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Abstract of the Dissertation

Triple Cup Products in Heegaard Floer Homology

by

Tye Lidman

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2012

Professor Ciprian Manolescu, Chair

Manolescu and Ozsváth have recently developed a formula for calculating the Heegaard

Floer homologies of integral surgery on a link. We use their link surgery formula to give

a complete calculation of HF∞(Y, s;Z/2Z) for a torsion Spinc structure s on any closed,

orientable three-manifold Y in terms of the cup product structure on its integral cohomology

ring.
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CHAPTER 1

Introduction

1.1 Background

The study of geometric topology has always relied heavily on the use of invariants built from

all areas of mathematics. Over the last few decades, such invariants have been appearing

non-stop to study questions in low-dimensions. Most notably, the Poincaré conjecture in

dimension three was recently solved by Perelman using the Ricci flow [Per02, Per03]; there

is still no known proof of this result using purely topological tools. Furthermore, gauge

theory, which relies heavily on geometric input from a manifold, has been used to construct

homeomorphic manifolds with exotic smooth structures [Don87] or with no smooth structures

at all [Don83].

Many of these new tools are being developed to arise as a categorification of an older

invariant - a suped-up version which contains the original information of the invariant, but

carries a richer structure. A toy example of this is singular homology. It is clear that

the singular homology of a topological space contains all of the information that its Euler

characteristic sees. However, singular homology has many additional properties where the

Euler characteristic lies flat, such as gradings, functoriality, and exact sequences, all of which

have proved to be extremely useful.

In the 1980s, Casson developed an invariant of integer homology three-spheres, which

was an integral lift of the classical Rohlin invariant (see [AM90]). This was built from

SU(2)-representations of the fundamental group and was able to answer many open prob-

lems, including the construction of a four-manifold which does not admit a triangulation.

Later, Taubes was able to rephrase the Casson invariant in terms of gauge theory - a certain
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count of flat connections on a trivial SU(2)-bundle over the three-manifold, or equivalently,

critical points of the Chern-Simons functional [Tau90]. An extremely important categorifi-

cation of the Casson invariant was given by Floer to construct a graded abelian group, I∗,

called instanton homology [Flo88]. The homology theory is roughly defined by taking as its

generators critical points of the Chern-Simons functional and has differential determined by

counting gradient flowlines of this functional. These groups can be seen as capturing the

infinite-dimensional Morse theory of the space of connections with respect to this functional.

Not only did the Euler characteristic recapture the Casson invariant (modulo a factor of 2),

the theory also has an additional property that cobordisms induce homomorphisms between

the instanton homology groups; this can be used to give invariants of closed four-manifolds,

which are the Donaldson invariants. The Morse-theoretic framework that instanton homol-

ogy is built on has led to a sequence of further categorifications of classical invariants, proving

astonishing new results.

In the following decade, the Seiberg-Witten equations became the next source of low-

dimensional invariants arising from gauge theory. The Seiberg-Witten invariants proved to

be particularly effective for constructing examples of four-manifolds with infinitely many

smooth structures (see, for instance, [FS98, Par02, Sza96]). However, it was an extremely

difficult task to construct a homology theory for three-manifolds analogous to instanton

Floer homology. Many different attempts were made [CW03, Man03, Mar96], but the most

recent construction of Kronheimer and Mrowka [KM07] has become the most widely used.

In particular, using this theory, Kronheimer, Mrowka, Ozsváth, and Szabó were able to

prove a Dehn surgery characterization of the unknot: if S3
p/q(K) is orientation-preserving

homeomorphic to L(p, q), then K is the unknot [KMO07]. On the other hand, a heavy

drawback of Seiberg-Witten theory is that it is extremely difficult to do calculations with. In

light of this, Ozsváth and Szabó constructed a homology theory which they hoped to model

the Seiberg-Witten theory, but be much more computable [OS04d]. This approach uses

symplectic geometry instead of gauge theory, but still utilizes the Morse-theoretic methods

developed by Floer. They defined the Heegaard Floer homology of a three-manifold roughly

by the Lagrangian Floer homology of certain tori in the symmetric product of a Heegaard
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surface.

Heegaard Floer homology associates to a closed, connected, oriented three-manifold, Y ,

and a Spinc structure, s, a collection of abelian groups, HF+(Y, s), HF−(Y, s), HF∞(Y, s),

and ĤF (Y, s). Furthermore, Spinc cobordisms induce maps between the associated Heegaard

Floer groups, analogous to the functoriality of instanton Floer homology mentioned above

[OS06b]. In fact, Heegaard Floer homology can be seen as a categorification of Turaev torsion

[OS04c] and has recently been shown to be isomorphic to the monopole Floer homology

developed by Kronheimer and Mrowka [CGH11, KLT10a, KLT10b, KLT10c, KLT11, Tau10].

Additional Heegaard Floer invariants have been developed for other structures, including

knots [OS04b, Ras03], contact structures [OS05a], and manifolds with boundary [Juh06,

LOT08].

The primary appeal of working with Heegaard Floer homology is its ease of compu-

tation. While the definition of Heegaard Floer homology requires solving partial differen-

tial equations on manifolds, the theory has been shown to be algorithmically computable

[MOT09, SW10]. In addition, there are many other tools to aid with the calculations, in-

cluding exact triangles and spectral sequences.

One particularly useful tool for computation is the integer surgery formula for knots

[OS08b]. Given a nullhomologous knot K in a three-manifold Y , the integer surgery formula

gives a method of computing the Heegaard Floer homology of Yn(K), the manifold obtained

by n/1-surgery on K. Manolescu and Ozsváth generalized this to the link surgery formula

[MO10]. This formula associates a hypercube of chain complexes to a framed nullhomologous

link (L,Λ) in Y whose homology calculates the Heegaard Floer homology of YΛ(L).

A hypercube of chain complexes is naturally equipped with a filtration that we call the

ε-filtration; this induces a spectral sequence which is helpful for calculating the homology of

the total complex. For example, Ozsváth and Szabó first used this principle to construct a

spectral sequence from K̃h(L;F), the reduced Khovanov homology of a link in S3, to the Hee-

gaard Floer homology of the double-branched cover of the mirror of this link, ĤF (Σ2(L);F)

[OS05b]. Here, and for the rest of this thesis, F = Z/2Z. This has immediate applications,
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including showing that double-branched covers of quasi-alternating links cannot admit co-

orientable taut foliations. As the link surgery formula is proved using F-coefficients, we will

use these throughout as well.

1.2 The Main Theorem

Our main goal is to use the link surgery formula and associated spectral sequence to calculate

the relatively-graded F[U,U−1]-module HF∞(Y, s;F) for torsion Spinc structures s.

For closed three-manifolds, the Heegaard Floer chain complexes come in many flavors:

ĈF , CF+, CF−, and CF∞. These flavors are all in fact derived from CF∞, the complex

defined over the base ring Z[U,U−1], by some action on the chain level; for example, ĈF

is given by setting the variable U equal to 0. Therefore, having an understanding of the

homology, HF∞, provides foundational information for the other flavors. One useful fact is

that the Z-rank of ĤF (Y ) is always bounded below by the Z[U,U−1]-rank of HF∞(Y ). We

will use HF ◦ when we do not want to specify a flavor.

For a torsion Spinc structure s, the group HF∞(Y, s) is the least complicated of all the

Heegaard Floer flavors - in fact, Ozsváth and Szabó conjectured in [OS03c] that it should

be determined (modulo gradings) by the integral cohomology ring. While HF∞(Y, s) comes

equipped with a very powerful Q-grading, we will not calculate this. We first prove the

following.

Proposition 1.2.1. Let s1 and s2 be torsion Spinc structures on Y1 and Y2 respectively. If

H∗(Y1;Z) ∼= H∗(Y2;Z), then HF∞(Y1, s1;F) ∼= HF∞(Y2, s2;F) as relatively-graded F[U,U−1]

modules.

In [OS04c], Ozsváth and Szabó calculateHF∞(Y, s) for all Y with b1(Y ) ≤ 2 and all Spinc

structures s. They are also able to calculate HF∞ for arbitrary three-manifolds equipped

with torsion Spinc structures when working instead with certain twisted coefficients. This

gives a universal coefficients spectral sequence such that for torsion Spinc structures, s0, the

E3 term is given by Λ∗(H1(Y ;Z)) ⊗ Z[U,U−1] and converges to HF∞(Y, s0). They then
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conjecture that the d3 differential is determined by the cup product structure and that all

higher differentials vanish (see Conjecture 4.10 of [OS03c]). More specifically, the conjectured

d3 differential is given by the map

∂∞Y (α⊗ U j) = ιµY (α)⊗ U j−1,

where µY is the integral triple cup product form, the three-form on H1(Y ;Z) defined by

µY (a ∧ b ∧ c) = ⟨a ⌣ b ⌣ c, [Y ]⟩.

In [Mar08], Mark studies the complex C∞
∗ (Y ) which has chain groups Λ∗(H1(Y ;Z)) ⊗

Z[U,U−1] and differential ∂∞Y . The homology of this complex, cup homology, is denoted

HC∞. Therefore, for all practical purposes, the conjecture of Ozsváth and Szabó can be

rephrased as establishing an isomorphism HC∞(Y ) ∼= HF∞(Y, s) for torsion Spinc struc-

tures.

From now on all of our Heegaard Floer homologies will be calculated with coefficients in

F, unless mentioned otherwise. Furthermore, we will use cup homology with F-coefficients.

In this case, we are using C∞
∗ (Y )⊗F[U,U−1] (calculate integral triple cup products and then

reduce mod 2, as opposed to using mod 2 triple cup products). We will omit this from the

notation - the coefficients for Heegaard Floer homology and for cup homology are always

assumed to be F unless stated otherwise. We are now ready to state the main theorem of

the thesis.

Theorem 1. If s is a torsion Spinc structure on Y , the relatively-graded F[U,U−1]-modules

HF∞
∗ (Y, s) and HC∞

∗ (Y ) are isomorphic. Thus, HF∞(Y, s) agrees with Conjecture 4.10 of

[OS03c] mod 2.

Remark 1.2.2. It is also known in monopole Floer homology that for torsion Spinc structures,

HC∞(Y ;Q) ∼= HM(Y, s;Q) (see Section IX of [KM07]); furthermore the Main Theorem

of Kutluhan, Lee, and Taubes [KLT10a, KLT10b, KLT10c, KLT11] shows HM(Y, s;Z) ∼=

HF∞(Y, s;Z). Thus, Theorem 1 is already known with Q-coefficients.

Remark 1.2.3. While it is tempting to try to calculate HF∞ for non-torsion Spinc structures,

the methods we use cannot be extended to this case. This is because we will actually need

5



to work with a completed ring, F[[U,U−1], in order to apply the link surgery formula. It

turns out that for non-torsion Spinc structures, completion causes HF∞ to vanish [MO10].

1.3 Applications of the Main Theorem

In [Lee05], Lee constructs a spectral sequence to prove that dim K̃h(L) ≥ 2|L|−1, where |L|

is the number of components of L. We instead use the spectral sequence relating Khovanov

homology to the Heegaard Floer homology of the double-branched cover mentioned above

to obtain a different bound.

Theorem 1.3.1. Let L be a link in S3. Then,

dim K̃h(L;F) ≥ 2b1(Σ2(L)) · |TorH1(Σ2(L);Z)|.

Another strength of Heegaard Floer homology is its TQFT-like structure. Given a

Spinc cobordism (W 4, t) from (Y1, s1) to (Y2, s2), Ozsváth and Szabó construct a map F ◦
W,t :

HF ◦(Y1, s1) → HF ◦(Y2, s); furthermore, the absolute shift in grading can be determined by

classical invariants of (W, t): the signature, Euler characteristic, and ⟨c1(t)2, [W ]⟩ [OS06b].

We would like to use Theorem 1 to study these cobordism maps. Since HF∞(S3) is a free

F[U,U−1]-module of rank 1, it suffices to know whether or not this map is 0 to completely

understand the map (it turns out that HF∞ is always a free F[U,U−1]-module for torsion

Spinc structures).

Recall that W is a 2-handlebody if it is obtained by attaching 2-handles to a four-ball;

such a W will be simply-connected and will have H2(W ;Z) torsion free. If W is a manifold

with connected boundary, Y , we may remove a ball from W to obtain a cobordism from S3

to Y , which we still denote by W .

Theorem 1.3.2. Suppose that W is a 2-handlebody. Let t be a Spinc structure on W

which restricts to a torsion Spinc structure, s, on Y . The induced map F∞
W,t : HF

∞(S3) →

HF∞(Y, s) is non-zero if and only b+2 = 0 and µY ≡ 0 (mod 2).

Finally, we recall the fifth flavor of Heegaard Floer homology, HFred(Y, s). This is defined

by ker{Ud : HF+(Y, s) → HF+(Y, s)}, for sufficiently large d (this will always stabilize).
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HFred is particularly important for studying closed four-manifolds with Heegaard Floer ho-

mology; the way that the closed four-manifold invariants are constructed is by cutting X4

into two cobordisms X = X1∪Y X2, such that the maps F−
X1,t1

and F+
X2,t2

each factor through

HFred(Y ). The composition of these are used to define the mixed invariants of X, which are

conjecturally the same as the Seiberg-Witten invariants.

Thus, it is useful to know when cobordisms induce maps that factor through HFred.

In [OS06b], it is shown that if a cobordism has b+2 > 0, then this will always happen.

Furthermore, Ozsváth and Szabó show that factoring through HFred is equivalent to the

map on HF∞ vanishing. Therefore, we have:

Corollary 1.3.3. Suppose that W is a 2-handlebody. Let t be a Spinc structure on W which

restricts to a torsion Spinc structure s on Y . The map induced by (W, t) factors through

HFred(Y, s) (either from HF−(S3) to HF−(Y ) or from HF+(Y ) to HF+(S3)) if and only

if b+2 > 0 or µY does not vanish identically (mod 2).

1.4 Outline

At this point, we give a brief outline of how the proof of Theorem 1 goes. By the theory

of surgery-equivalences of three-manifolds due to Cochran, Gerges, and Orr, if two three-

manifolds have isomorphic triple cup product forms, then they can be related by a certain

sequence of surgeries. We show that such surgeries cannot affect HF∞. This will give an

easy proof of Proposition 1.2.1.

We use this surgery-invariance to reduce Theorem 1 to a special class of manifolds -

those which are presented as 0-surgery on an algebraically split link in S3. Since Theorem 1

has already been computed by Ozsváth and Szabó for b1 ≤ 2 in [OS04c], we begin with

b1(Y ) = 3. In this case, the special class of manifolds, which includes #3
i=1S

2×S1 and T3, is

easily described; all of these manifolds are 0-surgery on a knot generalizing the Borromean

knot in #2
i=1S

2 × S1. The Heegaard Floer homology of these manifolds can be explicitly

calculated with the link surgery formula (in fact, just the original integer surgery formula

for knots).
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For the case of higher b1, we apply the link surgery formula to a general 0-framed,

algebraically split link in S3. The approach is to analyze the spectral sequence converging

to HF∞ arising from a certain filtration on the link surgery formula. The first four pages

can be explicitly calculated based on the previously established information about manifolds

with b1 ≤ 3. It turns out that the E4 page is exactly the conjectured cup homology groups.

The proof that the higher differentials vanish is completed by an induction argument on the

“complexity” of the algebraically split link.

The thesis is organized as follows. In Chapter 2, we give a brief introduction to Heegaard

Floer homology and link Floer homology which summarizes the material from [OS04d] and

[OS08a] that we will need. We will also review the multi-pointed Heegaard diagrams of

[MOS09]. Readers familiar with link Floer homology should definitely skip this part. In

Chapter 3, we mention a few simple facts from homological algebra that will be useful.

Furthermore, we set up the requisite machinery on hypercubes of chain complexes to review

the link surgery formula. The link surgery formula is then summarized in Chapter 4. We

discuss the special properties of the link surgery formula for the ∞ flavor of Heegaard Floer

homology in Chapter 5. In Chapter 6, we recall the notions of surgery equivalences of

three-manifolds and use this to prove Proposition 1.2.1. Chapter 7 illustrates the method of

composing knots and calculates HF∞ for three-manifolds with b1 = 3. We then use the link

surgery formula in Chapter 8 to complete the proof of Theorem 1. The two applications are

proved in Chapter 9. The final chapter contains some brief concluding remarks.

We remark that the proofs of Proposition 1.2.1 and the b1 = 3 and 4 cases of Theorem 1

are given in [Lid10]. The remainder of the proof of Theorem 1 can be found in [Lid11].
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CHAPTER 2

A Review of Heegaard Floer Theory

2.1 Heegaard Floer Homology for Three-Manifolds

Let Y be a closed, connected, oriented three-manifold equipped with a Spinc structure s. It

is the goal of this section to introduce the groups HF ◦(Y, s), where ◦ is any of +,−,∞, ̂ ,
introduced by Ozsváth and Szabó in [OS04d]. As opposed to the traditional construction

with Z[U ] coefficients, we will instead work over F[[U ]]. For this reason, we will use the

notation HF◦ to indicate that we are working with F[[U ]]-coefficients; when we want to

revert back to Z[U ] or F[U ] instead, this will simply be denoted HF ◦ and we’ll point out

which one of these we are using. The reason why we work over this different base ring is that

the link surgery formula of Manolescu and Ozsváth is constructed over this ring. We will

see in Chapter 5.1 that one can recover the uncompleted mod 2 Heegaard Floer homology

from HF∞, for torsion Spinc structures.

Begin with a self-indexing Morse function, f : Y → R, with one minimum (index 0)

and one maximum (index 3). Let Σg denote f−1(3/2), a closed connected surface of genus

g equal to the number of index 1 critical points (equivalently index 2 critical points) of

f . The decomposition Y = f−1([0, 3/2]) ∪ f−1([3/2, 3]) gives a Heegaard splitting for Y

(a decomposition of Y into two solid handlebodies). We obtain g-tuples of simple closed

curves α = {αi}gi=1 and β = {βi}gi=1 by intersecting the Heegaard surface with the ascending

manifolds of the index 1 critical points (for the αi) and the descending manifolds of the index

two critical points (for the βi). Finally, we choose a flow line from the index 3 critical point

to the index 0 critical point. This flow line intersects Σ at exactly one point, w.
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2.1.1 The Heegaard Floer Chain Complex

The idea is to construct the Heegaard Floer homology groups as the Lagrangian Floer ho-

mology of tori, Tα = α1 × . . . × αg and Tβ = β1 × . . . × βg, inside of Symg(Σ), the g-fold

symmetric product of Σ. By some perturbation of f , we can choose these tori to intersect

transversely; since these half-dimensional tori are compact, this intersection will be a finite

set of points.

We first define the chain groups

CF∞(Σ, α, β, w) = F[[U,U−1] · ⟨Tα ∩ Tβ⟩.

Note that this is a finitely-generated F[[U,U−1]-vector space. We now need to define the

differential. Fix x ∈ Tα ∩ Tβ. First the formula, then the explanation of all the terms.

∂x =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y),µ(ϕ)=1

#(M(ϕ)/R) · Unw(ϕ)y.

Here, ϕ is a Whitney disk: a homotopy class of maps from D2 into Symg(Σ) such that

ϕ(−i) = x, ϕ(i) = y, ϕ({z : |z| = 1,Re(z) ≥ 0}) ⊂ Tα, and ϕ({z : |z| = 1,Re(z) ≤ 0}) ⊂ Tβ

(ϕ is called a Whitney disk). We use π2(x,y) to denote the set of homotopy classes of

Whitney disks connecting x to y.

It is important to note that Symg(Σ) can be given a symplectic structure such that

the Tα and Tβ are Lagrangian [Per08] - this is not the original construction of Heegaard

Floer homology, but it is cleaner to exposit this way. We fix a one-parameter family of

almost complex structures Js compatible with respect to this symplectic structure. We can

ask which representatives of the homotopy class of ϕ are pseudoholomorphic with respect

to Js in an appropriate sense. Denote by M(ϕ) the moduli space of these holomorphic

curves, which is a manifold for a generic choice of family Js. Note that a non-constant

holomorphic Whitney disk admits a natural free R-action by biholomorphically identifying

the twice-punctured unit disk with an infinite strip in the complex plane and applying a

translation. When the dimension of this moduli space is 1 (this is the condition µ(ϕ) =

1), quotienting by R leaves a finite number of points for generic families Js by Gromov
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compactness [OS04d]. This is precisely what we count in #(M(ϕ)/R). Since we are working

mod 2, we don’t need to worry about orienting the moduli spaces to count these points with

sign like in the integral case. Finally, nw(ϕ) is the intersection number of the map ϕ with

the (complex) codimension 1 submanifold {z} × Symg−1(Σ). It is important to note that

if ϕ is holomorphic, this intersection is always non-negative, since we are intersecting two

almost-complex submanifolds.

Again, for a generic choice of Js, we have that ∂2 = 0. We may take the homology of

this complex, which we denote by HF∞(Σ,α,β, w). While the action of F[[U,U−1] on the

resulting homology is clear, we point out without details that this can be extended to a

Λ∗(H1(Y ;Z))⊗ F[[U,U−1]-module structure.

Remark 2.1.1. In order to properly define Heegaard Floer homology, one needs an additional

hypothesis on the Heegaard diagram known as admissibility (we will only require weak ad-

missibility). This technical condition will not often be a concern in this thesis. Therefore,

we will not bother to define it and instead state heuristically that diagrams can be made

admissible by isotoping the α curves to introduce more intersections with the β curves.

2.1.2 Spinc Structures and Gradings

Ozsváth and Szabó construct a map sw : Tα∩Tβ → Spinc(Y ) such that π2(x,y) is non-empty

if and only if sw(x) = sw(y) are associated to the same Spinc structure. This implies that

CF∞(Σ,α,β, w) splits into a direct sum of complexes CF∞(Σ,α,β, w, s), with associated

homologies HF∞(Σ,α,β, w, s), for each s ∈ Spinc(Y ).

Let d = gcdσ∈H2(Y ;Z)⟨c1(s), σ⟩. We can equip CF∞(Σ,α,β, w, s) with a relative Z/d-

grading, defined by

gr(x,y) = µ(ϕ)− 2nw(ϕ),

where ϕ is any element of π2(x,y). For this reason, the element U is endowed with grading

-2, so that our differential can lower grading by 1. In particular, if c1(s) is torsion, then we

obtain a relative Z-grading. In general, we will abuse notation and say that s is torsion if

c1(s) is torsion in H2(Y ;Z).
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One is often interested in other related flavors of Heegaard Floer homology. First, there

is CF− which is obtained by considering the subcomplex generated by elements with non-

negative powers of U . Then, there is CF+ which is the quotient complex CF∞/CF−. One

finally can consider ĈF = CF−/U ·CF−. The homologies of these complexes are denoted

HF−, HF+, and ĤF respectively. We will in general be focusing solely on HF∞. When we

do not want to refer to a specific flavor of Heegaard Floer homology, we will use the notation

HF◦.

2.1.3 Invariance

While we have successfully defined the Heegaard Floer homology groups for a given Heegaard

diagram, it’s not in any way clear that this was independent of the choices made. In order

to prove that the resulting homologies are always isomorphic, we first need to know how to

relate Heegaard diagrams presenting the same manifold.

Let’s begin with a diagram (Σ,α,β, w). It is clear that if we isotope the α or β curves

then the resulting manifolds these diagrams represent are diffeomorphic. Furthermore, if we

choose two curves in α, say α1 and α2, we can form a new Heegaard diagram (Σ,α′,β, w) by

replacing α2 with α′
2, where α1, α2, and α

′
2 bound a pair of pants in Σ. This move is called

a handleslide. Standard handle calculus (see [GS99]) shows that the resulting manifolds will

be diffeomorphic. Finally, given a three-manifold, we can connect-sum with S3 and that will

not change the diffeomorphism-type of the manifold. Therefore, we can take a Heegaard

diagram for S3, denoted (T2, α0, β0), where α0 and β0 intersect transversely in a single point,

and concatenate this with (Σ,α,β) to obtain a new splitting (Σ′,α∪{α0},β∪{β0}), where

Σ′ is diffeomorphic to Σ#T2. This move is called a stabilization. It turns out that these are

the only moves one needs.

Theorem 2.1.2 (Singer, Theorem 8 of [Sin33]). Suppose that (Σ,α,β) and (Σ′,α′,β′) are

Heegaard diagrams for Y . The diagrams are diffeomorphic if and only if they are related by

a sequence of isotopies, handleslides, and (de)stabilizations.

One can extend this to pointed Heegaard diagrams by requiring that these isotopies,
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handleslides, and stabilizations stay away from the basepoint.

Theorem 2.1.3 (Osvaáth-Szabó [OS04d]). The isomorphism-type of the F[[U ]]-modules

HF◦(Σ,α,β, w, s) are independent of the choices made (Morse function, almost complex

structure, etc).

Remark 2.1.4. In light of Theorem 2.1.3, we will simply use the notation HF◦(Y, s) to either

refer to the Heegaard Floer homology for some specified pointed Heegaard diagram or its

isomorphism-type.

Remark 2.1.5. There is additional structure on the Heegaard Floer homology groups. More

specifically, the F[[U ]]-module structure can be extended to a Λ∗(H1(Y ;Z))⊗F[[U ]]-module

structure [OS04d]. We will not define it as we will only need to know that it exists.

We will not give a proof of Theorem 2.1.3; however, we will discuss some of the techniques

associated with the proof, as the tools to show invariance (and the theorem itself) are an

essential part of the construction of the link surgery formula.

First of all, the independence of the choice of almost complex structure is essentially a

theorem about Lagrangian Floer homologies, and the case of Heegaard Floer homology is

proved in Theorem 6.1 of [OS04d]. We will ignore the argument for stabilization, since we

will end up assuming our diagrams are sufficiently stabilized to begin with.

Given an isotopy or a handleslide from (Σ,α,β, w) to (Σ,α′,β, w), we would like to

study the diagram (Σ,α,α′). It is not difficult to see that this represents #g
i=1S

2 × S1. We

will see later in Remark 2.1.14 thatHF−(#g
i=1S

2×S1, s0) ∼= Λ∗(H1(#g
i=1S

2×S1;Z))⊗F[[U ]],

where s0 is the unique torsion Spinc structure on #g
i=1S

2 × S1. In particular, we can pick a

cycle θ ∈ CF−(Σ,α,α′, w, s0), which represents the unique generator sitting in the highest

Z-grading. We can similarly use this to construct corresponding cycles for the other flavors

as well. We can define a map Φ : HF◦(Σ,α,β, w, s) → HF◦(Σ,α′,β, w, s) by

Φα,α′
(x) =

∑
y

∑
ψ∈π2(x,θ,y),µ(ψ)=0

#(M(ψ)) · Unw(ψ)y,

where we are now counting holomorphic triangles in the triple-diagram (Σ,α,α′,β, w) - each

side of the triangle is on a Lagrangian torus determined by a set of attaching curves and
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the corners are sent to x, θ, and y in a clockwise-manner. We now count Maslov index zero

triangles, where each edge of the triangle is mapped to one of Tα, Tα′ , or Tβ.

Remark 2.1.6. More generally, given a diagram (Σ,α1, . . . ,αn, w), one can count holomor-

phic n-gons in Symg(Σ) with boundary on the Tαi
. Counting holomorphic polygons is a

very useful tool. For example, it is not true that Φα
′,α′′ ◦ Φα,α′

= Φα,α′′
on the chain

level for three sets of curves α, α′, and α′′. However, these two maps are chain homotopic

via a homotopy which counts quadrilaterals in (Σ,α,α′,α′′,β, w). We will rely on this fact

heavily when constructing the link surgery formula.

2.1.4 Basic Examples and Properties

At this point, we discuss a few useful computations and basic properties of Heegaard Floer

homology that will come in handy later. For notational convenience, we will often just point

out the case of HF∞. We will say that CF+ or HF+ is “free” if it is a direct sum of

F[[U,U−1]/F[[U ]].

It is well-known that the homology of the product of two topological spaces satisfies a

Künneth formula. The analogous result holds for Heegaard Floer homology when we replace

products with connect-sums.

Theorem 2.1.7 (Ozsváth-Szabó, Theorem 6.2 of [OS04c]). HF∞(Y1, s1) ⊗HF∞(Y2, s2) ∼=

HF∞(Y1#Y2, s1#s2).

For the next proposition, we remark that there exists a spectral sequence with E1 page

ĤF(Y, s) ⊗ F[[U,U−1] converging to HF∞(Y, s) coming from a filtration on CF∞(Y, s) de-

termined by nw(ϕ).

Proposition 2.1.8 (Ozsváth-Szabó, see Proposition 5.1 of [OS04c]). For all Spinc structures

s on a rational homology sphere Y , we have that χ(ĤF(Y, s)) = 1. Therefore, HF∞(Y, s) is

non-trivial, as are all other flavors.

Remark 2.1.9. Theorem 1 will prove thatHF∞(Y, s) is non-trivial for torsion Spinc structures

on manifolds with b1(Y ) > 0, even though the Euler characteristic is 0 [OS04c].
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Example 2.1.10 (Lens Spaces). Choose the standard genus 1 Heegaard splitting for L(p, q).

In this case, there is a Heegaard diagram (T2,α,β), such that α and β intersect transversely

in p points. Therefore, CF◦(L(p, q)) is free of rank p. Each HF◦(L(p, q), s) must be non-

trivial by Proposition 2.1.8. Since there are exactly p Spinc structures (all torsion), each

HF◦(L(p, q), s) must be free of rank 1. This calculation also covers the case of S3 when

p = 1.

Corollary 2.1.11. For any p, HF∞(Y, s) ∼= HF∞(Y#L(p, 1), s#sp) for any sp on L(p, 1).

Remark 2.1.12. This is actually true for all flavors, but one has to be slightly more careful

with the statement of the Künneth formula above.

Example 2.1.13 (S2×S1). It is easy to construct a Heegaard diagram for S2×S1, by simply

taking Σ = T2 and α = β any essential curve on T2. However, we need to make α and β

intersect transversely. We push β mostly off of α, except for a pair of transverse intersection

points, x and y. Therefore, CF◦ will have rank 2. There are two Whitney disks from x

to y. Each of these two homotopy classes has a unique holomorphic representative (after

quotienting out by the R-action) and thus has Maslov index 1. These cancel out mod 2 and

thus ∂ ≡ 0. Therefore, HF◦ is again free of rank 2. It turns out that this is supported in

the unique torsion Spinc structure, s0.

Remark 2.1.14. By applying the appropriate rephrasing of Theorem 2.1.7 for general flavors

and Example 2.1.13, we see that HF∞(#n
i=1S

2 × S1,#n
i=1s0)

∼= Λ∗(H1(#n
i=1S

2 × S1;Z)) ⊗

F[[U,U−1], and similarly for the other flavors.

It turns out the above calculations basically did not depend on the flavor we were working

with. This is absolutely not true in general. The most powerful invariants areHF+ andHF−

which are essentially dual to each other. The next most information comes from ĤF. Finally,

HF∞ is the simplest in structure. We give some examples of the potential distinctions the

various flavors can make.

Example 2.1.15. In [OS03a], the Heegaard Floer homologies of the Brieskorn sphere Σ(2, 3, 7)
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(+1-surgery on the left-handed trefoil) are calculated to be

HF◦(Σ(2, 3, 7)) ∼=



F3 if ◦ =̂
F[[U ]]⊕ F if ◦ = −

F[[U,U−1]/F[[U ]]⊕ F if ◦ = +

F[[U,U−1] if ◦ = ∞

.

On the other hand, in [OS04c] it is shown that there exists a torsion Spinc structure, s0, such

that the Heegaard Floer homology of +19-surgery on the (−2, 7) torus knot, which in their

notation is Y3,19, is given by

HF◦(Y3,19, s0) ∼=



F3 if ◦ =̂
F[[U ]]⊕ F[[U ]]/U2 if ◦ = −

F[[U,U−1]/F[[U ]]⊕ F[[U ]]/U2 if ◦ = +

F[[U,U−1] if ◦ = ∞

.

Comparing these with Example 2.1.10 illustrates the hierarchy of structure in flavors of

Heegaard Floer homology.

2.1.4.1 Universal Coefficients

While the goal of this thesis is to calculate HF∞(Y, s;F) for all torsion Spinc structures, it

turns out that this can be easily done if one uses the right coefficients. In particular, if one

uses the appropriate choice of twisted coefficients for Heegaard Floer homology (which we

will not define), the resulting calculation is straightforward.

Theorem 2.1.16 (Ozsváth-Szabó, Theorem 10.12 of [OS04c]). For each torsion Spinc struc-

ture s on Y , there exists a coefficient system such that the Heegaard Floer homology with

twisted coefficients, HF∞(Y, s;Z), is isomorphic to Z[U,U−1] as Z[U,U−1]⊗Z Z[H1(Y ;Z)]-

modules, where H1(Y ;Z)-acts trivially.

Corollary 2.1.17. If s is torsion, there is a universal coefficients spectral sequence with E2

term Λ∗(H1(Y ;Z))⊗Z Z[U,U−1] converging to HF∞(Y, s;Z).
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We refer the reader to Proposition 16 of [Mar08] for more details on the construction of

this spectral sequence. We remark that this universal coefficients spectral sequence works

exactly the same when Z[U,U−1]-coefficients are replaced by F[[U,U−1]-coefficients. This

spectral sequence will be studied in more detail in Chapter 7.1.

2.1.5 More Properties

Sometimes it is not reasonable to use a Heegaard diagram to calculate Heegaard Floer

homologies. Conveniently enough, Heegaard Floer homology has many tools for calculations

which allow one to avoid working directly with a Heegaard diagram. Many of these tools

will be used throughout the thesis. We briefly mention a few such results.

One of the most fundamental tools in Heegaard Floer homology is the surgery exact

triangle. This in fact was originally developed by Floer in the case of instanton homology

[Flo90].

Theorem 2.1.18 (Ozsváth-Szabó, Theorem 9.16 of [OS04c]). Suppose that K is nullhomol-

ogous in Y . Then there is a long exact sequence

. . .→ ĤF(Y ) → ĤF(Y0(K)) → ĤF(Y1(K)) → ĤF(Y ) . . .

This exact triangle underlies the idea behind the surgery formulas for knots and links

that we will use.

As we saw, HF◦(Y, s) can be equipped with a relative Z-grading if s is torsion. However,

since the grading is relative, one cannot compare the gradings of elements in different Spinc

structures, let alone those coming from different manifolds. Using the functoriality of Hee-

gaard Floer homology, Ozsváth and Szabó were able to consistently lift the relative-grading

to a Q-valued grading [OS06b]. While we do not give the construction of the grading, we do

point out (and will use) that it exists.

Calculating the Heegaard Floer homology of T3 is extremely difficult to attempt from

the definitions given here. However, with the help of the surgery exact triangle, the absolute

grading, and the universal coefficients spectral sequence, this can still be computed. This,
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in some sense, will be the starting point for our calculation of HF∞.

Theorem 2.1.19 (Ozsváth-Szabó, Proposition 1.9 of [OS03a]). If s0 is the unique torsion

Spinc structure on T3, then

HF∞(T3, s0) ∼= (Λ1(H1(T3;Z))⊕ Λ2(H1(T3;Z)))⊗ F[[U,U−1].

The analogous statement holds for the other flavors.

2.1.6 Applications of Heegaard Floer Theory

To convince the reader to press forward in this thesis, we will mention a few important

applications that have come out of Heegaard Floer theory. While the case of the unknot in

the following theorem was dealt with using monopole Floer homology, the argument works

exactly the same in Heegaard Floer homology. The rest was done with Heegaard Floer

homology.

Theorem 2.1.20 (Kronheimer-Mrowka-Ozsváth-Szabó, Theorem 1.1 of [KMO07] and

Ozsváth-Szabó, Theorems 1.1-1.2 of [OS06a]). Let K be the unknot, figure-eight knot, or

a trefoil. If K ′ is a knot in S3 such that S3
r (K

′) ∼= +S3
r (K), then K ′ = K.

Knowing something about the Heegaard Floer homology often allows one to deduce

valuable information about the topology of a three-manifold.

Theorem 2.1.21 (Ozsváth-Szabó, Theorem 1.4 of [OS04a]). If Y is a rational homology

sphere and dim ĤF(Y ) = |H1(Y ;Z)|, then Y cannot admit a co-orientable taut foliation.

Previous to Heegaard Floer homology, it was very difficult to find examples of hyperbolic

manifolds which do not admit co-orientable taut foliations. The major known results at the

time were found in [CD03] and [RSS03]. In light of Theorems 2.1.18 and 2.1.21, it is easy to

construct infinite classes of such manifolds.

Corollary 2.1.22. Let K be a hyperbolic knot which admits a positive lens space surgery

(many examples of these exist and are conjecturally classified by Berge [Ber]). Then, S3
r (K)

does not admit a co-orientable taut foliation for sufficiently large r ∈ Q.
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In another important application, Lisca and Stipsicz gave a complete classification of

tight contact structures on Seifert fibered rational homology spheres using contact invariants

arising in Heegaard Floer homology [LS07].

2.2 Heegaard Floer Invariants for Links

Given a nullhomologous link L in Y , there is an analogous notion of a Heegaard Floer

complex for L. We will review this construction.

2.2.1 The Knot Floer Complex

Let’s begin with the case of an oriented, nullhomologous knot K in Y . Suppose that the

Morse function we choose on Y to obtain our Heegaard splitting has the property that K

is the union of two distinct flows between the index 3 and index 0 critical points. We will

denote their intersections with Σ as z and w. We can put a filtration on CF∞(Σ,α,β, w)

which takes into account this additional point z and thus records information about K. This

was first carried out independently by Ozsváth-Szabó [OS04b] and Rasmussen [Ras03]. The

tuple (Σ,α,β, w, z) is called a doubly-pointed Heegaard diagram for K in Y . It turns out

that such a diagram always exists for any K in Y . We work with a fixed torsion Spinc

structure, s, on Y throughout.

The Z-filtration we place on CF∞(Σ,α,β, w, s) is called the Alexander filtration and is

determined by

A(x)− A(y) = nz(ϕ)− nw(ϕ) for ϕ ∈ π2(x,y).

Furthermore, we impose the condition that U lowers Alexander filtration by 1. We can make

this Alexander grading absolute by requiring that it be symmetric about 0 (the number of

intersection points with A(x) = i is the same as the number of those with grading −i).

This naturally defines a filtered chain complex, whose filtered chain homotopy type is an

invariant of K by arguments similar to those mentioned for Theorem 2.1.3 [OS04b]. We also

have the other flavors in analogy with Heegaard Floer homology for three-manifolds.
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As the Alexander filtration induces a spectral sequence, we study the (E0, d0) complex.

The E0 page is CF◦ on the level of chain groups, but the differential now only counts

pseudoholomorphic disks which also have nz(ϕ) = 0. The homology of the (E0, d0) complex,

which is the E1 page of this spectral sequence, is called knot Floer homology. The Alexander

filtration actually extends to an honest relative Z-grading on the knot Floer homology groups

(the homogeneous elements in fixed filtration level form a subcomplex). In this subsection,

we focus on ĤFK, the case where ◦ =̂ . Knot Floer homology is a bi-graded group,

ĤFK∗(Y,K, s), where ∗ refers to the Maslov grading and s is the Alexander grading.

If one constructs the bi-graded Euler characteristic for a knot K ⊂ S3,∑
s∈Z

∑
i∈Z

(−1)its dim ĤFKi(S
3, K, s),

Ozsváth and Szabó show in [OS04b] that this is the classical Alexander polynomial of K.

In particular, we have thus said that knot Floer homology categorifies the Alexander poly-

nomial. However, it contains much more information than the Alexander polynomial. We

mention a few key results about knot Floer homology.

Recall that the Alexander polynomial cannot detect the unknot, as there are non-trivial

knots with ∆K(t) = 1. It turns out that the additional structure of the Heegaard Floer

homology groups can in fact detect the unknot.

Theorem 2.2.1 (Ozsváth-Szabó, Theorem 1.2 of [OS04a]). If K ⊂ S3, then the genus of

K, g(K), is given by maxs≥0{ĤFK(S3, K, s;Z) ̸= 0}.

While the Alexander polynomial of a fibered knot is monic, the converse is not always

true. On the other hand, the categorified statement is an if and only if.

Theorem 2.2.2 (Ni, Theorem 1.1 of [Ni07] and Ghiggini, Theorem 1.4 of [Ghi08]). If K is

a nullhomologous knot in Y such that Y −K is irreducible, then K is a fibered knot if and

only if ĤFK(Y,K, g(K);Z) ∼= Z.

More generally, we remark that Heegaard Floer homology is particularly adept at identi-

fying surfaces in three-manifolds. Knot Floer homology also gives a new proof of the classical

Milnor conjecture, originally proved by Kronheimer and Mrowka using gauge theory.
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Theorem 2.2.3 (Ozsváth-Szabó, Corollary 1.7 of [OS03b]). The slice genus of the (p, q)-

torus knot is (p− 1)(q − 1)/2.

It turns out that the knot Floer complex is very well suited for studying the Heegaard

Floer homology of Dehn surgeries on K. This filtered chain complex will essentially be the

starting point for constructing the link surgery formula. Before discussing this, we will first

construct the corresponding Floer complex for links.

2.2.2 The Link Floer Complex

Before carrying out the general construction of the link Floer complex, we must extend our

understanding of what it means to be a Heegaard diagram. Throughout this section, we will

work with a fixed oriented, nullhomologous link L = K1 ∪ . . .∪Kℓ in Y . We will discuss the

notion of a general multi-pointed Heegaard diagram from [MOS09].

In our construction of a Heegaard diagram, we began with a self-indexing Morse function

with only one index 0 and one index 3 critical point. However, we would like to be able

to allow for more index 0 and index 3 critical points. The idea is that for a link L, each

component should correspond to two gradient flow lines, as in the case of doubly-pointed

Heegaard diagrams. However, since components are disjoint, they cannot all intersect at the

same index 0/3 critical points. Therefore, we must allow Morse functions that have at least

one index 0/3 pair for each component of L. This prompts the following definition.

Definition 2.2.4. A multi-pointed Heegaard diagram for L in Y is a tuple (Σ,α,β,w, z)

such that α and β each consist of g + k − 1 disjoint simple closed curves that span a g-

dimensional subspace of H1(Σ;R), where there are k basepoints of type w and ℓ basepoints

of type z (and k ≥ ℓ). We label the components of Σ−α by A1, . . . , Ak and the components

of Σ − β by B1, . . . , Bk. We ask that wi is in Ai ∩ Bi. Furthermore, there must be a

permutation σ of the Bi’s, for 1 ≤ i ≤ ℓ, such that each zi is in Ai∩Bσ(i). Finally, we require

that connecting wi to zi in the handlebody spanned by the α curves and then zi to wi in the

β-handlebody gives a knot isotopic to the link component Ki and that the union of these

components recovers L.
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Remark 2.2.5. There is a more general form of multi-pointed Heegaard diagram given in

[MOS09], which allows us to have multiple z and w basepoints to represent Ki. In our case,

the wℓ+1, . . . , wk represent extra basepoints which are not associated with any component.

When working with the link surgery formula, these will be remnants of components of a

larger link that used to be accounted for. These, however, contain no information about L

(or any link that came before since we got rid of the associated z basepoint).

We can now construct the link Floer complex, CFL∞, analogous to the knot Floer

complex. However, this complex has many filtrations - one for each component. Again we

restrict to intersection points corresponding to the fixed torsion Spinc structure on Y . The

chain groups of CFL∞ will be freely generated by Tα∩Tβ, but this time over the larger ring

F[[U1, . . . , Uk, U
−1
1 , . . . , U−1

k ]. The differential will record the intersections of holomorphic

disks with the basepoint wi by a power of Ui. We can write this explicitly as

∂(x) =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y),µ(ϕ)=1

#(M(ϕ)/R) · Unw1 (ϕ)
1 · . . . · Unwk

(ϕ)

k y.

For each component Ki, we have its induced Alexander filtration:

Ai(x)− Ai(y) = nzi(ϕ)− nwi
(ϕ).

This gives a Zℓ-filtration on CFL∞.

As in the case of knots, we can pin down the absolute Alexander gradings by requiring

that they are centered about 0. Similarly, we can construct ĈFL by choosing some Ui to set

to 0 (just one, not all of them!).

As the reader should expect at this point, Ozsváth and Szabó show in [OS08a] that the

Zℓ-filtered chain homotopy type of CFL∞ is independent of the multi-pointed Heegaard

diagram chosen. It is important to note that their proof shows that all of the Ui must act

the same up to chain homotopy. This guarantees that the Zℓ-filtered chain homotopy type

of ĈFL is also an invariant.

While one can take an appropriate homology of this object, the so-called link Floer

homology, we will not be interested in working with this. Instead, we focus on the multi-
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filtered chain homotopy type of CFL∞. This is the object that we will use to build the link

surgery formula to calculate the Heegaard Floer homology of integer surgeries on L.
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CHAPTER 3

Requisite Homological Algebra

We now introduce the relevant preliminaries in homological algebra in order to construct

and utilize the link surgery formula. The material on hypercubes of chain complexes was

developed in [MO10]. The rest can be found in a standard homological algebra textbook

such as [Wei94].

3.1 Mapping Cones

Suppose that f : (V, ∂V ) → (W,∂W ) is a chain map between chain complexes which are

finitely-generated over a field of characteristic 2 (so we can ignore signs). Construct the

mapping cone of f , denoted Cone(f), which has chain groups [V ]1⊕W (we shift the grading

of V up by 1) and differential

∂(v, w) = (∂V (v), f(v) + ∂W (w)).

Fact 3.1.1. Using the obvious long exact sequence in homology, we see that

dimH∗(Cone(f)) = dimH∗(V, ∂V ) + dimH∗(W,∂W )− 2 rk f∗,

where this is an equality for the total dimensions of the homologies, not for individual gradings

(although an analogous formula can obviously be worked out).

While a straightforward linear algebra exercise, the following will be needed for the final

step of the proof of Theorem 1

Lemma 3.1.2. Suppose V1, V2, W1, and W2 are isomorphic finite-dimensional vector spaces

over a field of characteristic 2, each equipped with the differential ∂ ≡ 0. Let Fi,j : Vi → Wj
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and define Θ : V1 ⊕ V2 → W1 ⊕W2 by

Θ(v1, v2) = (F1,1(v1) + F2,1(v2), F1,2(v1) + F2,2(v2)).

Furthermore, suppose that F2,2 is such a quasi-isomorphism between V2 and W2 (or equiva-

lently, an invertible map). Then, the total dimension of H∗(Cone(Θ)) is equal to the total

dimension of H∗(Cone(F1,1 − F2,1F
−1
2,2F1,2)).

Proof. By Fact 3.1.1, the homology of Cone(Θ) has total dimension given by

dim(V1 ⊕ V2) + dim(W1 ⊕W2)− 2 rkΘ.

We study the matrix Θ =

F1,1 F2,1

F1,2 F2,2

. It is easy to see that this matrix has the same

dimension as

X =

F1,1 − F2,1F
−1
2,2F1,2 0

F1,2 F2,2

 ,

which is the sum of the dimensions of each of F1,1−F2,1F
−1
2,2F1,2 and F2,2, the latter of which

is dimV2. Now, we have

dimH∗(Cone(Θ)) = dimV1 + dimW1 + 2dimV2 − 2(rk(F1,1 − F2,1F
−1
2,2F1,2) + dimV2)

= dimV1 + dimW1 − 2 rk(F1,1 − F2,1F
−1
2,2F1,2)

= dimH∗(Cone(F1,1 − F2,1F
−1
2,2F1,2)).

3.2 Hypercubes of Chain Complexes

Definition 3.2.1. An n-dimensional hyperbox of size d = (d1, . . . , dn) ∈ Nn is the following

subset of Nn

E(d) = {ε = (ε1, . . . , εn)| 0 ≤ εi ≤ di}.

If d = (1, . . . , 1), then E(d) is a hypercube. The length of ε, ∥ε∥, is given by
∑

i εi. The

elements of E(d) are called vertices.

There is a natural partial order on E(d) given by ε ≤ ε′ if and only if εi ≤ ε′i for all

i. Two vertices in the hyperbox are neighbors if they differ by an element of {0, 1}n. The
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important example to keep in mind is the n-dimensional hypercube determined by the set of

sublinks of an n-component link L. We may identify the sublinks, M , of L with the vertices

of {0, 1}n by ε(M) = (ε(M)1, . . . , ε(M)n), where

ε(M)i =

 1 if Ki ⊂M,

0 if Ki ̸⊂M.

Definition 3.2.2. An n-dimensional hyperbox of chain complexes of size d is a collection of

chain complexes (Cε∗, D0
ε ) for each ε ∈ E(d) equipped with additional operators Dε′

ε : Cε∗ →

Cε+ε′∗+∥ε′∥−1, for ε
′ ̸= 0 in {0, 1}n; the operators are assumed to be 0 if ε + ε′ is no longer in

the hyperbox. For each ε, these operators are required to satisfy the following relation for

all ε′ ∈ {0, 1}n:

∑
γ≤ε′

Dε′−γ
ε+γ ◦Dγ

ε = 0. (3.1)

The way to think of this is that the Dε′ are chain maps when ∥ε′∥ = 1 and chain

homotopies for ∥ε′∥ = 2. The higher maps are chain homotopies of chain homotopies, etc.

We can construct a single chain complex if the hyperbox of chain complexes is a hyper-

cube. This is called the total complex, defined by

(C∗ =
⊕
ε

Cε∗+∥ε∥, D =
∑
ε,ε′

Dε
ε′).

We will omit the subscript notation from theD from now on, where it will just be assumed

that the map is 0 if the relevant domains and ranges do not match up. Furthermore, we use

the notation ∂ for D0 at any vertex of the hypercube.

Given a filtered chain complex (C,F), we denote the ith page of the associated spectral

sequence by Ei(C,F), or just Ei(C) if the filtration is clear. We will use dCk or dk to denote

the kth differential in the spectral sequence associated to this filtration. The depth of a

filtered complex is the largest difference in the filtration levels of two non-zero elements. If

k is greater than the depth of the filtration, the kth differential in the spectral sequence, dk,

must vanish.
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Fact 3.2.3. Given a filtered chain map f : (C1,F1) −→ (C2,F2), for each i ≥ 0 there exist

filtrations F(i) on Cone(f) such that Ei(Cone(f),F(i)) ∼= Cone(fi), where fi is the induced

map from Ei(C1,F1) to Ei(C2,F2). This tells us that over a field, the dimension of f∞ is

equal to the rank of f∗, the induced map on homology. More generally, if some fi induces

isomorphisms on the Ei pages, then all subsequent fr are isomorphisms for r ≥ i. This

is because a bijective chain map, in this case fi : (Ei(C1), di) −→ (Ei(C2), di), is always a

quasi-isomorphism, so fi+1 is an isomorphism. In this case, Ei+1(Cone(f),F(i)) is acyclic

and thus Cone(f) is acyclic. In particular, f is a quasi-isomorphism. We will heavily rely

on this fact.

Definition 3.2.4. Let C be an n-dimensional hypercube of chain complexes. The ε-filtration

on C is defined by

F(x) = n− ∥ε∥ for x ∈ Cε.

The spectral sequence induced by this filtration is called the ε-spectral sequence.

Note that the induced spectral sequence from the ε-filtration has depth n and thus all

differentials dk vanish for k > n.

Definition 3.2.5. Define an ε-filtered quasi-isomorphism to be an ε-filtered chain map (up

to an overall absolute shift) between the total complexes of two hypercubes of chain com-

plexes which induces quasi-isomorphisms on the (E0, d0) pages of the respective ε-spectral

sequences. It is necessarily a quasi-isomorphism on the total complexes by Fact 3.2.3.

Remark 3.2.6. When working with a hypercube of chain complexes, the filtration will be

assumed to be the ε-filtration unless mentioned otherwise. In this setting, there is always

a canonical isomorphism between (E0(C), d0) and (C, ∂), so we will often not distinguish

between the two.
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CHAPTER 4

Review of the Link Surgery Formula

We now give a brief overview of the link surgery formula of Manolescu and Ozsváth [MO10].

Although we discuss the basics, a working understanding of their paper is really necessary

to follow all of the details in this thesis.

Their machine takes as input a framed link (L,Λ) in a three-manifold Y and outputs a hy-

percube of chain complexes; the homology of the total complex is isomorphic toHF∞(YΛ(L)).

While we only work with HF∞ in this thesis, their surgery formula is done for all flavors

of Heegaard Floer homology. Manolescu and Ozsváth only prove the link surgery formula

for integer homology spheres, but we mark that this holds for a nullhomologous link in any

three-manifold Y , as long as one restricts all of the complexes to account for only torsion

Spinc structures on Y . For convenience, we will only describe the link surgery formula for

integer homology spheres Y , as the changes we need to make when we generalize this will in

fact be easier done than said.

In order to explain the link surgery formula, there is a very large amount of notation

and formalism required simply to state the theorem. Therefore, we will first give a complete

description in the case that L is a knot to give a more concrete set-up. Then we will give

the general formulation. As my training was originally as a probabilist, we will use x ∨ y to

denote max{x, y}.

4.1 The Surgery Formula for Knots

We begin with an oriented knot, K ⊂ Y . We will restate (without proof) a well-known

formula for HF∞(Yn(K)) (compare with Theorem 1.1 of [OS08b]). While the notation here
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may seem cumbersome and excessive, it will provide a useful foundation for the construction

of the general link surgery formula.

Begin with a doubly-pointed Heegaard diagram HK = (Σ,α,β, w, z) for K in Y , and

a Heegaard diagram for Y , H∅ = (Σ,α′,β′, w′), such that the diagrams have the same

underlying surface. Let’s suppose for simplicity that after removing the basepoint z from

HK , we can relate the resulting diagram (Σ,α,β, w) to H∅ by a sequence of handleslides and

isotopies that avoid the basepoints (this means there are no (de)stabilizations necessary);

this gives a sequence of Heegaard diagrams HK,+K . We define HK,−K analogously for the

removal of w.

First, define H(K) = Z and H(K) = H(K) ∪ {−∞,+∞}; also, let H(∅) = 0 and

H(∅) = 0∪{−∞,+∞}. Note that there are two sublinks of K, namely K and ∅. If we write

K or +K, we will mean the knot with the induced orientation from K; −K will refer to the

reversed orientation. Fix s ∈ H(K) and an oriented sublink, M⃗ ⊂ K. Define

pM⃗(s) =


+∞ if M⃗ = +K,

−∞ if M⃗ = −K,

s if M = ∅.

Similarly, define ψM⃗(s) = +∞ if M⃗ = ±K and set ψ∅(s) = s.

We want to construct two complexes for each s ∈ H(K), namely one for H∅ and one for

HK . The first complex is given by

A∞(H∅, pK(s)) = A∞(H∅,+∞) = CF∞(H∅).

The complex for HK will be more complicated and will actually depend on s. Using the

Alexander filtration coming from K we will define a new complex A∞(HK , s). This has the

same chain groups as CF∞(HK): the free module over F[[U,U−1] generated by Tα∩Tβ. The

differential is now twisted by the Alexander filtration:

∂x = D∅x =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y),µ(ϕ)=1

#(M(ϕ)/R) · UEs(ϕ)y,

29



where

Es(ϕ) = (A(x)− s) ∨ 0− (A(y)− s) ∨ 0 + nw(ϕ).

Notice that as s becomes very positive (respectively negative), ∂ is only counting w (respec-

tively z) and this complex is precisely CF∞(Σ,α,β, w) (respectively CF∞(Σ,α,β, z)).

We would like a way to relate the different complexes we have constructed for +K, −K,

and ∅. Define the inclusions I±K
s : A∞(HK , s) → A∞(HK , p±K(s)) by

I±K
s (x) = U (±(A(x)−s))∨0x.

This essentially corresponds to removing z or w from the Heegaard diagram, since s is sent

to ±∞. We set I∅
s to simply be the identity. Recall that we had sequences of Heegaard

diagrams, HK,±K , relating HK with z or w removed to H∅. Each isotopy or handleslide

induces a chain map between Floer complexes by counting triangles as mentioned in the

discussion after Theorem 2.1.3. Composing the induced chain maps induced by this sequence

of moves results in the destabilization maps

D±K
p±K(s)

: A∞(HK , p±K(s)) → A∞(H∅, ψ±K(p±K(s))).

The composition DM⃗

pM⃗ (s)
◦ IM⃗s is denoted ΦM⃗

s ; finally, we have Φ∅
s(x) = ∂(x).

Consider the following complex composed of all the smaller complexes we have built up:

C∞(H, n) =
∏

s∈H(K)

(A∞(HK , s)⊕ A∞(H∅, ψK(s)))

with differential given by

D∞(s,x) = (s+ n,Φ−K
ψM (s)

(x)) + (s,Φ+K
ψM (s)

(x)) + (s,Φ∅
ψM (s)(x)),

for x ∈ A∞(HK−M , ψM(s)). The s in the first component is simply serving as an index to

help indicate the domain and range of the differential. Here we are using the convention

that Φ±K
s (x) = 0 if x ∈ A∞(H∅, ψK(s)) (in other words, if x is not in the domain). We now

state the integer surgery formula for knots in this framework.

Theorem 4.1.1 (Ozsváth-Szabó, c.f. Theorem 1.1 of [OS08b]). The homology of the complex

C∞(H, n) is isomorphic to HF∞(Yn(K)).
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Remark 4.1.2. The result of Ozsváth and Szabó proved this for HF+ and ĤF instead of

HF∞. In fact, this cannot be done for HF∞; the completed coefficients are necessary.

4.2 The General Construction

We now generalize the construction above to arbitrary framed links. For simplicity, we

will always assume that the Heegaard diagrams for links we work with have exactly one

z basepoint for each component, but may (and will) have additional w basepoints in the

diagram not on any component of the link. Furthermore, we require that for the component

Ki, both zi and wi are the basepoints on this component. As mentioned, we will ignore all

details about admissibility of the Heegaard diagrams (see Section 4 of [MO10]).

The starting point will be an oriented link L⃗ in Y with components K1, . . . , Kℓ and a

framing Λ telling us how to perform surgery on L. The framing Λ will be given as the linking

matrix for (L,Λ); diagonal entries are the surgery coefficients and the off-diagonal entries are

the pairwise linking numbers of the components. Note that we may think of the row-vectors

Λi as elements in H1(Y − L). When we are considering oriented sublinks, M⃗ will refer to

an arbitrary orientation, while M with no vector decoration will indicate that M has the

orientation induced by L.

Remark 4.2.1. In what follows, it will sometimes be necessary to readjust the indexing of

the basepoints and components at various steps of the link surgery formula to keep notation

consisten. Again, it is easier to just ignore the issue and have the reader guess how this

should be dealt with rigorously rather than to introduce colorings as defined in Section 4 of

[MO10].

4.2.1 Spinc Structures

As is common in Heegaard Floer theory, we want to see where the Spinc structures appear in

our theory. It will be necessary to also relate the relative Spinc structures defined on Y − L

to those on Y −M for sublinks M ⊂ L.
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Define the affine space H(L) =
⊕ℓ

i=1H(L)i, where

H(L)i =
lk(Ki, L−Ki)

2
+ Z.

We extend these lattices to H(L)i = H(L)i ∪ {+∞,−∞} and H(L) = ⊕ℓ
i=1H(L)i. It is not

hard to see that as lattices Spinc(YΛ(L)) ∼= H(L)/Λ (where /Λ means quotienting out by

the action of each row-vector, Λi, of Λ); it turns out that such an identification can be made

explicitly. Therefore, we will often refer to Spinc structures on YΛ(L) as equivalence classes

[s].

Let I+(L⃗, M⃗) be the set of indices of components of M which are consistently oriented

with L. The remaining indices of components of M form I−(L⃗, M⃗). We define the maps

pM⃗i : H(L)i → H(L)i by

pM⃗i (si) =


+∞ if i ∈ I+(L⃗, M⃗),

−∞ if i ∈ I−(L⃗, M⃗),

si otherwise.

We can then apply the restriction map pM⃗(s) = (pM⃗1 (s1), . . . , p
M⃗
n (sℓ)). This will allow us

to remove the components of M , but still keep track of Spinc structures consistently.

By viewing H(L) as an affine space over H1(Y −L) we can define the map ψM⃗ : H(L) →

H(L −M) by ψM⃗(s) = s − [M⃗ ]/2. In other words, we ignore the components of s coming

from M⃗ , but we must change the remaining components based on their linking with the

components of M . We extend ψM⃗ to go from H(L) to H(L−M) in the obvious way.

4.2.2 The A∞-Complexes

For each s, we can define a new Heegaard Floer complex. Begin with a multi-pointed

Heegaard diagram for L, HL, with n ≥ ℓ basepoints of type w. For each s0 ∈ H(L) and

each M ⊂ L, we will define the complex A∞(HL−M , ψM(s0)). For notation, set s = ψM(s0).

The chain groups will all be the same, freely generated over F[[U1, . . . , Un, U
−1
1 , . . . , U−1

n ] by

Tα ∩ Tβ. The differential

D0 = ∂ : A∞(HL−M , s) → A∞(HL−M , s),
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is given by

∂x =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y),µ(ϕ)=1

#(M(ϕ)/R) · UE1
s1

(ϕ)

1 · . . . · UEn
sn

(ϕ)
n y,

where

Ei
si
(ϕ) =

 (Ai(x)− si) ∨ 0− (Ai(y)− si) ∨ 0 + nwi
(ϕ) if 1 ≤ i ≤ ℓ,

nwi
(ϕ) otherwise.

If si is sufficiently positive (respectively negative), then these counts are again just nwi
(ϕ)

(respectively nzi(ϕ)); also, we must use the obvious conventions for subtracting and adding

±∞ for consistency when si = ±∞. Therefore, setting some si to +∞ (respectively −∞)

is the same thing as forgetting the ith component of the link and having an additional

basepoint wi (respectively zi). We think of zi as functioning as a wi basepoint, since there

is no information about Ki anymore.

4.2.3 Complete Systems

Let (Σ,α,w, z) be a Heegaard diagram for a handlebody, with basepoints w = {w1, . . . , wn}

and z = {z1, . . . , zℓ} on Σ−α.

We will assume that all bipartition functions (Section 6.2 of [MO10]) send everything to

β, so we will not worry about defining α-hyperboxes or keeping track of bipartition functions.

We will ultimately work with a basic system, so this assumption will not be a problem (see

Section 6.7 of [MO10]). Furthermore, we will always be using maximal colorings (Section

4.1 of [MO10]), so we also won’t have to worry about colorings either.

Definition 4.2.2. An empty β-hyperbox of size d is a collection of β multi-curves, {βε}ε∈E(d),

which can be pairwise-related by sequences of isotopies and handleslides in Σ − w − z. A

filling of an empty β-hyperbox H is a choice of elements Θε,ε′ ∈ A∞(Tβε ,Tβε′ ,0) for any

neighbors ε < ε′. These elements must satisfy equation (50) in [MO10]: summing over the

polygon maps associated to each possible sequence Θε1,ε2 ,Θε2,ε3 , . . .Θεm−1,εm in the Heegaard

multi-diagram (Σ,α,βε1 , . . . ,βεm) is identically 0. If ∥ε − ε′∥ = 1, then Θε,ε′ must also

correspond to a cycle generating the top-dimensional homology group of A−(Tβε ,Tβε′ ,0)
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(see Remark 2.1.14). A hyperbox of Heegaard diagrams for L is simply an empty β-hyperbox

equipped with a choice of filling such that each (Σ,α,βε,w, z) is a Heegaard diagram for L.

Remark 4.2.3. Given a fixed s ∈ H(L), we can create a hyperbox of chain complexes from

a hyperbox of Heegaard diagrams for L as follows: for each ε ∈ E(d) we set (Cε(M)
s , D0) to

be A∞(Tα,Tβε(M)
, ψM(s)). If ∥ε′ − ε∥ = 1, then the chain map Dε′−ε

ε consists of counting

triangles in the Heegaard triple (α,βε,βε′) with fixed generator Θε,ε′ . The higher homotopies

are defined similarly; we sum up the corresponding holomorphic polygon counts over the

associated sequence of Θ elements in the Heegaard multi-diagram (Σ,α,βε, . . . ,βε′).

In Lemma 6.6 of [MO10], Manolescu and Ozsváth show that any empty β-hyperbox

admits a filling and thus every empty β-hyperbox can be made into a hyperbox of Heegaard

diagrams.

Given an m-component sublink M⃗ ⊂ L′ ⊂ L and a hyperbox of Heegaard diagrams H

for L′, we construct a hyperbox of Heegaard diagrams rM⃗(H) for L′ −M . This is defined

as follows. Remove zi from each Heegaard diagram in H if i ∈ I+(L⃗, M⃗); if i ∈ I−(L⃗, M⃗),

instead remove wi and relabel the zi as wi.

Definition 4.2.4. A hyperbox for the pair (L⃗′, M⃗) is anm-dimensional hyperbox of Heegaard

diagrams, HL⃗′,M⃗ , for L⃗′ −M .

Let’s study some special cases. If M = ∅, then a 0-dimensional hyperbox for the pair

(L⃗′, ∅) is a single Heegaard diagram, which we denote by HL⃗′
. IfM is a single component K,

then we have HL⃗′,±K is a one-dimensional hyperbox, or in other words, a finite sequence of

Heegaard diagrams. For the integer surgeries formula, this related HK with z or w removed

to H∅; this is exactly the idea that we would like to keep in mind. The hyperbox of Heegaard

diagrams is going to tell us how to define the maps analogous to D±K for arbitrary sublinks

M⃗ .

Given a sublink, M ′ ⊂ M , we will exhibit a hyperbox for (L⃗ −M ′, M⃗ −M ′) inside of

HL⃗,M⃗ . Suppose that HL⃗,M⃗ has size d. The hyperbox for (L⃗−M ′, M⃗ −M ′), which we denote

HL⃗,M⃗(M ′,M), is given by the sub-hyperbox with specified corners d · ε(M ′) and d · ε(M)

(here we are doing componentwise multiplication).
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For knots, we simply pointed out that for large |s|, A∞(HK , s) behaves as though there

is either no z or no w basepoint and can be compared to A∞(H∅, ψK(s)). We now state the

analogous requirement for comparing hyperboxes with certain basepoints removed.

Two hyperboxes of Heegaard diagrams are compatible if HL⃗,M⃗(∅,M ′) ∼= rM⃗−M ′(HL⃗,M⃗ ′
)

for each M ′ a sublink consistently oriented with M⃗ ⊂ L. Similarly, HL⃗,M⃗ and HL⃗−M ′,M⃗−M ′

are compatible if HL⃗,M⃗(M ′,M) ∼= HL⃗−M ′,M⃗−M ′
. Here, the relation ‘∼=’ means that the

hyperboxes of Heegaard diagrams are related by a single isotopy. In other words, there is a

single isotopy of Σ not passing any curves over basepoints, independent of ε, which takes the

Heegaard diagram at the vertex ε on one hyperbox to the Heegaard diagram at the vertex

ε on the other.

Definition 4.2.5. A complete system of hyperboxes of Heegaard diagrams for L, H, is a

collection of hyperboxes, HL⃗′,M⃗ , one for each pair (L⃗′, M⃗), such that for any sublink M⃗ ′ ⊂M

with orientation induced by M⃗ , the hyperbox HL⃗′,M⃗ is compatible with both HL⃗′−M ′,M⃗−M ′

and HL⃗′,M⃗ ′
.

Manolescu and Ozsváth construct complete systems of hyperboxes for any oriented link

in Y in Section 6.7 of [MO10].

Remark 4.2.6. There is an additional technical condition that must be satisfied to be a

complete system in the sense of Manolescu and Ozsváth (Definition 6.27 in [MO10]): it

essentially says that the paths traced out by the basepoints on the Heegaard surfaces while

passing between the different isotopies of diagrams in the hyperboxes must be homotopic to

minimal segments of the components of the link that they sit on - these are part of what are

called a good set of trajectories. This will mostly not be an issue when we are working with

basic systems (see Section 4.3). We will only make a brief remark in passing about this in

Chapter 7.3 when we need to check this condition.
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4.2.4 The Link Surgery Formula

Given a complete system of hyperboxes of Heegaard diagrams, H, for an ℓ-component link

L, we would like to turn

C∞(H,Λ) =
∏

s∈H(L)

∑
M⊂L

A∞(HL−M , ψM(s))

into an ℓ-dimensional hypercube of chain complexes, generalizing the construction for knots.

Somehow, this should extend the construction of a hypercube of chain complexes in Re-

mark 4.2.3. We will set the chain complex at the vertex ε(M) to be

Cε(M) =
∏

s∈H(L)

A∞(HL−M , ψM(s))

with the differential given by the product of the component-wise differentials. While these

chain complexes do not depend on Λ, the higher Dε’s that we will ultimately construct will

depend heavily on this choice.

We now want to generalize the maps Φ±K relating the A∞-complexes. We will construct

a map from A∞(HM , s) to A∞(HM−M ′
, ψM⃗

′
(s)) for each M⃗ ′ ⊂ M and s ∈ H(M). The first

step is to remove the appropriate z or w basepoints in HM by rM⃗ ′ . The result is a Heegaard

diagram for M ′. This action corresponded to I in the integer surgery formula for knots.

We can define the inclusions for a sublink M⃗

IM⃗s : A∞(HL′
, s) → A∞(HL′

, pM⃗(s))

by

IM⃗s (x) =
∏

i∈I+(L,M⃗)

U
(Ai(x)−si)∨0
i

∏
j∈I−(L,M⃗)

U
(sj−Aj(x))∨0
j x.

It is easy to check that these are in fact chain maps. Note that this map is only defined if si

is not ±∞ when i ∈ I∓(L, M⃗); this issue will not arise in the complex we construct.

We would now like to define the destabilizations,

DM⃗

pM⃗ (s)
: A∞(HL′

, pM⃗(s)) → A∞(HL′−M , ψM⃗(pM⃗(s))),
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which are generalizations of theD±K . We first identify rM⃗(HL′
) with its corresponding vertex

in HL′,M⃗ , HL′,M⃗
(0,...,0), by compatibility. The compatibility induces a map from A∞(HL′

, pM⃗(s))

to A∞(HL′,M⃗
(0,...,0), ψ

M⃗(pM⃗(s))), by counting holomorphic triangles coming from the isotopy

of Heegaard diagrams; this map differs from the usual triangle-counting map defined in

Heegaard Floer theory mentioned in Section 2.1.3 in that it counts intersections with the

basepoints by Ei
si
(ϕ) instead of nwi

(ϕ).

Remark 4.2.7. It is shown in Theorem 4.10 of [MO10] that destabilizing by a single compo-

nent is a (grading-preserving) chain homotopy equivalence.

For simplicity, we first assume that HL′,M⃗ is in fact a hypercube. The idea is that each

way of traversing the edges of the hypercube gives a sequence of isotopies and handleslides

from HL′,M⃗
(0,...,0) to HL′,M⃗

(1,...,1). The destabilization map DM⃗ will measure the failure of the induced

triangle maps to commute. The filling of an empty β-hyperbox gives the desired map from

A∞(HL′,M⃗
(0,...,0), p

M⃗(s)) to A∞(HL′,M⃗
(1,...,1), p

M⃗(s)) by counts of holomorphic polygons. Again, the

counts are twisted by Ei
s(ϕ) as opposed to the usual nwi

(ϕ).

If HL′,M⃗ is not a hypercube, but instead has size d, then applying the above maps, DM⃗ ,

will go to HL′,M⃗
(1,...,1), which will not be HL′−M . Instead, we must do what is called compression

to arrive at HL′,M⃗
d·(1,...,1) = HL′−M . If M⃗ = ±Ki for a knot Ki, then we would like a map D̃±Ki

which goes from HL′,±Ki
0 to HL′,±Ki

d . As discussed, there exist maps which count triangles

from A∞(HL′,±Ki

j , p±Ki(s)) to A∞(HL′,±Ki

j+1 , p±Ki(s)) that are induced by the Heegaard moves

relating these Heegaard diagrams. In this case we would simply take the map D̃±Ki to be

the composition of the di triangle-counting maps, where di is the ith component of the size

vector d.

In fact, compression will produce a hypercube of chain complexes, (C̃, D̃ε). The vertices,

(C̃ε, D̃0) for ε ∈ {0, 1}ℓ, will be given by (Cd·ε,D0). As mentioned, ∥ε − ε′∥ = 1 and ε ≥ ε′

in the compressed hypercube, D̃ε−ε′ is the composition of the triangle-counting edge maps

coming from the original hyperbox. However, in general one cannot just take a composition

of the maps from the original hyperbox (a composition of chain homotopies is not a chain

homotopy for the compositions). For illustration, we define the appropriately compressed

37



map for a size (2, 1) hyperbox and refer the interested reader to Section 3.2 in [MO10] for

the general case.

Example 4.2.8. Consider a hyperbox of chain complexes, C, of size (2, 1). We can turn this

into a hypercube of chain complexes, C̃, as follows. Take C̃ε1,ε2 = C2ε1,ε2 and keep D̃0,0 = D0,0.

In other words, the vertices of the compressed hypercube are given by the corners of the

original hyperbox. The map D̃1,0 is given by D1,0 ◦ D1,0, while D̃0,1 = D0,1. So far we

have not done anything different from above, but D̃1,1 will have to be more complicated. A

standard exercise in homological algebra shows that the correct choice for D̃1,1 is

D1,0 ◦D1,1 +D1,1 ◦D1,0.

In the present setting, D1,0 and D0,1 represent triangle-counting maps, while D1,1 counts

holomorphic rectangles.

Once the correct map from A∞(HL′,M⃗
d·ε(∅), p

M⃗(s)) to A∞(HL′,M⃗
d·ε(M), p

M⃗(s)) is defined, we sim-

ply apply our identification of this final Heegaard diagram withHL′−M to get one last triangle

counting map, again by compatibility. The composition of these maps is the destabilization

DM⃗

pM⃗ (s)
.

For each sublink, M⃗ , define the map ΦM⃗
s = DM⃗

pM⃗ (s)
◦IM⃗s . The differential D∞ on C∞(H,Λ)

is now given by

D∞(s,x) =
∑

N⃗⊂L−M

(s+ ΛL,N⃗ ,Φ
N⃗

ψM∪N⃗ (s)
(x)).

Here, x ∈ A∞(HL−M , ψM(s)) and ΛL,N⃗ =
∑

i∈I−(L,N⃗) Λi. Note that the sum is over all

possible oriented sublinks of L−M .

Manolescu and Ozsváth prove that this is indeed the total complex of a hypercube of

chain complexes, where

(D∞)ε(N)(s,x) =
∑
N⃗

(s+ ΛL,N⃗ ,Φ
N⃗

ψM∪N⃗ (s)
(x)),

now summing over orientations of the fixed sublink N .

Recall that we identified Spinc(YΛ(L)) with H(L)/H(L,Λ); we denote the equivalence

class of s in H(L)/H(L,Λ) by [s]. It is important to note that [s+ΛL,N⃗ ] = [s] for any N⃗ ⊂ L.
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Therefore, C∞(H,Λ) splits over Spinc structures on YΛ(L); we denote the subcomplex for

the Spinc structure [s] by C∞(H,Λ, [s]). At this point we remark that C∞(H,Λ, [s]) can be

equipped with a Z/dZ-grading which we will not define (see Section 7.4 in [MO10]). We will

only need to make use of its existence in what follows.

After much work, we are now finally ready to state the link surgery formula!

Theorem 4.2.9 (Manolescu-Ozsváth, Theorem 1.1 of [MO10]). Consider a complete sys-

tem of hyperboxes, H, for L⃗ ⊂ Y and a framing Λ. Given a Spinc structure s on YΛ(L)

corresponding to [s] ∈ H(L)/Λ, there is a relatively Z/dZ-graded F[[U,U−1]-vector space

isomorphism

HF∞
∗ (YΛ(L), s) ∼= H∗(C∞(H,Λ, [s]), D∞),

where d is the usual divisibility of the Spinc structure.

Remark 4.2.10. While the link surgery formula is defined over a ring with many formal

variables Ui, the theorem implies that they become equal in homology. We will see later that

this also implies that the Ui also become equal in the homology of the A∞-complexes.

Note that in the case of a torsion Spinc structure, the grading is a relative Z-grading.

Definition 4.2.11. The (link) surgery formula for a framed link (L,Λ) will be the hypercube

of chain complexes (C∞(H,Λ), (D∞)ε) for some complete system of hyperboxes. A vertex

complex in the link surgery formula is a single complex A∞(HL′
, ψL−L

′
(s)), denoted Cε(L

′)
s .

Often, we will also refer to the total complex of the link surgery formula as the link

surgery formula as well.

Remark 4.2.12. Theorem 4.2.9 implies that the homology of the surgery formula is in fact

independent of all of the choices made along the way.

4.3 Basic Systems

So far we have not required a specific complete system of hyperboxes. The complete system

that we will work with is a basic system of hyperboxes. Instead of recalling the construction,
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we will review only the properties we need and refer the reader to Section 6.7 in [MO10]

for more details. Most importantly, in this section Manolescu and Ozsváth show that there

exists a basic system for every link.

Basic systems have the property that if M⃗ ′ has the induced orientation of M⃗ for a sublink

M ′ ⊂M , then HM⃗,M⃗ ′
consists of a single Heegaard diagram obtained from HM⃗ by removing

the z basepoints corresponding to components of M ′. Let L′ be a sublink with M⃗ ⊂ L⃗′ and

an additional component Kj not contained in M . By compatibility of the complete system,

the size of HL⃗′,M⃗∪+Kj has dj = 0.

Lemma 4.3.1. Is a basic system, if M⃗ has at least two components, one of which is com-

patibly oriented with L, then ΦM⃗ vanishes.

Proof. Let M⃗ ′ be a nonempty sublink of L −Ki, where Ki is consistently oriented with L.

We will show that D+Ki∪M⃗ ′
vanishes. Since Φ+Ki∪M⃗ ′

= D+Ki∪M⃗ ′ ◦ I+Ki∪M⃗ ′
, this will prove

the lemma.

Let’s study destabilization maps more carefully. Destabilizing a link of k components

is given by compression, or in other words, playing the kth standard symphony for some

hypercubical collection (see Section 3 of [MO10]); if one of the edges in the hyperbox that we

are summing over has length 0, the sum over algebra elements in the hypercubical collection

when playing the song will be empty, if k ≥ 2. This is true because when k ≥ 2, the kth

standard symphony contains a harmony with the element i at least once. According to the

definition of playing a song, and thus in compression, in order for there to be nonzero terms

in the formula, the number of harmonies that contain i must be at most di; however, we

have established that this is 0. Therefore, D+Ki∪M⃗ ′
must be 0.
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CHAPTER 5

Why is the Surgery Formula Special for HF∞?

5.1 Quick Preliminaries

It is important to understand what the effect of working with the completed F[[U,U−1]

coefficients is. First, we establish the hopelessness of calculating HF∞(Y, s) for non-torsion

Spinc structures using the link surgery formula, due to this completion in HF∞.

Proposition 5.1.1 (Manolescu-Ozsváth, Equation 4 of [MO10]). Let s be a non-torsion

Spinc structure. Then HF∞(Y, s) is trivial.

We do remark that (uncompleted)HF∞(Y, s) can definitely be non-trivial for non-torsion

Spinc structures, so we are missing out on some information by completing with respect to

U . However, in the case of torsion Spinc structures, we are not!

Proposition 5.1.2 (Manolescu-Ozsváth, page 7 of [MO10]). Let s be a torsion Spinc struc-

ture. Then, we can recover HF∞(Y, s) (with mod 2 coefficients) from HF∞(Y, s).

Proof. Note that F[[U,U−1] is flat over F[U,U−1] (see, for example, Lemma 4.9 of [Lid10]).

Therefore,

HF∞(Y, s) ∼= HF∞(Y, s)⊗ F[[U,U−1].

Since s is torsion, HF∞(Y, s) has a relative Z-grading. This in fact forces HF∞(Y, s) to be

a free F[U,U−1]-module. The result now follows since F[[U,U−1] is a field.
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5.2 The ∞ in HF∞

Let’s study some special properties of the link surgery formula which are unique to the

infinity flavor. Fix a complete system H for the framed link (L,Λ). It turns out that for a

fixed Y , all vertex complexes are quasi-isomorphic.

Proposition 5.2.1. For a component K, The inclusion maps, I±K
s , are quasi-isomorphisms

which preserve the relative Maslov grading of the vertex complexes (and thus lowers the

grading by 1 in the surgery formula). Therefore, Φ±K
s : A∞(HL, s) → A∞(HL−K , ψ±K(s)),

is also a quasi-isomorphism.

Proof. We have already discussed that the inclusions are chain maps. Multiplication by Ui is

an automorphism of F[[U1, . . . , Un, U
−1
1 , . . . , U−1

n ] and thus the inclusions give bijective chain

maps. Such a map is always a quasi-isomorphism. Finally, the preservation of the relative

grading is shown in Section 7.1 of [MO10].

As mentioned in Remark 4.2.7, the destabilizations maps, D±K , also induce grading-

preserving quasi-isomorphisms. This proves the second statement.

Remark 5.2.2. The reason why Proposition 5.2.1 will not hold for the other flavors is that

the inclusion maps I will simply not be quasi-isomorphisms, as multiplication by U is not

an isomorphism for F[[U ]] or F[[U,U−1]/F[[U ]]. Since the inclusions encode the information

coming from the link we are performing surgery on (they see the induced filtrations coming

from CFL∞), the infinity flavor will not retain much geometric information about the link.

We will see that most of the information will be contained in the Milnor triple linking

invariants.

We will use C as shorthand for C∞(H,Λ), or possibly the subcomplex corresponding to

a torsion Spinc structure on YΛ(L) when this will not cause confusion.

Lemma 5.2.3. Suppose that L is a nullhomologous link in Y . For any L′ ⊂ L, the homology

of the complex Cε(L
′)

s = A∞(HL−L′
, s) is isomorphic to HF∞(Y ) as F[[U,U−1] vector spaces.

In particular, all of the Ui become equal in homology.
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Proof. By applying Φ±Kj for all components Kj ⊂ L − L′, we obtain that A∞(HL−L′
, s) is

quasi-isomorphic to A∞(H∅,+∞) = CF∞(H∅) by Proposition 5.2.1. Note thatH∅ is a multi-

pointed Heegaard diagram for Y , so all of the Ui act equally in HF∞(H∅) (see, for example,

Proposition 2.5 in [MOS09]). Therefore, we have that H∗(A
∞(H∅,+∞)) ∼= HF∞(Y ) as

F[[U,U−1] vector spaces.

However, we can generalize this for certain classes of links. The links that we will study

all share a particular property that we would like to focus on.

Definition 5.2.4. A link L = K1 ∪ . . .∪Kℓ is algebraically split if lk(Ki, Kj) = 0 for all i, j.

Suppose that L is algebraically split. Consider a face, F , of any dimension in {0, 1}ℓ. Let

LF be the sublink

LF = {Ki ⊂ L : there exist ε, ε′ ∈ F with εi = 0, ε′i = 1}.

Define H(L,Λ|LF
) to be the sublattice of H(L) generated by the Λi for which Ki is a com-

ponent of LF . Let’s construct the following module

CF =
∏

s∈H(L,Λ|LF
)

∑
ε(M)∈F

A∞(HL−M , ψM(s)).

This is naturally a chain complex, even if it is not a sub- or quotient-complex. This is because

any such face-module is the result of a sequence of subcomplexes of quotient-complexes of

subcomplexes etc. Choose a component Kj that is not in LF such that εj = 0 for all ε ∈ F .

We can construct a new face of the same dimension, Fj, given by

Fj = {ε+ ε(Kj) : ε ∈ F}.

This gives a new face complex CFj
. It is clear that this also inherits the structure of a

hypercube of chain complexes which can be naturally equipped with the ε-filtration.

Lemma 5.2.5. With the previous notation, the face complexes CF and CFj
are ε-filtered

quasi-isomorphic.
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Proof. We now study the map

Γ+Kj =
∏

s∈H(L,Λ|LF
)

Γ+Kj
s =

∏
s∈H(L,Λ|LF

)

∑
L⃗′⊂LF

Φ
+Kj∪L⃗′

ψL′ (s)
: CF −→ CFj

.

This is a chain map by construction (essentially the relation for a hypercube of chain com-

plexes). Consider the filtration on the mapping cone of Γ+Kj given by Fj(x) = −
∑

i ̸=j εi.

The only components that preserve the filtration level will be ∂ and ΦKj . Since the maps ΦKj

are quasi-isomorphisms by Proposition 5.2.1, we obtain quasi-isomorphisms on the (E0, d0)

pages of the ε-spectral sequence and the proof is complete.

Lemma 5.2.5 does not imply that all associated face complexes of the same dimension in

C∞(H,Λ) are quasi-isomorphic. This does, however, tell us how to relate face complexes to

the complexes corresponding to surgery on certain sublinks. Fix a complete system H and

a sublink L′ ⊂ L. There is naturally a complete system H|L′ given by only considering the

hyperboxes of Heegaard diagrams for pairs (L′′,M), where L′′ ⊂ L′. Furthermore, this can

naturally be identified with a subcomplex of C∞(H,Λ) by the following (see Section 11.1 of

[MO10] for details).

Proposition 5.2.6 (Manolescu-Ozsváth). Given a complete system H for L and a sublink

L′, there is a natural identification of C∞(H|L′ ,Λ|L′) with the subcomplex of C∞(H,Λ) given

by CF , where F is the face of {0, 1}ℓ consisting of all ε((L − L′) ∪M) for M ⊂ L′. This

identification is an ε-filtered quasi-isomorphism.

Remark 5.2.7. Lemmas 5.2.3 and 5.2.5 and Proposition 5.2.6 will be used throughout this

thesis, with a strong emphasis on the ε-filteredness of the identifications.

4
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CHAPTER 6

Surgery Equivalence, Cohomology Rings, and HF∞

6.1 Triple Cup Products and Surgery Equivalence

In this chapter, we give the necessary background on the triple cup product form and cup

homology that we will need. Mark in fact first studied cup homology explicitly in order to

better understand HF∞ and Ozsváth and Szabó’s conjecture about its form [Mar08].

Definition 6.1.1. The triple cup product form, µY , for a closed, oriented, connected three-

manifold Y is the three form on H1(Y ;Z)

µY (x
1 ∧ x2 ∧ x3) = ⟨x1 ⌣ x2 ⌣ x3, [Y ]⟩.

Since µY is an odd-degree form, ιµY ◦ ιµY = 0, where ι is contraction. We can use this to

construct a homology theory.

Definition 6.1.2. The cup homology of Y , denoted HC∞(Y ), is the homology of the cup

complex - the chain complex with chain groups

C∞(Y ) = Λ∗(H1(Y ;Z))⊗ F[[U,U−1]

and differential

∂∞Y (α⊗ U j) = ιµY (α)⊗ U j−1.

Here, deg(U) = −2, so that ∂∞Y lowers gradings by 1.

Convention 6.1.3. In our version of cup homology, we are taking triple cup products in inte-

gral cohomology and reducing mod 2. Cup homology was originally defined over Z[U,U−1]
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instead of F[[U,U−1]; the mod 2, completed coefficients are what we need, however, to com-

pare to the homology of the link surgery formula. At this point we also introduce shorthand

notation Λ∗
F/U = Λ∗(H1(Y ;Z))⊗ F[[U,U−1] for the cup complex chain groups.

We first begin with some simple examples.

Example 6.1.4. It is clear that µY = −µ−Y . Therefore, HC
∞(Y ) ∼= HC∞(−Y ).

Example 6.1.5. If Y has b1(Y ) ≤ 2, then µY must be identically 0. In particular, HC∞(Y ) ∼=

Λ∗
F/U .

Therefore, the calculations of HF∞ of Ozsváth and Szabó from Theorem 6.2.8 establishes

Theorem 1 for all three-manifolds with b1 ≤ 2.

Example 6.1.6 (Y = T3). Choose a basis x1, x2, x3 for H1(T3;Z) such that x1 ⌣ x2 ⌣ x3

generates H3(T3;Z). We therefore have µT3(x1 ∧ x2 ∧ x3) = 1. Thus, HC∞(T3) ∼= (Λ1 ⊕

Λ2)⊗ F[[U,U−1].

Given the triple cup product forms for Y1 and Y2, it is easy to construct the triple cup

product form for Y1#Y2:

µY1#Y2 = µY1 ⊗ 1 + 1⊗ µY2 .

This quickly leads to a Künneth formula for cup homology.

Proposition 6.1.7 (Mark, Theorem 2 of [Mar08]). HC∞(Y1#Y2) ∼= HC∞(Y1) ⊗F[[U,U−1]

HC∞(Y2).

We can therefore conclude that the operation of connect-summing with a lens space does

not affect the integral triple cup product form or the isomorphism type of the cup homology

(which we also saw in Corollary 2.1.11 does not affect HF∞). Note that connect-sums

with lens spaces correspond to performing a non-zero surgery on a trivial knot inside of an

embedded B3. Cochran, Gerges, and Orr have completely understood the effects of non-

zero nullhomologous surgeries on the integral triple cup product form, extending the above

observation [CGO00]. We will only state the portions of their theorems that will be used in

the proof.
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Definition 6.1.8. We will say that Y1 and Y2 are surgery equivalent (respectively rationally

surgery equivalent) if they can be related by a sequence of ±1-surgeries (respectively non-

zero surgeries, which can be chosen to be integral) on nullhomologous (respectively rationally

nullhomologous) knots.

Theorem 6.1.9 (Cochran-Gerges-Orr, Corollary 3.5 of [CGO00]). If H1(Y1;Z) ∼= H1(Y2;Z)

is torsion-free, then Y1 and Y2 have isomorphic integral triple cup product forms if and only

if they are surgery equivalent.

Theorem 6.1.10 (Cochran-Gerges-Orr, Theorem 5.1 of [CGO00]). Y1 and Y2 have isomor-

phic integral triple cup product forms if and only if they are rationally surgery equivalent.

Therefore, if Y1 and Y2 are rationally surgery equivalent, then HC∞(Y1) and HC
∞(Y2)

are isomorphic.

Observation 6.1.11. If Y1 and Y2 have isomorphic integral cohomology rings, then the integral

triple cup product form of Y1 is isomorphic to that of Y2 or−Y2 and thus are rationally surgery

equivalent. We do have to work with an orientation - it’s not necessarily true that Y2 and

−Y2 are surgery equivalent.

In the case of H1
∼= Z3 we can explicitly write down the possible surgery equivalence

classes.

Theorem 6.1.12 (Cochran-Gerges-Orr, Example 3.3 of [CGO00]). If H1(Y ;Z) ∼= Z3, there

exists a unique n ≥ 0 such that Y is surgery equivalent to the manifold Mn with Kirby

diagram shown in Figure 6.1.

We will call the component that spirals n times Zn. It is useful to note that M0 =

#3
i=1S

2×S1 andM1 = T3. Furthermore, the triple cup product form onMn has multiplicity

n. Therefore, since we are reducing mod 2, HC∞(M2n) ∼= HC∞(#3
i=1S

2 × S1), which has

dimension 8, and HC∞(M2n+1) ∼= HC∞(T3), which has dimension 6.

Remark 6.1.13. Given an algebraically split link L in S3 and a sublink L′, the compo-

nents of L − L′ are nullhomologous in any surgery on L′. This in particular implies that

H1(S
3
0(L);Z) ∼= Zℓ and is thus torsion-free.
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Zn

0

0

0

Figure 6.1: Surgery presentation of Mn

In fact, there is an explicit way to produce a 3-manifold with H1(Y ) ∼= Zℓ in each surgery

equivalence class by a construction similar to the Mn. In order to do this, we must recall

the connection between the triple cup product form and Milnor triple linking invariants.

We will not give the definition of the Milnor triple linking invariants here, but the necessary

background can be found in [Coc90], for instance. There will also never be any indeterminacy

in our Milnor triple linking invariants, since we are working with algebraically split links.

Given a link L = K1 ∪ . . . Kℓ, we will use the notation µ̄L(i, j, k) to denote the Milnor

triple linking invariants of Ki ∪Kj ∪Kk. Note that this is independent of the ambient link

containing Ki ∪ Kj ∪ Kk as the Milnor triple linking invariants only depend on this three

component sublink (see, for example, [Mur66]).

Remark 6.1.14. Given an algebraically split link, L, the Hom-duals of the meridians of the

Ki, denoted x
i, form a basis for H1(S3

0(L);Z).

The following is due to Turaev; we state only the portion of the theorem which we need.

Theorem 6.1.15 (Lemma 4.2 of [Tur84]). Let L be an algebraically split link in S3 and let

xi be the basis for H1 given by the Hom-duals of the meridians of the components of L. Then

µS3
0(L)

(xi1 ∧ xi2 ∧ xi3) = µ̄L(i1, i2, i3).
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We will make the distinction clear between when the Milnor triple-linking invariants are

taken in Z and when they are taken mod 2 (which we will need to compare to Heegaard

Floer homology) if it affects the validity of the statements.

We can now construct a three-manifold with arbitrary triple cup product form simply by

taking 0-surgery on any algebraically split link with the corresponding Milnor triple linking

invariants. This is not as difficult as it sounds at first: one simply constructs a link L with

the property that each three-component link Ki∪Kj∪Kk with µ̄L(i, j, k) equal to the desired

triple cup value, say µi,j,k - that just means choosing Ki ∪Kj ∪Kk to be isotopic to the link

used for the surgery presentation of Mµi,j,k in Figure 6.1.

We saw in Theorem 6.1.10 that cup homology is unchanged by rational surgery equiv-

alence. We would like to prove a similar statement for HF∞. Once proven, we can reduce

the calculation to manifolds obtained by 0-surgery on algebraically split links, which we will

see to be a much easier class of spaces to work with.

6.2 HF∞ is Determined by the Cohomology Ring

With the framework of surgery equivalences of three-manifolds set up, we will be able to

prove that HF∞ is completely determined by the integral cohomology ring of Y (essentially

the rational surgery equivalence type) for torsion Spinc structures. Rather than calculating

the effects on HF∞ of the associated sequence of surgeries via the rational surgeries formula

of Ozsváth and Szabó [OS11], we will instead do more work on the topological level so that

we only need to understand the behavior of HF∞ for surgeries on nullhomologous knots.

6.2.1 Nullhomologous Surgeries and HF∞

Convention 6.2.1. Given Y1 and Y2, we say they have the same HF∞ if HF∞(Y1, s1) ∼=

HF∞(Y2, s2) for each pair of torsion Spinc structures on Y1 and Y2.

We will make use of the following proposition, made as an observation in Section 4.1 of

[OS03c]. We give a proof of this to get some practice with the link surgery formula, as these
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techniques will be used throughout. For notation, we set ΨK
s = Φ+K

s + Φ−K
s .

Proposition 6.2.2 (Ozsváth-Szabó). Fix a torsion Spinc structure s0 on Y and a nonzero

integer n. Let sK ∈ Spinc(Yn(K)) agree with s0 on Y −K. Then we have that HF∞(Y, s0)

and HF∞(Yn(K), sK) are isomorphic.

Proof. Again, for notational convenience, we assume that Y is an integer homology sphere.

Let H be a complete system for K in Y . Furthermore, we work with n > 0; the proof for

n < 0 is essentially the same. Fix a Spinc structure, sK , that agrees with s0 on Y −K. The

idea is to show that for some s, H∗(A
∞(HK , s)) ∼= HF∞(Yn(K), sK). Since Proposition 5.2.1

implies that H∗(A
∞(HK , s)) is isomorphic to HF∞(Y, s0), this will complete the proof.

Fix an s whose mod n equivalence class, [s], corresponds to sK . Recall that Theorem 4.2.9

tells us H∗(Cone(Ψ
K
n , [s]))

∼= HF∞(Yn(K), sK). Consider the subcomplex of Cone(ΨK
n , [s])

given by

C>s =
∏
s′>s

s′≡s (mod n)

A∞(HK , s)⊕
∏
s′>s

s′≡s (mod n)

A∞(H∅).

We claim that this complex is acyclic. Equip C>s with the filtration F>((s
′,x)) = −s′ for

x ∈ A∞(HK , s′) or (s′,x) ∈ A∞(H∅). The only components of the differential that do not

lower the filtration level are the vertex differentials ∂ and the map Φ+K . Therefore, the

associated graded splits as a product of complexes of the form

(A∞(HK , s′), ∂)
ΦK

s′−→ (A∞(H∅), ∂).

By Proposition 5.2.1, these are all acyclic. Therefore, C>s is acyclic as well.

Construct the subcomplex

C<s =
∏

s′≤s−n
s′≡s (mod n)

A∞(HK , s′)⊕
∏
s′≤s

s′≡s (mod n)

A∞(H∅).

Note that if we take Cone(ΨK
n , [s]) and remove C<s and C>s, we are left solely with the

vertex complex A∞(HK , s), since there can be only one element of H(K) in the interval

(s− n, s] that corresponds to sK . Thus, the proof will be complete if we can show that C<s
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is also acyclic. This follows by the same argument as before, except now we use the filtration

F<(x) =

 s′ if x ∈ A∞(HK , s′)

s′ − n if x ∈ A∞(H∅).

This time the associated graded splits into the complexes

(A∞(HK , s′), ∂)
Φ−K

s′−→ (A∞(H∅), ∂).

Again, by Proposition 5.2.1, these are acyclic. Thus, C<s is acyclic.

Corollary 6.2.3. If Y1 and Y2 are surgery equivalent, and the torsion Spinc structures s1

and s2 agree away from the surgery region, then HF∞(Y1, s1) is isomorphic to HF∞(Y2, s2)

as Spinc-graded F[[U,U−1]-vector spaces. In particular, if H1(Y1;Z) is torsion-free, then Y1

and Y2 have the same HF∞.

6.2.2 Eliminating Torsion

While, it’s obviously not true that every three-manifold is presented by 0-surgery on an

algebraically split link (consider RP 3 for instance), we can prove a weaker statement which is

sufficient for us. Since H1(S
3
0(L);Z) is torsion-free, denote the unique torsion Spinc structure

on S3
0(L) by s0.

Proposition 6.2.4. For each three-manifold Y , there exists an algebraically split L such

that µY ∼= µS3
0(L)

and HF∞(Y, s) ∼= HF∞(S3
0(L), s0) are isomorphic for all torsion s.

First, we need an algebraic lemma to change our surgery presentations around appropri-

ately; the proof can be found at the end of [Lid10].

Lemma 6.2.5 (Manolescu). Let Y be a closed, oriented 3-manifold. There exist finitely

many integers m1, . . . ,mk, all greater than 1, such that there exists an algebraically split

surgery presentation in S3 for Y#L(m1, 1)# . . .#L(mk, 1).

Proof of Proposition 6.2.4. By applying Lemma 6.2.5, we may connect-sum Y with the nec-

essary lens spaces such that the resulting manifold is presented by S3
Λ(L∗), where L∗ is an
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algebraically split link. Connect sums with lens spaces do not change the integral triple

cup product form (Proposition 6.1.7) or HF∞ (Corollary 2.1.11). Since each surgery in the

presentation will now be performed on a nullhomologous knot, Proposition 6.1.10 (respec-

tively Corollary 6.2.3) shows that the triple cup product form (respectively HF∞) of S3
Λ(L∗)

will be the same as the 3-manifold obtained by surgery on the sublink of L∗ consisting of

components that are 0-framed. This sublink is the desired L.

Proof of Proposition 1.2.1. Theorem 6.1.9, Proposition 6.1.10, Proposition 6.2.2, and Propo-

sition 6.2.4 prove that the integral triple cup product form determines HF∞ for any torsion

Spinc structure. A little more work allows the statement for the integral cohomology ring.

Note that if we apply Proposition 6.2.4 to both Y1 and Y2, then the manifolds produced

by this proposition, S3
0(L1) and S3

0(L2), will also have isomorphic cohomology rings. Fur-

thermore, we have not affected the integral triple cup product forms or HF∞ (except for

the number of torsion Spinc structures, all of which yield isomorphic HF∞). Thus, we may

assume Y1 and Y2 do not have torsion in H1. Either the triple cup product form of Y1 is

isomorphic to that of Y2 or that of −Y2. If Y2, then Y1 is surgery equivalent to Y2 and we

are done. On the other hand, if Y1 and −Y2 have isomorphic triple cup product forms, then

we can apply Corollary 3.8 of [CGO00] to see that Y2 is surgery equivalent to −Y2, since H1

is torsion-free. This completes the proof.

Remark 6.2.6. In light of the work of this chapter, for the rest of the proof of Theorem 1 we

will assume that Y is presented as 0-surgery on an algebraically split link unless otherwise.

We will not hesitate to replace one manifold that we are trying to check Theorem 1 on with

one which has isomorphic HC∞ and the same HF∞ to make a calculation more convenient;

this will not always be pointed out to the reader because it will become a common occurrence.

We have seen that if two links algebraically split links L and L′ have the same Milnor triple

linking invariants, the corresponding 0-surgeries will have the same HF∞ and isomorphic

HC∞; therefore, we will analogously switch L out for L′ as well.

Convention 6.2.7. When we are studying S3
0(L) for algebraically split links, all components

will have framing 0, so we will not distinguish between L and the surgered manifold, or
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between b1(S
3
0(L)) and the number of components of L. Thus, we will make statements like

surgery equivalent links to mean that the manifolds obtained by 0-surgery on each link are

surgery equivalent. Also, s0 will always refer to the unique torsion Spinc structure on S3
0(L).

As we are about to begin our journey towards the proof of Theorem 1 in the next chapter,

we kick things off with what was originally known about HF∞ for three-manifolds with small

first Betti number. For exercise with the link surgery formula, we encourage the reader to

try to prove the following using the link surgery formula.

Theorem 6.2.8 (Ozsváth-Szabó, Theorem 10.1 of [OS04c]). If b1(Y ) ≤ 2, then HF∞(Y, s) ∼=

Λ∗(H1(Y ;Z))⊗ F[[U,U−1] for torsion s. In particular, dimHF∞(Y, s) = 2b1(Y ).
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CHAPTER 7

The Case of b1 = 3

It is the goal of this chapter to do the case of b1 = 3. In order to establish Theorem 1 on

manifolds with b1(Y ) = 3, the work of the previous chapter shows that it suffices to verify

it on each of the manifolds Mn in Figure 6.1. Before doing this, we must discuss in more

detail the universal coefficients spectral sequence for HF∞ mentioned in Corollary 2.1.17.

Remark 7.0.9. We will see in Chapter 8 that the ε-spectral sequence associated to the link

surgery formula essentially mimics the universal coefficients spectral sequence. For this

reason, using the universal coefficients spectral sequence is not necessary, but it will help to

motivate where some of the calculations in the next chapter come from.

7.1 Universal Coefficients for HF∞

In particular, we must analyze the gradings in this spectral sequence. More specifically, the

universal coefficients spectral sequence for HF∞(Y, s), for s torsion and Z-coefficients, iden-

tifies Ei,∗
2 , for i even, with Λ∗(H1(Y ;Z)); this spectral sequence respects the Z[U ]-module

structure, as multiplication by U induces an isomorphism between Ei,∗
2 and Ei−2,∗

2 . Fur-

thermore, Ei,∗
2 vanishes for odd i. This implies that dk : Ei,j

k −→ Ei+k−1,j−k
k automatically

vanishes if k is even and thus the E2 and E3 pages are isomorphic. This gives the identifi-

cation of E3 with C∞
∗ (Y ) as chain groups. The difficult part is analyzing the differentials in

this spectral sequence. Again, we transfer this over to HF∞ by replacing everything with

F[[U,U−1].

The easiest case for us to study is M0, which is simply #3
i=1S

2 × S1. We saw in Re-

mark 2.1.14 that HF∞ has dimension 8, which is exactly the dimension of Λ∗(H1(M0;Z)).
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Therefore, all of the differentials d3 and higher in the universal coefficients spectral sequence

must vanish. Note that this corresponds exactly to what we expect for Theorem 1, since

µM0 = 0.

7.2 Example: T3

The main goal of this section is to understand the simplest nontrivial example, M1. From

Figure 6.1, we can represent Mn by 0-surgery on the knot Zn in S2 × S1#S2 × S1 and

therefore will apply the link surgery formula. For M1, this in fact gives 0-surgery on the

Borromean rings, which is T3. As mentioned, Ozsváth and Szabó showed HF∞(T3) has

dimension 6 (Theorem 2.1.19). Analyzing this result via the surgery formula will allow us

to deduce valuable information for the remaining Mn. But first, let us specialize to the case

of b1 = 3 for the universal coefficients spectral sequence.

Let’s study the differentials dk : Ei,j
k −→ Ei+k−1,j−k

k . Since each Ei,j
2 is a copy of

Λj(H1(Y ;Z)) ⊗ F[[U,U−1], the E2
∼= E3 page is supported entirely in the region 0 ≤ j ≤

b1(Y ). Therefore, for b1 = 3 the spectral sequence must collapse after d3. In fact, the only

possibly nontrivial component of d3 maps from Λ3 ⊗ F[[U,U−1] to Λ0 ⊗ F[[U,U−1], each of

which has dimension 1. Thus, calculating d3 for b1 = 3 is equivalent to finding HF∞. If

dimHF∞ = 8, then d3 ≡ 0, and if dimHF∞ = 6, then d3(ϕ
1 ∧ ϕ2 ∧ ϕ3) = 1, for a basis

ϕ1, ϕ2, ϕ3 of H1(Y ;F). It is clear that these are the only possibilities.

For T3, Theorem 1 predicts that d3 : Λ3
F/U −→ Λ0

F/U should be nonzero, since µT3 is

non-trivial. This is exactly true, since dimHF∞(T3, s0) = 6. We would like to see what

conditions this forces on the link surgery formula.

For 0-surgery on a knot, the only s ∈ H(K) that we have to consider is s = 0 (since this

corresponds to the torsion Spinc structure). Furthermore, the case of s = ±∞ will be made

clear by the Heegaard diagram we are working with (whether it has a z or a w). Therefore,

we will often omit the s-notation from the surgery formula in this chapter.

We fix a basic system of hyperboxes of Heegard diagramsH forK in S2×S1#S2×S1. We
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use the notation A∞
w , A∞

z , A∞
z,w for A∞(r+K(HK), s0), A

∞(r−K(HK), s0), and A∞(HK , s0, 0)

respectively (where s0 means restricting the generators in the link surgery formula to those

that correspond to the unique torsion Spinc structure on S2 × S1#S2 × S1 - this is the

necessary step to apply the link surgery formula to manifolds with b1 > 0). We can study

the maps on homology induced by the inclusion maps, I+K
∗ : H∗(A

∞
z,w) → H∗(A

∞
w ). There

is also the analogous map I−K
∗ . Finally, there is the induced destabilization map, D−K

∗ :

H∗(A
∞
z ) → H∗(A

∞
w ). Since we are using a basic system, we can make natural identifications

between the intersection points in HK , r+K(HK) and r−K(HK). Therefore, the inclusion

maps can be written purely in terms of multiplication by powers of U , and D−K is computed

from handleslides and isotopies taking r−K(HK) to r+K(HK) (transforming the diagram

with w removed to the diagram with z removed). Even better, the map D+K
∗ is given by the

identity.

Theorem 4.2.9 tells us to calculate the homology of the mapping cone of

ΨK = (Φ+K + Φ−K) : A∞
z,w → A∞

w

to recover HF∞(T3). However, since F[[U,U−1] is a field, we really only need to know the

rank of Φ+K
∗ + Φ−K

∗ . By applying Lemma 5.2.3 to S2 × S1#S2 × S1, we have

H∗(A
∞
z,w)

∼= H∗(A
∞
z ) ∼= H∗(A

∞
w ) ∼= HF∞(S2 × S1#S2 × S1) ∼= Λ∗

F/U .

The universal coefficients spectral sequence guarantees that for any nullhomologous knot in

S2 × S1#S2 × S1, the map ΨK
∗ can only be rank 0 or 1 (corresponding to the dimension of

HF∞ being 6 or 8).

Knowing the dimension of HF∞(T3), we would like to understand the map D−Z1
∗ :

H∗(A
∞
z ) → H∗(A

∞
w ) in detail.

The best way to understand the calculation is via matrix representatives, so we must pick

appropriate bases for H∗(A
∞
z,w), H∗(A

∞
z ), and H∗(A

∞
w ). The idea is to pick a basis for one

of these three complexes and then push it over using maps which are easy to understand.

Define the map ΘK : A∞
z −→ A∞

w by ΘK(x) = UA(x)x, where A(x) is the Alexander filtration

coming from K.
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Proposition 7.2.1. ΘK ◦ I−K = I+K.

Proof. Add the powers of U together.

Proposition 7.2.1 shows that ΘK must be a chain map and, like the inclusions and

destabilizations, this is a quasi-isomorphism.

Since we are working with a torsion Spinc structure on S2 × S1#S2 × S1, there exists an

absolute Q-grading on CF∞(S2 × S1#S2 × S1, s0) which we can induce on Aw and Az. We

recall from Remark 4.2.7 that these gradings are preserved under D±K . We can therefore

study the effects of ΘK on absolute gradings.

Lemma 7.2.2. ΘK preserves the absolute Maslov grading.

Proof. We study ΦK+Φ−K = (ΘK+D−K)◦I−K on the chain level. Since this is a component

of the differential in the link surgery formula, the map has homogeneous degree. We know

that the bijective chain map I−K preserves relative gradings by Proposition 5.2.1. Factoring

out I−K shows ΘK + D−K must be a homogeneous map. However, as D−K preserves the

absolute grading, ΘK must preserve absolute gradings as well.

We can choose ordered F-bases (x1, x2) for H0(A
∞
z ) and (y1, y2) for H1(A

∞
z ) (elements

in grading 0 and grading 1 respectively). The key to this choice is that the pairs live

in adjacent Maslov gradings. This clearly gives an ordered F[[U,U−1]-basis for the entire

module. Furthermore, we use ΘK
∗ to push this basis over to H∗(A

∞
w ) to obtain a basis with

the same properties. By Remark 4.2.7, D−K
∗ is represented by a matrix (we keep the same

ordering between the bases) of the form


a b 0 0

c d 0 0

0 0 e f

0 0 g h

 a, b, c, d, e, f, g, h ∈ F.

Choose a basis for H∗(A
∞
z,w) such that I−K

∗ can be represented by the identity. The next

thing that we would like to understand is the matrix representative for I+K
∗ .
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Lemma 7.2.3. With respect to these bases, I+K
∗ is represented by the identity.

Proof. Because the representative for I−K
∗ is the identity, Proposition 7.2.1 guarantees IK∗

and ΘK
∗ will be represented by the same matrix. However, we know that ΘK

∗ is represented

by the identity by construction.

We now specialize to the case of K = Z1. Consider the collection of matrices

X =




1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,


1 0 0 0

1 1 0 0

0 0 1 0

0 0 0 1

 ,


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 ,


1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1

 ,


1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 1

 ,


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




Proposition 7.2.4. The map D−Z1

∗ is represented by a matrix in X.

Proof. As discussed, the rank of Φ+Z1
∗ + Φ−Z1

∗ must be precisely 1 in order for HF∞(T3, s0)

to be dimension 6. Since ΦZ1
∗ + Φ−Z1

∗ is represented by
a+ 1 b 0 0

c d+ 1 0 0

0 0 e+ 1 f

0 0 g h+ 1

 ,

exactly three of the two-by-two blocks must be identically 0 and the other must have rank

1. It is easy to check that each of the matrices in X have this property. We now rule

out all other possibilities. Either

a b

c d

 or

e f

g h

 must be the identity. Without loss of

generality, we assume

e f

g h

 =

1 0

0 1

 . Now, the possible blocks

a b

c d

 ∈ GL2(F) that
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don’t appear in matrices in X are

1 0

0 1

 ,

0 1

1 1

, and

1 1

1 0

 . Direct calculation shows

that Φ+Z1
∗ +Φ−Z1

∗ would have either rank 0 or rank 2 in any of these cases, which would be a

contradiction. Repeating the arguments with the top-left and bottom-right blocks switched

discounts all other matrices not in X.

Remark 7.2.5. We note that Proposition 7.2.4 does not apply to every nullhomologous knot

in S2 × S1#S2 × S1. Doing 0-surgery on the split unknot, Z0, to get #3
i=1S

2 × S1 , which

has dimension 8, shows that Φ+Z0
∗ = Φ−Z0

∗ . This in fact means that after these choices of

bases, D−Z0
∗ must be the identity.

After choosing bases analogously, it remains to analyze D−Zn
∗ to yield the calculation for

Mn (n ≥ 2). To do this, we rephrase the computation as an iteration of what we’ve done for

T3 using a technique we call composing knots.

7.3 Composing Knots and the Calculation for Mn

Recall that given a Heegaard diagram (Σ,α,β), any two points on Σ − α − β determine

a knot, K, in Y . Now, suppose there are instead 3 distinct points, z, u, and w. Then the

pairs of basepoints, (z, u), (u,w), and (z, w), determine three knots. We want to consider

Heegaard diagrams containing this information. We will ignore concerns with orientations,

since these will not arise in our setting. Finally, knots will always be nullhomologous.

Definition 7.3.1. A Heegaard diagram for (K,K1, K2) in Y is a Heegaard diagram for Y ,

(Σ,α,β), equipped with 3 distinct basepoints z, u, and w in Σ − α − β such that (z, w),

(z, u), and (u,w) determine K, K1, and K2 respectively.

Proposition 7.3.2. Given a Heegaard diagram for (K,K1, K2), we have D−K
∗ = D−K2

∗ ◦

D−K1
∗ .

Proof. D−K1 is induced by a sequence of Heegaard moves taking (Σ,α,β, z) to (Σ,α,β, u)

and D−K2 comes from a sequence of moves from (Σ,α,β, u) to (Σ,α,β, w). Therefore, the
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composition of isotopies and handleslides goes from (Σ,α,β, z) to (Σ,α,β, w) and is chain

homotopic to D−K .

Remark 7.3.3. In this setup, the concatenation of a good set of trajectories from z to u

and from u to w gives a good set of trajectories from z to w, so we do not need to worry

about the technical condition mentioned in Remark 4.2.6. This is what guarantees that the

composition of D−K1 and D−K2 is actually chain homotopic to D−K .

Thus, since most of the complexity in the knot surgery formula for HF∞ comes from the

map D−K
∗ , having a Heegaard diagram for (K,K1, K2) and an understanding of each D−Ki

∗

should make the computation more manageable. This is the approach we will use for the

rest of the chapter. However, we must first establish that such diagrams exist and derive a

way of relating this information to the Mn.

Lemma 7.3.4. Suppose K1 and K2 are knots in Y where K1 ∩ K2 is an embedded con-

nected interval. Then if K = (K1 ∪K2)−K1 ∩K2 (see Figure 7.1), there exists a Heegaard

diagram for (K,K1, K2).

K1 −K2 K1 ∩K2 K2 −K1

Figure 7.1: Each simple cycle corresponds to a knot

Proof. The idea follows the construction of Heegaard diagrams for knots in [OS06c]. Begin

with a self-indexing Morse function, h : S3 −→ [0, 3], with exactly two critical points. Note

that traversing a flow from index 0 to index 3 and then another flow in “reverse” gives a knot.

Thus, three flow lines give three knots as in the statement of the lemma (see Figure 7.2).
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"" �� ||
0

Figure 7.2: Three flow lines forming three knots

Choose a small neighborhood, U , of three flow lines between the two points. Identify a

neighborhood, N , of K1 ∪K2 in Y with U such that each knot gets mapped to the union of

two of the three flows. We will now use h to refer to the induced Morse function on N , with

index 0 and index 3 critical points, p and q. Extend h to a Morse function f on all of Y such

that it is still self-indexing. If there were no other index 0 or index 3 critical points, then we

could construct the desired Heegaard diagram for (K,K1, K2) simply by choosing the three

basepoints to be where the three flow lines pass through the Heegaard surface, f−1(3/2).

The idea is to cancel any critical points of index 0 or 3 outside of N , without affecting f |N .

If such critical points exist, we rescale the Morse function in a neighborhood of p and q so

as to not affect the critical points, but make h(p) = −ϵ and h(q) = 3+ ϵ (and thus the same

for f). Now, remove the balls {f > 3+ϵ/2} and {f < −ϵ/2} around the index 0 and index 3

critical points from N , to obtain a cobordism W : S2 −→ S2. In the terminology of [Mil65],

this is a self-indexing Morse function on the triad (W,S2, S2). Since each manifold in the

triad is connected, we know that for each index 0 critical point, there is a corresponding index

1 with a single flow line traveling to the index 0. This pair can be canceled such that the

Morse function will not be changed outside of a neighborhood of the flow line between them.

We want to see that by perhaps choosing a smaller neighborhood, N ′, of the knots inside of

N , this flow line does not hit N ′. This must be the case because if no such neighborhood

existed, by compactness, this flow line would have to intersect K1 or K2. But these are flows

of f themselves, so the two lines cannot intersect.

Hence, we can alter f to remove the index 0/1 pair without affecting f |N ′ . By repeating

this argument and an analogous one for index 2/3 pairs, we can remove all of the critical
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points of index 0 and 3 in W in this fashion. This says, after rescaling the function on

the neighborhoods of p and q back to their original values, the new Morse function is self-

indexing on Y with exactly one index 0 and one index 3 critical point, and furthermore, still

agrees with h when restricted to a small enough neighborhood of the knots. This is exactly

what we want to give the desired Heegaard diagram.

Remark 7.3.5. One can introduce isotopies to this diagram such that the three resulting

doubly-pointed Heegaard diagrams are all admissible.

Consider the link in the Kirby diagram for Mn, Figure 6.1. Since Zn is the knot which

we will apply the surgery formula to, we would like a way to decompose Zn and apply

Lemma 7.3.4.

Proposition 7.3.6. For each n, there exists a Heegaard diagram for (Zn, Z1, Zn−1) in S
2 ×

S1#S2 × S1.

Proof. Let us first study Figure 7.3. Here we have attached an arc to Zn at two points (the

large black dots). This creates two additional knots as follows. Note that one can travel two

different paths from the bottom attachment point to the top attachment point; we may either

wind in an upward spiral once around the two vertical strands or follow the path that begins

by winding downward n − 1 times. Beginning at the top attachment point, following the

attaching arc to the bottom point, and finally traversing one of the two winding paths back

to the top point gives either Z1 or Zn−1. We are now in the position to apply Lemma 7.3.4

to Zn, Z1, and Zn−1.

When applying the surgery formula for T3, it was critical to use the map ΘK
∗ to make

all of the inclusions consistently identity matrices. The following lemma will allow us to do

this consistently for triples (K,K1, K2).

Lemma 7.3.7. Consider a Heegaard diagram for (K,K1, K2). Then ΘK = ΘK2 ◦ΘK1.
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Z1

Zn−1

Zn 0

0

Figure 7.3: Splitting of Zn into Zn−1 and Z1

Proof. The Alexander gradings for the three knots in the diagram satisfy

AK(x)− AK(y) = nz(ϕ)− nw(ϕ)

= nz(ϕ)− nu(ϕ) + nu(ϕ)− nw(ϕ)

= AK1(x)− AK1(y) + AK2(x)− AK2(y)

for each ϕ ∈ π2(x, y). Therefore, the relative Alexander grading for K is the sum of the

relative Alexander gradings for K1 and K2. Thus, the absolute Alexander grading for K

is the sum of the absolute Alexander gradings for K1 and K2 plus an additional constant.

Therefore, ΘK = U ℓ ·ΘK2 ◦ΘK1 , for some ℓ ∈ Z. By Proposition 7.2.2, the Θ maps preserve

absolute Maslov gradings, so we know that ℓ = 0.

Fix a Heegaard diagram for (Zn, Z1, Zn−1) as given by Proposition 7.3.6. We now will

choose the proper bases as in the T3 example. Figure 7.4 will provide a useful visual reference

for the following proposition.

Proposition 7.3.8. Following Section 7.2, choose bases for H∗(A
∞
z,u), H∗(A

∞
z ), and H∗(A

∞
u ),

such that the inclusions and ΘZ1
∗ are given by the identity and the map D−Z1

∗ is a matrix in

X. Now, choose bases for H∗(A
∞
w ) and H∗(A

∞
u,w) such that the inclusions and Θ

Zn−1
∗ are the

identity. Then, there exists a basis for H∗(A
∞
z,w) such that I−Zn

∗ , IZn
∗ , and ΘZn

∗ are given by

the identity.
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Figure 7.4: The setup that appears in Proposition 7.3.8

Proof. Clearly we can fix a basis for H∗(A
∞
z,w) such that I−Zn

∗ is the identity. Now, we

combine the fact that IZn
∗ = ΘZn

∗ ◦ I−Zn
∗ with ΘZn

∗ = Θ
Zn−1
∗ ◦ΘZ1

∗ = I (Lemma 7.3.7), to get

the required result.

Remark 7.3.9. These constructions could be generalized to any number of basepoints, but

we only need three basepoints for our purposes.

Although D−Zn−1
∗ is not necessarily represented by an element of X in this diagram, we

do know that it comes in the form of A ⊕ B for A,B ∈ GL2(F), since D−Zn−1
∗ preserves

absolute gradings.

Remark 7.3.10. While the individual matrix representations may seem to depend on the

choice of Heegaard diagram, if D−K
∗ = I, this is independent of the diagram as long as

the bases are chosen such that IK∗ = ΘK
∗ = I. A similar statement based on the work of

Section 7.2 can be made about D−K
∗ being in X regardless of diagram.

We are now ready for the calculation of the maps D−Zn
∗ for all n.

Theorem 7.3.11. Begin with a diagram for (Z2n+1, Z1, Z2n). After a choice of bases given

by Proposition 7.3.8 we have that D−Z2n
∗ is the identity and D−Z2n+1

∗ is a matrix in X for all

n ≥ 0.

Proof. For n = 0, we know that the map D−Z0
∗ must be the identity in order to have

dimHF∞(#3
i=1S

2 × S1) = 8. Similarly, from our computation for T3, we have seen that

D−Z1
∗ is in X. Thus, the base case is established.
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For the induction step, note that as soon as D−Z2n
∗ is the identity, we can compose with

D−Z1
∗ to get that D−Z2n+1

∗ is of type X. Thus, we only need to find D−Z2n
∗ .

By hypothesis, D−Z2n−1
∗ ∈ X. The first case we consider is if D−Z1

∗ and D−Z2n−1
∗ were to be

represented by two different elements ofX when considering bases chosen for (Z2n, Z1, Z2n−1).

If this were to happen, then the product of the matrices, which gives a representative for

Φ−Z2n
∗ , has the property that its sum with the identity, ΦZ2n

∗ , has rank at least 2. However,

this is impossible by the dimension bounds coming from the universal coefficients spectral

sequence. Therefore, both D−Z2n−1
∗ and D−Z1

∗ are represented by the same matrix. But,

every element of X squares to the identity. D−Z2n
∗ must then be the identity.

We are now ready to do the base case for Theorem 1.

Theorem 7.3.12. Theorem 1 holds forMn for each n ≥ 0. In particular, dimHF∞(Mn) = 6

if n is odd and 8 if n is even.

Proof. We apply Theorem 7.3.11 to see that the rank of Φ−Z2n
∗ + ΦZ2n

∗ is equal to that of

Φ−Z0
∗ + ΦZ0

∗ . Therefore, HF∞(M2n, s0) and HF∞(M0, s0) are isomorphic. Similarly, we see

that Φ
−Z2n+1
∗ + Φ

+Z2n+1
∗ and Φ−Z1

∗ + Φ+Z1
∗ have the same rank. Thus, HF∞(M2n+1, s0) ∼=

HF∞(M1, s0). Similarly, we have that µM2n
∼= µM0 and µM2n+1

∼= µM1 , where we have

reduced the integral triple cup product form mod 2. Therefore, HC∞(M2n) ∼= HC∞(M0)

and HC∞(M2n+1) ∼= HC∞(M1).

As we have already seen that Theorem 1 holds for M0 = #3
i=1S

2 × S1 and M1 = T3, the

proof is complete.
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CHAPTER 8

Manifolds with Higher b1

We have now reached the meat of the proof. It remains to prove that for an algebraically

split link L in S3, if b1(S
3
0(L)) ≥ 4 (equivalently |L| ≥ 4), thenHF∞(S3

0(L))
∼= HC∞(S3

0(L)).

While we are ultimately going to induct on b1, we will in fact have to induct on a complexity

of algebraically split links for a fixed b1. The induction on this complexity will be very similar

to the method of composing knots. For this chapter, we will always assume that our links

are in S3.

Here is an outline of the rest of the proof of Theorem 1, which consists primarily of two

different steps. The main idea is to use the link surgery formula to calculate the Heegaard

Floer homology of S3
0(L). The first step uses the standard 0-framed, algebraically split

surgery presentation and analyzes the first few pages of the ε-spectral sequence for the link

surgery formula. In fact, as we travel through this spectral sequence, which converges to

E∞ ∼= HF∞(S3
0(L)), we will actually see that (E3, d3) ∼= (C∞(S3

0(L)), ∂
∞
S3
0(L)

). This spectral

sequence will mimic the behavior of the universal coefficients spectral sequence.

The second step of the proof is thus to show that the higher differentials in the ε-spectral

sequence vanish. In order to do this, we actually use a different presentation of S3
0(L) where

we can see a component of L, decomposed into two knots as in the method of composing

knots. This presentation allows us to write the link surgery formula as an amalgamation of

two link surgery formulas for links which are inductively “less complex”. Knowing that the

higher differentials vanish for these simpler links will allow us to conclude that the higher

differentials vanish for L as well.
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8.1 The First Two Differentials in the ε-Spectral Sequence

Now, let H be a basic system for L = K1 ∪K2 ∪ . . . ∪Kℓ, an algebraically split link in S3

with ℓ components (we will allow ℓ < 4 as well). We will denote by Y = S3
0(L); we also

denote the framing by Λ0, which is simply the 0-matrix, since the pairwise linking is 0. We

can then induce the ε-filtration on C = C∞(H,Λ0,0), the subcomplex corresponding to the

link surgery formula for unique torsion Spinc structure on Y . Note that the equivalence class

of elements in H(L) for each Spinc structure on Y has only one element. Furthermore, we

will suppress the orientations of Y and L, as this can be seen to have no effect on any of the

calculations.

Remark 8.1.1. The complex C∞(H,Λ0,0) has only one A∞-complex at each vertex of {0, 1}ℓ;

in fact, by Lemma 5.2.3, we can see the E1 page must have dimension 2ℓ over F[[U,U−1].

For comparison, recall that rkZ Λ
∗(H1(Y ;Z)) = 2ℓ.

With this notation set, we are ready to study the first pages of the ε-spectral sequence.

Proposition 8.1.2. The d1 and d2 differentials in the ε-spectral sequence for C vanish.

Proof. We prove this by induction on ℓ. In C there can only be one possible value of ψM(s)

(modulo ∞’s) for each sublink, namely 0 ∈ H(L−M); therefore, we will omit this from the

notation. Let us first show that d1 ≡ 0.

As a warm-up, if ℓ = 0, the depth of the ε-filtration is 0. Therefore, we must have that

d1 = 0. Now, for ℓ = 1, we see that

HF∞(Y ) ∼= F[[U,U−1]⊕ F[[U,U−1]

by Theorem 6.2.8. Again,

E1
∼= H∗(C0, ∂)⊕H∗(C1, ∂) ∼= F[[U,U−1]⊕ F[[U,U−1],

so d1 = 0.

Suppose d1 vanishes for any link with ℓ components and let L have (ℓ+ 1)-components.

We use the notation di1 to represent the component of the differential d1 which maps from
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E1(C)ε to E1(C)ε+ε(Ki) (not the d1 differential on Ci). Now, for some j ̸= i, let’s consider the

subcomplex Cj =
⊕

εj=1 Cε, which calculates HF∞ for 0-surgery on the ℓ-component sublink

L′ = L−Kj by Proposition 5.2.6. Note that the inclusion of Cj into C is ε-filtered. It is easy

to see that the map from E1(Cj) to E1(C) is injective.

By our induction hypothesis, d1 is identically 0 for the complex associated to an ℓ-

component sublink and thus d
Cj
1 = 0 by Proposition 5.2.6. Therefore, di1|Cj = 0. We now

want to see that di1 vanishes on the quotient complex

E1(C/Cj) =
⊕
εj=0

E1(C)ε.

Since di1 has no nonzero component from E1(C/Cj) to E1(Cj), this will show that di1 is

identically 0 everywhere. We can in fact identify C/Cj with Cj, simply by applying the

ε-filtered quasi-isomorphism

Γ+Kj =
∑

M⃗⊂L−Kj

Φ+Kj∪M⃗

from Lemma 5.2.5. Therefore, di1 is 0 on E1(C/Cj). Repeating this argument for various i

and j, we obtain d1 ≡ 0.

In fact, we can repeat this argument to prove that d2 is identically 0 as well. For ℓ = 0

and 1, this is trivial simply by the depth of the filtration. Thus, we begin our analysis with

ℓ = 2. As before, from Theorem 6.2.8 we have thatHF∞(Y ) has dimension 4 over F[[U,U−1].

However, we know that the total dimension of the E1 page must in fact be 2ℓ = 4. Therefore,

d2 must vanish.

Now, for the induction step, we first notice that E2
∼= E1 by the previous argument that

d1 = 0. Therefore, we have the same injectivity properties on the E2 pages coming from

the inclusion of the faces Cj. We obtain d2 = 0 on Cj again by including the corresponding

complex for the sublink L − Kj, which has vanishing d2 by induction. For C/Cj, we have

a statement similar to the d1 case, which is that di1,i22 = 0 for i1, i2 ̸= j, where di1,i22 is

the component of d2 which maps from E2(C)ε to E2(C)ε+ε(Ki1
)+ε(Ki2

). This follows by again

identifying C/Cj with Cj via Γ+Kj . After doing this for different values of j, we see that

di1,i22 = 0 for all pairs (i1, i2) with i1 ̸= i2. This shows d2 vanishes.
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8.2 The d3 Differential

By Proposition 8.1.2, we have a natural isomorphism E1
∼= E2

∼= E3. However, this still

does not yet look like the exterior algebra found in C∞
∗ . This next lemma creates the image

we desire. To motivate this, recall that the E1 term has dimension 2ℓ, which is exactly the

total dimension of the exterior algebra of an ℓ-dimensional vector space. We use Λ∗
F/U(L) to

denote Λ∗
F/U(S

3
0(L))

∼= Λ∗(Zℓ)⊗ F[[U,U−1].

We must take the word ‘natural’ with a grain of salt. As the link surgery formula only

establishes a relative grading on C∞(H,Λ0,0), we simply fix a choice of absolute grading on

this complex. We will keep everything fixed with respect to this choice of absolute grading, in

the sense that inclusions of complexes corresponding to sublinks should respect this absolute

grading. In this sense the identifications we will make will be ‘natural’ with respect to these

inclusions.

Proposition 8.2.1. There is a natural identification E1(C) ∼= E2(C) ∼= E3(C) ∼= Λ∗
F/U(Y ).

Proof. Because d1 = d2 = 0, we need only make the identification with the exterior algebra

for the E1 term. Recall from Lemma 5.2.3 that each vertex complex in C has homology

isomorphic to HF∞(S3) ∼= F[[U,U−1] (there is only one s associated to each Cε by our choice

of link and Spinc structure). Therefore, the term Ep
1(C), the subspace of E1(C) consisting of

elements in filtration level p, of the ε-spectral sequence will simply be
(
ℓ
p

)
copies of HF∞(S3).

Choose a basis {xi} for H1 such that xi corresponds to the Hom-dual of the meridian

of Ki. First, identify 1 in Λ∗
F/U(L) with the generator θ1 of H∗(C(1,...,1), ∂) ∼= HF∞(S3) with

fixed absolute grading 0. Let θKi
∈ H∗(Cε(K), ∂) be given by (Φ+Ki

∗ )−1(θ1) . We identify

θKi
with xi. This process can be repeated for any sublink, by applying (Φ+Ki

∗ )−1 to θ1 for

each component Ki in the sublink M to obtain the element θM . We associate θM to the

corresponding wedge of xi, where we include xi if and only if Ki ⊂ M . By Equation (3.1),

the various Φ+Ki
∗ commute; therefore, we see the order does not matter in this construction.

Note that each exterior algebra element lives in the filtration level corresponding to the

number of times we have applied (Φ+K
∗ )−1. Since the destabilization maps lower the relative
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grading on C by 1 (these are components of the differential), we can see that each θKi
has

grading 1 and wedge product is additive on grading; furthermore, U still has grading -2.

This therefore establishes the relatively-graded isomorphism of E1(C) with Λ∗
F/U(L).

We have not needed much about the complete system H until now. At this point, we will

make use of the fact that we are working with a basic system. Recall that if f is a filtered

chain map, we denote the induced map between the Ek pages as fk.

Remark 8.2.2. By Lemma 4.3.1, we have that Γ+Ki = Φ+Ki in a basic system. Therefore,

all of the identifications of Proposition 8.2.1 are equivariant with respect to the maps Γ+Ki

used in Lemma 5.2.5. In particular, we have seen that the map Γ+Ki
k = Φ+Ki

k is contraction

by [Ki] (the dual of xi) on Ek(C)ε for all 1 ≤ k ≤ 3. However, since Γ+Ki preserves the

ε-filtration levels exactly (up to absolute shifts), this implies that Γ+Ki
k will be the map

induced by contraction by [Ki] for all k. Under this identification, we will say contraction

by [Ki] even when it is the induced map in higher pages of the ε-spectral sequence. This is

a very important fact that we will use.

Lemma 8.2.3. Under these identifications, d3 : Λ
i
F/U(L)⊗ U j → Λi−3

F/U(L)⊗ U j−1.

Proof. Recall that d3 lowers filtration level by 3, but it only lowers grading by 1. In other

words, d3 will take α⊗1, for α ∈ Λi⊗1, to β ∈ Λi−3⊗Uk for some k. By our identifications,

the grading will be lowered by 3 + 2k; therefore, k must be −1. This shows

d3 : Λ
i ⊗ U j → Λi−3 ⊗ U j−1.

Proposition 8.2.4. Under these identifications, the d3 differential is given by

α⊗ U j 7→ ιµY (α)⊗ U j−1. (8.1)

Proof. We will use the same argument as in Proposition 8.1.2 to calculate d3: study how it

acts on faces and add up the components.

By Proposition 8.2.1, we have identified the E3 page with Λ∗
F/U by associating H∗(Cε, ∂)

with spanF[[U,U−1]{xi1 ∧ . . . ∧ xik}, where εim = 0 for 1 ≤ m ≤ k = ∥ε∥. We now can easily
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see how the subcomplexes and quotient complexes given by the faces of the hypercube fit

into this picture via subspaces and quotient spaces of Λ∗
F/U . Let’s prove that d3 is given by

Equation (8.1).

Again, we use the notation di1,i2,i33 for the components of the d3 differential that map from

E3(C)ε to E3(C)ε+ε(Ki1
)+ε(Ki2

)+ε(Ki3
) and let xi1 be the basis for H1(Y ) given by Hom-duals

of the meridians of Ki. Consider the three-form, µi1,i2,i3 , on H1(Y ) given by µi1,i2,i3(x
k1 ∧

xk2 ∧ xk3) = µ̄Ki1
∪Ki2

∪Ki3
(Ki1 , Ki2 , Ki3) (mod 2) if {i1, i2, i3} = {k1, k2, k3} and 0 otherwise.

We claim that

µY =
∑

i1<i2<i3

µi1,i2,i3 =
∑

i1<i2<i3

µS3
0(Ki1

∪Ki2
∪Ki3

). (8.2)

The value of µY on xi1 ∧ xi2 ∧ xi3 is given by µ̄L(Ki1 , Ki2 , Ki3) by Theorem 6.1.15. As

mentioned earlier, since Ki1 ∪Ki2 ∪Ki3 is a sublink of L, the Milnor triple linking invariants

agree for these three indices, and the claim is shown.

A similar argument using Lemma 5.2.5 as in Proposition 8.1.2 in conjunction with Re-

mark 8.2.2 shows that di1,i2,i33 will be given by interior multiplying by µY if it behaves this

way for links with 3 components; this again follows by the injectivity of the subcomplex

inclusions on the E3 terms. Thus, it suffices to establish that for ℓ = 3, the d3 differential is

given by ιµY ⊗ U−1.

By Theorem 7.3.12,

dimHF∞(S3
0(L)) = 8− 2 · ⟨x1 ⌣ x2 ⌣ x3, [Y ]⟩.

Proposition 8.1.2 established that the E3 page has dimension 8. By the depth of the filtration,

all differentials after d3 must vanish. Furthermore, d3 can only be nonzero on E3
3 . Each of

E3
3 and E0

3 has dimension 1, generated by x1∧x2∧x3 and 1 respectively in Λ∗
F/U . Therefore,

we may conclude that d3 sends x1 ∧ x2 ∧ x3 ⊗ U j to ⟨x1 ⌣ x2 ⌣ x3, [Y ]⟩ · 1 ⊗ U j−1. This

shows that d3 is exactly what we want for b1 = 3, completing the proof.

We have therefore completed the first step in our two step plan. In particular, we have

shown that the E4 page of the spectral sequence is isomorphic to HC∞. Since

dimHC∞ = dimE4 ≥ dimE∞ = dimHF∞,
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we have successfully proved half of Theorem 1! We now set out to prove the opposite

inequality.

Remark 8.2.5. For k = 2 and 3, the (Ek, dk) pages of the ε-spectral sequence have been chain

complex isomorphic (not just quasi-isomorphic) to the conjectured form of the corresponding

pages of the universal coefficients spectral sequence (the d3 differential is the only unknown

piece of these first pages). Ozsváth and Szabó conjecture all higher differentials vanish in

the universal coefficients spectral sequence, and this is what we will prove for the ε-spectral

sequence.

8.3 Composing Knots and Complexities of Links

In order to prove Theorem 1, it is necessary to proceed inductively. However, we must induct

on something more complicated than simply b1. We will assume that Theorem 1 holds for

b1 ≤ ℓ − 1, or equivalently, that the higher differentials in the ε-spectral sequence vanish.

Note that this is automatic for ℓ ≤ 4. From here, we induct on the set of algebraically split

links with ℓ components.

Recall that if the triple-cup product forms of two manifolds obtained by 0-surgery on an

algebraically split link are isomorphic (or equivalently, if some associated algebraically split

links have the same Milnor triple-linking invariants), then they are in fact surgery equivalent.

We let L1

⨿
L2 indicate that the two links are separated by an embedded 2-sphere (and

both links will always be nonempty when using this notation). Begin with an ℓ-component

algebraically split link L.

Example 8.3.1. Suppose that µ̄L(1, 2, 3) = n and all µ̄L vanish (in Z) for all other triples of

indices. Let L′ = K1 ∪ K2 ∪ K3. Then L has the same Milnor triple linking invariants as

L′ ⨿(L− L′). Theorem 2.1.7 gives

HF∞(S3
0(L))

∼= HF∞(S3
0(L

′))⊗HF∞(S3
0(L− L′)).

We have also seen that the analogous formula for HC∞ also holds (Proposition 6.1.7).

Therefore, given Theorem 1 for 0-surgery on all links with at most ℓ− 1 components, these
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connect-sum formulas prove that Theorem 1 holds for 0-surgery on L as well.

With this example in mind, we define a complexity of L with the idea that a reduction

in complexity makes the link closer, in spirit, to being geometrically split. This complexity

is given by

c(L) = #{(i, j, k) : µ̄L(i, j, k) ̸= 0, 1 ≤ i < j < k ≤ ℓ}. (8.3)

If c(L) ≤ 1, then we have seen that L is surgery equivalent to a geometrically split link.

We can also understand what happens for higher c-complexity links.

Lemma 8.3.2. For any algebraically split L, then either L is surgery equivalent to some

L1

⨿
L2 or there exists some component Ki which has µ̄L(i, j, k) nonzero (in Z) for at least

two different pairs (j, k) (there is some slight reordering on the triples of indices that may be

necessary for this to make sense, but this is just a notational concern).

Proof. Fix a component Ki. If µ̄L(i, j, k) = 0 for all j and k, then L is surgery equivalent to

Ki

⨿
(L−Ki). Therefore, assume there are j and k such that µ̄L(i, j, k) ̸= 0. Now, if no other

µ̄L(i, ·, ·), µ̄L(j, ·, ·), or µ̄L(k, ·, ·) are nonzero, then L is surgery equivalent to L′ ⨿(L − L′),

where L′ = K1 ∪K2 ∪K3. Otherwise, we are in the alternate condition.

For a fixed b1 we will induct on the c-complexity (we also have assumed inductively that

Theorem 1 holds for smaller c-complexity). In light of this, we are really only concerned

with links with c-complexity at least 2 which are not surgery equivalent to geometrically

split links; to deal with the geometrically split cases, we simply apply our connect-sum

formulas and our inductive knowledge for smaller b1.

First we motivate why we are inducting on link complexities: the main step to finishing

the proof of Theorem 1 will be the following.

Theorem 8.3.3. Suppose K = K ′#K ′′ is a component of L. If Theorem 1 holds for

(L−K) ∪K ′ and (L−K) ∪K ′′, then it will also hold for L.

In light of Lemma 8.3.2 and our goal of Theorem 8.3.3, we have the following proposition.
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Proposition 8.3.4. Suppose c(L) ≥ 2 and that L is not surgery equivalent to any L1

⨿
L2.

Let Kr be a component with at least two different pairs (s, t) such that µ̄L(r, s, t) are nonzero.

Then, there is an ordered, ℓ-component link L̃ with the following two properties. First,

µ̄L(i, j, k) = µ̄L̃(i, j, k) for all i, j, k. Second, there is a knot K ⊂ L̃ which we can express as

a band-sum K ′#K ′′ such that c((L̃−K) ∪K ′) < c(L) and c((L̃−K) ∪K ′′) < c(L).

Before proving Theorem 8.3.3 or Proposition 8.3.4, we will see how to complete the proof

of Theorem 1.

Proof of Theorem 1. For fixed b1 = ℓ, we induct on c. As discussed, we can apply connect-

sum formulas to reduce to the case where c(L) ≥ 2 and L does not decompose as two geomet-

rically split links. Apply Proposition 8.3.4 to replace L by L̃. Since µ̄L(i, j, k) = µ̄L̃(i, j, k),

we know that L and L̃ will be surgery equivalent. It now suffices to prove Theorem 1 for L̃.

Decompose the component K as K ′#K ′′. Since (L̃ −K) ∪K ′ and (L̃ −K) ∪K ′′ have

strictly smaller c-values, Theorem 1 holds for each of these. Apply Theorem 8.3.3 to complete

the induction on c.

We now recall a helpful theorem of Cochran describing the µ̄-invariants of connect sums.

Theorem 8.3.5. (Theorem 8.13 of [Coc90]) Suppose L and L′ are n-component links that

are separated by an embedded 2-sphere and satisfy µ̄L(J) = µ̄L′(J) = 0 for multi-indices J of

length at most n. Construct L#L′ by connecting each pair of components Ki and K
′
i with a

band that passes through the separating sphere exactly once. Then µ̄L#L′(I) = µ̄L(I)+ µ̄L′(I)

for any multi-index I of length at most n+ 1.

In particular, given two algebraically split links L and L′, we have that µ̄L#L′(i, j, k) =

µ̄L(i, j, k) + µ̄L′(i, j, k).

Proof of Proposition 8.3.4. By hypothesis and Lemma 8.3.2, we may consider two distinct

pairs of indices (j1, k1) and (j2, k2) such that µ̄L(r, j1, k1) and µ̄L(r, j2, k2) are nonzero for L.

Construct an ℓ-component algebraically split link L′ with an ordering on the components

such that
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µ̄L′(a, b, c) =

 µ̄L(a, b, c) if (a, b, c) ̸= (r, j2, k2),

0 if (a, b, c) = (r, j2, k2).

Such a link can be explicitly constructed by repeated applications of “Borromean braiding”

(see Corollary 3.5 of [CGO00] for more details).

Next, isotope a small arc from both K ′
j2
and K ′

k2
(components of L′) out and away from

the rest of the diagram for L′, and isotope the arc from K ′
j2
such that it creates µ̄L(r, j2, k2)

twists. We now take an unknot, U , and thread it through the twists of K ′
j2
and through K ′

k2

as in Figure 8.1. By construction, µ̄U∪K′
j2
∪K′

k2
(U,K ′

j2
, K ′

k2
) = µ̄L(r, j2, k2).

K ′
j2

K ′
k2

U

µ̄L(r, j2, k2)
twists

Figure 8.1: Threading the unknot to recreate µ̄L(r, j2, k2)

We will choose K ′ to be K ′
r in L

′ and K ′′ = U . From this we can see

µ̄K′′∪(L′−K′)(K
′′, K ′

j2
, K ′

k2
) = µ̄L(r, j2, k2)

and all other µ̄K′′∪(L′−K′)(K
′′, ·, ·) vanish. We now want to see that the band sum K =

K ′#K ′′ yields a link L̃ = K ∪ (L′ −K ′) with the same Milnor triple linking numbers as L.

By Theorem 8.3.5, it suffices to prove that L̃ can be constructed by connecting two

geometrically split ℓ-component links by bands between pairs of components which intersect

the separating 2-sphere exactly once such that the sums of the µ̄-invariants for these two

links add up to µ̄L.
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We choose our two links as follows. The first link will be L′. The other link is an

ℓ-component link, L∗, consisting of two split sublinks: a three-component sublink with

µ̄L∗(r, j2, k2) = µ̄L(r, j2, k2) and an (ℓ − 3)-component unlink, so all other Milnor triple

linking numbers vanish. Clearly the values of µ̄ add up as expected and Figure 8.2 demon-

strates how we can connect them to obtain L̃ with K = K ′#K ′′. Note that L∗
r is what

creates K ′′ in L̃.

L′ L∗

L∗
r

L∗
j2

L∗
k2

K ′
k2 K ′

j2

K ′
j1

K ′
k1

K ′
r

S2

Figure 8.2: Expressing L̃ as the connect-sum of L′ and L∗

By construction, both c(K ′ ∪ (L̃ − K)), which equals c(L′), and c(K ′′ ∪ (L̃ − K)) are

strictly less than c(L). This completes the proof.

8.4 Chopping Down the Link Surgery Formula

Recall that our goal is to prove Theorem 8.3.3. We now construct a complex which contains

all of the Heegaard Floer information of K ′ and K ′′ simultaneously, where we have identified

K = K ′#K ′′ as the component to reduce complexity at from Proposition 8.3.4. With this

we will be able to use our inductive knowledge for K ′ and K ′′ to produce the desired result.
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The way that this is done is via a standard Kirby calculus trick (see, for example, [Sav99]);

we express 0-surgery on K as 0-surgery on three components: K ′, K ′′, and an unknot U

geometrically linking each once as shown in Figure 8.3. Note that if we remove U from our

link, the result is algebraically split.

U

0

K ′

0

K ′′

0

Figure 8.3: An equivalent diagram for 0-surgery on K ′#K ′′

Thus, if our original link L (and thus L̃) has ℓ components, then the corresponding link

that we would like to study will have ℓ + 2. As further abuse of notation we will now call

this link L, since 0-surgery results in the same manifold. The framing Λ will change as

well due to the algebraic linking that has been introduced. Reorder the components in such

a way that K ′, K ′′, and U are the first, second, and third components (K1, K2, and K3)

respectively. This three-component sublink will arise often, so we will refer to it as W . We

see that Λ1 = Λ2 = (0, 0, 1, 0, . . . , 0) and Λ3 = (1, 1, 0, . . . , 0). Therefore, the equivalence

class in H(L) corresponding to the torsion Spinc structure s0 will be a 2-dimensional lattice

spanned by Λ1 and Λ3; in fact, s0 = [(1
2
, 1
2
, 1, 0, . . . , 0)]. We again pick a basic system H for

L. Since there is non-trivial linking in our link L, the complex C∞(H,Λ, [(1
2
, 1
2
, 1, 0, . . . , 0)])

will be infinitely-generated. Again, the link surgery formula tells us that the homology of

this complex will calculate HF∞.

Using arguments similar to those in Proposition 6.2.2, we will induce the appropriate

filtrations and remove acyclic complexes to cut down the size of C∞(H,Λ, [(1
2
, 1
2
, 1, 0, . . . , 0)])

to a smaller finite-dimensional object. Before continuing, we remark that the reader in-
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terested in the details of this section should first try to read the example in Section 8.2

of [MO10], where HF− for surgeries on the Hopf link are calculated via the link surgery

formula; the arguments here will be similar. Let’s also recall the simplified notation used

in that computation. We let ε1ε2 . . . εℓ+2s represent the complex A∞(HL−M , ψM(s)) where

ε1 . . . εℓ+2 = ε(M). To shorten notation further in our setting, we will use ε1ε2ε3∗(s1,s2,s3) to

denote the hypercube of chain complexes at (s1, s2, s3, 0, . . . , 0) with ε1, ε2, ε3 fixed, but all

remaining εi free. We are setting the last components of s to be 0 since this corresponds

to choosing the unique torsion Spinc structure on S3
0(L − W ). For example, by Proposi-

tion 5.2.6, 111∗(s1,s2,s3) is in fact the surgery formula for the unique torsion Spinc structure

on S3
0(L−W ). We will often omit the s from the Φ maps.

From now on, {si > r} will refer to the complex generated by all ε1ε2ε3∗(s1,s2,s3), where

si > r; note that (s1, s2, s3) is recording an index in H(W ), which doesn’t depend on whether

a componentKi has been destabilized and thus we do not apply the relevant ψ maps. Similar

notation, such as {s1 > r, ε2 = 0}, is also clear.

Proposition 8.4.1. The link surgery complex, C = C∞(H,Λ, [(1
2
, 1
2
, 1, . . . , 0)]), for 0-surgery

on all components of L with Spinc structure s0 is quasi-isomorphic to

001∗( 1
2
, 1
2
,1)

Γ+K1
//

Γ+K2

))RR
RRR

RRR
RRR

RRR
101∗( 1

2
, 1
2
,1) 001∗( 1

2
, 1
2
,0)

Γ−K1
oo

Γ−K2

uulll
lll

lll
lll

ll

011∗( 1
2
, 1
2
,1)

Proof. Induce the filtration on C defined by

F3(x) = −(s1 +
∑
i̸=3

εi)

for x ∈ ε1ε2ε3∗(s1,s2,s3). The components of the differential that preserve filtration level are

given by ∂ and Φ+K3 . Consider the subcomplex {s1 > 1
2
}. The associated graded with

respect to the F3-filtration restricted to this subcomplex splits as a product of two-step

complexes of the form

(ε1ε20ε4 . . . εℓ+2s, ∂)
Φ+K3

// (ε1ε21ε4 . . . εℓ+2s, ∂).
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Since the maps Φ+K3 are quasi-isomorphisms by Proposition 5.2.1, we have that the asso-

ciated graded on {s1 > 1
2
} is acyclic. By Fact 3.2.3, this implies that all of {s1 > 1

2
} is

acyclic as well. Therefore, C is quasi-isomorphic to the quotient complex C/{s1 > 1
2
}, which

is simply {s1 ≤ 1
2
}. We then induce a similar filtration,

G3(x) = s1 −
∑
i

εi.

The differentials preserving this filtration level will now be ∂ and Φ−K3 . We consider the

subcomplex, C ′, of {s1 ≤ 1
2
} defined by

{s1 <
1

2
, ε3 = 0} ⊕ {s1 ≤

1

2
, ε3 = 1}

(this is everything except {s1 = 1
2
, ε3 = 0}). The associated graded for G3 restricted to this

subcomplex now splits as a product of complexes of the form

(ε1ε20ε4 . . . εl+2s, ∂)
Φ−K3

// (ε1ε21ε4 . . . εl+2(s+Λ3)
, ∂).

Similarly, since the maps Φ−K3 are quasi-isomorphisms, C ′ is acyclic. We are content to

remove this and study only the remaining terms, namely {s1 = 1
2
, ε3 = 0}. It is best to

visualize the remaining terms, which we think of as the remains after collapsing the link

surgery formula in the Λ3-direction, via Figure 8.4.

We can further reduce this complex in a similar way: by collapsing in the Λ1-direction

(which also happens to be the Λ2-direction). Consider the filtration,

F1(x) = −(s3 +
∑
i ̸=1

εi),

on the subcomplex {s3 > 1} of {s1 = 1
2
, ε3 = 0}. The associated graded for F1 on this

subcomplex splits as a product of complexes of the form

(0ε20ε4 . . . εl+2s, ∂)
Φ+K1

// (1ε20ε4 . . . εl+2s, ∂).

This complex is acyclic, as the Φ+K1 are quasi-isomorphisms. After removing this sub-

complex, we are left with {s3 ≤ 1}. We must tread carefully to chop the remaining complex

down further. Consider the filtration,

F2(x) = s3 − 2ε1 −
∑
i̸=1

εi.
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...

000∗ 100∗ 110∗ (1
2
, 1
2
, 1)

010∗

000∗ 100∗ 110∗ (1
2
, 1
2
, 0)

010∗

000∗ 100∗ 110∗ (1
2
, 1
2
,−1)

010∗

xΛ1=Λ2 ...

Figure 8.4: The complex {s1 = 1
2
, ε3 = 0}

This odd-looking filtration is defined such that Φ−K1 lowers the filtration level, but Φ−K2

does not, even though Λ1 = Λ2. We now study the subcomplex

{s3 = 1, ε1 = ε2 = 1} ⊕ {s3 = 0, ε1 + ε2 ≥ 1} ⊕ {s3 ≤ −1}.

This subcomplex is best seen by the boxed elements in Figure 8.5 (where all of the terms

that the vertical ellipses are representing should also be boxed).

The associated graded splits into a product of complexes analogous to the ones defined

previously. Since Φ−K2 is a quasi-isomorphism, we may again remove this acyclic complex

in our study.

We can now see that the remaining complex is the same as the one in the statement

of the proposition, except for the fact that each of the ε3 is 0 instead of 1. However, we

can simply apply Γ+K3 to the remaining complex; by Lemma 5.2.5, this map is an ε-filtered

quasi-isomorphism to the complex in the statement of the proposition.

Remark 8.4.2. By Proposition 5.2.6, we have an identification of the complex ε1ε2ε3∗( 1
2
, 1
2
,1)
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000∗ 100∗ 110∗ (1
2
, 1
2
, 1)

010∗

000∗ 100∗ 110∗ (1
2
, 1
2
, 0)

010∗

000∗ 100∗ 110∗ (1
2
, 1
2
,−1)

010∗

xΛ1=Λ2 ...

Figure 8.5: The boxed terms form the final acyclic complex
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with ε1ε2∗(0,0), where ε1ε2∗ refers to the chain complex sitting inside of the surgery formula

for L −K3 with fixed ε1 and ε2 and all other εi free. This identification respects all of the

Γ±Ki maps as well, so from now on we will replace the ε1ε2ε3∗ terms with ε1ε2∗. We will

still use Γ±Ki to denote the corresponding maps between the complexes for the restricted

complete systems for L − K3. Furthermore, we will omit the s from the ε-complexes for

notation.

8.5 The Γ±Ki Maps

Fix any algebraically split link M . There is a natural inclusion S3 − M → S3 − M ′ for

M ′ ⊂M , inducing

H1(S3
0(M

′);Z) ↪→ H1(S3
0(M);Z),

which acts as inclusion on the basis of Hom-duals to meridians of components of M ′. We

will use this fact implicitly in what follows.

Recall from the previous section that the link L−K3 = K1∪K2∪L′ that we are focusing

on, which is again algebraically split. Note that we have done away with x3. Let’s study

the ε-filtration on the link surgery formula for K1 ∪K2 ∪L′ as well as on each face complex

ε1ε2∗. Since Γ+Ki
3 is contraction by [Ki] by Remark 8.2.2, we have identified E3(00∗) with

x1 ∧ x2 ∧ Λ∗
F/U(L

′). There is a similar identification of E3(01∗) (respectively E3(10∗)) with

x1 ∧ Λ∗
F/U(L

′) (respectively x2 ∧ Λ∗
F/U(L

′)).

From Proposition 8.2.4, we can explicitly identify the d3 differential for the ε-spectral

sequence on ε1ε2∗, which we denote dε1ε23 . It is exactly contraction by triple cup products

that do not use x1 or x2; more precisely,

dε1ε23 =
∑

3<r<s<t

ιµr,s,t ⊗ U−1,

where µr,s,t is the three-form used in Equation (8.2), but for the link L−K3. In particular,

we can identify dε1ε23 with ∂∞
S3
0(L

′)
. Since b1(S

3
0(L

′)) is one less than b1(S
3
0(L)), we may

apply our induction hypothesis to see that the ε-spectral sequence for ε1ε2∗ collapses after

we take homology with respect to the d3 differential (since each face complex is ε-filtered
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quasi-isomorphic to the link surgery formula for L′). Thus, we can identify E∞(ε1ε2∗) with

HC∞(S3
0(L

′)) wedged with each xi such that εi = 0.

On the other hand, there is a map

dKi
3 =

∑
j,k

ιµi,j,k ⊗ U−1,

which has domain {εi = 0} and range {εi = 1}. This is contraction by the triple cup products

that do use x1 or x2.

Remark 8.5.1. Consider the complex

(xi ∧ Λ∗
F/U(L

′), xi ∧ ∂∞
S3
0(L

′)
)
d
Ki
3 // (Λ∗

F/U(L
′), ∂∞

S3
0(L

′)
),

where i = 1 or 2. Note that this is exactly C∞(S3
0(Ki ∪ L′)). In particular, dKi

3 is a chain

map and induces a map from x1 ∧HC∞(S3
0(L

′)) to HC∞(S3
0(L

′)).

Using this decomposition, we can explicitly compute Γ−Ki
∞ .

Lemma 8.5.2. Under the identifications with Λ∗
F/U(K1 ∪ K2 ∪ L′), the map Γ−Ki

∞ is given

by ι[Ki] + (dKi
3 )∗, where (dKi

3 )∗ is the induced map from xi ∧HC∞(S3
0(L

′)) to HC∞(S3
0(L

′)).

Proof. Without loss of generality, i = 1. First, apply Γ+K2 to

(00∗ Γ+K1+Γ−K1
// 10∗)

to obtain

(01∗ Γ+K1+Γ−K1
// 11∗).

By Remark 8.2.2, it therefore suffices to establish the lemma instead for this complex. How-

ever, by Proposition 5.2.6, this can be identified with the surgery formula for the link K1∪L′.

Under our identifications,

(E3(01∗), d013 )
Γ
+K1
3 +Γ

−K1
3 // (E3(11∗), d113 )

is precisely

(x1 ∧ Λ∗
F/U(L

′), x1 ∧ ∂∞
S3
0(L

′)
)
d
K1
3 // (Λ∗

F/U(L
′), ∂∞

S3
0(L

′)
).
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Furthermore, after taking homology of the E3 pages,

(dK1
3 )∗ = Γ+K1

4 + Γ−K1
4 .

Since c(K1 ∪ L′) < c(L), we may apply our induction hypothesis to see that the higher

differentials in the ε-spectral sequence for K1 ∪ L′ vanish. Therefore, all of the higher pages

in these spectral sequences, Ei (including i = ∞) are canonically isomorphic to E4. This in

fact says that

(dK1
3 )∗ = Γ+K1

∞ + Γ−K1
∞ .

However, by Remark 8.2.2,

Γ+K1
∞ = Γ+K1

4 = ι[K1].

This now completes the proof.

8.6 The Final Calculation

We will now complete the proof of Theorem 8.3.3. As discussed in Section 8.3, this will also

complete the proof of Theorem 1.

Proof of Theorem 8.3.3. Recall that by Proposition 8.4.1 and Remark 8.4.2, HF∞(S3
0(L)) is

calculated by the homology of the complex

00∗ Γ+K1
//

Γ+K2

''OO
OOO

OOO
OOO

OO 10∗ 00 ∗ .Γ−K1
oo

Γ−K2

vvnnn
nnn

nnn
nnn

n

01∗

(8.4)

Note that the complex (8.4) is quasi-isomorphic to

E∞(00∗) Γ
+K1∞ //

Γ
+K2∞

))RR
RRR

RRR
RRR

RR
E∞(10∗) E∞(00∗)Γ

−K1∞oo

Γ
−K2∞

uulll
lll

lll
lll

l

E∞(01∗)

(8.5)

by Fact 3.2.3. Note that the map Γ+Ki
∞ is invertible, as the induced map on the E3 pages is

a bijection (or because Γ+Ki is an ε-filtered quasi-isomorphism). Therefore, we finally can
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apply the mysterious Lemma 3.1.2 from Chapter 3. This gives an isomorphism between the

homology of (8.5) and the homology of

E∞(00∗)Γ
−K1∞ +Γ

+K1∞ ◦(Γ+K2∞ )−1◦Γ−K2∞
// E∞(10∗). (8.6)

By Remark 8.2.2 and Lemma 8.5.2, Equation (8.6) is quasi-isomorphic to the complex

(x1 ∧ x2 ∧ Λ∗
F/U(L

′), dL
′

3 )
d
K1
3 +ι[K1]

◦(x2∧·)◦dK2
3
// (x2 ∧ Λ∗

F/U(L
′), dL

′
3 ). (8.7)

Recall L̃ = K ∪ L′, the link we obtained from Proposition 8.3.4 before the Kirby calculus,

and recall that S3
0(L̃) = S3

0(L). Let x1#2 denote the Hom-dual of the meridian of K in

H1(S3
0(L̃);Z). There is a natural identification of H1(S3

0(L̃);Z) with each H1(S3
0(Ki∪L′);Z),

given by identifying x1#2 with xi for i = 1 or 2, and fixing xj for j > 2.

By the construction of K = K1#K2 in Proposition 8.3.4, Equation (8.7) is quasi-

isomorphic to

(x1#2 ∧ x2 ∧ Λ∗
F/U(L

′), dL
′

3 )
dK3 // (x2 ∧ Λ∗

F/U(L
′), dL

′
3 ).

After contracting by x2, this complex is exactly (C∞(S3
0(L̃)), ∂

∞
S3
0(L̃)

). This completes the

proof, since we have shown that the homology of this complex also computes HF∞(S3
0(L)).
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CHAPTER 9

Applications

Recall that HF∞(Y ) (everything uncompleted in this chapter is with F-coefficients) is said

to be standard if HF∞(Y, s) is isomorphic to Λ∗(H1(Y ;Z))⊗F[U,U−1] for each torsion Spinc

structure s [OS03a]. By Theorem 1, this is equivalent to the integral triple cup product form

not vanishing identically mod 2. We will abuse notation and say that HF∞(Y ) or HF∞(Y, s)

is standard (for s torsion) - it is clear what these imply.

9.1 New Lower Bounds for Khovanov Homology

We first recall a classical result about branched covers of spheres.

Lemma 9.1.1 (Hirsch-Neumann, c.f. Lemma of [HN75]). If Y is the double-branched cover

of a link in a rational homology sphere, then µY ≡ 0.

Therefore, if Y is the double-branched cover of a link in a rational homology sphere,

HF∞(Y ) is standard. This leads to the following application to Khovanov homology. For a

quick introduction to Khovanov homology, we refer the reader to [Bar02].

Proof of Theorem 1.3.1. Lemma 9.1.1 implies that for each torsion Spinc structure s on

Σ2(L),

rkF[U,U−1]HF
∞(Σ2(L), s) = 2b1(Σ2(L)).

From the definition of ĤF , it is a simple exercise to see that

dimF ĤF (Σ2(L), s) ≥ rkF[U,U−1]HF
∞(Σ2(L), s).
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Summing over all Spinc structures, we obtain

dimF ĤF (Σ2(L)) ≥ 2b1(Σ2(L)) · |Tor(H1(Σ2(L)))|. (9.1)

We apply the spectral sequence of Ozsváth-Szabó (Theorem 1.1 of [OS05b]), which has

E2
∼= K̃h(L;F) and E∞ ∼= ĤF (Σ2(L)). Since Σ2(L) ∼= −Σ2(L) and the dimension of ĤF is

unaffected by orientation reversal, the result follows from Equation (9.1).

Remark 9.1.2. Ozsváth and Szabó were aware of Theorem 1.3.1 whenever HF∞ was known

to be standard. In particular, they pointed out the desired inequality when det(L) ̸= 0 in

Corollary 1.2 of [OS05b].

Remark 9.1.3. This theorem could also be proved in the following (overkill) way. As men-

tioned in the introduction, one may combine the isomorphism of Kutluhan, Lee, and Taubes

between monopole Floer homology and Heegaard Floer homology with the calculations of

HM by Kronheimer and Mrowka to see that HF∞(Y, s;Q) ∼= HC∞(Y ;Q) for s torsion. If

Y is a double-branched cover (and thus has trivial µY from Lemma 9.1.1),

rkF[U,U−1]HF
∞(Y ) ≥ rkQ[U,U−1]HF

∞(Y ;Q)

≥ 2b1(Y )|TorH1(Y ;Z)|.

We can therefore still repeat the above arguments to obtain the desired results.

9.2 Induced Maps on HF∞ for 2-Handlebodies

One of the most important aspects of Heegaard Floer theory is that it yields invariants of

smooth four-manifolds. If (W, t) is a Spinc cobordism from (Y1, s1) to (Y2, s2), then it is shown

in [OS06b] that there are induced homogeneous F[U ]-module maps F ◦
W,t : HF

◦(Y1, s1) →

HF ◦(Y2, s2), whose absolute shift in grading can be determined by classical invariants of

(W, t) (the signature, Euler characteristic, and ⟨c1(t)2, [W ]⟩). If ∂W = Y has only one

component, we can remove a small ball to obtain a cobordism from S3 to Y , which we

will also denote by W . In this case, since HF∞(S3) ∼= F[U,U−1], understanding F∞
W,t is
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completely determined by whether or not it is non-zero (along with knowing its classical

invariants to determine the shift in degree).

Recall that W is a 2-handlebody if it is obtained by attaching only 2-handles to a four-

ball; such a W will be simply-connected and will have H2(W ;Z) torsion-free. We will prove

Theorem 1.3.2 using F[[U,U−1]-coefficients, but like for Theorem 1, all of our constructions

will be sufficient to prove the results for F[U,U−1]-coefficients.

Proof of Theorem 1.3.2. Suppose that b+2 (W ) > 0. In this case, Lemma 8.2 of [OS06b]

implies that the map F∞
W,t will always vanish identically. Therefore, we assume that b+2 (W ) =

0. Let b2 = ℓ.

Suppose that H2(W ;Z) ∼= Zm. We choose a presentation for W by attaching 2-handles

along a framed link L = K1 ∪ . . . Kℓ. We first would like to study the intersection form

of W . Let Z = {x ∈ H2(W ;Z)|QW (x, y) = 0 for all y ∈ H2(W ;Z)}. Then, we have

H2(W ;Z) = Z⊕N , where QW |Z = 0 and QW |N is negative-definite. Suppose that rkZ = k.

Let L′ denote the sublink of L formed by the first k components. After a sequence of

handleslides, corresponding to a change of basis for H2(W ;Z), we may assume that L′ is

0-framed and algebraically split - in other words, the 2-handlebody obtained by attaching 0-

framed 2-handles along L′ has intersection form QW |Z . We also have that the componentsKi

for i > k have (algebraically) trivial linking with each of the components of L′. Furthermore,

the 2-handlebody obtained by attaching 2-handles to the remaining Ki will have intersection

form QW |N .

First, assume that µY is identically 0. The idea is to break W into two pieces: W1, which

is the 2-handlebody obtained by attaching handles to S3 along L′, and W2 which is the

2-handlebody obtained by attaching handles along Kk+1, . . . , Kℓ in S
3
0(L

′). Because QW |N

is negative-definite, Proposition 6.1.10 implies that HC∞(Y ) ∼= HC∞(S3
0(L

′)). Therefore,

HF∞(Y, s) ∼= HF∞(S3
0(L

′)) is standard.

We claim that the map induced by W1 is non-zero for any Spinc structure on W1 which

restricts to the unique torsion Spinc structure on S3
0(L

′). To see this, suppose

(WK , t) : (M, t|M) → (M0(K), t|M0(K))
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is a Spinc cobordism obtained by attaching a 0-framed 2-handle along a nullhomologous knot

K in M , where t|M and t|M0(K) are torsion. Proposition 9.3 of [OS03a] states that F∞
WK ,t

is an injection if HF∞(M0(K)) is standard. Because µS3
0(L

′) vanishes, we have that µS3
0(L

′′)

vanishes for any L′′ ⊂ L′, and HF∞(S3
0(L

′′)) is standard for all L′′ ⊂ L′. In particular, the

sequence of 2-handle attachments

S3 → S3
0(K1) → S3

0(K1 ∪K2) → . . .→ S3
0(L

′)

induces injections on HF∞.

BecauseHF∞(S3
0(L

′)) ∼= HF∞(Y, s) is standard, we have that any negative-definite Spinc

cobordism from (S3
0(L

′), s0) to (Y, s) must induce an isomorphism onHF∞ by Proposition 9.4

of [OS03a]. A simple Mayer-Vietoris argument shows that t is determined by its restrictions

to W1 and W2. Therefore, we may apply the gluing theorem for cobordism maps (Theorem

3.4 of [OS06b]) to see that F∞
W,t = F∞

W2,t|W2
◦ F∞

W1,t|W1
. This proves that F∞

W,t is non-zero.

We now prove the converse. Fix a basic systemH for L. Suppose that µY is not identically

0 (mod 2). We therefore have that µS3
0(L

′) is non-vanishing. Let’s choose three components,

Ki1 , Ki2 , and Ki3 , of L
′ which have µS3

0(L
′)(x

i1 ∧ xi2 ∧ xi3) ̸= 0. We study the ε-spectral

sequence for the link surgery formula on S3
0(L) restricted to the torsion Spinc structure. In

particular, we look at the E3 page. Let ε⋆ be the element of {0, 1}k with εi1 = εi2 = εi3 = 0

and all other εi = 1. We have that d3|Cε∗ is non-zero, because the corresponding Milnor triple

linking number is non-zero (this follows from the proof of Proposition 8.2.4). In particular,

the bottom level of the ε-filtration, 10, does not survive to the E4 page. Thus, the inclusion

of 10 into C∞(H,Λ0,0) induces the 0-map on the respective E4 pages.

Let’s study a similar map: the map on homology induced by this inclusion, which goes

from H∗(10) into H∗(C∞(H|L′ ,Λ0)). By Theorem 11.1 of [MO10], this corresponds to the

induced map F∞
W1,t|W1

: HF∞(S3) → HF∞(S3
0(L

′)) (t|W1 is the unique Spin
c structure on W1

which restricts to be torsion on S3
0(L

′)). Since the proof of Theorem 1 showed that E4
∼= E∞

for the ε-spectral sequence, we have that the inclusion of 10 induces 0 on the E∞ page of the

spectral sequence. Therefore, the induced map on homology must also be 0 by Fact 3.2.3.

Again, applying the gluing theorem for W1 and W2 shows that the map F∞
W,t is zero.
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CHAPTER 10

Concluding Remarks

Theorem 1.3.2 can easily be extended to a larger class of cobordisms, including the presence

of certain 1- and 3-handles. It seems likely that with some more work, all of the maps

on HF∞ coming from cobordisms with Spinc structures that restrict to be torsion on the

boundary could be computed in terms of basic topological information. Modulo the absolute

Q-gradings, this would give a complete understanding of the HF∞ package.

Proposition 9.3 of [OS03a] allows one to relate the action of Λ∗(H1(Y ;Z)) on HF∞(Y, s)

to certain cobordism maps. Thus, combining Theorem 1 with Theorem 1.3.2, one can com-

pute part (if not all) of the action of Λ∗(H1(Y ;Z)) on HF∞(Y, s).

Finally, the most obvious question to ask is whether these calculations can be extended to

Z-coefficients. The major obstruction to this is proving a version of the link surgery formula

over Z, which means being able to understand the orientations of the relevant moduli spaces

of holomorphic polygons; this would also require working out signs for the homological

algebra used in hypercubes of chain complexes, especially for compression. Currently, these

are both difficult problems.
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[OS08b] P.S. Ozsváth and Z. Szabó. “Knot Floer homology and integer surgeries.” Algebr.
Geom. Topol., 8(1):101–153, 2008.
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