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Random graphs, where the presence of connections between nodes are considered
random variables, have wide applicability in the social sciences. Exponential-
family Random Graph Models (ERGM) have shown themselves to be a useful
class of models for representing complex social phenomena. We generalize ERGM
by also modeling nodal attributes as random variates, thus creating a random
model of the full network, which we call Exponential-family Random Network
Models (ERNM). We demonstrate how this framework allows a new formulation
for logistic regression in network data. We develop likelihood-based inference for
the model in the case of a fully observed network and an MCMC algorithm to

implement it.

We then develop a theory of inference for ERNM when only part of the net-
work is observed, as well as specific methodology for missing data, including non-
ignorable mechanisms for network-based sampling designs and for latent class
models. We also consider contact tracing sampling designs which are of con-
siderable importance to infectious disease epidemiology and public health. This
culminates in a treatment of respondent driven sampling (RDS), which is a widely

used link tracing design.
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CHAPTER 1

Introducing Exponential Family Random Graph
Models

A graph is a collection of nodes, each of which may either be connected or not
connected to each other node. For the purposes of this document, nodes may
not be connected to themselves. In addition to the graph connections, each node
may have characteristics which are of interest to the researcher. A network is
defined as the union of a graph and the nodal characteristics. Random graphs,
where connections between nodes are random but nodal characteristics are either
fixed or missing, have a long history in the mathematical literature starting with
the simple Erdés-Rényi model (Erdos and Renyi, 1959), and including the more
general exponential-family random graph models (ERGM) for which inference re-
quires modern Markov Chain Monte Carlo (MCMC) methods (Frank and Strauss,
1986, Hunter and Handcock, 2006). On the other hand we have Gibbs/Markov
random field models where nodal attributes are random but interconnections be-
tween nodes are fixed. A simple example is the Ising model of ferromagnetism
(Ising, 1925) from the statistical physics literature which is exactly solvable under
certain network configurations (Baxter, 1982); however, most field models require

more complex methodologies for inference (Zhu and Liu, 2002).

In the social network literature, these two classes of models are conceptually
defined as “social selection” and “social influence” models. In social selection
models, the probability of social ties between individuals are determined by nodal

characteristics such as age or sex (see Robins et al. (2001a) and references therein).



In social influence models, individuals’ nodal characteristics are determined by
social ties (see Robins et al. (2001b) and references therein). Leenders (1997) ar-
gues that the processes of tie selection and nodal variate influence are co-occurring
phenomena, with ties affecting nodal variates and visa versa, and should therefore
be considered together. This chapter presents a joint exponential-family model
of connections between nodes (dyads), and nodal attributes, thus representing a
unification of social selection and influence. We will refer to this model as an

exponential-family random network model (ERNM).

We note that we are not developing a model for the coevolution of the tie and
nodal variables. We are modeling the joint relation between the processes of tie
selection and nodal variate influence in a cross-sectional network. As such our
model explicitly represents the endogenous nature of the relational ties and nodal
variables. If network-behavior panel data is available then it may be possible
to statistically separate the effects of selection from those of influence. For a
discussion of these issues for dynamic and longitudinal data, see Steglich et al.

(2010).

In this chapter we introduce the ERNM class and give simple examples, then
develop aspects of the class that are important for statistical modeling. We then
apply the modeling approach to the study of substance abuse in adolescent peer

networks and compares it to standard approaches.

Chapter 2 extends the ERNM class to handle cases where only part of the
network is observed, providing a basis for inference in link tracing designs, which
we apply to a simulated dataset. Chapter 3 generalizes the computation methods
used to find the maximum likelihood estimates outlined in chapters 1 and 2 to
all exponential-family distributions, and provides computational heuristics for the
algorithm. Chapter 4 applies the methods in chapter 2 to the respondent driven
sampling survey design, and explores the properties of the resulting estimator

with simulations. Chapter 5 proposes a new, more rigorous, link tracing design



based on respondent driven sampling. Finally, chapter 6 concludes with a broader

discussion.

1.1 ERNM Specification

Let the graph Y be an n by n matrix whose entries Y; ; indicate whether subject
7 and j are connected, where n is the size of the population. Further let X be an
n X ¢ matrix of nodal variates. We define the network to be the random variable
(Y, X). Let AV be the set of possible networks of interest (the sample space of the
model). For example, N” C 2¥ x X", the power set of the dyads in the network
times the power set of the sample space of the nodal variates. A joint exponential

family model for the network may be written as

P(X =2,Y =yln) = o) (y,z) e N (1.1)

c(n,N)

where 7 is a vector of parameters, g is a vector valued function, and ¢(n, N) is a
normalizing constant such that the integral of P over the sample space of X and
Y is 1 (See equation (1.2)). The model parameter space is n € H C RY. This
functional form is the familiar exponential family form, and is extremely general
depending on the choice of ¢ (see Barndorff-Nielsen (1978) and Krivitsky (2011)).
Formally, let (N, N, Fy) be a o—finite measure space with reference measure F.
A probability measure P(X = z,Y = y|n) is an ERNM with respect to this space
if it is dominated by Py and the Radon-Nikodym derivative of P(X = z,Y = y|n)

with respect to F, is expressible as

dP(X =z,Y =yln) 1 m9(y.x)
i7, = el
where
)= [ iRy () (12)
(yz)eN



and H C {n € R? : ¢(n,N) < oo}. See Barndorff-Nielsen (1978) for further

properties of the exponential-family class of probability distributions.

1.1.1 Relationship with ERGM and Random Fields
Let N(x) = {y: (y,z) e N} and N(y) = {y : (y,z) € N} then

1

PY =y[X =) = Wen'g(y’z) y € N(z)
1
PX =z|Y =y;n) = men'g(w) z € N(y)

The first model is the ERGM for the network conditional on the nodal attributes.
Analysis of models of this kind have been the staple of ERGM (Frank and Strauss,
1986, Hunter and Handcock, 2006, Goodreau et al., 2009). The second model is
an exponential-family for the field of nodal attributes conditional on the network.
This will be a Gibbs/Markov field when the process satisfies the pairwise Markov
property (i.e., If ¥;; = 0 then X; and X; are conditionally independent given all
other X)) (Besag, 1974). However the model is more general than this as g(y, )

can be arbitrary. We will refer to it as a Gibbs measure (Georgii, 1988).

The model (1.1) can be expressed as

P(X =z,Y =yln) = P(Y =y|X =z,7)P(X = z[n) (1.3)
where
= V@)
P(X = al) = =75 €X.

P(X = z|n) is the marginal representation of the nodal attributes and is not nec-
essarily an exponential-family with canonical parameter 7. These decompositions
demonstrate why the joint modeling of Y and X via ERNM (as proposed here)
is different and novel compared to the conditional modeling of Y given X via

ERGM.



1.1.2 Interesting Model-Classes of ERNM
1.1.2.1 Example: Separable ERGM and Field Models

Suppose that g is composed such that the model can be expressed as

1

67]1~h(;r)+772'9(y) (y7 ;L‘) [~ N (14)

where N is the product space Y x X with Y is the space of Y and X is the
space of X. x and y in this model are separable and therefore may be considered

independently. The model (1.4) can be decomposed as the product of

1

P(X =z|m) = ) X)em'h(x)
1 .
P(Y =yln) mem’ 9w,

This type of model is particularly simple because of the separation of the two com-
ponents. The first term is a general exponential-family model for the attributes
(e.g., generalized linear models McCullagh and Nelder (1989)). The second term
is a separate ERGM for the relations that has no dependence on the nodal at-
tributes. Such separable models are usually not applicable as the phenomena that
we are interested in studying is precisely the relationship between X and Y, thus

independence is typically an unrealistic assumption.

1.1.2.2 Example: Joint Ising Models

An important aspect of social networks is the increased likelihood of a connection
existing between nodes charing a characteristic. This property is generally referred
to as homophily. If X is univariate and binary x; € {—1,1}, previous social

selection models (Goodreau et al., 2009) have used the following statistic to model



homophily

n n

homophily(y, z) = Z Z TiYi i T (1.5)

i=1 j=1
This statistic is a count of the number of ties between nodes homophilous in the
nodal covariate. Such a statistic is useful as a basis for a joint model. A simple

example would include a term for homophily and a term graph density, explicitly
P(X =z, Y = y|7717 T]2> o 6771density(y)+772homophily(y,w) (y7 l’) eN.

where density(y) = 237, vi; and N = Y x X = {0,137 x {=1,1}". If we

T on

look at the conditional distribution of Y given X we get
P(Yij = yis|X = x,m1, 1) oc eMaviatmesiizi e 10,1}, z € X,

The dyadic variables y; ; are independent of each other, and thus is a dyad-
independent model for Y. We can recognize the functional form of the condi-
tional distribution of Y given X as identical to logistic regression, and thus the
conditional likelihood could be maximized using familiar generalized linear model
(GLM) algorithms (McCullagh and Nelder, 1989). Conditioning X on Y we arrive
at

P(X = x|V =y, ) o ePXi2i®Wii®s (y x) e N,

which we can recognize as the familiar Ising model (Ising, 1925) for the field over

X with its lattice defined by Y.

This joint Ising model has the advantage of being mathematically parsimo-
nious. Unfortunately, the results in section 1.2.1 indicate that it displays unrealis-
tic statistical characteristics, which may rule it out as a reasonable representation

of typical social networks.



1.2 Development of ERNM

In this section we develop ERNM, including issues of model degeneracy, the spec-
ification of network statistics and likelihood-based inference. In particular, we

specify a class of logistic regression models for ERNMs.

An important consideration when modeling with the ERNM class is the spec-
ification of the statistics g(y, ). As each choice of g(y, ) leads to a valid model
for the network process, there is much flexibility in this for modeling. The par-
ticular choices are very application dependent. However, as for ERGM, a stable
of statistics can be created to capture primary the features of networks (Morris

et al., 2008).

It is important to note that the ERNM class is quite different from the ERGM
class (despite the formal similarity in equation (1)). ERNM require the specifica-
tion of stochastic models for the nodal attributes (which ERGM do not permit).
Further statistics which are meaningless for ERGM, for example, any statistic of

X alone, play a prominent role in ERNM.

1.2.1 Model Degeneracy

Exponential family models for networks have been known to suffer from model de-
generacy (Strauss, 1986, Handcock, 2003, Schweinberger, 2011), and even simple
Markov models have similarly been shown to have degenerate states (sometimes
called phase transitions in the statistical physics literature (Dyson, 1969)). De-
generacy is loosely defined as a set of model parameters where a small change in
the parameters yield a massive change in the types of networks produced, usually
this change is between two stable states. For example, one set of parameter values
may indicate a low density graph, but a small change in the values leads to high
density graphs. Parameter values at the tipping point of this change often yield

bimodal network statistics. Because ERNM models represent the unification of
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Figure 1.1: 100,000 draws from an Ising Joint Model with ; = 0 and 7, = 0.13.
Mean values are marked in red.

these two classes of models, a consideration of degeneracy must be undertaken.
For example, while the joint Ising model of Section 1.1.2.2 is pleasing in its parsi-
monious simplicity, it unfortunately displays pathological degeneracy under mild
homophily. Consider a joint Ising model of a 20 node network, with 7, = 0 and
12 = 0.13. In this model, 76% of edges are between nodes with matching = val-
ues, whereas 24% are between miss-matched nodes. Figure 1 shows the marginal

statistics of 100,000 draws from this model.

Despite the fact that the homophily is not particularly severe, Figure 1 dis-
plays a great deal of degeneracy. The counts of edges are highly skewed. By
symmetry we know that the expected number of nodes with x = 1 is 10, however,
when inspecting the marginal histogram, we see that it is bimodal and puts very
low probability on the value of 10. This severe degeneracy greatly reduces the

usefulness of this model for practical networks.

We note that this phenomena will likely be as prevalent for ERNM models as
for ERGM, and will have similar solutions. We recommend that model degeneracy

be assessed for all proposed ERNM models.



1.2.2 Non-Degenerate Representation of Homophily within ERNM

Specification of the network’s statistics via ¢ is fundamental to ERNM. A natural
source are analogues of those terms developed for ERGM (Morris et al., 2008).
However, the degeneracy of the homophily specification in Section 1.1.2.2 suggests
that careful thought is required in considering some network statistics. Suppose
x is categorical with category labels 1,..., K. To define homophily we start
by defining fundamental statistics of the network. Let d;(y) be the degree of
node ¢ = 1,...,n and ng(z) = >, I(z; = k) be the category counts, that is, the
number of nodes in category kK =1,..., K. Here [ is the indicator function. Let
dik(y,2) = >, -; Yijl (x; = k) be the number of edges connecting node 7 to nodes

in category k. We can generalize Equation (1.5) as

homophily, ;(y, ZZI = k)y;;I(z; =1).

i=1 j=1

As with Equation (1.5), this term has the nice property that it is dyad indepen-
dent, meaning that conditional upon X, the marginal distribution of each dyad is
independent of all others. Unfortunately, it displays the same degeneracy we saw
in Section 1.1.2.2. We propose an alternate regularized homophily statistic which

can be expressed as

rhomophilyw(y,x) = Z W/ dig(y,2) — By (y/diy(Y, X)|Y = y,n(X) =n(x))],

i:xi=k

where Ey (g(Y, X)|Y = y,n(X) = n(x)) is the expectation of the statistic g(Y, X)
conditional upon the graph Y and number of nodes in each category of x (n(x) =
{ny(z)}< ), under the assumption that X and Y are independent. Specifically,

this distribution is

PX =z|Y =y,n(X)=n(z)) 1 (y,z) € N,



There are many possible definitions of homophily, and this is one of many ways
to formulate the relationship and in some applications, there may be a superior
form. The justification for this particular formula is primarily empirical in that
it captures the relationship between nodal variates and dyads well, and does not
display the degeneracy issues that plague other forms of homophily. There are,
however, some features of the statistic which provide justification for its form.
The statistic d;;(y,z) is transformed by a square root to roughly stabilize the
variance based on the Poisson count model. This is important as nodes with high
degree should not have qualitatively larger influence than nodes with low degree.
Subtracting off the expectation based on the uniform independence model is es-
sential in avoiding degeneracy because degenerate networks where all, or almost

all, nodes belong to the same category should have homophily near zero.

1.2.3 Logistic Regression for Network Data

Let us consider a specific form of Equation (1.1) where X is partitioned into a
binary nodal variate of particular interest Z € {0,1} (i.e. an outcome variable),

and a matrix of regressors X.

1
P(Z:z,X:x,Y:yM,ﬁ,)\):m

o2 B g(y,x) + A h(y.2) (1.6)
While most relationships in this model are left in a general formulation, it implies

that the relationship of X to Z is described by z-zf.

We can then write the distribution of z; conditional upon all other variables

as

e%iB

Pl =1z 0¥ =9, 5,2) = eMh(y,27)—h(y,zH)] | ewiB

(1.7)

where z_; represents the set of z not including z;, z* represents the variant of z
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where z; = 1, z~ is the variant of z where z; = 0, and x; represents the ith row of
X. Suppose all variables remain fixed at their value except for x;, which changes

to xf, then using equation (1.7), we can write the log odds ratio as
logodds(z; = 1]z_;, x;, Y =y, 5, \)— logodds(z; = 1|z_;, 2], Y =y, 5, \) = B(x;—x]).

Thus, the coefficients 8 may be interpreted as a conditional logistic regression
model (i.e. conditional upon the rest of the network, a unit change in z; leads to a
§ change in the log odds). Though the interpretation of the coefficients is familiar,
the usual algorithms for estimating a logistic regression can not be used because

the distribution of z; depends on z_; and thus the independence assumption does

not hold.

1.2.4 Likelihood-based Inference for ERNM

The likelihood in equation (1.1) can be maximized using the methods of Geyer
and Thompson (1992) and Hunter and Handcock (2006). Let yops and x.ps be the
observed network, and ¢ be the log likelihood function. The log likelihood ratio

for parameter n relative to 79 can be written as
() = £(10) = (1 = 10)-9 (Yobs Yobs) — 10g[ By, (€171 9w2)]),

Given a sample of m networks (y;, z;) generated from P(X = z,Y = y|n) the

log likelihood can be approximated by
1 = (mo)o(ves
€(n) = £(m0) % (11 = 110)-9(Yobs: Tobs) — log(— D elrmmraluiray) (1.8)
i=1

Appendix B provides the details of the Metropolis-Hastings algorithm used to

sample from P(X = z,Y = y|ny) when the normalizing constant c is intractable
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(which is usually the case). The approximation in equation (1.8) degrades as 7
diverges from 7, motivating the following algorithm for estimating the maximum

likelihood parameter estimates

1. Choose initial parameter values 7.

2. Use Markov Chain Monte Carlo to generate m samples (y;, ;) from P(X =
z,Y = y|no).

3. With the sample from step 2, find 7; maximizing a Héjek estimator (Thomp-
son, 2002) of Equation (1.8) subject to abs(n; — no) < €.

4. If convergence is not met, let ny = n; and go to step 2.

This approximation to the log-likelihood can then be used to derive the Fisher
information matrix and other quantities used for inference. The usual asymptotic
approximations based on n — oo may not apply to this situation as n is often

endogenous to the social process.

1.3 Application to Substance Use in Adolescent Peer Net-

works

In addition to collecting data on health related behaviors, the National Longitu-
dinal Study of Adolescent Health (Add Health) also collected information on the

social networks of subjects (Harris et al., 2003a).

The network data we study in this chapter was collected during the first wave
of the study. The Add Health data came from a stratified sample of schools in
the US containing students in grades 7 through 12; the first wave was conducted
in 1994-1995. For the friendship networks data, Add Health staff constructed a
roster of all students in the school from school administrators. Students were then

provided with the roster and asked to select up to five close male friends and five
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close female friends. Complete details of this and subsequent waves of the study

can be found in Resnick et al. (1997) and Udry and Bearman (1998).

Previous studies have investigated the social network structure of Add Health
schools (Bearman et al., 2004), including Hunter et al. (2008), Goodreau et al.
(2009), Handcock and Gile (2007) who used ERGM models to investigate network

structure.

Here we analyze one of these schools; the high school had 98 students, of which
74 completed surveys. Students who did not complete the survey were excluded
from analysis. The data contains many measurements on each of the individuals
in these networks with some measurements, like sex, not influenced by network
structure in any way, termed exogenous. Other covariates may exhibit strong

non-exogeneity (e.g., substance use may be influenced through friendships).

1.3.1 A Super-population Model for an Add Health High School

Using the MCMC-MLE algorithm in Section 1.2.4, we fit an ERNM model to
the high school data. The model has six terms modeling the degree structure
of the network, three modeling the counts of students in each grade, and two
representing the homophily within and between grades. Table 1.1 defines each
of the terms, and explicit formulas are listed in Appendix A. Note that many
terms could be added to this model to make it a more complex representation
of the social structure, including terms similar to those in Handcock and Gile
(2007), however, here we prefer a simple parsimonious model of the network, with

particular focus on the relationship between X and Y.

Table 1.2 shows the fitted model along with standard errors and p—values
based upon the Fisher information matrix. We can see that students in the same
grade are much more likely to be friends, as the Within Grade Homophily term

is positive, and is nominally highly significant. The positive coefficient for '+1
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Table 1.1: ERNM Model Terms: The terms in the first block are graph statistics
(ERGM-type), those in the second block model nodal attributes, and the last are
joint. Terms in the the last two blocks can not be represented in an ERGM.

Name Definition

Mean Degree Average degree of students
Log Variance of Degree The log of the variance of the student degrees
In Degree = 0 # of students with in degree 0
In Degree = 1 # of students with in degree 1
Out Degree = 0 # of students with out degree 0
Out Degree =1 # of students with out degree 1
Reciprocity # of reciprocated ties

Grade =9 # of freshmen
Grade = 10 # of sophomores
Grade = 11  # of juniors

S RO
5

X, Y Within Grade Homophily Pooled homophily within grade
XY +1 Grade Homophily Pooled homophily between each grade
and the grade above it

Grade Homophily’ indicates that students also tend to form connections to the

grades just below or just above them.

We can evaluate the fit of the model in two ways. The first is to simulate
networks from the fitted model, and visually compare them to the observed net-
work (Hunter et al., 2008). Figure 1.2 shows one such simulation. The observed
network and simulated network look similar, giving some support that the fitted
model is reasonable. Next we can simulate network statistics from the model
and compare them to the observed network. The box plots in Figure 1.3 repre-
sent network statistics from 1000 draws from the fitted model, and the red dots
are the statistics of the observed network. The degree structure matches well.
Looking at the number of edges between grades, we see that the two homophily
terms capture the 16 mixing statistics quite well. If desired, we could have added
additional terms for each of the 16 mixing categories, but our interest was in a
reasonable parsimonious representation of the network. The number of students

within each grade are perfectly centered around the observed statistics. This is
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Table 1.2: ERNM Model with Standard Errors Based on the Fisher Information

Term 7 Std. Error Z p—value

Mean Degree -217.02 7.81 -27.80 <0.001

Log Variance of degree 25.07 9.06 2.77 0.006
In-Degree 0 2.62 0.50 5.20  <0.001
In-Degree 1 1.05 0.40 2.62 0.009
Out-Degree 0 4.09 0.52 791 <0.001
Out-Degree 1 1.93 0.45 4.25  <0.001
Reciprocity 2.71 0.23 11.77 <0.001

Grade = 9 1.46 0.62 2.37 0.018

Grade = 10 1.93 0.71 2.72 0.007

Grade = 11 2.08 0.59 3.54  <0.001

Grade Homophily 4.34 0.46 9.41 <0.001

+1 Grade Homophily 0.63 0.21 2.98 0.003

expected, as the number of students in each grade are explicitly included in the
model, and thus the mean counts from the model match the observed counts in

the high school.

1.3.2 Logistic Regression on Substance Use

One aspect of the Add Health data that is of particular interest is the degree to
which students use, or have used, tobacco and alcohol. In this section we will in-
vestigate the relationship between substance use and sex. We define substance use
as either current use of tobacco or having used alcohol at least 3 times. Overall 19
students reported having used substances. A naive logistic regression model with
X as an indicator that the sex of the adolescent is male shows a significant effect
of sex (Table 1.3). That this model implies separability between the distribution
of the network and the distribution of the outcome as in Section 1.1.2.1. This
is an unreasonable assumption if friends tend to influence each other’s substance

abuse patterns, which we expect to be the case.

We extend the model in Section 1.3.1 with terms for substance and gender

homophily, as well as terms for the logistic regression of sex on substance use.
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Simulated Network Observed Network

Figure 1.2: Model-Based Simulated High School
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Figure 1.3: Model Diagnostics

Table 1.3: Simple Logistic Regression Model Ignoring Network Structure. This is
the standard approach to regression in network data that ignores social influence
and selection.

B Std. Error Z p—value
Intercept -1.70 0.44 -3.84 <0.001
Gender 1.18 0.57  2.09 0.037
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Table 1.4: Network Logistic Regression Parameter Estimates: These are based on
the ERNM which models social influence and selection. The effect of gender on
substance abuse is different than that in simple model (Table 3).

Bootstrap Asymptotic

n Std. Error  Std. Error Z  p—value

Mean Degree -215.50 8.32 8.15 -26.44  <0.001

Log Variance of degree 24.46 8.80 8.91 2.75 0.006
In-Degree 0 2.68 0.55 0.48 2.55  <0.001
In-Degree 1 1.07 0.43 0.41 2.60 0.009
Out-Degree 0 4.15 0.54 0.52 8.03  <0.001
Out-Degree 1 1.94 0.50 0.45 4.31  <0.001
Reciprocity 2.71 0.25 0.23 11.96 <0.001

Grade Homophily 4.28 0.44 047  9.18 <0.001

+1 Grade Homophily 0.62 0.21 0.21 2.99 0.003
Gender Homophily 0.78 0.24 0.24 3.27 0.001
Substance Homophily 0.76 0.25 0.25 3.02 0.003
Intercept -1.72 0.50 044 -3.91 <0.001

Gender 0.92 0.55 0.51 1.79 0.073

Whereas, Grade was considered random in the model in Section 1.3.1, because
substance use is of primary interest in this model, all covariates are fixed except
for Substance use. Table 1.4 displays the parameter estimates as well as p-values
based on the Fisher information. Under regularity and asymptotic conditions,
the MLE parameter estimates are distributed normally with covariance equal to

1 Because infer-

the inverse of the negative Fisher information (—cov;(g(7")))~
ences using Fisher information are typically justified using asymptotic arguments
which don’t apply here, we also ran a parametric bootstrap procedure with 1000
bootstraps, and bootstrap standard errors are included in Table 1.4. To perform
parametric bootstrap we simulated independent networks from the MLE model,
then found the MLE parameter estimates for the simulated networks. The stan-
dard deviations of the parameters among these estimate are reported in table
1.4. There is very close agreement between the bootstrap standard errors and the

asymptotic ones, indicating that the Fisher information is a reliable measure for

this model.
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Figure 1.4: Substance Use Homophily Diagnostics. The values of the observed
statistics are marked in red.

We see that the first 9 terms in the model are similar to their counterparts in
Table 1.2. Two additional homophily terms are added, one for gender, and one
for substance use. Both of these are highly significant, lending support to the
position that it is unwise to simply perform a logistic regression ignoring network
structure. The last two terms in Table 1.4 represent the network aware logistic
regression of gender of substance use, and are analogous to the terms in Table 1.3.
The parameter for sex is 22% smaller than in Table 1.3 leading to a non-significant

p—value.

Similarly to the model in Section 1.1.2.2, in the fitted model, 73% of edges
occur between students with the same substance abuse classification, whereas
27% are between users and non-users. Figure 1.4 shows model diagnostics for the
homophily on substance abuse. Each marginal histogram puts high probability
on the observed statistics (marked in red) and are not highly skewed, indicating
that our model both captures the homophily relation, and is a reasonable model

of that relation.

1.4 Discussion

We have developed a new class of joint relational and attribute models for the
analysis of network data. These models represent a generalization of both ERGM
and Gibbs random field models with each expressible as a special case of the new

class. The new model provides a principled way to draw inferences about not only
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the graph structure, but also the nodal characteristics of the network.

A ramification of the joint class is a natural way to specify conditional logistic
regression on nodal variables. Previous models for network regression have strug-
gled with the specification due to the ambiguity induced by endogenous nodal
variable. The ERNM framework clarifies the model formulation and the interpre-

tation of the parameters.

Further work on specifying model statistics is necessary to unlock the power
of the ERNM class. The regularized homophily statistic of Section 3.2 is a good
illustration of the issues involves. It is a good way to represent homophily on nodal
characteristics. However, alternatives need to be developed for other features such

as transitivity.

As could be expected based on presence of degeneracy in many ERGM models,
we found that there exist degenerate states in even simple ERNM models. In
particular, we found that the usual statistic used to represent homophily (the
major relation of interest in a joint model) displayed significant degeneracy issues,

and proposed an alternative that does not.

An R package implementing the methods developed in this chapter will be
made available on CRAN (R Development Core Team, 2012).

1.5 Appendix A: Specifics of ERNM Terms

Here we explicitly define the network terms in (1.1). Let n be then number of
nodes in the network, df; = >, vixl(zr = j) + >, Yril (z = j) be the degree of
node 7 to category j of x, and df = >, yri, di D, Yik, di = d +d; be the in,
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out and overall degree respectively. Then the model terms can be expressed as:

mean degree

log variance of degree

in-degree k

out-degree k

reciprocity
within grade homophily

+1 grade homophily

> di

n

> " (mean degree — d;)?
n

i[(di‘ = k)
i I(df = k)
| Z > Vi~ Eu(v/di)

ke{9,10,11,12} i:grade=k

Z Z Vdikt1 — Eu(V/digs1) +

ke{9,10,11} i:grade=k

Z Z Vdik—1— Eu(\/dig-1)

ke{10,11,12} i:grade=k

log( )

For large networks some computational efficiency can be obtained by approx-

imating the the expectations E (1/d; ) by that of the square root of a binomial

variable, with probability equal to the proportion of nodes in category [, and size

equal to the out-degree of node 7. Each term of the sum is then the square root

of the number of connections to category [, from node 7, minus what would be

expected by chance. Note that the expectation would more accurately be a hyper-

geometric distribution, due to the fact that only one edge can connect two nodes,

however, the binomial approximation is much faster to compute and is asymp-

totically correct for sparse graphs. This approach was used in the application of

Section 1.3.
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1.6 Appendix B: An MCMC algorithm for ERNM

We use a Metropolis-Hastings algorithm to sample networks from an ERNM (Gilks
et al., 1996). The algorithm alternates between proposing a change to a dyad
with probability pgy.q and proposing a change to a nodal variable. Because the
graphs for social networks are usually sparse, when proposing a dyad change the
algorithm selects an edge to remove with probability pe4e. and a random dyad to
toggle with probability 1 — pegge. We found that this leads to better mixing than
simply toggling a random dyad (Morris et al., 2008). When proposing a change
to the nodal attributes, an attribute is picked at random. If it is categorical, a
random new category is chosen. If it is continuous, it is perturbed by adding a

small constant e.

The following algorithm can be used to generate a random draw from an

ERNM probability distribution (1.1) with an intractable normalizing constant:

Require: Arbitrary (y°,2°) € nets(Y, X), payaa € [0,1], Pedge € [0,1] and S
sufficiently large
1: for s+ 1to S do

2yt ey

3 o gt

41 Ugyaq < Uniform(0, 1)

5. if ugyea < Payaa then

6: Uedge <— Uniform(0, 1)

7 if Uedge < Pedge then

8: (1,7) + RandomEdge(y*)

9: yi; <0

10: ¢ Numb OfENolll mberOflli]Idgels)(y*be d
umber ges(y+)+ NumberOfDyads(y+)

11: else

12: (1,7) < RandomDyad(y*)

13: if y;; =0 then

14: Y1
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15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

- NumberOfEdges(y+)
q NumberOfEdges(y«)+ NumberOfDyads(yx)

else
y;(,j +~—0
NumberOfDyads(y+)
g1+ NumberOfEdges(y«)+1
else

(k,1) < RandomAttribute(z*)
if IsContinuous(z};) then
€ < Normal(0, o)
xz,z — x};l + €
g1
else
z}, < RandomCategory(z} )
g+ 1
r ¢+ qen9@ v ) gt ytm))
u < Uniform(0, 1)
if u < r then
(v, 2%) < (y", z7)
else

<ys’ SL’S) — (y8_1,$8_1>

34: return (y°, 2°)

when less than two edges are present in the network. If we are removing the last

edge, then ¢ < 1/( NumberOfDyads(y*) + .5), and if we are adding an edge to

An adjustment to the calculation of ¢ must be made when toggling the graph

an empty graph, then ¢ < 0.5( NumberOfDyads(y*) + 1).

e (96w )=9@ VYY) quickly, preferably in constant time relative to the size
of the network. We do this by calculating the change in our statistics for a
hypothetical change in the network (Morris et al., 2008). we can usually calculate
the differences in the ¢ statistics given small changes to the graph y or nodal

attributes = in constant time. Morris et al. (2008) review change statistics for

For this algorithm to be fast, we must calculate the likelihood ratio
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commonly used ERGM terms and these can be reused here for changes in the graph
(ie. gt y*)—g(xt=1 ¢=)) ERNM require additional terms, such as those
specified in Section 1.2.2, and also require that all change statistics be generalized

to allow for changes in nodal attributes (i.e. g(a*,y®=1) — g(a(s=1 4=D)),
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CHAPTER 2

Analysis of Partially Observed Networks via

Exponential-family Random Network Models

It is not uncommon for researchers to collect data on a subset of a single net-
work rather than observing the full network. This partially observed case has
been studied within the framework of exponential-family random graph models
(ERGM) by Handcock and Gile (2010), however their formulation suffers from the
limitation that any nodal attributes included in the model must be fully observed,
and only dyads may be missing. This assumption is not met in most sampling
designs, where only some of the nodes are surveyed by the researcher, and reduces

the practical usage of ERGMs in the missing data setting.

By including nodal attributes as variates rather than fixed quantities, exponential-
family random network models (ERNM) were shown in Chapter 1 to provide a
convenient basis for inference in cases where the data is partially unobserved, ei-
ther due to design, or out-of-design (e.g., non-response) mechanisms. While our
framework is applicable to all partial observation mechanisms we consider three

common mechanisms for partial observations in more detail, specifically:

Missing Data: If the population is comprised of a large number of units, or
the number of edges is large, it is relatively common to find that the re-
sources to observe a full network are not available. Often units or dyads are
unavailable for sampling or do not provide complete responses to a survey

instrument. In this case, only some of the dyads and nodal characteristics
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are collected. We treat missing data as a form of sampling in which the
sampling mechanism is unknown and outside the control of the researcher,
or an out-of-design missing data mechanism. A good example of this is the
National Longitudinal Study of Adolescent Health (Add Health), a school-
based, longitudinal study of the health-related behaviors of adolescents and
their outcomes in young adulthood. The study design sampled 80 high
schools and 52 middle schools from the U.S., representative with respect to
region of country, urbanicity, school size, school type, and ethnicity (Harris
et al., 2003b). In 1994-95 an in-school questionnaire was administered to
a nationally representative sample of students in grades 7 through 12. In
addition to demographic and contextual information, each respondent was
asked to nominate up to five boys and five girls within the school whom
they regarded as their best friends. Thus each student could nominate up
to ten students within the school (Udry, 2003). The nominations and con-
textual information were not available for some of the adolescents, either
due to absence from school while the survey was being conducted, or refusal
to participate. Thus, both the graph and nodal variates contained missing

values.

Network sampling designs: Many studies in hard to reach populations use
study designs that trace the linkages of an underlying social network. In
these designs, the network is partially observed, however it is not of primary
interest to the researcher. Such sampling designs have been exploited to
estimate population disease rates (Gile and Handcock, 2010, Gile, 2011a,
Gile and Handcock, 2011).

Latent variables: Some quantities of the network may be in principle unob-
servable. The probability model for a network may posit the existence of
unknown variables which do not correspond to any observable quantity. For

example, stochastic block models (Nowicki and Snijders, 2001) posit the
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existence of classes of nodes, conditional upon which the dyads are inde-
pendent. These classes are unobserveable nodal characteristics and must be
inferred from the relational data. Similarly, latent position cluster models
(Handcock et al., 2006) posit the existence of unobservable continuous nodal

quantities that provide a spatial geometry for the network structure.

In this chapter we develop approaches for each of these scenarios in the context
of ERNMs. Sections 2.1 through 2.3 introduce ERNM and extend the theory to
incorporate partially observed populations. Section 2.4 develops methodology
for each of the scenarios. Sub-section 2.4.1 looks at the effect of random non-
response, and sub-section 2.4.2 applies a latent class model to extract unknown
clusters from a real dataset. Sub-section 2.4.3 develops estimates based on contact
tracing designs, which is of vital importance to the public health community. To
our knowledge, the methods outlined in this chapter represent the first statistically

justifiable approach to inference in contract tracing data.

2.1 Exponential Random Network Models

As we saw in Chapter 1, exponential random network models are a generalization
of the exponential-family random graph model (Frank and Strauss, 1986, Hunter
and Handcock, 2006), where both dyads and nodal characteristics are treated as
random variates. Formally, in a population of n units, let Y; ; indicate that unit
i has a tie to unit j. Let Y be an n x n matrix [¥;;] and X be a an n x K
matrix [X;;] of unit covariates. We define a network 7" as the union of the nodal
covariates and the graph structure (i.e. T = {X,Y}). An exponential family

model of T" is expressed as

P(T = thy) — (%ew(t) teT, (2.1)
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where 17 € R? is a vector of parameters, g is a ¢g—vector valued function defining
a set of sufficient statistics, 7 is the sample space of networks and c(n,7T) =

Y oteT e”9® is the normalizing constant.

2.1.1 The Simple Homophily Model

Though any set of network statistics can be represented by ¢ in equation (2.1), the
examples in this paper will focus on a relatively simple network model. Suppose
that X = (X,...,X,) is a univariate categorical variable with m levels, labeled
0,...,m—1. If X; =1 we say that unit ¢ is in group [. A simple yet interesting

joint model for X and Y is

P(T = (y,2)|n) = 10 i Wi Th(y. )+ 30707 mjs Sy I(wi=1) (y,z) € T.

c(n,T)

The first term of this model is the number of edges, and controls the density of the
graph. The last term represents the number of nodes in each category of x ,except
for the last level, which is dropped to maintain identifiability of the model. The
second term h is the regularized sample homophily of z, as introduced in Chapter

1, and is defined as

e = Y 3 Vsl ) — By sy, )

—k

where d; 1 (y, x) is the number of edges between node 7 and nodes in group k&, and
Ey (f(Y, X)) is the expectation of the statistic f(Y, X), conditional upon ¥ =y
and the category counts (that is, the number of nodes in each category of =,

n(x) = {n(x)}X ), assuming that X and Y are independent.
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2.2 Partially Observed Networks

Handcock and Gile (2007) developed a theory of missing data for ERG models,
and the specification for ERN models proceeds similarly, though our formulation
supports a more general class of missingness processes known as missing not at ran-
dom (MNAR; see Rubin (1976)). We define Tpps and T,s5 to be the observed and
unobserved part of T respectively. We write T = (Typs, Trniss), with realizations
t = (tobs, tmiss)- Let W be a random variable representing the sampling process
with realization w. The probabilistic distribution of W is the sampling mecha-
nism, and must fully specify the sample selection process, including the partition
of T"into T,,s and T},;ss. Typically, W will consist of an n by n matrix indicating
whether the dyad was sampled, and an n by K matrix indicating which nodal
attributes are missing; however, W may contain additional information about the

sampling, such as the order of sampling.

Let us define the full data likelihood as

1
p(T =t, W =w|n,0) = p(W =w|T =t,0)———"90,
( .6) = p(W = ulT = 1.6) -

We wish to draw inferences about 7 from the observed data likelihood, defined as

1
p(Tobs = tobs, W= U)|77, 6) = p(W = ’I,U|t - (tobsu tmiss)> 9) en'g((tobsjtmi”))-
2 c(n,T)

tmiss

(2.2)
In the case where the sampling probabilities only depend on the observed data,
then the sampling design is amenable to the model Handcock and Gile (2010),
and is ignorable in the sense of Rubin (1976). In this case, the likelihood simplifies
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to

en'g((tobs 7t'miss))

p(Tobs - tobsu W = U)|77, 9) = Z p(W = w|Tobs - tobs: 9)

tmiss C(TIJ
1
- p(W = w‘TObs — tobs; 0) en’g((tobsvtmiss))
; c(n,T)
1
n'g((tobmtmiss))‘ 23
2 (2:3)

tmiss

Thus, when the sampling process is ignorable, inferences on 7 are not affected
by p(W = w|Tps = tops, ), and so knowledge of the sampling process is not

essential for the process of inference.

Having defined the full and observed likelihood, it is also useful to define the

missing data likelihood:

p(Tmiss = tmiss‘W =w, Tobs = t0b57 7, 9) = (W = w‘T = (tobs-, tmiss)7 e)eng((t(’bsytm”s»

1
o w0

where

C(tobsa w, 7’]7 8) fry Z p(W g w‘T — <t0b57 tmiss), e)en'g((tobsytmiss)).

tmiss

The (observed data) likelihood can then be rewritten as the ratio of two nor-

malizing constants

1
P(Tops = tops, W = win,0) = p(W = w|T =t,0)er9®
( b. b. |?7 ) C(U,T) Z ( | )
C(tobsa w, 1, 0)
c(n, T)

tmiss

and using this, we may write the observed data log likelihood ratio of (7, §) versus
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(7707 90) as

c(tobs, w, 1,0 c(n, T
£m0) — fm.00) = tog(_ ) g ST
= log( Z p =0T =4,0) (4pg).g( PW = w|T =1,00)em 9
_w\T =t 9()) C(tobmwmo,@o)
eno-g(t)
— log( eln=mo)-g(t)Z__~__
Py )
Me(n*no)-g(ﬂ”w = w, Tops = tops) (2.4)

log(E
80 W = w7 )
—log(Enpq (et=10):9(1)y)

= log(Eny,00 (e=m0) 9D == t4.)) — log(Eng (e1=710)-9(T)Y)

+1o ( 71 0 (P(W = U)|T 0 )|Tobs = tobs)
770 0o (P(W - 'LUlT 00)‘Tobs - tobs)

(2.5)

Both equation 2.4 and equation 2.5 motivate algorithms to draw inferences about
n and 6. Section 2.3 describes the algorithm motivated by equation 2.4, and

Appendix A.1 outlines an algorithm using equation 2.5.

2.3 Calculating the MLE with MCMC

For most models, equation 2.4 is not analytically solvable. However we may
approximate it by Markov Chain Monte Carlo (MCMC). Let t® and ¥ where
i € (1,...,M) be samples from the full likelihood and missing data likelihood

respectively with parameters 7, 6p. Then equation 2.4 may be approximated by

tm, e
£(n,8) — L£(no, o) ~ log(—— Z P w|‘t ) e(n=mo) g(t()) — log(— Zen 70)-g(t™)
'LU m, 0
(2.6)

As 1,60 move away from ng, 0y the quality of this approximation degrades.
Because we will be optimizing equation 2.4, it is useful to have both the first and

second derivatives of the log likelihood, which are

30



Y4
% - ETI,9<gi<t)|Tobs = lops, W = w) - Eﬁﬂ(gi(T))
4

577z‘577j

= —cov(g;(T), g;(T)) + cov(gi(T), g;(T)|Tops = tops, W = w).

The expectations and covariances in these derivatives can be approximated using
the conditional and unconditional MCMC samples and thus we can then use the

following algorithm to approximate the MLE.

1. Let k = 0 and choose initial parameter values n(®, 6.

2. Use MCMC to generate k samples, 9 from P(Thiss = tmiss|n®, Tops =

tob57 W = U))
3. Use MCMC to generate m samples t) from P(T = t|n*).

4. Using the samples from step 2 and 3 in equation (2.6), find n**1, ¥+ maxi-

mizing the likelihood ratio, subject to ||7*** —n*|| < € and ||9*T! — 0| < e.
5. If the likelihood has not converged, set k = k + 1 and go to step 2.

6. Let the MLE estimate be ) = n* and 6 = §*+

Asymptotic standard errors for 77 may be obtained using an MCMC approx-
imation to the Fisher information (i.e. the second derivative of the log likeli-
hood). While asymptotics of the Fisher information are not assured with re-
spect to ERNM (or ERGM) models, Fellows and Handcock (2012) show strong
empirical agreement between the Fisher information standard errors and para-
metric bootstrap simulations. Standard errors for the mean value parameters

= E(g(T)|n =n) can be approximated by MCMC sampling.
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2.4 Specific Forms of Partial Observation

In this section we consider the three common forms of partial observation consid-
ered in the introduction, each corresponding to a different mechanism of partial

observation or conceptualization of that mechanism.

2.4.1 Missing Data: Unobserved Relational Information

It is common when surveying networked populations that there are insufficient
resources to conduct a census of the population and their relations. For efficiency
reasons, a sampling based survey is undertaken, or the full network is partially
observed due to non-response. In this sub-section, we give an illustration of the ef-
fect of non-response where the dyad information is missing completely at random.
We consider the relations of “liking” among 18 monks in a monastery (Sampson,
1969). The network analyzed has a directed edge between two monks if the sender
monk ranked the receiver monk in the top three monks for positive affection in
any of the three interviews given over a twelve month period (Hoff et al., 2002).
The sociogram of this dataset is shown in Figure 2.1. One nodal attribute of
interest is an indicator of attendance at the minor “Cloisterville” seminary before

coming to the monastery.

We fit a simple homophily model on Cloisterville status using the full data.
We then ran simulations on the effect of missingness by selecting dyads, and
Cloisterville status variates, completely at random and setting them to missing.
Figure 2.2 shows one simulated missingness pattern with 15% missing. We ran
100 simulations at each missingness percentage. Means and standard deviations
of the ERNM models fit to these simulated missingness patterns are displayed in
Figure 2.3.

We see that the standard deviations of the estimates increase as the amount

of missingness increases. At the higher missingness levels some bias is apparent
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1 Ramauld (L) 10  Gregory (T)
@ 2 Bonaventure (L) 11 Hugh (T)
2 3 Ambrose (L) 12 Boniface (T)
@ O 4 Berthold (L) 13 Mark (T)
©, @ 0 5 Peter (L) 14 Albert (T)
) 6 Louis (L) 15  Amand (O)
@ 7 Victor (L) 16 Basil (O)
© 8 Winfred (T) 17 Elias (O)
& 9 John (T) 18 Simplicius (O)
@

Figure 2.1: Relationships among monks within a monastery and their affiliations
as identified by Sampson: Young (T)urks, (L)oyal Opposition, and (O)utcasts.
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Figure 2.2: Sampson’s monks with 15% missingness. Cloisterville status marked
on the right hand side.
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Figure 2.3: Means and standard deviations of model estimates. Red lines indicate
fully observed MLE

relative to the full data MLE, but not more than one standard deviation. One
possible explanation for this bias is that there were only six monks who attended
Cloisterville, and so at 50% missingness, a significant number of samples will

include no (or perhaps a single) Cloisterville monk.

2.4.2 Latent Variables: Stochastic Block Models

In this sub-section we consider the situation where some characteristics of the
network are posited but unobserved. Specifically, we consider the case where each
node of the network belongs to a latent class, and the structure of the network
depends on that latent class. The traditional approach to this has been stochastic
block models Nowicki and Snijders (2001), and here we show how these models

fall naturally out of our general formulation.

It is apparent from Figure 2.1 that the pattern of “liking” between the monks
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may exhibit clustering. Through close sociological study, Sampson (1969) identi-
fied three clusters which he dubbed the Turks, Loyal Opposition and the Outcasts
(see: Figure 2.1). Here we will attempt to identify clusters by inferring class mem-
bership from the graph. We fit the simple homophily model of Section 2.1.1 to
this data, assuming a class covariate, X, with three levels, and that all of the
monks are “missing” their class covariate. The simple homophily model treated
this way represents a novel latent block model in the spirit of Nowicki and Sni-
jders (2001). Note that the missingness process here is ignorable because it does
not depend on unobserved quantities as all of the z values are missing regardless
of the Y values. We fit the model using the algorithm in Section 2.3. Table 2.1
shows the maximum likelihood parameter estimates, along with standard errors

of the estimators based on the Fisher information.

~ ~

Term Ul oo s.e.(n) s.e(f)
# of edges -0.58 88.23 0.14 7.48

Homophily 7.28 15.30 0.91 1.33
# in group 0 -2.50  3.95 1.44 1.08
#ingroup 1 -0.02 6.95 1.31 0.99

Table 2.1: Latent Class model for Sampson’s monks.

The natural parameter estimates indicate significant homophily in tie forma-
tion based on the class. It also indicates that the number of monks in the third
class is significantly more than those of the other two classes, which are not sta-
tistically significantly different in size. The mean value parameters indicate that
the expected number of ties is about 88, and the expected numbers in the three

groups are 4, 7 and 7.

An advantage of this approach is that we can investigate the probability of class
membership, which is well defined through our framework as p(X = z|Y = yus, 7).
To compute p(X = z|Y = yups,n7) we simulated a large number of samples from

p(X = z|Y = yops, ) using MCMC to show the probability of the monks being in
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the classes displayed in Figure 2.1 to be above 0.9999. These clusters were also
identical to those chosen by Sampson (1969) and verified by later research Breiger
et al. (1975), Handcock et al. (2006).

In addition to assuming a set number of latent classes for the model, we can
also use the MLE procedure to select an appropriate number of clusters for the
data. We fit the simple homophily model with a latent variable X able to take
a potentially large number of values (e.g., the number of monks). In this case
p(X = z|Y = yus,n) places zero mass for all but three of the groups. This is
evidence that the three groups we have identified are a good classification for these
data. More sophisticated model selection approaches for choosing the number of

clusters are possible (Handcock et al., 2006), and are left for future work.

Our form of the stochastic block model is conceptually very clean with the abil-
ity to naturally incorporate additional covariates, multiple membership variables,
and extensions to an unbounded numbers of classes. Inference is straightforward,
and quantities such as the probability of class membership are well defined and

interpretable. We leave a full exploration of these for latter work.

2.4.3 Network Sampling: Biased Seed Link-Tracing

Handcock and Gile (2010) explored the idea of sampling networks by tracing the
edges. As a general concept, link tracing involves selecting one or more seed
nodes, and then observing the edges connected to those seeds. One or more of
these edges are then followed to the neighboring node, whose ties are observed,

and the process is continued. Each iteration of this process is known as a wave.

Provided that the seed nodes are chosen at random, and the method by
which edges are chosen to be followed depends only on the observed data, this
missingness process is ignorable. To be explicit, consider a link tracing pro-

cess with k£ waves. Let w; be the ordered set of nodes and edges sampled in
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the ith wave in the order in which they were sampled, w = {wy,...,ws}, and
w_; = {wo, ..., Wi_1,Wiy1, ..., wg . If the seeds are chosen at random, and the
edges followed by the sampling process are also chosen at random, then at each
step in the sampling process, the nodes sampled in the next step depend only
on the ties connected to an observed node, which are observed as well. Thus,
p(W = w|T = t,0) = p(W = w|Tys = tops, ), implying that the missingness is

ignorable.

In many cases, however, the seeds are not chosen at random from the popu-
lation, but are some form of convenience sample. For example, in a population
where some people have an infection and others do not, we may start with a
sample of s; seeds picked at random from among the infected individuals, and
s_; seeds picked from the non-infected individuals. These seeds are then used
as a starting point for standard link tracing. We may then write the sampling

probability as

p<w‘t7 9) = p<w0’t7 g)p(w—0|tobsa Wo, 9)

n; —si)! (n_; —s_;)!
= ( - | Z> ( Z | Z) p(w—0|t0b87w0’9)7
o n_;:

where n; and n_; are the number of infected and non-infected in the population,
respectively. Note that p(w_o|teps, wo, ) does not depend on t,,;ss and may be
factored out of the likelihood in equation (2.2). Thus there is no need to calculate
p(w_g|teps, wo, 8) explicitly, as it makes no impact on the likelihood. Hence, in
this case, we can compute a likelihood without knowing the specific mechanism

of seed selection.

2.4.4 Network Sampling: Positive Contact Tracing

As emerging epidemics develop, control measures (e.g., treatment, isolation and

culling) focus on those members of the population that are known to have the in-

37



fection. Because there are often many infected people who are unobserved, control
can be ineffective (e.g., HIV (Potterat et al., 1989). The alternative of applying
control measures to the entire population can be economically infeasible or ineffec-
tive e.g., instances of safe sex education (Potterat et al., 1989, Klinkenberg et al.,
2006). Contact tracing is the hybrid approach of treating both the known infected
individuals and those who may have been infected by them (Potterat et al., 1989,
Klinkenberg et al., 2006). In U.S. public health, health clinics are required by
state law to notify those at risk from infection due to their sexual relations with
individuals tested, and found to be infected by the clinic. The process of locating,
notifying and then testing partners that may have been exposed to an infectious
agent allows additional information about the partners to be collected. While
the primary purpose of contact tracing is disease control via partner notification
and partner services, it is also a form of data collection that is rarely utilized.
Such approaches are used most commonly for syphilis and HIV/AIDS, but also
for other STIs such as gonorrhea and chlamydia (Golden et al., 2004), as well as
routinely for tuberculosis and infectious disease outbreaks. Contact tracing has
also been applied in many recent epidemics (Fenner et al., 1988, Ferguson et al.,
2001, Donnelly et al., 2003). In positive contact tracing, we follow all edges from

infected nodes, but edges from uninfected nodes are not followed.

While the process varies from state to state and also by disease, we consider

the following biased seed link tracing process:

1. Select s_; seed subjects at random from among the non-infected population,

observe them.

2. Select s; seeds subjects at random from among the infected population,

observe them.

3. Choose the next infected seed at random.
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Figure 2.4: Degree distribution of the networked population.

4. Observe all edges from the selected subject, and the infection status of these

subjects.
5. For all infected neighbors of the selected subject, go to step 4.

6. If all the seeds have not been chain sampled, go to step 3

We simulated a networked population of n = 1000 people from the simple
homophily model of Section 2.1.1 with natural parameters of n = (—5.8,.7, —1.95).
The number of infected nodes was fixed at 150. The generated network had a mean
degree of 3.1, and its degree distribution is displayed in Figure 2.4. There were
296 infected to non-infected ties, with the mixing distribution displayed in Figure

2.5 indicating moderate homophily.

Starting with s; = 40 infected seeds, we simulated 100 positive link tracing
samples for each of s_; = (0, 45,90, 135, 180, 225). Figure 2.6 displays a histogram

of the sizes of the samples when there are no non-infected seeds (i.e., s_; = 0).

To provide a comparison for our method we considered two estimators that
could be utilized. Neither of them uses a model for the networked population
but is motivated by approximations to the sampling design. The first treats the
sample as a simple random sample

n;
b
n; + m

Naive =n

39



1200

1000 —

800

600 —

# of edges

400
200
]
O,

I I I
Infected - Infected Infected — Not infected Not infected — Not infected
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where n; and n,, are the number of infected and uninfected in the sample respec-

tively. The second adjusts for the sampling of the seeds
n;, —S;

Nai dadj.)=(n—s —s_ v
aive (seed adj.) = (n —s; — s )ni_5i+nu—s,i+8

Our approach is to fit an ERNM to the contact tracing data. In this situation
the contact tracing sampling design is clearly informative. For comparison, we
compute two estimates of the model. The first takes into account the informative-
ness of the contact tracing design (MNAR) and the other assume it is ignorable
(MAR). These are based on the likelihoods 2.2 and 4.4, respectively, and the

algorithm in Section 2.3.

Figure 2.7 shows the results for each of the estimators over the samples. The
median of the MNAR estimator is centered around the true value of 150 in all
sampling scenarios, while the MAR estimator performs poorly with all infected
seeds (s_; = 0) and increasingly well as the number of non-infected seeds increases
to s_; = 225. This is somewhat expected as the proportion of infected in the seeds
approximately matches that of the population when s_; = 225. The two naive
estimators are significantly biased across all samples. This is especially true for
the sample mean which is biased both by the seed selection and by the link-tracing
design. The adjusted sample mean corrects somewhat for the seed bias but does

not represent the link-tracing.

This application illustrates the advantage of the model-based approach over the
ad hoc estimators. By representing the structure of the networked population, the

model-based approach can leverage the information in the data more efficiently.
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Figure 2.7: Estimates via contact tracing with s; = 40 infected seeds and varying
numbers of non-infected seeds.

2.5 Discussion

In this chapter we have given a concise and systematic statistical framework for
dealing with partially observed network data when some knowledge is available on
the sampling design. The framework includes, but is not restricted to, ignorable
sampling designs. We have also shown that likelihood-based inference is practical
under partial observation for ERN models, and that the likelihood framework

naturally accommodates standard sampling designs.

We developed and implemented algorithms to compute Monte Carlo approxi-
mations to the likelihood, and showed how these can be used in practice. Three
important special cases of these designs were demonstrated in Section 2.4. In Sub-
section 2.4.1 we consider a missingness process which randomly selected dyads and
nodal attributes to be missing. Sub-section 2.4.1 considers the case where all nodal

attributes are missing, thus introducing a novel form of the latent cluster model.

In Sub-section 2.4.3 we consider non-ignorable sampling in the context of con-
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tact tracing data, a case of vital importance to public health. At present, this is
the first statistically defensible approach to inference in this form of data. The ex-
ample presented here shows that the MLE estimation task is robust, but is limited
by the fact that inference was performed on a simulated network. Whether the
model presented here would provide a good fit for real public health data remains

an important research question that we hope to address in the future.

2.6 Appendix: Algorithmic and Computational Details

2.6.1 A.1: Alternate MLE Formulation

While the algorithm outlined in Section 2.3 works well, there are some situations
where an alternate formulation using equation (2.5) may be useful. First let us
consider the case where 6 = 6, then the likelihood is

(1) — €0n) = 10g(Eyy (€190 13,)) — log( By (¢1-1091))) + log( ZlbW T O Tun—tan) - (2.7)

The first expectation, and the expectation in the denominator of the third term,
can be calculated using an MCMC sample from p(t|tss,70). The second can be
approximated with an MCMC sample from p(t|ng). The numerator of the third

term can be approximated by importance sampling.

k

> p(w]t?, 0)w

i

Ey(P(W = w|T, 0)|Tops = tops) ~

| =

where t) ~ p(t|tops, 70) and

e(n=m0)-9(t")

Z;“ e(n—mo)-g(t¥))

Wl —

If the sampling process is ignorable, then the third term drops out of the likeli-

hood ratio. The first and second derivatives of the likelihood are useful in the
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maximization process. For notational convenience let A;(t) = ¢;(t) — E(g;(T)).

Y
on

524
onidn;

And if the

If we fix 7,

4
= g log( Z p(W = ’LU|T = t)P(Tmiss = tmiss|7]7 Tobstobs)P(Tobs = tobs|77))
¢ tmiss

Ptriee PW =0T =0)A;)P(Tmiss = tmiss|n, Tobs = tobs)P(Tobs = tobs|n)
Dtries PW =w|T =) P(Tmiss = tmiss|n, Tovs = tobs)P(Tobs = tobs|n)
E(p(W = w|T)A;(T)|Tops = tobs)
E(p(W = w|T)|Tops = tobs)

§ 2t PW=w|T =10)A;#)P(Timiss = tmiss|n, Tobs = tobs)P(Tobs = tobs|n)
oy 24 .. PW =w|T =) P(Timiss = tmiss|M: Tobs = tobs)P(Tobs = tobs|n)
E(p(W = w|T)Ai(T)A; (T)|Tobs = tobs)

E(pW =w|T)|Tops = tobs)
- E((W = w|T)A;(T)|Tobs = tobs) E(@(W = w|T)A;(T)|Tobs = tobs)
E(p(W = w|T)|Tobs = tobs)?

= —cov(gi(T),h;(T)) +

missingness process is ignorable, these equations simplify to

Y4
% - E<A1(T)|Tobs - tobs)
520
= - (1), g;(T (1), g: (TH|Tops =t
577@'577]‘ Cov(gz( )79]( )) + COU(gz( )79]( )| obs Obs)

then the observed likelihood of 6

L(Otobs, w,m) o< P(tops|n) E(P(W = w[T,8)[Tops = tons)

= E(P(W = w|T,0)|Tops = tops,1n)

can be maximized to find the MLE of 6.

This motivates the following algorithm for maximizing the observed data like-

lihood.

1. Let k = 0 and choose initial parameter values n(®, 6,.

2. Use MCMC to generate k samples, tfi)iss from P(tmiss| %, tobs)-
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3. Use MCMC to generate m samples t) from P(t[n").

4. Set 081 = argmax(E(P(w|T,0)|Tyws = tops,n)), With samples from step 2

used to approximate the expectation.

5. Using the samples from steps 2 and 3 to approximate the relevant expecta-

k+1

tions, find n*™! maximizing equation (2.7) subject to ||n**t — || < e.

6. Set k =k + 1, and go to step 2.

The disadvantage of this method is that if the networks generated by the
MNAR process are very different from those generated assuming MAR, the esti-
mates of the last expectation in equation (2.7) can become unstable. The benefit
of using this method is that the sampling probability (P(W = w|T = t,0)) only
needs to be calculated for networks included in the sample, and not at every
MCMC step as is required by the algorithm in Section 2.3, so if the sampling
probability is computationally expensive to calculate, this method can be signifi-

cantly faster than the one outlined in Section 2.3

2.6.2 A.2: Estimating Network Statistics

We can use MCMC samples from p(€miss|toss, ) to estimate the network statistics
of the sampled network. Suppose that we have used MCMC to draw k samples

from the distribution p(tmss|tops;n), and ¢ = (tobs,t(i) ). Then we can

mZSS mess

estimate the expectation of a set of network statistics g as

SN

=0

E( ( ‘tobsa

wl*—‘

However, this equation ignores the possible bias introduced by our sampling pro-
cess w. The distribution that we should be sampling from is the full conditional

distribution of %,,;.s,
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p<Tmiss = trnisS|Tob = tobsa W = w, 77) X p(TmiSs = tmiss‘Tobs = t0b37 n)p(W = w|T — t’ 6)

We then use importance sampling to estimate the relevant quantity

SF L gtNp(W = w|T =@, 9)
Zfzo p(W = w|T =t 0) '

E(g(T)tops, w,n,0) =
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CHAPTER 3

Implementing MCMC-MLE in

Exponential-Family Models

3.1 Introduction

In the previous chapters we have heavily relied on the use of Markov Chain Monte
Carlo Maximum Likelihood (MCMC-MLE; Geyer and Thompson 1992) to fit
our ERNM models, both when the full network is observed, and in the partially
observed case. This algorithm is central to both ERGM and ERNM models, and

is non-trivial to implement in a robust and reliable manner.

In this chapter we show how the exponential family likelihood permits a useful
approximation to the normalizing constant that increases the stability and accu-
racy of the MCMC-MLE algorithm. We also show how MCMC standard errors
can be used as a measure of when to trust this approximation. Though we are
particularly interested in ERNM, the methods outlined in this chapter pertain to

any exponential family distribution.

3.2 The Geyer-Thompson Likelihood Ratio Formulation

Let T" be random variate with realization ¢, then the general exponential family

model for 7' is expressed as
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[
P(T = tln) = me" h)+9() (3.1)

where h is a vector valued function generating sufficient statistics for 7', ¢ is an
offset statistic, and c is the normalizing constant. If T" is high dimensional, calcu-
lating ¢ becomes increasingly intractable, and so the likelihood becomes difficult

or impossible to evaluate.

If we consider the log likelihood ratio of n versus 7y, we can transform the

likelihood into a more tractable form

0(n) — £(no) = (n — mo)-h(t) — log[E,, (e~ ™M), (3.2)

The first term is a simple function of the sufficient statistics and is thus easy to
evaluate. The second term requires the calculate of the expectation of a quantity
under 7. This is difficult to calculate in general, but if we have an MCMC sample

from the model at 79, we can use the sample to approximate the expectation.

If only part of T is observed and the missingness process is ignorable in the

sense of Rubin (1976) then the log likelihood ratio may be written as
€(n) — L(no) = log(Eny, (e(n_no)h(T))‘Tobs = tobs) — log (L, (6(n—no)h(T)))’ (3.3)

where T, is the observed part of 7" (Handcock and Gile, 2010, Geyer, 1994,
Gelfand and Carlin, 1993). The second term is identical to the second term in the
fully observed case, and the first term can be approximated by an MCMC sample
conditional upon the observed data. This formulation is exactly analogous to the

development in Section 2.2.
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3.3 Approximating the Expectation Via MCMC

Given a sample t; for i € (1,...,n) from the relevant distribution, Geyer and

Thompson (1992) suggested approximating the log expectations with
. I -
log By (¢71)) ~ log(5. 37 7))

where 7" = (1 — no)

Hummel et al. (2012) found that (in the context of exponential family random
graph models) this approximation degrades quickly as n moves away from 7, and
suggested an alternate approximation. If *h(T") is normally distributed, then the

log expectation is
log( By (" "™M)) = E(n*h(T)) — var(n"h(T))/2 = E(y"h(T)) — var(n*h(T)) /2.

In the case of the Erdos-Renyi ERGM model this approximation was shown to
outperform the Geyer-Thompson approximation, but there is no reason to think
think that X will be distributed normally in general. In fact if any of the statistics
h are distributed non-normally, then there exist a set of n* in the maximization

process that yield a non-normal n*h(T).

3.3.1 The Cumulant Generating Function Approximation

The log expectation that we are attempting to evaluate is known as the cumulant

generating function. Performing a Taylor expansion around 0 of e* and then of
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log(z) we obtain

log(E(e" ™)) = log(E(L+n*W(T) +n"W(T)*/2+ ...))
= log(1+ E(n"M(T)) + E((n"h(T))*)/2+ ..)
= (E(h(T)) + E(("h(t)*)/2+ ..) —
)

(E(*h(T)) + E((r"h(T))*) /2 + )" 2+ ...

(3.4)

Q
\g
=&

where ; is the ith cumulant of n*A(T"), and &; is the sample cumulant based on
the MCMC sample. If we let m = 2 we obtain the log normal approximation,
so this derivation provides a justification for its use even when the distribution is
significantly non-normal. As n* moves away from 0 the approximation degrades.
The more terms that are used, the less error there is in the Taylor expansions, but
higher order cumulants have more sampling error, so a balance must be struck

between these two competing error sources. We have had success using 2 < m < 4.

3.4 When to Trust the Sample

No matter what approximation is used to estimate the cumulant generating func-
tion, the approximation degrades as n* deviates from 0. The solution to this is to
take an iterative approach, maximizing the log likelihood subject to the constraint
that n* is not to large. Then setting 7y <— 1, and repeating the maximization un-
til convergence. The question of course is how large should n* be allowed to get

before new MCMC samples are drawn.

Geyer and Thompson (1992) Suggested that the maximization should be per-

formed subject to n* < ¢ but provided no guidelines as to what ¢ should be.
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The default settings of the R package ergm (Handcock et al., 2012) restrict the

maximization such that ¢(n) — ¢(ny) < 20.

More recently Hummel et al. (2012) developed a new approach where the
maximization is done unconditionally, but the likelihood is altered. Specifically,

the likelihood that is maximized is

0(n) = €(0) = (11 = 10)-(PEyo (W(T)) + (1 = p)h(t)) — log[Ey, (e ™MD (3.5)

where p € (0, 1) is chosen such that the point pE, (h(T"))+ (1 —p)h(t) is inside the
convex hull of the MCMC sample. This restricts the target mean value parameters
(1) to be within the convex hull of the sample, and thus the natural parameters

7 are also restricted to be near 7.

Hummel et al. (2012) show that using this restriction leads to more robust
estimation, especially in cases where the solution is near a degenerate region. One
issue with this approach is that it only is applicable in the complete data case. If

our data has missing values, the method can not be applied.

3.4.1 Effective Sample Size Restriction

In exponential family models, in addition to the natural parameters (), there is
an alternate expression of the model using the so called mean value parameters
wu(n) = E,(h(T)). Given an MCMC sample from 7y, we can estimate the mean
value parameters associated with 7 using importance sampling. Specifically, given
an MCMC sample t® for i € 1,, k from the model at 7y we can estimate the mean

value parameters as
SFwih(t:)
S w;

where w; = exp((n — no) - h(t;)). As n deviates from 7y the estimation becomes

fi(n) =

increasingly poor, and we can measure the degradation of the approximation using
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MCMC standard errors. If the mean value parameters can not be estimated
accurately, we should have little confidence in our ability to estimate the likelihood
ratio. If we divide our k samples into a batches of size b, then for each batch we
can calculate the estimated mean values as
ib
i e wib(t)

fi(n) = = for 5=1,...,a.
Zi:(j—l)b—l—l Wi

The MCMC batch mean standard error is then defined as

a—1

Jj=

For any fixed batch size b, 6, is not a consistent estimator of the true standard
error (Glynn and Iglehart, 1990), but if we let b = v/k, then consistency is achieved
(Jones et al., 2006). We can then express the effective sample size, relative to a

simple random sample at 7, as

. Gu(n)?
e35(1) = Kz gy -
k

where var(h(T)) = %Zf(h(tl) — ji(no))?. This motivates maximizing the likeli-

hood subject to the constraint that
ess(n) > s,

where s is the minimal acceptable sample size. Our empirical investigations with
various ERNM models suggest that using a small number (such as 5) allows for

fairly large jumps in the likelihood, while maintaining stability.
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CHAPTER 4

A Model Based Analysis of Respondent Driven

Sampling Data

The respondent driven sampling (RDS) design is a widely successful method of
obtaining samples from difficult to reach populations (Johnston and Sabin, 2010).
It is used extensively in the surveillance of infectious diseases such as HIV, both

in industrialized nations and in the developing world (Malekinejad et al., 2008).

While it is a popular method in practice, the statistical validity of estimators
based on the design have been met with some criticism based both on their theoret-
ical underpinnings (Gile and Handcock, 2010) and on simulations in real networks
(Goel and Salganik, 2010). Also, the types of inferences that are available to the
researcher are limited to very simple quantities such as means and proportions.
More complicated inferences such as group comparisons and regression modeling

are unaddressed by current methodology.

This lack of a methodology has not stopped researchers on the ground from
using a variety of methods ranging from simply ignoring the sampling process in
the regression to mixed effect models (see Johnston et al. (2008) and references
therein). This indicates that there is significant demand with the epidemiological
community for a way to address regression problems within a network sampling

framework.

In this chapter we frame the RDS design as a missing data process over an

underlying social network. By modeling the network using Exponential Family
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Random Network Models (ERNM), and the RDS design process we develop a
novel framework for the analysis of RDS data. This framework allows us to
estimate not only proportions, but also multivariable hypotheses such as logistic

regression.

4.1 Respondent Driven Sampling

Respondent driven sampling is a variant of the link tracing design (Handcock and

Gile, 2007), and proceeds as follows:

1. Recruit a group of subjects from the population (know as seeds). These

subjects are chosen by convenience, and may represent a very biased group.

2. Each subject is asked how many people within the population of interest
they have that they might be willing to recruit into the study. These people
are referred to as the alters or neighbors of the subject. They are then asked
to approach them and recruit them into the study. The number of recruits

per subject is usually limited to two or three alters.

3. As subjects are recruited, they are in turn asked to recruit their alters until

the desired sample size is reached.

The advantage of using RDS is that it exploits the fact that even though
the researcher can’t obtain a list of members of the population (which would be
required to obtain a simple random sample), the members of the population do
know each other. Thus by traversing the social network we can reach most or all
people, and because members of the population will tend to trust their referrer,

they are more likely to participate in the study.

The disadvantage of RDS is that specialized estimators adjusting for the sam-

pling process must be used, and even then estimates can be highly biased (Gile and
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Handcock, 2010) due to assumption violations. These estimators must contend
with adjusting for both the network structure and initial seeds that are chosen by
convenience and therefore may not be representative. In this article we will ad-
dress two network structures which can be sources of bias. First, for many traits,
two subjects with similar values of the trait may be more likely to be alters. This
is known as homophily in the network literature. Secondly, members with a trait
may be more socially active (i.e. have higher degrees) than average, leading to
these subjects being more likely to show up in the sample than average. This
is known as differential activity, and it can severely bias naive estimators (Gile
and Handcock, 2010). Several estimators have been developed to account for the

biases resulting from this non-random sampling process.

4.1.1 Unadjusted Mean (mean)

If the recruitment graph structure is independent of the outcome variable, then
the sample mean is a correct and unbiased estimator of the population mean
(Heckathorn, 1997). Formally, let i € {1,...,n} be an RDS sample of size n from
a population of size N, and z € {0,1} be a binary trait, then the simple mean

estimator is

4.1.2 The Salganik-Heckathorn Estimator (rds-i)

Let y be an N by N matrix representing the recruitment graph, where y;; = 1 if
subject k is a possible recruit of subject j, and y;; = 0 otherwise. This matrix
is assumed to be symmetric (y;, = yi;). Further, let to; = Z;VZI SN (2 =
0)y; %l (2, = 1) be the total number of edges in the recruitment graph connect-
ing nodes with differing traits where I is the indicator function. We also de-

fine N, = Zjvzl I(z; = a) to be the number of nodes with trait a, and D, =
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1

¥ ijzj:a > k>j Uik be the average degree (network size) of group a. We can

then write the proportion of ties from nodes with z; = 0 to nodes with 2z, = 1 as

F— lo1
= NoDy
Similarly we may write the reverse as
e ton
10 NlDl 9
and by rearranging the terms we obtain
N Dycoy

=N~ Dicio + Docor

This equation can be used as the basis of an estimator by inserting estimates
for the quantities on the right hand side. We can estimate the average degree
in each group with a generalized Horvitz-Thompson estimate with probability

proportional to nodal degree

f)a = Z?:l {L(Zz 1: a)‘
Ei:l d;

The use of probability proportional to degree can be justified along the same lines

as the Voltz-Heckathorn estimator in section 4.1.3.

If one assumes that the recruitment process is at the equilibrium of a Markov

random walk through the graph, then we may estimate c as

By = 701 P 710
01 =—""— 10=—"),
Too + To1 r11 + 710

where 74 is the observed number of recruiter-recruit in groups a and b respec-

tively. Plugging these estimators in we obtain the Salganik-Heckathorn estimator
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(Salganik and Heckathorn, 2008)
fisp = Diéor
H — #.
D1 ¢10 + Docon
4.1.3 The Voltz-Heckathorn Estimator (rds-ii)

The Voltz and Heckathorn estimator (Volz and Heckathorn, 2008) is defined as:

2

Zi d;
>

where z is the outcome and d is the individual’s network degree (i.e.

N

Hvg =

the
number of recruitable acquaintances).

This estimate is a generalized Horvitz-Thompson estimator assuming that the

probability of inclusion into the sample is proportional to nodal degree. Gile

(2011b) showed that this is in fact the case if:

1. The probability model for the graph follows the configuration model.
2. Seeds are chosen proportional to degree.

3. N>>n

The configuration network model is a simple parsimonious probability model

for networks, particularly popular in the physics literature (Molloy and Reed,
1995). It is defined as follows

1. Let R ={Ry,..., Rx} be an arbitrary but fixed degree distribution such that

R; is the number of nodes with degree .
2. Randomly assign degrees to each node from R

3. Select edge ends completely at random and assign an edge between the two

nodes selected.
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This estimator is appealing because of its simplicity, ease of computation and
because there is an actual underlying network model. It has also faced considerable
criticism because of its unrealistic assumptions and high variance (Gile, 2011b,

Goel and Salganik, 2010).

4.1.4 Gile’s Sequential Sampling Estimator (gile)

Gile (2011b) developed a finite-population correction to the Voltz-Heckathorn
estimator, relaxing the NV >> n assumption. Like rds-ii the gile estimator models
the sampling process with inclusion probabilities proportional to degree, but does
so without replacement. This leads to an estimator with no closed form solution,
though it is relatively easy to compute. Gile (2011b) showed that this estimator
outperforms the above estimators when the sample fraction is large, and converges

to rds-ii when the sample fraction is small.

4.2 The RDS Design

Section 4.1 gives an informal definition of the RDS sampling process, which we
will now formalize into a probability model. Consider the following idealized RDS

process:

1. Choose seeds from the population. The method of choosing may be biased

toward any of the nodal covariates. Seeds are all surveyed at the same time.

2. Each subject then randomly recruits C; ~ min(d}, Multinomial(cmax, 0))
children into the study, where ¢4, is the number of coupons received, d; is
the number of alters not yet recruited, and 6 are the multinomial probabil-

ities.

3. Each child waits an independent and identically distributed time before

coming in to be surveyed.
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4. Once the required sample size has been met the recruitment process stops.

Consider a network Y to be an n by n matrix whose entries Y;; indicate
whether subject ¢ and j are connected, where n is the size of the population and
X be a matrix of nodal covariates. We define a network as the union of the nodal
covariates and the graph structure (i.e. 7= {X,Y}), and W be a random variable
representing the RDS sampling process. More specifically, W consists of the set
of nodes sampled, their children, and the time at which they are observed, with
realization w. Further, let W; be the ith observed (node, children, time) triplet,
W_; be the set of nodes observed before the ith node, and (i) be the set of nodes
surveyed after the ith node, but whose recruiter was recruited before the (i — 1)th
node, and n(i), ¢;, and s; be the node, recruiter and time respectively, then we

can recursively define the RDS sample probability as
p(Wi = (n(i), i, si)|lw—i, p) = p(Ci = ci|d}; Cmaz, 0)b(si, Si-1) Hj@@ 1—- fbsfl b(z, si-1)dz,

where b(s;, s;_1) is the probability, given the node is chosen by its parent node,
and that the subject was not observed before s;_1, that the subject is observed at
a time s;. So if we let w; represent the seeds, k be the number of nodes sampled,
and n,; be the number of seeds, then conditional upon the seeds the sampling
probability is

k
pW =wlz,y,w,,0) = [ pWi=wiw_i,0).

i=ns+1

Considerable simplification is achieved when looking at the likelihood ratio of 6

versus fy, as the terms involving b drop out

<W|0 U}s H p = Cz‘|dgacmax;9)
(W]HO,wS = C’L’dz7cma$790>>'
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4.3 A Joint Model for the Network and RDS Recruitment

Process

Given a fixed network, equation 4.1 allows us to calculate the recruitment proba-
bility, but the network is only partially observed. In RDS we observe the degree
of each subject recruited (d;), their nodal covariates (z;) and the ties connecting
recruiters to recruits. The approach that we take to solve this missing data prob-
lem is to model the underlying network using ERNM, which are a flexible class of
network models, and represent the sampling design by the probability model in
the previous section. This leads to a missing data process that is missing not at

random (MNAR; Rubin 1976).

In Chapter 1 we defined the exponential family model of the network 7T as

1
P(T" = tln) = ﬁeng(t),

where 7 is a vector of parameters, g is a vector valued function defining a set of
sufficient statistics, and ¢ is a normalizing constant. For the analysis of RDS data,
we make a slight modification by conditioning upon the nodal covariates of the

seeds x4

1
P(T =tn,X;=25) = iz )e"g(t). (4.2)

We can then express the observed data distribution as

P(Tops = tobs, W = wln, 0, w5, 25) = Y yeq  p(W = wlz,y, ws,0) )eng(t), (4.3)

C(nvms

where T, is the observed part of T" and W, is the set of all networks with

observed values identical to T,,s. Following Chapter 2, we can write the likelihood
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ratio of (n, ) versus (1o, 6y) as

p(W =w|T,0,ws) .
00, 0) = U 0) - = 1og(Bman (g e W = 0, T =t

— 10g(En0 (6(77—770)'9(T) |XS = ‘/ES)) (44)

4.3.1 The Maximum Likelihood Algorithm

Using the MCMC algorithms developed in Chapters 1 and 2, we can generate
samples from P(T = t|n,0, Xy = x5) and P(T = t|n, 0T s = tops, W = w), moti-
vating the following algorithm to find approximate maximum likelihood estimates

for n and 6.

1. Let k =1 and choose initial parameter values n(!), 6.

2. Use MCMC to generate k samples, £\ from P(T = tjp®) g*-DT,, =
tobs7 W = w)

p(W=w|T,0,ws) ))

3. Find 0, = Cw‘gmaxe(EA(p(W:w|T,9(k*1>,ws)

4. Use MCMC to generate k samples, tffl)iss from P(T = t|np®™), %) T, =
Lobs; W = UJ)

5. Use MCMC to generate m samples, t@) from P(T = t|n®, 0" X, = ).

6. Using the samples from step 4 and 5 to estimate the expectations in equation

4.4, find n*+! maximizing the likelihood ratio, subject to ||n®*+1 —n®)|| < €.

7. Set k =k + 1 and go to step 2.

4.3.2 A Basic Model for Estimating a Proportion

Up to now we have developed the theory in a very general form, but the choice

of g gives us great flexibility in our modeling of the network. The estimators
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presented in section 4.1 all focus on the estimation of a proportion, and so it is
desirable to create a parsimonious network model that can estimate proportions,
correcting for likely sources of bias. The simulations in section 4.4 include the

following network statistics for estimation

# edges = gi(t) = Zyz]

1<j

# with trait = g3(t) = Z I(z;=1)

diff. activity = g4(t) = Z diI(x; = 1) — (# with trait) - (mean degree)

homophily = g5(t) = Z Z Vdig — Eu(\/dig)
ke{0,1} irwi=Fk
where d; ; = Y, yirI(zr = j) be the degree of node i to category j, and £ (1/d; ;)

be its expected value assuming no homophily.

One particularly important thing to note about this model is that as the
sample fraction becomes small, the probability of any observed subject being tied
to an already recruited subject goes to 0. Thus d; in equation 4.1 converges to
the nodal degree, which is an observed quantity. The result is that the sampling
process becomes ignorable as the sampling fraction becomes small, providing us
comfort that even if the recruitment process does not play out exactly as outlined

in section 4.2, our inferences about the network will remain valid.

4.3.2.1 Estimating the Proportion from the Model

Just as we can estimate the expectations in equation 4.4 using MCMC, give k sam-
ples (™) from P(T = t|f), 0Tpps = tops, W = w) we can calculate the estimated

proportion as

LS gs(tsim)
B

p=
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4.3.3 Logistic Regression

Multivariable logistic regression fits into this framework quite naturally with the
appropriate choice of g. Suppose that Z is a nodal variate of particular interest
as an outcome variable. Then if we choose our statistics g such that we can write

equation 4.2 as

1
P(7 =2 X=2Y = N\ 2y, 2g) = zaf+n-91(y,2) +X-92(y,2)
( Z? x? y‘n’ﬁ? 7':6 7Z ) C(/B7U’A7xs725)e
(4.5)
Then the distribution of z; conditional upon all other variables is
e%iB
P(Zi = 1|Zf’i7xi7Yzy7B7>\) (46>

MRy ) —h(yz)] 4 emiB
where z_; represents the set of z not including z;, z* represents the variant of z
where z; = 1, 2z~ is the variant of z where z; = 0, and x; represents the ith row of
X. Suppose all variables remain fixed at their value except for x;, which changes

to x}, then using equation 4.5, we can write the log odds ratio as

logodds(z; = 1|z_;, x;, Y =y, 5, \)—logodds(z; = 1|z, 2}, Y =y, 5, ) = B(z;—x]).

Thus, the coefficients § may be interpreted as a conditional logistic regression
model (i.e. conditional upon the rest of the network, a unit change in x; leads
to a [ change in the log odds). Though the interpretation of the coefficients
is familiar, the usual algorithms for estimating a logistic regression can not be
used because the distribution of z; depends on z_;, and thus the independence

assumption does not hold.
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4.4 Simulation Study

We evaluated the effectiveness of our estimators using both simulated and real
data. We generated simulated RDS samples over these networks using the process
in section 4.2. In each case, we set our sample size to 350, the distribution of the

times between recruitment and survey administration were drawn from a unit

1L 9 3 i)
167 167 167 16/

lognormal distribution, and the multinomial probabilities were 6 = (
These 6 values were chosen so that the recruitment chains would be relatively long
in all networks, and that there would only rarely be the need to draw additional
seeds because the sampling process terminated prior to the sample size being
achieved. 20 seeds were used in the simulations, and two methods of seed choice
were performed. The first was a simple random sample from the population,
and the second was a simple random sample from only those subjects with the
trait under investigation. For each network, simulated and real, 500 RDS samples
were drawn, and the model in section 4.3.2 was fit. The model based proportion

estimate was calculated and compared to the previously developed estimators in

section 4.1.

4.4.1 Simulated Networks

For our simulated networks, we wished to evaluate the effect of differing levels
of differential activity and homophily on our proportion estimates. To do so, we
generated 1000 node networks from ERNM models with terms for the number of
edges, differential activity, and homophily. The number of nodes with the trait

was fixed at 20%. Table 4.1 shows the 1 parameters.

These parameter settings allow us to assess the robustness of our estimators
over a variety of possibly biasing population characteristics. Figure 4.1 shows the
distribution of our 500 simulations at various levels of differential activity. With

random seeds, we see that the unadjusted mean is a very poor estimate of the
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Edges Diff. activity Homophily
Equal activity -5 0 1.5
Higher activity ) 5 1.5
Much higher activity | -5 1 1.5
No homophily -5 0 0
Moderate homophily | -5 0 1.5
High homophily ) 0 3

Table 4.1: ERNM 7 values for simulated networks.

true proportion, and that Gile’s SS estimator and our new model based estimator
have less bias than rds-i and rds-ii at the higher differential activity levels. One
explanation for this is that the sample fraction (350 out of 1000) is significant
and both the Gile estimator and our model based estimator adjust for the finite

population effect.

When the seeds are biased, the model based estimator remains nearly unbiased.
The other estimators do not fare so well, the rds-i estimator underestimates the
proportion, while the mean and gile estimators over-estimate. The rds-ii estimator
underestimates in the “Much higher activity” case, but overestimates in the other
cases. Table 4.2 shows the design effects of the estimators, defined as the ratio
of the mean squared error of the estimator, over the mean squared error of a
simple random sample of equivalent size. We see that the model based estimator

maintains a design effect between 1.0 and 2.5.

Figure 4.2 represents the performance of the estimators at different levels of
homophily. When the seeds are random, the mean performed well when no ho-
mophily was present, but displayed bias when homophily was present. All of the
other estimators remained approximately unbiased. With non-random seeds we
see the mean, rds-ii and gile over-estimating the proportion, while rds-i underes-
timates it. The model based estimator is approximately unbiased at the no and
moderate homophily levels. It displays a bit of upward bias at the high homophily

level.
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Figure 4.1: Effect of activity on estimator accuracy.
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Figure 4.2: Effect of homophily on estimator accuracy.
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Diff. activity
Seeds Estimator | Much higher Higher Equal
Random mean 50.6 11.3 3.1
rds-i 5.9 2.5 3.2
rds-ii 6.8 2.5 2.7
gile 1.1 1.5 2.4
model 1.2 1.7 2.5
Biased mean 78.5 30.0 4.0
rds-i 13.5 6.9 4.0
rds-ii 2.1 2.5 17.9
gile 1.7 5.2 14.1
model 1.0 1.8 2.3

Table 4.2: Differential activity networks: Design effects of the various estimators
compared to a simple random sample of the same size.

Table 4.3 displays the design effects in the homophily networks. With random
seeds, higher levels of homophily lead to larger design effects for all estimators.
We also see that the model based estimator has much lower design effect in the
high homophily network than the other even though they are all nearly unbiased.
With biased seeds, the model based estimator is the only one that maintains even
remotely reasonable design effects. This is likely due to the homophily magnifying
the effect of the biased seeds, because with homophily, not only the first wave is

biased, but also subsequent waves due to their correlation with their recruiter.

Homophily
Seeds Estimator | High Moderate  None
Random mean 4.5 3.1 0.9
rds-i 5.3 3.2 1.3
rds-ii 4.7 2.7 1.2
gile 4.1 2.4 1.1
model 2.9 2.5 1.1
Biased mean 13.0 4.0 4.3
rds-i 9.3 4.0 1.7
rds-ii 42.8 17.9 6.2
gile 35.3 14.1 5.8
model 4.8 2.3 1.3

Table 4.3: Homophily networks: Design effects of the various estimators compared
to a simple random sample of the same size.
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Figure 4.3: Simulated PNS samples from the Add Health network.

4.4.2 Adolescent Health Simulation Study

For the real data, we used the social relationships in a school enrolled in the
National Longitudinal Study of Adolescent Health (Add Health) (Harris et al.,
2003a). In this network of students in grades 9 to 12, subjects were asked to
nominate up to five boys and five girls as friends, forming a relational graph. In
our network students were considered connected if either of them nominated the
other. In addition to the social graph, students were asked a number of questions
about themselves, including their sex, and whether they had used alcohol and/or
tobacco. Finally, we restricted our attention to the giant component of the graph,

yielding a network of 869 students.
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Figure 4.3 displays the simulations in the ADD Health dataset. When the
seeds were random, we see that the unadjusted mean does display some bias in
the "smoke” and ”drink” variables. Rather reassuringly, all of the other estimators
are approximately unbiased. When the seeds are biased, the mean, rds-ii and gile
estimators all display upward bias, while rds-i and the model based estimator

perform roughly equivalently.

Variable

Seeds Estimator | drink sex smoke

Random mean 4.4 1.4 4.0
rds-i 3.7 2.6 3.1
rds-ii 3.6 2.4 2.9
gile 3.0 2.0 2.6
model 3.3 2.1 2.6

Biased mean 10.7 1.8 12.6
rds-i 4.5 2.7 3.1
rds-ii 5.5 5.3 6.9
gile 6.2 4.2 8.0
model 4.1 2.5 3.3

Table 4.4: Add Health Network: Design effects of the various estimators compared
to a simple random sample of the same size

Table 4.4 shows design effects between 2.0 and 3.7 for the various RDS aware
estimators in the random seed case. These effects are larger than the effects con-
sidered by Salganik (2006) who suggests to design RDS studies with a design effect
of 2 as a rule of thumb. However, they are significantly smaller than those reported
by Goel and Salganik (2010) whose simulations found design effects ranging from
5.7 to 58.3. With biased seeds, rds-i and the model based estimator both display
similar design effects that are lower than any of the other estimators. It is unclear
why the rds-i performed so well with biased seeds in this network, as the results
of 4.4.1 suggest that in many networks rds-i can be highly biased if the seeds are
biased.
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Figure 4.4: Simulated PNS samples from the Add Health network.

4.5 Example: The Dominican Republic

The national strategic HIV surveillance plan for the Dominican Republic surveyed
drug users in four of its major cities (Santo Domingo, Santiago, Barahona and
Higuey). In this section we focus on the drug user survey in Santo Domingo,
where 310 users were surveyed and tested. Of these, 286 tested negative for HIV,

23 tested positive, and 1 subject’s HIV status was unavailable.

Individuals degrees were measured with a series of survey questions designed
to elicit as accurate a measure of degree as possible (Gile et al., 2012). The median
degree reported was 5 with a maximum of 500. Given the questionable reliability
of the very large self-reported degrees, we decided to top code degree at 30, which
affected 15 subjects. Figure 4.4 shows the full self reported degree distribution.

Despite the care that was taken in eliciting degrees, 41 subjects reported
degrees inconsistent with their recruiting activities in that they recruited more
subjects into the study than would be possible with their stated degree. The
questionable accuracy of subject reported network data has been well established
(Bernard et al., 1984), and Gile et al. (2012) investigated the effect of self-reported
degree accuracy on the the various RDS estimators in the Dominican Republic
data, finding that differences were small in an absolute sense but could introduce

large relative changes in low prevalence variables.
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4.5.1 Results

The primary variable of interest in this dataset is HIV status. Which displayed
a homophily of 1.26 by the definition of Handcock et al. (2012). The population
size was unknown, so it was estimated from the data using a hierarchical bayesian
model yielding an estimated population size of 2468 (Handcock et al., 2012). We
fit the basic model described in section 4.3.2 to estimate both the rate of HIV

infection and the proportion of drug users with a history of imprisonment.

The model estimated proportions were then compared to the estimators de-
scribed in section 4.1. The model based estimator’s standard error was obtained
using 200 parametric bootstraps. The standard error for the mean was calculated
assuming a simple random sample, while rds-i/rds-ii used the methodology of Sal-
ganik (2006). The standard error for Gile’s sequential sampling estimator was

calculated using the methods outlined in Gile (2011b).

Method | Estimate Standard error Nominal design effect
mean 0.074 0.015 1.0
rds-i 0.059 0.016 1.4
rds-ii 0.058 0.016 1.5
gile 0.059 0.015 1.3
model | 0.079 0.025 2.7

Table 4.5: HIV rate estimates

Table 4.5 shows the estimates and their standard errors for the prevalence
of HIV infection. We see that rds-i, rds-ii and gile all have similar estimates
which are lower than the mean estimate, while the model based estimator has an
estimate slightly higher than the mean. A higher estimate for the model based
estimator is expected, as it is the only estimator that corrects for seed bias, and
all of the seeds are HIV negative. We can also see that the standard errors of all
but the model based estimator are very similar to the standard error of the mean,
indicating little or no design effect. Given that we do see homophily in this data,

and all of the seeds come from HIV negative persons, this seems unlikely. The
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model based estimator standard error by contrast shows a large design effect. The
model based estimated design effect go 2.7 is more in line with the effects that we
saw in the Add Health simulations, perhaps indicating that the other standard

error are understating the amount of extra variation caused by the RDS design.

Method | Estimate Standard error Nominal design effect
mean 0.52 0.028 1.0
rds-i 0.46 0.040 2.0
rds-ii 0.46 0.042 2.2
gile 0.46 0.037 1.7
model 0.52 0.043 2.3

Table 4.6: Imprisonment rate estimates

The estimates for imprisonment are displayed in table 4.6. Again we see a
model based standard error and design effect (2.3) which is in line with the effects

we saw in the Add health simulations.

Finally we fit a combined model with terms for both HIV status, and imprison-
ment in the model, as well as a logistic regression term modeling the relationship
between imprisonment and HIV status (see: section ?7). Table 4.7 displays the
maximum likelihood estimates for the combined model parameters. The logistic
regression term may be interpreted as a standard conditional log-odds ratio of
HIV status versus no imprisonment. Thus according to the model, imprisoned

drug users have a exp(0.97) = 2.63 times higher odds of being HIV infected.

Term N s.e.
Edges -5.69 0.02
HIV Homophily 0.53 0.35
HIV- Activity -0.03 0.08
HIV- 2.25 0.36

Imprisonment Homophily  0.23 0.16
Imprisonment Activity 0.08 0.04
Imprisonment -0.02 0.15
Logistic 0.97 0.53

Table 4.7: ERNM model for the relationship between HIV and Imprisonment
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‘ Estimate Standard error p-value
Naive GLM | 1.02 0.49 0.037
Full Model | 0.97 0.53 0.070

Table 4.8: Logistic Regression

We can compare this estimate to a simple logistic regression ignoring the sam-
pling design and network structure, leading to an estimate of 1.02, which is nearly
identical to the ERNM model estimate. The ERNM model does have a higher
standard deviation, indicating uncertainty introduced by the design and network
structure (see: table 4.8), which is enough to change a significant result to and

insignificant one (based on a significance cut off of 0.05).

4.6 Discussion

Respondent driven sampling is an important part of the public health disease
monitoring infrastructure. The current estimators such as RDS-II and Gile’s
SS, have an unrealistic implicit network model underlying them. In this paper
we have shown that by increasing the sophistication of the underlying network
model, we can account for factors such as seed bias, which can seriously bias all

other estimators.

The model based estimator accounts for the structure of both the design and
the underlying recruitment network. We found that the resulting maximum likeli-
hood problem was well formed, and can reliably be solved using MCMC methods.
Our estimator shows decreased bias, especially when the recruitment seeds are
biased. Furthermore, in our simulation studies we found that the variance of the

estimator is never much larger than the variance of the other estimators.
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CHAPTER 5

A New Link Tracing Design for Hard-to-Reach

Populations

In the last chapter we saw that ERNM models can successfully be used to analyze
RDS data, but is RDS the best (and most rigorous) design to use? Given the
strict assumptions that RDS requires regarding the progression of coupon passing
and accuracy of self-reported degrees, it is useful to consider whether our ERNM

formulation motivates any more rigorous survey design.

In this chapter we will outline a new sampling design, which we call privatized
network sampling (PNS). PNS addresses two of the major concerns with regard
to RDS data, namely the assumption that coupons are passed at random among
alters, and that subjects can accurately report the number of alters that they
have. We also will note that, as PNS is closely related to RDS, the standard RDS

estimators may be used on data collected with the PNS design.

5.1 The Privatized Network Sampling Design (PNS)

RDS data contains very minimal information about the recruitment graph. In
it we observe the edge between recruiter and recruit, and the degree of each
observed subject, but nothing else. The sampling process for PNS proceeds almost
identically, but collects more data about the graph. Each subject that is asked not
just the number of alters that they have, but for identifiers for each of their alters.

Thus the sampling process is an example of biased seed link tracing introduced in
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Chapter 2. Specifically the sampling process follows these steps:

1. Recruit a group of subjects from the population (know as seeds). These

subjects are chosen by convenience, and may represent a very biased group.

2. Each subject is asked for an identifier for each alter that they might be
willing to recruit into the study. The researcher then selects a fixed number

of these identifiers at random, and the subject is asked to recruit them.

3. As subjects are recruited, they are in turn asked to recruit their alters until

the desired sample size is reached.

PNS differs from RDS in two fundamental ways. First, we observe all edges
connected to the subject, giving us a true measure of the subject’s degree with
much less opportunity for recall bias. The edge information also provides much
more information about the structure of the network, which we can then model
using ERNM. Secondly, by having the researcher randomly pick which alters will
be approached by the subject for recruitment, the opportunity for the research

subject to bias the results with their recruitment choices is greatly reduced.

Any attempt to add rigor to an experimental design will undoubtably come
with additional implementation difficulties, and this is especially true when the
populations under study are stigmatized or otherwise difficult to sample. Some
populations may not respond well to the researcher randomly selecting their al-
ters, even with appropriate motivating compensation for their recruitment efforts.
In these populations, in the interest of practicality, this part of the design may be
dropped by allowing subjects to recruit at will from among their laters. This mod-
ification would, of course, admit the possibility of recruitment bias. Heckathorn
(1997) noted that in stigmatized populations, collecting the identities of alters is
not a practical strategy in some populations (such as heroin users in the United
States) as it would violate their culture of "not snitching.” Thus it is vital to

collect identifiers that respect the population’s expectation of privacy.

76



5.1.1 Choosing an Identifier that Preserves Privacy

The PNS design requires that subjects provide an identifier for each of their possi-
ble recruits. One possible identifier would be the name, address and phone number
of the alter. This would constitute a unique and verifiable quantity, but would not
be particularly good to use because it could violate that individual’s privacy. To
alleviate this concern we borrow an idea from cryptography called a hash function
(Paar and Pelzi, 2009) to create subject identifiers which are unique and verifiable,

but would be difficult to use to single out a member of the population.

A hash function is a process that transforms an identifier that we wish to keep
private (i.e. a name or phone number) into a unique public identifier called a hash.
The interesting property of these hashed identifiers is that it is very easy to test
whether an identifier matches a hash (i.e. that the identifier was used to create
the hash), but it is nearly impossible to reconstruct the private information from
the hash. Hashes are used throughout the computer world to store important

information like passwords and ensure that files have not been tampered with.

In out study design, the researcher would only be required to keep the hash of
the private identifiable information, not the actual identifiable information, thus
preserving the privacy of the alters of the recruited subjects. Of course there are
many possible hash functions that could be used ranging from high tech to very
low tech. The following examples will illustrate several possible methods, using

the name and phone number as the private identifier.

The SHA-1 hash function: The SHA-1 hash function (Gallagher et al.,
2008) is a secure cryptographic hash function representing a gold standard method

to protect alter privacy.

Private identifier: ian fellows 6195556565

Hashed identifier: d143e809684af303550fcf47bbac103e1274586f
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Unordered phone number: A lower tech solution is to reorder the phone

number from smallest to largest digit.

Private identifier: 6195556565

Hashed identifier: 1555556669

Unordered phone number: Another lower tech solution is to just keep the

first letter of the first name and the last four digits of the phone number.

Private identifier: Ian Fellows 6195556565

Hashed identifier: 16565

In each of these cases, given the private identifier, it is easy to calculate the
hashed identifier, but it is (nearly) impossible to recover the sensitive private

identifier given the hashed identifier.

5.2 Analysis of PNS Data

One of the benefits of using the PNS design is that existing estimators developed
for RDS data (including the ERNM model in Chapter 4) may be applied to
PNS data as well, but with the added benefit of ensured random recruitment,
and accurate degree values. Additionally, we may leverage the edge information
collected in the PNS design to create a more accurate model of the underlying

network.

Like the positive contact tracing example in Chapter 2, PNS is a biased seed
link tracing design, so the model in Section 2.4.4 is directly applicable. A more
elegant approach, however, is to follow the lead of Chapter 4 and notice that,
conditional upon the seed covariates, PNS is a missing at random (MAR) process,

and therefore ignorable. More specifically, we consider the conditional ERNM
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model

1
P(T =tn, X, =2,) = o )ew(ﬂ, (5.1)

where x, are the observed nodal covariate values for the seeds. The methods of

Chapter 2 may then be applied to perform inference on the model.

5.3 Discussion

In this chapter we have introduced a novel new design for sampling hard to reach
populations. The practicality of the design will come down to in-the-field per-
formance. The fact that it is a modest modification of the RDS design, which
has been wildly successful as a method to recruit individuals in difficult to reach

populations, provides a basis to believe that PNS will be a workable design.
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CHAPTER 6

Conclusion

Nodal variates are a fundamental part of the structure of social networks. Prior
to this work, they were either treated as fixed quantities (as in ERGM), or as
random variables over a fixed graph structure (Gibbs fields). We have found that
by jointly modeling the nodal covariates along with the graph structure, we have
created a framework that can fit a rich set of useful models that meet the real

world needs of researchers.

In Chapter 1, we saw how ERNM can be exploited to model the relationship
between the graph structure and a categorical covariate using a new definition of
homophily, allowing us to generate reasonable simulated networks and perform
inference. Through the appropriate choice of statistics included in the model, the
natural parameters of an ERNM were shown to be interpretable as conditional

logistic regression parameters.

Chapter 2 dealt with missing data, and provided two major contributions to
the literature. First, a new type of latent class model was presented, and was
shown to have good agreement with previous classifications in real data. The new
model has the benefit of being able to assign probabilities of class membership
to each node, allowing for an accounting of the level of certainty and clustering
in the data, and can automatically select the number of classes in a natural way.
Secondly, ERNMs with missing data may be formulated to allow for the analysis
of a whole class of sampling designs where the social relations are not of particular

interest, but rather are exploited as a method of obtaining a sample.
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In Chapter 3, we explored some of the practical computational issues rele-
vant to the implementation MCMC-MLE in exponential family distributions. We
showed that the "log-normal” approximation to the likelihood ratio used in the
ergm R package (Handcock et al., 2012) is in general valid even when the dis-
tribution of the model statistics is non-normal. Secondly, a new procedure for

detecting when a new MCMC sample must be drawn was presented.

Chapter 4 tackles a difficult (though popular) link tracing design (RDS). Uti-
lizing the methods in Chapter 2, we explore the performance of ERNM models
compared to previous approaches in both simulated and real data. ERNM was
shown to outperform previous methods, especially when the initial recruits came
from a biased sample. It was noted that the logistic regression modeling term in
Chapter 1 can be applied to perform multivariable inference in RDS data, though

this model was not fit in the simulation studies.

Finally in Chapter 5 we described a new sampling design, based on RDS.
This new design, which is dubbed privatized network sampling (PNS), is similar
enough to RDS that existing estimators may be used, but improves the rigor
of the design by having the researcher perform a randomization determining the
recruitment procedure, and recording the identifiers of all subject alters (in a way

that preserves subject privacy).

The ERNM framework presented here represents not an inference problem that
is now solved, but rather the foundation for a rich set of theoretical and practical
advances. Many of the examples here are of vital importance to researchers, and
some represent types of designs previously impossible to analyze (for example the
positive contact tracing example in Chapter 2). More work will need to be done
to deal with the data quality and structure issues that are sure to arise if our
ERNM are widely applied to these designs. On the theoretical front, there are a
number of avenues of research that look promising. In particular, fitting the model

with maximum likelihood is not the only approach possible. Pseudo-likelihood
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solutions have shown themselves useful in ERGM models (at the very least as
starting values for maximum likelihood), and this, along with quasi-likelihood or

Bayesian fits could be explored in relation to ERNM.
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