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ABSTRACT OF THE DISSERTATION 

 

 

Systems Biotechnology of the Mammalian Secretory Pathway:  

Analysis of Energetic Trade-offs in Protein Production 

 

 

by 

 

 

Jahir Mauricio Gutierrez Bugarin 

 

Doctor of Philosophy in Bioengineering 

 

University of California San Diego, 2018 

 

Professor Nathan E. Lewis, Chair 

Professor Bernhard Ø. Palsson, Co-Chair 

 

 

The secretory pathway is a fundamental process of eukaryotic cells and it is responsible for 

synthesizing, folding, and packaging thousands of membrane and secreted proteins. These proteins 

play important roles in cells as signaling molecules, hormones, receptors, and structural 

components. Today, many of the most important biotherapeutics and monoclonal antibodies are 

produced via the secretory pathway of animal cells in culture. Thus, it has become clear that a 

mechanistic understanding of the function and regulation of the secretory pathway is of prime 

importance for the advancement of biotechnology and bioprocessing. In this doctoral dissertation, 

computational methods are developed and applied to quantify the energetic burden that the 

secretory pathway imposes on animal cell metabolism at the systems level. First, a meta-analysis 

workflow to extract quantitative features from the cell bioprocessing literature is presented. These 



xix 

 

quantitative features are consistent across studies and culture conditions and thus provide insight 

into fundamental properties of cell bioprocessing. Second, genomic and proteomic data are utilized 

to construct genome-scale computational reconstructions of the human, mouse, and Chinese 

hamster secretory pathways. These reconstructions are used to expand the scope of existing 

genome-scale metabolic networks and to investigate the energetic trade-off between cell growth 

and protein secretion during bioprocessing. Model simulations recapitulate bioprocess 

measurements and enable the quantification of energetic costs associated to cellular productivity 

in a product-specific manner. Finally, a mathematical expression for computing the energetic cost 

of protein synthesis is formulated and used to map the energetic cost landscape of a cell secretome. 

The energetic cost of proteins negatively correlates with protein expression levels and this negative 

correlation is stronger in highly secretory animal cell lines and human tissues. Finally, protein 

turnover rates are used to investigate the robustness and usage levels of the secretory pathway 

across human tissues. The degree of secretory pathway usage is linked to the degradation rate of 

the half-lives of secretory pathway components in a modular manner that is shaped by the product-

specific demands of the secreted proteins in each cell type. The results from this analysis may help 

design strategies for engineering the secretory pathway in CHO cells.
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Chapter 1 - Optimizing eukaryotic cell 

hosts for protein production through 

systems biotechnology and genome-scale 

modeling 

 

1.1 Introduction 

 
Eukaryotic cell lines, including Chinese hamster ovary cells, yeast, and insect cells, are 

invaluable hosts to produce many recombinant proteins. With the advent of genomic resources, it 

is now possible to leverage genome-scale computational modeling of cellular pathways to 

rationally engineer eukaryotic host cells. Genome-scale models of metabolism include all known 

biochemical reactions occurring in a specific cell. By describing these mathematically and using 

tools such as flux balance analysis, the models can simulate cell physiology and provide targets 

for cell engineering that could lead to enhanced cell viability, titer, and productivity. This 

introductory chapter highlights examples in which metabolic models in eukaryotic cell cultures 

have been used to rationally select targets for genetic modification, improve cellular metabolic 

capabilities, design media supplementation, and interpret high-throughput omics data. As more 

comprehensive models of metabolism and other cellular processes are developed for eukaryotic 

cell culture, these will enable further exciting developments in cell line engineering, thus 

accelerating recombinant protein production and biotechnology in the years to come. 



2 

 

Eukaryotic cells are the dominant production hosts in the therapeutic protein industry and 

contribute substantially to the $140 billion dollars in annual sales [1]. Common hosts, such as 

Chinese Hamster Ovary (CHO) cells, are particularly desirable for their capacity to fold and make 

human-compatible post-translational modifications on recombinant proteins [2]. As the demand 

for improved quantity, purity, and quality in biotherapeutic products continues to increase, novel 

strategies for engineering efficient eukaryotic cells become more necessary. Traditional strategies 

for increasing protein titers and improving cellular performance during culture relied primarily on 

mutant screens and bioprocess optimizations. For example, culture temperature can be lowered, or 

culture media can be varied to identify conditions resulting in high titers [3, 4]. However, with the 

advent of high throughput omic technologies and the application of computational methods in 

systems biology, it is now possible to elucidate the molecular basis of eukaryotic cell physiology 

and elucidate the mechanisms influencing their production capabilities at the genome-scale [5]. 

Some initial attempts to utilize metabolic networks on eukaryotic cells for metabolic engineering 

used dynamic modeling for estimating flux distributions [6, 7]. Such efforts involve reconstructed 

and refined genome-scale metabolic network models [8, 9]. These models enable the quantitative 

analysis of intracellular metabolic fluxes in silico (i.e. in a computer simulation) and the prediction 

of phenotype from genotype [10, 11]. Such predictions are possible since all precursors needed for 

synthesizing cell biomass and maintaining cell viability are produced through metabolic pathways. 

Thus, the metabolic fluxes directly influence cell physiology and their quantification is of great 

importance to bioprocess engineering [12]. Among the different methodologies, the constraint-

based reconstruction and analysis (COBRA) approach has proven quite useful for studying cell 

metabolism at the genome scale, using algorithms such as flux balance analysis (FBA). Detailed 

methodologies for COBRA and its implementation for scientific computing have been thoroughly 
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developed over the last couple decades [13, 14]. This introductory chapter begins with a brief 

description of the fundamental goals of systems biotechnology as an emerging field and of 

COBRA as a modeling framework. Then, several research efforts that applied these models to 

characterize and engineer eukaryotic cell metabolism for bioprocessing are highlighted to show 

the recent state of the field. Finally, a roadmap for the next chapters is presented, where 

computational methodologies and constraint-based modeling are utilized to further the predictive 

capabilities of these models in bioprocessing. 

 

1.2 Systems biotechnology and metabolic models 
 

1.2.1 Introduction to genome-scale reconstructions 

 
Systems biotechnology combines computational and experimental approaches to 

comprehensively describe the biomolecular mechanisms relevant to bioprocessing [15]. This 

approach frequently utilizes high-throughput omics data to study and quantify the function of 

specific pathways (e.g., using pathway maps [16–18], metabolic networks [19], or other interaction 

databases). In this context, genome-scale metabolic networks contain a comprehensive collection 

of all known biochemical (i.e., metabolic) information of a specific organism [20, 21]. These 

networks represent a structured database of the totality of known metabolic processes that take 

place in the cell, including the metabolites involved, the enzymes catalyzing each of the reactions 

and the genes that code for the necessary machinery for these processes (Figure 1.1). With the 

proliferation of genome sequencing efforts, many metabolic network reconstructions have been 

built including eukaryotic genome-scale models that are relevant to industry and medicine [22–

24]. These include the filamentous fungi Saccharomyces cerevisiae [25] and Pichia pastoris [26] 
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for industrial applications, as well as Homo sapiens [27] and Mus musculus [28] which are 

important models for medicine and drug design.  

 
Figure 1.1: General framework for using genome-scale reconstructions in systems 

biotechnology. (A) First, the reconstruction is assembled from the organism-specific parts list (e.g. 

genes, proteins, metabolites, and reactions). (B) The metabolic reactions in the cell are described 

mathematically in a stoichiometric matrix, which contains the stoichiometric coefficients for each 

metabolite (row) in each reaction (column). (C) The stoichiometric matrix can be represented 

graphically as a metabolic network. (D) From the metabolic network, a system representation (i.e. 

metabolic model) of the cell can be obtained by identifying which metabolites are consumed or 

secreted, as well as the biomass components the cell needs to produce for growing (e.g. ribosomes, 

proteins, lipids, nucleic acids, etc.). (E) By using computational methods such as constraint-based 

analysis, different phenotypes of interest can be computed by simulating gene knock-outs or 

nutritional limitations in the media (represented by the different coloring patterns in the networks). 

(F) Finally, the results from these predictions serve as the basis for engineering the metabolism of 

the host cell towards a desired phenotype. 

 

Biotechnological applications of genome-scale models include metabolic engineering [15], 

phenotype prediction and characterization [29], identification of genetic targets for cellular 
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engineering [30], and interpretation of high-throughput omics data [31].  Metabolic engineering of 

production strains has also been facilitated by in silico predictions of gene deletions, alternative 

metabolic pathways, metabolic coupling of growth rate with secretion of target molecule, and 

estimations of minimum nutrients in culture media for optimizing growth [32, 33]. Among all the 

different types of predictions done with metabolic models, one of particular interest to industrial 

biotechnology is the computation of maximum yield of a target molecule from a given substrate 

[24]. 

 

1.2.2 Constraint-based reconstruction and analysis of metabolic networks 

 
To capture the biologically meaningful pathway usage, or flux distributions, of a metabolic 

network under a given condition in silico, it is valuable to use approaches that apply known 

physicochemical constraints, such as mass balance and thermodynamics of each reaction. The 

Constraint-Based Reconstruction and Analysis (COBRA) approach uses such constraints to 

narrow down the range of feasible flux distributions to recapitulate real pathway usage. COBRA 

further provides a diverse range of analytical tools for constructing and analyzing genome-scale 

metabolic networks. The networks are reconstructed by enumerating all biochemical reactions in 

the organism of interest. Each reaction can be described mathematically using a stoichiometric 

matrix, which contains the stoichiometric coefficients for each metabolite (rows in the matrix) in 

each reaction (columns in the matrix, see Figure 1.1B). To analyze stoichiometric networks and 

quantify the metabolic flux distribution of a particular phenotype, COBRA models often assume 

a steady-state flux and apply fundamental constraints derived from mass conservation and 

thermodynamics [34]. These constraints can allow for identification of steady-state flux 

distributions that are thermodynamically feasible and biologically meaningful. Such feasible flux 

distributions form a solution space, which is a mathematical space containing all possible 
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combinations of steady state reaction fluxes in the metabolic network (Figure 1.2, Solution Space). 

Once the solution space is defined, the next step is to choose an objective function, which is a 

reaction whose flux is sought to be maximized or minimized (see Figure 1.2, Objective and 

constraints). Finally, by applying linear programming algorithms, a solution that satisfies both the 

constraints and the objective function is computed, which provides a prediction of the flux level 

through each reaction. This optimization technique is commonly called Flux Balance Analysis 

(FBA) and it is a fundamental COBRA method [35]. 

 

Figure 1.2: Exemplification of two optimization problems. Two examples of optimization 

problems are shown here to illustrate flux balance analysis. The first example appears in the 

context of Euclidean geometry (top row) and the second in the context of metabolic networks 

(bottom row). In the small metabolic network shown, x1–x4 represent intermediate metabolites, B 

represents produced biomass and W the secreted waste products. The arrows represent the 

reactions that connect the metabolites in the network and their width is proportional to the flux. 

 

In short, FBA consists of a linear programming problem that requires: 1) the set of all 

biochemical reactions in the system (in the form of a stoichiometric matrix), 2) an objective 

function, and 3) a set of constraints that define the conditions under which the system can operate. 

This method will be now described conceptually with a simple optimization problem of 

maximizing the area of a rectangle, and then relate this to modeling metabolism (Figure 1.2).  
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When optimizing the area of a rectangle given a constrained perimeter, the rectangle is the system 

in question and this system can be described with two independent variables: the width a and the 

length b. The area of the rectangle in this case is the objective function, which is computed by 

taking the product of a and b. It is possible to construct an infinite number of rectangles by varying 

the values of a and b. However, the constraint requiring the perimeter of the rectangle to be the 

value L shortens the range of possible values that both the length and the width can take. Therefore, 

a solution space arises, and it is sought to identify the values of a and b that maximize the area of 

the rectangle. This optimal solution is obtained only when a and b are equal (i.e. when they form 

a square; Figure 1.2, Optimal Solution). For metabolic models, a and b are reaction fluxes of the 

metabolic network. The perimeter and the area of the rectangle are also fluxes of the system since 

their values depend on a and b. However, there exists a constraint upon the perimeter as it can only 

take a constant value (L). The set of all possible rectangles with perimeter L defines the solution 

space. Finally, the area of the rectangle represents the objective function that is sought to maximize 

while satisfying the given constraint. In metabolic models, a common objective function is growth 

which is represented by the biomass function, a pseudo reaction in which all metabolites required 

for the synthesis of cell parts consumed [36]. The constraints in metabolism include the 

directionality of the biochemical reactions or the allowed rates of substrate uptake (see bottom 

panel in Figure 1.2). COBRA methods have been used and implemented to study metabolism for 

over 30 years now and the universe of possible applications in quite vast. Many applications [11], 

including strategies for interpreting high-throughput omics data in the context of metabolic 

networks [37], have been developed and some will be highlighted in the following sections. 
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1.3 Applications of metabolic models in systems 

biotechnology for bioprocessing 
 

Metabolic models and stoichiometric equations have been used to gain a systemic 

understanding of how metabolism dictates the phenotype of various eukaryotic cells in four major 

applications. These include media optimization, characterization of phenotypes under different 

culture conditions, improvement of cell density, and maximization of protein yield. A summary of 

these examples can be found in Table 1.1. 

Table 1.1: Overview of Systems Biotechnology applications of stoichiometric equations and 

metabolic models presented in this introductory chapter 

Reference Organism/Cell 

line 

Aim(s) of study Summary of key results 

[32] CRL-1606 

To construct a simplified 

stoichiometric network that 

allows for determination of 

material balances in animal cell 

metabolism and potential nutrient 

supplementations in culture 

media. 

Good agreement between 

model predictions and 

experimental data covered 

in literature. Predictions on 

media supplementations 

turned out correct in 

experiments. 

[44] 
GS-CHO and 

CHO-320 

To elucidate the effects of 

chemical composition from plant-

derived supplements on the 

metabolic flux distribution. 

The amino acid and trace 

element content of wheat 

hydrolysates induce 

important variations in 

central and amino acid 

metabolism of mammalian 

cells. Flux distributions 

with higher cell growth 

rates were found to have 

highly active glycine and 

serine metabolism. 

[50] CRL-1606 

To gain a mechanistic insight into 

the effect of pH on mammalian 

cell metabolism. 

Significant physiological 

differences between 

metabolic flux 

distributions under two pH 

conditions were identified. 
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Table 1.1: Overview of Systems Biotechnology applications (continued) 

Reference Organism/Cell 

line 

Aim(s) of study Summary of key results 

[53] CHO-XL99 

To use a metabolic network to 

understand the metabolic fluxes 

that trigger a metabolic switch in 

lactate uptake and secretion.  

The main differences 

before and after the 

metabolic switch were 

described in terms of ATP 

usage and redistribution 

through the core metabolic 

pathways. 

[41] 

in-house IgG-

producing 

CHO cell line 

and CHO 

M250-9 

To develop a framework for 

integrating metabolomic data into 

metabolic networks to gain a 

mechanistic insight of CHO cell 

physiology during fed-batch 

culture and identify the metabolite 

profile in different growth phases. 

Cell-specific biomass 

composition may lead to 

erroneous in silico 

predictions if not properly 

calculated. Flux 

distributions of pentose 

phosphate, amino acid and 

fatty acid biosynthetic 

pathways are higher during 

initial exponential growth 

phase compared to late 

exponential growth phase. 

[59] GS-CHO 

To contextualize the effects of 

sodium butyrate on cellular 

metabolism in a stoichiometric 

network in the context of low- 

and high-producing cell lines. 

Computational predictions 

agree very well with 

experimental data and GS-

CHO cell lines’ 

metabolism was found to 

be characterized by high 

asparagine uptake and 

higher metabolic efficiency 

than other CHO cell lines. 

Butyrate treatment has a 

marked effect on 

increasing biosynthetic 

activity during stationary 

phase. 



10 

 

Table 1.1: Overview of Systems Biotechnology applications (continued) 

Reference 
Organism/Cell 

line 
Aim(s) of study Summary of key results 

[61] 

Spodoptera 

frugiperda Sf9 

cells 

To understand the cell density 

drop effect observed in high 

concentration cultures of insect 

cells infected with a baculovirus 

expression vector for recombinant 

protein production. 

Redox homeostasis and 

ATP synthesis, but not 

byproduct accumulation 

nor nutrient depletion, 

have a drastic change after 

infection, which translates 

into cell growth arrest and 

higher conversion of 

pyruvate to acetyl-CoA. 

 

[64] 

Spodoptera 

frugiperda Sf9 

cells 

To optimize protein production of 

insect cells and bypass the cell 

density drop effect by identifying 

nutrient supplementations from a 

metabolic network. 

It is demonstrated that 

supplementation of 

pyruvate and 𝛼-

ketoglutarate has a 6 to 7-

fold increase in yield. 

[65] 
Saccharomyces 

cerevisiae 

To study the metabolic burden 

that heterologous protein 

production imposes on cell 

growth. 

Protein secretion causes a 

redistribution of the carbon 

source in the metabolic 

network of yeast and thus 

limits growth. 

[69] 
Pichia pastoris 

X-33-hSOD 

To engineer central metabolism of 

P. pastoris to enhance protein 

production by identifying 

beneficial mutations (i.e. gene 

knockouts, gene overexpression) 

via in silico predictions. 

The genome scale model 

used in this study ( [67]) 

accurately predicts flux 

changes caused by 

recombinant protein 

secretion. About 50% of 

the single gene mutations 

significantly improved 

recombinant protein 

production. 
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1.3.1 Identifying effective cell culture media supplementations 

 
The metabolic phenotype of mammalian cell systems often involves high levels of glucose 

and glutamine uptake and excessive lactate secretion [38]. Thus, mammalian cell culture media 

includes nutrients that promote both cell growth and the synthesis of the target recombinant 

protein. Some nutrients, like essential amino acids, vitamins and inorganic salts, cannot be 

synthesized from the basic carbon (e.g. glucose) and nitrogen (e.g. glutamine) sources. Other 

nutrients can be synthesized from basic nutrient sources and their supplementation prevents the 

excessive accumulation of harmful metabolic byproducts (e.g., ammonia in the case of 

nonessential amino acids). Based on this idea, Xie and Wang formulated a stoichiometric 

metabolic model to study the nutritional demands for cell growth and protein production in 

mammalian cell cultures [39]. Using measured cell composition data, the model allowed them to 

determine the coefficients of a stoichiometric equation governing cell growth. The stoichiometric 

equation accounts for energy production and synthesis of carbohydrates, lipids, nucleotides and 

proteins. The researchers subsequently used these results to develop a new medium that allowed 

for a dramatic improvement in product titers when used in fed-batch cultures of a CRL-1606 

hybridoma cell line [33]. Years later, researchers brought this in silico approach for the 

determination of medium supplementation to a higher level of complexity by incorporating 

multivariate statistical analysis and data preprocessing [40]. This allowed for the inference of 

optimal amino acid concentrations that could be incorporated into the nutrient medium. 

Furthermore, some negative correlations between non-essential amino acids and cell growth were 

found, suggesting a way to increase cell viability by reducing the concentrations of some media 

components [4, 41]. 
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Another common media supplementation in CHO cell cultures includes plant-derived 

protein hydrolysates from soy, rice or wheat [42]. These supplements support cellular growth and 

productivity as they serve as raw materials for protein biosynthesis. However, plant-derived 

protein hydrolysates suffer from high compositional variability which translates into unpredictable 

culture performance and final product quality. Researchers investigated this issue from a systems 

biology perspective to elucidate the effects of wheat hydrolysates’ composition on the metabolic 

flux distribution of CHO cells [43]. Based on a CHO-320 metabolic network [44], the researchers 

constructed a constraint-based metabolic model and applied FBA to estimate the metabolic fluxes 

in cultures with different wheat hydrolysate supplementations. Then, by using principal component 

analysis (PCA) and partial least squares (PLS), they interpreted the results obtained from FBA and 

found important characteristics in the central and amino acid metabolic pathways that varied 

according to the amino acid composition of wheat hydrolysates. These results confirmed the 

usefulness of constraint-based analysis in determining the metabolic regulation in cell cultures 

under different media supplementations, which have the potential to guide rational design of 

culture media composition and appropriate supplementations. 

 

1.3.2 Characterizing cell physiology under different culture conditions 

 
When cultured mammalian cells grow with excess glucose, lactate dehydrogenase activity 

increases, leading to a high turnover of intracellular pyruvate and subsequent secretion of lactate 

into the extracellular medium. As lactate accumulates, both cell growth and cell productivity 

decrease [45] and certain enzymes in the glycolytic pathway are downregulated [46]. Therefore, 

an important objective in bioprocess control is to reduce lactate secretion in mammalian cell 

culture. To achieve this, techniques have been proposed to modulate metabolic pathways via 
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genetic mutations [47] or media optimization [48]. In a recent study [49], however, researchers 

managed to limit lactate formation and consumption by controlling media pH in CRL-1606 

hybridoma cell cultures. The researchers applied FBA to a metabolic network [50] in order to see 

the effect that pH had on lactate metabolism. A reaction for ATP production was chosen as the 

objective function and thus it was maximized in their constraint-based simulations. The results of 

this study led to the conclusion that hybridoma cells become more energy-efficient and synthesize 

more monoclonal antibody at low (6.8) pH levels. The authors were able to identify the 

consequences of pH on intracellular fluxes, particularly the activation of gluconeogenic enzymes 

at an unfavorable pH level of 7.8 that regulate the TCA cycle. Importantly, these consequences 

could not be captured in gene expression analysis under both pH conditions, which highlights the 

relevance of looking at metabolic fluxes through computational models. 

One limitation of mammalian cell cultures is that cells sometimes experience a metabolic 

switch, leading to an inefficient phenotypic state, e.g. when lactate is secreted while glucose is 

highly consumed [50]. To understand the mechanism of this phenomenon in the context of 

metabolic fluxes, researchers derived a CHO XL99 cell metabolic model from a previous mouse 

genome scale model [51] and performed flux balance analysis (FBA) to yield a detailed analysis 

of the differences in flux distributions between two phenotypic states: lactate secretion, known to 

be metabolically inefficient, and lactate consumption, which was surprisingly found to be more 

energy efficient [52]. For example, by comparing the fluxes in key metabolic pathways (TCA, 

glycolysis), researchers found that the lactate-consuming phenotype of CHO cells represents a 

more efficient state, producing about six times more ATP (80% destined to cell maintenance and 

20% to biomass production) compared to the high-lactate-secretion phenotype. The results of this 
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study highlight the power of metabolic models to interpret the consequences of phenotypic changes 

on cellular metabolism.  

In another study, researchers presented an integrated framework to characterize the 

physiology of CHO cells in fed-batch cultures [53]. Their framework consists of combining fed-

batch culture data, metabolomics, and in silico metabolic network modeling. This led to an in-

depth study of three metabolic pathways associated with limitation of CHO cell growth. One 

surprising finding was the significant differences in biomass composition (i.e., fraction of lipids, 

amino acids, nucleic acids, etc. that make up cell biomass) across five different CHO cell lines that 

the researchers were able to analyze. This emphasizes the need for careful quantification of a cell 

line being studied, since accurate cell biomass composition is important for many modeling uses, 

such as media optimization. Otherwise, models may lead to spurious conclusions if biomass 

examination is not properly realized [54–56]. 

A common strategy used in CHO cell cultures to stimulate over-expression of the target 

protein involves treating the cells with sodium butyrate, a histone deacetylase inhibitor that arrests 

cell growth but sustains recombinant protein productivity [57]. Although this technique increases 

the specific productivity of CHO cells, it also increases the risk of apoptosis dramatically and can 

compromise the entire bioprocess. Metabolic models can be used to address pertinent questions on 

how to optimally culture CHO cells under sodium butyrate treatment. In the year 2013, researchers 

realized precisely this in the context of a metabolic network with 117 reactions and 24 metabolites 

in a glutamine synthetase (GS)-CHO cell line [58]. By integrating exometabolomic data from 

different clones at specific growth phases with a metabolic network, the researchers characterized 

important metabolic trends of GS-CHO cells that influence metabolic transitions in high- and low-

producing CHO cell cultures under control and butyrate treatment conditions. Specifically, the 
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study reveals the metabolic efficiency of GS-CHO cells during the transition from exponential to 

stationary growth, and it also demonstrates a differentiated nitrogen metabolism of GS-CHO cells 

that is characterized by an increased uptake of asparagine for energy generation. 

 

1.3.3 Analyzing the energetic basis of cell density to improve cell 

productivity 

 
Insect cells represent a safe and effective way to produce heterologous proteins and 

vaccines with protein yields above 500 mg of protein per liter. In this context, baculovirus 

expression vectors (BEVs) are transfected into insect cell hosts and form a production platform of 

high volumetric productivity [59]. However, a common problem with this system is called the cell 

density drop effect [60]. This phenomenon refers to a significant reduction of specific productivity 

(i.e. mass of product produced per cell per unit time) of the insect cells when they have been 

infected with the BEV at high cell densities [61]. The cell density drop effect thus forces one to 

perform the BEV transfection at low insect cell concentrations to obtain acceptable titers. To 

understand what happens to insect cells’ metabolism before and after BEV infection, researchers 

embarked on the mission of constructing a core metabolic model of the Spodoptera frugiperda Sf9 

cell line and performed metabolic flux analysis on the basis of material balances under both 

conditions [59]. Their core model consisted of 52 internally balanced metabolites and 73 reactions, 

including reactions from 1) central metabolic pathways such as glycolysis, the pentose phosphate 

pathway and TCA cycle and 2) reactions that account for the energetic costs of biomass formation 

and membrane transport. Interestingly, the results of this study suggest that neither byproduct 

accumulation nor depletion of nutrients in the culture media are responsible for the cell density 

drop effect observed in insect cell cultures with high density. Nevertheless, this work sheds light 

on metabolic regulation occurring in insect cells after infection with BEVs. These include changes 
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in redox homeostasis, augmented ATP synthesis, and enhanced consumption of disaccharides after 

infection, thus resulting in a higher flux through the conversion of pyruvate into acetyl-CoA. Based 

upon these results, the same research team subsequently altered Sf9 energy metabolism combining 

experimental and computational methods, and successfully enhanced protein production [62]. 

Their strategy involved supplementing the culture media with alpha-ketoglurate and pyruvate at 

the time of infection, which resulted in a 6-fold increase in yield. These two studies highlight the 

potential of metabolic models in identifying key culture manipulations for enhancing productivity 

in a bioprocess, even when the information required to build a genome-scale network is not 

available. 

 

 

1.3.4 Characterizing the energetic trends that favor protein production 

 
Recombinant protein production in yeast is commonly increased using different strategies 

that range from codon usage to manipulating protein folding processes. However, increasing 

protein secretion has a draining effect on central metabolic fluxes. In one study of Saccharomyces 

cerevisiae metabolism, researchers presented a core stoichiometric model (81 metabolites, 78 

reactions) of a human superoxide dismutase (SOD)-producing cell line, and used the model to 

calculate the metabolic flux distributions in wild type and protein-producing yeast strains [63]. 

The fundamental differences between both strains were captured in this study even when glucose 

consumption and ethanol production remained the same, the key contrasting features lie in the 

distribution of the carbon source to produce biomass (i.e. growth rate). The synthesis of the 

recombinant SOD protein was linked to higher fermentation and lower ATP synthesis compared 

to the wild type strain. This study successfully pin-pointed the energetic trade-off between cell 

growth and protein synthesis by means of a metabolic model, and thus set the foundations for 
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subsequent research efforts aimed to characterize yeast metabolism via comprehensive 

stoichiometric networks [64]. 

Pichia pastoris is a methylotrophic yeast that has drawn the attention of many systems 

biologists, since it is an effective host for heterologous protein production. Several fully 

compartmentalized genome-scale metabolic reconstructions of this organism are now available 

[26, 65, 66]. Using a previous genome-scale reconstruction [65], researchers [67] demonstrated 

significant changes in flux distributions of a Pichia pastoris strain when forced to produce 

recombinant protein. They utilized the algorithms Minimization of Metabolic Adjustment 

(MOMA, [68]) and Flux Scanning based on Enforced Objective Function (FSEOF, [69]) to predict 

appropriate genetic modifications (i.e. knockout or overexpression) that would translate into 

increased recombinant protein production. From there, the researchers were able to highlight the 

most important features of the regulatory flexibility of P. pastoris metabolic network to redirect 

resources for protein production thanks to the predicted genetic manipulations (see Table 1.1). 

This study goes to show that metabolic models not only provide powerful descriptions of yeast 

metabolism to enhance secretion of small molecules (e.g. succinate, sesquiterpenes [70]) but also 

secretion of macromolecules and polymers.  

 

1.3 Current challenges and new modeling methodologies 
 

The use of genome-scale metabolic models for enhancing recombinant protein production 

is still in its infancy. As can be inferred from the studies included in this introductory chapter, the 

discovery of more sophisticated and novel biotechnological strategies for enhancing recombinant 

protein production will rely on the refinement and analysis of these models. Some immediate areas 
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of research that will have the greatest impact on model-based improvements of protein secretion 

are as follow. First, advances that address the higher complexity and compartmentalization of 

metabolic processes in eukaryotes will be invaluable. Second, the physiology of only a few 

eukaryotes (e.g. yeast [64]) have been studied, and so continued efforts in characterizing the more 

complex metabolism in higher order organisms (e.g. mouse, hamster) will enable more detailed 

and accurate predictions with genome-scale metabolic models for these protein secretion hosts. 

Third, technological advances regarding the generation of complex high-throughput datasets 

(beyond the genome or the proteome) will further benefit work with eukaryotes. The areas of 

glycobiology and phosphoproteomics, when mapped to metabolic and genetic networks, will help 

understand how to control post-translational modification of products and better account for key 

regulatory events in the cell. Fortunately for CHO cells, there have been several efforts to generate 

these types of datasets for the N-glycoproteome [71], O-glycoproteome [72] and the transcriptome 

[73].  

Major successes in the use of genome-scale models for metabolic engineering have been 

achieved in the development of production hosts for small molecules [74–76]. Recent expansions 

of these models have given place to the next generation of genome-scale models of bacteria, also 

known as ME-models (Metabolic and gene Expression models). These models incorporate non-

enzymatic events such as transcription, translation [77, 78] as well as translocation [79], and allow 

for the estimation of the optimal functional proteome required by the prokaryotic cell under 

particular conditions [80, 81]. Although the task would be enormous, the ME model framework 

could be used to expand and refine eukaryotic cell models. Beyond transcription and translation 

and signaling, the coupling of additional process such as protein secretion and associated post-

translational modifications can also benefit the development of eukaryotic protein production 
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hosts. For example, protein folding in the endoplasmic reticulum via chaperone activity imposes 

an additional energetic cost (e.g., consuming ATP, sugar nucleotides, etc.) that is not explicitly 

accounted in metabolic models simply because this process cannot be stoichiometrically described. 

The same applies to redox balancing when creating disulfide bonds in proteins or to the impact of 

amino acid composition on metabolic flux distributions [82, 83]. A recent study addressed these 

issues where the first genome-scale model of the yeast protein secretory pathway was 

reconstructed [84]. Furthermore, significant progress in modeling the eukaryotic glycosylation 

pathways has been made. These research efforts aim to gain a systemic insight of the glycosylation 

capabilities of cell hosts [85, 86]. The computational tools derived from these efforts could be 

easily incorporated into the systems biotechnology toolbox for practical applications soon. As 

these models continue to be deployed, it is anticipated that they will prove exceptionally valuable 

for engineering the next generation of protein-producing eukaryotic cell factories. Specifically, 

they will help identify targets for genetic modification, improve cellular metabolic capabilities, 

optimize media, and interpret high-throughput omics data to elucidate the biomolecular 

mechanisms controlling recombinant protein production yield and quality. 

 

1.4 Toward data analysis and computational models of 

protein secretion 
 

This introductory chapter has discussed case studies of successful applications of data 

processing and genome-scale modeling in systems biotechnology. The remaining chapters of this 

dissertation utilize data analysis and computational models of protein secretion for gaining insight 

into the energetic costs and trade-offs associated to protein production inside animal cells. In 

Chapter 2, a catalog of the CHO cell bioprocessing literature spanning 20 years of research is 
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constructed. Then, a novel meta-analysis workflow for analyzing the legacy bioprocessing data 

from the literature is developed. This workflow can extract quantitative features that explain the 

differences in bioprocess performance across culture conditions. In Chapter 3, I focus on the 

construction of the first genome-scale model of the mammal secretory pathway. This model 

enables three new extended metabolic reconstructions that account for the cost of protein secretion 

in Human, mouse, and the Chinese hamster. Then, applications of the reconstruction are presented 

in the context of studying CHO cell bioprocesses. In Chapter 4, I focus on utilizing the secretory 

pathway reconstructions of human and yeast to contextualize proteomic data. The analysis 

presented in this chapter reveals interesting properties of the secretory pathway and provides 

insight into the way that cells regulate the half-lives of its secretory components and the turnover 

rates of intracellular proteins. 
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Chapter 2 - Quantitative feature 

extraction from the Chinese hamster 

ovary bioprocess bibliome using a novel 

meta-analysis workflow 

 

2.1 Abstract 
 

The scientific literature concerning Chinese hamster ovary (CHO) cells grows annually 

due to the importance of CHO cells in industrial bioprocessing of therapeutics. In an effort to start 

to catalogue the breadth of CHO phenotypes, or phenome, we present the CHO bibliome. This 

bibliographic compilation covers all published CHO cell studies from 1995-2015, and each study 

is classified by the types of phenotypic and bioprocess data contained therein. Using data from 

selected studies, we also present a quantitative meta-analysis of bioprocess characteristics across 

diverse culture conditions, yielding novel insights and addressing the validity of long held 

assumptions. Specifically, we show that bioprocess titers can be predicted using indicator variables 

derived from viable cell density, viability, and culture duration. We further identified a positive 

correlation between the cumulative viable cell density (VCD) and final titer, irrespective of cell 

line, media, and other bioprocess parameters. In addition, growth rate was negatively correlated 

with performance attributes, such as VCD and titer. In summary, despite assumptions that 

technical diversity among studies and opaque publication practices can limit research re-use in this 
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field, we show that the statistical analysis of diverse legacy bioprocess data can provide insight 

into bioprocessing capabilities of CHO cell lines used in industry. 

 

2.2 Introduction 
 

The scientific Chinese hamster ovary (CHO) cells have been utilized for academic and 

industrial purposes since the 1950s [87]. Today CHO cells represent the preferred cellular factory 

for the production of important recombinant proteins and biotherapeutics [1], including six of the 

top ten selling biotherapeutics in 2014. In the early days of recombinant protein production, the 

complexity of desired products required a mammalian host. Thus, new CHO cell lines were 

developed, and an entire new field of CHO bioprocessing was born. Throughout the history of 

CHO cell culturing, major technological advances have continued to expand its use in industry.  

Over the past two decades, there has been a steady increase in the number of published 

studies on CHO cell culturing and bioprocessing. However, we still do not fully understand the 

factors that determine the optimal performance of CHO cells during culture. A deeper 

understanding of these factors may possibly be obtained from the retrospective analysis of large 

amounts of carefully collated and curated legacy data on CHO cells. Examples of questions that 

could be explored with the use of an organized repository of CHO bioprocessing data include the 

following. What are the main phenotypic differences across CHO cell lines (e.g., CHO-K1, DG44, 

DUKXB11, CHO-S, etc.)? How do the different culture conditions affect the performance of cells? 

Is it possible to predict titer, viable cell density (VCD) or viability over time given appropriate 

information on the cell line and culture conditions? Are there any significant differences between 

parental cell lines that ultimately translate into a sustained effect in culture performance? Answers 
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to these and many other questions can have important implications on CHO cell bioprocessing and 

help improve recombinant protein quality.  

In an initial step to explore such questions, we compiled and curated the literature between 

January 1995 and June 2015 and identified studies containing biotech-relevant data on CHO cells. 

In addition, we classified each article based on the type of data it contains. Next, we extracted the 

detailed experimental data from a sample of 74 articles [88–161] that contain relevant data on 

CHO cell phenotype, culture performance and production characteristics. Through several 

statistical analyses, we identified significant trends across bioprocesses corresponding to specific 

attributes, such as parental cell lines, culture conditions, growth rates, production capabilities, and 

other research parameters.  While it is often assumed that technical variation and opaque 

publication practices limit research re-use in this field, here we successfully integrate data from 

diverse studies to quantitatively validate long-held assumptions in bioprocessing. Thus, the 

collation and analysis of the ever-increasing data on CHO bioprocessing can provide valuable 

insights for future bioprocessing efforts. 

2.3 Methods 
 

The methodology for realizing the presented quantitative review involved two main phases: 

1) bibliographic compilation of scientific literature on CHO, or “bibliome”, along with the 

extraction and digitization of the metadata to be used for 2) statistical analysis. Figure 2.1 

illustrates the step-by-step workflow and detailed descriptions about each step are provided in the 

following sections. 
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Figure 2.1: Overview of the meta-analysis workflow. The abstracts of all studies published 

between 1995 and July 2015 containing the keywords “CHO cells” or “Chinese Hamster Ovary” 

were downloaded from Thomson Reuters Web of Science. Each abstract was reviewed and 

classified according to its relevance and data type provided. Once the appropriate information was 

extracted and the corresponding figures digitized, the time series data were organized into 

bioprocesses, appropriate filters and outlier detection methods were applied, and calculations of 

cell-specific reaction rates were performed. Finally, statistical indicators were applied, and the data 

were analyzed using a variety of univariate and multivariate statistical methods. KO = gene 

knockout, KI = gene knock-in, OE = gene overexpression, VCD = viable cell density, qP = specific 

productivity, MEM = minimal essential media, EPO = erythropoietin, IVCD = integral of viable 

cell density. 

 

2.3.1 Identification and selection of publications 
 

Thomson Reuters Web of Science was queried to search for all research articles published 

between January 1995 and June 2015 that contained the keywords “CHO cells” and/or “Chinese 

hamster ovary” in the title or abstract. Although the first mention of CHO cells in the scientific 
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literature dates back to 1958 [87] we focused here on studies published within the last 20 years to 

focus more on CHO cell bioprocesses that employ current technologies. This initial set of articles 

was then manually filtered by removing any study involving characterization of a recombinant 

protein expressed in CHO for basic science purposes (e.g., localization, interaction within the cell, 

effects of mutations or consequences of exposure to UV light or radiation).  

 

2.3.2 Extraction of metadata 
 

Most articles in our bibliome utilize graphs and time course plots to present the results. 

Thus, WebPlotDigitizer [162] was used to digitize the data contained in the corresponding articles 

of our sample. From here on, the data extracted from these figures and the associated meta-features 

will be referred as the Phenotype and Production Characteristics dataset. To make the 

proposed analysis comprehensive, we manually annotated each article and figure with 

experimental details that may influence cell phenotypes of interest (see Table 2.1). 

Data series were grouped based on their associated metadata to facilitate subsequent 

analyses. To do this, we assigned a bioprocess identification number (bioprocess ID) to each data 

series corresponding to the same experiment. That is, a bioprocess ID was assigned to each set of 

data series with the same values in each of the metadata features such as cell line, culture media 

and culture conditions. Many articles contain multiple bioprocess IDs since there can be more 

than one bioprocess in a single study (e.g. when a study tests the performance of two cell lines 

under same culture conditions). 
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Table 2.1 Annotated features used for each study included in meta-analysis (n = 74) 

FEATURE 
QUESTIONS 

ADDRESSED 
EXAMPLES 

Author affiliation 

Was the study conducted 

by an academic group or a 

company? 

  

Parental Cell Line 

What is the origin of the 

CHO cell line used in the 

study? 

CHO-K1 

CHO-DG44 

CHO-DUKXB11 

Recombinant Protein Produced 

Which protein is secreted 

by the CHO cells in this 

study? 

tPA 

EPO 

Proprietary mAb 

Culture Media 
What type of media was 

used to cultivate the cells? 

DMEM 

F-12 

Iscoves Medium 

Media Supplementations 

Were there any 

supplements added to the 

media? 

Fetal calf serum 

Fetal bovine serum 

Non-essential amino acids 

Selection Method 

What was the method for 

selecting high-producing 

CHO cells? 

Methotrexate 

Zeocin 

Geneticin 

Genetic manipulations 

Were any genes silenced, 

inserted or overexpressed 

in CHO cells for the 

study? 

Knock-in 

Knock-out 

Were any genes switched 

to be constitutively 

expressed? 

Overexpressed 

Inducible expression 

Culture type 
How were the CHO cells 

cultured? 

Batch 

Fed-batch 

Continuous 

Culture Conditions 

Were there any deviations 

from standard culture 

conditions? 

Temperature shifts 

Low/high pH 

Osmolality 

Were there any chemical 

treatments? 

Addition of NaBu 

Addition of sorbitol 
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Table 2.1 Annotated features used for each study included in meta-analysis (continued) 

FEATURE 
QUESTIONS 

ADDRESSED 
EXAMPLES 

Data in digitized figure or plot 

What are the measured 

variables and what were 

their units? 

Viable cell density 

[millions of cells per unit 

volume] versus time 

[days] 

 

 

2.3.3 Data consistency, outlier detection, and calculations 
 

Computations on data extracted from publications were performed using MATLAB 

(2014b) (Mathworks Inc., USA). Calculations for analyses on raw-variables were done using 

bioprocesses that contained the necessary variables and required meta-information. For instance, 

calculation of cellular growth rate in a bioprocess requires that VCD is known. Similarly, 

calculation of the specific production rate (qP) requires knowledge of both the VCD and the titer. 

Whenever a bioprocess did not include important variables or when data were reported in non-

standard units (e.g. % for titer), the bioprocess was eliminated from the analysis dataset. The 

selection criteria were adjusted according to the requirements of the analysis. For example, both 

VCD and titer of a bioprocess should be reported in appropriate physical units to analyze the 

growth and production characteristics. Once a set of bioprocesses satisfying these conditions was 

identified, calculations were performed. The growth rate µ (in units of 1/h) was calculated from 

the VCD [cells/mL] variable according to Eq. 2.1. 

 

𝜇(𝑡)  =
1

𝑉𝐶𝐷(𝑡)

𝑑

𝑑𝑡
𝑉𝐶𝐷(𝑡)        (Equation 2.1) 
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Similarly, the specific production rate, qP [mg/cell/h], was calculated from the reported titer (or 

product concentration), cP [g/mL] and VCD (Eq. 2.2). 

 

𝑞𝑃(𝑡)  =
1

𝑉𝐶𝐷(𝑡)

𝑑

𝑑𝑡
𝑐𝑃(𝑡)        (Equation 2.2) 

 

The derivatives of VCD and titer were computed using a Savitzky-Golay filter [163] with 

a window size of 3 data points and polynomial degree of 1. The derivative of the growth rate was 

used for estimating the duration of the adaptation and growth phases and the time point at which 

this derivative becomes negative was selected as the ending point of the exponential growth phase. 

To obtain a reliable dataset, outlier bioprocesses were detected and removed. Visual 

inspection of the dataset revealed that some reported values were unlikely (e.g., the end value of 

some VCD curves was 20 times higher than the median of all other bioprocesses). For detecting 

such extreme cases, an outlier removal test based on median absolute deviation [164] was 

implemented with lenient cutoffs of greater than 20. The outlier removal method was applied on 

the median of VCD and growth rate on the level of bioprocesses. Outliers detected with the cutoff 

of 20 were attributed to errors during digitization or incorrect axis labels and could be corrected 

(only 2.1% of VCD data points were detected as outliers). To remove outliers in individual 

variables, the Hampel filter [103] method was applied using a moving-window approach with a 

window size of 3 and a cutoff value of 3. Each signal value at a time-point was compared to the 

median of itself and its adjacent neighbors. Values with absolute distances higher than three times 

the median absolute deviation were replaced by the median. Replacing outliers with the median 

was chosen to avoid potential reduction of the number of data points. The Hampel filter has been 

shown to be an effective and statistically robust measure against potential outliers [103]. Thus, this 
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approach allowed the elimination of outlier data points that would otherwise distort the quality of 

extracted information. 

 

2.3.4 Data consistency, outlier detection, and calculations 
 

The dataset consists of multiple experiments, each containing several variables reported 

over time; thus, the dataset has three modes: experiment, variable, and time. To apply existing 2D 

statistical methods, such as pairwise correlation analysis and Partial Least Squares (PLS) 

regression, the time mode was eliminated by either taking the value of a variable at a given time 

point or calculating indicator variables over a specified time range using statistical operators, such 

as the mean or the maximum value. Table 2.2 contains the list of indicator variables that are related 

to process variables (X) in addition to variables that are related to quality attributes or production 

aspects (Y). Prior to the application of multivariate analysis methods, variables with high skewness 

were transformed approximately into a normal distribution according to the functions specified in 

Table 2. The criterion for deciding which variables needed transformation was based on a 

combination of skewness statistics and minimum and maximum values [110]. For calculating some 

of the indicator variables, the duration of the growth phase in each bioprocess (tgrowth) was 

determined by calculating the derivative of VCD and detecting the time point corresponding to the 

value of the derivative becoming zero. Thus, the duration of the growth phase (tgrowth) is the time 

it takes to reach maximum VCD. The total duration of each culture is indicated by tend, which can 

include stationary phase and culture die-off. Culture duration (tend) is greater or equal to the 

duration of growth phase (tgrowth).  
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2.3.5 Statistical analysis 
 

To determine whether different classes of bioprocesses (e.g. different parental cell line or 

process mode), are different with respect to indicator variables, the nonparametric Kruskal–Wallis 

test [165] was used under the assumption that the groups have identically shaped distributions with 

the null hypothesis being that the medians of all groups are equal. This test is suitable when the 

measurement variable does not meet the normality assumption of one-way ANOVA. Since we 

transformed skewed variables prior to testing, the assumption of identical distributions can be 

made, and the test can be used to assess the differences in medians or means. When significant 

differences were detected, the Dunn’s test [166] was employed for determining which of the 

sample pairs were significantly different. Determination of correlations between pairs of variables 

was performed by calculation of the Spearman rank correlation coefficient (rS). 

PLS regression was used for relating process variables with quality attributes [167]. PLS 

models were calculated using the software SIMCA ver. 13.0.3.0 (Umetrics, Sweden). The X and 

Y variables for all PLS models, were transformed into approximate normal distributions by 

applying transformation functions as listed in Table 2.2. Individual models were generated for 

each of the three response variables listed in Table 2.2. All variables were mean centered and 

scaled to unit variance. For estimating the predictive power of the model, the Q2 value was 

calculated by cross-validation, dividing the data into 7 parts. To determine the importance of each 

variable for both X and Y, Variable Importance for Projection (VIP), which is a sum of squares of 

the PLS weights with the weights calculated from the amount of Y-variance of each PLS 

component, were calculated [168].  
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Table 2.2: Indicator variables for summarizing bioprocess characteristics. Variables were 

either calculated over the specified time span or at a point. Data transformation was performed to 

achieve approximate normal distributions. For Viabend and dViab, the applied transformation 

changes the direction of the effect 

ID Abbreviation Description Units 

Data 

transformati

on 

Time 

span 

X1 µave 
Average 

growth rate 
[1/h] log(X1) 

[t0, 

tgrowth] 

X2 µmax  
Maximum 

growth rate 
[1/h] log(X2) 

[t0, 

tgrowth] 

X3 tend 
Duration of 

culture 
[h] log(X3) tend 

X4 tgrowth 
Duration of 

growth phase 
[h] X4 tgrowth 

X5 VCDmax 
Maximum 

value of VCD 
[cells/ml] log(X5) [t0, tend] 

X6 VCDend 
Final value of 

VCD 
[cells/ml] log(X6) tend 

X7 VCDint 

Integral of 

VCD over 

culture 

duration.  

[cells*h/ml] log(X7) [t0, tend] 

X8 Viabend 
Final value of 

viability  
[%] log(100- X8) tend 

X9 dViab 

Minimum rate 

of change of 

viability. 

dViab/dt ≤ 0 

[%/h] log(-X9) [t0, tend] 

Y1 P 

End value of 

titer (product 

concentration) 

[mg/ml] log(Y1) tend 

Y2 qP 

Average of 

specific 

productivity 

[mg/cell/h] log(Y2) [t0, tend] 

Y3 YP/X 

Yield of 

product / 

viable cells 

[mg/cell] log(Y3) tend 
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2.4 Results 
 

2.4.1 The CHO bioprocessing bibliome 
 

The initial raw list of publication abstracts downloaded from Thomson Reuters Web of 

Science included 10,279. After filtering out non-bioprocessing CHO studies, a final list of 1157 

biotech-relevant articles were included in the final CHO bibliome and each of these studies was 

classified into one or more of the 16 categories listed in Table 2.3 according to the type of 

information contained. Figure 2.2A reveals the evolution of the trends in publication types over 

time and the predominance of the “Phenotype and Production characteristics” category. The 

stacked bars of Figure 2A are grouped in three sets to capture interesting features across time 

periods and to ease visualization. The bottom set (1995-2001) is characterized by having a large 

proportion of enzyme-related analysis and review articles. The middle set (2002-2008) shows a 

“dip” in the number of articles relevant to CHO bioprocessing published annually. The latter part 

of this period is characterized by a slow increase in the number of studies using high-throughput 

data (e.g. gene expression, proteomics). Finally, as expected, the omics studies on CHO cells are 

more abundant in the top set (2009-2015) due to the appearance of novel technologies for DNA 

sequencing, mass spectrometry and metabolomics. Note that the number of articles in the year 

2015 does not include studies published after the month of June of that year. 

A total of 618 studies were classified under the Phenotype and Production 

Characteristics category. With respect to the authorship of the corresponding authors, 23% of 

these 618 articles were led by a corresponding author affiliated to industry whereas the rest were 

led by a corresponding author affiliated to an academic institution (see Figure 2.3A). From this 

category, 74 articles were included in the meta-analysis. The distribution of cell lines reported in 



33 

 

these 74 articles is like that of the bibliome. Furthermore, these articles provided ample diversity 

of bioprocess information such as cell viability, VCD, titer, specific productivity, growth rate, and 

specific consumption/secretion rates of important metabolites (e.g. glucose, glutamine, lactate and 

ammonia). From here, 529 relevant figures were identified, and these yielded a total of 1489 data 

series after digitization. 

 

Figure 2.2: Graphical representation of the CHO bibliome. (A) Distribution of the number of 

articles in each category of the CHO bibliome over time as a percentage of the annual total. (B) 

Schematic of revised literature used to construct the bibliome. The orange set represents the total 

number of articles downloaded from Web of Science. The green set contains the studies included 

in the CHO bibliome. The blue set contains all studies under the “Phenotype and Production 

Characteristics” category and an additional bar chart shows the distribution of the number of 

articles in this category over time. Finally, the red set contains the articles included in our meta-

analysis. The numbers inside each circle indicate the size of the corresponding set. The insert 

shows a bar plot of the number of articles in the “Phenotype and Production characteristics” 

category over time. 
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Table 2.3: Categories used to classify relevant research articles in the CHO bibliome 

according to the data contained in each study. Studies were assigned to more than one 

category when relevant.  

Category 
Examples of data contained 

within category 

Total number of studies 

in category 

Phenotype and Production 

Characteristics 

➔     Yield (mass of target 

protein per mass of substrate) 

over culture time 

618 

  

➔     Titer (mass of target 

protein per unit of culture 

volume) over culture time 

  

➔     Cellular percentage  

viability over time 

  

➔     Effects of culture 

conditions on protein 

secretion 

➔     Dependence of growth 

rate on culture temperature, 

pH, osmolarity 

  

➔     Changes in viable cell 

density according to culture 

media supplementations 

  

➔     Cellular adaptation to 

different concentrations of 

methotrexate during selection 

Enzyme Analysis 

➔     Functional 

characterization of specific 

enzymes that are important in 

CHO cells 

154 

Purification and Separation 

Methods 

➔     Recombinant mAb 

purification methods in CHO 

cultures 

60 
  

➔     Analysis of recombinant 

protein composition after 

separation 
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Table 2.3: Categories used to classify relevant research articles in the CHO bibliome 

according to the data contained in each study (continued) 

Category 
Examples of data contained 

within category 
Total number of studies 

in category 

Proteomics 

➔     Prediction of presence 

of a protein in CHO cells 

from genetic sequences 

37   

➔     Effects of culture 

conditions on proteome 

composition 

Gene expression and 

Transcriptomics 

➔     Differential gene 

expression under different 

culture conditions (e.g. 

treatment with NaBu) 52 
  

➔     Analysis of CHO 

transcriptome 

Glycosylation 

➔     Glycomics profiling for 

different CHO cell lectin 

mutants 

72 

  

➔     Effects of culture vessel 

volume and revolutions per 

minute on glycosylation 

profile of target protein 

  

➔     Comparison of 

glycoprofiles between 

humans and CHO cells 

Metabolism and Metabolic 

Flux Analysis 

➔     Estimation of enzyme 

kinetic parameters 

35 

  

➔     Metabolic flux analysis 

in culture at steady state 

  

➔     CHO cell doubling 

times 

  

➔     Effects of media 

supplementations on 

metabolic pathways 
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Table 2.3: Categories used to classify relevant research articles in the CHO bibliome 

according to the data contained in each study (continued) 

Category 
Examples of data contained 

within category 
Total number of studies 

in category 

Modeling 

➔     Kinetic modeling of 

batch / fed batch bioprocesses 

with CHO 

39 

  

➔     In silico metabolic 

analysis (e.g. Flux balance 

analysis) 

  

➔     Models for predicting 

optimal culture conditions 

  

  

Secretory Pathway and 

Product Secretion 

➔     Measurements of 

protein secretion rates 

37 

  

➔     Characterization of 

proteins/enzymes involved in 

the secretory pathway 

  

➔     Dynamics of the 

unfolded protein response 

during cell culturing 

RNAs and codon usage 

➔     Identification of miRNA 

during specific culture 

conditions 

23 

  

➔     Cell engineering with 

the use of non-coding RNAs 

  

➔     Role of RNAs on 

apoptosis 

Genomics and Epigenetics 

➔     CHO cell line-specific 

genome sequences 

24 
  

➔     Effects of genome 

methylation on production 

stability 
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Table 2.3: Categories used to classify relevant research articles in the CHO bibliome 

according to the data contained in each study (continued) 

Category 
Examples of data contained 

within category 
Total number of studies 

in category 

Culture Strategy and 

Bioreactor Design 

➔     Automation of 

bioprocesses 

26 

  

➔     Comparison of CHO 

cells performance in different 

types of bioreactors 

  

➔     Novel strategies for 

culturing CHO cells 

Expression and 

Transfection Methods 

➔     Promoter-based control 

of expression vectors 

30 
  

➔     Transient transfection 

methods in cultivation 

systems 

Cell line construction and 

characterization 

➔     Characterization of 

mutant cell lines and their 

associated phenotype 

30 

Metabolomics and 

Fluxomics 

➔     Systems-level 

measurement of intracellular 

metabolite concentrations 

40   

➔     Large-scale 

measurement of 

uptake/secretion rates 

Review article or other 

➔     Review articles on CHO 

cells, high-throughput data for 

CHO culturing, and 

bioprocessing control 
127 

  

➔     Hydrodynamic stress 

analysis of CHO cells in 

culture 

 

 

The compiled database of Phenotype and Production Characteristics provides a valuable 

dataset through which insights into general trends in CHO bioprocessing can be gained and key 
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attributes can be identified. By classifying each study and extracting bioprocess data, it is possible 

to address several questions related to cell phenotypes, the interactions between process variables, 

and to test long-held assumptions in the field of CHO bioprocessing. 

 

 

Figure 2.3: Overview of the CHO bibliome and the subset of articles used for meta-analysis. 

(A) Author affiliation of all articles. (B) Author affiliation of the analyzed articles. (C) Distribution 

of cell lines in all bioprocesses. DHFR- corresponds to bioprocesses where the authors did not 

divulge the exact parental cell line but did report that the cell line used is dihydrofolate reductase-

deficient. (D) Distribution of bioprocess operation modes. (E) Availability of media composition. 

(F) Type of reported variables. 

 

2.4.2 Overview of the Phenotype and Production Characteristics Dataset 
 

The 74 articles, from which the Phenotype and Production Characteristics dataset was 

constructed, consist of a range of cell lines, process conditions, and experimental setups (Figure 

2.3). The 1489 time-series were grouped together based on similar process parameters, resulting 

in the identification of 592 individual bioprocesses and the distribution of cell lines within these is 
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shown in Figure 2.3C. Around 29% of bioprocesses did not specify a parental cell line (referred 

as “Unreported” parental cell line in this study) meaning that the authors utilized proprietary CHO 

cell lines or did not disclose the information for other reasons. In other bioprocesses, the exact 

parental cell line is not specified but at least it is indicated that the parental cell line is dihydrofolate 

reductase deficient (DHFR-). The parental cell line for these bioprocesses was thus simply named 

DHFR-. The DHFR- group in the classification could include DUKXB11 or DG44, but the authors 

did not specify. However, among the other bioprocesses in which the authors disclosed the parental 

cell line, the DUKXB11 and DG44 lines were found to be the most prevalent in our sample 

representing 29% and 22% percent of the bioprocesses, respectively. For an in-depth review of the 

origins and properties of the different CHO cell lines, the reader is referred to [105]. Finally, the 

subset of articles included in the meta-analysis showed a distribution of industrial vs. academic 

authorship that was very similar to that of the 618 articles in the Phenotype and Production 

Characteristics category (Figures 2.3A-B). 

Bioprocesses that utilize the major types of culturing modes were included in our study as 

shown in Figure 2.3D. Most of the bioprocesses (43%) were found to be batch cultures, while fed-

batch and continuous processes accounted for 22% and 5% of the total, respectively. Although it 

is widely known that fed-batch and continuous (e.g. perfusion) cultures commonly outperform 

batch processes with respect to production amount, the high prevalence of batch processing is 

likely due to the less challenging implementation requirements and shorter culture durations, 

making batch cultures suitable for rapid analysis of various experimental conditions. Media 

compositions (Figure 2.3E) were obtained from each article (n=74) and a total of 135 unique media 

compositions were identified as some studies described more than one formulation. We observed 
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that almost half of the reported media compositions were proprietary, suggesting that the use of 

proprietary media formulations is prevalent in both academic as well as industrial settings. 

Across the studies, several types of data were reported in the extracted time-series variables 

(n=1489), hinting at process variables commonly deemed as important or critical by most authors 

(Figure 2.3F). Viable cell density was the most commonly reported data type (34%), followed by 

titer (25%). Specific rates, such as the growth rate, which are often important variables due to their 

suitability for providing physiological insights, were reported rarely (<1%).  

In summary, the Phenotype and Production Characteristics dataset provides a diverse 

collection of phenotype-related variables that can lead to generation of insights into various aspects 

of CHO bioprocessing. In the following sections, a combination of statistical methods to extract 

information will be presented. 

 

2.4.3 Fed-batch bioprocesses exhibit longer growth phases and higher titer 
 

Bioprocess setup and cultivation strategies significantly influence product yields and 

quality [169]. By comparing the performance of batch and fed-batch processes within the subset 

of 592 bioprocesses, it was possible to recapitulate known differences between these two 

processing strategies, thereby increasing the general confidence in the dataset and the soundness 

of the statistical methods employed here.  

Fed-batch processes were found to be superior with respect to production variables [104]. 

The final titer was significantly higher in fed-batch processes compared to batch processes 

(p<0.01). However, the differences in specific productivity (qP) could not be statistically 

established (p=0.057). Similarly, the product yield (or product to biomass coefficient) YP/X was 

also not significantly different between the two process modes (p=0.053). Therefore, the difference 
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in final product yield could be attributed to higher maximum viable cell densities in fed-batch 

cultures (p<0.01), resulting from a longer growth phase duration as well as longer total duration 

of culture (p<0.01). Comparison of the growth rate of the two culture modes revealed that the 

average growth rate during the growth phase was not significantly different. Thus, due to the longer 

growth phase in fed-batch cultures, fed-batch bioprocessing allows for higher viable cell densities 

via regular supplementation of nutrients. While these results recapitulate known differences 

between batch and fed-batch cultures, this validation demonstrates that relationships between 

process variables and outcomes can be identified despite the heterogeneity among the studies. 

 

2.4.4 Common production CHO cell lines show significant physiological 

differences 
 

Recombinant protein production is influenced by many factors, including growth rate, 

viability, culture and growth phase duration, and media conditions [170]. To shed light on some 

of the differences among CHO cell lines, three main indicators, namely average growth rate, 

average cell-specific productivity, and the maximum viable cell density were compared among 

different cell lines found in the meta-analysis subset.   

As shown in Figure 2.4A, different cell lines show significant differences with respect to 

the average growth rate during the exponential growth (log) phase. Interestingly, despite some 

reports that the growth rate of the K1 cell line is higher than DHFR-deficient lines, such as DG44 

and DUKXB11 [106], our dataset shows the K1 cell line (n=27) grew significantly slower than all 

other cell line groups (see Supplementary Table 4). Also, growth rate in bioprocesses involving 

the DUKXB11 (n=77) and Unreported (n=61) parental cell lines were found to be significantly 

higher than the other cell lines (p<0.01). The high growth rate of the Unreported group could be 
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since publications without cell line specification often utilized proprietary lines that have been 

optimized for higher growth rates. The difference between the high-growth group (DUKXB11 and 

Unreported) and another group consisting of DG44 (n=79) and DHFR- (n=32) was also 

statistically significant. To our knowledge, comparison of growth rate between the main DHFR-

deficient CHO cell lines, that is DUKXB11 and DG44, has not been addressed in the scientific 

literature to-date. 

 

Figure 2.4: Phenotypic differences among main CHO cell lines. (A) Comparison of the mean 

growth rates of different cell lines over the growth phase duration of batch and fed-batch 

bioprocesses. (B) Comparison of the maximum viable cell densities of different cell lines over the 

growth phase duration. (C) Comparison of the specific production rate of different cell lines. The 

qP for the DG44 cell line is significantly (p<0.01) larger than the DUKXB11 and Unreported cell 

lines (CHO-K1 was excluded for this experiment due to lack of titer data). The difference between 

the median of DHFR- and other cell lines is not statistically significant due to the small number of 

bioprocesses in the DHFR- group. Numbers in brackets correspond to the number of bioprocesses 

in each group. The medians of each box plot are indicated with x̃. 

 

VCD is considered an important quality attribute of CHO bioprocesses since higher culture 

viability and delayed loss of viability often result in higher product titers. Comparison of the 
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maximum value of the VCD signal between different cell lines (Figure 2.4B) and its integral over 

the duration of the growth-phase (IVC) revealed that DG44 and Unreported cell line groups show 

the highest viable cell densities. The difference between the maximum VCD of the DG44 cell line 

and DUKXB11, K1, and DHFR- groups is significant (p < 0.05). These results suggest that 

although the growth rate of DG44 is lower than DUKXB11, higher VCDs are reached most 

probably due to a more sustained growth phase by DG44.   

The DG44 cell line demonstrated significantly higher specific production rates than the 

DUKXB11 and Unreported cell lines (p < 0.05) (Figure 2.4C). To compare the production 

characteristics between different cell lines, bioprocesses were selected based on the availability of 

VCD and titer signals. Since many articles did not report these signals simultaneously, only a 

subset of the dataset could be used (n=100 bioprocesses). In addition, many publications reported 

titer in relative units, which resulted in their elimination from further analysis. The specific 

production rate, qP, was calculated over process duration for each remaining bioprocess, and the 

average value of qP over time was calculated as an indicator variable. Comparison of the median 

of this indicator variable among different cell lines was performed using Kruskal–Wallis and 

Dunn’s tests. The tests showed that DG44 cells exhibit significantly higher specific productivity 

than DUKXB11 and Unreported cell lines (p<0.01). As the selected subset of bioprocesses did not 

contain any bioprocess belonging to the K1 group, comparisons with CHO-K1 could not be 

performed. Viability was not found to be significantly different among the remaining cell lines. In 

addition to the mean and median of viability over process duration, the rate of decrease of viability 

was calculated and a significant difference was not detected.  

In summary, significant differences among cell lines were observed with respect to growth 

rate, viable cell density, and specific production rate. Overall, the Unreported and DUKXB11 cell 
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lines were found to exhibit similar growth and production characteristics, leading to the hypotheses 

that industrially-derived cell lines could be based on DUKXB11. A comparison of DG44 and 

DUKXB11 cell lines substantiates the long-held assumption that growth rate and specific 

productivity are inversely correlated, and bioprocesses with a low growth rates and more sustained 

growth phases exhibit higher specific productivities. The large number of bioprocesses in the 

DG44 (n=79) and DUKXB11 (n=77) cell lines made a direct comparison of these two groups 

possible, leading to the conclusion that the DG44 line could be more suitable for production of 

recombinant proteins that would benefit from its higher maximum viable cell densities and specific 

productivities.  

2.4.5 Industrial bioprocesses show higher VCD but not titer 
 

Industrial bioprocessing has been particularly successful at process optimization, resulting 

in cell lines with much higher yields. Therefore, we wondered if the published work from industry 

demonstrated a clear improvement over research coming from academic groups. Thus, we 

compared the performance of bioprocesses with respect to corresponding author affiliation 

(industrial vs. academic) and found no significant difference between the mean and maximum 

growth rates. However, industrial publications reported significantly higher maximum VCDs 

compared to academic publications. Similarly, the integral of VCD was also higher in industrial 

bioprocesses. Despite higher VCD values in industrial publications, we did not detect a significant 

difference in the specific productivity between industrial and academic publications. Furthermore, 

the difference between maximum titer was not significant between the two groups. In short, while 

the VCD of industrial publications appears to be higher than the other group, the higher VCD 

values do not translate into higher production rates in published work from industry.  

 



45 

 

2.4.6 High growth rate is anti-correlated with many process quality 

attributes 
 

Using the previously presented comparison of bioprocess characteristics among different 

classes, it was possible to reveal some of the relationships between individual bioprocess variables. 

To arrive at a more comprehensive overview of the relationships between variables in the dataset, 

pairwise correlation analysis using the Spearman rank correlation coefficient was conducted 

(Figure 2.5). The objective of this analysis was to find relationships that are present across a wider 

range of bioprocesses irrespective of their class assignments, e.g. cell line. Data used for the 

analysis originated from a subset of 100 bioprocesses that contained the required time-series 

variables for the calculations (including VCD, viability, and titer). The bioprocesses were not 

selected according to any other criteria; therefore, they contained variations with respect to cell 

line and other class conditions. The significance of the correlation coefficients was determined by 

testing the null hypothesis of no correlation against the alternative of a nonzero correlation. 

Although some of the observed correlations were expected, such as between VCDmax and VCDint, 

the correlation matrix also highlights some more interesting relationships which hint at the 

underlying physiology of CHO cells. 

Higher growth rates during exponential phase are preferable since they enable the rapid 

expansion of seed trains and are expected to achieve higher cell densities and titers more quickly. 

However, we found that several process quality attributes anti-correlated with the average growth 

rate of bioprocesses during the growth phase (µave). Specifically, growth rate was negatively 

correlated with the final titer (P), suggesting that processes with lower growth rates have higher 

amounts of target product at the end of the process and vice versa. The inverse relationship between 

productivity and growth rate has been previously highlighted [171, 172] and our results also 
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recapitulate a positive correlation between titer and VCD as discussed in Clarke et al. [90] (see 

Figure 2.5). Average growth rate was also negatively correlated with specific productivity (qP), 

the yield of product per viable cells (YP/X), maximum viable cell density (VCDmax), time integral 

of viable cell density (VCDint), total duration of culture (tend), and duration of the growth phase 

(tgrowth). The surprising result of negative correlations between average growth rate and production-

related variables could be attributed to higher flux through glycolysis and therefore overflow 

metabolism, which results in the production of toxic byproducts such as lactate [173] and a loss of 

the energetic efficiency of CHO cells. These effects would adversely affect protein titers [107], 

reduce viable cell density [173], and deplete sugars, leading to earlier culture termination. In the 

present dataset, analysis of lactate production and consumption revealed a link between the glucose 

concentration in the medium and the ability of CHO cells to switch to low glycolytic flux, partially 

confirming results from a previous study [108]. 

While growth rates were anti-correlated with various process quality attributes, we found 

that the time integral of viable cell density over the entire culture duration (VCDint) positively 

correlates with final titer, consistent with previous reports [174]. In summary, our results suggest 

that while high growth rates and high VCDs might be good for seed train expansion and scale-up, 

a more sustained growth phase at lower rates is associated with higher production of recombinant 

proteins. 

2.4.7 Viable cell density significantly predicts product titer 
 

The diverse range of parameters (i.e. different cell lines, media, process modes, etc.) that 

were varied among the studies opens opportunities to explore correlations between process 

variables and quality attributes using multivariate methods such as PLS. Such relationships can 

provide hints about possible underlying mechanisms and relationships between important 
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phenotypic variables. Using the input matrix consisting of variables (X), three different PLS 

models were generated, each for prediction of a different target (Y) variable (Table 2.2). To assess 

model quality, the Q2 value was used to quantify a model’s predictive power using cross-

validation. As summarized in Table 2.4, a model was developed that could predict final titer (P) 

satisfactorily (Q2>0.5).  

Table 2.4: Figures of merit for PLS models. LVs: number of latent variables of the PLS model. 

R2X: X-block variance, R2Y: Y-block variance, Q2: model’s predictive power assessed via cross-

validation (acceptable models should be >0.5). 

Target 

variable 
LVs 

R2X 

(cum) 

R2Y 

(cum) 
Q2 

P: final titer 3 0.847 0.664 0.635 

qP: specific 

productivity 
2 0.736 0.364 0.324 

YP/X: yield 

P/X 
2 0.741 0.405 0.362 

 

According to the Variable Importance for Projection plot (Figure 2.5A), the integral of 

viable cell density (VCDint) is the most important variable in the model for prediction of product 

titer, and higher values of this variable imply higher final titers. The final value of VCD (VCDend) 

is the second most important variable in the model and has a negative coefficient. Culture duration 

(tend) is the third most important variable in the model and has a positive correlation with the end 

titer (Figure 2.5B). Using pairwise correlation analysis (Figure 2.6), the final value of VCD 

(VCDend) was found to show a small positive correlation with the final value of titer (P). However, 

in the multivariate PLS model, VCDend was found to have a large negative overall coefficient for 

predicting titer (Figure 2.6B). The negative coefficient for VCDend is caused by considering several 

compounded relationships in multivariate models. The PLS model consists of three latent variables 
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(LVs), each representing a selected portion of the decomposed variance in X variables. The first 

LV showed positive loadings for VCDint, duration of growth (tgrowth), duration of culture (tend), 

VCDmax, and VCDend. This LV can be interpreted as representing the expected association between 

higher VCD and higher final titer. The second LV showed significant negative loadings for average 

growth rate (µave) and maximum growth rate (µmax), hinting generally at the inverse association 

between growth rate and final titer and confirming the results found previously using pairwise 

correlation analysis. The third LV had a positive loading for culture duration (tend) and a large 

negative loading for final VCDend. The relationship represented by the third LV can be attributed 

to cell lysis, leading to the release of intracellular products (higher titer) and loss of viability (lower 

VCD). By combining these effects, the multivariate model can make a significant prediction of 

final titer, revealing relationships in the dataset that are not readily accessible using univariate 

methods. 

 

Figure 2.5: Prediction of titer from process variables. (A) Variable Importance for Projection 

(VIP) plot of a PLS model for prediction of final titer. A variable with a VIP Score close to or 

greater than 1 can be considered important in given model (blue). Variables with VIP scores 

significantly less than 1 are less important and might be good candidates for exclusion from the 

model (gray). (B) Coefficients of the PLS model for prediction of final titer (significant 

coefficients are blue). 
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Figure 2.6: Spearman's rank correlation matrix. Significant correlation coefficients (p<0.01) 

are marked by full size circles. Red circles: positive correlation, blue circles: negative correlation. 

For more information about the variables, see Table 2.2. 

 

2.5 Discussion 
 

In this chapter, we have presented a large bibliographic collection of all published CHO 

cell research from the past 20 years. This bibliome includes 1,157 articles classified into 16 

categories according to the type of data they contain. Using this resource, we conducted a meta-

analysis including data from 592 individual bioprocesses published in 74 articles from the 
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“Phenotype and Production Characteristics” category in our bibliome; thus, we present here the 

largest published meta-analysis of CHO bioprocessing to date.  

In our meta-analysis, we elucidated physiological differences across several CHO cell 

lines. These differences generally appear in the form of mean growth rate, specific productivity, 

and maximum viable cell density. Since our analysis used data from a sample of all studies, we 

anticipate that higher resolution insights can be obtained as data are extracted from additional 

papers in a targeted manner to address specific questions. For example, for questions related to 

protein production rates, there are many bioprocess and cell-specific factors that influence this 

critical bioprocess attribute, such as the type of production process, protein size, its chemical 

characteristics, and the host cell line. Future studies including larger datasets could possibly 

consider these diverse factors by specifically looking at one or more classes of product and 

controlling for the various bioprocess parameters that may influence protein production. 

We were also able to investigate correlations between culture variables (e.g. growth rate, 

titer, percentage viability, viable cell density). Many correlations agreed with knowledge in the 

field. For instance, we saw that the average growth rate during the growth phase exhibited an 

inverse correlation with production-related characteristics, such as specific productivity and final 

titer. This inverse relationship has previously been attributed to factors, such as energetic burden 

of protein expression [175], overflow metabolism at higher growth rates accompanied by secretion 

of toxic by-products [173], and a less efficient energetic metabolic state during overflow 

metabolism [173]. Our ability to recapitulate such effects here demonstrates the validity of the 

methodologies used for analysis and that the physiological characteristics of CHO cells seen here 

are largely independent of variations of cell line, selection conditions, media composition and other 

bioprocess parameters. 
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Further application of the presented meta-analysis methodologies could help identify 

control and optimization strategies, especially in industrial settings when huge amounts of 

historical bioprocess data are available for analysis. As shown here, general trends and product-

independent characteristics of a production platform could be identified, facilitating the design of 

new strategies for improving cell line selection and process conditions. For instance, in the 

presented meta-analysis, the time integral of VCD was identified as one of the most important 

factors for predicting maximum titer (Figure 2.5A), which is consistent with previous reports 

[174]. Thus, performance improvement strategies, such as media design or cell line selection, 

could be devised accordingly. In other words, despite the variance across such a heterogeneous set 

of studies, we identified significant correlations and factors that are common in all studies and thus 

could be transferable to any CHO culture as the main variables in a bioprocess (i.e. titer, VCD, 

viability) conserve inherent relationships that seem to be independent of the variations in culture 

conditions. From this, one can imagine the potential of combining the knowledge of bioprocessing 

control with systems-level understanding of the fundamental metabolic, glycosylation and 

secretory capabilities of CHO cells [100, 101, 109]. 

Going forward, this chapter demonstrates how bioprocess data can be collected and 

analyzed to deepen our understanding of parameters that influence quality attributes. In our 

analysis, we used heterogeneous data, collected from numerous different researchers over two 

decades. With better standardization and reporting of research findings, similar meta-analysis 

methodologies can be applied for answering diverse questions in academic and industrial 

bioprocess optimization. To fully enable this, several improvements in data reporting are 

necessary. First, organization of key metadata would facilitate more rapid re-use of information. 

Specifically, more complete datasets would be available if a standard format for reporting relevant 
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information of bioprocessing experiments were adopted by the bioprocessing community. For 

instance, authors should completely report all aspects of a bioprocess instead of citing other studies 

when it comes to important conditions, such as the parental CHO cell line from which the cells 

under study were derived. Similarly, a standard set of experimental parameters could be reported, 

such as temperature, pH or the osmolality of the experiments. Such standards have been 

established for many other fields, requiring “Minimum Information” for a given data type upon 

publication [176–178]. Adherence to such a standard in our community would enable improved 

data re-use and increase the knowledge in the field. 

Standardized reporting and formatting of data can be difficult, given the proprietary nature 

of products and processes (e.g., proprietary media and cell lines) used in the biopharmaceutical 

industry. However, one recommendation derived from this study would be to include as many 

details as possible when reporting culture conditions and to not underestimate the value of 

reporting variables such as osmolality, pH and temperature since it has been observed that these 

parameters can affect the metabolism and physiology of CHO cells, and thereby affect the overall 

outcome of a bioprocessing experiment [92, 179]. We also recommend the inclusion of numerical 

values of all measurements, when reporting relevant measurements such as VCD, viability and 

product concentration (titer). Some journals are aiding in this by allowing authors to include 

supplementary data tables that provide the exact data used for the article figures [180]. This would 

facilitate the comparison of the results and would prevent any potential biases that result from 

digitization of plots (especially in log scale plots). 

Finally, as we enter the so-called “Big Data” driven era of research, there is an ever-

increasing need to standardize how data are reported in each field. In the case of CHO 

bioprocesses, this could be accomplished by proposing a unifying format for summarizing the 
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methods and results of a study as to structure them in the abstract of the article. Furthermore, an 

important driver that motivated the realization of this study is the fact that the CHO community 

lacks a public database of bioprocessing data. Such a database would be invaluable for the 

advancement of the field and for fostering collaboration around the globe with experts in different 

areas of the CHO bioprocessing field. Thus, standardizing the language and the semantics used for 

reporting CHO data will be indeed a necessary preliminary step for the construction and 

maintenance of such knowledge repository.  

 

2.6 Conclusions 
 

Here we present a bibliome and meta-analysis for CHO, consisting of a combination of 

data mining tools, bioprocess-specific data treatment methodologies, and tailored statistical 

analysis methods. Together, these tools lead to the identification of important trends and 

relationships among bioprocess parameters. The extracted features are indeed of high importance 

for process developers using CHO. Therefore, our methodology could be expanded and applied to 

generate valuable hypotheses from a more diverse set of experimental data. Such hypotheses could 

be tested experimentally and refined by means of systems biology modeling [181] and other 

computational tools that could then help in the development of mechanistic models for CHO cell 

culturing [9]. Furthermore, retrospective meta-analyses of literature data, such as presented here, 

provide correlations that can be invaluable for subsequent experimental design in order to arrive 

at causal relationships, and ultimately the rational design of novel cell factories [10] through 

genome engineering [182]. Finally, we hope that the present analysis triggers further discussions 

on the establishment of data reporting standards for bioprocessing experiments and motivates the 

future development of more studies on the topic. 
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Chapter 3 - A genome-scale 

reconstruction of the mammalian 

secretory pathway for analysis of 

energetic trade-offs in bioprocesses 

 

3.1 Abstract 
 

In mammalian cell lines, >25% of proteins are synthesized and exported through the 

secretory pathway. The pathway complexity, however, obfuscates its impacts on the secretion of 

different biopharmaceuticals. Here we delineate the core secretory pathway functions and integrate 

them with the genome-scale metabolic model of Chinese hamster ovary (CHO) cells. The resulting 

reconstruction, called iCHO2048s, enables the computation of the energetic costs and machinery 

demanded by secreted proteins. We predicted metabolic costs and maximum productivities of 

biotherapeutics and identified protein features that most significantly impact protein secretion. By 

integrating additional metabolomic, glycoproteomic and ribosomal profiling data, we further 

found that CHO cells have adapted to reduce expression and secretion of expensive host cell 

proteins. Our work represents a knowledge-base of the mammalian secretory pathway that serves 

as a novel tool for systems biotechnology. 

3.2 Introduction 
 

To interact with their environment, cells produce numerous signaling proteins, hormones, 

receptors, and structural proteins. In mammals, these include >3000 secreted proteins (e.g., 
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enzymes, hormones, antibodies, extracellular matrix proteins, etc.) and >5500 membrane proteins 

[183], most of which are synthesized and processed in the secretory pathway. The secretory 

pathway is a complex series of processes predominantly in the endoplasmic reticulum (ER), Golgi 

apparatus, and other components of the endomembrane system. In these compartments, the 

synthesis of the thousands of membrane and secreted proteins is facilitated by hundreds of other 

proteins that make up the secretory pathway machinery. These are used to translate, fold, post-

translationally modify, test for quality, sort and translocate the secreted proteins.  

The secretory pathway is particularly important in biotechnology and the 

biopharmaceutical industry, since most therapeutic proteins are secreted. Mammalian cell lines 

such as HEK293 or PerC6 are used extensively to ensure that a secreted biotherapeutic is properly 

folded and contains the necessary post-translational modifications (PTMs). In this regard, Chinese 

hamster ovary (CHO) cells stand out as the most widely used cell line and account for most top-

selling biotherapeutics [184]. For any given biotherapeutic, different machinery in the secretory 

pathway may be needed, and each step can exert a non-negligible metabolic demand on the cells. 

The complexity of this pathway, however, makes it unclear how the biosynthetic cost and cellular 

needs vary for different secreted proteins, each of which exerts different demands for cellular 

resources. Therefore, a detailed understanding of the biosynthetic costs of the secretory pathway 

could guide efforts to engineer host cells and bioprocesses for any desired product. The energetic 

and material demands of the mammalian secretory pathway can be accounted for by substantially 

extending the scope of metabolic models. Indeed, recent studies have incorporated portions of the 

secretory pathway in metabolic models of yeast [84, 185, 186]. 

We present the first genome-scale reconstruction of metabolism and protein secretion in 

CHO cells, called iCHO2048s. We first demonstrate that product-specific secretory pathway 
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models can be built to estimate CHO cell growth rates given the specific productivity rate of the 

specific product as a constraint. Second, we identify the features of secreted proteins that have the 

highest impact on protein cost and productivity rates. Third, we use our model to identify proteins 

that compete for cell resources, thereby presenting targets for cell engineering. Finally, we derive 

an expression for computing the energetic cost of synthesizing and secreting a product in terms of 

molecules of ATP equivalents per protein molecule. We use this expression and analyze how the 

energetic burden of protein secretion has led to an overall suppression of more expensive proteins 

in CHO cells. Through this study we demonstrate that a systems-view of the secretory pathway 

now enables the analysis of many biomolecular mechanisms controlling the efficacy and cost of 

protein expression in mammalian cells. We envision our models as valuable tools for the study of 

normal physiological processes and engineering cell bioprocesses in biotechnology. 

3.2.1 The secretory pathway of animal cells 

 
Historically, most of the knowledge on the secretory pathway was obtained by studying 

protein transport processes and secretion in Saccharomyces cerevisiae [187]. Albeit quite similar 

in core functions, the secretory pathways of mammalian cells and fungi differ significantly in some 

of the steps which have been evolved based on species-specific secretion phenotypes [188]. The 

following paragraphs briefly overview the mammalian secretory pathway and highlights pathways 

exclusive to animals not present in fungi. The last section provides an in-depth comparison of the 

yeast and animal secretory pathways while highlighting the most important differences between 

both. 
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3.2.2 Translocation and processing in endoplasmic reticulum 

 
Proteins destined to the secretory pathway generally bear a signal peptide at the amino-

terminus which targets the proteins to the endoplasmic reticulum (ER) where the initial post-

translational modifications (PTMs) take place. This transport requires translocating the target 

protein across the ER membrane through two general pathways: co-translational translocation 

(GTP dependent) and post-translational translocation (ATP dependent) [189]. An additional 

pathway for tail-anchored (TA) proteins into the ER membrane has also been discussed in the 

literature and included in our iCHO1921s reconstruction [190, 191]. Once inside the ER lumen, 

the target proteins are folded by the action of several transmembrane ER proteins, including 

calnexin, calreticulin, and other luminal chaperones [192–194]. In the event of protein misfolding, 

a target protein may go through a “quality control” system (exclusive in the mammalian secretory 

pathway) that attempts to correct for folding errors [195, 196]. However, if the misfolded state of 

the protein is sustained for too long, the protein then enters the ER associated degradation pathway, 

or ERAD, which involves retrotranslocation of the misfolded protein back to the cytosol, 

ubiquitination and proteasomal degradation [197–199]. 

Besides folding, a target protein may acquire additional PTMs while inside the ER such as 

attachment of a glycosylphosphatidylinositol (GPI) anchor [200, 201], formation of disulfide 

bonds [202], and N-linked glycosylation [203–206]. After these PTMs are successfully completed 

, the target proteins are transported to the Golgi apparatus via COPII-coated vesicles that bud from 

the ER [207, 208] whereas misfolded proteins are retro-translocated to the cytoplasm [209, 210] 

for proteasomal degradation via  the ER-associated degradation pathway (ERAD) [211, 212]. In 

the Golgi apparatus, N-glycans are processed into branched and complex glycoforms and proteins 
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are further glycosylated with O-linked glycans [213–215] and then sorted to their final destination 

(e.g. lysosome, extracellular medium) via clathrin-coated secretory vesicles [216–219]. 

In co-translational translocation, proteins destined to the secretory pathway bear a 

hydrophobic signal sequence at the amino-terminus that promotes the targeting of ribosome-

nascent chain (RNC) complexes to the ER via binding to the signal recognition particle (SRP). 

The SRP recognizes the signal peptide as soon as it emerges from the ribosome during translation. 

Then, the newly formed SRP-RNC complex is recognized by the SRP receptor on the ER 

membrane where translocation is initiated by interaction with the Sec61 complex (Sec61C) and 

assisted by the chaperone BiP to increase the efficiency and ensure the unidirectionality of this 

process [216]. 

Post-translational translocation, in contrast to co-translational translocation, occurs 

independently of SRP and its receptor [220]. Furthermore, this process does not rely too heavily 

on the Sec61C to translocate the target protein and instead utilizes the protein Sec62 as a safe route 

that guarantees the efficient translocation of small proteins (<160 amino acids in length) [221]. 

Finally, the pathway for inserting TA proteins into the ER membrane also occurs post-

translationally due to the fact that the ER targeting signal of TA proteins is located very close to 

the carboxy-terminus, which allows the ribosome to release the protein before it is recognized and 

localized to the ER [222]. This pathway depends on ATP and one of the main players in the process 

is a transmembrane recognition complex known as TRC40 or Asna1 [223]. 
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3.2.2 Important differences between the yeast and animal secretory 

pathways 

 
Core functions of the secretory pathway are conserved between mammalian and yeast cells. 

These core functions include: Translocation through endoplasmic reticulum; primary 

glycosylation in ER (N-linked glycans) and Golgi (N-linked and O-linked glycans); protein folding 

and quality control in ER; anterograde and retrograde vesicular transport between ER and Golgi 

via COPII and COPI vesicles, respectively; dolichol pathway for N-linked core glycan 

translocation through the ER membrane; endoplasmic reticulum associated degradation (ERAD); 

GPI biosynthesis; and the unfolded protein response (UPR). Nevertheless, minor and major 

differences exist between the yeast and mammalian secretory pathways. Some of these differences 

[188] are summarized in Table 3.1 below. Here, we highlight the major differences between both 

secretory pathways that are relevant for modeling purposes. 

 

Table 3.1: Summary of differences between mammalian and yeast secretory pathways 

Description of difference 

Mammalian 

secretory 

pathway 

Yeast secretory 

pathway 

Importance for 

modeling 

purposes 

Chaperones involved in 

translocation 

The main 

chaperone is BiP 

The main 

chaperone is Kar2 
Minor 

Presence of heat-shock proteins 

(HSPs) in ER 

Mainly presence 

of proteins in the 

Hsp90 family 

Not found in yeast Minor 

Enzymes for detoxification of 

reactive oxygen species in ER 

Contains several 

enzymes such as 

Ero1 and 

glutathione 

peroxidases 

Not found in yeast Major 

Oxidation state of Protein 

disulfide isomerase (PDI) 

PDI is mainly 

reduced 

PDI is mainly 

oxidized 
Minor 
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Table 3.1: Summary of differences between mammalian and yeast secretory pathways 

(continued) 

Description of difference 

Mammalian 

secretory 

pathway 

Yeast secretory 

pathway 

Importance for 

modeling 

purposes 

Components of calnexin-

calreticulin cycle 

Includes an 

enzyme coded by 

the UGGT gene to 

transfer glucose 

residues to core N-

linked glycans in 

misfolded proteins 

Lacks UGGT and 

instead directs 

misfolded proteins 

to ER exit 

Major 

ERAD pathway branches for 

degrading misfolded proteins 

Capable of 

directing 

misfolded proteins 

towards the ERAD 

pathway by 

trimming N-linked 

glycan residues in 

the A, B and C 

branches 

Capable of 

directing 

misfolded proteins 

towards the 

ERAD pathway 

by trimming N-

linked glycan 

residues only in B 

and C branches 

Major 

Components of COPII vesicles 
Contains four 

isoforms of Sec24 

Expresses Sec24 

with three cargo 

binding sites as 

well as Sec24 

homologs Sfb2-3 

Minor 

  

3.3 Methods 
 

3.3.1 Reconstruction of the mammalian secretory pathway 
 

A list of proteins and enzymes in the mammalian secretory pathway was compiled from 

literature curation, UniProt, NCBI Gene, NCBI Protein and CHOgenome.org. To facilitate the 

reconstruction process, the secretory pathway was divided into twelve subsystems or functional 

modules (Figure 3.1) to sort the components according to their function. These subsystems 

correspond to the major steps required to process and secrete a protein. The components from a 

prior yeast secretory pathway reconstruction [84] were used as a starting reference. To build 
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species-specific models, orthologs for human, mouse and the Chinese hamster were identified and 

used, while yeast components and subsystems that are not present in the mammalian secretory 

pathway were removed. Additional subsystems were added when unique to higher eukaryotes, 

such as the calnexin-calreticulin cycle in the ER [224]. These were constructed de novo and added 

to the reconstruction. The databases and literature were then consulted to identify the remaining 

components involved in each subsystem of the mammalian secretory pathway. Since most 

components in the mammalian secretory pathway have been identified in mouse and human, 

BLAST was utilized to identify the corresponding Chinese hamster orthologs by setting human as 

the reference organism and a cutoff of 60% of sequence identity. 

 

3.3.2 Protein Specific Information Matrix (PSIM)  

 
The PSIM contains the necessary information to construct a protein-specific secretory 

model from the template reactions in our reconstruction. The columns in the PSIM are: presence 

of a signal peptide (SP), number of disulfide bonds (DSB), presence of 

Glycosylphosphatidylinositol (GPI) anchorage, number of N-linked (NG) and O-linked (OG) 

glycans, number of transmembrane domains (TMD), subcellular location, protein length, and 

molecular weight. For most proteins, the information in the PSIM was obtained from the Uniprot 

database. When necessary, computational tools were used to predict signal peptides (PrediSi [225]) 

and GPI anchors (GPI-SOM [226]). Finally, additional information on the number of O-linked 

glycosylation sites of certain proteins were obtained from experimental data in previous studies 

[227],[228]. The PSIMs of the CHO and human secretomes are a subset of the full PSIM and 

contains only the proteins with a signal peptide (predicted or confirmed in Uniprot). 
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Figure 3.1: Components in the reconstruction of secretory pathway in mammalian cells. (A) 

The reconstruction comprises 261 proteins in CHO cells and 271 proteins in human and mouse 

that are distributed across 12 subsystems or functional modules. The different component numbers 

arise from the fact that the Chinese hamster proteome annotation only contains one alpha and one 

beta proteasome subunits, whereas the human and mouse contain 12 subunits of different subtypes. 

The detailed description of all components can be found in Supp. File 1. (B) High similarities were 

seen for proteins in CHO and human, with a high mean percentage identity in each subsystem 

(calculated with the sequence alignment tool BLAST). (C) Simplified schematic of reactions and 

subsystems involved in the secretion of a monoclonal antibody (mAb). A total of eight subsystems 

are necessary to translate, fold, transport, glycosylate, and secrete a mAb. The color of the 

subsystem names indicates if the reactions occur in the cytoplasm (yellow), the ER lumen (red) or 

the Golgi apparatus (blue). GPI = Glycosylphosphatidylinositol, ER = Endoplasmic Reticulum, 

ERAD = ER associated degradation. 
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3.3.3 Detection of N-linked glycosylation sites via mass spectrometry  

 
The number of N-linked glycosylation sites in the PSIM was determined computationally 

and experimentally as follows. CHO-K1 cells (ATCC) were lysed, denatured, reduced, alkylated 

and digested by trypsin enzyme. Desalted peptides were incubated with 10 mM sodium periodate 

in dark for 1 hour before coupling to 50 μL of (50% slurry) hydrazide resins. After overnight 

reaction, non-glycosylated peptides were washed with 1.5 M NaCl and water. The N-glycosylated 

peptides were released with PNGaseF at 37 °C and desalted by using C18 SepPak column. Strong 

cation exchange (SCX) column was used to separate the sample into 8 fractions. Each fraction was 

analyzed by LTQ-Orbitrap Velos (Thermo Electron, Bremen, Germany) mass spectrometer. 

During the mass spectrometry data search, carbamidomethylation was set as a fixed modification 

while oxidation, pyroglutamine and deamidation were variable modifications. 

 

3.3.4 Construction of secretory models and constraint-based analysis 

 
A Python script that takes a row from the PSIM as input to produce an expanded 

iCHO2048s metabolic model with the product-specific secretory pathway of the corresponding 

protein was written. Flux balance analysis (FBA [229]) and all other constraint-based analyses 

were done using the COBRA toolbox [230] in MATLAB R2014a and the Gurobi solver version 

6.0.0. For the iCHO2048s models secreting human proteins, we set the same constraints in all 

models and computed the theoretical maximum productivity (maxqp) while maintaining a growth 

rate (in units of 1/h) of 0.01. Finally, since the exact glycoprofiles of most proteins in CHO are 

unknown and some even change over time in culture [231], we simplified our models by only 

adding the core N-linked and O-linked glycans to the secreted proteins. 
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3.3.5 Batch cultivation 
 

Two isogenic CHO-S cell lines adapted to grow in suspension, one producing Enbrel 

(Etanercept) and the other producing human plasma protease C1 inhibitor (SERPING1), were 

seeded at 3 x 105 cells/mL in 60 mL CD-CHO medium (Thermo Fisher Scientific, USA) 

supplemented with 8 mM L-Glutamine and 1 μL/mL anti-clumping agent, in 250 mL Erlenmeyer 

shake flasks. Cells were incubated in a humidified incubator at 37°C, 5% CO2 at 120 rpm. Viable 

cell density and viability were monitored every 24 hours for 7 days using the NucleoCounter NC-

200 Cell Counter (ChemoMetec). Daily samples of spent media were taken for extracellular 

metabolite concentration and titer measurements by drawing 0.8 mL from each culture, 

centrifuging it at 1000 g for 10 minutes and collecting the supernatant and discarding the cell 

pellet. 

 

3.3.6 Titer determination 

 
To quantify Enbrel/SERPING1, biolayer interferometry was performed using an Octet 

RED96 (Pall Corporation, Menlo Park, CA). ProA biosensors (Fortebio 18-5013) were hydrated 

in PBS and preconditioned in 10 mM glycine pH 1.7. A calibration curve was prepared using 

Enbrel (Pfizer) or SERPING1 at 200, 100, 50, 25, 12.5, 6.25, 3.13, 1.56, 0.78 μg/ml. Culture spent 

media samples were collected after centrifugation and association was performed for 120 s with a 

shaking speed of 200 rpm at 30 °C. Octet System Data Analysis 7.1 software was used to calculate 

binding rates and absolute protein concentrations. 
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3.3.7 Extracellular metabolite concentration measurements 
 

The concentrations of glucose, lactate, ammonium (NH4), and glutamine in spent media 

were measured using the BioProfile 400 (Nova Biomedical). Amino acid concentrations were 

determined via High Performance Liquid Chromatography using the Dionex Ultimate 3000 

autosampler at a flow rate of 1mL/min. Briefly, samples were diluted 10 times using 20 μL of 

sample, 80 μL MiliQ water, and 100 μL of an internal amino acid standard. Derivatised amino 

acids were monitored using a fluorescence detector. OPA-derivatised amino acids were detected 

at 340ex and 450em nm and FMOC-derivatised amino acids at 266ex and 305em nm. 

Quantifications were based on standard curves derived from dilutions of a mixed amino acid 

standard (250 ug/mL). The upper and lower limits of quantification were 100 and 0.5 ug/mL, 

respectively.  

 

3.3.8 Estimation of the energetic cost secreting a protein as the number of 

ATP equivalent molecules 
 

We estimated the energetic cost of synthesizing and secreting all 5,641 endogenous CHO 

cell proteins. These proteins were chosen for containing a signal peptide in their sequence and/or 

for being localized in the cell membrane (according to the UniProt database). The energetic cost 

(in units of number of ATP equivalents) of secreting each protein (length L) was computed using 

the following formulas and assumptions: 

1. Energy cost of translation. For each protein molecule produced, 2L ATP molecules are 

cleaved to AMP during charging of the tRNA with a specific amino acid; 1 GTP molecule 

is consumed during initiation and 1 GTP molecule for termination; L - 1 GTP molecules 
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are required for the formation of L-1 peptide bonds; L - 1 GTP molecules are necessary for 

L-1 ribosomal translocation steps. Thus, the total cost of translation (assuming no 

proofreading) is 4L. 

2. Average cost of signal peptide degradation. On average, signal peptides have a length of 

22 amino acids. Thus, the average cost of degrading all peptide bonds in the signal peptide 

is 22. This average cost was assigned to all proteins analyzed. 

3. Energetic cost of translocation across the ER membrane. During activation of the 

translocon, 2 cytosolic GTP molecules are hydrolyzed. From there, a GTP molecule bound 

to the folding-assisting chaperone BiP is hydrolyzed to GDP for every 40 amino acids that 

pass through the translocon pore [232]. Thus, the cost of translocation is L/40 + 2. 

4. Energetic cost of vesicular transport and secretion. We used published data[233–235] 

(see Supp. File 1) to compute stoichiometric coefficients for reactions involving vesicular 

transport. That is, the number of GTP molecules bound to RAB and coat proteins in each 

type of vesicle (COPII and secretory vesicles). We found that a total of 192 and 44 GTPs 

must be hydrolyzed to transport one COPII or secretory (i.e. clathrin coated) vesicle from 

the origin membrane to the target membrane, respectively. Since vesicles do not transport 

single protein molecule at a time, we estimated the number of secreted protein molecules 

that would fit inside a spherical vesicle (see estimated and assumed diameters in Supp. File 

1). For that, we assumed that the secreted protein is globular and has a volume VP (nm3) 

that is directly proportional to its molecular weight MW [236]: 

𝑉𝑃  =  𝑀𝑊 × 0.00121 
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Finally, we assumed that only 70 percent of the vesicular volume can be occupied by the 

target protein. Thus, the cost of vesicular transport via COPII vesicles with Volume VCOPII 

is: 

192 𝐺𝑇𝑃𝑠 ÷ (𝑉𝐶𝑂𝑃𝐼𝐼  × 0.7 ÷ 𝑉) 

Similarly, the cost of vesicular secretion is: 

44 𝐺𝑇𝑃𝑠 ÷ (𝑉𝑆𝑒𝑐𝑟𝑒𝑡𝑜𝑟𝑦  × 0.7 ÷ 𝑉) 

 

3.3.9 Constraints used in models and Pareto optimality frontiers 
 

All models were constrained using different sets of experimental uptake rates which can 

be found in Supp. File 3. To construct Pareto optimality frontiers, we used the robustAnalysis 

function from the COBRA Toolbox in Matlab 2015b using biomass as the control and secretion 

of the recombinant protein as the objective reactions, respectively. 

 

3.3.10 Analysis of gene expression versus protein cost 
 

Ribosome-profiling data [237] were used to quantify the ribosomal occupancy of each 

transcript in CHO cells. A cutoff of 1 RPKM was used to remove genes with low expression 

(10,045 genes removed from day 3 analysis and 10,411 from day 6 analysis). We used Spearman 

correlation to assess the variation of expression levels with respect to protein ATP cost. 
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3.3.11 CHO-DG44 model and prediction of neoR knock-out effect on 

specific productivity 

 
Ribosome-profiling data, specific productivity, product sequence, and growth rates of an 

IgG-producing CHO-DG44 cell line were obtained previously [237]. From the same cultures, we 

obtained further cell dry weight and metabolomic data from spent culture medium for this study. 

The mCADRE algorithm [238],[239] was used to construct a DG44 cell line-specific iCHO2048s 

model. The specific productivity and the RPKM values of the secreted IgG were used to estimate 

the translation rate for the neoR selection marker gene. We assumed that the flux (in units of 

mmol/gDW/h) through the neoR translation reaction (vneoR) should be proportional to that of the 

IgG translation rate (vIgG, calculated from the measured specific productivity) and related to their 

expression ratios (i.e. the RPKM values of their genes in the ribosome-profiling data). 

𝑣𝑛𝑒𝑜𝑅 =
𝑅𝑃𝐾𝑀𝑛𝑒𝑜𝑅

2(𝑅𝑃𝐾𝑀𝑙𝑖𝑔ℎ𝑡 + 𝑅𝑃𝐾𝑀ℎ𝑒𝑎𝑣𝑦)
𝑣𝐼𝑔𝐺 

Finally, a reaction of neoR peptide translation (which is expressed in cytosol and is not 

processed in the secretory pathway) was added to construct a neoR-specific iCHO2048s model. 

Uptake and secretion rates of relevant metabolites on days 3 and 6 of cell culture were used to 

constrain our model. Because recombinant proteins represent 20% of total cell protein [240], we 

scaled the coefficients of all 20 amino acids in the model’s biomass reaction accordingly (i.e. each 

coefficient was multiplied by 0.8). We then used FBA to predict the specific productivity of IgG 

with or without neoR. Finally, we used LIMAA to compute the residual fluxes of every amino acid 

in the medium to identify the limiting nutrients in each phase of the 𝜇/qp curves (i.e. the metabolites 

causing the hinges in the curve). 
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3.3.12 Cell dry weight measurements 
 

For cell dry weight measurements, 6 tubes containing 2 mL of culture samples of known 

viable cell density and viability were freeze dried, weighed, washed in PBS, and weighed again. 

The difference in weight was used to calculate the mass per cell. The procedure resulted in an 

average cell dry weight of 456 pg per cell. As a simplification, we assumed that cell dry weight 

does not significantly differ from this average measured value during culture and thus was used 

when computing flux distributions in all simulations. 

 

3.3.13 Calculation of amino acid uptake, growth rates and specific 

productivity from experimental data 

 
Experimental uptake and secretion rates from different studies were used to constrain the 

iCHO2048s models [237, 240, 241]. When rates were not explicitly stated in the studies we 

consulted, we used a method we developed in Chapter 2 [242]. Briefly, appropriate viable cell 

density, titer, and metabolite concentration plots were digitized using WebPlot Digitizer software 

and we computed the corresponding rates as follows: 

● Growth rate (in units of inverse hours): 

𝜇 =
1

𝑉𝐶𝐷

𝑑

𝑑𝑡
𝑉𝐶𝐷 

Where VCD is the viable cell density (in units of cells per milliliter) 

● Specific productivity (in units of picograms per cell per hour): 

𝑞𝑝 =
1

𝑉𝐶𝐷

𝑑

𝑑𝑡
𝑇𝑖𝑡𝑒𝑟 
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● Consumption or production rate vx of metabolite x (in units of millimoles per gram dry 

weight per hour): 

𝑣𝑥 =
1

𝑉𝐶𝐷

𝑑

𝑑𝑡
[𝑥] 

 

3.4 Results 
 

3.4.1 In silico reconstruction of the mammalian protein secretion pathway 

 

We mapped out the core processes involved in the synthesis of secreted and membrane 

proteins in mammalian cells (i.e. human, mouse, and Chinese hamster). This included 261 

components (gene products) in CHO cells and 271 components in both human and mouse. The 

components are involved in secretory reactions across 12 subsystems (i.e., functional modules of 

the secretory pathway; Figure 3.1A). These components represent the core secretory machinery 

needed in the transition of a target protein from its immature state in the cytosol (i.e., right after 

translation) to its final form (i.e., when it contains all post-translational modifications and is 

secreted to the extracellular space). Each component in the reconstruction either catalyzes a 

chemical modification on the target protein (e.g., N-linked glycosylation inside ER lumen/Golgi) 

or participates in a multi-protein complex that promotes protein folding and/or transport. This 

distinction between catalytic enzymes and complex-forming components is important for 

modeling purposes as a catalytic component consumes or produces metabolites that are directly 

connected to the metabolic network (e.g., ATP, sugar nucleotides). Because all components of the 

core secretory pathway were conserved across human, mouse and hamster (Figure 3.1B), we 

generated species-specific reconstructions and used them to expand the respective genome-scale 

metabolic network reconstructions (Recon 2.2 [243], iMM1415 [244], iCHO1766 [241]) and 
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called these metabolic-secretory reconstructions Recon 2.2s, iMM1685s, and iCHO2048s, 

respectively. 

3.4.2 Validation of iCHO2048s model predictions 

 

We first validated the accuracy of iCHO2048s predictions using published growth and 

specific productivity rates of IgG-producing CHO cell lines from two independent studies [237, 

245]. For this, we built an IgG-secreting iCHO2048s model using the information in the PSIM 

matrix for the therapeutic mAb Rituximab. We then constrained the model’s Rituximab-specific 

secretory pathway with the reported productivity value in each study and used FBA to predict 

growth (Figure 3.2A). Later, to assess iCHO2048s ability to predict growth rates in cases where 

CHO cells produce proteins different from antibodies, we collected data from two batch culture 

experiments using Enbrel- and SERPING1-producing isogenic CHO cell lines. We constructed 

two iCHO2048s models for each case and predicted growth rates on days 1 (early exponential 

growth phase) through 5 (late exponential growth phase) of culture while constraining the protein 

secretion rate to the measured specific productivity value (Figure 3.2B-C). The model’s 

predictions were in very good agreement with the reported/measured values. There were cases 

where iCHO2048s predicted a much higher growth rate than what was measured in the first days 

of batch culture (Figure 3.2B-C). Since FBA computes theoretical maximum growth rates given a 

set of constraints, these over-prediction cases point at situations where CHO cells do not direct 

resources towards biomass production (during very early stages of culture), a discrepancy that is 

attenuated in later stages of culture (days 4-5 in Figure 3.2B-C). In conclusion, these results 

confirm the ability of protein-specific reconstructions to capture the specific energetic 

requirements that each recombinant product imposes on CHO cell metabolism.  
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Figure 3.2: Validation of iCHO2048s predictions. (A) Comparison of growth rates reported in 

six datasets from two previous studies using IgG-producing cell lines and rates predicted by an 

IgG-specific iCHO2048s model. NT and TK stand for the main author initials in both studies (Neil 

Templeton, Thomas Kallehauge). (B) Comparison between experimental and predicted growth 

rates of Enbrel-producing CHO cells. (C) Comparison between experimental and predicted growth 

rates of SERPING1-producing CHO cells. Error bars in B and C represent the standard deviation 

of three biological replicates. In all cases, the iCHO2048s models were constrained to produce the 

recombinant protein at the reported/measured specific productivity rate. 
 

3.4.3 Protein composition and complexity significantly impact model-

predicted productivity 

 

To produce a specific product, CHO cells must utilize different modules of the secretory 

pathway according to the protein attributes and post-translational modifications (PTMs). For 

example, the synthesis of a monoclonal antibody (mAb) requires the use of multiple processes and 

consumes several different metabolites, such as amino acids for protein translation, ATP 

equivalents for vesicular transport, and sugar nucleotides for protein glycosylation (Figure 3.1C). 

Having validated our iCHO2048s model predictions, we set out to generate eight product-specific 

secretory pathway models for biotherapeutics commonly produced in CHO cells (Figure 3.3A): 

bone morphogenetic proteins 2 and 7 (BMP2, BMP7), erythropoietin (EPO), Etanercept, factor 

VIII (F8), interferon beta 1a (IFNB1), Rituximab, and tissue plasminogen activator (tPA). The 

resulting iCHO2048s models were used to compute Pareto optimality frontiers between maximum 

cell growth (μ) and specific productivity (qP) assuming all eight CHO cells grow under the same 
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conditions. That is, all eight models were given the same measured glucose and amino acid uptake 

rates [241] as model constraints. 

 

Figure 3.3: Construction of product-specific iCHO2048s models. (A) Eight product-specific 

iCHO2048s models were constructed for biotherapeutics commonly produced in CHO cells. (B) 

Pareto optimality frontiers of growth/productivity (𝜇/𝑞𝑝) trade-off curves were computed for the 

eight iCHO2048s models using the same constraints and experimental data from Supp. File 3. The 

shaded region corresponds to commonly observed cell growth rates in CHO cell cultures. The 

molecular weight (in Daltons) of each biotherapeutic is shown in the legend. (C) All protein 

features (PTMs, transmembrane domains, and amino acid compositions) were analyzed to quantify 

their contribution to the explained variation of specific productivity. 

 

We computed the tradeoff between growth (𝜇; inverse hours or 1/h) and specific 

productivity (qp; pg protein produced per cell per day or PCD) as a Pareto optimal “𝜇/qp curve” 

for each protein (Figure 3.2B). This curve defines the frontier of maximum specific productivity 

and maximum growth rates under the assumption that CHO cells can utilize all available resources 

towards production of biomass and recombinant protein only. The hinges in some of the 𝜇/qp 

curves are indicative of a transition between regions in the 𝜇/qp that are limited by distinct amino 

acids.  

An analysis of the 𝜇/qp curves for the eight biotherapeutics demonstrate that under the 

measured growth conditions, maximum productivities vary from 20-100 PCD at common growth 

rates (Figure 3.2B, shaded region) to 70-150 PCD for senescent cells. Neither the molecular weight 
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(MW) nor product length can explain the 2-fold range differences in maximum productivity for 

different proteins. For example, the 𝜇/qp curves show tPA (MW = 61,917 Da) can express at higher 

PCD than BMP2 (MW = 44,702 Da) despite being larger, because the N-glycans in BMP2  reduce 

productivity due to the higher cost of synthesizing core N-glycans (see Table 3.2), consistent with 

previous observations in yeast [186]. Furthermore, the degree and directionality of these effects 

will depend on the nutrient uptake rates used to constrain the model, highlighting the need in CHO 

bioprocessing to tailor culture media in a host cell and product-specific manner. Thus, while 

intuitively larger proteins would be expected to exert more bioenergetic cost on protein secretion, 

we find that specific compositional attributes of both the recombinant protein and the culture media 

significantly impact biosynthetic capacity. 

 

Table 3.2: Protein specific information matrix of biotherapeutics secreted in eight 

iCHO2048s models 

Protein 

Name 

Total number 

of amino acids 

in 

biotherapeutic 

Molecular 

Weight [Da] 

Total 

number of 

disulfide 

bonds in 

mature 

protein 

Total 

number of 

N-glycans in 

mature 

protein 

Total 

number of 

O-glycans 

in mature 

protein 

Estimated 

secretory 

cost [ATP 

equivalents] 

IFNB1 187 22294 1 1 0 777 

EPO 193 21037 2 3 1 801 

BMP2 396 44702 4 5 0 1618 

BMP7 431 49313 4 4 0 1759 

tPA 562 61917 17 3 1 2286 

Etanercept** 934 102470 7 6 26 3784 

Rituximab* 1328 143860 17 2 0 5370 

F8 2351 267009 8 22 0 9488 

* Rituximab is a tetramer (2 light and 2 heavy chains) 

** Etanercept is a dimer 
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3.4.4 iCHO2048s accurately predicts protein productivity increase 

following gene knock-down 
 

A recent study by Kallehauge [237] demonstrated that a CHO-DG44 cell line producing 

an antiviral mAb [246] also expressed high levels of the neoR selection-marker gene (Figure 3.4A-

B). Upon neoR knockdown, the titer and maximum viable cell densities of the CHO-DG44 cell 

line were increased. To test if iCHO2048s could replicate these results, we constructed a model 

for the Kallehauge DG44 cell line and measured exometabolomics, and dry cell weight to 

parameterize the model. Since expression of neoR uses resources that could be used for antibody 

production, we predicted how much additional antibody could be synthesized with the elimination 

of the neoR gene. We simulated antibody production following a complete knockout of neoR 

(Table 3.3 and Figure 3.4B) and predicted that the deletion of neoR could increase specific 

productivity by 4% and 29% on days 3 (early exponential phase) and 6 (late phase) of culture, 

respectively (Fig. 4C). This was consistent with the experimentally observed values of 2% and 

14%. We then computed the 𝜇/qp curves for both the control and the neoR in silico knockout 

conditions on day 6. We found that the length of the 𝜇/qp curve (i.e. the size of the set of Pareto 

optimal flux distributions, here denoted by delta (𝛥)) increased by 18% percent when neoR 

production is eliminated (Figure 3.4D). Thus, iCHO2048s can quantify how much non-essential 

gene knockouts can boost growth and productivity in CHO cells by freeing energetic and secretory 

resources. In fact, the ribosome-profiling data from Kallehauge revealed that only 30 secretory 

proteins in CHO cells account for more than 50% of the ribosomal load directed towards 

translation of protein bearing a signal peptide (Figure 3.4E). 
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Table 3.3: Experimental data used for validation of Kallehauge iCHO2048s model 

Experimental value description 

Day 3 (early 

exponential 

growth phase) 

Day 6 (late 

growth phase) 

Growth Rate [1/day] 0.44 0.02 
Specific Productivity [Picograms of 

IgG/cell/day] 
16 5.5 

Total IgG ribosomal footprint 

[RPKM] 
40258 13356 

Total neoR ribosomal footprint 

[RPKM] 
36952 25679 

 

 

Figure 3.4: iCHO2048s recapitulates experimental results of neoR knock-down in silico. (A) 

Ribosome occupancy was measured with ribosomal profiling during early (left) and late (right) 

exponential growth phases in the study by Kallehauge [237]. (B) Time profiles of viable cell 

density (VCD) and titer in experimental culture. Shaded boxes indicate the time points 

corresponding to early (day 3) and late (day 6) growth phases. (C) Flux balance analysis 

predictions of specific productivity (qp) with iCHO2048s model before and after in silico knockout 

of neoR gene. (D) Growth/productivity (𝜇/𝑞𝑝) trade-offs predicted by iCHO2048s demonstrated 

a potential 18% increase after the neoR in silico knockout. The formula for calculating the trade-

off improvement (𝛥) is shown in the plot. LWT = length of𝜇/𝑞𝑝curve before knockout, LKO = length 

of 𝜇/𝑞𝑝curve after knockout. (E) Cumulative plot of the ribosomal load demanded by the top 30 

secreted proteins in CHO cells based on Kallehauge ribosome profiling data on days 3 and 6 of 

culture. 
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3.4.5 CHO cells have suppressed expression of expensive proteins in their 

secretome 

 
In any cell, the secretory machinery is concurrently processing thousands of secreted and 

membrane proteins, which all compete for secretory pathway resources and pose a metabolic 

burden. To quantify this burden, we estimated the energetic cost of synthesizing and secreting all 

5,641 endogenous proteins in the CHO secretome and membrane proteome in terms of total 

number of ATP equivalent molecules consumes. These protein costs were compared to the cost of 

the eight recombinant proteins previously analyzed. To refine estimates, we experimentally 

measured the number of N-linked glycans in the CHO proteome and integrated published numbers 

of O-linked glycans in CHO proteomic data [227]. Across the CHO secretome, protein synthesis 

cost varies substantially, and recombinant products are on average more expensive (Fig. 5A). For 

example, F8 is a “difficult-to-express” protein in CHO cells due to its propensity to aggregate in 

the ER, which promotes its premature degradation [247, 248]. Our analysis further highlights that 

each molecule of F8 requires an excessive amount of ATP to produce (9488 ATP molecules). This 

imposes a significant burden to the secretory machinery of CHO cells, which typically expresses 

much less expensive proteins. With the broad range of biosynthetic costs for different proteins, we 

wondered if gene expression in CHO cells has been influenced by the ATP cost of secreted 

proteins, by suppressing host cell protein expression to more efficiently allocate nutrients. That is, 

unless specific proteins are essential, CHO cells would preferentially suppress energetically 

expensive proteins. To test this, we analyzed ribosomal profiling (Ribo-seq) data from a mAb-

producing CHO cell line [237] and compared translation of each transcript against the ATP cost 

of the associated secreted protein (see Methods). Indeed, there was a significant negative 

correlation (Spearman) of -0.43 and -0.36 (p value < 1x10-20) between ribosomal occupancy and 
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ATP cost during early and late phases of culture, respectively (Figure 3.5B). Wondering if the 

reduced translation was regulated transcriptionally, we further analyzed RNA-seq data from the 

same mAb-producing cell line and from another, non-producing CHO-K1 cell line [249]. The 

RNA expression also negatively correlated with ATP cost (see Figure 3.6).  

 

Figure 3.5: Energetic cost of CHO secretome and gene expression as a function of protein 

cost. (A) The bioenergetic cost of each secreted CHO protein was computed, 28 of the 5641 

proteins in CHO secretome had a cost > 10,000 ATP equivalents and were therefore not included 

in the histogram for the sake of ease of visualization. The biosynthetic costs of 5 representative 

biotherapeutics are shown for comparison purposes (see Table 3.2) (B) Scatter plots and Spearman 

correlation of gene expression and protein cost (in number of ATP equivalent molecules) from 

Kallehauge [237] during early (left) and late (right) phases of culture. RPKM = reads per kilobase 

of transcript per million. 
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Figure 3.6: Negative correlation between ATP cost and gene expression is consistent even for 

RNA-seq data. (A) Analysis of RNA-seq data from a different CHO cell line (non-producing 

CHO-K1) for two biological replicates. (B) Analysis of RNA-seq from the same cell line as in 

Figure 3.5. The correlation tends to be stronger for CHO cell lines producing a recombinant 

protein. 

 

 

Finally, we analyzed RNA-seq data from human tissues and immortalized cell lines in the 

Human Protein Atlas (HPA) [183]. All RNA-seq datasets in the HPA samples also negatively 

correlated with ATP cost. Interestingly, we found that highly secretory tissues such as liver, 

pancreas and salivary gland had the strongest correlations, although none as strong as that of the 

mAb-producing CHO cells (Figure 3.7). A recent study by Feizi and colleagues recently found 

that these tissues fine-tune the expression of protein disulfide isomerase genes [250], suggesting 

that a similar regulatory process may take place in the ER of CHO cells as the secreted mAb 

contains a relatively high number (17) of disulfide bonds. In conclusion, there is a clear preference 

in CHO cells to suppress the expression and translation of proteins that are costly to synthesize, 

fold, and secrete. 
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Figure 3.7: Correlations of ATP cost and gene expression across human tissues. Spearman   

correlations are stronger for highly secretory tissues such as liver and pancreas and lower for non-

secretory tissues like the endometrium and cerebral cortex. The Spearman correlation of the CHO-

DG44 cell line (red dashed line) is shows for the sake of comparison 

 

 

3.5 Discussion 
 

Mammalian cells synthesize and process thousands of proteins through their secretory 

pathway. Many of these proteins, including hormones, enzymes, and receptors, are essential for 

mediating mammalian cell interactions with their environment. Therefore, many have therapeutic 

importance either as drugs or as targets. CHO cells in particular, have been excellent hosts for 

large-scale production of therapeutic proteins, and also effective at processing post-translational 
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modifications (PTMs) on products passing through their secretory pathway, rendering these 

products suitable and safe for human prescription [251, 252]. The expression and secretion of 

recombinant proteins represents a significant anabolic demand that drains several substrates from 

cellular metabolism (e.g., amino acids, sugar nucleotides, ATP) [253, 254]. There has been an 

increasing interest in engineering the CHO secretory pathway [255–257]. Despite important 

advances in the field [242], current strategies to engineer the secretory pathway have remained 

predominantly empirical [258, 259]. Recent modeling approaches, however, have enabled the 

analysis of the metabolic capabilities of important eukaryotic cells (including CHO) under 

different genetic and environmental conditions [181, 241, 260, 261]. With the development of the 

first genome-scale model of CHO cell metabolism [241] it is now possible to gain a systems-level 

understanding of the CHO phenotype [262].  

For instance, Lund and colleagues [263] have recently reconstructed the most 

comprehensive network of the mouse secretory pathway to date. By comparing the mouse and 

CHO-K1 genomes mapping CHO gene expression data onto this network, the authors identified 

potential targets for CHO cell engineering, demonstrating the great potential of systems biology 

to interrogate and understand protein secretion in animal cells. This network reconstruction, 

although useful for contextualizing omics data (e.g., RNA-seq), is not set up for simulations of 

protein production, nor integrated with additional cellular processes such as metabolism. 

Therefore, to quantify the cost and cellular capacity for protein production, it is important to 

delineate the mechanisms of all biosynthetic steps and bioenergetic processes in the cell. 
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3.6 Conclusion 
 

Here we have presented the first genome-scale reconstruction of the secretory pathway in 

mammalian cells. We connected this to current metabolic networks, yielding models of protein 

secretion and metabolism for human, mouse and CHO cells. These models compile decades of 

research in biochemistry and cell biology of higher eukaryotes and present it in a mathematical 

model. Using our model, we quantitatively estimated the energetic cost of producing several 

therapeutic proteins and all proteins in the CHO cell and human secretomes. We also identified 

factors limiting the secretion of individual products and observed that these depend on both the 

complexity of the product and the composition of the culture media. Furthermore, by integrating 

ribosomal profiling data with our model we found that CHO cells have selectively suppressed the 

expression of energetically expensive secreted proteins. Expanding upon this observation, we 

demonstrated that specific productivities can be predictably increased following the knock-down 

of an energetically expensive, non-essential protein. 

It is important to note that while our models capture major features of secreted proteins, 

there are additional PTMs (e.g., phosphorylation, gamma carboxylation), pathway machinery (e.g., 

chaperones), and cell processes that could possibly be captured in further expansions of the 

modeling framework [263] (e.g, the unfolded protein response). These could be included as 

energetic costs associated to building and maintaining the secretory machinery (chaperones [84], 

glycosyltransferases [264]); protein stability and turnover rates [265]; solubility constraints [266] 

and molecular crowding effects [267]. As these are captured by the models in a protein product-

specific manner, predictions of protein production capacity will improve, and the models could 

provide further insights for cell engineering for biotechnology or to obtain a deeper understanding 

of mechanisms underlying amyloid diseases. Finally, a simplification of our secretory model is 
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that it only computes the bioenergetic cost of synthesizing and attaching core N- and O-linked 

glycans to secreted proteins. Thus, an immediate potential expansion of our secretory model would 

involve coupling it to existing computational models of protein glycosylation [85]. For example, 

given an N-glycan reaction network that captures the glycoform complexity of a target protein 

[268], one could build secretory reactions for the specific glycoforms of interest and compute the 

metabolic demands associated with each of them as to identify potential targets and nutrient 

supplementations for glycoengineering.     

In conclusion, the results of our study have important implications regarding the ability to 

predict protein expression based on protein specific attributes and energetic requirements. The 

secretory pathway models here stand as novel tools to study mammalian cells and the energetic 

trade-off between growth and protein secretion in a product- and cell-specific manner. We 

presented algorithms that provide novel insights with our models, and expect that many other 

methods can be developed to answer a wide array of questions surrounding the secretory pathway, 

as seen for metabolism [269]. 
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Chapter 4 - Mapping protein turnover 

rates onto the human secretory pathway 

reconstruction reveals tissue-specific 

modular control of pathway usage 

 

4.1 Abstract 

 
 Gene expression is a key determinant of a cell’s phenotype and is determined by both the 

synthesis and degradation rates of proteins and transcripts. Across human tissues, 20% of the genes 

transcribed translates into the secretome (the entire collection of secreted and membrane-bound 

proteins). Because the secretome holds the largest fraction of the tissue-specific proteome, it is 

important to understand how the expression of secretory pathway genes is modulated to satisfy the 

secretory demands of each cell. Here we apply a systems biology approach to characterize the 

expression of secretory pathway genes across three highly secretory human cell types. We found 

that the usage levels of secretory pathway components significantly differ across three human cell 

types even though the energetic expenditure in all cell types is similar. Furthermore, the usage 

levels seem to be determined by how fast cells renew their secretory pathway components (that is, 

the component turnover rates). The results from this analysis extend our current understanding of 

gene expression in the secretory pathway and may have important applications in cell engineering 

for biotherapeutic production. 
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4.2 Introduction 

 
 Mammalian cells are continuously synthesizing numerous signaling proteins, hormones, 

receptors, and structural proteins that determine their function in the context of an organism. 

According to a recent analysis of the human proteome  [183], the collection of proteins synthesized 

across tissues includes >3000 secreted proteins (e.g., enzymes, hormones, antibodies, extracellular 

matrix proteins, etc.) and >5500 membrane proteins, which are processed in the secretory pathway. 

In fact, the secretome explains the largest fraction of tissue-specific proteomic differences [250]. 

Because secreted proteins are continuously synthesized and exported out of the cell, the secretory 

pathway must cope with the energetic and usage demands imposed by the secreted proteins’ 

turnover rates. Due to its importance, many studies have explored the properties of protein 

expression and protein turnover rates in human cells [270, 271]. However, these studies have only 

provided a general quantitative assessment of protein levels while paying very little attention to 

the secretory pathway and the demands that the secretome might impose upon it. In a recent study, 

however, researchers used mRNA levels from human tissues to investigate the differences in 

expression levels of secretory pathway genes [250]. Interestingly, they found tissue-specific fine 

tuning of secretory pathway gene expression that seems to satisfy the specific secretory demands 

of the tissue’s secretome. However, it has been recognized that protein synthesis and degradation 

rates, and not transcription rates alone, heavily contribute to protein concentrations [272]. 

Therefore, there is still room for exploring the properties of secretory gene expression in the 

context of translation and transcription rates. 

 In this chapter, we present an analysis of secretory gene expression and secretory pathway 

usage across three human cell lines, which are characterized by high levels of protein secretion: 

hepatocytes, monocytes, and B cells, which are capable of secreting large quantities of albumin, 
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cytokines, and antibodies, respectively. First, we use protein abundances and protein turnover rates 

of hepatocytes, monocytes and B cells to derive a quantitative estimate of their secretory pathway 

demands. We found that the three cells utilize about the same energy to produce their secretomes, 

but the way in which they utilize different secretory pathway genes differs significantly. In fact, 

how much a cell type utilizes a secretory pathway subsystem corresponds very well with the mean 

half-life of the proteins that comprise such subsystem.  

The results from this chapter have important implications in cellular physiology and 

biotechnology and expand our current understanding of the fundamental properties of protein 

secretion. Understanding such properties will aid the development of novel expression systems to 

produce recombinant biotherapeutics in animal cells (e.g. CHO or HEK293 cells). 

 

4.3 Methods 

 
4.3.1 Datasets 

 
 We obtained transcription and translation rates as well as protein abundances in human cell 

lines from [273]. Protein turnover rates of hepatocytes, monocytes and B cells were obtained from 

the supplementary materials in [274] whereas protein abundances were downloaded from the 

PaxDB (version 4.0) website [275]. 

 

4.3.2 Secretory pathway genes and subsystems 

 
 Human secretory pathway genes were taken from Recon 2.2s, which we developed in 

Chapter 3 of this dissertation. Each component in Recon 2.2s is associated to one of twelve 

subsystems (e.g. protein folding, protein translocation) which we used to make more specific 

comparisons across cells. 
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4.3.3 Computation of ATP costs and turnover in secretome production 

 
 We used the ATP cost formulation from Chapter 3 (section 3.3.8) to compute the ATP cost 

of all secreted proteins in the hepatocyte, B cell, and monocyte datasets. We then multiplied each 

ATP cost by the protein’s degradation rate (𝛼𝑝, in proteins per hour) which we calculated from the 

reported half-life (𝑡1/2) of that protein: 

𝛼𝑝 =
ln(2)

𝑡1/2 
 

 Note that here we assume first-order exponential decay. Finally, we computed the overall 

ATP turnover due to secretome cost by adding up all individual ATP turnovers from all secreted 

proteins: 

 

𝐴𝑇𝑃𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟 = ∑ 𝑎𝑡𝑝𝑐𝑜𝑠𝑡,𝑖 ∗ 𝛼𝑝,𝑖

𝑖=𝑠𝑒𝑐𝑟𝑒𝑡𝑒𝑑 𝑝𝑟𝑜𝑡𝑒𝑖𝑛

 

 

4.3.4 Computation of secretory pathway usage 

 
The secretory pathway usage for a specific module is defined as the number of catalytic 

cycles per hour at steady-state. To compute this, we first wrote a Python script to generate protein-

specific stoichiometric reactions for each of the secreted proteins in the protein turnover dataset. 

The stoichiometric coefficients and the protein turnover rates from each reaction were used to 

estimate the flux through each secretory reaction. The mean flux through the reactions comprising 

a secretory pathway module was used to estimate the pathway usage demanded by each secreted 

protein. In total, the protein turnover rates data from monocytes, hepatocytes and B cells included 

219 out of the 271 (80%) secretory pathway components in Recon 2.2s and 1075 out of the 4269 
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(25.2%) proteins in the human secretome. From these components, secreted proteins, and turnover 

rates, the global pathway usage of all proteins was computed by adding up the individual protein’s 

pathway usages: 

𝑃𝑈𝑖 =
∑ 𝑟𝑗𝑐𝑖𝑗

𝑁
 

Where 𝑃𝑈𝑖 is the pathway usage demanded by the ith secreted protein, whose concentration 

is 𝑐𝑖 and the secretory flux it demands from the jth secretory reaction is 𝑟𝑗, normalized by the 

number of reactions (N) in the secretory module. 

 

4.4 Results 

 
4.3.1 Distribution of secretory pathway gene expression 
  

 Gene expression is fundamentally determined by the four rates of the central dogma of 

molecular biology: mRNA transcription, protein translation, mRNA degradation, and protein 

degradation (Figure 4.1A). These four quantities determine the steady-state concentration of each 

protein and can be mapped onto a four-dimensional space called the Crick space [273]. Because 

mRNA and protein degradation are not measured as often as transcription and translation rates, 

researchers often reduce the dimensionality of Crick space to two dimensions only (Figure 4.1B). 

Nevertheless, protein levels are determined by both synthesis and degradation rates so that 

translation rates alone are only able to capture one half of the protein dynamics equation [276]. 

Fortunately, high-throughput technologies that measure protein degradation rates have recently 

been developed [277, 278].  
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Figure 4.1: The four fundamental rates of gene expression. (A) The steady-state concentration 

of any protein is determined by four rates: transcription rate (𝛽𝑚), mRNA degradation rate (𝛼𝑚), 

translation rate (𝛽𝑝), and protein degradation rate (𝛼𝑝). (B) Crick space is defined as the four-

dimensional space containing these four rates for each gene. Two-dimensional Crick space 

comprises transcription and translation rates only. 

 

Here we asked whether the genes in the secretory pathway of human cells have a 

significantly different distribution of protein degradation rates (in terms of protein half-lives). 

First, we looked at the differences in global distribution of protein half-lives across three human 

cell types. We found that the global distribution (N=8623) of protein half-lives does not differ 

significantly across the three cells (p=0.47, Mann-Whitney U test), as shown in Figure 4.2A. 

However, the distribution of secretory pathway genes (N=219) is significantly different (p<0.001, 

Mann-Whitney U test, Figure 4.2B). Furthermore, the distributions significantly differ for some of 

the secretory pathway subsystems, but not for all (Figure 4.3A).  
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Figure 4.2: Distribution of secretory pathway gene half-lives. (A) Distribution of global protein 

half-lives across B cells, hepatocytes, and monocytes. The three distributions do not differ 

significantly (p=0.47, Mann-Whitney U test). (B) On the other side, the distribution of secretory 

pathway components does differ across cells (p<0.001 for all three pairwise comparisons, Mann-

Whitney U test). 

 

The above results suggest that the degradation of secretory pathway genes is regulated at 

the subsystem level. Furthermore, we wondered if the observed differences in secretory pathway 

gene half-lives (that is, along the 3rd dimension in Crick space) could be associated to the usage 

levels of each secretory subsystem. In other words, we wanted to investigate if half-lives of 

secretory pathway components are linked to the degree at which the component is utilized in the 

cell. To do so, we set out to formulate an expression for computing usage levels for each of the 

secretory components and subsystems and compare those against their measured half-lives [274].  

 

4.3.2 The mean half-life of secretory machinery components differs across 

cell types and across subsystems 

 
 We observed significant differences are found when looking at the mean half-lives of the 

components in each secretory pathway module (Figure 4.3B). The proteins associated to protein 
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folding and glycosylation in the endoplasmic reticulum (ER) have a significant (2-fold) longer 

half-life in hepatocytes compared to the monocytes and B cells. This is interesting since the main 

secreted protein in hepatocytes is albumin, which demands a total of 17 disulfide bonds and 24 N-

linked glycans upon entering the ER lumen. In fact, it has been estimated that a single hepatocyte 

secretes 1.3 pg of albumin every hour [279]. Therefore, this result suggests that hepatocytes 

regulate the half-life of the secretory pathway components in the ER to cope with the very high 

demand of albumin in the body (Figure 4.4). In contrast, monocytes are known for secreting 

cytokines such as TNF-α, IL-8, IL-1β, and IL-6 at levels ranging between 5 and 15 fg per hour 

[280]. Cytokines lack post-translational modifications and thus further supports the observation 

that monocytes have the fastest turnover in their ER secretory pathway components among the 

three cell types (Figure 4.3B).  

 

Figure 4.3: Mean half-lives of secretory pathway components across subsystems. (A) The 

distribution of secretory pathway components half-lives (in units of hours) across monocytes, 

hepatocytes, and B cells varies from one secretory subsystem to the other. In the vertical axis, half-

lives were log10 transformed. (B) Heatmap of mean half-life of secretory pathway subsystems. 

Hepatocytes show the longest mean half-lives in their ER processing modules, probably due to the 

high requirements for folding and glycosylation that albumin demands from these cells. 
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Figure 4.4: Secretory demands in hepatocytes due to albumin production. Albumin, the most 

secreted protein in hepatocytes, contains 17 disulfide bonds and 24 N-linked glycans in its 

structure. These post-translational modifications impose a significant demand on the secretory 

pathway components in the ER of hepatocytes. This may explain the longer mean half-lives of the 

ER-associated subsystems observed (Figure 4.3). 

 

4.3.3 The ATP turnover for synthesizing cell-specific secretomes does not 

explain the differences in secretory pathway expression 
 

 Given the above results, we wondered if the secretory pathway usage across the three cell 

types also imposed different energetic demands, which could contribute to explaining the 

differences in mean module half-lives we observed. That is, we pondered the possibility of energy 

constraints as a selective pressure for modulating secretory pathway gene expression. We set out 

to investigate this in the context of ATP cost (as defined in Chapter 3) and ATP turnover for all 

the secretory proteins produced in the three cell types and that were included in the protein turnover 

dataset. We found that the total ATP turnover necessary for synthesizing the three cell secretomes 

is almost the same since the largest difference between the minimum and maximum ATP global 

turnovers was only 15% (Figure 4.5A). This is interesting considering how, as we showed in 

Chapter 3, different tissues regulate the gene expression of secreted proteins based on their ATP 
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cost (Figure 4.5B). Thus, ATP turnover and energetic costs of producing the three different 

secretomes do not capture the differences observed in secretory pathway module expression levels. 

 
Figure 4.5: ATP turnover in three cell types. (A) ATP turnover (in units of number of ATP 

molecules per hour) that is required to produce the secretome in hepatocytes, monocytes and B 

cells. (B) Spearman correlations between ATP cost and gene expression levels across human 

tissues. The correlation is stronger in highly secretory tissues such as liver and pancreas. 
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4.3.3 Secretory pathway usage varies across cell types in a modular 

manner, resembling mean half-lives of secretory pathway components 
 

Finally, to complete our analysis, we computed the specific secretory pathway usage in a 

modular way across the three human cell lines. To do so, we used Recon 2.2s to compute the 

secretory pathway usage required for secreting each one of the secreted proteins and multiplied 

this usage by the degradation rate of each protein and scaled it by the protein abundance. 

Surprisingly, we found that modular usage resembles the pattern we observed when looking only 

at the mean half-lives of secretory pathway components (Figure 4.6A). Therefore, our results 

suggest that cells regulate the half-lives of secretory pathway components based on how much 

each module is needed to satisfy the demands imposed by the secretome (Figure 4.6B). 

 

Figure 4.6: Secretory pathway usage correlates with mean half-lives in a modular fashion. 

(A) A clustergram of the mean half-lives computed for each of the secretory pathway modules as 

in Figure 4.3B. The major function of the three main clusters are indicated to the left of the 

clustergram. (B) Heatmap of the global secretory pathway usage computed in this study for each 

module. The secretory pathway usage resembles the patterns observed in Figure 4.3B, indicative 

of protein half-lives being regulated according to its usage. 
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4.5 Discussion 
 

 In this chapter, we have analyzed gene expression levels and protein turnovers in the 

context of the human secretory pathway reconstruction from Chapter 3. We first demonstrated that 

significant expression differences in secretory pathway genes are difficult to recover with 

transcription and translation rates only (i.e. the first two dimensions of Crick space). However, the 

third dimension in Crick space (i.e. protein degradation rates) enables the differentiation of 

secretory pathway usage across three highly secretory human cell types. We showed that ATP 

turnover is also unable to capture significant differences across secretory pathway usage in cell 

types. However, for the first time we have established a correlation between two fundamental 

properties of the gene expression of secretory pathway genes at the modular level. The expression 

for computing secretory pathway module usage resembles the pattern in mean half-lives of across 

the same modules. That is, cells tend to protect those secretory pathway components from 

degradation based on how much they use them to process their secretome. This extends upon an 

observation made recently by Feizi and colleagues [250] on the fine-tuning of secretory pathway 

components in a tissue-dependent way.  

 Our results demonstrate that a complete picture of secretory pathway regulation and usage 

is incomplete without considering protein half-lives. In other words, at least three dimensions of 

Crick space (transcription, translation, and protein degradation rates) are necessary to capture the 

differences in secretory pathway usage across cell types. Nevertheless, it is not clear how cells 

could regulate the degradation rates of secretory pathway components since proteins control 

protein abundance mainly via transcription and translation [272, 273]. To our knowledge, all 

previous studies comparing gene expression and protein turnovers across human cells ignored the 

secretory pathway, highlighting the novelty and the relevance of our results in the context of a 
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computational reconstruction of human secretion. Future experiments should aim to address the 

question of what factors regulate protein half-lives across cell types.  

 In conclusion, highly secretory cells might not be defined by the levels of transcription and 

or translation of their secretory pathway genes. Instead, as shown in this chapter, the differences 

seem to span from the ability of a cell to preserve secretory pathway components for longer to 

make its usage more robust according to the secretome demands. These results could have could 

have implications in the biotechnology industry for cellular engineering as it challenges the current 

paradigm for engineering the secretory pathway where only one or two secretory pathway 

components are overexpressed. Perhaps a better strategy would be to learn from cells like 

hepatocytes to make secretory pathway components more robust against degradation. That would 

require a collective effort to experimentally measure the protein turnover rates of important animal 

cell lines for bioproduction such as HEK293 and CHO cells at different time points in culture. 
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Chapter 5 - Conclusions 

 

5.1 Recapitulation 

 
In this thesis, I have developed computational and systems biotechnology methods to 

advance our understanding of the animal secretory pathway. A novel workflow for extracting 

knowledge from legacy data in the CHO cell literature was presented. I demonstrate how the use 

of such workflow elucidates fundamental features of CHO cell bioprocessing which determine cell 

growth and protein productivity. Next, a genome-scale computational model of the mammalian 

secretory pathway was developed. I have validated the predictive power of the model in the context 

of CHO cell bioprocessing with reported and experimental data. The model is versatile in that it 

can be constructed for specific recombinant proteins. Thus, it aids in the understanding of cellular 

physiology at different stages of culture and for different productivity demands. Finally, I 

demonstrated how an often neglected omic dataset, namely protein turnover rates, reveals 

differences in secretory pathway usage across human cells that are missed by gene expression data 

alone. The results point at potential new ways to engineer the secretory pathway of CHO cells for 

improving cell productivity and overall performance. The work presented here has implications in 

biotechnology and bioengineering and highlights the importance of using a systems-level view for 

solving problems in biotherapeutic production.  

 

 

 



100 

 

5.2 The emergence of Systems Biotechnology 

 
 Today, 8 out of the 10 top selling drugs are recombinant proteins produced in mammalian 

cells such as CHO and HEK293 cells [1]. However, the industry still faces three main challenges 

that relate to quality attributes of the secreted biotherapeutic (Figure 5.1). To effectively tackle 

these challenges, a paradigm shift towards a systematic view of the producing cell was necessary 

and Systems Biotechnology has emerged as a new discipline that incorporates models and omics 

data to study bioprocessing phenomena. Rather than focusing on culture conditions to improve 

culture performance, Systems Biotechnology sees the producing cell as a system of interconnected 

modules that give rise to the cell phenotype, which in consequence affect the productivity and 

growth rate of the cell during culture (Figure 5.2). Overall, the improvements in product yield 

achieved over the last two decades are the result of a deeper understanding of the effects of both 

extracellular (temperature, culture media, bioreactor design) and intracellular (gene expression, 

metabolic fitness) features on culture performance.  

 
Figure 5.1: Current challenges in the biopharmaceutical industry. To ensure proper quality of 

secreted therapeutic proteins, the producing cell line should have high yield, confer quality 

attributes (glycosylation, folding), and avoid secreted too much of the native cells (purity). 
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In this context, Systems Biotechnology has helped researchers uncover non-obvious 

relationships between the cellular genotype and the culture conditions via the utilization of high 

throughput omics data. For example, the identification of gene targets for overexpression were 

identified using transcriptomic data whereas the identification of metabolites that inhibit cellular 

growth and protein production was enabled via metabolomics [2]. Therefore, beyond traditional 

strategies of clonal selection, expression vectors or bioreactor design, Systems Biotechnology aims 

to utilize elegant modeling and data analysis techniques to gain a mechanistic understanding of 

cellular bioprocessing. This dissertation has contributed to the field of Systems Biotechnology 

with three novel approaches: a meta-analysis workflow for analyzing legacy CHO bioprocessing 

data, a genome-scale reconstruction of the mammalian secretory pathway, and a method for 

mapping omic data onto secretory pathway models. 

 

 
Figure 5.2: The new paradigm of Systems Biotechnology. The producing cell defines the quality 

of the product, and not just the culture conditions. The producing cell contains intricated networks 

of interacting components that give raise to the protein production phenotype. Adapted from [5] 
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5.3 Perspectives for the future 

 
 The continued success of Systems Biotechnology will depend on the development and 

refinement of both modeling and experimental methodologies for analyzing the different 

parameters that are relevant to bioprocesses. As discussed in Chapter 1, our compilation of the 

CHO bibliome reveals a growing trend in the number of publications that utilize omic data and 

modeling techniques for studying CHO bioprocesses [281]. This forecasts a bright future for 

Systems Biotechnology of animal cell cultures. Furthermore, recent studies have provided large-

scale collections of omic data measurements relevant to CHO cells such as glycoproteomics [72], 

ribosomal profiling [237], and metabolomics [58, 282]. We anticipate that these datasets will 

motivate the progress in statistical and modeling techniques that will identify novel targets for 

cellular engineering. Furthermore, the knowledge gained through the application of Systems 

Biotechnology will make a positive impact in medicine, molecular biology, and synthetic biology. 
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