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ABSTRACT OF THE DISSERTATION

Power Optimization for Fully-Implantable Brain-Computer Interfaces

By

Claudia Serrano Amenos

Doctor of Philosophy in Biomedical Engineering

University of California, Irvine, 2023

Professor Zoran Nenadic, Chair

Brain-Computer Interfaces (BCIs) are an emerging approach to restore walking capabilities

in people with paraplegia due to spinal cord injury (SCI) or other neurological conditions.

BCIs record brain signals in real time to decode users’ intentions and use this information to

operate external devices, such as orthoses, exoskeletons, or muscle stimulators. BCIs based

on invasively recorded brain signals, such as electrocorticograms (ECoG), can achieve a better

performance than their non-invasive counterparts. This advantage comes from the fact that

ECoG signals have higher spatio-temporal resolution than scalp recorded electroencephalo-

grams (EEG). Moreover, subdurally implanted ECoG electrodes can elicit leg sensation by

delivering cortical electrostimulation. Therefore, an ECoG-based BCI can restore both mo-

tor and sensory function to those paralyzed due to SCI. These so-called bi-directional BCIs

(BD-BCIs) have the potential to be fully implantable, which greatly increases their potential

for a widespread adoption.

The main challenge in the development of fully-implantable BD-BCIs is complying with the

FDA safety regulations for active implantable devices. These include protection from current

leakage, thermal injury, and inflammatory responses, among others. In this work, we assessed

the thermal safety of a fully-implantable ECoG-based BD-BCI system using the Finite El-

ement Method (FEM). Specifically, starting from the FDA’s thermal safety constraints, we

xiii



used bio-heat transfer models implemented in COMSOL to estimate the maximum power

consumption (power budget) of the BD-BCI’s active components, namely, a chest wall unit

(CWU) and a skull unit (SU). We also assessed the robustness of these computational models

against the natural variation of physiological and environmental parameters, such as ther-

mal, physiological, and metabolic properties of the tissues. Furthermore, we fabricated a

CWU thermal prototype and performed benchtop experiments to validate our modeling ap-

proach. Finally, given that the decoder is one of the most “power-hungry” functional modules

of the CWU, we developed a novel power-efficient decoding methodology capable of decod-

ing individual steps with excellent accuracy and negligible lag. Specifically, we employed

a combination of logistic regressions and the Fokker-Plank equation to design a recursive

Bayesian filter that estimates the probability of leg swings from ECoG signals. We validated

the performance of this decoder using ECoG signals recorded from motor cortical areas of

two human subjects as they performed multiple walking tasks.
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Chapter 1

Introduction and Background

1.1 Brain-Computer Interfaces

Brain-Computer Interfaces (BCIs) record electrophysiological signals from the brain and

translate them in real-time into control commands for various types of end-effectors, such

as computer cursors [197], spellers [30], and robotic prosthesis [199]. BCI systems can be

used as rehabilitation tools for individuals with communication and motor impairments. For

example, BCIs can restore communication in individuals with locked-in syndrome (LIS) [121]

and can restore lost motor function in individuals with stroke, spinal cord injury (SCI), and

traumatic brain injury [19]. In the future, BCI systems could potentially extend beyond the

treatment of medical conditions to enhance the performance of able-bodied individuals [212,

227].

BCIs for motor restoration work under the principle that neural pathways responsible for

impaired motor functions are partially intact. For example, people with paraplegia may

retain electrophysiological signals in the central nervous system that correspond with motor

intent. Therefore, the goal of BCIs is to bypass the disrupted motor pathways by decoding

1



Figure 1.1: Diagram of a typical BCI system. Recorded brain signals are decoded into
control commands for an external device. Different recording modalities, signal processing
techniques, and external devices are used for different BCI applications.

motor commands directly from electrophysiological brain signals. We know that behavioral

tasks, such as physical or imagined movements, cause frequency-domain changes in the

sensory and motor cortices, known as neural features. Thus, BCIs record brain signals,

extract their neural features using signal processing and statistical techniques and translate

them into motor commands.

1.1.1 Signal Acquisition

There are many recording modalities used in BCIs, but they can be classified into two

main categories: non-invasive and invasive techniques. Some examples of non-invasive tech-

niques are electroencephalography (EEG) [63, 115], functional magnetic resonance imaging

(fMRI) [70, 189], and magnetoencephalography (MEG) [188, 144]. These techniques are

safer than invasive approaches given that they do not require surgical implantation. How-

ever, many non-invasive modalities, including fMRI and MEG, require the use of very large

and expensive non-portable machines. This is an impediment to many BCI applications that

require portability, such as motor restoration and rehabilitation. Instead, the most popular

non-invasive technique for BCI is EEG, due to its low cost and portability. EEG records
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the cumulative electrical activity of large populations of neurons from the scalp [63], see

Fig. 1.2. This technique has been extensively used for many BCI applications [58, 164, 101],

including motor restoration and rehabilitation [221, 120, 3, 47, 48]. However, EEG has cer-

tain limitations that hinder its usability. First of all, typical EEG can only detect brain

activity < 50 Hz [163], and thus cannot capture γ activity (40 - 200 Hz), which encodes

motor information [140, 123, 207]. Furthermore, EEG has a limited spatial resolution (5-

9 cm) [156, 8]. This is inconvenient for motor decoding, given that the motor representation

areas in M1 are small and can overlap [177]. Instead, to distinguish between different precise

motor movements, a spatial resolution of a few millimeters is needed. Additionally, EEG is

highly susceptible to biological and motion artifacts such as eye blinks or electromyographic

(EMG) contamination [10, 216].

Figure 1.2: Sketch of human head tissues and different non-invasive (EEG) and invasive
(ECoG and MEA) recording modalities. The annotated dimension ranges are based on
common designs for each technique. The scales of the electrodes and head tissues are altered
for illustration purposes.

On the other hand, invasive recording modalities must be surgically implanted. A common

example is electrocorticographic (ECoG) electrodes, which are arrays of platinum or stainless

steel electrodes embedded in a flexible plastic substrate implanted in the subdural space [122],
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see Fig. 1.2. Another common example is intracortical micro-electrode arrays (MEAs), which

are arrays of shank-like electrodes that penetrate the cerebral cortex [104], and thus are

slightly more invasive than ECoG (Fig. 1.2). ECoG and MEAs can accurately record brain

signals up to 250 Hz and 400 Hz, respectively [50]. Thus, these techniques are more adequate

for capturing high-gamma activity (80 - 200 Hz), which contains critical motor information

that can improve the decoding accuracy of BCIs [207]. Furthermore, ECoG has a spatial

resolution of 10 mm for standard grids [7] and 3-4 mm for high-density grids [171], while

MEAs have an even greater spatial resolution, in the order of µm [15]. Due to their higher

spectral and spatial resolution, these invasive techniques have been used in BCIs for motor

restoration and rehabilitation [176, 13, 85, 24]. However, although long-term implantation

and decoding from MEAs has been safely accomplished [187], studies have shown that the

signal quality of MEAs degrades over time [203]. This is likely due to foreign-body immune

response to the electrodes, which results in glial scarring and eventual signal degradation [18,

61]. Therefore, ECoG is a more suitable recording technique for BCIs that aspire to be life-

long solutions, and thus require long-term implantation.

1.1.2 Neural Signals

To translate brain signals into control commands, BCIs must record and analyze certain

neural features that are relevant to the system’s application. A common neural feature used

by BCIs is visually evoked potentials (VEPs), which are neural signals that reflect the visual

information-processing mechanism in the occipital cortex [211]. For example, BCIs that aim

to restore communication for subjects with LIS can provide the user with multiple images

(e.g., different types of foods) on a screen, flickering at different frequencies, and then instruct

the user to focus their attention on the desired image, while simultaneously recording their

brain signals using EEG. These recorded signals, known as steady-state VEPs (SSVEPs),

will oscillate at the same frequency as the image that the user was focused on [229]. Another
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common neural feature is event-related potentials (ERP), which are electrical potentials

generated by the brain that are time-locked to a specific internal or external event, such as

stimuli or decisions [131]. For example, the P300 is an ERP in the parietal lobe that is elicited

during an oddball paradigm, ∼300 ms after a subject is presented with a rare/unexpected

stimulus [168, 59]. This is particularly useful for BCI spellers, where the user is presented

with a matrix of letters where the rows and columns are randomly flashed. When the

row/column of the letter that the user is focused on flashes, a P300 response can be detected

using EEG [110].

For motor restoration purposes, the most relevant neural features are sensorimotor rhythms.

They are oscillations in the electric or magnetic field recorded over the sensory and motor

cortices that are defined by their frequency, bandwidth, and amplitude [198]. For exam-

ple, certain frequency bands like the µ (8–13 Hz) and β (14–40 Hz) frequencies experience

a power attenuation during physical motor execution and mental motor imagery [152], see

Fig. 1.3. This phenomenon is known as event-related desynchronization (ERD) [36, 165].

Conversely, the γ frequency band (40–200 Hz) experiences a power increase during move-

ment or imaginary movement (Fig. 1.3), which is known as an event-related synchronization

(ERS) [35, 165]. Although individuals with SCI can lose motor function below the level of

injury, usually their sensorimotor rhythms are still intact. Thus, BCIs can use EEG or ECoG

to record these neural features, decode motor intentions, and restore motor functions.

1.1.3 BCI Decoders for Motor Applications

One of the key components of BCIs is the decoder, which is an algorithm that translates

neural signals into control commands. This section describes different types of decoders that

have been used for EEG, ECoG, and MEA-based motor BCIs. Depending on the algorithm’s

structure, decoders can be grouped into three different categories (Fig. 1.4). Below we explain
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Figure 1.3: Example of ERS and ERD from ECoG signals during elbow movement intervals.
(A) Time series of the µ (green) and γ (orange) powers, as well as gyroscope (black). During
motor movement (gyroscope ̸= 0), µ-power decreases (ERD), while γ-power increases (ERS).
(B) Spectrogram of ECoG signals up to 160 Hz and gyroscope signal. ERD is visible at ∼
10–30 Hz, and ERS is apparent at <10 Hz and >40 Hz.

and discuss examples of each category separately.

Classification and regression

The first step in classification and regression algorithms is to extract spectral neural fea-

tures (i.e., sensorimotor rhythms) from raw neural signals. Examples of techniques used

to extract these spectral features include bandpass filters [32, 42], non-parametric methods

such as Fourier transform [191, 77], multitaper methods [100], parametric techniques such
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Figure 1.4: Types of motor decoder architectures. (A) Classical approach, where first features
are extracted from the raw neural signals and then the decoder uses a classifier/regression
to generate the decoded output. (B) Deep learning approach where both feature extraction
and classification/regression are learned together. (C) Hybrid decoder where multiple clas-
sification/regression decoders are implemented simultaneously and their individual outputs
are combined to generate one final decoded output.

as autoregressive model estimation [214, 93], and maximum entropy approach [26].

BCI decoders usually benefit from using spatial filters, which combine multiple original time

series to create new signals with higher signal-to-noise (SNR) ratio than that of the individual

time series. Data-independent spacial filters are based only on the location and physical

considerations of the recorded signals. Common examples are the Laplacian filter [141] and

the common average reference (CAR) [111]. Conversely, other spacial filters are data-driven,

and common examples include principal component analysis (PCA) [22] and independent

component analysis (ICA) [98].

Classification algorithms use neural features to forecast classes, such as move or idle, right or

left, upwards or downwards. There are many classification algorithms used in BCI decoders,

and here we discuss two main types: linear classifiers and nonlinear Bayesian classifiers.
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Linear classifiers are discriminant algorithms that use linear functions to distinguish classes.

Two commonly used linear classifiers in BCIs are linear discriminant analysis (LDA) and

support vector machines (SVM). For example, Jiang et al. used LDA to decode hand flex-

ion and extension from ECoG data [94], and Blankertz et al. used SVM to decode finger

movements for keyboard typing from EEG data [20]. Opposite to linear classifiers, non-

linear Bayesian classifiers use nonlinear decision boundaries. The most common examples

are Bayesian filters and hidden Markov models (HMM). For example, Wang et al. used a

Bayesian filter to decode walking states from ECoG data [208], and Obermaier et al. used

HMMs to decode left and right-hand movements from EEG data [157].

Regression algorithms use neural features to determine continuous parameters such as po-

sition, velocity, and acceleration. These algorithms are less commonly used in BCIs than

classifiers. Typically, regression provide very precise information and, thus, require input

data to be recorded invasively (e.g., ECoG or MEA), since signals recorded closer to the

source (neurons) encode more information. Linear regression is the most common type of

regression. For example, Nakanishi et al. used a multilinear regression to decode 3D hand

positions from ECoG data during reaching experiments [150]. Other linear regression al-

gorithms are the Wiener filter and the Kalman filter. For example, Sanchez et al. used a

Wiener filter to decode cursor trajectories from ECoG recordings [173], and Pistohl et al.

used a Kalman filter to decode 2D arm trajectories from ECoG signals [166].

Neural networks can be applied to both classification and regression problems. These al-

gorithms are highly versatile and can handle complex, non-stationary neural data [200].

While shallow and simple neural network algorithms use neural features as input data, more

complex algorithms, known as deep neural networks, use raw brain data as input, and can

extract features within the neural network. Deep neural networks are discussed below in

further detail.
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Deep Learning

Deep learning is a type of machine learning algorithm in which the neural features and the

classifier/regression are jointly learned directly from raw data [129]. A very common example

is convolutional neural networks (CNN), which are feedforward neural networks with at least

one convolutional layer, which maps its inputs to an output through a convolution operator.

This layer is usually followed by nonlinearities and a pooling layer. For example, Zhang et

al. used a CNN to decode left and right-hand motor imagery tasks from EEG data [228],

and Choi et al. used a CNN to estimate bimanual movements from ECoG data [33].

Hybrid Decoders

Hybrid decoders combine multiple classification and/or regression algorithms to improve the

decoding performance. Researchers use different strategies to create hybrid decoders. For

instance, boosting consists of using multiple classifiers/regressions in cascade, where each

algorithm focuses on the errors committed by the previous ones [86]. Another strategy

is voting, where algorithms try to classify or decode the same variable, and the overall

decoder’s output is based on the most common output from all the algorithms [170]. Finally,

hierarchical decoders stack multiple algorithms, where each algorithm decodes a different

variable. For example, Yanagisawa et al. developed an ECoG hierarchical decoder, where

the first SVM algorithm classified the movement state (rest and movement), and the second

SVM algorithm predicted the type of hand movement [223]. Another hierarchical example is

an ECoG decoder developed by Hotson et al., where a LDA algorithm distinguished between

hand movement and rest, and a second LDA algorithm determined which of the five fingers

was moving [88].
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1.1.4 Bi-directional BCIs

SCI causes disruption of nerve axons running through spinal cord tracts, which leads to loss

of both motor and sensory function below the level of injury [14]. Given that sensory informa-

tion is key for proper motor function [95, 147, 52], to fully restore able-bodied functionality

after SCI, BCIs will need to integrate both motor and sensory modalities [89]. Furthermore,

preliminary studies have shown that sensory feedback improves BCI performance [64].

Artificial sensation can be evoked by delivering electrostimulation directly to the sensory

cortex through ECoG electrodes [96, 84, 117] and MEAs [5, 62]. The stimulation signal

usually consists of a bipolar pulse train, with an electric current in the order of mA [105].

These forms of stimulation can produce naturalistic sensory responses such as brushing or

tapping sensations, and even proprioceptive movement sensations [5].

BCI systems that can deliver electrostimulation are referred to as bidirectional BCIs (BD-

BCIs). These systems combine the feed-forward path that decodes neural signals and controls

and an end-effector with the feedback path that delivers electrostimulation directly to the

cortex (see Fig. 1.5). Moreover, these systems have the potential to be fully implantable,

which greatly increases their practicality. Although a clinically deployable BD-BCI has yet

to be developed, researchers have already introduced preliminary BD-BCI designs [172, 21].

1.2 Our Envisioned BD-BCI

During the last few years, our group has been working on developing a fully implantable

BD-BCI to restore walking and leg sensation in subjects with paraplegia. The envisioned

system (Fig. 1.6) consists of an ECoG grid implanted over the leg motor cortex to record

brain activity. This electrode grid is connected to a skull unit (SU) that amplifies, serial-

izes and A/D converts the recorded data [133, 99, 135]. Then, a tunneling cable sends this
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Figure 1.5: Diagram of a BD-BCI paradigm. Recorded brain signals are decoded into control
commands for an end-effector. Sensors in the end-effector capture motion signals, which, in
turn, are converted into a stimulation signal that is delivered to the sensory cortex to elicit
artificial sensation.

information to a Chest Wall Unit (CWU), which, in turn, analyzes and decodes the signals

into walking commands. Then, the CWU wirelessly transmits the walking commands to an

exoskeleton [118]. At the same time, sensors in the exoskeleton capture motion information

and send it back to the CWU. There, the motion information is translated into stimulation

patterns, which are sent back to the SU through the tunneling cable. In the SU, the stimu-

lation signal is D/A reversed and sent to the ECoG grid in the sensory cortex, where cortical

stimulation to elicit leg sensation is delivered.

Our end goal is to implant this BD-BCI in individuals with paraplegia to restore their walking

and leg sensation capabilities. However, multiple challenges must be addressed before we

can surgically implant this system in humans. First, we must demonstrate that a system can

perform all the envisioned BD-BCI functionalities properly, including ECoG data acquisition,

neural data decoding, wireless communication, and generation of electrostimulation. So
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Figure 1.6: Envisioned fully-implantable BD-BCI system for restoration of walking and leg
sensation. The system comprises several implantable subsystems. A skull unit (SU) (2) is
implanted on the exterior aspect of the skull and is connected to the motor (1) and sensory
(6) ECoG grids. A chest wall unit (CWU) (4) is implanted subcutaneously in the pectoral
area. The SU and CWU are connected by a subcutaneous tunneling cable (3), similar to the
current deep brain stimulator (DBS) design. The system communicates wirelessly with an
external exoskeleton (5).

far, our group has developed a benchtop prototype of the BD-BCI system using off-the-

shelf components [205, 192]. To ensure that this prototype can perform all the envisioned

BD-BCI functionalities, we tested its performance with individuals undergoing Phase II

epilepsy monitoring in the hospital [124]. Using the prototype, these individuals controlled

an external walking exoskeleton through motor-modulated ECoG signals, which we recorded

from grids implanted over their motor and sensory cortices for surgical evaluation purposes.
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At the same time, when the exoskeleton’s leg (contralateral to the ECoG grid) stepped,

we delivered electrostimulation to the users’ sensory cortex. Overall, the subjects were

able to wirelessly control a walking exoskeleton using motor-modulated brain signals, while

simultaneously receiving cortical stimulation that elicited artificial sensation. As new and

improved functionalities are added to the prototype, we will continue to test its functionality

with similar hospital experiments.

One of the most important functionalities of our BD-BCI design is the decoder. An adequate

decoder should be reliable and suitable for our BCI application. Specifically, it should

decode commands that are appropriate to control our walking exoskeleton. Given that our

exoskeleton requires manual activation for individual steps, the decoder’s optimal output

is individually decoded steps. Furthermore, a reliable decoder should correctly identify

the user’s motor intentions (minimize false detections and missed detections), and have

a response time suitable for real-time implementation (< 0.1–0.2 s) [113]. The decoder

implemented in the current BD-BCI benchtop prototype does not decode individual steps,

instead, it decodes walking states (idling/walking). Thus, when the decoder identifies an idle

state, the exoskeleton remains inactive, and conversely, when the decoder identifies a walking

state, we continuously activate the exoskeleton to trigger consecutive walking steps. This

way, the user can prompt the exoskeleton to walk, but has no control over when individual

steps are triggered, and, hence, cannot regulate the walking speed.

The current decoder uses information from the α and β bands (8–35 Hz), as well as the high-

γ band (80–160 Hz). The algorithm uses classwise principal component analysis (CPCA)

for dimensionality reduction, and linear discriminant analysis (LDA) to further enhance

the class separability. Additionally, the decoder uses Bayes’ rule to calculate the posterior

probabilities of each state (idle/walk). Overall, this decoder can predict walking states in

real-time with an average accuracy of 99.8% and latency of 250 ms [208]. More recently, our

team developed a decoder that can detect the stepping rate during walking [208]. Although

13



the decoded speed must be transformed into individual steps to trigger the exoskeleton, it is

still a more appropriate output than general walking states. Specifically, this new decoder

integrates, in a hierarchical fashion, the previous state decoder with a step rate decoder,

which includes a matched filter and a Bayesian filter. Overall, this decoder has an average

Pearson correlation coefficient of 0.93 and root mean square error (RMSE) of 0.06. The

main drawbacks of this decoder are its high computational complexity, due to the use of

two separate Fourier Transforms, and its latency of ∼ 5.5 s. These drawbacks hinder its

real-time implementation.

Another hurdle we must address before developing a fully-implantable BD-BCI is artifact

suppression [124]. When recording and stimulating simultaneously with ECoG grids on the

cerebral cortex, strong electrical artifacts propagate from the stimulation site to the recording

site. The voltages from these artifacts can reach or exceed the nominal supply voltage of

the system’s analog front-end, which causes a saturation of the recording amplifiers, thereby

leading to a permanent loss of data. To reduce the artifact on the front-end amplifiers,

we implemented a technique called dipole cancellation. Specifically, we applied auxiliary

stimulation between the recording and stimulation sites. This secondary stimulation was

delivered simultaneously, and in opposite polarity to the primary stimulation, but with a

fraction of the primary stimulation amplitude. However, even after using dipole cancellation,

residual artifacts still persisted in the back-end, so we had to further suppress the artifacts

using software-based methods. To do so, we developed a technique based on pre-whitening

and null projection that efficiently separates the stimulation artifact from true neural signals.

When combining both artifact suppression techniques, we predict that the BD-BCI system

will allow to simultaneously record and stimulate on the cerebral cortex.

The last hurdle that must be considered when designing a fully-implantable BD-BCI are the

Food and Drug Administration (FDA) regulations that apply to our device. Our envisioned

system includes both inactive implantable devices, such as the tunneling cable and the ECoG
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recording grid, and active implantable devices, like the SU, CWU and ECoG stimulating grid.

For example, the FDA requirements for ECoG electrodes include biocompatibility, sterility

and electrical safety, among others [65]. However, given the risks associated with electrically-

powered devices, the FDA requirements for active implantable devices are more stringent.

The next section discusses these type of devices and the applicable FDA regulations.

1.3 Active Implants

Recent technological advancements have led to significant improvements in implantable medi-

cal technology and have spurred the development of novel active implantable devices. These

systems are crucial in tackling medical conditions for which pharmacological or surgical

approaches are deemed inadequate. Examples of active implantable devices include next-

generation pacemakers [6], which send electrical pulses to help the heart beat at a normal

rate and rhythm, and implantable cardioverter-defibrillators [46], which deliver energy shocks

to restore abnormal heartbeats. Another example is vagus nerve stimulators [69], which are

used to stimulate the vagus nerve with electrical impulses to treat conditions such as epilepsy,

depression, and stroke. A specific subset of these active devices are those implanted in the

head, which are typically equipped with stimulation and/or recording capabilities. The earli-

est successful examples of these head devices are cochlear implants, which can restore hearing

to those with severe or profound hearing loss by processing sound signals and stimulating

the auditory nerve accordingly [40]. Other examples include deep brain stimulators (DBS)

to treat motor disorders such as Parkinson’s disease, essential tremor, and dystonia by deliv-

ering electrical impulses to the brain [130]. A more recent example is the development of a

responsive neurostimulator (RNS) [148], which monitors brain activity and delivers electrical

stimulation to disrupt an impending seizure.

Active, electrically-powered implants pose significant safety risks for the human body, includ-
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ing current leakage and thermal injury. Accordingly, the FDA imposes certain regulations

to maximize the safety of these devices. Specifically, an FDA-recognized standard for ac-

tive implants is ISO 14708-1, which determines the general safety requirements for these

devices. For example, to ensure protection from unintentional biological effects, an implant

must be biocompatible, properly sterilized, and free of surface features such as sharp corners

or edges that could cause excessive reaction or inflammation. To provide protection from

electricity, the ISO standard specifies that active devices must be electrically neutral, i.e.,

the direct current density at the surface of any conductive surfaces or electrodes must be

≤ 0.75 µA/mm2. Additionally, to guarantee protection from heat damage, the implant’s

surface temperature must not be greater than 2◦C above the normal surrounding body tem-

perature. Other implant safety requirements include the ability to withstand changes in

environmental conditions such as minor mechanical shocks that might occur during the im-

plantation procedure, and changes in pressure and temperature that can occur during transit

or normal usage conditions.

Implantable neurostimulators (INS) are active implants intended for electrical stimulation of

the central or peripheral nervous system. Given that these devices are usually implanted near

the brain (which is highly sensitive to heat [71]), the FDA has additional requirements for

INS. In this case, the recognized FDA standard is the ISO 14708-3. When compared to ISO

14708-1, the standard pertaining to INS defines more stringent thermal safety requirements.

Namely, the thermal requirements for INS are either the temperature of the implant’s outer

surface cannot be greater than 39◦C, or no tissue can receive a thermal does greater than

the established CEM43 dose thresholds, where the CEM43 is defined as:

CEM43 =
n∑

i=1

ti ×R43−Ti (1.1)
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where ti is the i-th time interval in minutes, Ti is the average temperature of the tissue

in ◦C during the interval ti, R is 0.25 for T < 43◦C and 0.5 for T ≥ 43◦C, and n is the

number of samples taken during the heating duration. Note that this equation only applies

for T > 39◦C.

1.3.1 Thermal Safety

Heat can be used in beneficial ways to aid the human body. For example, slight thermother-

apy (1 or 2◦C increase) can have beneficial effects on injured and aching muscles and joints

when used for short periods of time (tens of minutes) [213]. Moreover, some current medical

practices use high temperatures, which can cause cell and tissue damage, to treat certain

medical conditions. For example, certain cancer treatments use a hyperthermia of 39–45◦C

for varying lengths of time to target and kill localized cancerous cells [17]. Another common

practice is ablation, which consists on using very high temperatures (50–100◦C) for very

short periods of time (a few seconds) to remove or destroy tissues. For example, thermal

ablation is commonly used to destroy cancerous tissues [154], to kill arrythmogenic tissue

in the heart[143], and to remove epileptogenic foci in the brain [73]. However, besides these

controlled medical practices, exposure to high temperatures poses significant risks, such as

burns. For this reason, it is important to consider the thermal risks associated with active

implants.

Excessive heat dissipation from an active implant can lead to irreversible damage of the

surrounding cells and tissues, including necrosis [45]. Consequently, the FDA imposes strin-

gent limitations on the thermal impact of active implants. The thermal behavior of active

implants depends on several factors, including the power dissipated by the electronics (e.g.,

microchips, PCB, telemetry coil, and stimulating electrodes) [116], the shape, size, and ma-

terials of the device, and the implantation site. For fully-implantable BCI systems, it is
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important to consider their power dissipation, since BCIs use significantly more power than

other active implants [220]. For example, the power consumption of implantable pulse gen-

erators (IPGs) ranges between 200 and 1600 µW [38], and the power consumption of active

head implants ranges from 40 µW [9] to 3 mW [136]. These power consumption levels are one

to two orders of magnitude smaller than that might be needed to power a BCI system [192].

The overall power consumption of BCIs is the sum of the power consumed by each system

component [56]. On one hand, amplifiers, A/D converters, and serializers use power to

record neural signals. The power consumption of these components depends on the number

of channels recorded and the sampling frequency. Next, the decoder uses power to translate

neural signals into control commands. The decoder’s power usage is determined by the

algorithm’s computational complexity and its refresh rate. Furthermore, telemetry uses

power to wirelessly communicate with external devices. The power consumption of telemetry

is dependent on the transmission frequency and data volume. Finally, in the case of BD-

BCIs, power is also needed to generate stimulation signals for cortical stimulation. The

power consumption due to cortical stimulation is dependent on the stimulation parameters,

such as current amplitude, pulse length, and frequency.

Thermal safety, and, specifically, the FDA thermal safety requirements, must be considered

during the design of a BCI system. An important design step is to determine a thermally

safe power budget for the system. Numerical methods are often used to simulate the thermal

behavior of active implants, and, thus, predict their power budget. These thermal simulations

require an anatomically correct human body model, the thermal properties of the biological

tissues, and the mathematical equations that describe bio-heat transfer. Nowadays, there

are many available commercial software for numerical thermal simulations. For example,

COMSOL Multiphysics (COMSOL Inc., Stockholm, Sweden) is a finite-element analysis,

solver and simulation software that researchers often use to model the thermal behavior

of medical implants [54, 55, 103, 160]. Note, however, that thermal simulations are only
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an initial step to estimate a thermally safe power budget for BCIs. To ultimately validate

a thermally safe operation of these implants, in vivo testing, such as animal studies, is

necessary.

1.4 Significance

After building a BD-BCI benchtop prototype, our research groups is currently working on

designing implantable versions of the CWU and SU prototypes. An important design con-

straint for these prototypes is their power consumption, which affects the system’s thermal

safety. Consequently, in this dissertation, we aim to study and optimize the power consump-

tion of a fully-implantable BD-BCI. To that end, we first estimated the power budgets of

the CWU and SU that guarantee thermal safety. Specifically, we used numerical thermal

models of the CWU and SU to predict the power consumption levels that comply with the

FDA thermal safety requirements. Understanding the thermal impact of fully-implantable

BCI systems remains an underresearched topic [220]. In this work, we consider the thermal

behavior of an implantable BCI and provide specific constraints for its design.

With the design of the implantable version of the BD-BCI prototype, comes the opportunity

of improving certain components of the system. However, when doing so, we must consider

how any modifications will affect the BCI’s power consumption, which ia limited by the

estimated power budget. One of the most crucial and power-hungry operations of the system

is the decoder. The limitations of the existing decoder hinder the system’s ability to restore

natural walking capabilities. Moreover, the existing decoder was originally EEG-based and,

thus, does not fully exploit the higher frequencies present in ECoG recordings. In this

work, we propose a novel power-efficient decoding paradigm for an ECoG-based BD-BCI.

By exploiting frequencies > 40 Hz, this new algorithm can decode individual steps, which

enables a more natural walking pattern compared to the current decoder. Additionally,

19



this algorithm’s low computational complexity lends a power-efficient implementation of

the decoder that is suitable for real-time deployment. Overall, the the proposed decoder

improves upon the existing one by enabling a more natural walking pattern, while being

mindful of the power consumption. Thus, the proposed decoder optimizes the system’s

power usage by enhancing the performance of the system without significantly increasing its

power consumption.
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Chapter 2

Power Budget of the Chest Wall Unit

2.1 Motivation

Addressing the thermal impact of implantable BCIs remains an underresearched topic. This

is an interesting problem to address, given that BCIs consume significantly more power

than other existing active implants [220]. In our envisioned BD-BCI system, the CWU

processes motor and sensory data, and communicates with the other BCI components; thus,

it is the most “power-hungry” component of the system. In this chapter, we propose to use

computational models to estimate the CWU’s maximum power consumption that guarantees

its thermally safe operation.

While previous studies have used computational models to analyze the thermal impact of

active implants, to the best of our knowledge, there are no studies on the long-term thermal

impact of CWU-like implantable devices. Researchers have used numerical models to sim-

ulate the thermal behavior of pacemakers [29] and deep brain stimulators [146, 219] under

transient overheating conditions like MRI scanning. Others have used simulations to analyze

the thermal effects of specific operations like biotelemetry for head and chest implants [102],
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deep neural implants [151] and cortical implants [90]. On the other hand, the studies that

have modeled the long-term thermal effects of active devices have mainly focused on head

implants. For example, researchers have used software like COMSOL to study the thermal

impact of active intracortical microelectrode arrays [103], deep brain stimulator leads [54],

retinal implants [160], and a BCI skull implant [181].

Motivated by this knowledge gap, we sought to evaluate the thermal impact of a subcuta-

neously implanted CWU on adjacent pectoral area tissues. To this end, we used the Finite

Element Method (FEM) implemented in COMSOL to simulate the temperature of nearby

tissues in response to various CWU power consumption levels. We refer to this model as the

bio-heat model. Furthermore, we performed a sensitivity analysis to assess the robustness

of this bio-heat model against the natural variations of the physiological and environmental

parameters. This analysis also yielded the prediction of a thermally safe CWU power budget

range. Our ultimate goal is to verify these predictions in vivo and will be pursued in our

future studies. In the interim, to validate our modeling approach we performed benchtop

experiments. Specifically, we built a thermal prototype of the CWU and measured its tem-

perature under different power consumption levels. We then designed a COMSOL model

of the thermal prototype (benchtop model), simulated its thermal behavior, and compared

these results to those obtained experimentally.

2.2 Methods

In this section, we first present the details of our computational bio-heat model, including

its geometry and mathematical description. We also present a sensitivity analysis of the

bio-heat model and a benchtop validation of our computational approach.
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2.2.1 Bio-heat Model

Geometry

The simulated geometry represents a rectangular region (150 × 150 × 72 mm) of the thoracic

cavity (see Fig. 2.1). The skin was assumed to be in direct contact with the air. We further

assumed that the CWU is placed below the clavicle (pre-pectoral implantation), under the

skin and fat tissues, but above the pectoral muscle, similar to implantable pulse generators

(IPGs) for pacemakers [78] and DBS [175]. This model also included the ribs, surrounded by

intercostal muscle, and lung tissue. Each tissue’s thickness was taken from literature with

specific values listed in Table 2.1.

Table 2.1: The average thickness of the relevant tissue layers

Tissue Thickness, l (mm) Reference

Skin 2.5 [114]
Fat 4.7 [194]
Muscle 8.4 [25]
Ribs 6.0 [145]

The CWU was modeled as a rectangular prism (59 × 50 × 12 mm) made out of a 1 mm-

thick titanium (Ti) shell. We envision the CWU to contain a battery and an electronics layer

consisting of a printed circuit board (PCB) with the necessary electronic components. We

modeled the battery and electronics as adjacent 8 mm-thick blocks of equal size, surrounded

by 1 mm air gap on top and bottom. The overall volume of these layers is comparable to

the interior volumes of commonly used IPGs [175, 183].
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Figure 2.1: Geometric model of the thoracic area and CWU from different views, dimensions
in mm. (A) 3D view. The red line indicates the axis where the thermal impact due to the
CWU is highest, see Section 2.3.1 for details. (B) Central cross-section of the volume in (A).
(C) A zoomed-in view of the inset in (B). (D) Different layers of the CWU.

Bio-heat equation

Heat transfer through biological tissues is typically described by Penne’s bio-heat equa-

tion [162]:

ρC
∂T

∂t
= k∇2T − ρbCb ω(T − Tb) +Qm +Qext (2.1)
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where ρ (kg/m3) and C (J/(kg K)) are the tissue’s mass density and specific heat capacity,

respectively, and T (K) is the temperature at a position (x, y, z) and time t. The first term

on the right-hand side is the heat conduction, where k (W/(mK)) is the tissue’s thermal

conductivity. The second term models the effect of blood perfusion, where ω ((ml/s)/ml)

is the volumetric flow rate of the perfusing blood per unit volume and the subscript, b,

refers to arterial blood. Finally, the term Qm (W/m3) is the metabolic heat produced by the

tissue, and Qext (W/m3) is the heat produced by external sources (e.g., the CWU). Note that

Qext = 0 for all layers except for the electronics layer. It is defined as Qext = PCWU/Velec,

where PCWU (W) is the CWU’s power consumption and Velec (m3) is the volume of the

electronics layer. The software applied the partial differential equation (PDE) given by

Eq. (2.1) to all tissue layers and CWU components, setting to 0 those terms that do not

apply and enforcing temperature continuity at the layer interfaces.

The thermal parameters for each tissue layer are given in Table 2.2. The tissue’s thermal

conductivity can vary by as much as 50%, therefore we took the average values as reported

in [51]. Similarly, we computed the tissues’ metabolic heat as the average of the values

found in [72] and [215]. Since the tissues’ blood perfusion significantly depends on physical

activity, we used the values corresponding to light exercise or slow walking (1 mph, 80 bpm).

Specifically, the fat and ribs’ blood perfusion values were estimated from [82] and [81],

respectively. For the muscle’s blood perfusion, we first estimated the oxygen consumption

corresponding to light exercise (0.4 L/min) [222], and then used this information to estimate

the blood perfusion from [74], which provides a link between oxygen consumption and blood

perfusion. Likewise, for the lungs’ blood perfusion, we first estimated the mean pulmonary

artery pressure associated with light exercise (17 mmHg) [109], and then used this value

to estimate blood perfusion from [4], which gives the relationship between blood perfusion

and pulmonary artery pressure. Finally, we estimated that during light exercise the skin’s

blood perfusion increases 9% with respect to resting state [119], and we computed the blood

perfusion at rest as the average of the values found in [119, 76, 11, 137, 34, 218, 142].
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The thermal conductivities of the Ti shell and air were 19 W/(m K) [167] and 0.03 W/(m K)

[12], respectively. Due to its internal multi-layer structure, the battery has a highly aniso-

tropic thermal conductivity, with kxy = 15 and kz = 1 (W/(m K)) [75]. For the electronics

layer, we assumed that its thermal properties are similar to those of the PCB. Similar to

the battery, the PCB’s thermal conductivity is also anisotropic and depends on the number

of layers. For a six-layer PCB, as used in our preliminary benchtop CWU prototype [205],

we estimated the thermal conductivity as kxy = 28.15 and kz = 0.31 (W/(m K)), based on

formulas provided in [155].

We applied the following boundary conditions to the boundary value problem (2.1). Consis-

tent with [103] and [160], we assumed that heat transfer occurred through free convection

at the skin-air interface:

n · (k∇T ) = h(Text − T ) (2.2)

where n is the outward normal vector, h (W/m2 K) is the convection heat transfer coefficient

and Text (K) is the room temperature. For this model, we used h = 5 W/(m3 K), which

corresponds to free airflow in the environment [108], and Text = 20◦C. Consistent with other

studies, we omitted the effect of radiation from the skin surface to the outside air [103].

For the innermost boundary, we assumed the temperature to be equal to the body core

temperature [103, 54], with T = 37◦C [41]. Finally, we assumed that there was no heat

transfer across the lateral boundary:

n · (k∇T ) = 0 (2.3)

This assumption is justified given the relatively large distance between the lateral boundary

and the CWU heat source. Therefore, the temperature gradients at the lateral boundary are

negligible. We will refer to the parameters described here and Section 2.2.1 as the nominal
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parameters.

To estimate the maximum power consumption of the CWU that guarantees thermal safety,

we first computed the steady-state solution (∂T/∂t = 0) of Eq. (2.1) by iterating over

values of PCWU within our range of interest (defined below). Based on ISO 14708-1 (the

FDA-recognized standard), which states that active implants must not increase surrounding

tissues’ temperature by more than 2◦C, we then defined Pmax
CWU as the maximum value of

PCWU that satisfies this condition. Specifically, to find Pmax
CWU, we first ran the simulation

model assuming PCWU = 0 (i.e., inactive implant) and stored the resulting temperature

field, T (0), for all tissues. Then, we ran the simulation by iteratively increasing the values

of PCWU (up to 500 mW, with a step size of 100 mW). For each simulation result, T (PCWU),

we defined the temperature increase as ∆T (PCWU) = T (PCWU) − T (0). For the first value

of PCWU whose ∆T violated the 2◦C constraint, we decreased and locally refined PCWU with

a step size of 1 mW. Finally, Pmax
CWU was defined as the maximum value that guaranteed

∆T (PCWU) ≤ 2◦C:

Pmax
CWU = argmax

PCWU∈[0,600]
∆T (PCWU) : ∆T (PCWU) ≤ 2◦C (2.4)

Table 2.2: The average values of tissues’ thermal parameters: thermal conductivity, k,
metabolic heat, Qm, and blood perfusion, ρbCbω

k
W/(m K)

Qm

W/m3

ρbCbω
W/(m3 K) References

Skin 0.36 1004 5192 [51, 72, 119]
Fat 0.24 180 1504 [51, 215, 82]
Muscle 0.50 661 3580 [51, 215, 74]
Ribs 0.43 0 1232 [51, 72, 81]
Lungs 0.44 370 222589 [51, 72, 4]
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2.2.2 Sensitivity Analysis

We performed a sensitivity analysis to ensure the robustness of our prediction against the

natural variations of physiological and environmental parameters. To this end, the nominal

parameters introduced in the previous section were perturbed in both directions based on

their physiological and environmental variance. Specifically, we considered the effect of

perturbing the following 21 parameters: all those in Tables 2.1 and 2.2, Text, Tcore and h.

We omitted perturbing the parameters pertaining to the geometry and materials of CWU,

given that the CWU’s design is fixed.

Table 2.3 lists these parameters with their nominal and perturbed values. The upper and

lower values for the tissues’ thickness, l, were taken from [114, 194, 25, 145]. For the thermal

conductivity, k, the negative and positive perturbation values were estimated from [51].

For the metabolic heat, Qm, the perturbation bounds for the fat and muscle tissues were

taken from [215]. Since physiological ranges for the skin and lungs were not available, we

estimated their variance at ±10% (the average perturbation from fat and muscle). On the

other hand, the lower bounds of blood perfusion were estimated from values at rest, while

the upper bounds were estimated from values at double the nominal walking speed (2 mph,

90 bpm). The skin’s blood perfusion at rest was estimated as the average of the values

from [76, 11, 137, 34, 218, 142, 119]. Similarly, the fat’s blood perfusion value at rest was

estimated from [137, 34, 218, 142, 82], and the muscle’s blood perfusion at rest was estimated

from [76, 11, 137, 34, 218, 142, 16]. The ribs’ resting blood perfusion was taken from [142], and

the lungs’ blood perfusion value at rest was taken from [4]. The upper bound values for blood

perfusion for the skin, fat, muscle, ribs and lungs were estimated from [119, 82, 74, 81, 4],

respectively. Additionally, the range for the heat transfer coefficient, h, was taken from [108].

Finally, we approximated the natural variations of the temperatures Tb and Text.

Our sensitivity analysis was based on calculating the sensitivity coefficient, Si, defined as
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the relative change of ∆T (PCWU) over the relative change of the parameter θi [49]:

Si =

(
∆T (Pmax

CWU,Θ
*
i )−∆T (Pmax

CWU,Θ
0)
)
/∆T (Pmax

CWU,Θ
0)(

θ*
i − θ0

i

)
/θ0

i

,

i = 1, 2, · · · , 21
(2.5)

In other words, Si quantifies the impact that the variation of the parameter θi has on the

tissue’s temperature increase in our bio-heat model. In Eq. (2.5), ∆T (Pmax
CWU,Θ

0) is the

maximum temperature increase across all tissues corresponding to Pmax
CWU and Θ0, where

Θ0 = [θ01, θ
0
2, · · · , θ021] is the vector of perturbed nominal parameters as shown in Table 2.3.

Likewise, ∆T (Pmax
CWU,Θ

*
i ) is the maximum temperature increase across all tissues correspond-

ing to Pmax
CWU and Θ*

i , where Θ*
i = [θ01, · · · , θ*

i , · · · , θ021] and θ*
i is the perturbed value of the ith

parameter. To quantify sensitivity in both directions, for each parameter θi, we calculated

S+
i , corresponding to θ*

i = θ+
i (positive perturbation), and S-

i , corresponding to θ*
i = θ-

i

(negative perturbation), as shown in Table 2.3.

Based on these sensitivity coefficients, we defined critical parameters as those whose per-

turbations considerably affected the bio-heat model, i.e., |Si| > 10−4. In other words, the

parameters whose relative change of 1% resulted in a relative change of ∆T ≤ 10−4% were

considered non-critical. Since Eq. (2.5) considers the perturbation of a single parameter at a

time, we also sought to investigate the effects of perturbing multiple parameters simultane-

ously. This is necessary to account for the interactions between parameters, and to get a more

realistic idea of the potential variations that the bio-heat model could experience. For this

reason, we re-estimated Pmax
CWU while simultaneously perturbing all the critical parameters.

Specifically, we ran simulations for the worst-case scenario (WCS) and best-case scenario

(BCS). In the WCS, we perturbed the critical parameters in the direction that would lead

to an increase in ∆T , which, in turn, would reduce the CWU’s power budget. On the other

hand, for the BCS, we perturbed the critical parameters in the direction that would lead
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to a decrease in ∆T , which would result in a higher power budget. In both scenarios the

non-critical parameters were held at their nominal values. We will refer to the re-estimated

power budgets for each scenario as PWCS
CWU and PBCS

CWU.

Table 2.3: The nominal parameters, θ0i , and their negatively and positively perturbed values,
θ-
i and θ+

i , respectively.

θi θ0i θ-
i θ+

i

θ1 = lskin 2.50 2.24 2.88
θ2 = lfat 4.70 1.98 7.90
θ3 = lmuscle 8.40 7.78 9.02
θ4 = lrib 6.00 4.00 8.00
θ5 = ωskin 5192.00 4751.00 6413.00
θ6 = ωfat 1504.00 1331.00 1909.00
θ7 = ωmuscle 3580.00 1896.00 5897.00
θ8 = ωrib 1232.00 847.00 1617.00
θ9 = ωlung 222589.00 133173.00 317713.00
θ10 = Qskin

m 1004.00 904.00 1104.00
θ11 = Qfat

m 198.00 169.00 214.00
θ12 = Qmuscle

m 694.00 640.00 759.00
θ13 = Qlung

m 370.00 333.00 407.00
θ14 = kskin 0.36 0.25 0.47
θ15 = kfat 0.24 0.22 0.26
θ16 = kmuscle 0.50 0.49 0.51
θ17 = krib 0.43 0.34 0.52
θ18 = klung 0.44 0.42 0.46
θ19 = Tb 37.00 36.50 39.50
θ20 = h 5.00 2.50 25.00
θ21 = Text 20.00 5.00 35.00

2.2.3 Benchtop Validation

We used benchtop open-air experiments to validate our modeling approach. Ultimately, our

power budget predictions will be confirmed using in vivo testing and will be pursued in our

future studies (see Section 2.4). An alternative approach would have been to perform in vitro

experiments using phantom tissues. For example, we made skin, fat and muscle phantom

tissues to test the wireless communication capabilities of our CWU prototype [118]. Unlike
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electrical conductivity and permittivity, which we could easily manipulate in phantom tis-

sues, metabolic heat production and blood perfusion effects cannot be easily replicated [116].

Furthermore, our sensitivity analysis shows that blood perfusion is among the most critical

parameters of the bio-heat model. Thus, our bio-heat model could not be accurately re-

produced in vitro, and as an alternative, we chose to validate our modeling approach using

benchtop open-air experiments. To this end, we built a thermal replica of the CWU with

a Ti enclosure whose dimensions and power consumption levels match those of the bio-heat

model. We then measured the surface temperature of this thermal prototype in an open-air

experiment and compared these experimental results to those obtained via simulations.

Specifically, we fabricated the thermal prototype as a rectangular-shaped prism (59 × 50 ×

12 mm), assembled from two clamshell Ti alloy (ASTM B265 Grade 2) parts, which were

laser-welded in a hermetic fashion. This alloy is a commonly used material for medical

implants due to its biocompatibility [224]. The Ti case (1 mm-thick shell) encloses a circuit

of resistors and a battery connected to external switches (see Figs. 2.2A and 2.2B). With

these switches, the prototype could be powered and set to operate at one of four power

consumption levels (300, 400, 500, and 600 mW). The prototype also had a connector to

enable the battery to be charged externally. Note that the thermal prototype dimensions,

enclosure material, wall thickness and power consumption levels closely match those of the

bio-heat model described in Section 2.2.1.

For each power consumption level, we conducted an open-air experiment, as described below.

We placed the thermal prototype on a laminate wood benchtop, turned the prototype on

with a certain power consumption configuration, and waited for one hour for heat to reach a

quasi-steady state. Next, we measured the prototype’s top surface temperature using both

a thermocouple, Tp,t, and a thermal camera (FLIR C2, Teledyne FLIR, Wilsonville, OR),

Tp,c(x, y). To minimize reflection and accommodate more accurate temperature measure-

ments with the thermal camera, we painted the top surface of the prototype black. We
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Figure 2.2: Different views of our custom-designed CWU thermal prototype and its COM-
SOL model. (A) View of the prototype’s interior prior to laser-welding the two clamshells.
Different switch positions engage different combinations of resistors for the prototype to oper-
ate at different powers. (B) A front view of the laser-welded prototype. (C) Cross-section of
the prototype’s COMSOL model (lateral view). (D) Cross-section of the prototype’s model
(top view).

also took periodic measurements of the room temperature, Text, the battery’s voltage, Vb,

and its current, Ib, since these variables changed over time, thus affecting the prototype’s

surface temperature. Specifically, the room temperature measurements were taken with a

thermocouple in close proximity to the air surrounding the prototype and repeated every 10

minutes for about an hour. Moreover, we measured the battery’s voltage and current every

10 minutes from the moment the prototype was powered until the end of the experiment.

These measurements were taken using a digital multimeter (Tenma 72-8400, Tenma Test

Equipment, Springboro, OH). Note that as the battery discharges over time, Vb decreases,

which, in turn, lowers the prototype’s instantaneous power consumption.

We then created a COMSOL model of the CWU thermal prototype in an open-air envi-

32



ronment, which we refer to as the benchtop model. Its dimensions precisely matched those

of the thermal prototype, including the 1 mm Ti shell, battery (36 × 29 × 4.7 mm), re-

sistors (2.5 mm diameter, 6.5 mm length), and board (43 × 38 × 1.6 mm), as shown in

Figs. 2.2C and 2.2D. The prototype was modeled sitting on top of a rectangular laminate

wood benchtop (600 × 600 × 30 mm).

We modeled heat transfer using the same approach as in the bio-heat model (see Sec-

tion 2.2.1). Given that metabolic heat and blood perfusion do not apply to the benchtop

model, we set Qm and ω from Eq. (2.1) to 0. Analogous to the bio-heat model, the software

applied this PDE to each component of the benchtop model, and computed its steady-state

solution. To do so, we first chose the parameters of the benchtop model as follows. We

set the thermal conductivity, k, of Ti (ASTM B265 Grade 2) and the benchtop’s laminated

wood to be 21.8 W/(m K) [23] and 0.12 W/(m K) [179], respectively. We also set the thermal

conductivity of the resistors and board to be 1.88 W/(m K) [158] and 0.29 W/(m K) [196],

respectively. Additionally, we kept the thermal conductivity of the battery and air the

same as in the bio-heat model (see Section 2.2.1). Finally, we defined the heat source as

Qext = Pb/VR, where Pb is the battery’s power usage and VR is the overall volume of the

selected resistors, as determined by the combination of switches. The battery’s power was

estimated as Pb = Vb × Ib, where Vb and Ib were measured throughout the benchtop exper-

iments, as described above.

For this boundary problem, we enforced temperature continuity at the benchtop-prototype

interface and all other internal interfaces. We also assumed that the heat transfer occurred

through free convection on all external boundaries, similar to the skin-air boundary of the

bio-heat model, Eq. (2.2). In this equation, we estimated the room temperature, Text, as

the time average of the temperature measurements taken throughout the benchtop experi-

ment. Another critical parameter of this equation is the heat transfer coefficient, h, which is

sensitive to local air flow and temperature, and can vary greatly across environments [108].
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Therefore, we estimated h experimentally using Newton’s law of cooling. Specifically, a 306

× 52 × 10 mm Ti (ASTM B265 Grade 2) bar was placed in the oven and heated to at least

40◦C above the room temperature. Then, the bar was removed from the oven and placed

on the same benchtop as the thermal prototype to let it cool. The bar’s temperature was

recorded every 30 seconds for about an hour. These measurements were then used to fit a

linear regression to the logarithmic form of the cooling equation:

ln
∆T (t)

∆T (0)
= −hA

mc
t (2.6)

where ∆T (t) = Tbar(t) − Tr, and Tbar(t) is the time dependent temperature of the bar and

Tr is the room air temperature, respectively. The parameters A, m, and c are the area (m2),

mass (kg), and heat capacity (J/(kg K)) of the Ti bar, respectively.

For each of the four experiments, we simulated the COMSOL benchtop model twice and

compared these results to the experimental measurements. This was necessary to reconcile

a constant power consumption assumed by the steady-state solution of Eq. (2.1) and a

decreasing power consumption observed experimentally due to battery draining over the

course of each experiment. Specifically, we simulated the model while assuming two extreme

power consumptions, Pmax
b and Pmin

b , which were derived from the battery voltage and current

measurements taken at the beginning and end of each benchtop experiment. For each case,

we computed the average temperature of the modeled prototype’s top surface, Tm(P
max
b )

and Tm(P
min
b ), respectively. These values were then compared to the experimentally derived

temperature Tp, where Tp is the average of the thermal image measurements, Tp,c (averaged

over space), and the thermocouple measurements, Tp,t. The value Tp was calculated every

10 minutes and compared to the simulated range [Tm(P
min
b ), Tm(P

max
b )].
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2.3 Results

2.3.1 Bio-heat Model

We simulated the bio-heat model in Eq. (2.1) using the FEM in COMSOL. To determine the

appropriate mesh size, we used an adaptive physics-controlled mesh algorithm. Specifically,

we solved Eq. (2.1) using the following predefined COMSOL mesh sizes: coarser, coarse,

normal, fine, finer and extra fine. The difference in the resulting temperature going from

coarser to extra fine mesh size kept decreasing, with the difference between the finer and

extra fine mesh size being < 0.001◦C. This suggested that the simulation had converged with

respect to the mesh size [103]. Therefore, we chose the finer mesh size in our bio-heat model

to balance accuracy and computational cost. We ran the simulations using the geometric

parameters shown in Table 2.1 and Section 2.2.1, and the thermal parameters from Table 2.2

and Section 2.2.1.

We found Pmax
CWU by the iterative procedure described in Section 2.2.1. To simplify the

interpretation of volumetric temperature data, we focused on the worst-case scenario line

segment (marked by the red dashed line in Fig. 2.1A), where the thermal impact due to the

CWU, judged by ∆T (PCWU), is highest. Fig. 2.3 shows the simulated ∆T (PCWU) along this

segment for different values of PCWU within our range of interest. For all power consumption

levels, we observed the highest temperature increase in the fat layer, followed by the muscle,

skin, ribs, and lungs. We also observed that ∆T peaked at the same depth, d∗ ≈ 12.2 mm,

for all power levels. This depth corresponds to the point where the worst-case scenario line is

tangential to the implant. This figure also shows that ∆T (500) violated the 2◦C threshold in

the fat tissue layer. Therefore, we iterated the value of PCWU below 500 mW with a precision

of 1 mW, and we found the maximum power consumption to be Pmax
CWU = 458 mW. Fig. 2.3

confirms that ∆T (458) ≤ 2◦C for all tissue layers.
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Figure 2.3: Temperature increase, ∆T (PCWU), for different values of PCWU, calculated along
the axis of the CWU with the tissues’ highest ∆T . This region undergoes the highest
thermal impact within the overall geometry. The solid vertical lines mark the boundaries of
each layer, which are colored in different shades of gray and labeled at the top. The dashed
horizontal line marks the 2◦C thermal safety threshold. The dotted vertical line marks the
depth, d∗, at which ∆T is highest for all power levels.

Fig. 2.4 shows the 2D distribution of ∆T corresponding to the maximum power consumption,

Pmax
CWU = 458 mW, over the central cross-section. Consistent with Fig. 2.3, the highest tissue

temperature increase occurred in the fat tissue. Note that ∆T exceeded the 2◦C thermal

safety threshold in the interior of CWU (parts of the electronics layer and Ti shell). However,

only the biological tissues are subjected to the thermal safety threshold.

2.3.2 Sensitivity Analysis

To quantify the robustness of the bio-heat model with respect to the nominal parameter val-

ues, we computed the sensitivity coefficient, Si, for all the parameters, θi (i = 1, 2, · · · , 21).
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Figure 2.4: ∆T (458) in ◦C over the central 2D cross-section from Fig. 2.1B. Areas where
∆T > 2◦C were not assigned a color to visually preserve the temperature resolution. The
red dashed line indicates the axis with the tissues’ highest ∆T .

Table 2.4 shows the values of Si for the positive and negative perturbations shown in Ta-

ble 2.3. Based on the criteria |Si| > 10−4, the simulation results were sensitive to 15 critical

parameters. The perturbations of the remaining 6 non-critical parameters did not signifi-

cantly alter the simulation results.

Finally, we modeled the combined effect of all the critical parameters. We perturbed the

15 critical parameters simultaneously (while keeping the nominal values of the non-critical

parameters) to simulate a worst and best-case scenario. We then re-estimated the maximum
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power consumption for each case, namely PWCS
CWU and PBCS

CWU, and found the power budget

range to be between 378 mW and 538 mW.

Table 2.4: The sensitivity coefficients, S-
i and S+

i , for the respective perturbation of each
parameter, as indicated in Table 2.3. The critical parameters are highlighted in grey.

θi S-
i S+

i

θ1 = lskin -9.43·10−2 -8.28·10−2

θ2 = lfat -3.64·10−2 -1.39·10−2

θ3 = lmuscle 4.42·10−2 3.88·10−2

θ4 = lrib 4.27·10−2 2.99·10−2

θ5 = ωskin -8.21·10−2 -7.34·10−2

θ6 = ωfat -8.31·10−2 -7.89·10−2

θ7 = ωmuscle -1.01·10−1 -7.55·10−2

θ8 = ωrib -7.34·10−4 -7.25·10−4

θ9 = ωlung -6.49·10−3 -3.60·10−3

θ10 = Qskin
m 2.34·10−8 2.34·10−8

θ11 = Qfat
m 1.19·10−8 1.19·10−8

θ12 = Qmuscle
m 7.05·10−10 7.07·10−10

θ13 = Qlung
m -4.21·10−10 -4.15·10−12

θ14 = kskin -3.45·10−2 -1.20·10−2

θ15 = kfat -2.48·10−1 -2.22·10−1

θ16 = kmuscle -2.32·10−1 -2.27·10−1

θ17 = krib -1.53·10−2 -1.24·10−2

θ18 = klung -4.77·10−3 -4.48·10−3

θ19 = Tb -1.09·10−6 -1.42·10−6

θ20 = h -2.29·10−2 -1.45·10−2

θ21 = Text 1.00·10−5 8.78·10−5

2.3.3 Benchtop Validation

The benchtop experiments were performed in a dedicated room with minimal disturbance

from external factors. As explained in Section 2.2.3, we placed the CWU thermal prototype

on the benchtop, turned the power on, and waited for one hour before taking temperature

measurements from the device’s surface. We also periodically measured the room tempera-

ture, as well as the battery’s voltage and current throughout the experiment. We repeated

the experiment for the nominal power consumption levels of 300, 400, 500, and 600 mW.
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Fig. 2.5A shows a representative example of the prototype’s quasi-steady state surface tem-

perature for the 500 mW set-up.

We then simulated these experiments in COMSOL, using our benchtop computational model

(see Section 2.2.3). Consistent with the bio-heat model, we used the predefined finer mesh

setting for these simulations. The model used the parameters specified in Section 2.2.3,

except for the heat transfer coefficient, h. As explained earlier, this parameter critically

depends on the environment and, therefore, had to be determined experimentally in the same

dedicated room as above. To this end, we used the Ti bar temperature decay experiment to

fit a linear regression based on Eq. (2.6) with A = 0.016 m2, m = 0.718 kg, and c = 523 J/(kg

K) [43]. This resulted in a heat transfer coefficient estimate h = 13 W/(m3 K). Fig. 2.6 shows

the temperature decay measured experimentally, as well as the prediction based on this value

of h. Note that the goodness-of-fit measure, R2=0.995, suggests a high concordance between

experimental data and model prediction. Once h was found, we simulated the benchtop

model at the four nominal power consumption levels. Fig. 2.5B shows an example of the

simulated prototype’s surface temperature distribution for the 500 mW power consumption.

From experimental data, we calculated the thermal prototype’s average surface temperature,

Tp, every 10 minutes, and compared these values to the simulated range [Tm(P
min
b ), Tm(P

max
b )]

(see Section 2.2.3). Fig. 2.7 shows the results at the four nominal power consumption

levels. For each power level, there is an overlap between the values of Tp and the range

[Tm(P
min
b ), Tm(P

max
b )]. As expected, higher power consumption levels led to a wider gap

between the prototype’s surface temperature and the room temperature, and this was con-

sistently observed in both experimental and simulated data. Also note that higher power

configurations drained the battery’s voltage faster, which, in turn, widened the range of Tm.

Finally, we quantified the agreement between the experimental and simulation results by

calculating the correlation coefficient between Tp and Tm. Specifically, for each power level,

we correlated the first and last value of Tp with Tm(P
min
b ) and Tm(P

max
b ), respectively, and
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Figure 2.5: 2D temperature maps of the CWU thermal prototype and its benchtop COMSOL
model for the 500 mW configuration. The bright spot in the lower right corner overlaps with
the position of the resistors. (A) Thermal camera image of the prototype placed on the
benchtop. (B) An equivalent map produced by the benchtop computational model with
Text = 22.9◦C.

obtained the correlation coefficient of 0.86 (p-value = 0.006).
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Figure 2.6: Cooling profile of a Ti bar in an open-air benchtop environment. The black dots
show the temperature decay measured experimentally, while the red line is an exponential
model derived from Eq. (2.6), with the best linear fit, h = 13.

2.4 Discussion

The thermal impact of fully implantable BCI systems remains an underresearched topic [220].

Our CWU design in particular, and implantable BCI in general (Fig. 1.6), bear some resem-

blance with commercially available IPGs. However, with an estimated range between 200

and 1600 µW [38], IPGs’ power consumption is about two orders of magnitude lower than

that of implantable BCIs. This power gap is expected to be even larger for BD-BCIs. For

this reason, we cannot assume that the thermal behavior of commercially available IPGs

generalizes to fully implantable BCIs.

To the best of our knowledge, this is the first thermal impact study of a CWU, envisioned
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Figure 2.7: The average top surface temperature of the thermal prototype in comparison
to the simulated temperature range for different power consumption levels. (A) Actual
temperature. (B) The same values expressed as a deviation from the room temperature.
The black crosses are experimental temperature measurements, Tp, repeated at ∼10 minute
intervals. The cyan boxes represent the simulated temperature range [Tm(P

min
b ), Tm(P

max
b )].

The pink stars show the average room temperature, Text.

as part of a fully-implantable BD-BCI. Based on this study, we estimated the CWU’s maxi-

mum power budget that guarantees a thermally safe operation. Specifically, we simulated the

bio-heat model with nominal parameters, and we predicted that the CWU’s power budget

cannot exceed 458 mW without violating the 2◦C thermal safety threshold. When perturb-

ing 21 nominal parameters within their natural physiological and environmental range, 6

parameters had a negligible effect on the power budget. The remaining 15 parameters were

critical and their simultaneous perturbation resulted in a power budget range between 378

and 538 mW. We believe that this power budget is sufficient for the CWU to perform its
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functions, such as training the decoder, online decoding, wireless communication and data

transmission, and cortical stimulation. For example, our recently developed CWU benchtop

prototype consumed on average 150 mW of power while performing all the BCI functions

except stimulation [205]. Our newest BD-BCI benchtop prototype showed that cortical stim-

ulation may require up to an additional 230 mW [192]. Taken together, these values suggest

that the power budget range estimated based on our simulations is sufficient to power an

actual CWU and likely a fully implantable BD-BCI.

Our bio-heat modeling approach makes several simplifying assumptions. However, most of

these assumptions favored a more conservative power budget estimate, as described below.

For example, we neglected the effects of radiative heat transfer. Since human skin is generally

warmer than external room temperature, radiation would take heat away from the human

body, and even more so when the CWU is powered. Therefore, the net effect of radiative

heat transfer would be an even greater power budget. Another simplification of our approach

is that we computed ∆T by comparing the temperature resulting from the active CWU

simulation to a model where the CWU is inactive. An alternative way to define ∆T would

be to compare the active simulation to a model where the CWU is not implanted. However,

after comparing the two approaches, we conclude that the results presented here lead to

a more conservative power budget estimate. Namely, in the absence of an implant, the

fat and skin layers are closer to the body core and so their temperature is higher. This

would, in turn, result in a lower value of ∆T and, therefore, would yield an even higher

power budget. Furthermore, our model neglected external clothing. However, our worst-

case scenario simulations assumed a 2 cm-thick wool layer and showed the effect of clothing

on the power budget estimation to be minimal (< 2 mW). Additionally, we assumed a

uniform electronics layer with thermal properties based on those of the PCB. Instead, a

more detailed approach would be to split the electronics layer into the PCB and its electronic

components (microcontroller core, H-bridge, current source, RAM module, NAND storage

module, and radio TRX) [205, 192]. Given that the exact composition and arrangement
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of these components are currently unknown, we opted for a simpler approach. Once this

information is known, such a detailed model could be used to rearrange the internal CWU

components and further optimize the power budget. We also omitted a polymeric connection

header that usually houses connectors and telemetry antenna in contemporary IPGs [175,

195]. However, since none of the elements in the header generate heat, we do not expect it

to affect our power budget predictions. Finally, the long-term heating of tissues can trigger

adaptation mechanisms such as angiogenesis, which increases blood perfusion and, in turn,

reduces temperature. However, this process is poorly understood [39] and therefore could

not be easily incorporated into our model.

Table 2.4 shows that the thermal conductivity of fat and muscle, as well as the muscle blood

perfusion, were the three most critical parameters of our bio-heat model, followed by the

skin thickness, and the fat and skin blood perfusion. This conclusion is consistent with the

findings reported by in vivo animal studies [159]. Table 2.4 also shows that the perturbation

of the same parameter across multiple tissues may or may not have the same effect on ∆T .

For example, the increase of the fat’s thickness led to a decrease in ∆T , while the increase

of the muscle’s thickness led to an increase in ∆T . (Note that from Eq. (2.5) it follows that

both S+
i > 0 and S-

i < 0 correspond to an increase in ∆T ). For other parameters (e.g.,

blood perfusion), the perturbations in the same direction led to the same behavior across all

tissues.

The main limitation of our study is the lack of in vivo validation. Nonetheless, FEM simu-

lations are widely accepted in predicting active implants’ behavior [54, 138, 201, 226, 161].

This is especially true for preliminary studies, where it would be both unethical and cost

ineffective to perform animal testing. Once an active implant prototype has been finalized,

animal studies are appropriate to test both its function and safety. These include long-term

functional tests and FDA safety requirements such as thermal impact, biocompatibility, and

current leakage (ISO 14708-1).
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In the absence of animal testing, we used a benchtop model to validate the general FEM

approach presented here. For this model, the simulation results overlapped with the exper-

imental results for all power configurations (see Fig. 2.7), and therefore we conclude that

the FEM reliably predicts experimental thermal behavior. The differences between the ex-

perimental and simulation results can be attributed to the model’s simplifying assumptions.

First, the model assumed constant parameters, like Text and h. However, these parameters

could have changed during the course of experiments due to sudden fluctuations in room

temperature and air flow, caused by external factors (door opening/closing, A/C turning

on/off). Additionally, the benchtop simulation omitted smaller components like the cables,

switches and connector; however, we do not expect these elements to have a great influence

on the heat distribution. Lastly, observational errors from the experimental measurements

could also have been a source of discrepancy.

Our estimated power budget range (378 to 538 mW) provides an informative constraint for

the future design of a fully implantable CWU and a BD-BCI system, as outlined in Fig. 1.6.

This study focuses on the thermal analysis of the CWU because it is the most power-hungry

component of the BD-BCI system. Other heat-dissipating components include the skull

unit (SU) and sensory (stimulating) electrodes. Our preliminary power budget estimates

for the SU are provided in [181], and efforts to incorporate the stimulating electrodes into

this model are currently under way. Nevertheless, to ultimately validate the thermal safety

of these components, in vivo animal testing must be done. However, animal testing is

out of the scope of this work and will be pursued in our future studies, where the CWU

and other components of the BD-BCI system will be implanted in a large animal model.

Specifically for the CWU, a temperature sensor (e.g., thermistor) can be integrated within

the implant to continuously measure its surface temperature at the hottest region. Note

that this temperature is equal to the temperature of the adjacent tissues due to temperature

continuity (see Fig. 2.4). The CWU’s wireless communication system could be exploited to

obtain periodic measurements of the CWU’s surface temperature. To validate the thermal
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safety of the device, its thermal impact can be assessed under different power consumption

levels (generated by different operation modalities), and ensure that the 2◦C threshold is not

violated under any circumstances.

2.5 Conclusion

To the best of our knowledge, this is the first thermal impact study of a CWU, envisioned as

part of a fully-implantable BD-BCI. Based on this study, we estimated the CWU’s maximum

power consumption that guarantees a thermally safe operation. Specifically, we found that

a nominal power consumption of 458 mW would not lead to an increase of the surrounding

tissues’ temperature by more than 2◦C (ISO 14708-1). Furthermore, we performed a sensi-

tivity analysis to identify physiological and environmental parameters that are critical for the

power budget estimate. We then varied these parameters over their natural range, and found

the power budget estimate to range between 378 and 538 mW. These power budget estimates

provide an important specification for the design of our fully implantable BD-BCI system.

Additionally, we designed a benchtop experiment to confirm that our simulation approach

(FEM implemented in COMSOL) can faithfully model the thermal behavior of a CWU-like

implant. Next, we will estimate the power budget for the remaining implantable components

of the BD-BCI (see Chapter 3). Finally, in the future, our research efforts will be directed

toward performing in vivo animal studies to validate these power budget predictions.
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Chapter 3

Power Budget of the Skull Unit

3.1 Motivation

After estimating the thermally safe power budget of the CWU in Chapter 2, the next step to

complete the thermal assessment of the BD-BCI is to estimate the thermally safe power bud-

get of the SU. Previous studies have demonstrated the predictive value of numerical bio-heat

transfer models for different types of active head implants, including active microelectrode

arrays (MEA) [103], deep brain stimulators [54], an MEA-based cortical implant [184], and

a retinal prosthesis [116]. However, due to the unique features of our SU implant, including

its ability to simultaneously record and stimulate, the findings from these previous studies do

not generalize to our SU design. For example, the power consumption of active head implants

ranges from 40 µW [9] to 3 mW [136], which is at least one order of magnitude smaller than

what might be needed to power an SU in a fully-implantable BD-BCI system. To address

this question, we developed a numerical model to simulate the combined thermal effects of

the heat dissipated by the SU and the heat caused by cortical stimulation. We used this

model to determine the SU’s maximum power consumption that guarantees thermal safety,
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as defined by the FDA. Similar to Chapter 2, we performed a sensitivity analysis to assess

the robustness of the thermal model against the natural variations of the physiological and

environmental parameters and estimate a thermally safe SU power budget range. This work

builds upon our previous work [181], where we used a simpler model to provide a preliminary

estimate of the SU’s power budget. Furthermore, the current study complements Chapter 2

on predicting the power budget of the CWU—the most power-hungry component of the

BD-BCI system. Therefore, this chapter completes the thermal assessment of the envisioned

fully-implantable BD-BCI system.

3.2 Materials & Methods

We simulated the thermal behavior of the SU and sensory ECoG grid using the Finite

Element Method (FEM), implemented in COMSOL. We also performed a sensitivity analysis

of our model against the natural variations of physiological and environmental parameters.

Some of the methodology presented here is similar to Chapter 2.

3.2.1 Geometric Model

Our model represents a cylindrical cut-out of the human head with multiple tissue layers

and implanted components (see Fig. 3.1). We assumed the scalp (the outermost layer) to be

in direct contact with the air while omitting the effect of hair. Our analysis (see Section 3.4)

showed that hair had little influence on the power budget. We estimated the thickness of

the scalp, skull, dura mater, and subarachnoid space (SS) layers from anatomical data (see

Table 3.1). This table also lists the thickness of the implantable components. We modeled the

brain as a 50-mm thick cylindrical volume with a 50-mm radius. This volume is sufficiently

large to ensure its inner-most surface is at the brain’s core temperature [103] and its lateral
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surfaces are thermally insulated. We envision the SU to be implanted underneath the scalp,

fixed on the exterior aspect of the skull after a full-thickness craniectomy, similar to the

RNS system [153]. With the depth of the SU being smaller than the thickness of a typical

human skull, it is likely that after a full-thickness craniectomy the dura mater will thicken

and serous fluid will fill the remaining gap between the SU and the dura mater [126]. Since

this process is not completely understood, we assumed this gap to be filled with fluid whose

thermal and electrical properties are similar to those of a physiological saline solution (0.9%).

An alternative approach would be to perform a partial-thickness craniectomy; however, this

could trigger bone remodeling beneath the SU, which over time could extrude the implant.

We also envision the electrode grid to be implanted subdurally, above the SS [185]. Note

that the SS was assumed to primarily contain cerebrospinal fluid (CSF). Also, note that in

this model we omitted thinner head tissues like the pia mater.

Table 3.1: The average thickness of tissue layers and implantable components.

Tissue layer Thickness
(mm) Reference Component Thickness

(mm)

Scalp 3.35 [87] SU shell 1.00
Skull 7.80 [134] SU flange 2.00
Dura Mater 0.89 [112] Electronics 2.00
SS 1.43 [66] Air gap 1.00
Brain 50.00 Substrate (Si) 0.60

Electrodes (Pt) 0.20

We envision the SU as a cylindrical titanium (Ti) shell, with an outer radius of 6 mm.

Within the implant, there is a centered electronics layer surrounded by air gaps on both

sides. We modeled the electronics layer as a 2-mm thick printed circuit board (PCB). The

SU is covered with a solid Ti flange (10 mm radius, 2 mm thick) that allows fixation onto the

skull. On the other hand, we modeled the ECoG grid as a 32 × 16 mm silicone (Si) substrate

embedded with a 4 × 8 array of electrodes. The electrodes were modeled as platinum (Pt)

cylinders with a 1.25 mm radius and 4 mm pitch (corresponding to high-density ECoG grid

dimensions). We envision using high-density ECoG grids because they offer a higher spatial
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resolution than standard grids [206]. To simulate the worst-case scenario, we assumed the

grid is placed such that the stimulating electrodes (shown in red and green in Fig. 3.1) are

aligned with the center of the SU.

3.2.2 Mathematical model

To model the physics of our problem, we simultaneously used two modules from COMSOL.

Specifically, we used the heat transfer in solids module to simulate heat transfer through the

different tissues and implantable components, and the electric currents module to simulate

the heat generated by cortical stimulation currents.

Heat transfer

We used Pennes’ equation [162] to model the bio-heat transfer:

ρC
∂T

∂t
= k∇2T − ρbCbω(T − Tb) +Qm +Qext (3.1)

where ρ (kg/m3) and C (J/(kg K)) are the material’s mass density and specific heat capacity,

respectively. The variable T (K) is the temperature at a position (x, y, z) and time t. On

the right-hand side, the first term accounts for heat conduction, where k (W/(m K)) is

the material’s thermal conductivity. The second term models the effect of blood perfusion,

where ω ((ml/s)/ml) is the volumetric flow rate of the perfusing blood per unit volume

of tissue, and the subscript, b, refers to arterial blood. We set the blood temperature

to the body’s core temperature, Tb = 37◦C [41]. Finally, Qm (W/m3) is the metabolic

heat produced by the tissue, and Qext (W/m3) is the heat produced by external sources.
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Figure 3.1: Model of the human head, with relevant tissues and implanted components. The
dimensions are in mm (cf. Table 3.1 for the thickness of each tissue layer and component).
(A) 3D view of the model geometry. (B) Central cross-section of the view in (A). (C)
Zoomed-in view of the inset in (B). (D) 3D view of the SU. (E) Central cross-section of the
SU. (F) 3D view of the electrode grid. The green and red electrodes indicate the positive
and negative stimulating electrodes, respectively. (G) Zoomed-in view of the cross-section
of the electrode grid.

Specifically, Qext = QSU + Qstim, where QSU is the heat generated by the power dissipation

in the SU, and Qstim (W/m3) is the heat generated by cortical stimulation. Note that
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QSU = 0 everywhere except for the electronics layer, where it is defined as QSU = PSU/VE,

where PSU is the SU’s power consumption (W) and VE is the electronics layer’s volume (m3).

On the other hand, Qstim is proportional to the gradient of the voltage due to electrical

stimulation and is calculated using the electric currents module (see Section 3.2.2). The

software found the steady-state solution of Eq. (3.1) (∂T/∂t = 0) for each tissue layer and

implanted component, with extraneous terms set to 0 and temperature continuity enforced

at every layer interface. The thermal parameters for the tissues and implantable components

were taken from literature and are shown in Table 3.2. We estimated the scalp, skull, and

dura blood perfusion from [218, 57], and [97], respectively. Given that the brain’s blood

perfusion is highly dependent on activity levels, we used values corresponding to slow walking

conditions (80 bpm, 1 mph) [97]. Moreover, we used the tissues’ blood perfusion coefficients

to derive their metabolic heat values, as described in [142]. For the thermal conductivity of

the tissues, we computed the average of the values found in [142, 51, 60, 80, 169]. Similarly,

we computed the thermal conductivity of the implantable components as the average of the

values found in [167, 12, 107, 190]. Finally, given that the layout of the electronics layer is

currently unknown, we assumed its thermal conductivity to be the same as that of the PCB.

Note that PCB’s multilayered structure causes its thermal conductivity to be anisotropic.

Based on our benchtop BCI prototypes [205, 192], we assumed a two-layer PCB and applied

the formulas in [155] to obtain kxy = 14.2 W/(m K) and kz = 0.3 W/(m K).

To solve the boundary value problem (3.1), the following boundary conditions were applied.

Consistent with [103], we assumed heat to be transferred through free convection at the

scalp-air interface:

n · (k∇T ) = h(Text − T ) (3.2)
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Table 3.2: Thermal properties of the tissues and implanted components

k
(W/(m K))

ρbCbω
(W/(m3 K))

Qm

(W/m3) References

Scalp 0.342 7596 1100 [51, 218]
Skull 0.680 2848 26 [60, 218]
Dura mater 0.440 27253 - [142, 57]
SS (CSF) 0.570 - - [80]
Brain 0.528 37219 10383 [51, 97]
Fluid (Saline) 0.600 - - [169]
SU Shell (Ti) 19.000 - - [167]
Air gaps 0.030 - - [12]
Substrate (Si) 0.200 - - [107]
Electrodes (Pt) 71.000 - - [190]

where n is the outward normal vector, h is the heat transfer coefficient (W/(m2 K)) and Text

is the external air temperature (K). We set h = 5 W/(m2 K) [103], which corresponds to free

air flow conditions [108], and Text = 20◦C. For the brain’s bottom boundary, we assumed the

temperature to be equal to brain core temperature [103, 54], which is usually 0.5◦C higher

than body core temperature [204] (i.e., T = 37.5◦C). Finally, the brain’s lateral surfaces were

assumed to be thermally insulated:

n · (k∇T ) = 0 (3.3)

This assumption is justified given that the distance between this boundary and the SU is

sufficiently large so that the thermal effect of the SU’s heat sources is negligible.

Electrical Stimulation

To calculate the heat generated from the cortical stimulation, Qstim, we used the Joule

heating equation from the electric currents COMSOL module:
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Qstim = σ∥▽V ∥2 (3.4)

where σ (S/m) is the material’s electric conductivity and V (V) is the electric potential at

position (x, y, z). To calculate V , COMSOL solves the Laplace equation, ▽ · (σ▽V ) = 0,

for every tissue layer and implanted component, while enforcing continuity across all layer

interfaces. The values of σ for each tissue and component were taken as the averages of the

values found in literature and are shown in Table 3.3.

Table 3.3: Electrical conductivity of the tissues and components.

Tissue σ (S/m) Ref Component σ (S/m) Ref
Scalp 0.410 [139] SU shell (Ti) 6.0× 107 [132]
Skull 0.020 [139] Air gaps 10−14 [83]
Dura mater 0.461 [139] Substrate (Si) 10−13 [28]
SS (CSF) 1.710 [139] Electrodes (Pt) 9.1× 106 [182]
Brain 0.370 [139] Electronics (PCB) 10−13 [202]
Fluid (Saline) 3.000 [31]

To solve the electrical boundary problem (3.4), we used the following boundary conditions.

First, to model bipolar cortical stimulation, we set the top boundary, Si-Pt [see Fig. 3.1(G)],

of the positive and negative stimulating electrodes to:

VA = Vstim

VC = −Vstim

(3.5)

where the subscripts A and C indicate anode and cathode, respectively. We found Vstim =

1.1 V by assuming a worst-case cortical stimulation in terms of heat, with a current amplitude

of 3.5 mA, a phase width of 400 µs, and a frequency of 500 Hz. The reasoning behind this
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parameter choice and their evaluation can be found in Section 3.2.2. We also assumed all

exterior boundaries [see Fig. 3.1(A)] to be electrically insulated:

n · J = 0 (3.6)

where J (A/m2) is the electric current density. This implies that the current density at these

boundaries is negligible. This assumption is justified given that most of the current flow is

localized to the stimulating electrodes, whose relative distance is much smaller than the

distance between these electrodes and the exterior boundaries [54]. Finally, at the electrode-

SS boundary, we modeled the contact impedance as:

n · J =
1

ρs
∆V (3.7)

where ρs (Ω m2) is the boundary’s surface resistivity and ∆V (V) is the voltage across the

boundary. To determine the value of ρs, we first note that the magnitude of the electrode-

to-electrode path impedance, Z, after long-term subdural implantation is ∼1 kΩ [186]. By

exploiting the connection between ρs and Z we determined ρs = 2.1 × 10−3 Ωm2. Note

that the voltage between the stimulating electrodes of 2.2 V and the impedance |Z| = 1 kΩ

correspond to a stimulating current of 2.2 mA. A more detailed description of this procedure

can be found in Section 3.2.2.
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Stimulation Parameters

To model bipolar electrocortical stimulation, we set the electric potential at the top of the

anode to V = Vstim, and we set the top of the cathode to V = −Vstim. Thus, the potential

difference between the two electrodes is ∆Velec = 2Vstim. From Ohm’s law, ∆Velec = I|Z|,

where I (A) is the current flowing between the two electrodes, and Z (Ω) is the broadband

electrode-to-electrode path impedance. Typically, in cortical stimulation, I is a train of

biphasic square pulses (see Fig. 3.2). However, given the stationary nature of our model (see

Section 3.2.2), we replaced the effect of Istim (see Fig. 3.2) by its root-mean-square (RMS)

value, as is common in similar studies [54]:

I = IRMS ≜

√
1

Tp

∫ Tp

0

I2stim(t) dt = Iamp

√
2 f W (3.8)

where Tp (s) is the period of the pulse train, Iamp (A) is the pulse amplitude, f = 1/Tp (Hz)

is the pulse train frequency, and W (s) is the phase width of a pulse.

Figure 3.2: Plot of Istim, a biphasic square pulse stimulating current, and IRMS, its corre-
sponding RMS value. Tp is the signal’s time period and W is the phase width.

Given the high variability of cortical stimulation parameters [84], we selected those that
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resulted in the worst-case scenario in terms of heat generation, i.e., the highest value of

IRMS. After extensive literature review [125, 117, 105, 27, 1, 37, 84], we found that artificial

sensation could be elicited by subdural electrostimulation with activation thresholds ranging

from 35 to 700 µC·Hz. To achieve the worst-case scenario of 700 µC·Hz, the study in [84]

used f = 500 Hz, Iamp = 3.5 mA, and W = 400 µs. Based on Eq. (3.8), these parameters

resulted in IRMS = 2.2 mA (see Table 3.4).

Table 3.4: Combinations of stimulation parameters that result in the same IRMS and in turn
the same heat effect.

f
(Hz)

Iamp

(mA)
W
(µs)

Activation
Threshold†

(µC·Hz)

Charge Density‡

(µC/cm2/phase)
IRMS

(mA)

500 3.5 400 700 28.5 2.2
250 7 200 350 28.5 2.2
170 10 140 238 28.5 2.2

†Activation Threshold = f × Iamp ×W .
‡ Charge Density = Iamp × W/A, where A (cm2) is the exposed electrode area, in our model A = 4.91 ×
10−2 cm2.

Table 3.4 also shows other combinations of stimulation parameters that result in the same

value of IRMS, and would, therefore, produce the same heating effect. Note that these

parameters are well within the range of values reported in the literature [125, 117, 105, 27,

1, 37, 84]. Also, note that all the combinations of parameters comply with the FDA’s charge

density safety limit of ≤30 µC/cm2/phase. Finally, to estimate ∆Velec, we assumed that the

electrode-to-electrode path impedance is |Z| = 1 kΩ. This value is consistent with the range

of impedances reported in long-term subdural ECoG studies [186]. Taking I = 2.2 mA and

|Z| = 1 kΩ, we found ∆Velec = 2.2 V and Vstim = 1.1 V.
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Contact Impedance

To determine the surface resistivity ρs, we iteratively changed its value in COMSOL until

the electrode-to-electrode path impedance reached the value of 1 kΩ. Given the value of

∆Velec = 2.2 V, this condition is equivalent to I = 2.2 mA. From Fig. 3.3, we deduce that

ρs affects the path impedance, i.e., Z(ρs) = f(ZE, ZC(ρs), ZT). However, this function is not

explicitly known given the complexity of the multiple current paths. Instead, for a given value

of ρs, we simulated the model (3.4) with the corresponding boundary conditions (3.5), (3.6),

(3.7), and we calculated the total current, I(ρs), by integrating the current density over the

top surface of either the anode or cathode (they are the same due to current conservation).

This process was iteratively repeated until I(ρ∗s) = 2.2 mA, which yielded ρ∗s = 2.1·10−3 Ωm2.

Power Budget Estimation

According to ISO 14708-3 (an FDA’s recognized standard), active head implants must not

increase the surrounding tissues’ temperature beyond 39◦C. Assuming a brain core temper-

ature of 37.5◦C [41, 204], we conservatively defined the power consumption to be thermally

safe if it causes a temperature increase ≤1◦C in the surrounding tissues. We defined the SU’s

power budget, Pmax
SU , as the maximum value of PSU that is thermally safe. To estimate Pmax

SU ,

we ran the simulation by computing the steady state solutions of Eqs. (3.1) and (3.4) with

the parameters defined in the previous sections. Specifically, we first simulated the effect of

an inactive implant, i.e., we ran the simulation with PSU = 0 and Vstim = 0, and stored the

resulting temperature, T (0, 0), for all tissues. Then, we ran the model with Vstim = 1.1 V

while iteratively increasing the values of PSU up to 90 mW, with a step size of 10 mW. For

each iteration, we used the resulting temperature, T (PSU, 1.1), to define the temperature

increase as ∆T (PSU) = T (PSU, 1.1) − T (0, 0). For the first value of PSU whose ∆T violated

the 1◦C constraint, we decreased and locally refined PSU with a step size of 1 mW. Finally,
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Figure 3.3: (Top) Sketch showing the location of the stimulating electrodes in contact with
tissues. The electrodes are represented as light gray boxes with their top and bottom bound-
aries outlined in red and light blue, respectively. The corresponding boundary conditions
are also shown and appropriately color coded. The yellow arrows show hypothetical current
paths between the top boundaries of the anode and cathode. (Bottom) Simplified (lumped)
circuit model of the above system, where ZE is the electrode impedance, ZC(ρs) is the con-
tact impedance, and ZT is the equivalent impedance of tissues.

we defined Pmax
SU as the maximum value that guaranteed ∆T (PSU) ≤ 1◦C, that is:

Pmax
SU = argmax

PSU∈[0,90]
∆T (PSU) : ∆T (PSU) ≤ 1◦C (3.9)

For this model, we refer to all the geometric, thermal, and electrical parameters as nominal

parameters.
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3.2.3 Sensitivity Analysis

Given that physiological and environmental parameters in our model vary naturally, we

performed a sensitivity analysis to test the robustness of our model against these variations.

Specifically, we perturbed these parameters within their natural range and quantified the

impact of these perturbations on our power budget predictions. It should be noted that we

did not perturb the parameters pertaining to the SU (e.g., the thickness of the Ti shell, air

gaps and electronics layer), since we assumed its design to be fixed. While optimizing these

parameters for power budget purposes is an important problem, it is beyond the scope of

this study.

We performed an extensive literature review to determine the range of variation for all the

physiological and environmental parameters in our model. We estimated the thickness range

for the scalp, skull, dura mater, and SS from [87, 134, 112] and [66], respectively. The thermal

conductivity lower and upper bounds for the scalp and brain were estimated from [51], and

those of the skull and SS were estimated from [60] and [80], respectively. Since we were unable

to find any data on the variation of the dura’s thermal conductivity, we estimated its range to

be between 90% and 110% of its nominal value, which is based on the average variation of the

scalp, skull, SS and brain thermal conductivity. The thermal conductivity range of saline was

estimated from [169]. Additionally, we estimated the variation of blood perfusion of the scalp

and skull from [218], and that of the dura mater from [57]. The brain’s blood perfusion lower

bound was estimated from resting values, while the upper bound was estimated from values

at double the nominal walking speed (90 bpm, 2 mph) [97]. Analogous to Section 3.2.2, we

derived the metabolic heat range of each tissue from its corresponding blood perfusion range.

We also estimated the range of Text and Tb from their natural variations. Furthermore, we

adopted the range of h for free airflow conditions from [108]. Finally, we estimated the

variation of the electrical conductivity of the scalp, skull, SS and brain from [139], and that

of saline from [31]. Given the lack of data on the range of the dura’s electrical conductivity,
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we approximated its relative variation as the average variation of the scalp, skull, SS and

brain electrical conductivity.

To quantify the effect of the variation of these parameters on our model, we computed the

sensitivity coefficient, Si [49]. This coefficient quantifies the impact that the perturbation of

the parameter θi has on the tissues’ temperature increase, ∆T :

Si =

(
∆T (Pmax

SU ,Θ*
i )−∆T (Pmax

SU ,Θ0)
)
/∆T (Pmax

SU ,Θ0)(
θ*
i − θ0

i

)
/θ0

i

,

i = 1, 2, · · · , 27
(3.10)

In this equation, Si is the ratio of the relative change in temperature and the relative change

in the ith parameter. Specifically, ∆T (Pmax
SU ,Θ0) is the maximum temperature increase

across all tissues corresponding to Pmax
SU and Θ0, where Θ0 = [θ01, θ

0
2, · · · , θ027] is the vec-

tor of the nominal parameters, as shown in Table 3.5. Similarly, ∆T (Pmax
SU ,Θ*

i ) is the

maximum temperature increase across all tissues corresponding to Pmax
SU and Θ*

i , where

Θ*
i = [θ01, · · · , θ*

i , · · · , θ027] and θ*
i is the perturbed value of the ith parameter. Our sensitivity

analysis considered both positive (θ*
i = θ+

i ) and negative (θ*
i = θ-

i) perturbations, quantified

correspondingly by the sensitivity coefficients S+
i and S-

i .

We then labeled as critical those parameters whose perturbation led to |Si| ≥ 10−3. In

other words, only parameters whose perturbation of 100% would result in |∆T (Pmax
SU ,Θ*

i )−

∆T (Pmax
SU ,Θ0)| ≥ 0.001◦C (the model’s temperature resolution) were deemed critical. Given

that Eq. (3.10) only considers the perturbation of one parameter at a time, we also evaluated

the effect of perturbing multiple parameters. Specifically, we simultaneously perturbed all

critical parameters and re-estimated the SU’s power budget. For the worst-case scenario,

we perturbed all critical parameters in the direction that caused an increase in ∆T and, in

turn, a decrease in the power budget. Conversely, for the best-case scenario, we perturbed
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all critical parameters in the direction that caused a decrease in ∆T and, in turn, an increase

in the power budget. Finally, we defined the power budget range as [PWCS
SU , PBCS

SU ], where

PWCS
SU and PBCS

SU are the re-estimated power budgets corresponding to the worst-case and

best-case scenarios, respectively.

Table 3.5: The nominal values of the physiological and environmental parameters, θ0i , and
their negatively and positively perturbed values, θ-

i and θ+
i , respectively. l – thickness (mm),

k – thermal conductivity (W/(m K)), Qm – metabolic heat (W/m3), ω – blood flow rate
((ml/s)/ml), T – temperature (◦C), h – heat transfer coefficient (W/(m2 K)), σ – electrical
conductivity (S/m).

θi θ0i θ-
i θ+

i

θ1 = lscalp 3.35 2.44 4.26
θ2 = lskull 7.80 6.22 9.38
θ3 = ldura 0.89 0.82 0.96
θ4 = lSS 1.43 0.71 2.15
θ5 = kscalp 0.36 0.25 0.47
θ6 = kskull 0.68 0.67 0.69
θ7 = kdura 0.44 0.32 0.56
θ8 = kSS 0.57 0.51 0.63
θ9 = kbrain 0.53 0.51 0.55
θ10 = kfluid 0.60 0.59 0.61
θ11 = Qscalp

m 10039.37 259.84 1125.99
θ12 = Qskull

m 886.12 0.00 1476.87
θ13 = Qdura

m 5997.57 5270.59 6724.55
θ14 = Qbrain

m 13275.54 12140.31 14033.77
θ15 = ωscalp 8431.65 2107.91 91334.29
θ16 = ωskull 3626.60 0.00 6044.33
θ17 = ωdura 24546.07 21570.79 27521.35
θ18 = ωbrain 41307.49 37775.18 43666.78
θ19 = Text 20.00 5.00 35.00
θ20 = h 5.00 2.50 25.00
θ21 = Tb 37.00 36.50 39.50
θ22 = σscalp 0.41 0.23 0.59
θ23 = σskull 0.02 0.00 0.04
θ24 = σdura 0.46 0.23 0.69
θ25 = σSS 1.71 1.41 2.01
θ26 = σbrain 0.37 0.24 0.50
θ27 = σfluid 3.00 1.68 4.32
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3.3 Results

3.3.1 Nominal Model

We first found the steady-state solutions of Eqs. (3.1) and (3.4) for an inactive implant

(PSU = 0, Vstim = 0) using the following COMSOL-defined adaptive mesh sizes: coarse,

normal, fine, finer, extra fine, and extremely fine. Simulations at the coarse mesh size

generally overestimated the temperature, and as we refined the mesh, this temperature bias

decreased. The difference in temperature values between the extra fine and extremely fine

mesh sizes was <0.001◦C, suggesting that the resulting temperature values had converged.

Thus, we selected the extra fine mesh for all simulations to balance the model accuracy

and computational load. Fig. 3.4 shows the distribution of temperature for the inactive

implant scenario. We subsequently simulated the temperature distribution with cortical

electrostimulation and different power consumption levels, and estimated the nominal power

budget as explained in Section 3.2.2.

Figure 3.4: The distribution of T (◦C) across the central cross-section of the nominal model
for an inactive implant (PSU = 0, Vstim = 0) calculated using COMSOL-defined extra fine
mesh size.
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Figure 3.5 shows the spatial distribution of simulated ∆T for different power consumption

levels. To help in interpreting 3D temperature data, we only show ∆T across the central

cross-section of the model [Fig. 3.1(B)], which exhibited the highest temperature increase. As

the power consumption increased, the area where ∆T > 1◦C (marked by red color) expanded

and eventually encroached on the surrounding tissues [Fig 3.5(D)]. Through the iterative

procedure described in Section 3.2.2, we found Pmax
SU = 70 mW, i.e., at this power consumption

level all tissues exhibited ∆T ≤ 1◦C. Figure 3.6 shows the spatial map of ∆T (70) across

the same worst-case cross-section as in Fig. 3.5. We observed that ∆T > 1◦C occurred only

within the SU. Outside of the SU, the highest local temperature increase occurred in the skull,

scalp, and fluid layers. On the other hand, ∆T decreased with the axial distance from the

SU, with the dura, SS, and brain tissues exhibiting progressively lower temperature increases.

The subtle “hot spots" near the stimulating electrodes are due to the superposition of the

heat generated by the SU and cortical electrostimulation. Nonetheless, the nearby brain

tissue only experienced a ∆T = 0.5◦C, which is comparable to the temperature increases

predicted by the FEM models of thermal impact due to DBS [54, 53]. Our analysis also

showed that the contribution of electrostimulation alone with the worst-case stimulation

parameters (see Section 3.2.2) was ∆T ≈ 0.4◦C. As expected, this temperature increase was

localized to the SS, in the immediate vicinity of the stimulating electrodes.

Figure 3.7 shows the spatial distribution of the electric potentials due to cortical electrostim-

ulation. It also displays the electric current density, which shows the current flowing from the

anode to the cathode. As expected, the potential field exhibits dipole-like properties [125],

with most of the space being electrically neutral, except in the immediate vicinity of the

stimulating electrodes. Note that the current flow is also restricted to this area, with the

current density reaching the highest magnitude at the anode and cathode surfaces.
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Figure 3.5: The distribution of ∆T (PSU) across the central cross-section of the model for
different PSU levels. The areas where ∆T > 1◦C are colored in red (for all other areas
∆T ≤ 1◦C). The SU’s Ti shell is shaded in a striped pattern for visualization purposes. (A)
50 mW (B) 60 mW (C) 70 mW (D) 80 mW.

3.3.2 Sensitivity Analysis

We individually perturbed the 27 physiological and environmental parameters within their

natural range (see Table 3.5). We calculated the sensitivity coefficients, Si, according to

Eq. (3.10), and their values are shown in Table 3.6. According to the criteria |Si| > 10−3,

we identified 17 critical parameters. They include the thickness of most tissues, all the

thermal conductivity and blood perfusion parameters, the heat transfer coefficient, h, and

the electrical conductivity of the SS and brain. On the other hand, the perturbation of

the remaining 10 non-critical parameters did not have a significant impact on simulated

temperatures. To further quantify the impact of the parameters’ variations, we perturbed

all 17 critical parameters simultaneously. As explained in Section 3.2.3, we then defined a
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Figure 3.6: ∆T (70 mW) in ◦C across the central (worst-case) cross-section of the model. For
a better color resolution, we limited the color to 0◦C≤ ∆T ≤ 1◦C. (Top) View of the overall
2D cross-section. (Bottom) Zoom-in of the top inset.

power budget range, [PWCS
SU , PBCS

SU ], based on the worst- and best-case scenarios. Specifically,

we found that the power budget ranged from 47 to 81 mW.
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Figure 3.7: The spatial distribution of the electric potential (V) across the central cross-
section of the model in response to VA = Vstim and VC = −Vstim (Vstim = 1.1 V). Arrows
represent the electric current density, with the length proportional to the current density
magnitude. When integrated over the anode or cathode surface, the total current is 2.2 mA
(see Section 3.2.2). The SU’s Ti shell is shaded in a striped pattern for visualization purposes.

3.4 Discussion

Based on our simulations, we predicted that the SU could nominally consume up to 70 mW

of power without increasing the surrounding tissues’ temperature by more than 1◦C. When

considering the natural variations of the physiological and environmental parameters, the

power budget estimate ranged between 47 and 81 mW. This result is consistent with our

preliminary study [181], which estimated the nominal SU power budget at 75 mW. Note that

this preliminary model lacked cortical stimulation, which in turn lowers the overall heat and

overestimates the power budget. Also, unlike the current model, it lacked the dura mater,

assumed a partial-thickness craniectomy, and did not consider the natural variations of the

physiological and environmental parameters. Even in the worst-case scenario, the estimated

power budget of 47 mW should be sufficient to sustain all the envisioned functionalities of the
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Table 3.6: The nominal values of parameters, θi, and the sensitivity coefficients associated
with their positive and negative perturbations, S+

i and S-
i , respectively. The critical param-

eters are highlighted in grey. l – thickness, k – thermal conductivity, Qm – metabolic heat,
ω – blood flow rate, T – temperature, h – heat transfer coefficient, σ – electrical conductivity.

θi S-
i S+

i

θ1 = lscalp -1.82·10−1 -1.32·10−2

θ2 = lskull 6.74·10−2 5.18·10−2

θ3 = ldura -9.32·10−3 -9.01·10−3

θ4 = lSS 3.42·10−2 2.28·10−2

θ5 = kscalp -1.35·10−1 -1.08·10−1

θ6 = kskull -3.82·10−1 -3.77·10−1

θ7 = kdura -8.64·10−2 -5.72·10−2

θ8 = kSS -2.43·10−2 -2.07·10−2

θ9 = kbrain -3.63·10−2 -3.48·10−2

θ10 = kfluid -5.07·10−2 -4.99·10−2

θ11 = Qscalp
m -1.33·10−8 -1.37·10−8

θ12 = Qskull
m -2.67·10−8 -3.15·10−8

θ13 = Qdura
m -8.72·10−9 -9.02·10−9

θ14 = Qbrain
m -5.53·10−7 -5.75·10−7

θ15 = ωscalp -1.51·10−1 -1.19·10−1

θ16 = ωskull -7.23·10−2 -5.86·10−2

θ17 = ωdura -2.64·10−2 -2.57·10−2

θ18 = ωbrain -2.99·10−2 -2.77·10−2

θ19 = Text 3.07·10−8 3.65·10−7

θ20 = h -1.88·10−2 -1.41·10−2

θ21 = Tb -2.84·10−5 -1.46·10−5

θ22 = σscalp 1.16·10−6 -6.34·10−9

θ23 = σskull 5.19·10−6 3.80·10−6

θ24 = σdura 2.43·10−5 1.77·10−5

θ25 = σSS 5.63·10−3 4.51·10−3

θ26 = σbrain 1.06·10−3 8.88·10−4

θ27 = σfluid 1.65·10−6 -2.05·10−7

SU including amplification, serialization, and A/D conversion of the neural signals, as well

as control of cortical stimulation. For example, based on our fully-implantable BCI proto-

types [205, 192], that use off-the-shelf ICs, we can estimate that amplification, serialization,

and A/D conversion (the most power-hungry operations) consume at most 37.3 mW [92].

Our model makes several simplifying assumptions. First, we did not model the effect of the
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arachnoid and pia mater. Note these tissues are typically excluded from bio-heat models [103,

90, 102] because they are very thin and do not have a significant thermal impact. Also, we

did not separate white and grey matter; instead, we modeled the brain as a homogeneous

layer. Note however that this is not critical, given that the hottest region in the cortex is

well below the 1◦C threshold (see Fig. 3.6). Similarly, we did not model the effect of hair

due to its geometric complexity and high variability. Instead, we simulated our nominal

model with the addition of a 1-cm thick wool layer on top of the scalp, similar to a hat or

wig. We found these results to be indistinguishable from those corresponding to the nominal

model, suggesting that the effect of hair is negligible. Note that because the wool thermal

conductivity [225] is lower than that of hair [127], wool creates a less favorable condition in

terms of heat accumulation and is, therefore, an appropriate surrogate for hair. Additionally,

we assumed the thermal properties of the electronics layer to be the same as those of the

PCB. A more detailed approach would be to separate the electronics layer into the PCB

and supporting ICs, e.g., amplifier array, stimulator array, impedance monitor, and charge

monitor [192]. Instead, we accounted for the size of these ICs and the PCB by adjusting the

overall volume of the electronics layer, VE. Moreover, the IC components mostly consist of

epoxy composites with similar thermal and electrical properties to those of the PCB [149].

This further justifies modeling the electronic components of the SU as a single anisotropic

layer. While our envisioned BD-BCI system (Fig. 1.6) will include both a recording and

stimulating grid, we only included the latter in our model. Since the recording grid does

not produce any appreciable heat, its effect on our power budget predictions is negligible.

We also omitted the cables connecting the grids to the SU. This assumption is justified

given their high electrical conductivity and negligible heat loss. Also, we did not simulate

the potential perfusion effect of CSF since we could not find any data on the volumetric

flow rate of CSF in the SS. Note, however, that perfusion would help further reduce the

temperature increase, and, thus, increase the power budget. Therefore, our assumption

results in a more conservative power budget estimate. Similar to other COMSOL-based bio-
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heat studies [103, 54, 116], we omitted radiative heat transfer because its effect is considered

insignificant [2].

Our results represent a conservative estimate of the SU power budget. Specifically, with

our safety threshold of ∆T ≤ 1◦C with respect to an inactive implant, the SU surface

temperature reached at most 37.5◦C at the nominal power consumption level of 70 mW.

This is significantly lower than the FDA guidelines that limit the surface temperature of

neural implants to 39◦C. Note however, that the temperature of the skull and scalp in

contact with the unpowered SU ranges from 36.4◦C to 36.6◦C (see Fig. 3.4). Therefore,

heating the SU surface to the FDA limit would cause a local temperature rise in excess of

2◦C. While not necessarily necrotic, temperature increases above 1◦C could have a negative

physiological impact [54], especially for the brain tissue [67, 106]. Moreover, our model

assumed the SU implanted directly above the stimulating electrodes. This configuration

results in a worst-case scenario due to the superposition of the heat generated by the SU

and stimulating electrodes. In practice, the SU could be implanted further away from the

grid, although the exact location of both components will depend on the individual’s head

anatomy. Additionally, we chose the cortical stimulation parameters to simulate the worst-

case scenario in terms of generated heat (see Section 3.2.2). In practice, it is likely that a

combination of parameters will be used that produces a lower stimulation current than the

value used in this study, IRMS = 2.2 mA. For example, based on the stimulation parameters

in [125, 117, 105, 27, 1, 37] we estimate that IRMS ranges from 0.5 mA to 1.6 mA. This

would, in turn, result in less heat generation due to cortical stimulation and would free up

additional power to be expended by the SU. Finally, exposing tissues to long-term heat can

trigger adaptation mechanisms such as angiogenesis [39], which increases blood perfusion

and, in turn, takes heat away. However, we did not incorporate this phenomenon into our

model.

Our FEM approach to modeling the thermal effect of active implants was validated in our
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ongoing study [180]. There we showed that the simulated thermal behavior of the CWU

closely matched experimental measurements collected from a CWU benchtop prototype.

Nevertheless, to ultimately ensure the thermal safety of any active implant, including the

SU in this study, long-term in vivo testing must be performed. Thus, our future work will

focus on the completion of the BD-BCI design and fabrication of the implantable CWU

and SU prototypes, followed by their surgical implantation and in vivo validation in a large

animal model. Specifically, upon implantation, the CWU and SU will be set to execute

the expected BD-BCI functions, while their surface temperatures will be measured by a

thermocouple. The temperature measurements could be monitored over time by exploiting

the wireless communication capabilities of our CWU prototypes [205, 192].

Our simulation approach and sensitivity analysis are also applicable to other active head

implants, not only in the BCI domain, but also for other applications. Importantly, our

approach is reproducible and the same steps can be followed in simulating the thermal

impact of active implants to estimate their safe power budget.

3.5 Conclusion

To the best of our knowledge, this study, together with the CWU study in Chapter 2, is the

first thermal impact analysis of a fully-implantable BD-BCI. In this chapter, we estimated

the SU’s maximum power budget that guarantees a thermally safe operation. Specifically,

we found that a nominal power consumption of 70 mW would not lead to an increase of the

surrounding tissues’ temperature by more than 1◦C, which satisfies the FDA guidelines (ISO

14708-3). Furthermore, we performed a sensitivity analysis to identify physiological and

environmental parameters that are critical for the power budget estimation. We then varied

these parameters over their natural range, and found the power budget estimate to range

between 47 and 81 mW. These power budget estimates provide an important specification
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for the design of our fully implantable BD-BCI system. Finally, our future research efforts

will be directed toward performing in vivo animal studies to validate our power budget

predictions for the SU and CWU.
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Chapter 4

ECoG-based Step Decoder

4.1 Motivation

When designing our BD-BCI prototype, we repurposed an existing EEG-based decoder [210]

and implemented it as an ECoG-based decoder in our BD-BCI system. This decoder distin-

guished between idle and move states during walking with a very high accuracy. However,

because EEG signals only contain frequencies < 40 Hz, this decoder did not exploit the

motor information present in the higher frequencies of ECoG recordings. Thus, this decoder

could not be used to decode any walking information other than the overall state. For this

reason, we saw the design of the CWU and SU implantable prototypes as an opportunity to

improve upon the existing decoder.

Our group previously characterized the electrophysiological activity of the leg motor areas

of human subjects performing various gait-related tasks [140]. Specifically, we used high-

density subdural ECoG grids [206], implanted unilaterally over the paracentral lobule to

measure the activity of the primary and supplementary leg motor areas. In response to

treadmill walking, these cortical areas exhibited generalized γ-band synchronization and γ-
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band power bursts that were phase-locked with each stride. These findings were then used

to design a frequency-domain decoder capable of predicting both the walking states and

step rates [209]. While it achieved unprecedented offline accuracy, this decoder imposed a

significant lag on the decoded parameters which limits its real-time deployment.

In this study, we seek to develop an ECoG-based decoder for individual walking steps that

conforms to low-power and real-time implementation requirements. To that end, we designed

a decoding framework based on a Fokker-Planck-based Bayesian filter. We also validated

the performance of this decoder using ECoG signals recorded from the motor cortices of two

human subjects as they performed multiple walking tasks on a treadmill.

4.2 Methods

4.2.1 Data Collection

A detailed account of the experimental procedures was previously provided in [140]. Briefly,

the study was approved by the Institutional Review Boards of the University of Califor-

nia, Irvine and the Rancho Los Amigos National Rehabilitation Center. Participants were

recruited from a pool of able-bodied individuals who were implanted with subdural ECoG

grids for epilepsy surgery evaluation. We only recruited subjects who had the coverage of

the leg motor areas. To minimize the risks of seizures, the experiments (summarized below)

were performed after the subjects had resumed taking their antiepileptic medications.

To determine the location the ECoG grids, we first generated a 3D rendering of the T1

post-implantation magnetic resonance imaging (MRI) sequence. We then used the promi-

nent electrode artifacts in the MRI to annotate individual electrodes [79]. Finally, we used

anatomical landmarks such as the central sulcus, precentral sulcus and cingulate sulcus to
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delineate the primary motor cortex (M1) and the supplementary motor area (SMA).

Subject were placed on a treadmill and instructed to perform different walking tasks while

we simultaneously recorded their ECoG and kinematics data (see Fig. 4.1). For the ECoG

data, we recorded up to 32 channels using NeXus-32 bioamplifier (Mind Media, Herten,

Netherlands) at 2048 Hz, and with a built-in 553 Hz low-pass filter. For the kinematics

data, we recorded movement trajectories using L3GD20 gyroscopes (STMicroelectronics,

Geneva, Switzerland) mounted on the subjects’ distal femur and distal tibia. The gyroscopes

measured hip and knee trajectories on the side contralateral to the ECoG grid. We acquired

trajectory data at 256 Hz with an integrated Arduino microcontroller (Arduino, Turin, Italy).

The ECoG and trajectory data were synchronized using a common pulse train sent to the

bioamplifier and microcontroller systems.

The participants performed two different walking tasks on a treadmill with a 0% weight-

support harness to prevent falls (Fig. 4.1). In the first task, subjects alternated between

idling (6 intervals, ∼ 30 s) and walking at a constant casual speed (5 intervals, ∼ 30 s). The

casual speed was empirically selected for each participant to maximize comfort. We refer to

this task as the constant-speed task (Fig. 4.1). In the second task, subjects walked at the

following speeds (30 s intervals each): casual, fast, casual, slow, casual, fast, casual, slow,

casual. The slow and fast speeds were 50% and 150% of the casual speed, respectively. The

subjects stood idle for ∼ 30 s before the first, and after the last, walking intervals. We refer

to this as the variable-speed task (Fig. 4.1). Further details on the study and experimental

design are presented in [140].

4.2.2 Decoder Overview

We developed an algorithm to decode individual steps from recorded ECoG signals. Only

signals from the electrodes located in the primary motor cortex (M1) or supplementary
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Figure 4.1: (Top) Overview of the experimental setup.Participants walked on a treadmill
while being placed in a 0% weight-support harness to prevent falls. Their ECoG signals
were recorded with a bio-amplifier system and their leg trajectories were measured using
gyroscopes mounted on the distal femur (not visible) and distal tibia. (Bottom) Treadmill
walking speed during the two experimental tasks.In the constant-speed task, the participants
alternated between epochs of idling and walking at casual speed. The variable-speed task
consisted of walking epochs at three speeds (slow, casual, fast), and the initial and final
idling epochs. Each epoch lasted ∼30 s with the overall task duration of ∼5.5 min.
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motor area (SMA) were used to train the decoder. Overall, the decoder includes two main

steps, a feature extraction step, based on logistic regressions, followed by a Fokker-Planck-

based Bayesian filter step (Fig. 4.2). In the feature extraction, multi-channel ECoG data is

transformed into a single feature that represents the probability of a step occurring. Ideally,

during a step (leg swing), the extracted feature should approach 1, and in the off-cycle (no

swing), the feature should fall back to 0. In reality, the extracted feature is more ambiguous

and, thus, a filtering step is required.

Figure 4.2: Pipeline of the proposed decoder. Raw ECoG signals are preprocessed and band-
pass filtered. The resulting signals input into a logistic regression-based feature extraction
algorithm. For the state signal, principal component analysis (PCA) is implemented before
the logistic regression. The state and step logistic regression outputs are multiplied to create
the extracted feature, f . The final step is a Fokker-Planck-based Bayesian filter, whose input
is f and output is the decoded walking steps.

The decoder uses ECoG data from frequency bands that contain physiological modulation.

Previous EEG studies have found event-related desynchronization (ERD) in the β band

(20-40 Hz) during walking tasks [217]. Additionally, in our ECoG studies, we found event-

related synchronization (ERS) in the γ band (40-160 Hz) during walking [140]. Therefore,
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we implemented a state logistic regression using data from the β and γ to differentiate

between walking states (idle/move). Specifically, this state logistic regression estimates the

probability of the move state. Additionally, researchers have shown that bursts in M1 γ band

activity were time-locked to individual steps (step cycle) [140]. We have found that this is

further accentuated for high-γ (80 - 160 Hz). Thus, we implemented a logistic regression using

high-γ data to decode individual steps. Specifically, this step logistic regression estimates

the probability of an individual step occurring. Finally, the decoder’s extracted feature is

the product of the two logistic regression outputs (state and step). Note that this hybrid

decoding approach, in our case using two separate logistic regressions, is a commonly used

technique that can improve the decoding accuracy [223, 88].

To train and test our decoder, we defined the ground truth using the tibial gyroscope signals.

To quantify the overall performance of our decoder, we trained and tested the decoder in

a leave-one-out cross-validation fashion. Specifically, we initially defined the first 5 s of the

experimental data as testing data and the remaining data as training data. Next, we trained

and tested the decoder using these split data sets, and we stored the decoded output (5-s

binary time series representing step/no step). We iteratively repeated this process using the

next 5 s as testing data and redefining the training data accordingly, until all data had been

tested. We concatenated all decoded output segments and compared it against the ground

truth data (gyroscope).

4.2.3 Decoder Training

Preprocessing

For the ECoG data, we first applied a high-pass filter (0.05 Hz cutoff) to remove the DC

component and slow frequency drifts. We also applied two stopband filters (57–63 Hz and

117–123 Hz) to remove line noise and its first harmonic.
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For the tibial gyroscope data, we first applied a bandpass filter (0.15 - 1.5 Hz) to suppress

artifacts unrelated to stepping. Note that this range of stride frequencies corresponds to 0.3

to 3 steps/s. Assuming an average step length of 0.728 m [178], this translates into a wide

range of walking speeds from 0.2 to 2.2 m/s. Subsequently, we isolated leg swings by setting

to 0 all the samples corresponding to negative (angular) velocities (see Fig. 4.3). Next, we

normalized the leg swing time series by dividing each leg swing cycle by its maximum value.

We then binarized these data to obtain the ground truth signal for individual steps, namely

Gstep ∈ R1×n, where n is the length of the gyroscope time series. Since Gstep = 1 during leg

swings and 0 otherwise, this time series can be interpreted as a probability of leg swing. We

similarly defined the ground truth signal for walking states, Gstate ∈ R1×n, with Gstate = 0

corresponding to idle states (treadmill speed = 0) and Gstate = 1 corresponding to move

states.

Figure 4.3: Example of the preprocessing steps for a tibial gyroscope signal. The raw signal
was bandpass filtered to retain only frequencies related to the stepping rate. We set to 0
all negative values, thus retaining leg swings only. Then, to compute Gnorm we normalized
each peak (i.e., swing) by dividing its magnitude by its height. Then, we computed Gstep

as a binary signal that is 1 during leg swings (when Gnorm > 0) and 0 otherwise (when
Gnorm < 0). Similarly, Gstate is a binary signals that is 0 during idling and 1 during walking.
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Power Envelopes

To extract motor-modulated signals from the preprocessed ECoG data, we applied bandpass

filters corresponding to the following physiological frequency bands: β (20-40 Hz), γ (40-

160 Hz), and hγ (80-160 Hz). Then, we squared the data to get the instantaneous power (see

Fig. 4.4). Next, we computed the power envelope matrices Pβ, Pγ, Phγ ∈ Rm×N , where N is

the time length of the ECoG data at 2048 Hz, and m is the number of ECoG channels used.

Specifically, to compute Pβ and Pγ, we used a low-pass filter (0.12 Hz cutoff), and to compute

Phγ, we used a bandpass filter (0.15-1.5 Hz) that rejected frequencies outside the stepping

rate range. Then, we used an anti-aliasing filter to down-sample the power envelopes to

256 Hz, so that they matched the gyroscope’s sampling frequency, i.e., P ′

β, P
′
γ, P

′

hγ ∈ Rm×n,

where n = N × 256/2048.

Figure 4.4: Plot of the instantaneous power of different frequency bands from multi-channel
ECoG signals during an idle-move transition. The instantaneous power signals were obtained
by bandpassing raw ECoG data to the specified frequency bands and then squaring it. The
bottom red signal is raw gyroscope data from the contralateral tibia. The white and green
background represent idle and move states, respectively.
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Feature Extraction

For state decoding, we used the power envelopes Pstate = [P
′

β, P
′
γ] ∈ R2m×n. On the other

hand, for step decoding, we used the power envelopes Pstep = Phγ ∈ Rm×n. Before imple-

menting logistic regressions, we had to ensure that there was no multicollinearity among the

independent variables (i.e., Pstate and Pstep). To quantify multicollinearity in our data, we

computed the Variance Inflation Factor (VIF) for each power envelope in Pstate and Pstep.

Given m independent variables, X = [X1, X2, . . . , Xi, . . . , Xm] ∈ Rm×n, to compute VIFi we

first have to perform the regression Xi = b0 + b1X1 + b2X2 + . . . + bmXm + e. Then, we

compute VIFi as:

VIFi =
1

1−R2
i

(4.1)

where Ri ∈ R1×1 is the coefficient of determination of the regression. This computation is

repeated for all the independent variables in X. The VIF cutoff value is usually considered

to be between 5 and 10 [193]. VIF values above this cutoff indicate high multicollinearity

in the data, which can lead to unstable estimates in a logistic regression. We computed the

VIF for each envelope in Pstate and found that, on average, VIFi > 10, thus, indiciating

high multicollinearity in the data. We also computed the VIF for each envelope in Pstep

and found that, on average, VIFi < 3, thus indicating low multicollinearity. One of the

reasons why Pstate has high multicollinearity is because it includes power envelopes of the β

frequency band, whose presence in the cerebral cortex is more widespread than γ activity.

Additionally, Pstate comprises twice as many power envelopes as Pstep. Finally, the power

envelopes from Pstate were computed using a low pass filter, and thus, smoothing the signals

and increasing the correlation between them. So, to reduce multicollinearity in Pstate, we

used principal component analysis (PCA). We retained only those principal components that
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explained at least 3% of the variance in the data, judged by the eigenvalues of the covariance

matrix. We refer to the resulting principal components as PCstate ∈ Rk×n, where k is the

number of retained principal components. We also stored the matrix of principal component

coefficients, pc ∈ Rk×2m.

Once we had reduced multicollinearity in the data, we performed separate state and step

logistic regressions. A logistic regression models the probability of an event occurring, p,

as a function of t explanatory variables, y = [y1, y2, ..., yt] ∈ Rt×1, and t + 1 coefficients,

c = [c0, c1, ..., ct] ∈ R1×(t+1):

p =
1

1− e−(c0+Σt
i=1ciyi)

(4.2)

We trained the coefficients c of our state and step logistic regression using maximum like-

lihood estimation. For the state logistic regression, we trained the model with y = PCstate

and p = Gstate, and stored the trained coefficients as cstate ∈ R1×k+1. Similarly, to train our

step logistic regression, we used y = Pstep and p = Gstep, and stored the resulting coefficients

as cstep ∈ R1×m+1. Finally, we defined the extracted feature f = pstate · pstep ∈ R1×n, where

pstate ∈ R1×n is computed using Eq. (4.2) with y = PCstate and c = cstate, and similarly,

pstep ∈ R1×n is found using y = Pstep and c = cstep.

Fokker-Planck Bayesian Filter Training

The last step in the algorithm is a Fokker-Planck-based Bayesian filter to enhance the ex-

tracted feature, f , and transform it into a binary signal (step/no step). Specifically, this

recursive filter estimates the probability of a step, p(x), based on the extracted feature f , as

follows [174]:
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Figure 4.5: Time series of representative extracted signals during an idle/move transition
(move segment is shaded in gray). Gyroscope data is used to determine idle (static signal)
and move (changes in signal indicate leg swings) periods. (Left) Plot of signals used to decode
the state: two principal components, PCstate (k = 2), and the state logistic regression feature,
pstate. (Middle) Plot of signals used to decode steps: hγ power envelopes, Pstep, and the step
logistic regression feature, pstep. (Right) Plot of the state and step logistic regression features
(pstate and pstep), and their product, the extracted feature f .

p(x, t) =
p(f |x)p(x, t−)

C
(4.3)

where p(x, t) is the probability density of x at time t. This probability depends on the

measurement model, p(f |x), and on p(x, t−), which is the probability density immediately

before the measurement f is taken. These variables are described in further detail below.

Lastly, C is a constant that ensures
∫∞
−∞ p(x, t)dx = 1.

To compute p(x, t−), we propagated in time the prior probability density, p(x, t− 1), using

a Fokker-Planck equation. First, we assumed that the dynamics of the model (stepping)

followed this stochastic differential equation:
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dx = A(dW ) + (U − x)dNB (4.4)

where A is the diffusion coefficient, dW is the differential of standard Brownian motion, and

dNB is the differential of a counting process where B is the rate of jumps per unit time.

Also, U is a random variable uniformly distributed on [0,1]. Assuming these dynamics, the

Fokker-Planck equation for the time evolution of p(x, t) is:

∂p(x, t)

∂t
=

A2

2

∂2p(x, t)

∂x2
+B[1− p(x, t)] (4.5)

If we enforce x(t) to remain within the interval [0,1], a closed-form solution of this equation

does not exist. Thus, we used the finite difference method to compute the numerical solution

of Eq. (4.5) and estimate p(x, t−) as:

p(x, t−) =
A2∆t

2ϵ2
p(x− ϵ, t− 1)− A2∆t

ϵ2
p(x, t− 1)

+
A2∆t

2ϵ2
p(x+ ϵ, t− 1) +B∆t+ (1−B∆t)p(x, t− 1)

(4.6)

where x is discretized into bins of width ϵ. To train the parameters A and B we used

gyroscope data (ground truth). Specifically, we estimated A2 as the variance in dGnorm and

B as the average rate of 0 → 1 and 1 → 0 jumps per second in Gstep.

On the other hand, to define the measurement model p(f |x) [Eq. (4.3)], we first assumed

the reverse conditional probability function, p(x|f), to be a combination of exponential
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distributions as follows:

p(x|f) = 1− µ(f)λe−λx + µ(f)λeλxe−λ (4.7)

µ(f) =
1

1 + e−s(f−f0)
(4.8)

We used the logistic function µ(f) to get p(x|f < f0) = λe−λx and p(x|f > f0) = λeλxe−λ.

We defined the slope of the logistic function µ(f) as s = 1/ϵ. We estimated λ as the inverse

of the expected value of p(Gnorm|F = 0) and p(−Gnorm + 1|F = 1) (flip left to right). We

also estimated f0 as the minimum value of F for which p(Gstep = 0|F = f0) < p(Gstep =

1|F = f0). Next, we computed p(f |x) using Baye’s rule:

p(f |x) = p(x|f)p(f)
p(x)

(4.9)

where we estimated p(f) and p(x) as p(F ) and p(Gnorm), respectively. Finally, we normalized

p(f |x) such that
∫∞
−∞ p(f |x)df = 1.

4.2.4 Decoder Testing

To test the decoder we used a 5-s ECoG segment at a time. First, we preprocessed the ECoG

signals as described in Section 4.2.3. Then, we computed the power envelopes P ∗
β , P ∗

γ and P ∗
hγ
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following the methodology described in Section 4.2.3. Then, we computed the state principal

components as PC∗
state = pc × P ∗

state, where P ∗
state = [P ∗

β , P ∗
γ ]. Note that pc was obtained

during the training process. Next, we implemented the state logistic regression, Eq. (4.2),

with y = PC∗
state and c = cstate, and stored the output as p∗state. Similarly, we extracted the

step feature, p∗step, by performing a logistic regression with y = P ∗
hγ and c = cstep Then, we

computed the extracted feature as f ∗ = p∗state · p∗step.

Next, we implemented the Fokker-Planck-based Bayesian filter to clean up and binarize the

extracted feature. To implement the recursive algorithm, we used the trained parameters A,

B, λ, f0, ϵ, and s, and followed the steps below:

1. Initialize p(x, 0) as a uniform distribution

2. Forward propagate p(x, t) using Eq. (4.6)

3. Take a measurement, f , from feature F ∗

4. Compute the probability distribution p(x, t) using Eqs. (4.3), (4.7), (4.8) and (4.9)

5. Output the decoder estimate as argmax(p(x, t))

6. Repeat from step 2

Finally, after we tested each 5-s segment, we concatenated all the decoded segments and

compared it against the ground truth data. Specifically, we compared the steps identified

by the algorithm against the Gstep and quantified the amount of true positives (TP ), false

positives (FP ) and false negatives (FN). For each experiment, we evaluated the performance

of the decoder using two metrics: sensitivity, TP/(TP+FN), and precision, TP/(TP+FP ).

We envision the real-time implementation of this decoder to operate at 20 Hz. This way, the

decoder’s latency would be 50 ms, which is within the accepted latency for real-time decoders
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(< 100 ms). However, the decoder can only be implemented at 20 Hz if a 50 ms signal can

be decoded in less than 50 ms. To ensure that this is possible, we counted the number of

instructions and clock cycles necessary to implement each decoding operation. We estimated

the time necessary to decode 50 ms of data based on the estimated number of necessary and

the microprocessor’s clock rate. Furthermore, we estimated the power consumption of the

decoder based on the microprocessor’s technical specifications.

4.3 Results

4.3.1 Subjects

Two subjects, SJ1 (F, 32 y.o.) and SJ2 (F, 38 y.o.), gave their informed consent to participate

in the study. They had been implanted with an 8×4 high-density (HD) array of platinum-

iridium ECoG electrodes (Integra LifeSciences, Irvine, CA) with a 2-mm diameter and a

4-mm pitch. Note that these HD electrode grids have better spatial resolution and signal

quality than standard ECoG grids [207]. Figure 4.6 shows the electrode locations, determined

by MRI, for each participant. SJ1 had 26 electrodes in the pre-motor and M1 cortices, while

SJ2 had 29 electrodes in the M1 area. Also, the casual speed for SJ1 was 2 mph, and 1 mph

for SJ2. SJ1 completed two runs of each task, while SJ2 only completed each task once.

4.3.2 Feature Extraction

To train the feature extraction algorithm, the decoder learned the PCA coefficients, pc, and

the state and step logistic regression coefficients, cstate and cstep, respectively. To do so, we

used multi-channel ECoG data, as explained in Section 4.2.3. Figure 4.7 shows the magni-

tude of these trained coefficients corresponding to electrode, for one of SJ1’s walking tasks.
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Figure 4.6: Location of the interhemispheric ECoG grid electrodes, determined by MRI,
for SJ1 (A) and SJ2 (B). The approximate location of anatomical features are shown as
colored lines. CS: Central Sulcus, PS: Precentral Sulcus, and CgS: Cingulate Sulcus. Green
electrodes are located in M1 and pre-motor cortex areas, whereas red electrodes are located
outside the motor areas. We only decoded data from the green electrodes. For SJ2, data
from electrode 29 (outlined in white) was not available during the constant-speed task.

Namely, it shows which electrodes contained the most relevant information for the feature

extraction step, with warmer electrode colors indicating a higher contribution (weight) to

the extracted feature f . When comparing the contribution of β and γ information for state

decoding, we found that, overall, for SJ1 β signals were more relevant than γ signals. Con-

versely, for SJ2, we found that, in general, γ information contributed equally or more into

pstate than β information. Figure 4.8 shows a representative segment of an extracted feature,

f , in red, compared to the ground truth data, in green.

4.3.3 Fokker-Planck-based Bayesian Filter

To train the filter algorithm and learn the filter’s parameters, the decoder used the extracted

feature f and gyroscope data. First, we used Gnorm to train the parameters A and Bwhich

describe the dynamics of the model, based on Eq. (4.4). Also, for Eq. (4.6) we used ∆t =

50 · 10−3. Then, we used f , Gnorm, and Gstate to train λ and f0, and defined ϵ = 1/33, to

describe the measurement model, p(f |x). Representative examples of trained measurement
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Figure 4.7: Representative feature extraction map (SJ1, variable-speed task, run 1) shown as
the magnitude of the trained coefficient matrices: pc, cstep and cstate. Warmer colors indicate
electrodes / frequency bands that were most informative for the principal component analysis
and/or logistic regressions. White electrodes were excluded in our study, as they fall outside
the cortex of interest.

models for each subject are shown in Fig. 4.9. We observed that in both models, given small

(large) values of x, the probability distribution is highly skewed towards lower (higher) values

of f . Fig. 4.8 shows a representative segment of the filtered output, for a given extracted

feature, f , and compared against the ground truth, Gstep. As intended, the filter set to 0

small peaks in f that did not correspond to true steps, and set to 1 small and large peaks

in f that indeed corresponded to true steps.

4.3.4 Decoder Performance

After we iteratively decoded all adjacent 5-s ECoG data segments for each experiment, we

reconstructed the ∼ 5.5-min decoded signal and compared it to the ground truth, Gstep.

For each experiment, we quantified the performance of the decoder using sensitivity and

precision metrics, and the results are shown in Table 4.1. The sensitivity of the decoder was

usually higher than the precision, which indicates that the decoder had more false positives

than false negatives. Furthermore, for both subjects, the decoder performed better for the
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Figure 4.8: Representative segments of an extracted feature f , decoder output, and ground
truth, Gstep signals. The decoder output is obtain by implementing a Fokker-Planck-based
filter on the extracted feature f . The decoder’s performance is quantified by comparing the
decoder output against Gstep. These signals are part of the constant-speed task (run 2) for
SJ1.

constant-speed tasks. Overall, the average sensitivity and precision were 0.99 and 0.94,

respectively. Moreover, the decoder’s refresh rate (response time) was 20 Hz (50 ms).

To estimate the number of clock cycles necessary to implement each decoding operation

for a 50 ms signal, we first had to make some assumptions on the type of ECoG signal

that would be decoded. First, we assumed that the signal would be recorded at 1024 Hz.

This sampling frequency is enough to capture the highest frequency used in the decoder

Table 4.1: Sensitivity and precision values for every participant’s tasks.

Participant Task Run Sensitivity Precision

1 Constant speed 1 0.99 0.96
1 Constant speed 2 1.00 0.96
1 Variable speed 1 1.00 0.94
1 Variable speed 2 1.00 0.93
2 Constant speed 1 0.99 0.94
2 Variable speed 1 0.98 0.90

Average 0.99 0.94
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Figure 4.9: Representative measurement model examples for SJ1 (left) and SJ2 (right) for
the variable-speed task (Run 1). The trained parameters that described these models were
λ = 0.11, f0 = 0.34 for SJ1, and λ = 0.12, f0 = 0.35 for SJ2.

(160 Hz). This is a worst-case assumption in terms of computational load, and in reality

we envision using a sampling frequency of 512 Hz instead. Additionally, we envisioned an

ECoG signal with 32 channels, which would likely cover the entirety of the interhemispheric

leg motor cortex. We also assumed that each addition and multiplication operation require

4 clock cycles, whereas each division and exponential operation require 50 and 150 cycles.

With all these assumptions, we counted the approximate number of clock cycles required

to implement each decoding operation and the results are shown in Table 4.2. The most

computationally expensive operation is computing the power envelopes, whereas the least

expensive operation is computing the extracted feature, f , from the outputs of the logistic

regressions.
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Table 4.2: Approximate number of clock cycles necessary to implement each decoding oper-
ation in a microprocessor for a 50 ms ECoG signal.

Operation Clock Cycles

Power Envelope 2.2·106
PCA 4.7·104
State Logistic Regression 3.4·103
Step Logistic Regression 6.0·103
Compute F 1.5·102
Fokker-Planck-based Bayesian filter 1.7·103

Total 2.2·106

We envision implementing the decoder on a microchip such as ATSAMD51J19A-AF [91] or

similar, whose core processor is an ARM Cortex-M4 processor. This microprocessor has a

clock rate of up to 120 MHz, however, to decode 50 ms signals with our framework a clock

rate of 96 MHz is sufficient. Thus, with a clock rate of 96 MHz, we estimate that our system

could decode a 50 ms signal in 23 ms. Therefore, there would still be 27 ms left in the

decoding window for other necessary instructions such as memory allocation. Given that

the necessary time to decode an ECoG signal is less than the decoding window time, this

decoder could be implemented in real-time.

The power consumption of an ARM Cortex-M4 processor is 90 µA/MHz [44]. Assuming that

the microprocessor operates at 96 MHz and that the supply voltage is 3.3 V, we estimate

that the decoder’s power consumption will be 28.5 mW. Since the CWU’s estimated power

budget ranges between 378 and 538 mW (see Chapter 2), we believe that 28.5 mW is an

acceptable power consumption level for the decoder.

4.4 Discussion

We designed a recursive algorithm that used ECoG data to decode walking steps. To train

this algorithm, we used gyroscope and ECoG data recorded during treadmill walking exper-
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iments from two subjects. The decoder achieved high performance metrics, with an average

sensitivity of 0.99, and an average precision of 0.94. Moreover, given the algorithm’s low

complexity, small memory requirements and small latency, we believe this decoder is suitable

for real-time implementation in a fully implantable BCI. A Fokker-Planck-based Bayesian

decoder for EMG signals, with a similar algorithm architecture to our decoder, was imple-

mented in a 41-MHz ARM7 microcontroller in real-time at 30 Hz [174].

The feature extraction algorithm used concurrent state and step logistic regressions to trans-

late multi-channel ECoG data into a single feature that closely resembles individual walking

steps. Note that before the state logistic regression, we used PCA to reduce multicollinearity

in the state power envelopes. The extracted feature, f , resembled ground truth data, Gstep,

since its amplitude was usually around 0 during idle periods and >0 when each step occurred.

We used the coefficients from the PCA and logistic regressions to visualize which electrodes

and frequency bands contained the most relevant information for this feature (Fig, 4.7).

With this information, together with the electrode location determined by MRI (Fig. 4.6),

we identified which areas of the brain played a role in leg motor planning and execution.

The Fokker-Planck-based Bayesian filter further improved the quality of the extracted feature

by binarizing the signal. It set noisy segments to 0, and enhanced true steps by setting them

to 1. We trained the filter parameters A and B based on the model’s dynamics, i.e., walking

kinematics. When the dynamics of the system were consistent during training and testing,

such as in the constant-speed task, the decoder predicted steps more accurately. For this

reason, the decoder performed better at constant-speed tasks than at variable-speed tasks

(Table 4.1). Thus, when implementing this decoder, it is important to include gyroscope

data from varied walking kinematics (different speeds and stride lengths) in the training

data, similar to those that can be expected during testing.

One of the main sources of error in our decoder were false positives, hence why precision

metrics were lower than sensitivity in Table 4.1. Many of these false detections occurred
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during the idle/move transition, right before the onset of the first true step. We hypothesize

that these detections correspond to motor planning behavior present in the ECoG signals.

Given that the treadmill takes some time to start moving, the subject might have anticipated

the upcoming step ahead of time. False detections also occurred in between two true steps.

We hypothesize that this is due to ECoG data containing features related to ipsilateral leg

movements [68]. The false detections usually appeared halfway between two contralateral

steps, which is when ipsilateral steps are expected to occur. However, we did not record

contralateral kinematic data, and thus cannot corroborate our hypothesis. Future studies

should further investigate ipsilateral features in the leg M1 area.

Our decoder and its performance cannot be directly compared to the other existing ECoG-

based decoders for lower extremities. For example, Benabid et al. [13] restored walking for a

subject with tetraplegia. In this case, the decoder’s sensitivity was 0.72, but their implemen-

tation was very different from ours. On one hand, they tested the decoder’s performance

online, whereas we tested ours offline. On the other hand, their system decoded walking

states, whereas ours decoded individual steps. Similarly, Lorach et al. [128] restored move-

ment of the lower limbs and walking in a subject with paraplegia. They reported that the

subject was able to control each joint bilaterally in real-time with accuracy of 0.74. However,

they did not quantify the decoder’s performance for walking steps, since they did not use

cues during walking.

While developing our decoder, we identified some actions that could potentially improve the

decoder’s performance. For example, we found that ERS and ERD occurred at different

frequency bands for each subject. In the future, instead of using fixed frequency bands,

we could use training data to determine accurate bounds of β (ERD) and γ (ERD) for

each subject. Additionally, we could try using a different measurement model equation.

The solution we presented here is one alternative, but it could be that other shapes are

more appropriate to describe the relationship between the gyroscope data and the extracted
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feature. An important limitation of our study is the limited data available. Although

there is abundant ECoG data of able-body individuals performing motor task of their upper

extremities, similar data for the lower extremities is scarce. Recording ECoG data of able-

body individuals while walking on a treadmill requires complex experimental setup. To our

knowledge, we are the first group to perform these experiments. In the future, we would like

to collect more data and verify that our finding apply to other individuals. We should also

collect over ground walking data, since the walking kinematics will likely be different than

those of treadmill walking.

Our end goal is to implement this decoder in real-time in our fully-implantable BD-BCI pro-

totype [205, 192]. Based on our estimations (see Table 4.2), we believe that this decoder can

be implemented in real-time and provide decoded updates every 50 ms (20 Hz). Moreover,

we estimate that the decoder will not consume more than 28.5 mW. This is an acceptable

power consumption level for the decoder because based on the estimated CWU power bud-

get (Chapter 2), this would leave between 349 and 509 mW for the other CWU operations

(wireless data transmission and stimulation signal generation).

4.5 Conclusion

We developed a decoder to identify individual walking steps from ECoG signals. The decoder

used a feature extraction module based on logistic regressions followed by a Fokker-Planck-

based Bayesian filter. We tested the decoder’s performance offline using ECoG data from two

subjects while they walked on a treadmill. Using a leave-one-out cross-validation approach,

we found that the decoder’s average sensitivity and precision were 99% and 94%, respectively.

We also showed that thanks to the decoder’s low computational complexity, the decoder is

suitable for real-time implementation. Finally, we estimated that deploying this decoder in

a microprocessor in real time would require up to 28.5 mW of power. Based on our CWU
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power budget estimations, we believe that this is an acceptable power consumption level

for our BD-BCI decoder. To our knowledge, this is the first decoder that can estimate

individual steps from ECoG signals from the leg motor cortex that is suitable for real-time

implementation in a fully-implantable BCI.
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Appendix A

MATLAB Code of the Step Decoder

1 % Step Decoder based on Logistic Regressions and Jump Diffusion Bayesian

2 % Filter

3

4 function [out]= individual_step_decoder(exp_name ,epsilon)

5

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 %%% INPUTS:

8 % exp_name: string , experiment name

9 % epsilon: float , width of x bins

10

11 %%% OUTPUTS:

12 % out: struct , includes multiple fields , including MAP (decoder output),

gyroscope

13 % downsampled to 20 Hz , precision and sensitivity metrics

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15

16 % Define Parameters and Constants

17 % Frequency bands

18 beta_band_fq = [20 ,40];

19 gamma_band_fq = [40 ,160];
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20 high_gamma_band_fq = [80 ,160];

21

22 % Gyro Pre -processing

23 th_percentage = 0.15; % Percentage of the maximum gyro value that should

be set to 0

24 % Gyro Binarization

25 th_percentage_step_height = 0.1; % Minimum percentage height (of the

heighest step) to be considered a step

26 % Train/test split

27 test_time = 5; % Length of test data in seconds

28 % PCA Training

29 variance_threshold = 0.03; % How much of the variance should a Principal

Component explain to be retained

30 % Decoder

31 downsample_factor = 13; % Fs/Downsampling factor is the final decoder rate

(256/4 = 64 Hz)

32 ratemax = 1; % max value of decoder output

33 noutputs = round (1/ epsilon); % Decoder output quantization levels

34 x_bins = linspace(ratemax/noutputs , ratemax , noutputs)’; % Quantization

bins

35 % Measurement model

36 jump_thresh = 0.05; % Threshold that indicates a jump in gyro data is a

step

37 slope = 25; % Slope of the logistic function

38

39 lp_state_fq = 0.12;

40

41 % 1. Load Data

42 [ecog_raw ,gyro_raw ,Fs,ch_index ]= load_exp_data(exp_name);

43

44 % 2. Pre -process ECoG

45 [beta_envelope ,gamma_envelope ,high_gamma_envelope ]= preprocess_ecog2(

ecog_raw ,beta_band_fq ,gamma_band_fq ,high_gamma_band_fq ,Fs ,lp_state_fq);
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46

47 % Cut Gyro to ECoG length (ECoG ends at whole seconds , gyro doesn ’t)

48 gyro_raw(length(beta_envelope)+1: end) = [];

49

50 % SJ2 has gyro upside -down compared to SJ1

51 if contains(exp_name ,’3’)

52 gyro_raw = -gyro_raw;

53 end

54

55 % 3. Pre -process gyro

56 % gyro = preprocess_gyro2(gyro_raw ,th_percentage);

57

58 % 4. Binarize/normalize gyro

59 [bin_state ,bin_steps ,normalized_steps ]= binarize_gyro2(gyro_raw ,Fs(2),

exp_name);

60

61 % Cross -validation iterations

62 start_test_index_vec = 1:Fs(2)*test_time:size(gyro_raw ,1); % Vector with

the different start indeces for testing data in cross -validation

63 prior = ones(noutputs ,1)/noutputs; % Start with uniform prior

prob. dist.

64 MAP = zeros(floor(length(beta_envelope)/downsample_factor) ,1);

65

66 for i = 1:size(start_test_index_vec ,2)

67

68 start_test_index = start_test_index_vec(i);

69 % 5. Train/test split

70 [bin_state_train ,~] = train_test_split(bin_state ,test_time ,Fs(2),

start_test_index);

71 [bin_steps_train ,~] = train_test_split(bin_steps ,test_time ,Fs(2),

start_test_index);

72 [normalized_steps_train ,~] = train_test_split(normalized_steps ,

test_time ,Fs(2),start_test_index);
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73

74 [beta_envelope_train ,beta_envelope_test] = train_test_split(

beta_envelope ,test_time ,Fs(2),start_test_index);

75 [gamma_envelope_train ,gamma_envelope_test] = train_test_split(

gamma_envelope ,test_time ,Fs(2),start_test_index);

76 [high_gamma_envelope_train ,high_gamma_envelope_test] =

train_test_split(high_gamma_envelope ,test_time ,Fs(2),start_test_index);

77

78 % 6. Logistic Regression - Trainingt

79 % 6.1. PCA for State

80 [pc_train ,pca_coeffs] = pca_train ([ beta_envelope_train ,

gamma_envelope_train],variance_threshold);

81

82 % 6.2. Log Reg for State

83 [logreg_coeffs_state ,logreg_feature_state_train ]= logreg_train(

pc_train ,bin_state_train);

84 % 6.3. Log Reg for Steps

85 [logreg_coeffs_steps ,logreg_feature_steps_train ]= logreg_train(

high_gamma_envelope_train ,bin_steps_train);

86 % 6.4. Extracted Feature Computation: multiply logreg outputs (train

only)

87 ecog_feature_train = logreg_feature_state_train .*

logreg_feature_steps_train;

88

89 % 7. Bayesian Filter - Training

90 % 7.1. Downsample ECoG feature and Gyro (ground truth)

91 ecog_feature_train_down = downsample_split_data(ecog_feature_train ,

downsample_factor ,i);

92 normalized_steps_train_down = downsample_split_data(

normalized_steps_train ,downsample_factor ,i);

93 thr_gyro = min(normalized_steps_train(normalized_steps_train >0));

94 normalized_steps_train_down(normalized_steps_train_down <thr_gyro)=0;

95
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96 % 7.2. Measurement Model Training

97 [m,~] = measurement_model_train(ecog_feature_train_down ,

normalized_steps_train_down ,x_bins ,slope);

98

99 % 7.3. Fokker -Plank based Bayesian Training

100 % [alpha ,beta] = alpha_beta_train(normalized_steps_train ,

bin_steps_train ,downsample_factor);

101 [alpha ,beta] = alpha_beta_train(normalized_steps_train ,bin_steps_train

,downsample_factor ,epsilon ,Fs(2));

102

103 % 8. Decoder Testing

104 % 8.1. PCA

105 pc_test = [beta_envelope_test ,gamma_envelope_test ]* pca_coeffs;

106

107 % 8.2. Log Transformationg State

108 logreg_feature_state_test = logistic(logreg_coeffs_state ,pc_test);

109

110 % 8.3. Log Transformationg Steps

111 logreg_feature_steps_test = logistic(logreg_coeffs_steps ,

high_gamma_envelope_test);

112

113 % 8.4. ECoG Feature - Test

114 ecog_feature_test = logreg_feature_state_test .*

logreg_feature_steps_test;

115

116 % 8.5. Downsample Test Data

117 ecog_feature_test_down = downsample_split_data(ecog_feature_test ,

downsample_factor ,1);

118

119 % 8.6. Filter (iterations)

120 start_test_index_down = floor(( start_test_index -1)/downsample_factor);

121

122 for t = 1: length(ecog_feature_test_down)
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123

124 % New Reading

125 ecog_val = ecog_feature_test_down(t);

126 % Filter

127 [prior ,MAP_idx ]= fokker_bayesian_filter(prior ,ecog_val ,alpha ,beta ,

m,noutputs);

128 % MAP value

129 MAP(t+start_test_index_down) = (ratemax / (noutputs -1))*MAP_idx;

130

131 end

132 end

133

134 % 9. Decoder Performance

135

136 % 9.1. Downsample gyro (ground truth)

137 gyro_down = normalized_steps (1: downsample_factor:length(normalized_steps))

;

138 [sensitivity1 ,precision1] = performance_decoder(gyro_down ,MAP ,0.05);

139

140 out.sensitivity = sensitivity1;

141 out.precision = precision1;

142 out.gyro = normalized_steps;

143 out.gyro_raw = gyro_raw;

144 out.bin_steps = bin_steps;

145 out.map = MAP;

146

147 end

1 function [ecog ,gyro ,Fs,ch_index ]= load_exp_data(exp_name)

2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %%% INPUTS:

5 % exp_name: experiment name string (main1 , main2 , main3 , idle_walk_1 ,
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idle_walk_2 , idle_walk_3)

6

7 %%% OUTPUTS:

8 % ecog: N x ch , matrix with raw ECoG data

9 % gyro: n x 1, matrix with raw gyro data

10 % Fs: 1 x 2, with Fs(1) = ECoG sampling rate , Fs(2) = gyro sampling rate

11 % ch_index: 1 x ch , indexes of the selected ECoG channels

12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

13

14 % Get file names where experimenta data is stored and ECoG channel indexes

15 % for the corresponding experiment name

16 [file_name1 ,file_name2 ,ch_good ]= files_and_channels(exp_name);

17

18 % Load Gyro

19 load(file_name1 ,’Fs’,’physics ’)

20

21 % Load ECoG

22 load(file_name2 ,’eeg’,’eegchannames ’)

23 ChanNames = eegchannames;

24

25 % Choose selected ECoG channels (based on ch_good)

26 ecog_selected = nan(size(eeg ,1),size(ch_good ,2));

27 ch_n = nan(1,size(ch_good ,2));

28

29 for i=1: length(ch_good)

30 n = string ([’MG’,num2str(ch_good(i))]);

31 ind = find(ChanNames ==n);

32 if isempty(ind)==0

33 ecog_selected (:,i) = eeg(:,ind);

34 ch_n(i) = ch_good(i);

35 end

36 end

37
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38 ch_index = ch_good;

39 ecog = ecog_selected;

40 % Get tibial gyroscope signal

41 gyro = physics (:,3);

42

43 end

1 function [beta_envelope ,gamma_envelope ,high_gamma_envelope ]=

preprocess_ecog2(ecog_raw ,beta_band_fq ,gamma_band_fq ,high_gamma_band_fq

,Fs ,lp_state_fq)

2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %%% INPUTS:

5 % ecog_raw: N x ch , matrix with raw ECoG data

6 % beta_band_fq: 1 x 2, beta band frequency bounds

7 % gamma_band_fq: 1 x 2, gamma band frequency bounds

8 % high_gamma_band_fq: 1 x 2, high gamma band frequency bounds

9 % Fs: 1 x 2, sampling rate of ECoG and gyro

10 % lp_state_fq: float , Low Pass Frequency to Filter Beta and Gamma Power

11 % Envelopes

12

13 %%% OUTPUTS:

14 % beta_envelope: n x ch, matrix with beta envelope for each ECoG channel ,

15 % downsampled to gyro sampling rate

16 % gamma_envelope: n x ch, matrix with gamma envelope for each ECoG

channel ,

17 % downsampled to gyro sampling rate

18 % high_gamma_envelope: n x ch, matrix with high gamma envelope for each

ECoG channel ,

19 % downsampled to gyro sampling rate

20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

21 ecog_raw = ecog_raw - mean(ecog_raw);

22
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23 % Beta Fq: Power Envelope Computation

24 beta_power = nan(size(ecog_raw));

25 % Power Computation

26 for i=1: size(ecog_raw ,2)

27 beta_band = freqfilter(ecog_raw(:,i),Fs(1) ,[beta_band_fq (1)

beta_band_fq (2) 4],’band’,’butter ’);

28 beta_power (:,i) = beta_band .^2;

29 end

30 beta_power_r = resample(beta_power ,Fs(2),Fs(1)); % Downsample

31 beta_envelope = freqfilter(beta_power_r ,Fs(2) ,[lp_state_fq 4],’low’,’

butter ’); % LP filter

32

33 % Gamma Fq: Power Envelope Computation

34 gamma_power = nan(size(ecog_raw));

35 % Power Computation

36 for i=1: size(ecog_raw ,2)

37 gamma_band = freqfilter(ecog_raw(:,i),Fs(1) ,[gamma_band_fq (1)

gamma_band_fq (2) 4],’band’,’butter ’);

38 gamma_power (:,i) = gamma_band .^2;

39 end

40 gamma_power_r = resample(gamma_power ,Fs(2),Fs(1));

41 gamma_envelope = freqfilter(gamma_power_r ,Fs(2) ,[0.12 4],’low’,’butter ’);

% LP filter

42

43 % High -gamma Fq: Power Envelope Computation

44 high_gamma_power = nan(size(ecog_raw));

45 % Power Computation

46 for i=1: size(ecog_raw ,2)

47 high_gamma_band = freqfilter(ecog_raw(:,i),Fs(1) ,[high_gamma_band_fq

(1) high_gamma_band_fq (2) 4],’band’,’butter ’);

48 high_gamma_power (:,i) = high_gamma_band .^2;

49 end

50 high_gamma_power_r = resample(high_gamma_power ,Fs(2),Fs(1)); % Downsample
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51 high_gamma_envelope = freqfilter(high_gamma_power_r ,Fs(1) ,[[0.15 1.5] 4],’

band’,’butter ’); % BP filter

52

53 end

1 function [bin_state ,bin_steps ,normalized_steps ]= binarize_gyro2(gyro_raw ,Fs

,exp_name)

2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %%% INPUTS:

5 % gyro: n x ch , matrix with gyro data

6 % Fs: int , gyro sampling rate (Hz)

7 % exp_name: string , experiment name

8

9 %%% OUTPUTS:

10 % bin_state: n x ch , binarized state (IDLE/MOVE) data

11 % bin_steps: n x ch , binarized individual steps data

12 % normalized_steps: n x ch, normalized (max height = 1) individual steps

data

13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

14

15 % BP filter

16 gyro = freqfilter(gyro_raw ,Fs ,[0.15 1.5 4],’band’,’butter ’);

17 % Only keep leg swings

18 gyro(gyro <0)=0;

19

20 % Identify each step

21 mph = max(gyro)*0.1;

22 mpd = 0.5*Fs;

23 % Peak detection

24 [height ,loc ,~,~] = findpeaks(gyro ,’MinPeakHeight ’,mph ,’MinPeakDistance ’,

mpd);

25 % Remove false steps
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26 index_remove = step_index_remove(exp_name);

27 loc(index_remove) = [];

28 height(index_remove) = [];

29

30 % Normalize each step

31 normalized_steps = gyro;

32 start_index = 1;

33 walk_idle_seg = [];

34

35 for i=1: length(loc)

36 start_index_prev = start_index;

37 start_index = find(gyro(start_index_prev:loc(i))==0,1,’last’)+

start_index_prev;

38 normalized_steps(start_index_prev:start_index) = 0;

39 end_index = find(gyro(loc(i):end)==0,1)+loc(i) -2;

40 normalized_steps(start_index:end_index) = gyro(start_index:end_index)/

height(i);

41

42 if i==1 && loc(i+1)-loc(i) >0.75e3

43 walk_idle_seg =[ walk_idle_seg ,start_index ,end_index ];

44 elseif i==1

45 walk_idle_seg = [walk_idle_seg ,start_index ];

46 elseif i== length(loc) && loc(i)-loc(i-1) >0.75e3

47 walk_idle_seg = [walk_idle_seg ,start_index ,end_index ];

48 elseif i== length(loc)

49 walk_idle_seg = [walk_idle_seg ,end_index ];

50 elseif loc(i)-loc(i-1) >0.75e3 && loc(i+1)-loc(i) >0.75e3

51 walk_idle_seg = [walk_idle_seg ,start_index ,end_index ];

52 elseif loc(i+1)-loc(i) >0.75e3

53 walk_idle_seg = [walk_idle_seg ,end_index ];

54 elseif loc(i)-loc(i-1) >0.75e3

55 walk_idle_seg = [walk_idle_seg ,start_index ];

56 end
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57 start_index=end_index +1;

58

59 end

60

61 normalized_steps(start_index:end)=0;

62

63 % Binarize steps

64 bin_steps = normalized_steps >0.03;

65

66 % Binarize states

67 bin_state = zeros(size(normalized_steps));

68 for i=1:2: length(walk_idle_seg)

69 bin_state(walk_idle_seg(i):walk_idle_seg(i+1))=bin_state(walk_idle_seg

(i):walk_idle_seg(i+1))+1;

70 end

71

72 end

1 function [train_data ,test_data ]= train_test_split(orig_data ,test_time ,Fs ,

start_test_index)

2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %%% INPUTS:

5 % orig_data: n x ch , orig data that should be split

6 % test_time: int , length of test data in seconds

7 % Fs: int , sampling rate of the data

8 % start_test_index: int , index where test data starts

9

10 %%% OUTPUTS:

11 % train_data: split of data for training

12 % test_data: split of data for testing

13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

14

128



15 test_index = start_test_index:min(start_test_index+Fs*test_time -1,size(

orig_data ,1)); % Indicies to test with

16 train_index = [1: start_test_index -1, test_index(end)+1: size(orig_data ,1)];

% Indicers to train with

17

18 train_data = orig_data(train_index ,:);

19 test_data = orig_data(test_index ,:);

20

21 end

1 function [pc ,pca_coeffs] = pca_train(data ,variance_threshold)

2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %%% INPUTS:

5 % data: n x 2ch , beta and gamma envelopes (train only)

6 % variance_threshold: int , minimum variance that a PC must have to retain

7 % it and its coefficients

8

9 %%% OUTPUTS:

10 % pc: n x k, k principal components

11 % pca_coeffs: , principal components coefficients

12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

13

14 % PCA

15 [pca_coeffs_all ,~,lat] = pca(data);

16

17 % Choose how many PCs to retain based on variance threshold

18 for i=1: length(lat)

19 if lat(i)/sum(lat)<variance_threshold

20 k=i-1;

21 break;

22 end

23 end
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24

25 % Select first k pca coeffs and compute first k PCs

26 pca_coeffs = pca_coeffs_all (:,1:k);

27 pc = data*pca_coeffs;

28

29 end

1 function [logreg_coeffs ,logreg_output ]= logreg_train(data ,ground_truth)

2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %%% INPUTS:

5 % data: n x k, predictor data

6 % ground_truth: n x 1, binarized ground truth data

7

8 %%% OUTPUTS:

9 % logreg_coeffs: k+1, coefficients of the logistic regression

10 % logreg_output: n x 1, probability logistic regression outcome

11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

12

13 % Training the LogReg Coefficients

14 logreg_coeffs = glmfit(data ,ground_truth , ’binomial ’, ’link’, ’logit ’);

15

16 % Logistic Transformation to compute probability

17 logreg_output = logistic(logreg_coeffs ,data);

18

19 end

1 function data_downsampled = downsample_split_data(data ,downsample_factor ,

middle_index_split)

2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %%% INPUTS:

5 % data: n x 1, original data sampled at org_fs

6 % downsample_factor: int , donwsample_factor = orig_fq/new_fq , where
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7 % middle_index_split: int , index where the data is split

8

9 %%% OUTPUTS:

10 % data_downsampled: m x 1, data resampled at new_fs

11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

12

13 % If no split exists

14 if middle_index_split == 1

15 data1 = [];

16 else

17 data1 = resample(data (1: middle_index_split -1) ,1,downsample_factor);

18 end

19 % If no split exists

20 if middle_index_split == length(data)+1

21 data2 = [];

22 else

23 data2 = resample(data(middle_index_split:end),1,downsample_factor);

24 end

25 % Concatenate resampled data

26 data_downsampled = [data1;data2 ];

27 % Limit data between [0,1]

28 data_downsampled(data_downsampled >1)=1;

29 data_downsampled(data_downsampled <0)=0;

30

31 end

1 function [m2 ,x0]= measurement_model_train(ecog ,gyro ,bins ,slope)

2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %%% INPUTS:

5 % ecog: n x 1, ECoG feature data

6 % gyro: n x 1, gyro data

7 % bins: bins (with fixed bin size from 0 to 1) to bin data accordingly
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8 % slope: slope of the logistic function

9

10 %%% OUTPUTS:

11 % m2: measurement model

12 % x0: logistic function midpoint

13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

14

15 % Train x0

16 % Optimal lag between signals

17 [r,lags] = xcorr(ecog ,gyro);

18 [~,pos] = max(r);

19 opt_lag = lags(pos);

20

21 % Adjust w/ lag

22 ecog_cut = ecog(max([1, opt_lag +1]):end+min([0, opt_lag ]));

23 gyro_cut = gyro(1-min([opt_lag ,0]):end -max([0, opt_lag ]));

24

25 % Normalized histogram for move/idle

26 [h1 ,~] = histcounts(ecog_cut(gyro_cut ==0) ,[0;bins],’Normalization ’,’

probability ’);

27 [h2 ,~] = histcounts(ecog_cut(gyro_cut >0) ,[0;bins],’Normalization ’,’

probability ’);

28

29 x0 = bins(find((h2 -h1) >0,1));

30

31 % New lambda

32 nbins = length(bins);

33 X = [ecog_cut ,gyro_cut ];

34 [N,c] = hist3(X,’Nbins’ ,[1 1]* nbins);

35 p_ecog = sum(N,2);

36 N1 = N./ repmat(p_ecog ,1,nbins);

37 mean1 = sum(c{1}.*N1(1,:));

38 mean2 = sum(c{1}.* fliplr(N1(end ,:)));
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39 lambda = 1/mean([mean1 ,mean2 ]);

40

41 % New x0

42 X = [ecog_cut ,gyro_cut >0.001];

43 [N,c] = hist3(X,’Nbins’,[nbins 2]);

44 p_ecog = sum(N,2);

45 N1 = N./ repmat(p_ecog ,1,2);

46 x0 = bins(find(N1(:,1)<N1(:,2) ,1));

47

48 % New slope

49 slope = 1/mean(diff(bins));

50

51 %%%%%%

52 % lambda = mean(gyro_cut);

53 f1 = lambda*exp(-lambda*bins);

54 f2 = lambda*exp(lambda*bins)*exp(-lambda);

55 %%%%%

56

57 m = nan(length(bins),length(bins));

58 col = 0;

59

60 f1_norm = f1/sum(f1);

61 f2_norm = f2/sum(f2);

62

63 gamma_v = [];

64 for i = bins ’

65 gamma = 1/(1+ exp(-slope*(i-x0)));

66 gamma_v = [gamma_v ,gamma ];

67 col = col+1;

68 m(:,col) = (1-gamma)*f1_norm+gamma*f2_norm;

69 end

70

71 p_s_e = m;
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72 [p_e_hist ,edges] = histcounts(ecog_cut ,length(bins),’Normalization ’,’

probability ’);

73 p_e = p_e_hist;

74 [p_s_hist ,edges] = histcounts(gyro_cut ,length(bins),’Normalization ’,’

probability ’);

75 p_s = p_s_hist ’;

76

77 p_e_m = repmat(p_e ,length(bins) ,1);

78 p_s_m = repmat(p_s ,1,length(bins));

79

80 p_e_s_raw = p_s_e .* p_e_m ./ p_s_m;

81

82 p_e_s = p_e_s_raw ./ repmat(sum(p_e_s_raw ,2) ,1,length(nbins));

83

84 m2 = m./ repmat(sum(m,2) ,1,length(bins)); % Normalized Measurement Model

85

86 m2 = p_e_s;

87

88 end

1 function [alpha ,beta] = alpha_beta_train(gyro ,bin_steps ,downsample_factor ,

epsilon ,fs)

2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %%% INPUTS:

5 % gyro: n x 1, gyro data

6 % jumo_thresh: float , threshold that indicates a jump in data is a step

7 % downsample_factor: int , orig_fs/new_fs

8 % epsilon: float , width of x bins

9 % fs: sampling frequency of the signals

10

11 %%% OUTPUTS:

12 % alpha: float , alpha parameter for bayesian model
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13 % beta: float , beta parameter for bayesian model

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15

16 d = diff(gyro);

17 d2 = d(d~=0);

18

19 delta_t = downsample_factor/fs;

20 alpha = var(d2)/2/ epsilon ^2* delta_t;

21

22 % Beta: count number of jumps from y

23 diff_bs = diff(bin_steps);

24 time_length = length(bin_steps)/fs;

25 beta = sum(abs(diff_bs) >0)/time_length*delta_t;

26

27 end

1 % Estimates probability of event occurring given x (predictor variables)

2 % and b (coefficients)

3

4 % 1. Inputs:

5 % - x: post -processed ecog channel data , x data used as input in the

logistic regression (time samples x # channels)

6 % - b: coefficients of the regession , output of the logistic regression (

# channels + 1 x 1 )

7

8 % 2. Outputs:

9 % - out: estimate of y data , input of the logistic regression ,given the x

data and the coefficients of the log regression (time samples x 1)

10

11 function out = logistic(b,x)

12

13 in = b(1) + x * b(2:end);

14
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15 out = 1 ./ (1 + exp(-in));

16

17 end
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