an arbitrary waveform generator (AWG, for shaping qubit and readout pulses). The qubits
are housed at the base stage of a Vericold cryogen-free dilution refrigerator. Input lines
contain 50-60 dB of attenuation and additional homemade lossy Eccosorb low-pass filters
at base stage to filter stray infrared radiation. The qubits and cavities are placed inside a
blackened copper can, and the cavities are themselves indium-sealed to provide additional
infrared shielding. Magnetic shielding is provided by wrapping the cavities individually with
aluminum foil and by a µ-metal outer shield that encompasses the copper can.

To implement qubit pulses, the qubits are first tuned to an operating frequency of
ωq

1/2π = 4.31143 GHz and ωq
2/2π = 4.46143 GHz. Qubit pulses are implemented using

single-sideband modulators (SSBs) with the output of a first generator operating at the
midpoint of the two qubit frequencies ωq

LO/2π = 4.38643 GHz serving as the local oscillator
(LO). The AWG provides intermediate frequency (IF) pulses at 75 MHz to a lower-sideband
SSB (Qubit 1) and an upper-sideband SSB (Qubit 2); these pulses are routed to base and
perform single qubit gates via the weakly-coupled ports of the respective cavities.

A second generator operating at the measurement frequency ωm/2π = 7.19326 GHz
is split three ways. The joint measurement readout pulses are implemented via a mixer
using ωm as the LO and DC pulses from the AWG as the IF. The output of the mixer
passes through a variable phase shift and attenuation and into the dilution refrigerator. At
base, the readout passes through a circulator to measure cavity 1 in reflection; is routed back
through the circulator and through 1.3 meters of copper cable; measures cavity 2 in reflection
via a second circulator; and is routed via an additional isolator to a lumped Josephson
parametric amplifier (LJPA) [141] for phase-sensitive amplification. We double-pump the
LJPA symmetrically at ωm±ωdp to reduce pump leakage at ωm that could propagate toward
the cavities and cause additional unwanted dephasing. The double pump for the LJPA is
generated via an IQ mixer with a third generator operating at ωdp/2π = 369 MHz on the I
port and ωm as the LO. After the LJPA, the amplified readout passes through two isolators
and a low-pass filter en route to a 4K HEMT; at room temperature, the signal is further
amplified before demodulation (using the third branch of ωm as the LO) and digitization for
processing.

5.4.2 Cavity parameters

The bare cavity frequencies ωc and linewidths κ are measured using a standard transmis-
sion measurement performed with a vector network analyzer. A probe tone is injected via
the weakly-coupled port and collected at the output of the total measurement chain; the
transmission spectrum has a characteristic Lorentzian shape, which we fit to extract the
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Figure 5.6: Full experimental setup.
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cavity parameters. Note that, since there is no qubit drives and the qubits are quite cold,
we are actually measuring ωc

−, the dressed cavity frequency conditioned on the qubit in state
|g〉. Upon an accurate measurement of χ, we can adjust our estimate of the bare resonant
frequency.

5.4.3 Qubit lifetimes and coherences

We calibrate T1, the qubit relaxation time, and T ∗2 , the Ramsey decay time, using standard
time-resolved measurements. Specifically, T1 is calibrated by performing a Rπ

X rotation
into the |e〉 state, waiting a variable delay time, performing a strong readout measurement,
and fitting the resulting data to a decaying exponential. T ∗2 is calibrated using a Ramsey
sequence that measures the total loss rate of azimuthal phase coherence. We extract Tϕ, the
pure dephasing rate, from T ∗2 using 1

T ∗
2

= 1
Tϕ

+ 1
2T1

.

5.4.4 Calibration of photon number, dispersive shifts, and
inter-cavity transmission efficiency

We would like to be able to translate from a calibrated room-temperature measurement power
Pm into an equivalent photon number present in the cavities. For this, the qubits themselves
provide a highly sensitive meter, allowing us to simultaneously calibrate the photon number
(n1), the dispersive shifts at each cavity (χ), and the inter-cavity transmission efficiency
(ηmeas). To calibrate these system parameters, we use a technique similar to Vijay et al. [175].
The additional Pm (calibrated at room-temperature with a spectrum analyzer) corresponds
to a coherent state in the first cavity given by

A± =

√
λPmκ1

κ1/2 + i (ωc
1 − ωm ∓ χ1)

, (5.17)

where λ represents an unknown (but constant at fixed frequency) attenuation from room-
temperature to the cavity. All variables but χ1 and λ have been independently calibrated.
Similarly, because Qubit 1 stays in its ground state when undriven, if we do not drive Qubit
1 we can write the intracavity field at Cavity 2 as

B± =

√
ηlossλPmκ2

κ2/2 + i (ωc
2 − ωm ∓ χ2)

e−i∆φ1 . (5.18)

This is the equivalent of Equation 5.17, with the addition of an attenuation
√
ηloss and an

overall phase shift due to the presence first cavity.
The intracavity coherent state A creates a measurement-induced dephasing rate given by

Γd,1 = κ1

2
|A+ − A−|2 and an ac-Stark shift of ∆ω = −2χRe

{
A−A

∗
+

}
[118]. An equivalent

effect occurs at Qubit 2 due to B. We can measure both Γd and ∆ω by performing Ramsey
measurements in the presence of the offset power Pm. The frequency of the Ramsey fringes
gives ∆ω, and their exponential decay envelope gives Γtot = Γd + 1/T ∗2 .
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Figure 5.7: n, ηloss, and χ calibration. We display the measurement-induced dephasing (a-b)
and ac-Stark shift (c-d) for Qubit 1 (left) and Qubit 2 (right) as a function of measurement
power Pm in arbitrary units. We fit these data in order to determine χ1, χ2, ηloss, and n1.

We sweep the applied power Pm and perform Ramsey measurements first on Qubit 1 and
then on Qubit 2, in order to generate a linear fit of both Γd vs. Pm and ∆ω vs. Pm for
both qubits independently. Removing the Pm = 0 offset and taking the ratio ∆ω/Γd removes
dependency on λPm (Qubit 1) and ηlossλPm (Qubit 2); we fit these ratios to a constant from
which we extract χ1 and χ2. We then use these values of χ in linear fits of ∆ω(Pm) and
Γd(Pm); this provides two independent fits for λ (when we measure Ramsey on Qubit 1) and
for ηloss (when we subsequently measure Ramsey on Qubit 2). In Figure 5.7, we show these
fits for both qubits. The calibration of λ also provides a sensitive photon-number calibration
as a function of Pm: once χ1 and λ have been determined, n±1 = |A±|2 is fully determined,
as is the drive amplitude Ad =

√
λPm.

5.4.5 Calibration of ηmeas

The final remaining parameter is the measurement efficiency ηmeas. In addition, there is an
implicit parameter to calibrate, which we will call Gchain. Gchain links the amplified, digitized
measurement voltage Vm(t) as measured in our physical system, andBout as defined in Section

5.3. Gchain is thus the slope of the line V
(ee)
m − V (gg)

m vs. See − Sgg, where V
(ij)
m is the center

of the histogram actually measured with the digitizer (as in Figure 5.5), and Sij is defined
in Equation 5.11. Once Gchain is determined, we fit the histograms corresponding to the
prepared state |gg〉, |ge〉, |eg〉, and |ee〉 to Gaussian distributions for every measurement time
t. The amplification efficiency ηmeas is linked to the standard deviation of these Gaussians via
1/σ = 2

√
ηmeast (Equation 5.12). We extract ηmeas by fitting σ vs 1/

√
t to a line (Figure 5.8).
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Figure 5.8: Calibration of ηmeas and Gchain. a. Center of the measured histograms as a
function of prediction given by the Bayesian theory. We plot the difference between |gg〉
and |ee〉 to remove possible offsets. b. Evolution of the standard deviation of the histogram
corresponding to prepared state |eg〉 versus measurement time t.

We define ηmeas as the mean of the extracted values from the four fiducial states.

5.5 Tomographic Reconstruction of Entanglement

Dynamics

With a preliminary confirmation of a half-parity measurement and a fully-calibrated exper-
imental apparatus, we would now like to be quantitative about the quality and dynamics of
the entangling process. We control the rate of entanglement generation

Γmeas =
1

2
ηmeasηloss|Ad|2 sin(2∆φ)2, (5.19)

by adjusting the measurement strength via the average intracavity photon number in the
first cavity (Equation 5.10). A photon number n1 = 1.2 results in Γmeas/2π ≈ 210 kHz,
which sets the characteristic timescale of entanglement generation τmeas ≡ 1/Γmeas ≈ 750 ns.
Thus, the dynamics of the measurement process, which are significantly faster than qubit
decay rates, can be readily resolved using conventional digital electronics. We therefore
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use n1 = 1.2 for our weak measurements. In contrast, our projective readout is performed
with n1 = 6.2 photons, corresponding to Γmeas/2π ≈ 5.6 MHz, or τmeas = 28 ns. τmeas is
significantly faster than intrinsic qubit decay timescales in this regime, which fulfills our need
for a fast, high-fidelity readout.

A reader might well inquire as to the difference between “strong” and “weak” measure-
ment. Indeed, the strong and weak measurements used here lie on the same continuum and
can be tuned at will. The terms, therefore, are a descriptive and relative shorthand (and
a relatively sloppy one) for comparison of measurement rates within an experiment such
as this one. We might interchange “strong” with “projective”, but again, the ability of a
measurement to fully project a system is also relative. The “strong” measurements used
here are measurement for which we are not interested in reconstructing the underlying dy-
namics or for which the dynamics are too fast to be captured by our electronics; the “weak”
measurements are those for which we wish to and are able to study the dynamical processes.

To generate and verify entanglement, we implement a sequence of three readout protocols
and two qubit rotations (Figure 5.9). We first perform a projective readout and post-select

the |gg〉 ground state [180]. We then perform R
π/2
Y rotations on both qubits to create the

equal superposition state 1
2

(|gg〉+ |ge〉+ |eg〉+ |ee〉). The second readout, which is done in
the weak regime with varying t, stochastically steers the system toward |gg〉, |ee〉, or the Bell
state 1√

2
(|ge〉+ |eg〉), as documented in the measurement output Vm. We then apply one of

a set of tomographic rotations [181] immediately followed by a final projective readout into
|gg〉, |ee〉, or {|ge〉 , |eg〉}. The tomography is described in greater detail in the next section.

The tomographic and state preparatory rotations are tuned to 40 ns, and we provide a
10 ns window between the end of a qubit pulse and the beginning of a readout protocol in
order to ensure that the rotations are not distorted by photon-induced qubit frequency shifts.
Similarly, after a readout is performed, we wait a minimum of t = 6/2πκ before applying a
qubit pulse in order to ensure the cavity is fully depopulated.
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We repeat the entangling process 8,000 times for each tomographic rotation and for each
t to form a single well-averaged data set; we generate an error margin by taking the average
and standard deviation of 17 data sets. To produce the density matrix of the entangled
state for each time t, we choose an entanglement probability pent to constitute the entangled
state, select an integration window to contain the pent most-likely-entangled experimental
iterations, and tomographically reconstruct the density matrix from the data set contained
in this window using a maximum-likelihood estimator [167, 182]. For perfectly separated
histograms, 50% of the counts will lie in the odd-parity subspace, but we utilize pent = 10%
to compensate for imperfect measurement efficiency.

5.5.1 Characterizing the tomographic reconstruction

The joint dispersive measurement that we have designed randomly projects the system into
|gg〉, |ee〉, or {|ge〉 , |eg〉}. Repetitively performing the measurement on an identically pre-
pared ensemble therefore yields the probabilities p|gg〉, p|ee〉, and p|ge〉+ p|eg〉. These probabil-
ities, in turn, represent the diagonal density matrix elements ρgg,gg, ρee,ee, and ρge,ge + ρeg,eg.
The tomographic process utilizes our ability to measure a subset of these density matrix ele-
ments and to rotate other matrix elements into these “readable” slots in order to reconstruct
the full density matrix.

To reconstruct the density matrix, we need at least fifteen linearly independent mea-
surements in order to span the degrees of freedom of the two-qubit density matrix (a 4x4
Hermitian matrix, with a trace-normalization constraint). These degrees of freedom can
alternatively be considered as projections of the density matrix onto the two-qubit Pauli
operators σ̂ij. However, one can easily see that the only Pauli operators with nonzero di-
agonal density matrix elements are {σ̂II , σ̂IZ , σ̂ZI , σ̂ZZ}. Measuring p|gg〉 is the equivalent

of measuring Tr
{
M̂ggρ

}
, where M̂gg = σ̂II + σ̂IZ + σ̂ZI + σ̂ZZ . We can write a similar

measurement operator for a measurement of |ee〉: M̂ee = σ̂II − σ̂IZ − σ̂ZI + σ̂ZZ . Similar
decompositions can be written for p|ge〉 and p|eg〉. However, because we cannot use our mea-
surement to distinguish between |ge〉 and |eg〉 in this experiment, we will use only the |gg〉
and |ee〉 proobabilities for tomographic purposes.

In order for our measurements to span the full Hilbert space, we must design a set of
rotations that take the remainder of the Pauli matrix projections

(
σ̂IY , σ̂XZ , etc.

)
into one

of these four measurable positions. Thus we can build up a set of measurement operators
that, taken together, can determine the full Pauli matrix decomposition of the system and
thus reconstruct the density matrix. Of course, since we are discussing probabilities, we
must prepare the system and perform each rotation and measurement many times in order
to build an accurate estimate of the probabilities, and thus a true picture of the ensemble
density matrix.

Our tomography procedure utilizes a set of 30 qubit rotations (15 positive and negative
rotations) in order to reduce systematic bias from qubit rotations and power drifts. The
rotations are identical to those in Ref. [181] and are given explicitly in Table 5.2. For
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each rotation, we independently measure p|gg〉 and p|ee〉 in order to double the amount of
information we extract from each experiment. These probabilities represent measurements
of the form

p|ij〉 = Tr{M̂|ij〉ρ};
M̂|ij〉 = βII σ̂

II ± βIZ σ̂Im ± βZI σ̂nI ∓ βZZ σ̂nm.
(5.20)

Here +(−) corresponds to p|gg〉
(
p|ee〉

)
, and m,n ∈ {X, Y, Z}. The choice of m,n depends on

the prerotation performed before the measurement. The β-coefficients are calibrated using
a double-Rabi measurement as described in Chow et al. [181] and allow us to account for
measurement inefficiency and qubit decay during readout.

Our measurement set results in an overspecified measurement set: 60 effective mea-
surements for 15 degrees of freedom. We convert this data into a density matrix using
a least-squares maximum likelihood estimation method [182] to enforce trace normalization
and Hermiticity of the reconstructed density matrix. Specifically, we define a sixteen element
real vector ~t and use its elements to construct a lower-triangular matrix of the form

T =


t1 0 0 0

t5 + it6 t2 0 0
t7 + it8 t9 + t10 t3 0
t11 + it12 t13 + it14 t15 + it16 t4

 (5.21)

and write

ρt =
T †T

Tr{T †T}
(5.22)

As long as T is invertible, ρt is semipositive definite, and is therefore a Hermitian, trace-
normalized density matrix. This is the constraint we seek. We then construct a minimization
vector ~L where each element is given by

L|ij〉,k = Tr{M̂|ij〉,kρt} − p|ij〉,k. (5.23)

Here, k indexes the prerotations that are performed to complete the tomographic set.The
vector ~L represents a comparison of the expected measurement outcome for the test matrix ρt
under measurement M̂k, to the experimentally measured outcomes (with a separate vector
element for the |gg〉 and |ee〉 measurements, which we consider independent). Using a
nonlinear least-squares minimization protocol (in our case, the lsqnonlin function native to

the MATLAB environment), we vary ~t until ~L is minimized, and consider the corresponding
ρt to represent the true density matrix ρ.

One could also consider using standard matrix methods to construct a matrix of mea-
surement operators and a corresponding vector of outcomes, then taking the pseudoinverse
in order to reconstruct the density matrix. These methods produce qualitatively similar
results. The data shown in this dissertation are based on the maximum likelihood method.

We verify the accuracy of the tomography by preparing the state |g〉+|e〉√
2
⊗ ||g〉+e

iφ|e〉√
2

and

calculating the fidelity of the resulting density matrix to the target state (Figure 5.10).
The average fidelity across the prepared states is 98.8%, indicating highly effective state
initialization and tomographic reconstruction.
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Table 5.2: Tomographic rotations and measurement operators

Rotation |gg〉 Measurement Operator |ee〉 Measurement Operator

P1 I ⊗ I +βII σ̂
II + βZI σ̂

ZI + βIZ σ̂
IZ + βZZ σ̂

ZZ +βII σ̂
II − βZI σ̂ZI − βIZ σ̂IZ + βZZ σ̂

ZZ

P2 RπX ⊗ I +βII σ̂
II − βZI σ̂ZI + βIZ σ̂

IZ − βZZ σ̂ZZ +βII σ̂
II + βZI σ̂

ZI − βIZ σ̂IZ − βZZ σ̂ZZ

P3 I ⊗ RπX +βII σ̂
II + βZI σ̂

ZI − βIZ σ̂IZ − βZZ σ̂ZZ +βII σ̂
II − βZI σ̂ZI + βIZ σ̂

IZ − βZZ σ̂ZZ

P4 R
π/2
X ⊗ I +βII σ̂

II + βZI σ̂
Y I + βIZ σ̂

IZ + βZZ σ̂
Y Z +βII σ̂

II − βZI σ̂Y I − βIZ σ̂IZ + βZZ σ̂
Y Z

P5 R
π/2
X ⊗ R

π/2
X +βII σ̂

II + βZI σ̂
Y I + βIZ σ̂

IY + βZZ σ̂
Y Y +βII σ̂

II − βZI σ̂Y I − βIZ σ̂IY + βZZ σ̂
Y Y

P6 R
π/2
X ⊗ R

π/2
Y +βII σ̂

II + βZI σ̂
Y I − βIZ σ̂IX − βZZ σ̂YX +βII σ̂

II − βZI σ̂Y I + βIZ σ̂
IX − βZZ σ̂YX

P7 R
π/2
X ⊗ RπX +βII σ̂

II + βZI σ̂
Y I − βIZ σ̂IZ − βZZ σ̂Y Z +βII σ̂

II − βZI σ̂Y I + βIZ σ̂
IZ − βZZ σ̂Y Z

P8 R
π/2
Y ⊗ I +βII σ̂

II − βZI σ̂XI + βIZ σ̂
IZ − βZZ σ̂XZ +βII σ̂

II + βZI σ̂
XI − βIZ σ̂IZ − βZZ σ̂XZ

P9 R
π/2
Y ⊗ R

π/2
X +βII σ̂

II − βZI σ̂XI + βIZ σ̂
IY − βZZ σ̂XY +βII σ̂

II + βZI σ̂
XI − βIZ σ̂IY − βZZ σ̂XY

P10 R
π/2
Y ⊗ R

π/2
Y +βII σ̂

II − βZI σ̂XI − βIZ σ̂IX + βZZ σ̂
XX +βII σ̂

II + βZI σ̂
XI + βIZ σ̂

IX + βZZ σ̂
XX

P11 R
π/2
Y ⊗ RπX +βII σ̂

II − βZI σ̂XI − βIZ σ̂IZ + βZZ σ̂
XZ +βII σ̂

II + βZI σ̂
XI + βIZ σ̂

IZ + βZZ σ̂
XZ

P12 I ⊗ R
π/2
X +βII σ̂

II + βZI σ̂
ZI + βIZ σ̂

IY + βZZ σ̂
ZY +βII σ̂

II − βZI σ̂ZI − βIZ σ̂IY + βZZ σ̂
ZY

P13 RπX ⊗ R
π/2
X +βII σ̂

II − βZI σ̂ZI + βIZ σ̂
IY − βZZ σ̂ZY +βII σ̂

II + βZI σ̂
ZI − βIZ σ̂IY − βZZ σ̂ZY

P14 I ⊗ R
π/2
Y +βII σ̂

II + βZI σ̂
ZI − βIZ σ̂IX − βZZ σ̂ZX +βII σ̂

II − βZI σ̂ZI + βIZ σ̂
IX − βZZ σ̂ZX

P15 RπX ⊗ R
π/2
Y +βII σ̂

II − βZI σ̂ZI − βIZ σ̂IX + βZZ σ̂
ZX +βII σ̂

II + βZI σ̂
ZI + βIZ σ̂

IX + βZZ σ̂
ZX

N1 I ⊗ I +βII σ̂
II + βZI σ̂

ZI + βIZ σ̂
IZ + βZZ σ̂

ZZ +βII σ̂
II − βZI σ̂ZI − βIZ σ̂IZ + βZZ σ̂

ZZ

N2 R−π
X ⊗ I +βII σ̂

II − βZI σ̂ZI + βIZ σ̂
IZ − βZZ σ̂ZZ +βII σ̂

II + βZI σ̂
ZI − βIZ σ̂IZ − βZZ σ̂ZZ

N3 I ⊗ R−π
X +βII σ̂

II + βZI σ̂
ZI − βIZ σ̂IZ − βZZ σ̂ZZ +βII σ̂

II − βZI σ̂ZI + βIZ σ̂
IZ − βZZ σ̂ZZ

N4 R
−π/2
X ⊗ I +βII σ̂

II − βZI σ̂Y I + βIZ σ̂
IZ − βZZ σ̂Y Z +βII σ̂

II + βZI σ̂
Y I − βIZ σ̂IZ − βZZ σ̂Y Z

N5 R
−π/2
X ⊗ R

−π/2
X +βII σ̂

II − βZI σ̂Y I − βIZ σ̂IY + βZZ σ̂
Y Y +βII σ̂

II + βZI σ̂
Y I + βIZ σ̂

IY + βZZ σ̂
Y Y

N6 R
−π/2
X ⊗ R

−π/2
Y +βII σ̂

II − βZI σ̂Y I + βIZ σ̂
IX − βZZ σ̂YX +βII σ̂

II + βZI σ̂
Y I − βIZ σ̂IX − βZZ σ̂YX

N7 R
−π/2
X ⊗ R−π

X +βII σ̂
II − βZI σ̂Y I − βIZ σ̂IZ + βZZ σ̂

Y Z +βII σ̂
II + βZI σ̂

Y I + βIZ σ̂
IZ + βZZ σ̂

Y Z

N8 R
−π/2
Y ⊗ I +βII σ̂

II + βZI σ̂
XI + βIZ σ̂

IZ + βZZ σ̂
XZ +βII σ̂

II − βZI σ̂XI − βIZ σ̂IZ + βZZ σ̂
XZ

N9 R
−π/2
Y ⊗ R

−π/2
X +βII σ̂

II + βZI σ̂
XI − βIZ σ̂IY − βZZ σ̂XY +βII σ̂

II − βZI σ̂XI + βIZ σ̂
IY − βZZ σ̂XY

N10 R
−π/2
Y ⊗ R

−π/2
Y +βII σ̂

II + βZI σ̂
XI + βIZ σ̂

IX + βZZ σ̂
XX +βII σ̂

II − βZI σ̂XI − βIZ σ̂IX + βZZ σ̂
XX

N11 R
−π/2
Y ⊗ R−π

X +βII σ̂
II + βZI σ̂

XI − βIZ σ̂IZ − βZZ σ̂XZ +βII σ̂
II − βZI σ̂XI + βIZ σ̂

IZ − βZZ σ̂XZ

N12 I ⊗ R
−π/2
X +βII σ̂

II + βZI σ̂
ZI − βIZ σ̂IY − βZZ σ̂ZY +βII σ̂

II − βZI σ̂ZI + βIZ σ̂
IY − βZZ σ̂ZY

N13 R−π
X ⊗ R

−π/2
X +βII σ̂

II − βZI σ̂ZI − βIZ σ̂IY + βZZ σ̂
ZY +βII σ̂

II + βZI σ̂
ZI + βIZ σ̂

IY + βZZ σ̂
ZY

N14 I ⊗ R
−π/2
Y +βII σ̂

II + βZI σ̂
ZI + βIZ σ̂

IX + βZZ σ̂
ZX +βII σ̂

II − βZI σ̂ZI − βIZ σ̂IX + βZZ σ̂
ZX

N15 R−π
X ⊗ R

−π/2
Y +βII σ̂

II − βZI σ̂ZI + βIZ σ̂
IX − βZZ σ̂ZX +βII σ̂

II + βZI σ̂
ZI − βIZ σ̂IX − βZZ σ̂ZX
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Figure 5.10: Fidelity to the states |g〉+|e〉√
2
⊗ |g〉+|e〉√

2
(XX), |g〉+|e〉√

2
⊗ |g〉+i|e〉√

2
(XY) and |g〉+|e〉√

2
⊗

|g〉+eiφ|e〉√
2

(Target State) as a function of Qubit 2 preparation phase φ. Fidelities to XX
and XY oscillate 90 degrees out of phase with one another, as expected; the fidelity to the
prepared state is an average of 98.8% across all preparation angles.

5.5.2 Entanglement dynamics

The ability to perform time-continuous measurements enables us to directly observe the
ensemble dynamics of the emergence of entanglement. As noted in Section 5.3, we can
estimate concurrence [107] using the simplified formula [110] (Equation 5.5) to characterize
the quality of the entanglement during this process. This simplified formula holds when the
only non-negligible off-diagonal elements are ρge,eg and its conjugate, which is applicable to
our setup since the high distinguishability between |gg〉 , |ee〉 and the {|ge〉 , |eg〉} manifold
results in rapid decay of all other off-diagonal elements. Recall that concurrence ranges from
zero (for a separable or mixed state) to one (for a maximally entangled two qubit state),
and is greater than zero for all non-separable two qubit states [107]. Maximizing C requires
limiting decoherence within the odd-parity manifold, and minimizing stray counts of |gg〉
and |ee〉 by maximizing the signal-to noise ratio (SNR), defined by the ratio of the separation
of the Gaussian measurement histograms (in Figure 5.5) to their width, or

SNR ∼ 2|Ad| sin (2∆φ)
√
ηlossηmeast. (5.24)
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Figure 5.11: Generation and verification of entanglement between two spatially-separated
superconducting qubits. The figure displays the evolution of the basis state populations
(ρgg,gg, etc.) and odd-parity coherence (ρge,eg). The shaded region represents the standard
deviation centered about the average (geometric shapes). Dashed lines are theoretical simu-
lations based on a Bayesian approach and solid lines are calculated using a master equation
approach; in both cases no fitting parameters are used.

Figures 5.11 and 5.12 show the evolution of the density matrix as a function of t. Fig-
ure 5.11 details the evolution of the relevant density matrix elements (the diagonal elements,
representing population probabilities, and the off-diagonal element ρge,eg, representing the
coherence of the odd-parity subspace), as the entangled ensemble is better and better post-
selected. Figure 5.12 shows the full density matrix for five selected values of t. As expected,
the off-diagonal elements not associated with the odd-parity subspace rapidly decay to zero.
Note that we plot here the amplitude of the density matrix elements, when in fact the off-
diagonal elements are in general complex. In particular, the off-diagonal density matrix
element evolves deterministically due to the slight differences in χ between the two qubits
(Equation 5.16). However, note that Equation 5.5 refers only to the amplitude |ρge,eg|, and
not to its complex phase. Therefore, the amplitudes contain all the information we need to
study entanglement. In Figure 5.13, we show the concurrence calculated from these density
matrices as a function of measurement integration time.
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Figure 5.12: Full density matrices of the post-selected entangled subspace for increasing t.
The off-diagonal elements corresponding to coherences outside of the odd-parity subspace
decay much more rapidly than |ρge,eg|, as required for entanglement generation. The off-
diagonal elements outside the entangled subspace can be calculated phenomenologically using
the Bayesian formalism, and from first-principles using the SME formalism [179].
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Figure 5.13: Concurrence of the post-selected entangled state as a function of t. As in
Figure 5.11, the dashed lines represent the Bayesian analysis; solid lines represent the SME
approach; closed circles represent the data; and the shaded region represents the standard
deviation of the tomographic set. We see three qualitative regions: an initial purification
of entanglement, rate-limited by the SNR; an optimum region with balance between SNR
improvement and losses; and a region of decay where the dynamics are dominated by loss
mechanisms.
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5.6 Discussion of Results

In describing the evolution of the density matrix elements and overall concurrences in Fig-
ures 5.11, 5.12, and 5.13, we note three qualitative regimes: SNR-dominated evolution;
stabilization; and decay due to decoherence. Since the SNR for integrated gaussian noise
is proportional to

√
t, it dominates the evolution at short times t < 0.75τmeas. Here, the

dynamics are governed by changes to population probabilities; i.e., the increase of ρeg,eg and
ρge,ge and decrease of ρgg,gg and ρee,ee in the post-selected ensemble. The rapid decay of ρgg,gg

and ρee,ee compared to ρge,eg, results in growth of concurrence in this regime. For intermedi-
ate times (0.75τmeas < t < 1.25τmeas), the SNR improvement rate decreases and decoherence
begins to take a more noticeable effect. Decoherence is caused by intrinsic dephasing of
the qubits Γ∗2,i = 1/T ∗2,i and by ηloss, which contributes an additional measurement-induced
dephasing of the first qubit at a rate

Γloss ' 2 (1− ηloss) |Ad|2 sin(∆φ)2. (5.25)

At intermediate times, the SNR improvement rate and Γloss are roughly equal, and hence
the concurrence reaches a maximum value of 0.35. This value is comparable to what was
obtained recently using optical communications [164, 165], however, thanks to our time-
continuous measurement scheme, the rate at which an entangled state is created is orders
of magnitude higher (Γcreation/2π = 1 kHz). For longer times (t > 1.25τmeas), the density
matrix evolution is dominated by decoherence, which eventually drives the system into an
incoherent mixture of |ge〉 and |eg〉.

These ensemble dynamics are well-described both by a Bayesian statistical model (dashed
lines), and by a rigorous stochastic master-equation treatment (solid lines) [179]. The models,
which account for the chief technical limitations of our scheme (i.e. the inefficiencies ηloss, the
losses between the cavities and ηmeas, the finite detection efficiency), indicate that reasonable
technical improvements could lead to concurrence of 70% [167, 179]. The two theories
used to model our data represent a rigorous microscopic analysis that natively accounts for
all density matrix elements, in the case of the stochastic master equation formalism; and
a straightforward phenomenological extension of the single-qubit Bayesian theory, in the
case of the Bayesian formalism. The agreement between these models indicates a thorough
understanding of the experimental system that enables our entangling measurement.

This work beautifully demonstrates the delicate interplay between measurement and
dissipation. Without performing an entangling measurement, there is no direct means of
entangling the qubits in our system, so the measurement serves to purify, rather than de-
stroy, an important quantum resource. However, that purification is impeded by two loss
mechanisms, ηloss and ηmeas, which affect the measurement dynamics in very different ways.
The additional dephasing of the first qubit, and therefore of the entangled state, is princi-
pally caused by losses between the two cavities (ηloss). Along the path between the cavities,
the propagating coherent state only carries information about the state of the first qubit.
In the language of SMEs developed in Chapter 2, this is a dissipation term takes the form
Γloss

2
D
[
σ̂ZI
]
ρ, a dephasing term on the Qubit 1 subspace. Any information lost between the
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cavities - particularly at the circulators, which contribute an intrinsic loss of nearly 0.4 dB
each - is equivalently a measurement of the first qubit that we must average over, which
contributes to an effective measurement-induced dephasing.

However, after the second cavity, the signal no longer contains information that distin-
guishes between |ge〉 and |eg〉: the dissipator being applied is of form ΓmeasD

[
σ̂ZI + σ̂IZ

]
ρ.

In the odd-parity subspace, this term has an expectation value of zero, so the odd-parity
subspace is protected from further decoherence due to inefficient transmission to and am-
plification by the LJPA (captured in ηmeas). Thus, this second form of loss serves only to
limit the rate at which entanglement is generated by slowing the rate of SNR improvement,
but does not itself contribute to decoherence. The overall dynamics of the entanglement
generation process are governed by an interplay between measurement, dissipation-induced
dephasing and collection efficiency, nicely capturing all of the relevant dynamics in a mea-
surement/dissipation process.

Our experiments demonstrate that quantum entanglement can be established between
distant systems that interact only through a coherent signal propagating along low loss elec-
trical wires, a functionality that will be integral to the realization of complex, distributed
quantum networks. We take advantage of the versatility of continuous measurement to mon-
itor the dynamics of entanglement generation, and demonstrate quantitative agreement to a
theoretical model that captures the experimental details of the physical circuit. Moreover,
our characterization of the state of the joint system under continuous measurement suggests
the feasibility of future continuous feedback stabilization of entanglement [171, 177, 183].
Further technical improvements in quantum efficiency, coherence times, and transmission
characteristics hold the promise of on-demand, stabilized remote entanglement—a powerful
resource for quantum information processing.
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Chapter 6

Quantum Trajectories in an
Entangling Measurement

A careful analysis of the process of observation in atomic physics
has shown that the subatomic particles have no meaning as isolated
entities, but can only be understood as interconnections between the
preparation of an experiment and the subsequent measurement.

Erwin Schrödinger, Unsourced Attribution

Our high-efficiency continuous measurement allows us to go one step further in decom-
posing the dynamics of measurement-induced entanglement: we can directly observe the
individual quantum trajectories [176, 184–187] of our two qubit system. The ability to re-
construct individual quantum trajectories is a tremendous advantage of weak measurements:
we can ask not only “Where did the qubits start?” (state initialization) and “Where did
they end?” (projective readout) but also “How did they get there?”. By peering into the
ensemble to resolve the single-shot, dynamical evolution of a quantum system, we gain access
to a rich new tapestry of scientific questions:

1. What is the complete characterization of the dynamics of entanglement creation as a
continuous trajectory?

2. What is the statistical distribution of the entanglement at any time during the process?

3. What is the most likely way in which entanglement is created?

In this chapter, we give a systematic answer to these questions and more, by analyzing en-
tangled quantum trajectories of jointly measured qubits and by developing a comprehensive
theory to understand them. We resolve and describe the full spectrum of evolution paths as
the two-qubit state gradually projects onto the entangled subspace or onto a separable state.
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Figure 6.1: Schematic of experimental setup optimized for transmission losses. The cavities
are directly connected to a single microwave circulator in order to reduce ηloss and therefore
to enable the generation of higher-quality entangled states.

We explore the probability distribution of the qubits’ concurrence to understand how the dis-
tribution changes in time, from a separable state with zero concurrence, to projected states
in either a separable subspace or an entangled subspace [170]. This can also be seen from the
most likely path analysis, showing the emergence of different most probable paths for each
final state. Moreover, we investigate the distribution of the time-to-maximum-concurrence,
finding that the most probable time to maximum values of concurrence has a bimodal struc-
ture. Studying the statistics of a large set of trajectories - rather than averaging over all of
them to study the dynamics of the ensemble - enables an unprecedented understanding of
the dynamics of entanglement creation under measurement.

This work was originally published in Ref. [188], and also appears in the thesis of Areeya
Chantasri.

6.1 Experimental Generation and Verification of

Entangled Trajectories

The experimental setup for this experiment is quite similar to that in Chapter 5. However,
in this set of experiments we are more interested in the entanglement generation process
than in the remoteness of the measurement; we therefore remove the 1.3 meters of delay
cable and one of the circulators (Figure 6.1). By removing these components, we increase
the signal transmission efficiency ηloss from 0.75 to 0.92, which reduces the measurement-
induced dephasing and allows us to reach higher values of concurrence. We characterize
and calibrate the system as in Section 5.4; the qubit and cavity parameters are tabulated in
Table 6.1.
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Table 6.1: Calibrated system parameters

System Parameters
Qubit 1 Qubit 2

ωq/2π 4.27225 GHz 4.37226 GHz
ωr/2π 7.1871 GHz 7.1988 GHz
κ/2π 19.8 MHz 18.2 MHz
χ/2π −1.015± 0.025 MHz −1.085± 0.035 MHz
T1 27± 4 µs 17± 3 µs
T ∗2 18± 3 µs 14± 2 µs
ηloss 0.92± 0.03
ηmeas 0.22± 0.05
Gchain 12.8± 1.3

6.1.1 Generating quantum trajectories

The pulse sequence used is identical to that shown in Figure 5.9; however, the data collection
and processing required to generate trajectories differs. In order to track the trajectories we
keep the entire instantaneous homodyne detection signal rather than averaging it over t. The
dynamics or the trajectory of the system state can be obtained via the full master equations
[177, 179], using a two-cavity polaron transformation to account for the cavity degree of
freedom, giving the stochastic master equation for the qubit trajectories. This is a similar
procedure to that outlined in Section 4.3. Alternatively, in a limit of large cavity decay
rate κ � |χ|, the qubits evolution can be continuously tracked via the quantum Bayesian
approach [156, 172], inferring the current states of the system from the measurement readouts
and how likely they are to occur.

In this chapter, as in the previous one, we focus on the quantum Bayesian approach, as it
is directly related to the probability distribution of the measurement readout and naturally
leads to the probability distribution of quantum trajectories. Following Section 2.2, let us
denote pij(Vt) as a probability density function of a measurement readout Vt conditioned on
the two-qubit fiducial states |ij〉. Here, we define

Vt ≡ (f/t)

[∫ t

0

Ṽ (t′)dt′
]
− v0 (6.1)

as the scaled, averaged readout signal, where Ṽ (t) is the instantaneous measurement voltage,
and f and v0 are scaling factors enabling us to translate from the raw experimental data to
the theoretical distributions. The quantum Bayesian update for this type of double-qubit
measurement provides a convenient way to calculate the joint state at time t, given a known
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state at the initial time and the integrated signal Vt,

ρij,kl(t) =
ρij,kl(0)

√
pij(Vt)pkl(Vt)e

−γij,klt∑
ρmn,mn(0)pmn(Vt)

, (6.2)

where γij,kl is a generalized decoherence rate associated to the matrix element. The deco-
herence rates combine pure dephasing with measurement-induced dephasing due to ηloss and
ηmeas. The form of γeg,ge is given by Eq. (5.15); we do not explicitly derive the other terms
decay rates, although they have a similar form. Eq. (6.2) is a generalized formulation of Eq.
(5.14) that applies to all density matrix elements. We have neglected T1-type decay.

Given a properly calibrated measurement chain, we can a priori predict the distributions
pij(Vt) using the Bayesian update formulae in Eqs. (5.11) and (5.12); predicting the density
matrix evolution given a measurement record Ṽ (t) is then straightforward. Specifically, the
conditional readout distributions pij(Vt) are well-approximated by Gaussian functions

pij(Vt) = (t/πs)−1/2 exp{− [Vt − Sij]2 t/s} (6.3)

with the signal centroids Sij as defined in Eq. (5.11) and s = 1/2ηmeas. The measurement
process cannot distinguish the two states in the odd-parity subspace, therefore the readout
distributions corresponding to the states |ge〉 and |eg〉 are completely (or nearly) overlapped,
giving Sge ≈ Seg ≈ 0 and −Sgg ≈ See ≡ S. The measurement strength is characterized by
an inverse of a characteristic measurement time τm ≈ 1/S2ηmeas. The dephasing rates γij,kl
for Sij 6= Skl are dominated by the effect of the distinguishability between states |ij〉 and
|kl〉, γij,kl ∼ (η−1

meas − 1)(Sij − Skl)2/4s, resulting in the strong suppression of all off-diagonal
elements except ρge,eg when the system is projected towards the entangled subspace. In
an ideal half-parity measurement, the decay of ρge,eg would be limited only by the intrinsic
lifetimes of the qubits; however, we must additionally account for experimental imperfections
in the matching of Sge and Seg and for the loss of photons between the two cavities. These
effects are included in the (slightly time-dependent) dephasing rate γge,eg.

6.1.2 Validating the quantum trajectories

The previous development allows us to predict, based on a thorough calibration of the ex-
perimental system and a careful collection of the measurement output signal, the continuous
trajectory of a single experimental iteration. However, we would like to experimentally verify
that the actual trajectory of the system matches the Bayesian prediction. In other words, we
would like to experimentally generate a mapping Vt 7→ ρ(Vt) and compare it to the Bayesian
update provided by Eq. (6.2). To do so, we perform a series of experiments very similar to
those described in Chapter 5. We collect a large set of trajectories for which we record only
the integrated signal Vt, not the instantaneous signal Ṽ (t), while varying the integration
time t. Instead of post-selecting an entangled ensemble, however, we collect all experiments
with similar weak measurement outcomesVt±ε at fixed time t, and perform a conditional to-
mographic state reconstruction of those trajectories. This is in principle the same procedure
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Figure 6.2: Comparison of conditional tomography to predicted ρ(Vt) at fixed t = 0.48
µs. Experimentally constructed conditional density matrices are shown using open symbols;
the colored shaded regions denote error bars. The predicted density matrix ρ(Vt) from the
Bayesian formalism is shown by dashed lines.

carried out in Section 5.5; however here, we use pent � 1 and sweep the target Vt over all
values, rather than specializing to the Vt most likely to maximize entanglement. Figure 6.2
shows a comparison between the experimentally constructed ρ and the Bayesian prediction
for all Vt at a single t: we see in fact that there is excellent agreement between the Bayesian
prediction and the experimental trajectory1.

Having verified the Bayesian trajectory at a single measurement time, we can proceed
to reproduce this data for all time, and thus generate a complete experimental mapping
Vt 7→ ρ(Vt). Figure 6.3 which presents full tomographic mappings for the diagonal matrix
elements ρgg,gg, ρge,ge, ρeg,eg, and ρee,ee at all times. We then record a set of trajectories
in which we keep the full instantaneous voltage, and integrate it in post-processing for a
range of t so that we can reconstruct the full continuous trajectories ρ(t) for the individual
experimental realizations. Figure 6.4 shows an exemplar trajectory for a full measurement
time of 1.6 µs. The Bayesian update (shown as solid lines) is performed every 10 ns; due to
hardware limitations, the experimental conditional tomography is updated every 80 ns. The
slightly jagged nature of the Bayesian data is due to finite bin size.

This particular trajectory takes a very interesting path through state space. Early fluctu-

1 It is of some philosophical interest to note that, in constructing the mapping Vt 7→ ρ(t) in this way, we
have explicitly made the Markov approximation. There is no a priori reason to presume that the final state
of the system should depend only on the average signal, and not on the specific path (fluctuations) that led
to that average signal. Indeed, the thousands of trajectories making up the ensemble used to reconstruct ρ(t)
for a given Vt will in general all have unique paths up until t, when their mean signals coincide. Therefore,
in some sense the quantitative agreement seen in Figure 6.2 between theory and data is a confirmation that
the Markov approximation is appropriate in this system
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Figure 6.3: Full experimental mapping Vt 7→ ρ(Vt) for the diagonal density matrix elements.

ations appear to be driving the system toward the joint ground state as ρgg,gg increases; how-
ever, the system then seems to stabilize into the entangled subspace for 0.4 µs < t < 1 µs,
with concurrence C ≈ 0.45. After this, fluctuations again take the system out of the en-
tangled state and toward |gg〉, only to return to the entangled state as the measurement
concludes. We emphasize here that this is the true trajectory of this iteration of the entan-
gling measurements, and that this exciting path represents the predicted and experimentally
confirmed back-action of the fluctuating measurement field on the qubit pair. The excel-
lent agreement between the tomographic reconstructions of the trajectories and theoretical
predictions based on Bayesian updates, even for this complicated trajectory, demonstrates
the validity of Bayesian quantum trajectory theories for cascaded quantum systems. In Ref.
[167], we show equally clean agreement between tomographically reconstructed trajectories
and the full master equation approach laid out in Ref. [179], providing further, more theo-
retically rigorous support for the quantum trajectory approach first developed in Refs. [189,
190].
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Figure 6.4: Comparison of experimentally constructed trajectories to the Bayesian predic-
tion. Experimental data are shown with open signals and shaded error bars; the Bayesian
prediction is shown in solid lines. The inset displays the trajectory of the concurrence as
calculated from the Bayesian formalism.

6.2 Statistical Properties of Concurrence Trajectories

We have now seen that a minimal Bayesian formula well-describes the evolution of a bipartite
quantum system under the influence of an entangling measurement. We would now like to go
a step further: we will use our well-calibrated experimental system to explore the statistical
properties of entangled trajectories. Doing so allows us to peer inside the ensemble dynamics
observed in Chapter 5 and to develop a deeper and more sophisticated understanding of
continuous measurement-induced entanglement.

As we saw in Chapter 3, concurrence is a convenient choice of measure for bipartite
entanglement because can be computed directly from the density matrix of the system [107].
The concurrence formula for the partial-parity setup is greatly simplified because of the
suppression of most matrix elements, so for the theoretical development below we use the
simplified formula. In this section, we will develop a Bayesian prediction of the concurrence
directly from the measurement readout, which then leads to the derivation of the concurrence
probability distribution as a function of the measurement readout and measuring time.

6.2.1 Concurrence-readout relationship

Let us consider the concurrence formula for the odd-parity subspace,

C = 2 max 0, |ρge,eg| −
√
ρgg,ggρee,ee. (6.4)
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We will define the comparator function as

ct = 2

{
|ρge,eg(t)| −

√
ρgg,gg(t)ρee,ee(t)

}
(6.5)

If ct is non-negative, then the concurrence is simply given by C(t) = ct. We will show at
the end of this section that this is always the case for our chosen initial qubit state and
parameter regimes, but is not true in general [170]. From the Bayesian update and the
readout distribution functions in Section 6.1.1, we calculate the quantity,

ct(Vt) =
2

N

{
|ρge,eg(0)|

√
pge(Vt)peg(Vt)e−γ t −

√
ρgg,gg(0)ρee,ee(0) pgg(Vt)pee(Vt)

}
, (6.6)

where γ ≡ γge,eg and N is a normalized factor given by N =
∑

ij ρij,ij(0)pij(Vt). Substituting
the arbitrary probability distribution functions for Gaussian functions with mean Sij and
widths σ(t) we obtain a form of ct(Vt) explicitly as a function of Vt and t,

ct(Vt) =
2

M

{
|ρge,eg(0)|e[αge,egVt−βge,eg−γ]t −

√
ρgg,gg(0)ρee,ee(0)e[αgg,eeVt−βgg,ee]t

}
, (6.7)

where the prefactor is given byM =
∑

ij ρij,ij(0)e2αijVtt−2βijt using a set of defined variables:

αij = Sij/s αij,kl = αij + αkl; (6.8)

βij = S2
ij/2s βij,kl = βij + βkl. (6.9)

Critically, ct(Vt) depends only on the starting state of the system and the integrated mea-
surement voltage, such that we can quantitatively predict the entanglement using only the
inputs already required for the Bayesian update.

The quantity ct(Vt) represents the true concurrence of the joint qubit state if ct ≥ 0 is
satisfied. For our chosen initial state, a product of single qubit x̂-states, ct(Vt) is non-negative
whenever the condition

(γ − αge,egVt + βge,eg) < (βgg,ee − αgg,eeVt) (6.10)

is true. In our experiment, we have−Sgg ≈ See and Sge ≈ Seg ≈ 0, giving αgg,ee, αge,eg, βge,eg ≈
0. For τm = 0.60 µs we have βgg,ee ∼ 3.4 MHz, while γ < 1.7 MHz. With these values,
the condition in Eq. (6.10) is always satisfied. The second term in the bracket of Eq. (6.7)
decays faster than the first term, so that the concurrence is always nonzero. Consequently,
we can define the concurrence-readout relationship C(Vt) = ct(Vt), such that the concurrence
at any time t can be determined directly from the time-average measurement readout Vt.

The concurrence formula in Eq. (6.7) can be simplified further by considering a perfectly
symmetric partial-parity measurement, Sge = Seg = 0 and −Sgg = See = S. Given the initial
state, a product of two qubit x̂-states, the concurrence is then given by,

Csp,x̂(Vt) =
e−γt − e−S2t/s

1 + cosh[2VtSt/s]e−S
2t/s

, (6.11)

where the subscript ‘sp,x̂’ indicates the perfectly symmetric partial-parity measurement given
the specific initial state.
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Figure 6.5: Evolution of ptot(Vt) as integration time increases.

6.2.2 Probability density function for concurrence trajectories

From the direct relationship between the measurement readout and the concurrence of the
qubits state, the probability density function of the concurrence can be derived from the
probability distribution of the measurement signal. The distribution of the time-average
readout is given by a sum of Gaussians,

ptot(Vt) =
∑
ij

ρij,ij(0) pij(Vt). (6.12)

The variance of the distribution σ2 = s/2t narrows as time increases, leading to the collapse
of the joint qubit state into three categories: |gg〉, |ee〉, and some superposition state of |ge〉
and |eg〉 after a few characteristic measurement times τm. The experimental measurement
probability distribution shown in Figure 6.5 slowly resolves into the three peaks expected
for a half-parity measurement, and the resulting concurrence probability density is shown in
Figure 6.6.

Given the distribution of the time-averaged signal, we follow the transformation of ran-
dom variables Vt 7→ C(Vt) using the concurrence-readout relationship. The concurrence is
not a monotonic function in Vt; instead it has a bell-like shape as shown in the inset of Figure
6.6a. We write the cumulative distribution function of the concurrence

F (c, t) = p(C ≤ c, t) = ptot(Vt ≤ V−) + [1− ptot(Vt ≤ V+)], (6.13)

where V+, V− are two solutions that arise from solving Eq. (6.7) for C(Vt) = c. The concur-
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Figure 6.6: Concurrence distribution for the qubits under the partial-parity measurement.
In panel (a), we plot the concurrence probability density function Eq. (6.14) for different
values of time. The values of time for the presented curves are chosen so as to see their
unique features as they develop. The grey dotted curve joining the high-concurrence peaks
shows the concurrence upper bound Eq. (6.15). The inset shows an example of how the
concurrence (at time t = 1 µs) varies as a function of the readout Vt. (b) and (c) are the
histograms of the concurrence at any time points from t = 0 to t = 1.6 µs (with a step size
0.01 µs), comparing theory and experimental data. For the theory plot, we coarse-grain the
distribution pC,t(c) in Eq. (6.14) by integrating it with a pixel size δc ∼ 0.015, which is the
bin size of the experimental histogram. For presentation purposes, a histogram at any time
t is normalized by its maximum element.

rence distribution is then obtained by taking a derivative of the cumulative distribution,

p(c, t) = ptot(V−)

∣∣∣∣∂V−∂c
∣∣∣∣+ ptot(V+)

∣∣∣∣∂V+

∂c

∣∣∣∣, (6.14)

noting that V−(c, t) and V+(c, t) are functions of the concurrence c and time t. The full
solution of p(c, t) is quite lengthy and is not shown.

We show in Figure 6.6a the plots of concurrence probability distributions Eq. (6.14)
for several different values of time t. In Figure 6.6b-c, we show a comparison between
the theoretical p(c, t) and the experimental distribution of concurrence. At an early time,
the distribution of concurrence is narrowly peaked near its maximum which increases over
time, whereas at later times, a second peak emerges near the zero concurrence, showing
a bimodal distribution. In Figure 6.6b, the theoretical histogram for the concurrence is
obtained by integrating the theory curve Eq. (6.14) for the probability over small intervals
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δc ≈ 0.015. This is to make a fair comparison with the histogram of the experimental
data in Figure 6.6c, calculated with a bin size of 0.015. We note that a short delay in the
experimental entanglement creation is a result of the cavity ring-up time.

Examining the probability distributions, we see a number of interesting features. First,
we note that there are two apparent most likely branches of the concurrence trajectories,
one high and one low. This is what we expect given that the qubits may project into an
entangled (high) or an unentangled (low) subspace. However, note that for short times, even
the low-concurrence branch shows increasing entanglement: the two branches increase in
concurrence together before separating into their two paths, which occurs at t � τm. One
might expect that the separation between entangled and unentangled trajectories happens
on average at a time near τm; we see clearly from the concurrence probability distribution
function that in general, that separation happens much more rapidly.

Finally, we see that the concurrence distribution has a sharp upper bound (shown as
a grey dotted curve in Figure 6.6a), which the concurrence cannot exceed. In order to
understand why the probability distribution for the concurrence has a sharp upper cut-off
at any time, we recall that the density matrix of the two-qubit system, conditioned on the
time-integrated readout Vt, is entirely specified by that (random) outcome, together with
the initial state, the dephasing rate, and other parameters of the problem according to Eq.
(6.2). As can be seen from the inset of Figure 6.6a, the concurrence, plotted as a function
of the measured signal Vt, is bounded from above for any fixed time t by some amount we
call Cmax. Because C(Vt) is determined entirely by Vt, a value of concurrence higher than
that maximum (whose value will change as the time increases) cannot physically be realized.
Therefore the probability distribution of concurrence has a sharp upper cut-off given by
Cmax(t). Physically, this indicates that there is an upper limit on how fast entanglement
can be created by the continuous measurement in this situation, even for rare events of the
measurement process.

The value of Cmax evolves based on the interaction between SNR improvement, pure
dephasing and decay, and loss-induced measurement dephasing. For the perfectly symmetric
case in Eq. (6.11), we can find an analytic solution for the upper bound of the concurrence.
Noting that cosh(x) has its minimum at x = 0, Csp,x̂(Vt) must have its maximum at Vt = 0.
Consequently, the concurrence upper bound is given by

Cmax,sp,x̂(t) =
e−γt − e−S2t/s

1 + e−S2t/s
. (6.15)

The behavior of this bound is a result of two competing rates, between the extra dephasing
rate γ and a measurement rate S2/s. Eq. (6.15) increases from zero for small time and
decays for long time after reaching its maximum concurrence as seen in Figure 6.6. The
maximum possible concurrence for this qubit partial-parity measurement and the time this
happens can be obtained from this relation.
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Figure 6.7: Histograms of the time-to-maximum concurrence for individual trajectories for
three measurement strengths indicated by the values of τm. For the two cases with strong
readout powers (shown in red and green histograms), there exists two peaks corresponding
to two most likely times to reach their most entangled states. The theoretical prediction of
these times are shown as vertical dashed lines labelled as A1,2, B, C1,2, D .

6.2.3 Distribution of time to maximum concurrence

In the process of the entanglement generation, there are interesting quantities to investigate
such as the maximum concurrence each individual trajectory can reach, and the time it takes
to reach the highest value. Using a most-likely-path analysis developed in Ref. [188], we
can show that the high- and low- concurrence trajectory branches correspond to projection
onto the odd-parity subspace, and onto the |gg〉 and |ee〉 states respectively. Therefore, one
would expect that there are at least two most likely times for the qubit trajectories to reach
their maximum concurrences (or their most entangled states).

We show in Figure 6.7 the normalized histograms of time for transmon qubit trajectories
to reach their maximum concurrence. The histograms for the τm = 0.36 µs and 0.60 µs mea-
surement cases explicitly show double peaks, which agree with the branching of concurrence
and the most likely qubit paths in Figure 6.6b-c. The times at which these peaks are located
can be theoretically predicted from the time-to-maximum-concurrence of the solutions of the
most likely paths; as shown by the vertical dashed lines in Figure 6.7: A1,2, B are the two
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most likely times to reach maximum concurrence (for low and high concurrence branches,
respectively) for τm = 0.60 µs, and C1,2, D are the same but for the case with τm = 0.36
µs. We note that for the weak measurement regime, τm = 2.10 µs, the bifurcation has not
occurred yet during the measurement time T = 1.6 µs. One would expect to see a branching
effect, when the total measurement time is long enough.

6.3 Conclusion

We have investigated the process of entanglement generation between two spatially sepa-
rated superconducting transmon qubits, and their statistical properties. The entanglement
of the two qubits is created as a result of the partial-parity dispersive measurement, via the
microwave pulses sequentially interacting with both qubits. The strength of the joint mea-
surement is arbitrary and we have studied three different values of the measurement strength.
We examine the concurrence of individual trajectories both as experimentally generated and
as theoretically calculated from the quantum Bayesian approach, gradually projecting the
two-qubit states to entangled states with high concurrence, and to separable states with zero
concurrence. We remind the reader that the Bayesian approach is purely phenomenological:
we trade off an accurate microscopic theoretical model for reduced computational intensity
in comparison to the stochastic master equation approach. It also can be susceptible to
the integration timescale - one must ensure that the data acquisition rate is significantly
faster than the underlying system and measurement dynamics in order to fully capture the
evolution of the system. Therefore, the effectiveness of the Bayesian approach is somewhat
surprising, and remarkable.

Because we can generate arbitrarily many trajectories, we can investigate the statis-
tical properties of the concurrence probability distribution, which immediately shows two
interesting and nontrivial properties: a sharp cutoff above which there are rigorously zero
concurrence trajectories, and an initial transient period, much shorter than the character-
istic measurement time τm, during which all trajectories develop significant concurrence.
Moreover, we have presented the distributions of the time to the maximum concurrence for
individual trajectories, which has clear applications to entanglement optimization. Our abil-
ity to reconstruct the full spectrum of possible concurrences for all times and all measurement
strengths represents an exceptional level of insight into the internal dynamics underlying an
ensemble of states that are entangled by measurement.

We conclude that the accurate tracking of quantum trajectories of a jointly measurement
qubit system is possible, and that the physics of the entanglement creation statistics is
well described by a quantum trajectory theoretical approach, which produces a concurrence
distribution that matches the experiment excellently. Because the Bayesian approach relies
only on a well-calibrated experimental system and the calibration protocols are the same
for an N-qubit system as for a 2-qubit system, we expect the Bayesian protocol to scale
nicely to multiple-qubit systems, enabling continuous trajectory tracking in a multipartite
system. Of course, in order to verify the trajectories, one must still perform a complete
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tomography. The number of measurements required scales in the worst case as 22n − 1 and
presents a well-known barrier to the full characterization of a large quantum system. In
addition, intra-cavity losses create a technological barrier: we expect the Bayesian approach
to perform perfectly well, but the quality of entanglement generated may suffer without
the development of low-loss intra-cavity components [191, 192]. The work described here
represents an important means to use measurement processes as a control mechanism to
entangle remote systems for quantum information processing purposes.
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Chapter 7

Deterministic Entanglement via
Symmetry-Selective Dissipation
Engineering

We have to remember that what we observe is not nature herself,
but nature exposed to our method of questioning.

Werner Heisenberg, Physics and Philosophy, 1958

To this point, we have used dissipation in the form of a measurement to generate entangle-
ment, and to comprehensively study the dynamics of the entangling back action. However,
there is a central limitation to the approach described in Chapters 5 and 6: because we
generate entanglement using a half-parity measurement, the process is probabilistic: at best,
we have a 50% chance to generate entanglement. In this chapter, we develop a dissipa-
tive method to generate entanglement deterministically - that is, without any post-selection
required. Interestingly, this approach relies only on dissipation; as we will see, the very
presence of a dissipative mode is sufficient to generate entanglement, with out any need to
record the instantaneous cavity output or to track qubit state evolution.

In this chapter, we use an approach that is often called quantum bath engineering,
reservoir engineering, or dissipation engineering [58, 59, 194, 195]. Bath engineering explicitly
utilizes the coupling of the qubits to their environment as a resource. By designing the density
of states in a lossy mode and driving that mode unconditionally, we modify the dissipative
environment and dynamically cool to a desired quantum state. We essentially use additional
microwave drives to alter the driven ground state of the system into a non-trivial - in this
case, entangled - quantum state. Bath engineering in superconducting qubits has resulted in
the stabilization of a single qubit on the Bloch sphere [61], a Bell-state of two qubits housed
in the same cavity [63], many-body states [62], and non-classical resonator states [64, 196].
Additionally, theoretical proposals have been put forward for dissipative error correction
[197–199] and ultimately universal quantum computation [200].
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Cavity A
Cavity B

Figure 7.1: To-scale schematic of aperture-coupled cavities, with weakly-coupled input ports
κin
i , strongly-coupled output port κout, and inter-cavity coupling J .

Bath engineering approaches require careful selection of the bath modes, and often many
drives to excite these modes so as to produce a non-trivial ground state. Bath engineering
schemes have typically focused on sculpting a density of states conducive to cooling, relying
on the conservation of energy between drive, qubit, and resonator modes in multi-photon
processes. Here, we harness an additional degree of freedom: the spatial symmetry of the
bath, which mandates conservation of parity. We combine both spectral and symmetry se-
lectivity of the bath to provide a scalable protocol for generating on-demand entanglement
using only a single microwave drive with a controllable spatial profile. As a demonstration of
this scheme, we stabilize two-qubit entangled states in the single-excitation subspace using
two tunable 3D transmon qubits [115] in independent microwave cavities. Our results demon-
strate the viability of this protocol for stabilizing many-body entangled states in extended
arrays.

7.1 Experimental Design and Protocol

The experiments are implemented (Figure 7.1) using two copper waveguide cavities (in-
dexed as A and B) that are aperture-coupled on the transverse (magnetic) axis, with an
independent flux-tunable transmon embedded in each cavity. The cavities are fabricated
with near-identical resonance frequencies ωc

A,B ≡ ωc; the qubits are flux-tuned to resonance
at ωq

A,B ≡ ωq. The full set of qubit and cavity parameters are tabulated in Table 7.1. The

cavities are individually addressable via a weakly-coupled port (κin
i ) through which we apply

qubit pulses and bath drives; cavity A has an additional strongly coupled port for read-
out. A full elaboration of the cavity design, experimental setup and calibration procedure is
provided in Section 7.3.

The unitary dynamics of the system are described by a Hamiltonian that can be subdi-
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vided in the rotating wave approximation into qubit, cavity, and drive components:

Ĥq =
∑
i=A,B

[
ωq

2
σ̂Zi + gi

(
σ̂+
i âi + σ̂−i â

†
i

)]
(7.1a)

Ĥa =
∑
i=A,B

[
ωcâ†i âi

]
+ J

(
âAâ

†
B + â†AâB

)
(7.1b)

Ĥd =
∑
i=A,B

εdi

[
â†ie
−i(ωdt+φi) + âie

i(ωdt+φi)
]

(7.1c)

Here, σ̂Z,±i are Pauli operators on the qubits; â†i are creation operators on the cavity modes;
εdi are Rabi drives applied at a single frequency ωd to the respective cavities with a tunable
phase φi; and gi are the qubit-cavity couplings. Decay mechanisms not accounted for in
these unitary dynamics include qubit energy relaxation (Γ1) and dephasing (Γφ), and cavity
photon leakage (κ).

The effects of the coupling terms gi and J manifest in both the qubit and cavity sectors.
The central cavity resonances hybridize into symmetric and antisymmetric modes, with the
former having a lower frequency (Figure 7.2a). We define these modes as ωc

± ≡ ωc ∓ J . In
the dispersive limit where the qubit-cavity detuning ∆qc

± ≡ ωq−ωc
± is large in comparison to

g, the qubit-cavity coupling creates a photon-mediated XY interaction between the qubits,

lifting the degeneracy in the single-excitation subspace [201]. Defining δ = J
gAgB

∆qc
+ ∆qc

−
, the

coupled eigenstates and eigenenergies are given by the following:

|T+〉 ≡ |ee〉 ω|T+〉 = 2ωq (7.2a)

|S〉 ≡ |ge〉 − |eg〉√
2

ω|S〉 = ωq + δ (7.2b)

|T0〉 ≡
|ge〉+ |eg〉√

2
ω|T0〉 = ωq − δ (7.2c)

|T−〉 ≡ |gg〉 ω|T−〉 = 0 (7.2d)

We can then define full basis states of the system including the cavity modes, as

|i, j, k〉 = |n+〉 ⊗ |n−〉 ⊗ |ψq〉 (7.3)

where n± indexes the Fock state of the respective hybridized cavity modes and |ψq〉 is a
coupled qubit state |ψq〉 ∈ {|S〉 , |T0,±〉}. Figure 7.2b shows the qubit-sector avoided crossing
of width 2δ = 2π × 2.7 MHz, in quantitative agreement with independently-characterized
system parameters.

7.1.1 Entangling protocol

Because the Bell states |S〉 and |T0〉 are eigenstates of the coupled Hamiltonian, it is in
principle possible to coherently pulse to these states. However, because the splitting is



CHAPTER 7. SYMMETRY-SELECTIVE BATH ENGINEERING 96

6.194 6.204
6.19

6.20

6.21

Nominal (GHz)

 (G
H

z)

a b

Frequency (GHz)
6.9 7.1 7.3C

av
ity

 T
ra

ns
m

is
si

on
 (d

B
)

-80

-60

-40

-20

Figure 7.2: Avoided crossings in cavity and qubit sectors. a: Transmission spectrum of
the coupled cavity modes, showing the symmetric (blue) and antisymmetric (red) peaks.
b: Pump-probe spectroscopy of the coupled qubit modes, exhibiting an avoided crossing.
Cavity B is driven at the symmetric cavity resonance conditioned on the qubit state |gg〉,
and cavity A is driven at a swept frequency ωR. A dip in transmission (blue) indicates that
ωR is resonant with a qubit mode. The dashed line is a fit of the spectral data, from which
we extract δ.

small, a coherent pulse with narrow enough bandwidth to drive selectively to one of these
states would need to be several microseconds long, and therefore would be spoiled by qubit
decay. Bath engineering, which stabilizes against this decay, provides an alternative means
of entanglement in this system.

We aim to stabilize the entangled state of choice (|S〉 or |T0〉) by taking advantage of
the distinct symmetries of the bath modes at ωc

+ and ωc
−. We do this by simultaneously

applying a two-photon drive at the individual cavity ports while varying the relative phase
between the cavities (Figure 7.3). This work represents a generalization to arbitrary drive
phase of the proposal in [201]; a full theoretical treatment (including dynamics) is presented
in Section 7.2

Our cooling protocol relies on transitions between the neighboring n± = {0, 1} rungs of
the Jaynes-Cummings ladder. The appropriate drive frequencies are given by

ωd
|T0〉(±) = 1

2

{
ωc
± + [ω̃q + 2χ±]− δ

}
ωd
|S〉(±) = 1

2

{
ωc
± + [ω̃q + 2χ±] + δ

} (7.4)

where χ± is a cross-Kerr term leading to a n±-dependent shift in the effective qubit frequency,
and ω̃q represents the dressed qubit frequency, which has a power-dependent red shift due
to the off-resonant displacement of the cavity field by the drive. Because the qubit-cavity
couplings gi differ, the qubit frequencies shift by different amounts when exposed to the
same intra-cavity field. To correct for this, we place the bare qubit frequencies slightly off
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Figure 7.3: Protocol for cooling to |0, 0, T0〉 via ωc
− (left) and ωc

+ (right). Each set of levels
outlined in grey represents a rung on the Jaynes-Cummings ladder; the states |ψq〉 are the
coupled qubit states. The illustrated drives (arrows) represent ωd

|T0〉(±) from Equation 7.4.
Parity conservation requires that if cooling via ωc

+, the drive must be overall symmetric
(indicated by blue lines), with φ = {0, π}; if cooling via ωc

−, the drive must comprise one
antisymmetric (red) photon for each symmetric photon. If this condition is met, leakage of
cavity photons (purple, κ) brings the system to the entangled state |0, 0, T0〉. Leakage from
the entangled state is dominated by qubit decay (green, Γ1).

of resonance such that the dressed qubit frequencies ω̃q
i are identical. This adjustment is

power-dependent, but is on the order of 1 MHz.
When a microwave drive is applied at one of these frequencies, a two-photon transi-

tion is created between the un-driven ground state |0, 0, T−〉 and the resonant partner state
|ψ〉 ∈ {|1, 0, S〉 , |1, 0, T0〉 , |0, 1, S〉 , |0, 1, T0〉}. However, when n± > 0 the cavities decay
stochastically and irreversibly at a rate κ± to |0, 0, T0〉 or |0, 0, S〉; this is the critical dissipa-
tive element in the protocol. There are no transitions from this state that are resonant with
the drive. In the case of a T1 decay, the drive rapidly repumps the qubits, thus creating a
stabilized entangled state. A weak off-resonant pumping into |T+〉, which is depleted by T1

rather than by active cooling, sets an upper limit on the cooling rate.
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7.1.2 Symmetry-selectivity of protocol

Until now we have only described the frequency of the bath drive; we have said nothing
about its symmetric properties. Because we can drive the two cavities individually, we are
able to continuously tune phase relationship between the drive at Cavity A and that at
Cavity B, φ ≡ φB − φA. The phase-dependent properties of the bath engineering protocol
can be understood as a parity selection rule that is dynamically generated by altering the
drive profile across the cavities. The starting permutation-exchange parity is comprised of
the initial qubit state (|T−〉, a symmetric state) and the two photons used to generate the
drive (which vary from symmetric to antisymmetric with φ); the output parity is comprised
of the qubit state symmetry and the dissipated photon. Conservation of parity requires that
the net parity of the output state respect that of the input state - remembering that the
net exchange symmetry of two antisymmetric components is overall even. By varying the
relative phase of the drives, we vary the input symmetry and therefore control the parity
selection rules. We therefore expect special symmetry points to exist at φ = 0, φ = π, and
φ = π ± π/2, the first two of which represent exchange-symmetric drives, and the final of
which are exchange-antisymmetric drives. We will derive this rigorously in Section 7.2.

7.2 Theoretical Treatment of the Bath Drives

In this section, we will provide a thorough theoretical treatment of the coupled cavity system
that we study here. We will show the following:

• A coupling Hamiltonian that leads to a degeneracy lifting in both the qubit and cavity
sectors;

• A rigorous derivation of the two-photon drive used to generate transitions into the
entangled state of our choosing;

• The origin of the parity selection rules discussed above, which fall naturally out of the
drive dynamics.

Our experimental setup can be modeled by a pair of two identical two-level systems
housed in two identical single-mode optical cavities which can exchange photons via coherent
tunneling. Both cavities are driven out of equilibrium by two coherent microwave drives with
same frequency ωd detuned from the cavity frequency. In the frame rotating at ωd, after
a rotating-wave approximation (i.e. neglecting counter-rotating terms), the setup is well
described by the following Hamiltonian [201]:

Ĥ = Ĥq + Ĥq,a + Ĥa , (7.5)



CHAPTER 7. SYMMETRY-SELECTIVE BATH ENGINEERING 99

with Ĥq, Ĥq,a, and Ĥa respectively being the qubit, the light-matter coupling, and the photon
Hamiltonians given by (we set ~ = 1)

Ĥq =
∑
i

(ωq − ωd)
σ̂Zi
2

; (7.6a)

Ĥq,a =
∑
i

gi

[
â†i σ̂

−
i + âiσ̂

+
i

]
; (7.6b)

Ĥa =
∑
i

[
(ωc − ωd)â†i âi + εd(â†ie

iφi + h.c.)
]
− J(â†AâB + a†BâA). (7.6c)

This is identical to the Hamiltonian in Eq. (7.1) in the rotating frame, regrouped for con-
venience here. The two-level systems are represented by Pauli matrices obeying [σ̂ai , σ̂

b
j ] =

2iδijεabcσ̂
c
i where the indices a, b, c ∈ {X, Y, Z}, the cavity indices i, j = A,B and σ̂±i ≡

(σ̂Xi ± iσ̂Y )/2. All parameters are as defined in Section 7.1; given that physics only depends
on the relative phase difference, we shall henceforth work with φ ≡ φB − φA.

Let us neglect the light-matter coupling for a moment. On the qubit side, the eigenstates
and eigenenergies of Ĥq in the rotating frame are given by the triplet and singlet states:

|T+〉 ≡ |ee〉 , E|T+〉 = ∆qd ,

|S〉 ≡ [|ge〉 − |eg〉] /
√

2 , E|S〉 = 0 ,

|T0〉 ≡ [|ge〉+ |eg〉] /
√

2 , E|T0〉 = 0 ,
|T−〉 ≡ |gg〉 , E|T−〉 = −∆qd ,

(7.7)

where ∆qd ≡ ωq−ωd is the detuning between the qubits and the drive. On the photonic side,
the two coupled cavities being identical, the eigenmodes of the undriven photonic backbone
are naturally symmetric and antisymmetric excitations with the creation operators

Â† ≡ â†A + â†B√
2

and â† ≡ â†A − â
†
B√

2
,

respectively. In this basis, Ĥa reads

Ĥa = ∆cd
+ Â

†Â+ ∆cd
− â
†â+

√
2εd[Â† cos (φ/2)− iâ† sin (φ/2)] + h.c. , (7.8)

with ∆cd
± ≡ ωc

± − ωd.
We will include the total photon leakage outside the cavities with a rate κ+ for the sym-

metric mode and κ− for the antisymmetric mode. The density of states for the antisymmetric
and symmetric modes are ρ±(ω) = −Im GR

±(ω)/π where the retarded Green’s function are
given by, in the rotating frame, GR

±(ω) = 1/[ω −∆cd
± + iκ±/2]. We also include qubit decay

and pure dephasing rates, Γ1 and Γϕ respectively. These dissipative processes will play a
paramount role in the cooling scheme and protocol.



CHAPTER 7. SYMMETRY-SELECTIVE BATH ENGINEERING 100

7.2.1 Dynamics

Altogether, the driven-dissipative dynamics of the entire system (qubits and photons) is well
described by the following Master equation on the density matrix ρ:

ρ̇ =− i[Ĥ, ρ]

+ κ+D
[
Â
]
ρ+ κ−D [â] ρ

+ Γ1,AD
[
σ̂−A
]
ρ+ Γ1,BD

[
σ̂−B
]
ρ

+
Γϕ,A

2
D
[
σ̂ZA
]
ρ+

Γϕ,B
2
D
[
σ̂ZB
]
ρ,

(7.9)

where the Lindblad dissipators are defined as in Chapter 2. This SME includes photon leak-
age from the two cavity modes at generally non-equal rates; individual qubit decay; and effec-
tive qubit dephasing rates. Eq. (7.9) can be solved numerically and ρ(t) rigorously accessed
at all times, so in principle writing down the SME provides the final story. In particular,
the knowledge of the non-equilibrium steady-state (NESS) density matrix ρNESS = lim

t→∞
ρ(t)

allows us to compute the fidelities of interest. However, the implications of the SME for
the dynamics in the qubit sector are not transparent, and we would like to do a more thor-
ough analytical development in order to predict the behavior of the system more intuitively.
The results obtained from full numerical computations agree with the experimental results
and are also a way to check the validity of the different layers of approximations that are
performed in the analytic approach developed below.

7.2.2 Effective driven-dissipative XY model

We now present an analytic approach to compute the steady-state fidelities for the qubit
subsystem. In a nutshell, it consists of eliminating the explicit time-dependence of the
problem by means of a rotating-wave approximation; treating the light-matter interaction
by second-order perturbation theory; linearizing the photonic degrees of freedom around
mean-field solutions; and integrating out the remaining photon-fluctuations by means of
a Master-equation approach. The result is a set of rate equations that characterize the
population of the qubit eigenstates, directly in the steady state, by-passing the transient
dynamics. The expressions for these rates make transparent the cooling protocol described
in Section 7.1.1 and also allow to quantify the expected fidelity of this protocol.

For clarity and relative ease of calculation our approach is presented for a setup without
asymmetry in the parameter values, i.e.

gA = gB = g,

Γ1,A = Γ1,B = Γ1,

Γϕ,A = Γϕ,A = Γϕ.
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Furthermore, the experimental energy scales correspond to the following hierarchies:

∆qc � g,

J � κ± � Γ1 � Γϕ.

In order to make the calculation more transparent, we have made the additional approxima-
tion ωc

+ = ωc
− such that ∆qc

+ = ∆qc
− ≡ ∆qc. This is justified when ∆qc

± � J , which is not a
particularly good approximation for our system (as we will see). However, this approxima-
tion does not qualitatively impact the features of the experiment, and it is straightforward
to describe the effects of this approximation not holding well. We will do so throughout this
section.

The non-linear light-matter coupling in Ĥq,a can be eliminated by means of a second-
order perturbation theory in g/∆qc using methods similar to the dispersive approximation
derived in Section 4.2.3. In the coupled-cavity case, the good unitary transformation is given
by eĉ where

ĉ =
g√
2

[
Â
(
σ̂+
A + σ̂+

B

)
∆qc

+

+
â
(
σ̂+
A − σ̂

+
B

)
∆qc
−

+ h.c

]
(7.10)

Carrying through the transformation reveals a photon-mediated interaction between the
qubits, providing an experimental realization of a two-site transverse-field XY model, as
in Eq. (7.2). We furthermore decompose the photon fields into mean fields plus bosonic
fluctuations: Â ≡ Ā+ D̂, â ≡ ā+ d̂, N̄+ ≡ |Ā|2 and N− ≡ |ā|2 where, to the lowest order in
the light-matter coupling,

Ā '
√

2 εd cos(φ/2)

−∆cd
+ + iκ+/2

and ā ' −i
√

2 εd sin(φ/2)

−∆cd
− + iκ−/2

. (7.11)

We neglect the resulting quadratic terms in the fluctuations which couple to the qubits, e.g.
(g/∆qc)2D̂†D̂σ̂Zi [61]. Notice that for fixed drive amplitude εd at relevant drive frequencies
ωd < ωc

±, the intra-cavity field is larger at the symmetric mode because the detuning is
smaller. As a result, the value of φ at which N+ = N− is not generically equal to π ± π/2.
Rather, it is given by

tan(φ/2) = ±∆cd
− /∆

cd
+ . (7.12)

This is one of the places in which the failure of the approximation ωc
+ = ωc

− has an impact.
To maintain consistency with Schrieffer-Wolff perturbation theory we make sure to work

in regimes where the photon fluctuations are relatively small [202]. Altogether, this yields
the following Hamiltonian

H̃ = H̃q + H̃q,d + H̃d , (7.13)

with

H̃q =
∑
i

h · σi
2
− 1

2
J
( g

∆qc

)2

[σ̂XA σ̂
X
B + σ̂YA σ̂

Y
B ] , (7.14)
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where

hxA = 2
g

∆qc
εd cos(φ/2) , hyA = −2

g

∆qc
εd sin(φ/2) , (7.15)

hxB = 2
g

∆qc
εd cos(φ/2) , hyB = 2

g

∆qc
εd sin(φ/2) , (7.16)

hzA,B = ∆̃qd , (7.17)

∆̃qd ≡ ∆qd + ∆qc (g/∆qc)2
[
1 + 2

(
εd/∆cd

)2 (
1 + ∆cd/∆qc

)]
. (7.18)

Equation 7.18 is a formulation of the ac-Stark shift on the qubits due to the presence of
the drive, such that ∆̃qd represents the detuning between the drive tone and the Stark-shifted
qubit frequency ω̃d. Under the approximation that ∆cd

+ ≈ ∆cd
− it is independent of phase;

experimentally it has a slight phase dependence. Thus, we have derived and quantified the
effective XY coupling between the qubits that is mediated by the coupling between the
cavities.

The eigenstates of H̃σ are, to first order in g/∆qc,∣∣∣T̃+

〉
= |T+〉+

√
2

gεd

∆̃qd∆qc
[cos(φ/2) |T0〉 − i sin(φ/2) |S〉] ,∣∣∣S̃〉 = |S〉 −

√
2i

gεd

∆̃qd∆qc
sin(φ/2) [|T+〉 − |T−〉] ,∣∣∣T̃0

〉
= |T0〉 −

√
2

gεd

∆̃qd∆qc
cos(φ/2) [|T+〉 − |T−〉] ,∣∣∣T̃−〉 = |T−〉 −

√
2

gεd

∆̃qd∆qc
[cos(φ/2) |T0〉 − i sin(φ/2) |S〉] .

(7.19)

The corresponding eigenenergies of H̃q are

E
T̃+
' ∆̃qd + 2(n+χ+ + n−χ−)

E
S̃
' δ ,

E
T̃0
' −δ ,

E
T̃−
' −∆̃qd − 2(n+χ+ + n−χ−),

(7.20)

where δ ≡ J(g/∆qc)2 and n± is the Fock state of the relevant coupled cavity mode. The
degeneracy between |S〉 and |T0〉 has been lifted by the effective photon-mediated qubit-qubit
interaction. The photon fluctuations on top of the coherent mean-field part are governed by
the quadratic Hamiltonian

H̃d = ∆cd
+ D̂

†D̂ + ∆cd
− d̂
†d̂. (7.21)

We shall assume that these non-interacting degrees of freedom equilibrate with the outside
environment at zero temperature. Furthermore, these photon fluctuations couple to the
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qubits via

˜̂
Hq,d =

1√
2

( g

∆qc

)2

εd

{(
∆qc/∆cd

+ + 1/2
) [

cos (φ/2) (σ̂ZA + σ̂ZB) − i sin (φ/2) (σ̂ZA − σ̂ZB)
]
D̂†

+
(
∆qc/∆cd

− + 1/2
) [

cos (φ/2) (σ̂ZA − σ̂ZB) − i sin (φ/2) (σ̂ZA + σ̂ZB)
]
d̂†

}
+ h.c.

(7.22)

which induces transitions between the eigenstates of H̃q.

We integrate the photon-fluctuation degrees of freedom by treating H̃q,d as a perturbation

to H̃q and we derive the dynamics of the reduced density matrix of the qubit sector, ρq.
Under standard assumptions, we obtain the following non-equilibrium steady-state Master
equation [201]

∂tρ
NESS
q = 0 =− i

∑
k

Ek
[
|k〉〈k| , ρNESS

q

]
+
∑
kl

Γk→lD [|k〉〈l|] ρNESS
q , (7.23)

where k and l span the eigenstates of H̃q.
The Γk→l’s are steady-state transition rates between the qubit eigenstates. They read

Γk→l = Γbk→l + Γdk→l with

Γb=

 − Γ1 Γ1 0
0 − Γφ Γ1

0 Γφ − Γ1

0 0 0 −

 (7.24)

originating from the qubit decay and pure dephasing processes, and with the non-equilibrium
drive part given by

Γdk→l = 2π|Λ+
kl|

2 ρ+(Ek − El + ωd) + 2π|Λ−kl|
2 ρ−(Ek − El + ωd) , (7.25)

where

Λ+ = λ+

 − α β 0
α − sin(φ/2) α
β sin(φ/2) − β
0 α β −

 , Λ− = λ−

 − β α 0
β − cos(φ/2) β
α cos(φ/2) − α
0 β α −

 ,(7.26)

in which
λ± ≡

√
2 (g/∆qc)2 εd

(
1/2 + ∆qc/∆cd

±
)

;

α ≡
√

2 (g/∆qc) (εd/∆̃qd) cosφ ;

β ≡
√

2 (g/∆qc) (εd/∆̃qd) sinφ .

(7.27)
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Recall that ρ±(ω) here are the density of states of the bath modes. Matrix rows (columns)

are ordered according to |T̃−〉, |T̃0〉, |S̃〉, and |T̃+〉 from left to right (top to bottom). Note
that in equilibrium, i.e. εd = 0, one has Γdk→l = 0.

One can re-write the SME (7.23) as the rate equations governing the population of each

of the eigenstates |k〉 of H̃q, nk ≡ 〈k|ρq|k〉:

dnNESS
k

dt
= 0 =

∑
l

nNESS
l Γl→k − nNESS

k Γk→l , (7.28)

which in conjugation with the conservation law
∑

k nk = 1, provides a direct access to the
non-equilibrium steady-state fidelities, by-passing the transient dynamics.

7.2.3 Protocol for generating entanglement

By judiciously tuning the drive frequency amplitude εd, frequency ωd, and phase φ, one can
drive the qubit subsystem to one of the maximally entangled eigen-states. We will discuss the

protocol to achieve convergence to the singlet state, ρNESS
q ≈

∣∣∣S̃〉〈S̃∣∣∣ and compute its fidelity

nNESS
S̃

≡
〈
S̃
∣∣∣ρNESS
q

∣∣∣S̃〉. The extension to cooling to the triplet state is straightforward.

By selecting ωd such that ωd = ωc
−+ES̃ −ET̃− , i.e. ωd

|S〉(−) ≈ 1
2

[
ωc
− + ω̃q + 2χ+ δ

]
, the

ρ− term in the expression of Γd
T̃−→S̃

given in Eq. (7.25) is maximized to 2/(πκ−). Therefore,

we have a maximal pumping rate

Γd
T̃−→S̃

≈ 400
( g

∆qc

)6
∣∣εd∣∣4

(∆qc)2

cos2(φ)

κ−
. (7.29)

The mechanism associated with this rate corresponds to a two-photon process in which the
incoming energy is used to add a photon in the antisymmetric cavity mode and simultane-

ously perform a qubit transition from
∣∣∣T̃−〉 to

∣∣∣S̃〉 (Stokes scattering). Note that the phase

at which Γd
T̃−→S̃

goes to zero when cooling via the antisymmetric cavity mode is exactly

equal to π/2 in this derivation because we have approximated ∆cd
+ ≈ ∆cd

− . Experimentally,
when this equality does not hold, the phase at which the transition rate goes to zero is given
by Equation 7.12.

By selecting ωd such that ωd = ωc
+ +ES̃−ET̃− , i.e. ωd

|S〉(+) ≈ 1
2

[
ωc

+ + ω̃q + 2χ+ δ
]
, it is

the ρ+ term in the expression of Γd
T̃−→S̃

given in Eq. (7.25) which is maximized. Therefore,

the pumping rate is given by,

Γd
T̃−→S̃

≈ 400
( g

∆qc

)6
∣∣εd∣∣4

(∆qc)2

sin2(φ)

κ+

. (7.30)

Here, it is the symmetric-cavity mode which is used in the Stokes scattering process. Noting
that this transition rate goes to zero at φ = 0 and at φ = π.
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In both cases, if the condition Γd
T̃−→S̃

� Γd
S̃→T̃−

= Γ1 is met, this facilitates a rapid pump-

ing from the ground state
∣∣∣T̃−〉 to the singlet state

∣∣∣S̃〉 via Stokes (red-shifted) scattering.

One must also avoid off-resonant pumping from
∣∣∣S̃〉 to the

∣∣∣T̃+

〉
state, labeled as Γd

S̃→T̃+

here. Altogether, the cooling to the singlet state is achieved with high fidelity whenever the
hierarchy

Γd
S̃→T̃+

� Γ1 � Γd
T̃−→S̃

(7.31)

is obeyed where the off-resonant rate from S̃ to T̃+ is given by

Γd
T̃−→S̃

≈ 25(g/∆qc)2(
∣∣εd∣∣2/∆qcJ)2κ− cos2(φ) (7.32)

or
Γd
T̃−→S̃

≈ 25(g/∆qc)2(|εd|2/∆qcJ)2κ+ sin2(φ) (7.33)

depending whether the antisymmetric or the symmetric cavity mode is used. The condition
(7.31) transparently elucidates that the fidelity is the result of a delicate interplay between
drive, cavity decay, qubit dissipation and light-matter coupling. In particular, εd enters both
sides of the inequality above, and thus, large fidelity is obtained in a finite window of the
drive strength εd.

In regimes where all the off-resonant rates ares strongly suppressed compared to the other

rates involved, i.e. Γdk→l ≈ 0 except from
∣∣∣T̃−〉 to

∣∣∣S̃〉, the steady-state population of the

singlet state can be approximated to

nNESS
S̃

=
〈
S̃
∣∣∣ρNESS
q

∣∣∣S̃〉 ≈ 1

1 + 2Γφ/Γ1

1 + Γφ/Γ1

1 + Γ1/ΓdT̃−→S̃
. (7.34)

Therefore, if the hierarchy given in Eq. (7.31) is satisfied, the maximum steady-state fidelity
to cooling to the singlet state simply reads

nmax
S̃
≈ 1

1 + 2Γφ/Γ1

. (7.35)

This result clearly highlights that, in contrast to the the dephasing rate Γφ which is detri-
mental to the protocol, the dissipative qubit decay process is instrumental in achieving large
fidelities.

In this section, we have seen that the coupled cavity Hamiltonian that we realize here gives
rise to natural exchange symmetries in the dissipation mechanisms. We can purposefully
harness these symmetries order to turn a given entangled state into a symmetry-protected
state under the bath drive, or conversely, in order to suppress the state. We have rigorously
derived the drive dynamics using a master equation approach, and have examined the steady-
state populations in order to provide an estimate for the degree of entanglement we expect
to produce under a detailed balance picture. The expected entangled state populations can
be quite large, if the rates are well tuned: we can hope to generate significant entanglement
using this protocol.
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Table 7.1: Calibrated experimental parameters

ωc
+/2π 6.9524 GHz
ωc
−/2π 7.2310 GHz
ωq/2π 6.2000 GHz
κ+/2π 650 kHz
κ−/2π 820 kHz
αA/2π -210 MHz
αB/2π -210 MHz
J/2π 139.3 MHz
gA/2π 89 MHz
gB/2π 98 MHz
T1,A 4 µs
T1,B 7.2 µs
T2,A 2.6 µs
T2,B 3 µs

7.3 Full Experimental Calibration

As always, a full calibration of the experimental setup is critical for understanding and pre-
dicting the behavior of quantum system under the presence of the bath drives described
above. Here, we provide a full accounting of the experimental system design and char-
acterization methodologies. The full set of relevant qubit and cavity parameters include
the coupled cavity mode frequencies (ωc

±); the cavity-cavity coupling (J); the qubit anhar-
monicities (αi); the qubit-cavity couplings (gi); the symmetric and antisymmetric cavity
linewidths (κ±); and the qubit lifetimes (T1,i) and dephasing times (Tφ,i). These parameters
are tabulated in Table 7.1.

7.3.1 Detailed Experimental Setup

There are three principal drives used in this experiment (Figure 7.4), generated by APSIN
and Agilent microwave generators. The readout drive (purple block) is mixed at DC with
readout pulses generated by a marker output of a Tektronix AWG520 two-channel arbitrary
waveform generator (AWG); amplified to achieve sufficient power for high-power single-
shot readout [135]; gated by a fast switch to avoid excessive qubit dephasing from readout
leakage; and sent through a LabBrick digital attenuator for fine-tuning of readout amplitude.
The readout is combined with qubit and cooling drive pulses that are input at cavity B.
Additionally, half of the generator output signal serves as the local oscillator (LO) for an IQ
demodulator for homodyne detection of the readout signal.

The qubit drives are generated by a microwave source at 6.075 GHz. This drive serves
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Figure 7.4: Experimental setup. Not shown is an SRS DG535 Digital Delay Generator, which
is responsible for triggering the AWG (which generates qubit rotations and gated readout
pulses), the cooling drive generator, and the Alazar digital acquisition card.
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as the LO for two single-sideband modulators (SSBs) optimized for upper sideband signal
output. The two channel outputs of the AWG generate qubit rotation pulses at 125 MHz,
with X- and Y - rotations defined by the relative starting phases of the pulses; these are
mixed up to 6.2 GHz, the operating frequency of the qubits. Since the qubits are resonant,
the difference in path length between the generator and the two cavity inputs is important;
we describe the calibration of this angle in the next section. Qubit pulse amplitudes are
calibrated via the AWG.

The cooling drive is split in two: the tone that is sent to cavity A passes through a digital
attenuator for amplitude balance, and the drive en route to cavity B passes through a digital
phase shifter to enable facile manipulation of the symmetry of the drives.

The timing of the experiment is controlled by an SRS DG535 digital delay generator (not
shown). the DG535 serves three purposes: it gates the cooling drive generator, setting the
start and length of the cooling operation; it triggers the AWG to perform qubit rotations
and readout; and it triggers the Alazar digital acquisition card to accept input data.

The qubit, cavity, and cooling drives are thermalized to base by 20-, 10-, and 20- dB
attenuators thermalized to the 4 K, 1 K, and 30 mK stages of a closed-cycle He-3 dilution
refrigerator. At base, they are further filtered for stray infrared (IR) by homemade lossy
Eccosorb filters, and input into a secondary copper containment canister containing the cou-
pled cavity system. This can is indium-sealed and coated with further IR-absorbing material.
The coupled-cavity output passes through three cryogenic isolators and a commercial K&L
low-pass filter at base. It is then amplified by a Low Noise Factory HEMT at 4 K and by
two room-temperature amplifiers before being demodulated and digitized.

7.3.2 Coupling of the cavities

The cavities are designed with dimensions of 1.20” x 0.20” x 1.00”, with the long axis
terminated cylindrically at both ends with a diameter of 0.20 inches (see Figure 7.1). HFSS
modal analysis predicts these cavities to have a TE101 mode at 7.2 GHz in the absence of
a qubit chip. The measured resonator frequency in the presence of a qubit chip is 7.114
GHz at base temperature; the silicon chip lowers the cavity frequency due to the silicon
dielectric. The two cavities are machined in HOFC copper and are coupled by an aperture
on the transverse axis of width 0.04” and height 0.52”. HFSS modeling again predicts that
this aperture will couple the two cavity modes with a splitting 2J = 290 MHz, where the
magnitude of J is highly sensitive to the machining tolerances of the cavity. This compares
well to 2J = 280 MHz that we measure experimentally.

Since we cannot separate the cavities to directly measure their bare frequencies, we
manually fine-tune the cavity frequencies by referring to the avoided crossing between them,

which results in two coupled cavity modes at ωc
± = 1

2
(ωc

A + ωc
B)∓ 1

2

√
(ωc

A − ωc
B)2 + 4J2. The

splitting between the two modes is minimized when the cavities are exactly on resonance
(ωc

A = ωc
B). By slightly adjusting the positions of the qubit chips and employing standard S21

transmission measurements to find the coupled cavity modes, we minimize this splitting and
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thus tune the cavities to resonance. These fine adjustments are on the order of millimeters,
and correct for minor inhomogeneities in machining as well as for chip size mismatch. The
coupling of the cavities shifts the spatial mode structure of the symmetric and antisymmetric
modes, leading to unequal photon decay rates κ± via the strongly-coupled output port. We
calibrate ωc

± and κ± via a standard transmission measurement, as shown in Figure 7.2.

7.3.3 Qubit parameters

The qubit-cavity couplings gi are calibrated by measuring the cross-Kerr nonlinearity of the
antisymmetric mode (χ−) as a function of qubit-cavity detuning. Unlike in Chapter 5, the
ratio |χ|/κ is quite large, so the χ-calibration method described in Section 5.4 cannot be used.
Instead, we calibrate χ by performing two-tone qubit spectroscopy (as in Figure 7.2b) at a
slightly higher readout power, such that the photon number occupation of the measurement
mode (ωc

−, in this instance) is equal to n ≈ 0.5. The experiments are performed in the
photon number-resolved limit (χ > κ, 1/T2), such that we can resolve two spectral lines at
ωq|n−=0 and ωq|n−=1, which are split by 2χ−. The splitting χ− is related to g by

χ− =
α

(∆qc
− + α)

g2

∆qc
−
. (7.36)

Here, α is the transmon nonlinearity. We sweep the bias coils that independently govern
the qubit frequencies and plot |2χ−| as a function of |∆qc

− | for both qubits independently.
Fitting to Equation 7.36 provides the fit shown in Figure 7.5(c-d) and tabulated in Table
7.1. We extract a fit for both χ− and for α; the fits for α are consistent with independent
calibrations accomplished by high-power two-tone spectroscopy that drives the two-photon
|g〉 → |f〉 transition. Note that we can also independently calibrate χ+, the cross-Kerr
coupling to the symmetric cavity mode, and from it extract gi and αi; we do not show
these fits here, but they are quantitatively consistent with {gA, gB} as extracted from the
χ− calibration.

The bare (uncoupled) qubit coherence times T1, T2 are calibrated via standard T1 and
Ramsey measurement protocols. These measurements are performed for each qubit at the
operating frequency of 6.2 GHz, while the qubit not under test is detuned by 50 MHz and
is therefore unaffected by qubit excitation pulses at 6.2 GHz. This detuning is additionally
important because when the qubits are on resonance, an excitation in Qubit A will begin
to oscillate coherently into Qubit B; we would like to avoid these oscillations in order to
characterize the bare qubit parameters. The Purcell limit is set by the photonic density of
states at the individual qubit positions, summed over all the normal modes of the system.
The qubits couple most strongly to the symmetric and antisymmetric combinations of the
TE101 modes, but the higher-order modes also participate. The total Purcell decay limit
on T1 considering only the lowest two modes is approximately 8-10 µs (although we note
that the 3D multimode Purcell effect typically reduces Purcell decay when the qubits are
red-detuned from the fundamental cavity mode due to interference between the modes).
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Figure 7.5: Calibration of the qubit-cavity couplings gi. We sweep the qubit frequency and
measure the cross-Kerr nonlinearity of the antisymmetric cavty mode (χ−) as a function of
qubit-cavity detuning for qubit A (panels a, c) and B (panels b, d). This provides a fit of gi
as per Equation 7.36. The outlier points in Panel d result from an avoided crossing as qubit
B tunes through qubit A.
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The coherence times we achieve are shorter than state-of-the-art 3D transmons, although
T1 is near the single-mode Purcell limit. However, note that T1 is built as a feature into
our cooling protocol, as it depopulates unwanted qubit states, and Tφ, the pure dephasing

rate that can be extracted from
1

T2

=
1

Tφ
+

1

2T1

, is lengthened by a factor of 10 or more by

the lifting of the degeneracy between the |S〉 and |T0〉 states when the qubits are tuned to
resonance, as we will see in Section 7.4. Lifting this degeneracy implies that the noise that
couples these two states is no longer at DC, but is in fact the noise at ω = 2δ. This effect
provides protection from low-frequency noise, and results in an increased effective phase
coherence between |S〉 and |T0〉.

7.3.4 Path length calibration

Because the qubits are tuned to degeneracy, the qubit pulses are performed in the same
rotating frame. It is critical to properly calibrate the path length difference between pulses
arriving at cavities A and B in order to ensure that pulses are performed along common X-
and Y-axes. In principle, we can use our knowledge that the higher-energy state to which
we cool using our bath engineering scheme is the |S〉 state, but we also must independently
verify this hypothesis.

We follow the methods in the supplementary material of Ref. [26]: noting that the XY

Hamiltonian drives oscillations between |ge〉 and i |eg〉, we perform a R
π/2
X rotation on qubit

A, along with a R
π/2
θ rotation about an arbitrary axis on qubit B, and then allow the coupled

qubit state to freely evolve, performing tomographic reconstructions along the way in order
to resolve the joint density matrix ρ(θ, t). When θ = π/2 (that is, when we perform a qubit
B rotation about the true y-axis), the oscillation amplitudes between ρge,ge and ρeg,eg (that
is, the qubit populations in |ge〉 and |eg〉, respectively) are maximized, and oscillations are
minimized at θ = {0, π}. We perform a first Rabi oscillation measurement at arbitrary θ; we
then fix the Rabi oscillation time to a maximum of ρge,ge and sweep θ. We add a constant
phase offset to the qubit rotation pulses applied to qubit B such that the oscillations are
suppressed at θ = {0, π} (Figure 7.6).

7.3.5 Balancing the cooling drive amplitudes

Achieving symmetry-selective bath engineering in our experimental setup requires a careful
calibration of the relative drive amplitudes inside the two cavities, such that the two-photon
coherent driving rate is the same for both qubits. If the cavity input amplitudes are not
properly balanced, then even when the phases are properly aligned (say, fully symmetrically),
the excess drive in one of the cavities means that the decomposition of the total drive
into symmetric and antisymmetric drives will have a nonzero amplitude in the undesired
component (antisymmetric, in this case). This reduces the symmetry selectivity, so balancing
the cavity amplitudes is critical. Quantitatively, this condition is met if g2

AnA = g2
BnB, or
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Figure 7.6: Calibration of the relative path lengths of qubit pulses. We prepare the qubits
using R

π/2
X on qubit A and R

π/2
θ on qubit B, and fix the free evolution time to τ = 400 ns,

where we find a maximum in the oscillation amplitude between ρge,ge and ρeg,eg. We then
vary θ and fix an offset such that the amplitude of oscillation is damped at θ = {0, π}.

alternatively, if
gA
√
κAP in

A

ωc − ωd
=
gB
√
κBP in

B

ωc − ωd
. (7.37)

where we emphasize that P in
i is a controllable parameter and is related to εdi by

κiP
in
i = |εdi |2. (7.38)

Several of these parameters are not experimentally measurable - in particular, we cannot
independently extract the cavity decay rates κi because the resonances that we measure are
hybrids of both cavity modes and are affected by both κA and κB. Therefore, we use pump-
probe spectroscopy of the bath engineering drive to directly balance the drive amplitudes
(Figure 7.7). We adjust the relative phase of the drives to φ = π such that the drive is fully
antisymmetric; we then sweep the cooling drive across the expected frequencies for cooling
to both |S〉 and |T0〉. In Figure 7.7, we calibrate the drive amplitudes for cooling via ωc

−,
the antisymmetric cavity mode; in this case, we expect |T0〉 to be a forbidden state when
the amplitudes are properly balanced. We choose the digital attenuation setting that best
suppresses |T0〉 as our operating point (as indicated by the arrow). A similar, independent
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Figure 7.7: Calibration of the relative cooling drive amplitudes. Here, we cool via ωc
− and

fix φ = π, such that we expect |T0〉 to be fully suppressed when the drive amplitudes are
balanced. We perform spectroscopy of the cooling drive while varying the set point of the
digital attenuator that controls the relative amplitude of the two cavity drives. Away from
the ideal balance, both the upper and the lower cooling lines appear; however, when the
drives are balanced (arrow), symmetry selectivity suppresses |T0〉. The red-shifting of the
cooling frequencies that occurs at lower attenuator settings is due to the AC Stark effect.

calibration is performed when cooling via ωc
+, in order to account for any potential frequency-

dependent losses in the system.

7.3.6 Tomography calibration

Tomography in this experiment is performed, as in Chapter 5, based on the method out-
lined in Chow et al. [181]. Because the cavity bandwidth is narrow, we use high-power
readout [135] that is optimized to discriminate the joint ground state |gg〉 from the other
three eigenstates of the system. Thus, unlike in the measurement-induced entanglement and
trajectories experiments, we do not have access to the |ee〉 population: we must base our
tomography only on readout of the |gg〉 state. Also note that because high-power readout
is a latching measurement that involves flooding the cavities with tens of thousands of pho-
tons, it is not possible to use it to do a ground-state heralding measurement. Thus, in these
experiments we have no post-selected state initialization.

The high-power readout accomplishes a measurement of the formM = βII σ̂
II+βIZ σ̂

IZ+
βZI σ̂

ZI + βZZ σ̂ZZ , where the β-coefficients are calibrated using the double-Rabi oscillation
method in the previous reference. We perform a set of 30 (overspecified) positive and negative
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Figure 7.8: Calibration of the qubit pulse cross-talk. We apply the equivalent of a π-
pulse to Cavity A while Qubit A is detuned, and implicitly measure the effect on Qubit
B by performing crosstalk correction pulses at swept relative amplitude (x-axis) and phase
(y-axis). The point at which the ground-state population is maximized (yellow) indicates
that the cross-talk rotation has been corrected. The color scale indicates the ground-state
population.

qubit rotations in order to fully determine the 15 degrees of freedom of the density matrix,
and use maximum likelihood estimation to infer the trace-normalized, positive-semidefinite
density matrix that is consistent with our tomographic data. In order to accomplish single-
qubit pulses despite the resonant coupling of the qubits, we apply 32-ns qubit pulses such
that the pulse envelope is broader than the qubit splitting, enabling single-qubit rotations.
While the qubit coupling induces mixing between the |ge〉 and |eg〉 states, it does not affect
the |gg〉 population from which we infer the density matrix; this limits the effect of the qubit
coupling on tomographic reconstruction.

Finite-element simulations show that a pulse at the qubit frequency, when applied to
a given cavity, remains localized in that cavity and does not propagate to the neighboring
cavity. However, we would like to calibrate in-situ the qubit pulse cross-talk (i.e. the amount
by which a rotation on Qubit A will also rotate Qubit B). To do so, we calibrate a π-pulse
on Qubit A, and then detune it by 50 MHz so that the pulse does not in fact affect the
state of Qubit A. We then (Figure 7.8) apply compensating pulses to Qubit B at a swept
amplitude and frequency. When the |gg〉 population is maximized (yellow), the crosstalk
has been undone; this provides a direct calibration of the crosstalk. We see a slight phase-
dependence in the data, indicating that the crosstalk occurs at a relative phase of 250◦,
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Figure 7.9: Pulse sequence. A bath tone (blue) is applied, for varying time τ and with
varying relative phase φ; a set of tomography pulses are performed, followed by a readout in
order to reconstruct the density matrix.

and estimate that the amplitude of the crosstalk is less than 5%. The fact that we do both
positive and negative tomographic rotations partially corrects for this crosstalk, as the two
sets of rotations will induce opposite cross-talk.

7.4 Experimental Implementation of the Bath

Engineering Protocol

With a fully calibrated experimental system, we can now proceed to realizing the symmetry-
selective bath engineering protocol. The pulse sequence used to implement the protocol
is shown in Figure 7.9. We apply simultaneous, amplitude-balanced drives with a relative
phase φ to the input of the cavities. In a first experiment, we apply the bath drive for a fixed
interval of τ = 10µs, and sweep the drive frequency (ωd, y-axis) and relative phase (φ, x-
axis). We then reconstruct the joint qubit density matrix ρ using tomographic reconstruction
techniques [26, 181] based on high-power readout [135]. Figure 7.10 shows the fidelity to |S〉
(red) and to |T0〉 (blue), where the fidelity to a target state |ψ〉 is given by F = 〈ψ|ρ|ψ〉.
We use fidelity here instead of concurrence because, unlike in Chapters 5 and 6, we are
specifically concerned here not with just the quality of the entanglement, but the specific
entangled state generated. In this context, a fidelity F ≥ 0.50 corresponds to nonzero
concurrence, and therefore is a confirmation of entanglement.

The symmetry-selective aspect of the protocol manifests at three symmetry points. In
particular, there are four bands in which the protocol achieves entanglement, correspond-
ing to the frequencies in Equation 7.4: entanglement via ωc

+ (ωc
−) occurs at ωd = 2π ×

6.572 (6.713) ± 0.0013 GHz. However, at φ = 0, φ = π, and φ ∼ 180◦ ± 67◦, the reso-
nant transitions are selectively suppressed for one of the target states, and the suppressed
states are reversed between the ωc

+ and ωc
− cooling bands. At these symmetry points, the

frequency-crowding of the qubit spectrum is alleviated: it is effectively lifted from δ to J ,
representing two orders of magnitude of improvement.

Under an even-parity drive, when the cooling drive is comprised of two symmetric or two
antisymmetric photons (i.e. φ = 0 or π), we can only cool to the qubit state whose parity is
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Figure 7.10: Symmetry- and frequency- selective bath engineering. We plot F|S〉−F|T0〉 such
that |S〉 is red and |T0〉 is blue. At the symmetry points φ = 0, φ = π, and n+ = n−, the
drive is both frequency- and symmetry- selective. The |ψ1〉 ↔ |ψ2〉 notation indicates the
transition with which the drive is resonant for the labelled band. Transitions between higher
cavity occupation states are red-detuned by χ+ = −2π× 2.5 MHz for the lower-frequency
bands, and χ− = −2π× 1.4 MHz for the higher-frequency bands.

the same as the cavity output photon. Indeed, population in the antisymmetric |S〉 is fully
suppressed in the lower (symmetric) band at φ = {0, π}, and |T0〉 is similarly suppressed in
the upper band (where the scattered photon is antisymmetric). There also exits a relative
phase at which the drive is comprised equally of symmetric and antisymmetric photons,
leading to an overall odd-parity drive. This phase is φ ≈ 180◦ ± 67◦ in these experiments,
which differs from π ± π/2 because of the detuning ωc

− 6= ωc
+, and is well-predicted by

Equation 7.12. At these phases, the parity of the target qubit state must be opposite that
of the cavity output photon. Cooling to |T0〉 occurs only via the antisymmetric mode in this
case, and cooling to |S〉 occurs via the ωc+ mode. These symmetry restrictions are lifted for
generic φ, in which case both cavity modes can be equivalently used to target |T0〉 or |S〉, and
only energy conservation of input and output photons is required. Thus, simply by tuning a
readily-adjustable drive parameter, we turn a given entangled state from a forbidden into a
symmetry-protected state.

The undulation in the cooling bands is an effect of the phase-dependence of ω̃q, due to
the detuning between ωc

+ and ωc
−: a drive of fixed amplitude is closer in frequency and there-



CHAPTER 7. SYMMETRY-SELECTIVE BATH ENGINEERING 117

b

a

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Figure 7.11: Cooling dynamics. (a) We prepare |S〉 using φ = π by cooling via the antisym-
metric cavity mode (inset). (b) Similarly, we prepare |T0〉 using φ = π via the symmetric
cavity mode. In both cases, we fix φ and ωd; apply the drive for time τ ; and then tomograph-
ically reconstruct the resultant joint qubit state. The experimental data are represented as
dots; solid lines are fits to a coupled rate equation with rates as noted. The preparation of
|S〉 reaches maximum entanglement in approximately 3.5 µs; |T0〉 reaches maximum entan-
glement in 3.8 µs.

fore coupled more strongly to the lower-frequency symmetric mode, resulting in a stronger
AC Stark shift at φ ≈ 0. The broadening of the cooling spectrum at φ = 0 represents the
same phenomenon, this time manifesting as power-broadening. The faint red-shifted cool-
ing bands, detuned by χ±, represent cooling between higher photon-number subspaces, as
labeled.
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By moving to the time-domain (Figure 7.11), we can resolve the effects of the several
dynamical rates that govern the non-equilibrium steady state. For each experiment we fix
ωd and φ, and apply the bath drive for a variable time τ , again finally tomographically
reconstructing the joint qubit state. We utilize φ = π such that parity rules require cooling
to |S〉 (|T0〉) via ωc

−
(
ωc

+

)
. The dominant rates in the system are Γp, the pumping rate from

|T−〉 to the target state; Γ′p, a weak off-resonant pumping to |T+〉; Γ1, the spontaneous decay
rates of the qubits; and Γφ, the effective dephasing rate between |S〉 and |T0〉. Provided
that we meet the inequality Γφ,Γ

′
p < Γ1 < Γp, we expect the steady-state population to be

entangled. We fit the data to a coupled rate equation and extract the pumping and decay
rates. The quality of the fit to a simple exponential indicates that the dynamics of this
system are dominated by incoherent processes, which is consistent with κ± � Γp: in this
regime, photons stochastically leak from the cavity much more quickly than the drive is able
to repopulate them.

The steady state saturates to the entangled state of choice after a transient ring-up
(dominated by Γp) and a small-overshoot (related to Γφ). The steady-state fidelities are
F(|T0〉) = 0.70 and F(|S〉) = 0.71, well beyond the threshold F = 0.5 indicative of quantum
entanglement. The fidelity loss is dominated by residual |T−〉 population and by transitions
to the entangled state of opposite symmetry |T0〉 ↔ |S〉. Increasing Γp in principle helps
to depopulate the inital |T−〉 state; however, increasing the pump power leads to power-
broadening of both the desired transition and of the off-resonant pumping to |T+〉. Since
|T+〉 decays equally to |S〉 and to |T0〉, this creates a drive-dependent dephasing that sets
an upper limit on the pumping rate. In an on-chip implementation with currently-accessible
qubit coherence times, this protocol can be expected to produce on-demand entanglement
with fidelity in excess of 0.90.

7.5 Discussion

In this chapter, we have demonstrated symmetry-selective bath engineering, harnessing both
the spatial symmetry and the density of states of the dissipative environment to achieve and
preserve on-demand entanglement. The engineered symmetries in our system distinguish
it from the two-qubit bath engineering experiment in Ref. [63], where cooling to |S〉 is
achieved by utilizing far-detuned qubits in a single cavity; stabilizing entanglement in this
system required six microwave drives, and only |S〉 was accessible. In our implementation,
the resonant construction of the photonic lattice imprints itself onto the effective qubit
Hamiltonian and lifts the degeneracy in the single-excitation subspace. The lifting of this
degeneracy allows us to reduce the number of required drives from six to one, and the use
of separate cavities allows us to easily modify the spatial profile of this drive in order to
capitalize on the permutation symmetries of the coupled cavity resonances.

Our work demonstrates that engineering symmetries of a dissipative environment pro-
vides a powerful route to quantum control. Furthermore, this protocol is highly amenable
to scaling beyond bipartite entanglement into multiple qubits and cavities. In this case, the
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symmetric and antisymmetric combinations generalize to highly-entangled quasi-momentum
eigenstates, represented by many-body W -states [203]. Critically, adjusting the phase rela-
tionships of a single driving tone applied across the lattice still provides symmetry selectivity,
allowing for efficient stabilization of many-body entanglement in an extended system. The
ease of access to single-qubit manipulation and readout makes this experimental geometry a
promising testbed for transport and studies of high-symmetry (e.g. quadrupole) states and
long-range entanglement in Bose-Hubbard systems and other quantum lattices.
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Chapter 8

Conclusions and Outlook

A scientist in his laboratory is not a mere technician: he is also a
child confronting natural phenomena that impress him as though
they were fairy tales.

Marie Curie

In this dissertation, we have explored a number of ways in which dissipation can serve as
a useful tool for generating quantum resources in superconducting cQED systems. We first
engineered a half-parity measurement that, when properly tuned, probabilistically generates
entanglement between remote superconducting qubits. This experiment demonstrates that
coherent quantum information can be efficiently transferred along ordinary microwave cables,
which is a crucial capability for any potential quantum network with superconducting qubits
at the nodes. We also performed a deep dive into this half-parity measurement by unravelling
individual quantum trajectories in the system. This allowed us to explore the full distribution
of stochastic trajectories that lead the system into an entangled state or into one of the two
unentangled states, and to study both the most likely path and the most likely time to
entanglement. Through these sets of experiments, we developed a deeper understanding the
interplay between measurement and dissipation: the measurement signal we collect allows
us to generate entanglement, but the signal that is lost along the way leads to dissipation
that destroys that entanglement.

We then continued to demonstrate a purely dissipative means of generating entanglement
in a two-qubit, two-cavity system. By directly coupling the cavities to generate a dissipative
bath with opposite spatial symmetries imprinted on bath modes at distinct frequencies,
we preserve the ability to perform individual qubit manipulations while still coupling the
qubits to common dissipative modes. We drive the bath with a single microwave tone with
a controllable spatial profile in order to achieve symmetry-enhanced dissipative stabilization
of an odd-parity entangled state of choice. This represents a first demonstration of a scalable
protocol for generating multipartite entangled states.

Throughout these experiments, we have grown to appreciate that dissipative processes
need not be the enemy of a coherent quantum system. When understood and utilized
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properly, dissipation can serve a unique role in both generating and stabilizing entanglement.
The half-parity measurement that we perform in the remote entanglement experiments uses
a propagating coherent state to carry information from one qubit to the next, generating
an effective interaction between the qubits where no local entangling interactions exist. In
fact, entanglement in this system is made possible precisely by the measurement. In the
bath engineering experiments, the interaction between two cavity modes creates an effective
interaction between the qubits; driving those modes allows us to generate entanglement on-
demand, and stabilize it for arbitrary time. These complementary techniques demonstrate
the power and flexibility of tailored dissipation in the generation of quantum resources.

8.1 Extensions of Measurement-Induced

Entanglement

There are a number of interesting follow-on experiments that one could imagine for the re-
mote measurement-induced entanglement work. The most interesting are targeted at making
the experiment amenable to deterministic, rather than probabilistic entanglement. If one
could precisely tune the phase shifts at the cavities to π/2, the measurement would im-
plement a full-parity measurement. Zero phase shift would correspond to projection onto
the odd-parity subspace, and a π−phase shift would correspond to projection onto the even-
parity subspace. The technical challenge to this approach is that, as the phase shift increases,
the dephasing rate for a fixed cavity displacement increases as well, such that the measure-
ment induced dephasing caused by losses between the cavities becomes a more significant
experimental hurdle. Ongoing efforts to engineer a lossless circulator [191, 204] would be an
important enabling technology for such an experiment.

Moreover, our characterization of the state of the joint system under continuous mea-
surement suggests the feasibility of future continuous feedback stabilization of entanglement
[171, 177, 178, 183], even when using a half-parity measurement. These proposals apply a
drive to the qubits that is proportional to the homodyne current. If the signal fluctuations
indicate that the system is projecting toward |gg〉, a positive rotation is applied to repopulate
the entangled subspace; if the signal indicates projection toward |ee〉, a negative rotation
is applied. This stabilizes the two-qubit system in the odd-parity subspace. In addition,
the proposal in Ref. [177] includes a means not only for stabilizing the population in the
odd-parity subspace, but also for stabilizing the phase within that subspace. This protocol
is a particularly attractive option because it can correct for dephasing as well as for qubit
decay.

Finally, the cascaded qubit chain can be extended to the multi-qubit domain. In the
three-qubit case, if we are able to engineer all three phase shifts to be identical, then we
can probabilistically generate W-states, which share a single excitation amongst all three
qubits. In addition, it is often possible (given appropriate asymmetries in the system) to
engineer a combination of phase shifts such that the phase shifts for |gge〉 and |eeg〉 coincide;
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we can then perform a bit flip on the final qubit to generate the GHZ state. Again, however,
inter-cavity losses will create a dissipation-induced dephasing that limits the applicability of
this protocol in the absence of lossless directional elements [191, 192]. An additional source
of complication is the exponentially increasing number of measurements required in order
to perform a full tomographic reconstruction: the number of free parameters in an n-qubit
density matrix scales as 22n − 1, which rapidly becomes intractable. However, there are a
number of proposals for continuous-measurement based tomography and compressed sensing
[205–207] that may ameliorate the scaling issue.

Because the Bayesian approach is phenomenological, extends naturally from the single-
qubit Bayesian formalism, and has been validated in a two-qubit cascaded measurement, we
expect it to perform well in a multipartite system (conditioned on a well-calibrated mea-
surement chain). However, one always needs a model for the effective cascaded dynamics
originating from a microscopic understanding of the system in order to justify and vali-
date the extension of the phenomenological Bayesian model. This is particularly true as
the expanse of off-diagonal elements becomes larger, or for experiments in which there are
significant or interesting dynamics outside of the target subspace.

8.2 Further Applications of Dissipation-Induced

Entanglement

There are a number of interesting extensions of the pure dissipation-induced entanglement
scheme. When moving to the coupled-cavity architecture, we gave up the remote aspect of
our system in order to gain determinism in the entanglement protocol. The reason for this
is that, if there is significant spatial distance between the cavities, the cable used to connect
the two cavities can no longer be treated as a lumped element. The cavities act as mirrors at
the ends of the connecting cable, setting up a third resonant mode that mediates the qubit
coupling and leads generally to a reduction in the coupling. However, there is an interesting
recent proposal that overcomes this challenge, and enables bath engineering of entanglement
in fully remote cQED systems [208]. This is a promising approach because it allows us to
couple determinism with spatial separation in the generation of entanglement. While this
system would not be appropriate for loophole-free tests of Bell’s inequalities - the protocol
relies on the exchange of photons between the two cavities - it nevertheless could be a useful
approach for distributing entanglement in a multiple-qubit device of arbitrary size.

In addition, the symmetry-selective bath engineering scheme we describe in Chapter 7 is
itself well-suited for scaling to larger system size [203]. The protocol relies on spatial sym-
metries for entangled state selectivity, which allows us to utilize only a single measurement
tone with a controllable spatial profile in order to generate an entangled state of our choosing
within the odd-parity subspace. We note that the entangled states |S〉 and |T0〉 are in fact
many-body W-states for a two-qubit system. Our protocol scales naturally to a chain of
multiple qubits and cavities. The cavity-mediated coupling leads to a lifting of the degener-
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acy between the W-states in the single-excitation subspace; by driving the bath modes with
a tone at the appropriate frequency and with a well-adjusted spatial profile, we can stabilize
the W-state of our choosing. This opens the door to studying driven-dissipative dynamics
in many-body systems, which is a subject of great theoretical interest. More broadly, the
approach of purposefully designing symmetry-based selection rules in a dissipative bath is
quite general, and will provide a useful tool for tailoring cavity-induced qubit interactions
to simulate a Hamiltonian of interest.
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