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Abstract 

Assessing the effects of combinations of genetic and environmental factors on multiple sclerosis 
using genomic and computational approaches 

by 

Mary Katherine Horton 

Doctor of Philosophy in Epidemiology 

Designated Emphasis in Computational and Genomic Biology 

University of California, Berkeley 

Professor Lisa F. Barcellos, Chair 

 

Multiple sclerosis (MS) is a chronic, often disabling disease characterized by neurodegeneration 
and inflammation. It is the most common non-traumatic neurological disorder among young 
adults. What triggers MS pathology and symptoms over time remains largely unknown. Evidence 
suggests genetic and environmental factors contribute to risk of MS and there are at least 230 
known genetic risk variants. However, much less is known about the effect of multiple 
environmental and/or genetic risk factors, which can co-occur in the same individual at the same 
or different times, on MS risk and clinical manifestations. It is important to consider combinations 
of risk factors because their joint effects may differ from individual effects. Additionally, it might 
not be possible to tease apart individual effects from highly inter-related variables, so clustering 
or other methods should be considered. In this dissertation, I utilize computational, statistical, 
genomic, and epidemiologic approaches to study the role of combinations of genetic and 
environmental/behavioral risk factors on MS risk and clinical outcomes in humans. Chapter one 
introduces MS and background relevant for proceeding chapters. Chapter two shows that 
individual and clusters of co-occurring gut microbes are associated with new brain lesions on MRI 
and relapses among individuals with pediatric-onset MS. Chapter three shows that adverse 
childhood experiences, assessed as individual events and combinations of events, are not 
associated with MS risk or clinical outcomes in our data. Chapter four suggests that MS and 
migraine (a common comorbidity of MS) may co-occur because they share several genetic 
variants. Altogether, this dissertation advances our knowledge of risk factors for MS onset and 
clinical features of disease and will inform future work of gut microbe, comorbidities, and stress 
research. 
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CHAPTER 1 - INTRODUCTION 
 

Multiple sclerosis (MS) is a chronic, often disabling disease characterized by neurodegeneration 
and inflammation.[1] It is the most common non-traumatic neurological disorder among young 
adults with a mean age of onset at ~30 years.[2] In recent decades, incidence and prevalence of 
MS have increased and clinical management has improved, resulting in more individuals living 
longer with MS.[3] Overall long-term prognosis for individuals remains poor and little is known 
regarding factors contributing to its highly heterogeneous nature, which results in varying 
symptoms, severity, and long-term disability. Twenty years after onset, up to 60% of individuals 
with MS require ambulatory assistance.[3] Additionally, as many as 60% of individuals with MS 
experience cognitive impairment, primarily consisting of processing speed and episodic memory 
deficits.[3] MS is not often lethal; however, death from resulting disability and co-morbid 
conditions is observed, and overall quality of life is significantly impacted in most MS cases. On 
a global level, estimated years lived with disability for MS are nearly identical to Parkinson’s 
disease, a more prevalent condition than MS, underscoring the significant disease burden of MS 
due to its earlier onset, progressive nature, and impact on quality of life.[4] 
 
MS susceptibility involves a substantial genetic component.[5] HLA class II genes within the 
major histocompatibility complex (MHC) region confer a major portion of the risk. The primary 
MHC susceptibility locus is the HLA-DRB1*15:01 allele.[6] Recent genome-wide association 
studies (GWAS) have begun to unravel the polygenic etiology of MS, and there are now >200 
established non-MHC MS risk variants and at least 30 independent risk loci within the MHC.[7] 
Despite the strong genetic contribution of MS, these variants only partially explain the genetic risk 
of developing MS and are responsible for only about 20% of MS heritability.[8] This suggests 
much of the genetic risk responsible for MS has yet to be discovered. 
 
In addition to genetic factors, a substantial portion of MS risk is from environmental and/or 
behavioral factors. This is clear through the only moderate concordance rate in MS for 
monozygotic twins (30-40%) along with results from studies of migrants which show that migrants 
who move from an area where MS is common to an area where MS is rarer show a decrease in the 
rate of MS.[9,10] To date, environmental/behavioral factors that have been consistently identified 
as risk factors for MS include exposure to tobacco smoke [11,12], Epstein-Barr virus infection 
[13], childhood/adolescence obesity [14,15], residing in latitudes farther away from the equator 
[16], and vitamin D levels.[17] Notably, studies have shown that several of these are most pertinent 
during the first two decades of life, in particular during adolescence.[9,18,19] Despite these 
consistent findings, it remains largely unknown how or why individuals develop MS. Much work 
is left to determine additional environmental/behavioral risk factors for MS and how they are 
interconnected to already-established risk factors.  
 
Once individuals are diagnosed with MS, symptoms, rate of progression, number of relapses, new 
lesions on magnetic resonance imaging (MRI,) comorbidities, and disability vary greatly from 
person-to-person. Little is known about genetic or environmental/behavioral factors that may 
contribute to this variation. The only consistent findings are of tobacco smoke, which is associated 
with poor prognosis and progressive disease.[20] This underscores the importance of identifying 
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both genetic and environmental risk factors for clinical manifestations of MS, which can directly 
impact an individual’s quality of life.  
 
This dissertation aims to add critically missing knowledge regarding novel risk factors for both 
risk of MS and clinical manifestations of MS. We use computational, genomic, statistical, and 
epidemiologic approaches that consider multiple risk factors together. It is important to consider 
combinations of risk factors because their joint effects may differ from individual effects. For 
example, the risk of MS among smokers is 1.6 times the risk of MS among non-smokers [21,22], 
but the risk of MS among smokers who also have the highest risk genotype (HLA-DRB1*1501 
positive and HLA-A*02 negative) is 14 times the risk of MS among non-smokers without the high 
risk genotype.[23] Additionally, it might not be possible to tease apart individual effects from 
highly inter-related variables, so methods that use clustering or other approaches should be 
utilized. 
 
First, in the second chapter, we examine the role of an emerging set of risk factors, gut microbes, 
on MS clinical activity. Using 16S ribosomal RNA sequencing profiles from the stool of 55 
pediatric-onset MS cases (diagnosed before 18 years old), we investigated whether individual and 
clusters of gut microbes were associated with time to three separate disease activity outcomes: 
clinical relapses, new gadolinium-enhancing lesions (representing areas of active inflammation), 
and new or enlarging T2 hyperintense lesions (markers of overall disease burden). Considering 
clusters or networks of microbes was important because they exist in specific niches, often co-
occur, and have complex interactions which are challenging to interpret individually. This was the 
first study to assess the role of gut microbes on measures of MS activity on MRI. Using pediatric-
onset cases to investigate these associations was advantageous because symptom onset was likely 
closer to the biological onset of disease. Further, children and youth have higher disease activity, 
compared to adults, making it more feasible to study relapses and MRI activity over time.[24,25] 
 
Second, despite overwhelming knowledge that adverse childhood experiences (ACEs) are 
associated with worse physical and mental health outcomes in adulthood[26], few studies have 
investigated whether ACEs contribute to risk of MS. Even less is known about their effects on 
clinical aspects of MS including physical disability and cognition. In the third chapter, we use 
multiple approaches to assess the association between ACEs and MS risk and clinical outcomes. 
Because ACEs are complex and often inter-related, it was important to consider them in multiple 
ways including individual events, any/none, counts, and weighted linear combinations of variables.  
 
Third, in the fourth chapter, we test hypothesized mechanisms for the co-morbidity of MS and 
migraine. Approximately 1/3 of MS patients experience migraine.[27] It is a substantial 
contributor to reduced quality of life and it is unknown whether migraine causes MS, genetic 
variants are shared between the disorders, or, in the context of MS, migraine is a symptom of MS 
and not an independent disorder. Our approach was to use publicly available GWAS data and 
deeply phenotyped and genotyped data from a cohort of MS patients to test these mechanisms. We 
utilized methods that tested for genetic correlation across the entire genome and in local regions, 
using millions of GWAS variants, to assess sharing of genetic variants across MS and migraine. 
This framework may be helpful for additional studies of MS co-morbidities and co-morbidities of 
other conditions, given the limited knowledge we have of why certain conditions co-occur.  
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CHAPTER 2- GUT MICROBIOME IS ASSOCIATED WITH MULTIPLE SCLEROSIS ACTIVITY IN 
CHILDREN 

 

ABSTRACT 
 

Objective: Identify features of the gut microbiome associated with multiple sclerosis activity over 
time.  
 
Methods: We used 16S ribosomal RNA sequencing from stool of 55 recently diagnosed pediatric-
onset multiple sclerosis patients. Microbiome features included abundance of individual microbes 
and networks identified from weighted genetic correlation network analyses. Prentice-Williams-
Peterson Cox proportional hazards models estimated associations between features and three 
disease activity outcomes: clinical relapses and both new/enlarging T2 lesions and new 
gadolinium-enhancing lesions on brain MRI. Analyses adjusted for age, sex, and disease-
modifying therapies. 
 
Results: Participants were followed, on average, 2.1 years. Five microbes were nominally 
associated with all three disease activity outcomes after multiple testing correction. These included 
butyrate-producers Odoribacter (relapse hazard ratio=0.46, 95% confidence interval: 0.24, 0.88) 
and Butyricicoccus (relapse hazard ratio=0.49, 95% confidence interval: 0.28, 0.88). Two 
networks of co-occurring gut microbes were significantly associated with a higher hazard of both 
MRI outcomes (gadolinium-enhancing lesion hazard ratios (95% confidence intervals) for Module 
32 and 33 were 1.29 (1.08, 1.54) and 1.42 (1.18, 1.71), respectively; T2 lesion hazard ratios (95% 
confidence intervals) for Module 32 and 33 were 1.34 (1.15, 1.56) and 1.41 (1.21, 1.64), 
respectively). Metagenomic predictions of these networks demonstrated enrichment for amino 
acid biosynthesis pathways.  
 
Interpretation: Both individual and networks of gut microbes were associated with longitudinal 
multiple sclerosis activity. Known functions and metagenomic predictions of these microbes 
suggest the important role of butyrate and amino acid biosynthesis pathways. This provides strong 
support for future development of personalized microbiome interventions to modify multiple 
sclerosis disease activity.  
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INTRODUCTION  
 

Multiple sclerosis (MS) is a chronic, inflammatory disease of the central nervous system with 
symptoms and disease activity that vary greatly from person to person. Despite recent advances in 
treatment, there is no cure for MS, and it remains largely unknown what factors contribute to 
disease activity over time. Smoking, obesity, Epstein-Barr virus infection, low vitamin D, and over 
200 genetic variants are established risk factors for developing MS. However, with the exception 
of low vitamin D, they have not been convincingly or consistently shown to contribute to MS 
outcomes such as clinical relapse or lesion activity on brain MRI.1,2 Thus, it is critical to investigate 
novel drivers of MS activity that might inform interventions designed to attenuate disease course. 
 
Recently, a growing body of experimental and observational studies have suggested that microbes 
in the gut contribute to MS pathogenesis.3 Several potential biological mechanisms include direct 
and indirect interactions of microbes and microbial metabolites with immune cells and pro‐
inflammatory chemokines and cytokines, all of which can influence the central nervous system.4–

6 However, it remains unknown which, if any, features of the gut microbiome contribute to disease 
activity in MS. In animal models of MS, a germ-free environment has been associated with lower 
disease activity, and perturbations to the gut microbiota have been associated with changes in 
disease activity.7–9 Additionally, oral administration of Bacteroides fragilis have been associated 
with lower “clinical” scores in relapsing mouse models of MS.10 One small observational study of 
the gut microbiome and disease activity in persons with MS investigated clinical relapse as the 
outcome.11 After adjusting for age and disease-modifying therapy use, relative absence of 
Fusobacteria was associated with a higher chance of relapse (hazard ratio=3.2; 95% confidence 
interval: 1.2, 9.0). This study was limited in size, did not investigate the role of specific microbial 
taxa (such as genus or species) or co-occurring networks of microbes, and did not include other 
clinical outcomes. No studies have investigated the association between gut microbes and direct 
measures of disease activity assessed by brain MRI, which is sensitive to lesion formation, more 
common than clinical relapses,12 and can serve as a biomarker of active inflammation.  
 
In this study, we utilized 16S ribosomal RNA sequencing profiles from the stool of 55 pediatric-
onset MS cases to investigate whether specific features of the gut microbiome were associated 
with time to three separate disease activity outcomes: clinical relapses, new gadolinium-enhancing 
lesions (representing areas of active inflammation), and new or enlarging T2 hyperintense lesions 
(markers of overall disease burden). Using pediatric-onset cases (individuals with MS symptom 
onset before 18 years of age) to investigate these associations was advantageous because symptom 
onset was likely closer to the biological onset of disease. Further, children and youth have higher 
disease activity, compared to adults, making it more feasible to study relapses and MRI activity 
over time.13,14  
 
MATERIALS AND METHODS  
 
Study population 
Between 2012 and 2018, 60 individuals with MS onset before 18 years old were enrolled and 
provided stool samples that could be analyzed. Six enrollees did not have clinical follow-up 
(leaving 54 in the “clinical cohort”) and 14 did not have subsequent MRI scan data available 
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(leaving 46 in the “MRI cohort”). Participants were recruited from seven sites in the United States 
(US) Network of Pediatric MS Centers including the University of California San Francisco, State 
University of New York at Buffalo, University of Alabama at Birmingham, Boston Children’s 
Hospital, Stony Brook University Medical Center, Children’s Hospital of Philadelphia, and New 
York University. At stool sample collection (“baseline”), all participants were within 24 months 
of symptom onset and met the 2010 McDonald criteria for MS.15 Exclusion criteria included: 
participant’s banked serum tested positive for myelin oligodendrocyte glycoprotein antibodies, 
participant had been exposed to a systemic antibiotic, probiotic, or steroid within one month prior 
to stool sample collection; or participant had previously used a cytotoxic immunosuppressant.  
All parents and participants provided written informed consent and assent. Ethical approval for the 
study was obtained from each institution’s Institutional Review Board. 
 
Clinical relapses and MRI outcomes 
During the study period, participants were seen for regular care at the enrolling clinic, which 
usually included a visit every six months, with additional visits if the participant experienced a 
relapse or other clinical reason. MRI scans were ordered at study visits (per the primary 
neurologist) and conducted using each site’s scanner and local protocol. Data from follow-up visits 
(including the dates of relapse onset, use of disease-modifying therapies, and MRI) were 
prospectively entered into a web-based registry. The Data Coordinating and Analysis Center at the 
University of Utah managed the data and performed quality control.  
 
Three outcomes, which could recur over the study period, were assessed separately: clinical 
relapse(s), development of new gadolinium-enhancing brain lesion(s), and development of new or 
enlarging T2 hyperintense brain lesion(s). These outcomes were defined previously.16 We 
considered a lesion new or enlarging relative to the previous MRI. 
 
Gut microbiota profiling 
A parent collected the participant's first stool of the day and shipped overnight on ice to the 
University of California, San Francisco, where it was stored at −80°C before processing. DNA 
was extracted and the V4 region of the 16S rRNA gene was amplified for sequencing, as previously 
described.17  
 
Forward and reverse reads were processed separately, and quality filtered using the DADA2 
package version 1.9.0. in R.3.5.2.18,19 Reads having more than two expected errors or ≤ 150 base 
pairs in length were removed. Error rates of the filtered dereplicated reads were estimated using 
100,000 sequences. Paired sequencing reads with a minimum overlap of 25 base pairs were merged 
to obtain the full denoised sequences. Chimeras and any sequences abnormally short or long were 
removed. Amplicon sequence variants (ASVs) were inferred exactly, resolving variants that differ 
by as little as one nucleotide. Taxonomy was assigned using the naïve Bayesian classifier method 
(Kingdom to Family) and exact string matching (Genus and Species) utilizing the SILVA v132 
reference database.18,20,21 It is important to note that while an ASV has a unique nucleotide 
sequence, it might not be assigned a unique species or taxonomy due to limitations of 16S 
sequencing in determining strain-level differences among species and missing microbial genomes 
in reference databases. Using the decontam package, ASVs with a contaminant classification 
threshold p<0.1 were removed.22 ASVs containing less than 1/1000th of a percent of total reads 
were removed. Sequencing reads were representatively rarefied to the minimum sequencing depth 
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(84,818 reads/sample) 100 times, and the rarefied sample profile closest to the sample-specific 
centroid was selected, as described previously.17 The resulting tables included 1,482 ASVs. 
 
Covariates 
Upon enrollment, participants completed a questionnaire including age, symptom onset, race, 
ethnicity, and sex. Medication history was obtained, and subsequent medication use was tracked 
over the follow-up period. Disease-modifying therapies included those previously described.16 For 
relapse-related analyses, time varying disease-modifying therapy use was defined as “yes” if the 
subject used a disease-modifying therapy within three months prior to the respective relapse and 
“no” if otherwise. For MRI analyses, time varying disease-modifying therapy use was defined as 
“yes” if the subject was using a disease-modifying therapy during the period between the 
respective MRI and the previous MRI and “no” if otherwise.   
 
Statistical analyses 

Alpha and beta diversity 
All statistical analyses were completed using R and the phyloseq package.23 Alpha (within sample) 
diversity was evaluated using a rarefied ASV table with richness (Chao1 and Faith’s phylogenetic 
diversity) and evenness (Pielou) estimators. To test for the association between each alpha 
diversity metric and time to each disease activity outcome, we used Prentice-Williams-Petersen 
time-to-event models.24 These are an extension of Cox proportional hazard models and are 
appropriate for outcomes that can recur over the study period and are not independent.  
 
For relapse analyses, clinical cohort members were followed from baseline to the earlier of the 
final clinic visit or occurrence of a third relapse (Fig. 1 panel A). Relapses were truncated after the 
first three to prevent estimation of hazard ratios (HRs) in event strata with few individuals. Time 
to each relapse (or final clinic visit) was defined as the total time from baseline to each respective 
event. Because, by definition, a new relapse cannot occur until at least 30 days after the previous 
relapse, a 30-day period was discounted from the follow-up time at risk for each subsequent 
relapse.  
 
For brain MRI analyses, MRI cohort members were followed from baseline to the earlier of the 
final MRI or occurrence of a second new/enlarging lesion (gadolinium-enhancing and T2 lesions 
were evaluated separately) (Fig. 1 panel B). Data were truncated after the first two new/enlarging 
lesions. Since a new or enlarging lesion was relative to a past MRI, we defined a “baseline MRI” 
as the MRI that occurred closest, but previously, to stool sample collection. Time to each 
new/enlarging lesion (or final MRI visit) was defined as the gap time between a new/enlarging 
lesion and the previous new/enlarging lesion (or baseline if first new/enlarging lesion). We used 
the midpoint of time between a MRI with a new/enlarging lesion and prior MRI (with or without 
new/enlarging lesion) as an estimate of when the new lesion developed.16,25 Between baseline and 
a new/enlarging lesion, the midpoint was halfway between the baseline MRI and the new/enlarging 
lesion, and time between stool collection and the midpoint was used for the respective at-risk 
interval. If the midpoint between the baseline MRI and first MRI with a new/enlarging lesion after 
baseline occurred before stool was collected, it was excluded from analyses.  
 



 5 

 
 
 
 
 
 
 
 
 
For all Prentice-Williams-Petersen models, robust variance was computed, and HRs and 95% 
confidence intervals (CIs) were estimated for each alpha diversity metric and each MS activity 
outcome, adjusting for sex, age at event, and disease-modifying therapy use. The proportional 
hazard assumption for each model was assessed using the cox.zph function in the Survival package. 
All alpha diversity metrics met the proportional hazard assumption. 
 
For beta (between sample) diversity, weighted and unweighted UniFrac distance matrices were 
constructed.26 Relationships between each beta diversity metric and whether a participant had a 
clinically meaningful relapse rate (annual rate ≥0.5, i.e. more than one relapse over two years), 
had any new gadolinium-enhancing lesions, or had any new or enlarging T2 hyperintense lesions 
over the follow-up period were assessed using permutational multivariate analysis of variance 
(PERMANOVA) using adonis2. Models adjusted for sex, age at stool collection, and whether or 
not a participant was using a disease-modifying therapy when stool was collected. 
 
ASV-level relative abundance 
To identify whether specific gut microbes were associated with subsequent disease activity, we 
used Prentice-Williams-Petersen models described above to estimate HRs and 95% CIs for each 
ASV and each disease activity outcome, adjusted for age, sex, and disease-modifying therapy use. 
ASVs identified in <20% of a respective analytic cohort (clinical or MRI) were excluded to reduce 
potentially spurious taxa and reduce the burden of multiple testing with a small sample. Rarefied 
counts of each ASV were dichotomized according to prevalence. ASVs in 20% to <80% of 
samples were categorized as “present” or “absent” if any or no taxa reads were in the sample. 
ASVs in ≥80% of samples were categorized as “high” or “low” depending on whether samples 
had ≥ or < the median number of taxa reads. This resulted in 271 ASVs available for individual-
level analyses for the clinical cohort and 256 ASVs for the MRI cohort. For each disease activity 
outcome, observations were corrected for false discovery rate (FDR) using the Benjamini-
Hochberg method.27 ASVs with FDR q-value<0.05 were considered significant.27 The 

Figure 1 Example of survival analyses for relapse and MRI outcomes. (A) For relapse analyses, time to each relapse (an “event” in panel A) 
started on the day stool was collected (d0) and ended on the day of each respective relapse or the last study visit where relapse status was known 
(dx). A 30-day period was subtracted from the at-risk period following a relapse because, by definition, a new relapse must be at least 30 days 
after the previous. (B) For MRI analyses, an “event” was defined as a brain MRI that indicated a new or enlarging lesion compared to the prior 
MRI. Specifically, we used two MRI outcomes considered separately: new gadolinium-enhancing lesion and new or enlarging T2 lesion. Because 
the timing of MRI varies in clinical practice and the specific time of lesion activity is unknown, midpoint survival analyses were used. For the 
first MRI event after stool was collected, time at risk started on the date stool was collected and ended on the midpoint between the first MRI 
event and the prior MRI where an event did not occur (or the MRI that preceded baseline). For subsequent MRI events, time at risk started on 
the date of the previous MRI with an event and ended on the midpoint between the respective MRI event and the prior MRI where an event did 
or did not occur. Individuals were censored at the date of their last MRI (with or without an MRI event) before the study end. 
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proportional hazard assumption for significant ASVs was assessed the same as above, and all met 
the proportional hazard assumption.  
 
Microbial network analysis 
Co-occurrence networks of ASVs in at least 10% of samples (resulting in 437 ASVs available for 
the clinical cohort and 426 for the MRI cohort) were constructed from an unrarefied ASV table 
using SPIEC-EASI and WGCNA packages.28,29 A correlation matrix was generated using SPIEC-
EASI, transformed to an adjacency matrix using soft thresholding, and a topology overlap matrix 
was generated. The topology overlap matrix was hierarchically clustered using hclust and the 
resulting dendrogram was cut using dynamicTreeCut in the stats package to generate modules 
(clusters). Modules needing at least three ASVs to be retained. Correlated modules (r ≥0.5) were 
combined, generating a dissimilarity matrix for further hierarchical clustering. Quantitative values 
of each module were calculated for each participant from module eigengenes, defined as the first 
principal component of the abundance matrix of a respective module. Each module eigengene was 
tested for its association with time to relapse, new gadolinium-enhancing lesions, and new or 
enlarging T2 hyperintense lesions using the Prentice-Williams-Petersen models described above, 
adjusting for age, sex, and disease-modifying therapy use. To improve interpretability of results, 
we presented beta coefficients and HRs from regression coefficients and 95% CIs scaled to a 0.1-
unit increase in module eigengenes. Analyses were corrected for FDR, and modules with an FDR 
q-value<0.05 were considered significant. The proportional hazard assumption for significant 
ASVs was assessed the same as above. One significant module did not meet the proportional 
hazard assumption, so a time by eigengene interaction term was added to the model. The 
interaction term did not have p<0.05, so the HR and 95% CI for the module eigengene from the 
non-interaction term model was presented.  
 
Metagenomic prediction 
Conserved functional genes of microbes within each significant module were predicted using 
PICRUSt 2.30 For each significant module, predicted gene counts were grouped into MetaCyc 
metabolic pathways.31 We estimated the association between predicted metabolic pathways in at 
least 20% of samples and the disease activity outcome(s) previously identified as associated with 
the respective module. Pathway abundances were dichotomized as > or ≤ the respective pathway’s 
median abundance. HRs and 95% CIs were estimated using Prentice-Williams-Petersen models, 
adjusted for age, sex, and disease modifying use, and corrected for FDR.   
 
RESULTS  
 
Characteristics of pediatric-onset multiple sclerosis microbiome cohort 
Among all 55 cohort members, the average age at baseline was 15.9 years (IQR=2.5), 72.7% were 
female, 67.2% identified as white, and 36.3% identified as Hispanic (Table 1). The distribution of 
these characteristics match the sex, age, race, and ethnicity distribution of pediatric-onset MS in 
the US.32 Approximately half were using a disease-modifying therapy at baseline, of which 25.0% 
were using interferon beta and 64.3% were using glatiramer acetate. The proportion of individual’s 
ASVs belonging to a particular taxonomic class did not significantly differ by baseline DMT use 
categories (none, glatiramer acetate, interferon beta, or other DMT) except for Melainabacteria 
(p=0.0002) and Verrucomicrobiae (p=0.049) (data not shown, Supplementary Fig. 1).  Among all 
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55 participants, 54 were prospectively followed and evaluated for the presence (or absence) of 
clinical relapses (‘clinical cohort’) and 46 had at least one MRI scan available (‘MRI cohort’). 
Characteristics of these cohorts were similar, albeit a higher proportion of girls were in the clinical 
cohort relative to MRI cohort (Table 1). For the relapse analyses, participants were followed for 
an average of 2.4 years (IQR=2.1) after baseline during which time 44.4% experienced a relapse. 
Of the relapses that occurred, 75.5% were using a disease-modifying therapy in the three months 
prior. Participants were followed for a similar amount of time for the gadolinium-enhancing 
(mean=2.0 years, IQR=1.7) and T2 hyperintense lesion (mean=1.9 years, IQR=15) analyses. Over 
the follow-up period, approximately half of participants had a new or enlarging T2 hyperintense 
lesion (54.3%) while 40.0% had a new gadolinium-enhancing lesion.  
 
Table 1 Cohort characteristics of pediatric-onset multiple sclerosis cases at baseline and during follow-up 

Characteristics 
Combined 
cohorts 

Clinical 
cohort 

MRI 
cohort 

Baseline (stool sample collection)    

N (%) 55 (100.0) 54 (98.2) 46 (83.6) 

Age (mean, IQR) 15.9 (2.5) 15.9 (2.5) 15.8 (2.6) 

Age at disease onset, years (mean, IQR) 14.7 (2.7) 14.7 (2.8) 14.6 (2.7) 

Sex (female) (n, %) 40 (72.7) 39 (72.2) 33 (89.2) 

Race (n, %)    

Asian 4 (7.3) 4 (7.41) 3 (6.52) 

Black 6 (10.9) 6 (11.1) 6 (13.0) 

White 37 (67.2) 36 (66.7) 32 (69.6) 

Other 6 (10.9) 6 (11.1) 5 (10.9) 

Not reported 2 (3.6) 2 (3.7) 0 (0.0) 

Hispanic (n, %) 20 (36.3) 19 (35.2) 16 (34.8) 

Expanded Disability Status Scale (mean, IQR) 1.1 (1.5) 1.1 (1.5) 1.2 (1.3) 

Disease-modifying therapy exposed (n, %) 28 (50.9) 28 (51.9) 24 (52.2) 

Interferon beta (n, %) 7 (25.0) 7 (25.0) 6 (25.0) 

Glatiramer acetate (n, %) 18 (64.3) 18 (64.3) 16 (66.7) 

Over follow-up period for the clinical cohort    

Follow-up time after stool collection, years (mean, IQR)  2.4 (2.1)  

Experienced relapse over follow-up period (n, %)  24 (44.4)  

Number of relapses (mean, IQR)  0.9 (2.0)  

Time to first relapse after stool collection, days (mean, IQR)  297.8 (458.5) 

Relapse preceded by DMT use within 90 days prior (n, %)  37 (75.5)  

Over follow-up period for the MRI cohort    

Time between baseline MRI and stool collection, days (mean, IQR)   89.2 (70.8) 

Time to first MRI after stool collection, days (mean, IQR)   189.9 (184.0) 

Gadolinium-enhancing lesions:    

Follow-up time, years (mean, IQR)   2.0 (1.7) 
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Had a new lesion over follow-up period (n, %)   17 (40.0) 

Number of new lesions (mean, IQR)   1.4 (1.0) 

DMT used between MRI with new lesion and prior MRI (n, %)   52 (92.9) 

T2 hyperintense lesions:    

Follow-up time, years (mean, IQR)   1.9 (1.5) 

Had a new/enlarging lesion over follow-up period (n, %)   25 (54.3) 

Number of new/enlarging lesions (mean, IQR)   1.4 (1.0) 

DMT used between MRI with new/enlarging lesion and prior MRI (n, %)   33 (97.1) 

Abbreviations: disease modifying therapy, DMT; interquartile range, IQR 
 
Gut microbiome alpha and beta diversity were not associated with multiple sclerosis activity 
Alpha diversity was not significantly associated with relapse (pchao1=0.56, pfaith=0.29, 
pevenness=0.67), new gadolinium-enhancing lesions (pchao1=0.16, pfaith=0.15, pevenness=0.58), or new 
or enlarging T2 hyperintense lesions (pchao1=0.84, pfaith=0.77, pevenness=0.95) (Fig. 2). For beta 
diversity, relapse and MRI outcomes did not explain the observed variance in microbiota 
composition in fecal samples (Fig. 3). Over the study period, irrespective of whether a weighted 
or unweighted UniFrac distance matrix was employed, variance in fecal microbiota composition 
was not related to MS activity outcomes: annualized relapse rate ≥0.5 (weighted UniFrac 
PERMANOVA R2=0.01, p=0.78; unweighted UniFrac PERMANOVA R2=0.02, p=0.38), having 
any new gadolinium-enhancing lesions (weighted UniFrac PERMANOVA R2=0.01, p=0.78; 
unweighted UniFrac PERMANOVA R2=0.02, p=0.42), or having any new T2 hyperintense 
lesions (weighted UniFrac PERMANOVA R2=0.02, p=0.43; unweighted UniFrac 
PERMANOVA R2=0.02, =0.63).  
 

 
 
 
 
 
 

Figure 2 Microbial alpha diversity was not associated with clinical relapses or MRI outcomes in pediatric-onset multiple sclerosis. (A) 
The Chao1 microbial richness estimator was not associated with relapse (HR= 1.00; 95% CI: 0.99, 1.00; p=0.56), new gadolinium-enhancing 
lesion on MRI (HR= 0.99; 95% CI: 0.99, 1.00; p=0.16), or new or enlarging T2 hyperintense lesion on MRI (HR= 1.00; 95% CI: 0.99, 1.01; 
p=0.84). (B) The Faith’s phylogenetic diversity microbial richness estimator was not associated with relapse (HR= 0.98; 95% CI: 0.94, 1.02; 
p=0.29), new gadolinium-enhancing lesion on MRI (HR= 0.96; 95% CI: 0.92, 1.01; p=0.15), or new or enlarging T2 hyperintense lesion on MRI 
(HR= 0.99; 95% CI: 0.94, 1.04; p=0.77). (C) Microbial evenness (Pielou estimator) was not associated with relapse (HR= 1.35; 95% CI: 0.34, 
5.32; p=0.67), new gadolinium-enhancing lesions on MRI (HR= 0.64; 95% CI: 0.13, 3.08; p=0.58), or new or enlarging T2 hyperintense lesions 
on MRI (HR= 0.95; 95% CI: 0.19, 4.84; p=0.95). Beta coefficients and related HRs and 95% CIs for evenness were scaled to represent a 0.1-
unit change in evenness. Regression models adjusted for sex, age, and disease-modifying therapy use. 
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Five gut microbes were 
nominally associated with all 
three multiple sclerosis activity 
outcomes 
A lack of relationship between 
MS activity and variance in 
overall fecal microbiota 
composition does not preclude 
the possibility that specific 
microbes may contribute to 
MS pathogenesis. For this 
reason, we tested whether 
specific ASVs were associated 
with pediatric-onset MS 
outcomes. No ASVs were 
significantly associated with 
disease activity outcomes 
using a conservative threshold 
of FDR q<0.05 (Fig. 4, see 
Supplementary Table 1 for full 
results). Using a less stringent 
cut-off of FDR q<0.2, we 
identified three ASVs 
associated with disease 
activity. Two of these were 
associated with higher hazard 
of relapse: Blautia stercoris 
(HR: 3.19, 95% CI: 1.72, 5.92) 
and an unidentified species 
within the genus Catabacter 
(HR: 2.81, 95% CI: 1.51, 
5.22). One ASV was 
associated with a lower 
hazard of new gadolinium-
enhancing lesions, 
Odoribacter splanchnicus 
(HR: 0.25, 95% CI: 0.12, 
0.54).  
 
To explore whether there 
may be microbes associated 
with all three disease activity outcomes, we compared the effect sizes of ASVs across all three 
outcomes if the ASV was associated with at least one outcome at p<0.05. While several ASVs 
were not tested in both the relapse and MRI analyses because they were not in at least 20% of both 
samples, we identified five ASVs associated with all three disease activity outcomes (Fig. 5). Four 
of these showed protective effects across all outcomes, meaning having any of the respective ASV  

Figure 3 Variance in fecal microbiota composition was not associated with pediatric-onset 
multiple sclerosis clinical relapse and MRI outcomes. Having, on average, more than 0.5 
relapses per year was not associated with beta diversity using (A) weighted UniFrac 
(PERMANOVA R2=0.01, p=0.78) or (B) unweighted UniFrac distance matrices 
(PERMANOVA R2=0.02, p=0.38). Having any new gadolinium-enhancing lesions over the 
study period was not associated with beta diversity using (C) weighted UniFrac 
(PERMANOVA R2=0.01, p=0.78) or (D) unweighted UniFrac distance matrices 
(PERMANOVA R2=0.02, p=0.42). Having any new or enlarging T2 hyperintense lesions over 
the study period was not associated with beta diversity using (E) weighted UniFrac 
(PERMANOVA R2=0.02, p=0.43) or (F) unweighted UniFrac distance matrices 
(PERMANOVA R2=0.02, p=0.63). PERMANOVA models adjusted for sex, age, and disease-
modifying therapy use. The first two principal coordinates from principal coordinates analysis 
were plotted.  
 



 10 

(or above the median number of reads) was 
associated with a lower hazard of relapses, 
gadolinium-enhancing lesions, and T2 
hyperintense lesions. These included 
Butyricicoccus desmolans (HRrelapse= 0.49, 
95% CI: 0.28, 0.88), Odoribacter splanchnicus 
(HRrelapse= 0.46, 95% CI: 0.24, 0.88), an 
unidentified species in the Lachnospiraceae 
NK4A136 group (HRrelapse= 0.47, 95% CI: 
0.24, 0.89), and Ruminococcaceae (HRrelapse= 
0.45, 95% CI: 0.22, 0.91). For these ASVs, 
similar HRs were observed for MRI outcomes 
(Fig. 5 and Supplementary Table 1). In 
contrast, having any reads of SV_520, an 
unspecified member of Coriobacteriales, was 
associated with more than double the hazard 
for all three disease activity outcomes 
(HRrelapse= 2.25, 95% CI: 1.12, 4.49; HRGad= 
3.36, 95% CI: 1.54, 7.35; HRT2 = 2.60, 95% CI: 
1.34, 5.08). The abundance of each of these 
five ASVs did not significantly differ by 
baseline DMT status (data not shown).  
 
 
Gut microbial networks were associated with 
MRI outcomes  
Gut microbes exist in complex, inter-
connected communities, so we tested the 
association between networks of co-occurring 
microbes and each disease activity outcome. 
Gut microbes were classified into 33 (M1-33) 
and 27 (M34-60) modules (or 
clusters/networks) using the MRI and clinical 

Figure 4 No species of gut microbes were significantly (FDR q<0.05) associated with pediatric-onset multiple sclerosis activity 
outcomes. The long-dashed line indicated an FDR q cut-off of 0.05 and the small dotted line indicated a less conservative threshold FDR 
q=0.2. Each point was an ASV. The genus and species (or lowest known taxonomy) of ASVs associated with a respective outcome with FDR 
q<0.2 were labeled. Regression models adjusted for sex, age, and disease-modifying therapy use. (A) Adjusted log-hazard ratios for relapse; 
(B) adjusted log-hazard ratios for new gadolinium-enhancing lesions on MRI; and (C) adjusted log-hazard ratios for new or enlarging T2 
hyperintense lesions on MRI.  
 

Figure 5 Five gut microbes were associated with all three 
pediatric-onset multiple sclerosis activity outcomes. Each row was 
an ASV that was associated with either relapse, new gadolinium-
enhancing lesions, or new or enlarging T2 hyperintense lesions at 
p<0.05. Hazard ratios, adjusted for sex, age, and disease-modifying 
therapy use, were shown for each significant (p<0.05) ASV-outcome 
association. Grey indicated an ASV-outcome association was not 
significant. “NA” indicated an association was not estimated because 
the ASV was not in at least 20% of the respective sample. Rows were 
labeled with ASV ID and the lowest known taxonomic classification. 
Rows were arranged by taxonomic order.  
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cohorts, respectively (Supplementary Fig. 2). The ASVs constituting each module for MRI and 
clinical cohorts were shown in Supplementary Tables 2 and 3. Among the 33 modules identified 
from subjects within the MRI cohort, five (M7, 10, 11, 32, 33) were significantly associated (FDR 
q<0.05) with new gadolinium-enhancing lesions (Fig. 6). Two of these modules were protective, 
where higher module values were associated with a lower hazard of new gadolinium-enhancing 
lesions: M7 (HR=0.37, 95% CI: 0.18, 0.76) and M10 (HR=0.20, 95% CI: 0.06, 0.63). For the other 
three significant modules, higher module values were associated with a higher hazard of new 
gadolinium-enhancing lesions: M11 (HR=1.26, 95% CI: 1.12,1.42), M32 (HR=1.29, 95% CI: 
1.08, 1.54), and M33 (HR=1.42, 95% CI: 1.18, 1.71). Higher M32 and M33 module values were 
also significantly associated with higher hazard of new or enlarging T2 hyperintense lesions 
(HRM32=1.34, 95% CI: 1.15 1.56; HRM33=1.41, 95% CI: 1.21, 1.64). No other modules were 
significantly associated with new or enlarging T2 hyperintense lesions, and no modules were 
significantly associated with relapse(s) (see Supplementary Table 4 and 5 for full results). 
Interestingly, only one of the five ASVs shown to be individually associated with all three disease 
activity outcomes was a member of a significant module. This was SV_245, an unidentified 
member of the Lachnospiraceae NK4A136 group (which showed a protective effect for all three 
disease activity outcomes) and a member of the M10 module (associated with a lower hazard for 
the MRI outcomes). 
 

Several of the modules significantly associated with MRI outcomes could be mapped to the clinical 
modules. Notably, all four ASVs within the significant M33 MRI module were in the M56 clinical 
module. While not statistically significant, the effect size between the M56 module and relapse 
(HRrelapse= 1.15, 95% CI: 0.98, 1.35) was similar to the effect sizes between the M33 module and 
MRI outcomes (HRGad=1.42 and HRT2=1.40). Additionally, ASVs in the significant M32 MRI 
module overlapped with the M38 clinical module. The effect size between the M38 module and 
relapse (HRrelapse= 1.21, 95% CI: 0.96, 1.53) was similar to the effect sizes between the M32 
module and MRI outcomes (HRGad=1.29 and HRT2=1.34).  
 
Predicted functional pathways from gut microbial networks were associated with multiple 
sclerosis  

Figure 6 Five networks of gut microbes were significantly associated with MRI-related multiple sclerosis activity. The long-dashed line 
indicated an FDR q cutoff of 0.05 and the small dotted line indicated an FDR q cutoff of 0.2. Significant modules were labeled with their 
respective module name. Regression coefficients were scaled to a 0.1-unit increase in module eigengenes because the standard 1-unit increase 
would represent nearly the entire range of eigengene values. Regression models adjusted for sex, age, and disease-modifying therapy use. (A) 
Adjusted log-hazard ratios for relapse; (B) adjusted log-hazard ratios for new gadolinium-enhancing lesions on MRI; and (C) adjusted log-
hazard ratios for new or enlarging T2 hyperintense lesions on MRI. 
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Metabolic pathways identified in each significant fecal microbial module were shown in 
Supplementary Tables 6-10. No modules were significantly associated with relapse, so pathway-
relapse associations were not assessed. Metagenomic predictions indicated that modules 
significantly associated with MRI outcomes encoded amino acid biosynthesis pathways, including 
the superpathways of L-arginine and L-tryptophan biosynthesis (Supplementary Tables 6-10). 
Filtering pathways to those only associated with an outcome at p<0.05, several pathways were 
specific to modules associated with a lower hazard (M10 module) or higher hazard (M32 and M33 
modules) for the MRI outcomes (Supplementary Fig. 3). Notably, the superpathways of L-tyrosine 
(p=0.01) and L-phenylalanine (p=0.01) biosynthesis were associated with a lower hazard of MRI 
outcomes.  
 
DISCUSSION  
In this longitudinal study of subjects with pediatric-onset MS, we identified several individual gut 
microbes and networks of co-occurring microbes associated with a higher or lower hazard of 
clinical relapse and MRI-related disease activity. Known functions and metagenomic predictions 
of these microbes suggest the important role of butyrate and amino acid biosynthesis pathways. 
The protective, anti-inflammatory effects of butyrate, which have previously been observed in MS 
studies, provides a potential target for future microbiome interventions intended to modify disease 
activity in MS.  
 
Three microbes were associated with subsequent disease activity in pediatric-onset MS at FDR 
q<0.2 and warrant further functional investigation. These included Blautia stercoris and 
Christensenellaceae catabacter, whereby having any of these bacteria nearly tripled the hazard of 
relapse, and Odoribacter splanchnicus, where having no copies increased the hazard (four times) 
of a new gadolinium-enhancing lesion. In one small case-control study, higher abundance of 
Blautia was found among MS cases compared to controls.33 In line with our findings, a higher 
abundance of Blautia and lower abundance of Odoribacter have been found among individuals 
with active lupus disease, another autoimmune disorder, compared to controls.34 Odoribacter has 
also been found to be lower among individuals with cystic fibrosis, inflammatory bowel disease, 
and Crohn’s disease.35–38 The potential benefits of Odoribacter were largely attributed to its 
production of butyrate, a short-chain fatty acid that can help maintain gut homeostasis and suppress 
proinflammatory cytokines.39,40 Presence of Odoribacter was also identified in our study as 
associated with lower hazard of relapse and T2 hyperintense lesions, but results were not 
significant after multiple testing correction. In addition to Odoribacter, four gut microbes were 
found to be associated with all three disease activity outcomes before multiple testing correction. 
These included three microbes that may also be beneficial in higher amounts: Butyricicoccus 
desmolans (another butyrate-producing microbe), an unidentified species in the genus 
Lachnospiraceae NKA136 group, and an unidentified species in the family Ruminococcaceae. In 
contrast, having any abundance of an unspecified species belonging to the Coriobacteriales order 
more than doubled the hazard of disease activity outcomes. All of these microbes had consistent 
effect sizes across all three MS activity outcomes. Together, these findings suggest the role of 
butyrate-producing microbes in reducing the risk (hazard) of MS relapses and new/enlarging MRI 
lesions. This agrees with other studies that have shown oral administration of butyrate decreased 
demyelination in mice, serum butyric acid concentration was lower among MS cases compared to 
controls, and gut butyrate (assessed via metagenomics and stool metabolites) was reduced among 
individuals with relapsing-remitting MS.41–43 
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Individual microbes are unlikely to work independently, and for the first time, unsupervised 
machine learning has identified networks (or modules/clusters) of co-occurring gut microbes 
associated with disease activity outcomes in MS. We identified five networks of co-occurring gut 
microbes associated with an altered risk of new gadolinium-enhancing lesions, of which two were 
also associated with T2 hyperintense lesions. Across these five modules, pathways involving 
aromatic amino acid biosynthesis were predicted to be enriched. Namely, phenylalanine and 
tyrosine biosynthesis pathways were enriched in the M10 module (a module significantly 
associated with a lower hazard of MRI-related outcomes), while tryptophan was enriched in the 
M10, M32, and M33 modules (M32 and 33 were associated with a higher hazard of MRI-related 
outcomes). This relationship of tryptophan with both increased and decreased risk may relate to 
differences in expression of genes in these microbial modules or their differential catabolism to 
bioactive metabolic products e.g., kynurenine. Tryptophan, specifically, has been identified as a 
modulator of central nervous system inflammation and associated with MS risk and course.44–46 
Interestingly, serum metabolite studies of MS activity have identified shifts in aromatic amino acid 
metabolism among individuals with worse disease activity.47,48 Our findings suggest that networks 
of gut microbes associated with MS activity may contribute to the concentration of amino acids, 
specifically aromatic amino acids that serve as potent CNS and immunomodulatory signaling 
molecules.  
 
There are several notable strengths of this study. We were able to include individuals with MS 
shortly after disease onset and follow them prospectively. This captured clinically relevant relapses 
and MRI data, the latter of which are considered highly sensitive and useful when assessing 
changes in disease activity over time. Further, our participants were well characterized and were 
either not using a disease-modifying therapy or using drugs with low effectiveness (in terms of 
relapse prevention) at baseline. Pediatric-onset cases are useful because it allows for the 
examination of disease processes much closer to biological onset compared to adults in individuals 
with very few confounding comorbidities.13,49–51 While the gut microbiome does undergo 
significant changes in very early childhood, it is relatively stable in adolescence, with functional 
capacity similar to adults.52 Because our sample was almost entirely enrolled as adolescents, this 
potential source of variation was limited.  
 
While a pediatric-onset cohort represents a unique opportunity for studying modifiers of MS, its 
rarity limited our sample size and ability to account for other potential confounders or modifiers, 
such as study site, race, ethnicity, body mass index, diet, vitamin D status, and specific disease-
modifying therapies. The small sample size and large number of multiple tests also made it 
particularly challenging for a result to achieve statistical significance, despite potential biological 
significance. Because this study is the first of its kind, we reported individual ASV findings with 
FDR q<0.2 despite not reaching statistical significance (FDR q<0.05). It is possible these may be 
false positive findings and should thus be conservatively interpreted. They should be considered 
candidates for future functional studies and hypotheses and replicated in future work. Another 
limitation was that all MRI scans were performed without a centralized or standardized imaging 
protocol and the timing of scans was not at pre-determined intervals (as part of routine clinical 
practice). Finally, metagenomic predictions cannot be interpreted as true functions or pathways. 
However, our findings warrant further investigation, including microbes that influence butyrate 
and amino acid synthesis pathways. We do not have metabolomic or metagenome data to confirm 
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predicted findings, which should be the focus of future work. Additionally, it would be useful for 
future studies to collect stool samples repeatedly over time to assess how changes in gut 
composition due to treatment, diet, and other factors might be associated with relapses and MRI 
outcomes over time.   
 
In summary, we identified several individual gut microbes and networks of co-occurring microbes 
that were associated with an altered risk of clinical relapse and activity on brain MRI among 
pediatric-onset MS patients. Known functions and metagenomic predictions of these organisms 
suggests the roles of butyrate and amino acid biosynthesis as potential modifiers of MS activity. 
Further research is needed to confirm the functional and clinical implications of these findings so 
personalized microbiome interventions may be designed to decrease MS activity.  
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SUPPLEMENTARY FIGURES 

 

 

 

 

Supplementary Figure 1. Total proportion of abundance of microbes (by class) according to baseline disease modifying 
therapy status. The proportion of individuals ASVs belonging to a particular taxonomic class did not significantly differ 
by baseline DMT use categories (none, glatiramer acetate, interferon beta, or other DMT) except for Melainabacteria 
(p=0.0002) and Verrucomicrobiae (p=0.049). P-values determined from F-test.  
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Supplementary Figure 2. Weighted genetic correlation network analysis identified 33 modules of co-occurring microbes for the MRI cohort 
and 27 modules for the clinical cohort. (A and B) Bacterial taxa dendrogram and module names (colors) for MRI and clinical cohorts, 
respectively. Each node was an ASV. Taxa that co-occur were positioned closer together and the module for which an ASV was a member 
was plotted in a vertical band below. (C and D) Clustering of module eigenvalues for MRI and clinical cohorts, respectively, with 
corresponding names (number and color).  
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Supplementary Figure 3. Pathways predicted to be associated with significant gut microbial modules from PICRUSt2. Each row was a 
MetaCyc pathway that was associated with a pediatric-onset multiple sclerosis outcome at p<0.05 in at least one of the five significant microbial 
modules (M7, 10, 22, 32, 33). Colors indicated the magnitude of hazard ratios, adjusted for sex, age, and disease modifying therapy use, which 
represented the association between a pathway and pediatric-onset MS activity outcome, per module (columns). Hazard ratios were only 
estimated for disease activity outcomes previously identified as associated with a respective module. Grey indicated the module-specific 
pathway-outcome association had p≥0.05. Hazard ratios were estimated for pathways present in at least 20% of the respective cohort and 
module. No pathways within the M7 or M11 modules were significant, so were not shown. Abbreviations: Gad = gadolinium, MS = multiple 
sclerosis.  
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CHAPTER 3 – CASE-CONTROL STUDY OF ADVERSE CHILDHOOD EXPERIENCES AND MULTIPLE 
SCLEROSIS RISK AND CLINICAL OUTCOMES 

 

ABSTRACT  
Background: Adverse childhood experiences (ACEs) are linked to numerous health conditions but 
understudied in multiple sclerosis (MS). This study’s objective was to test for the association 
between ACEs and MS risk and clinical outcomes. 
 
Methods: We used a sample of adult, non-Hispanic MS cases (n=1,422) and controls (n=1,185) 
from Northern California. Eighteen ACEs were assessed including parent divorce, parent death, 
and abuse. Outcomes included MS risk, age of MS onset, and several indicators of disease severity. 
Logistic and linear regression estimated odds ratios (ORs) (and beta coefficients) and 95% 
confidence intervals (CIs) for ACEs operationalized as any/none, counts, individual events, and 
latent factors/patterns.  
 
Results: Overall, more MS cases experienced ≥1 ACE compared to controls (54.5% and 53.8%, 
respectively). After adjusting for sex, birthyear, and race, this small difference was attenuated 
(OR=1.01, 95% CI: 0.87, 1.18). There were no trends of increasing or decreasing odds of MS 
across ACE count categories. Consistent associations between individual ACEs between ages 0-
10 and 11-20 years and MS risk were not detected. Factor analysis identified five latent ACE 
factors, but their associations with MS risk were approximately null. Age of MS onset and 
indicators of disease severity were not associated with ACEs after multiple testing correction.   
 
Conclusion: Despite rich data and multiple approaches to operationalizing ACEs, no consistent 
and statistically significant effects were observed between ACEs with MS. This highlights the 
challenges of studying sensitive, retrospective events among adults that occurred decades before 
data collection. 
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INTRODUCTION 
Adverse Childhood Experiences (ACEs) are potentially traumatic events that occur in childhood 
and can include physical, emotional, and sexual abuse and/or neglect and household disfunction  
[1]. They are common in the U.S. - occurring in about 58% of the population - and an important 
social determinant of health [2]. Childhood represents a particularly vulnerable period when body 
systems are developing. Excessive activation of stress response systems during this period can 
impact brain development, immunity, metabolic regulatory systems, and the cardiovascular system 
[3]. A large body of literature has linked ACEs to physical and mental health conditions in 
adulthood including heart disease, obesity, type 2 diabetes, cancer, and depression [4].  
 
One particularly relevant downstream effect of excessive activation of stress response systems is 
dysregulation of the immune system. Numerous studies have shown in experimental and 
observational settings that psychosocial stressors can cause persistent inflammation and 
suppression of anti-inflammatory compounds [5–7]. Dysregulation of the immune system can lead 
to many serious health conditions, including autoimmune conditions such as multiple sclerosis 
(MS), lupus, and rheumatoid arthritis. The literature regarding the effects of ACEs on autoimmune 
disorders is limited but suggests an increased numbers of ACEs are associated with increased risk 
of autoimmune conditions overall and individually [8]. More studies are needed to fully understand 
this relationship, particularly among individual autoimmune conditions.  
 
MS is one autoimmune condition where more work on this topic is needed. MS is a chronic, 
inflammatory autoimmune condition of the central nervous system and is the second most common 
neurological disorder among young adults [9,10]. Diagnosis is common relatively early in 
adulthood (ages 20 to 40 years) and among women (3:1 female-to-male ratio). Several studies have 
shown that risk factors (e.g., obesity, concussion, Epstein-Barr virus infection, and vitamin D/sun 
exposure), particularly during adolescence (ages 11-20 years), are associated with increased MS 
risk [11,12]. Given the relatively young age of MS diagnosis, support for adolescent exposures 
being important for MS risk, and the critical involvement of inflammation in MS disease processes, 
determining whether a role exists for ACEs in MS risk is important. Of the few studies that have 
examined the association between ACEs and MS risk, their results are inconsistent. Findings from 
the U.S.-based Nurses’ Health Study, which asked adult participants to quantify “physical or 
sexual abuse in childhood or adolescence”, suggested MS risk was not significantly associated 
with abuse [13]. A Danish study found that parent divorce, but not parent or sibling death, was 
associated with risk of MS [14]. A German study using a 28-item self-report questionnaire of 
childhood maltreatment found an increased risk of MS among domains of physical abuse, sexual 
abuse, emotional neglect, and severe abuse [15]. Inconsistencies in these findings are likely due to 
differences in specific ACEs and how they were quantified, as well as differing cultural and social 
contexts in each population, underscoring the challenges of this important work and need for 
further investigation.  
 
There is even less knowledge about whether ACEs affect clinical outcomes of MS, such as disease 
severity and age of onset, which may be influenced by early life stress and inflammation. The 
largest study, to date, to investigate this association utilized 217 MS cases and determined that 
physical abuse, emotional neglect, and severe abuse were associated with higher relapse rates but 
not age of onset or other indicators of physical or cognitive outcomes [16]. The only other (smaller) 
study to investigate this found that more ACEs were associated with younger age of MS onset and 
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worse reading cognition [17]. Understanding the relationship between ACEs and MS risk and 
clinical outcomes may strengthen the argument for childhood screening of ACEs and interventions 
that prevent or modify the effects of ACEs and improve our understanding of MS etiology. 
 
Our approach to studying ACEs was to interrogate how they might affect MS risk and clinical 
outcomes using multiple methodologies. For our study, ACEs included death of a parent or sibling, 
victim of a violent crime, loss of a home, and significant physical or verbal abuse or neglect, among 
others. It is common to analyze ACEs as individual events or summarized into any/none or count 
variables; however, these have several limitations. It is possible that individual ACEs (such as 
parent divorce shown by Riise et.al) may have different effects on MS risk, but ACEs (and social 
exposures more broadly) often co-occur and are not necessarily independent [18]. This limits the 
interpretability of assessing single events that are highly inter-related. In addition, single events 
may be rare and limit our power to examine associations with MS in all but very large studies. 
Quantifying ACEs as any/none may be meaningful if the hypothesis is that any adverse event 
impacts health. However, this dichotomy fails to consider the relative importance of different types 
of ACEs with varying impacts on chronic stress or behaviors and thus MS. The use of counts 
assumes the cumulative burden of ACEs affects health, rather than particular type, combination, 
or chronicity. These limitations highlight the challenges in studying ACEs and the need to consider 
them in multiple ways in order to understand their complex, nuanced relationships with health 
outcomes, particularly MS. 
 
The aim of the current study was to estimate the association between ACEs and MS risk and 
clinical outcomes in a case-control sample of 2,607 adults in Northern California using multiple 
approaches including quantifying ACEs as individual events, any/none, and counts. We also 
included a factor analysis to evaluate variance of ACEs in order to identify “latent factors”, which 
are weighted linear combinations of variables, that represent patterns of ACEs that tend to co-
occur. Collectively, this approach may help identify how ACEs are associated with MS.   
 

METHODS 
Study population 
Data were from the Kaiser Permanente Northern California (KPNC) MS Research Program which 
recruited non-Hispanic MS cases and controls from the KPNC Health Plan between 2006 and 
2014. This membership includes over four million people, representing 25-30% of the 22-county 
service area population in Northern California. The broad goal of this study was to assess risk 
factors for MS across hundreds of genetic and environmental exposures. To achieve sufficient 
power for genome-wide analyses, the sample was limited to the largest subgroup of KPNC 
members which were largely non-Hispanic whites. Recruitment details are explained elsewhere 
[19]. Briefly, eligible cases were diagnosed with MS by a neurologist (International Classification 
of Diseases, Ninth Revision, code 340.x), aged 18-69 years old, and a KPNC member at initial 
contact. For our analyses, cases were excluded if age of onset occurred before age 21 years to 
minimize the potential for reverse causality or MS onset occurring before ACEs (assessed up to 
age 20). Age of onset was determined by review of electronic health records and comprehensive 
interview data. Controls were KPNC members without a MS diagnosis or related condition (optic 
neuritis, transverse myelitis, or demyelinating disease) and were matched to cases by sex, age, and 
zip code. A total of 2607 participants (1422 cases and 1185 controls) were available for analyses.  
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Study protocols for participants were approved by the Institutional Review Boards of KPNC and 
the University of California, Berkeley. Written informed consent was obtained from all study 
participants. 
 
Adverse Childhood Experiences (ACEs) 
Participants were administered a comprehensive computer-assisted telephone interview (CATI) 
including hundreds of self-reported demographic, clinical, environmental, and lifestyle questions, 
as described elsewhere [20]. The CATI included nine ACE questions modified from Coddington’s 
Life Event Record [21] (Table 1). Not all questions were included to reduce the length of the 
extensive CATI. Events included broadly overlap with the original Centers for Disease Control 
and Prevention-Kaiser ACE Study [1], but there are several differences. Our study does not ask 
about sexual abuse, household substance abuse, or incarcerated household members. It also 
combines physical and verbal abuse and adds questions about parent/sibling death and foster 
care/adoption. Participants indicated yes/no as to whether they experienced any of the events in 
either of two age periods: 0-10 and 11-20 years old (a total of 18 ACEs). These two time periods 
were chosen because studies have shown that relationships between several risk factors and MS 
differ in adolescence and childhood [11,22]. 
 

Table 1. Definition and baseline prevalence of adverse childhood experiences reported by adult multiple sclerosis (MS) cases and controls in the 
Kaiser Permanente Northern California MS Research Program, 2006-2014 (n=2607). 

 Adverse Childhood Experience  
Total MS Cases  Controls 
No.  % No. % No. % 

Remembering back to your early childhood through the age of 10, did you experience any of the following list of events? 
1 Death of parent or sibling  97 3.7 44 3.1 53 4.5 
2 Divorce of parents  275 10.5 145 10.2 130 11.0 
3 Remarriage of parents  183 7.0 95 6.7 88 7.4 
4 Placed in foster care or adoption 57 2.2 34 2.4 23 1.9 
5 Went to live with other family members 149 5.7 86 6.1 63 5.3 
6 Serious (life-threatening) illness of parent or sibling (including psychiatric illness or 

substance abuse problem)  
312 12.0 170 12.0 142 12.0 

7 You experienced significant physical or verbal abuse or neglect 315 12.1 143 10.1 172 14.5 
8 Your family lost their home or had to move  196 7.5 85 6.0 111 9.4 
9 You were the victim of a violent crime 58 2.2 32 2.3 26 2.2 
Remembering back to when you were a teenager, between 11 until you turned 20 years old, did you experience any of the following list of events? 
10 Death of parent or sibling  156 6.0 93 6.5 63 5.3 
12 Divorce of parents  266 10.2 140 9.9 126 10.6 
13 Remarriage of parents  232 8.9 119 8.4 113 9.5 
13 Placed in foster care or late adoption  44 1.7 31 2.2 13 1.1 
14 Went to live with other family members 205 7.9 117 8.2 88 7.4 
15 Serious (life-threatening) illness of parent or sibling (including psychiatric illness or 

substance abuse problem)  
367 14.1 203 14.3 164 13.8 

16 You experienced significant physical or verbal abuse or neglect 389 14.9 200 14.1 189 15.9 
17 Your family lost their home or had to move  184 7.1 98 6.9 86 7.3 
18 You were the victim of a violent crime 130 5.0 71 5.0 59 5.0 
Abbreviations: MS, multiple sclerosis 

MS clinical outcomes  
As part of the CATI, MS cases were asked the year of their first MS symptom (i.e., “onset”), the 
type of MS they currently have (relapsing-remitting, secondary progressive, primary progressive, 
or relapsing-progressive), and an indication of their walking ability in the past four weeks. For 
each MS case, we calculated the Multiple Sclerosis Severity Scale (MSSS), which is an indicator 
of disease severity that uses the Expanded Disability Severity Scale and disease duration (time 
from onset to EDSS) [23]. We also created an indicator of whether a case had severe or mild MS 
based on MSSS scores (≥7.5 was severe and <3 was mild).  
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Covariates 
Demographic and clinical data collected from the CATI and considered confounders included sex, 
birth year, race, and years since MS onset. Race was categorized as white or non-white, noting 
98.5% of non-whites identified as African American. Additional confounders considered in 
sensitivity analyses (see below) included education-level (bachelor’s degree or not), parent’s 
homeowner status when participant was 10 years old (rent vs own/other), and family history of 
MS (parent or sibling). These were not included in primary/secondary analyses to preserve 
statistical power and prevent over-stratification of models with already low frequency substrata 
(including rare ACEs, men, and non-whites).  
 
Statistical analysis 
Factor analysis was conducted among all participants to determine the latent factor structure of 18 
total ACEs (nine ACEs at two time points). A tetrachoric correlation matrix, appropriate for binary 
data, was constructed. Zero-count cells were corrected by adding 0.1. Factors were extracted using 
maximum likelihood estimation in the polycor package and factanal in R Version 3.5 [24]. 
VARIMAX (orthogonal) rotation was used to increase interpretability of factors. Number of 
factors to extract was based on optimal coordinates and reduced if any factor loading was ≥1.0 
[25]. Factor scores were calculated and standardized to a mean of zero and standard deviation of 
one [26].  
 
Primary analyses tested the association between ACEs and MS risk using logistic regression to 
estimate odds ratios (ORs) and 95% confidence intervals (CIs). ACEs were expressed as: 1) 
any/none at each time period and overall, 2) 0, 1, 2, 3, or 4 or more at each time period and overall, 
3) individually at each time period and overall, and 4) continuously for each factor score. The 
associations between individual ACEs and MS risk were only estimated for ACEs that occurred 
in at least 5% of the sample in order to achieve sufficient statistical power. To improve 
interpretability of ORs from models using continuous factor scores (where a 1-unit increase in 
respective factor score would represent nearly the entire range of values), beta coefficients and 
their standard errors were divided by ten. All models adjusted for sex, birthyear, and race. Multiple 
testing corrected false discovery rate (FDR) q values are presented for primary analyses [27]; they 
account for all primary models assessing MS risk simultaneously. All analyses used R Version 3.5 
[24]. 
 
Secondary analyses investigated the association between ACEs and clinically relevant MS 
outcomes including MSSS, age of onset, progressive MS subtype, and current walking ability. We 
also included a sub-analysis comparing ACEs among individuals with mild and severe MS. For 
MSSS and age of onset outcomes, linear regression models were used to estimate beta coefficients 
and 95% CIs. Both models adjusted for sex and race. MSSS models additionally adjusted for 
birthyear. For MS subtype, type of MS was categorized as relapsing (relapsing remitting or 
secondary progressive) (reference) or progressive (primary progressive or relapsing progressive). 
For current walking ability, individuals were classified according to whether they did or did not 
(reference) regularly use a walking aid (such as cane, walker, or wheelchair). Additionally, a sub-
analysis utilized individuals only at the extreme ends of the MSSS scale (n=818) where the 
outcome was severe or mild (reference) illness. For all binary outcomes, ORs and 95% CIs were 
estimated using logistic regression and adjusted for birthyear, sex, and race. Walking ability 
models additionally adjusted for years since MS onset. For all MS outcome models, ACEs were 
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considered the independent variable and expressed as count categories (0, 1, 2, 3, or 4 or more) 
over the entire exposure period (0 through 20 years of age). Additional ACE classifications were 
not included to minimize the impact of multiple testing corrections on a reduced sample size (1422 
MS cases). Results from secondary analyses were corrected for FDR and account for all secondary 
clinical outcome tests.  
 
Sensitivity analyses 
To evaluate whether socioeconomic factors independent of race might confound the observed 
primary associations between ACEs and MS risk, we included two additional logistic regression 
models which adjust for covariates in the original models plus 1) participant’s educational level or 
2) parent’s homeowner status when participants were 10 years old and family history of MS. 
Family history was considered a potential confounder because the risk of MS is ~seven times 
higher among those who have a first degree relative with MS [28] and it may be a cause of parent 
or sibling illness or death (an ACE in our assessment).  
 

RESULTS 
Baseline characteristics 
were described in Table 
2. Among MS patients, 
79.0% identified as 
female (81.5% for 
controls). The average 
years since MS onset 
was 17.1 (sd=11.8), and 
the majority of MS 
cases had mild illness 
(MSSS <3) (47.6%). 
Cases had higher 
frequency of family 
history of MS (6.8%) 
compared to controls 
(1.6%), as expected. 
When participants were 
10 years old, fewer 
parents of MS cases 
owned a home 
compared to controls 
(78.0% and 81.9%, 
respectively), as previously reported [20].  
 
The proportion of participants who experienced ≥1 ACE was higher among cases (54.5%) 
compared to controls (53.8%) (Table 2). Among the entire sample, the most common ACE during 
ages 0-10 years was significant physical abuse/neglect (12.1%); it was also the most common ACE 
during ages 11-20 year (14.9%) (Table 1). The distribution of individual ACEs was similar among 

Table 2. Baseline characteristics among multiple sclerosis (MS) cases and controls in the Kaiser 
Permanente Northern California MS Research Program, 2006-2014 (n=2,607). 
Characteristic MS Cases (n=1,422) Controls (n=1,185) 
  No.  % No. % 
Birth year (mean, sd) 1958 (8.8) 1958 (8.9) 
Sex (female) 1,124 79.0 966 81.5 
Parent Homeowner Status at 10 years old     

Own 1,109 78.0 970 81.9 
Rent/Other Arrangement 298 21.0 210 17.7 
Not available 15 1.0 5 0.4 

Racea     
White 1,288 90.6 1,114 94.0 
African American 134 9.4 72 6.0 
American Indian or Alaskan native 3 0.2 0 0.0 

Family history of MSb (yes) 97 6.8 19 1.6 
ACEs, count (mean, sd) 1.3 (1.8) 1.4 (1.9) 
Any ACEs (yes) 775 54.5 637 53.8 
Years since MS onset (mean, sd) 17.1 (11.8)   
MSSS (mean, sd) 3.8 (2.5)   

MSSS <3 677 47.6   
MSSS ≥7.5 141  9.9   

MS subtype     
Relapsing remitting 938 66.0   
Primary progressive 113 7.9   
Secondary progressive 221 15.5   
Relapsing progressive 51 3.6   
Unknown 99 7.0   

Abbreviations: ACEs, adverse childhood experiences; MS, multiple sclerosis; MSSS, Multiple 
Sclerosis Severity Score  
aTwo individuals reported American Indian/Alaskan Native and white race, one reported American 
Indian/Alaskan Native and African American race, and one reported African American and white 
race 
bDefined as having a parent or sibling with MS  
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cases and controls although fewer cases reported significant physical abuse/neglect or home loss 
during ages 0-10 years. 
 
Overall, individuals who reported at least one ACE between ages 0-20 years did not have a 
significantly higher odds of MS compared to individuals who experienced none (OR=1.01, 95% 
CI: 0.87, 1.18) (Table 3). A similar non-significant effect was also observed for each age category 
separately. When ACE counts were categorized into 0, 1, 2, 3, or 4 or more, none of the categories 
were significantly associated with MS and there were no consistent trends where increased ACEs 
increased or decreased odds of MS. No individual ACEs were significantly associated with MS at 
an FDR q<0.05 except abuse (OR=0.66, 95% CI: 0.52, 0.84) and home loss (OR=0.61, 95% CI: 
0.45, 0.82) between ages 0-10 years. These effect sizes were attenuated and not statistically 
significant at ages 11-20 years (ORabuse = 0.87, 95% CI: 0.70, 1.08 and ORhome loss = 0.96, 95% CI: 
0.71, 1.30). For secondary analyses pertaining to ACEs and clinical outcomes of MS, no 
associations were significant at FDR q<0.05 (Table 4). Before adjusting for multiple testing 
comparisons, two associations were significant at p <0.05. These included a two year younger age 
of onset, on average, for MS cases who experienced at least four ACEs compared to those who 
experienced no ACEs (β= -1.99, 95% CI: -3.62, -0.37, p=0.02), and a higher odds of needing to 
regularly use a walking aid among MS cases who experienced at least four ACEs compared to MS 
cases who experienced no ACEs (OR= 1.52, 95% CI: 1.03, 2.24, p=0.03). 

 
Optimal coordinates analysis identified five factors of co-occurring ACEs which explained 57.0% 
of the variance in 18 reported ACEs (S1 Table). For each factor, the following ACEs contributed 
the largest loadings: lost home or moved ages 0-10 and 11-20 years (Factor 1), parent divorce and 
parent remarriage ages 0-10 (Factor 2), physical or verbal abuse or neglect ages 0-10 and 11-20 
years (Factor 3), placed in foster care and parents divorced ages 11-20 years (Factor 4), and parent 

Table 3. Results from multivariable logistic regression models of the effect of adverse childhood experiences (ACEs) during two age 
periods on odds of multiple sclerosis.  
 Overall Ages 0-10 years Ages 11-20 years 
Model OR 95% CI FDR q OR 95% CI FDR q OR 95% CI FDR q 
At least one ACE (ref=none) 1.01 0.87, 1.18 0.96 0.86 0.73, 1.01 0.34 1.03 0.88, 1.21 0.95 
Count category          

0 ACEs (ref) 1.00 - - 1.00 - - 1.00 - - 
1 ACE 1.29 1.04, 1.61 0.17 1.02 0.83, 1.24 0.96 1.12 0.93, 1.35 0.59 
2 ACEs 0.99 0.79, 1.24 0.97 0.70 0.54, 0.92 0.12 0.87 0.67, 1.13 0.63 
3 ACEs 0.78 0.57, 1.05 0.38 0.59 0.39, 0.89 0.12 0.96 0.67, 1.38 0.96 
4 or more ACEs 0.86 0.67, 1.10 0.59 0.87 0.55, 1.41 0.83 1.05 0.68, 1.63 0.96 

Individual events          
Parent/sibling death 0.95 0.73, 1.25 0.95 - - - 1.22 0.88, 1.71 0.59 
Parent divorce 0.86 0.70, 1.05 0.48 0.88 0.68, 1.14 0.63 0.91 0.71, 1.18 0.78 
Parent remarries 0.86 0.69, 1.08 0.59 0.88 0.65, 1.19 0.69 0.87 0.66, 1.14 0.63 
Live elsewhere 1.13 0.89, 1.43 0.63 1.12 0.80, 1.57 0.78 1.10 0.82, 1.47 0.78 
Parent/sibling illness 1.02 0.84, 1.23 0.96 1.02 0.80, 1.29 0.96 1.04 0.84, 1.30 0.95 
Abuse 0.82 0.67, 1.01 0.31 0.66 0.52, 0.84 0.02 0.87 0.70, 1.08 0.59 
Home lost 0.79 0.62, 1.01 0.31 0.61 0.45, 0.82 0.02 0.96 0.71, 1.30 0.96 
Violent crime 1.00 0.74, 1.38 0.98 - - - 0.98 0.69, 1.40 0.96 

Latent variables          
Factor 1 0.98 0.95, 1.02 0.76 - - - - - - 
Factor 2 0.99 0.96, 1.01 0.63 - - - - - - 
Factor 3 0.99 0.97, 1.01 0.63 - - - - - - 
Factor 4 1.07 1.01, 1.14 0.20 - - - - - - 
Factor 5 0.97 0.92, 1.00 0.36 - - - - - - 

All models adjusted for birthyear, sex, and race. ORs for individual ACEs that did not occur in at least 5% of samples were not 
estimated. Beta coefficients, standard errors, and their respective ORs and 95% CIs were scaled to 0.1-unit increases for factor scores.  
Abbreviations: ACEs, adverse childhood experiences; CI, confidence interval; FDR, false discovery rate; OR, odds ratio 
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or sibling death ages 0-10 years (Factor 5). Logistic regression using continuous factor scores did 
not yield statistically significant results (Table 3). For all factors, a 0.1-unit increase in factor score 
had very small or null association with MS risk (e.g., Factor 1 OR= 0.98, 95% CI: 0.95, 1.02).  

Sensitivity analyses for MS risk models yielded ORs and 95% CIs that did not substantially change 
when models additionally controlled for participant’s educational attainment, parent’s homeowner 
status, or family history of MS (S2 and S3 Tables).  

DISCUSSION 
ACEs are associated with numerous adult health conditions [4], but the relationship between ACEs 
and MS has remained elusive. Understanding this relationship may be particularly relevant because 
one hypothesized biological mechanism linking ACEs and general poor adult health is 
inflammation [29], a key cause of neuronal damage in MS. Despite rich data and multiple 
approaches for operationalizing ACEs in the current study, no consistent and statistically 
significant effects were observed between ACEs with MS risk and clinical outcomes after 
correcting for multiple testing comparisons. This highlights the challenges of studying sensitive, 
retrospective events among adults that occurred decades before data collection. It also underscores 
the need for ACE assessments early in the MS disease course to overcome some of these 
challenges. 
 
Our primary findings, which do not support the role of ACEs in risk of MS, both agree with and 
contradict past studies of MS and autoimmune disorders. Results from a large cohort study of U.S. 
nurses did not identify associations between MS and stressful life events, including physical and/or 
sexual abuse during childhood or adolescence [13]. Corresponding odds ratios ranged from 0.72 
to 1.30 but were not statistically significant, which may be due to the small number of MS cases 
identified from the large cohort (n=369). These findings align with the magnitude and insignificant 
nature of the current findings. Similar to our results, a Danish study (the largest study to date) 
found that risk of MS was not associated with parent death (OR=1.04, 95% CI: 0.90, 1.21) or 
sibling death (OR=1.04, 95% CI: 0.81, 1.32) [14]. However, this study did observe that parent 
divorce, specifically, was associated with increased risk of MS (OR=1.13, 95% CI: 1.04, 1.23), 
which is not consistent with our results. Their results are likely highly accurate given that Danish 

Table 4. Results from multivariable regression models of the effect of adverse childhood experiences (ACEs) during ages 0-20 years on clinical 
outcomes of multiple sclerosis 
 1 vs 0 ACEs 2 vs 0 ACEs 3 vs 0 ACEs 4 or more vs 0 ACEs 

Outcome Beta/ 
OR 

95% CI FDR 
q 

Beta/ 
OR 

95% CI FDR 
q 

Beta/ 
OR 

95% CI FDR 
q 

Beta/ 
OR 

95% CI FDR  
q 

MSSSa 0.31 -0.03, 0.65 0.27 0.34 -0.04, 0.71 0.27 0.04 -0.49, 0.56 0.91 0.30 -0.13, 0.72 0.44 

Age at onsetb   0.28 -1.03, 1.58 0.90 -0.43 -1.86, 1.00 0.90 -1.03 -3.04, 0.97 0.62 -1.99 -3.62, -0.37 0.27 

Progressive 
coursea 

1.12 0.72, 1.72 0.90 0.96 0.59, 1.53 0.91 0.96 0.46, 1.85 0.91 0.87 0.46, 1.53 0.90 

Use of 
walking aidc 

1.29 0.94, 1.76 0.33 1.23 0.87, 1.74 0.53 0.86 0.51, 1.42 0.90 1.52 1.03, 2.24 0.27 

Severe illness 1.57 0.97, 2.52 0.27 1.59 0.94, 2.66 0.27 1.07 0.46, 2.23 0.91 0.91 0.43, 1.79 0.91 
Beta coefficients were presented for continuous outcomes (MSSS, age off onset) while ORs were presented for binary outcomes. 
aModels adjusted for birthyear, sex, and race. 
bModel adjusted for sex and race.  
cModels adjusted for birthyear, sex, race, and years since MS onset.  
Abbreviations: ACEs, adverse childhood experiences; CI, confidence interval; FDR, false discovery rate; MSSS, Multiple Sclerosis Severity Score; 
OR, odds ratio; q, q-value 
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registries capture all family relations and marital statuses for all Danish residents and capture all 
MS diagnoses since 1956. However, social structures, levels of inequities, and the demographic 
make-up of Denmark and the U.S. are very different, so these adverse events might not be expected 
to have the same effects in both countries. Our findings pertaining to physical abuse (and home 
loss) demonstrated a significant protective effect during childhood, but there is no reason to believe 
that physical abuse or home loss, but not other ACEs, would prevent MS. In fact, previous research 
contradicts this finding which identified an increased risk of MS among those who have 
experienced severe abuse (OR=1.7) and null associations between physical abuse or neglect and 
MS risk [15]. Similarly, latent factors 1 or 3 were not associated with MS risk despite being the 
factors for which childhood abuse and home loss contributed the most.  
 
Among other autoimmune conditions, increasing number of ACEs have been associated with first 
hospitalization of any autoimmune disease as well as rheumatic, Th1-type and Th2-type 
immunopathologies, and Systemic Lupus Erythematosus (SLE) [8,30]. In particular, physical and 
emotional abuse have been shown to be associated with over two times the risk of SLE [8]. These 
were not found to be associated in our study. The differing results may be a result of different 
associations between ACEs and specific autoimmune conditions or insufficient statistical power, 
measurement error, or selection bias within our study or others. 
 
Our findings that a younger age of onset and regular use of a walking aid were more common 
among MS cases that had at least four ACEs were not significant after correcting for multiple 
testing comparisons. Current research on this topic is very limited, with only two small studies 
reporting their findings. Of these, age of onset was found to be inversely correlated with ACEs (r 
= −0.30, p = 0.04) [17] or not associated with ACEs [15]. In another autoimmune condition, SLE, 
higher ACE levels and ACE domains were associated with worse patient-reported disease activity, 
depression, and health status [31]. Our findings should be explored further in a larger sample size 
to improve statistical power to identify whether a true relationship exists between clinical features 
of MS and ACEs. 
 
A major challenge that may have contributed to inconsistencies between our results and other 
studies, as well as our generally null observed effects, is information bias. Particularly, 
retrospectively asking adults about ACEs that occurred decades in the past that are sensitive by 
nature and may be misremembered or repressed from memory could have led to underreporting. 
Comparing the frequency of several of our study’s ACEs to those in the Behavioral Risk Factor 
Surveillance System (BRFSS) (derived from the Kaiser-CDC ACEs study) provides evidence of 
this underreporting. For example, 28% and 34% of individuals in the BRFSS had their parents’ 
divorce/separate and experienced emotional abuse while 19% and 18% experienced these ACEs 
in our sample, respectively [32]. Recall of sensitive events may have been under-reported, 
specifically, among cognitively impaired MS patients. However, this is not consistent with 
knowledge that cognitive MS symptoms do not commonly affect recall of memories from the 
distant past but rather lead to trouble with recall due to deficits in ability to store new knowledge 
for future recall [33,34]. Alternatively, MS cases may have interpreted questions regarding home 
loss or abuse more conservatively than controls, not willing to report the event unless they 
considered it an extreme circumstance. This is unlikely given “recall bias” which often, but not 
always, leads to more accurate recall of particular events/exposures among case groups than 
control groups.  
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In addition to this potential retrospective reporting bias, there are several limitations that should 
be considered. First, the events utilized in this dataset are not, together, part of a standardized ACE 
index. Compared to the BRFSS, our events similarly included parent divorce/separation, but did 
not include substance use, parent incarceration, or sexual abuse. Exclusion of these sensitive, 
important topics may have contributed to observed null findings. This is particularly relevant given 
that household substance abuse is one of the more common ACEs in the BRFSS (26.8% reported 
experiencing this) [2]. Combining physical and verbal abuse into a single category may also have 
underestimated the impact of ACEs in our sample. We did, however, include important events not 
part of the BRFSS survey including parent death and life-threatening illness of parent or sibling. 
Second, using ACEs is an imperfect way of measuring childhood adversity. Individual events tend 
to be interrelated and the social environment and factors that may influence it are complex and 
challenging to disentangle. To improve upon individual ACE analyses (which also may suffer from 
reduced statistical power due to rarity of certain events), we utilized factor analysis to create 
unobserved “latent” variables to capture the relatedness of ACEs. The observed associations 
between each latent variable and MS risk were approximately null, but the extent to which these 
factors might represent true unobserved continuous variables remains unknown. These five factors 
captured a relatively small amount of variation in ACEs (57%), which also limits the effectiveness 
of estimating their associations with MS. Last, low income and African American individuals 
disproportionately experience a number of adverse experiences [32,35]. This demographic is 
under-represented in the current sample which may lead to limited generalizations of findings to 
more diverse populations or selection bias. It may also have led to the observed null findings given 
African Americans tend to have worse MS clinical outcomes compared to Whites [36]. Future 
studies should further explore relationships between ACEs and MS among African Americans, 
Hispanics, Asians, and other non-White populations. This work is currently underway. Future 
studies should also investigate the nuanced synergistic and/or cumulative relationships between 
ACEs, socioeconomic position, and MS. For example, the effect of ACEs on MS may be stronger 
among individuals whose parents rented rather than owned a home (indicator of socioeconomic 
position and associated with MS) or among those who also experienced stressful events as adults 
later in the lifespan [20]. 
 

CONCLUSIONS 
Findings from the current study did not support an association between ACEs and development of 
MS or clinical feature of MS. While we cannot exclude the potential role of ACEs on MS, our 
results highlight how poor recall or even recall bias for reporting sensitive events in the past may 
be particularly challenging to overcome in the context of MS. Future studies should consider 
alternative tools for assessing ACEs and childhood trauma, such as biomarkers of stress, and/or 
obtain ACE information from MS patients as close to diagnosis as possible to reduce the number 
of years between exposure and outcome.  
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S1 Table. Factor loadings for a 5-factor model based on adverse childhood experiences data from the Kaiser Permanente Northern California 
Multiple Sclerosis Research Program cases and controls, 2006-2014 (n=2,607). 
 Item Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

A
ge

s 0
-1

0 
ye

ar
s Death of parent or sibling  0.16 0.11 0.04 0.02 0.98 

Divorce of parents  0.15 0.96 0.17 0.13 -0.12 
Remarriage of parents  0.02 0.85 0.12 0.10 0.28 
You were placed in foster care (or late adoption)  0.20 0.14 0.04 0.72 -0.08 
Went to live with other family members 0.46 0.28 0.15 0.30 0.19 
Serious (life-threatening) illness of parent or sibling (including 
psychiatric illness or substance abuse problem)  

0.46 0.05 0.12 0.00 0.35 

You experienced significant physical or verbal abuse or neglect 0.29 0.21 0.79 0.18 0.08 
Your family lost their home or had to move  0.60 0.33 0.20 0.11 0.06 
You were the victim of a violent crime 0.49 0.18 0.26 0.17 0.07 

A
ge

s 1
1-

20
 y

ea
rs

 Death of parent or sibling  0.29 0.00 0.01 -0.03 0.07 
Divorce of parents  0.43 0.24 0.13 -0.52 0.01 
Remarriage of parents  0.42 0.57 0.09 -0.13 0.07 
You were placed in foster care (or late adoption)  -0.14 0.09 0.18 0.90 0.12 
Went to live with other family members 0.31 0.27 0.19 0.19 0.01 
Serious (life-threatening) illness of parent or sibling (including 
psychiatric illness or substance abuse problem)  

0.45 0.02 0.16 -0.12 0.04 

You experienced significant physical or verbal abuse or neglect 0.26 0.11 0.95 0.03 0.08 
Your family lost their home or had to move  0.63 0.14 0.19 0.02 -0.03 
You were the victim of a violent crime 0.45 0.16 0.41 -0.02 -0.10 

 Proportion of variance explained 0.15 0.14 0.11 0.10 0.07 
 Cumulative variance explained 0.15 0.29 0.40 0.50 0.57 
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S2 Table. Sensitivity analysis of multivariable logistic regression models of the effect of adverse 
childhood experiences (ACEs) during two age periods on odds of multiple sclerosis accounting for 
educational attainment. 
 Overall Ages 0-10 years Ages 11-20 years 
Model OR 95% CI OR 95% CI OR 95% CI 
At least one ACE (ref=none) 0.98 0.84, 1.15 0.83 0.71, 0.98 1.00 0.86, 1.18 
Count category       

0 ACEs (ref) 1.00 - 1.00 - 1.00 - 
1 ACE 1.26 1.02, 1.57 0.99 0.81, 1.21 1.11 0.92, 1.33 
2 ACEs 0.96 0.77, 1.21 0.68 0.52, 0.90 0.83 0.64, 1.08 
3 ACEs 0.74 0.55, 1.01 0.56 0.47, 0.85 0.92 0.64, 1.32 
4 or more ACEs 0.81 0.63, 1.04 0.82 0.50, 1.32 0.99 0.64, 1.54 

Individual events       
Parent/sibling death 0.92 0.70, 1.21 - - 1.18 0.85, 1.65 
Parent divorce 0.83 0.68, 1.01 0.85 0.66, 1.09 0.88 0.68, 1.14 
Parent remarries 0.84 0.67, 1.05 0.83 0.61, 1.13 0.86 0.65, 1.13 
Live elsewhere 1.07 0.84, 1.37 1.07 0.76, 1.50 1.04 0.78, 1.40 
Parent/sibling illness 1.02 0.84, 1.24 1.03 0.81, 1.31 1.04 0.83, 1.31 
Abuse 0.79 0.65, 0.97 0.64 0.50, 0.81 0.85 0.68, 1.05 
Home lost 0.77 0.60, 0.99 0.60 0.44, 0.80 0.93 0.68, 1.26 
Violent crime 0.99 0.72, 1.36 - - 0.97 0.68, 1.40 

Latent variables   - - - - 
Factor 1 0.98 0.94, 1.02     
Factor 2 0.99 0.96, 1.01 - - - - 
Factor 3 0.99 0.97, 1.01 - - - - 
Factor 4 1.07 1.00, 1.13 - - - - 
Factor 5 0.96 0.93, 1.00 - - - - 

Total number of participants without missing covariate data is 2,603. All models adjusted for year 
of birth, sex, race (white or non-white), and educational attainment. ORs for individual ACEs that 
did not occur in at least 5% of samples were not estimated. Beta coefficients, standard errors, and 
their respective ORs and 95% CIs were scaled to 0.1-unit increases for factor scores.  
Abbreviations: ACEs, adverse childhood experiences; CI, confidence interval; OR, odds ratio 
 

S3 Table. Sensitivity analysis of multivariable logistic regression models of the effect of adverse 
childhood experiences (ACEs) during two age periods on odds of multiple sclerosis (MS) 
accounting for parent homeowner status and family history of MS.  
 Overall Ages 0-10 years Ages 11-20 years 
Model OR 95% CI OR 95% CI OR 95% CI 
At least one ACE (ref=none) 0.99 0.85, 1.17 0.4 0.71, 0.99 1.01 0.86, 1.18 
Count category       

0 ACEs (ref) 1.00 - 1.00 - 1.00 - 
1 ACE 1.28 1.03, 1.60 0.98 0.80, 1.20 1.10 0.91, 1.33 
2 ACEs 0.99 0.79, 1.24 0.70 0.53, 0.92 0.86 0.66, 1.12 
3 ACEs 0.75 0.55, 1.01 0.56 0.37, 0.84 0.90 0.62, 1.30 
4 or more ACEs 0.82 0.63, 1.05 0.87 0.53, 1.42 0.96 0.62, 1.51 

Individual events       
Parent/sibling death 0.91 0.69, 1.19 - - 1.17 0.84, 1.64 
Parent divorce 0.85 0.70, 1.05 0.88 0.68, 1.14 0.91 0.70, 1.18 
Parent remarries 0.87 0.70, 1.09 0.89 0.65, 1.21 0.88 0.66, 1.15 
Live elsewhere 1.09 0.86, 1.40 1.10 0.78, 1.56 1.07 0.80, 1.44 
Parent/sibling illness 0.99 0.82, 1.21 1.00 0.79, 1.28 0.99 0.79, 1.25 
Abuse 0.80 0.65, 0.98 0.65 0.51, 0.82 0.83 0.67, 1.04 
Home lost 0.80 0.61, 1.00 0.59 0.44, 0.80 0.97 0.71, 1.32 
Violent crime 1.00 0.73, 1.38 - - 0.97 0.68, 1.40 

Latent variables   - - - - 
Factor 1 0.98 0.95, 1.03     
Factor 2 0.99 0.96, 1.01 - - - - 
Factor 3 0.99 0.97, 1.01 - - - - 
Factor 4 1.07 1.01, 1.14 - - - - 
Factor 5 0.96 0.92, 1.00 - - - - 

Total number of participants without missing covariate data is 2,587. All models adjusted for year 
of birth, sex, race (white or non-white), parent homeownership status (own or rent/other), and family 
history of MS (parent or sibling with MS). ORs for individual ACEs that did not occur in at least 5% 
of samples were not estimated. Beta coefficients, standard errors, and their respective ORs and 95% 
CIs were scaled to 0.1-unit increases for factor scores.  
Abbreviations: ACEs, adverse childhood experiences; CI, confidence interval; OR, odds ratio. 
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CHAPTER 4- A CROSS-TRAIT ANALYSIS OF MIGRAINE AND MULTIPLE SCLEROSIS 
 

ABSTRACT  
 
Background and Objectives: Migraine is common among individuals with multiple sclerosis (MS), 
but the reason is unknown. This study’s objective was to test three hypothesized mechanisms 
responsible for the comorbidity of MS and migraine including migraine causing MS, shared 
genetic variants, or MS with migraine being a distinct MS-related symptom.  
 
Methods: Using publicly available genome-wide association study summary statistics, we used 
two-sample Mendelian randomization to test whether a migraine genetic instrumental variable 
caused MS. We then used linkage disequilibrium score regression and LOGODetect to ascertain 
whether MS and migraine shared non-MHC genetic variants across the genome and regionally. 
We separately tested whether MHC variants were associated with both phenotypes. Last, we 
estimated odds ratios (ORs) and 95% confidence intervals (CIs) using logistic regression to 
identify whether MS cases with migraine had distinct clinical characteristics or more frequent MS-
specific genetic or environmental risk factors compared to MS cases without migraine. 
 
Results: We did not find evidence of migraine causing MS (p=0.29) using Mendelian 
randomization. We identified four MHC loci shared between MS and migraine that had not 
previously been implicated in either disorder. This included a region overlapping HLA-B but no 
other HLA genes. In addition, we observed that MS cases with migraine (compared to non-
migraine MS cases) were more likely to have a relapsing-progressive than primary progressive 
disease course (OR=2.37, 95% CI: 1.26, 4.52) and ever experience depression (OR=1.48, 95% CI: 
1.22, 1.80), after adjusting for covariates including sex and interferon beta use. Other clinical 
features such as age at MS onset and physical and cognitive disability indicators were not 
associated with migraine status. 
 
Discussion: Our findings did not indicate a causal relationship between migraine and MS. Several 
genetic variants, particularly those in the MHC, may account for some of the overlap observed 
between the two conditions. It seems likely that migraine within the context of MS is a symptom 
of MS, rather than a distinct disorder. Defining “MS-typical headache” might lead to earlier 
diagnosis, improved treatment, and improvements in related quality of life. 
  



 35 

INTRODUCTION 
Multiple sclerosis (MS) is a chronic, inflammatory disease of the central nervous system. One 
common co-morbidity is migraine, which occurs in approximately 31% of individuals with MS 
(ranging from 2% to 67%).[1] In contrast, the prevalence of migraine among adults in the U.S. is 
~12% (17% among women).[2] Similarities between MS and migraine include symptoms (e.g., 
visual disruptions and sensory loss) and affected populations (predominantly white, female, and 
diagnosed in early adulthood).[4–6] Despite this, the cause of the overlap remains unknown. 
Several possible explanations, which will be tested in this study, are described below (Figure 1).  
 
First, migraine may cause MS (Figure 1A). Potential 
mechanisms include increased permeability of the blood–
brain barrier after a migraine attack and increased 
neuroinflammation triggering MS.[7,8] To date, studies of 
migraine and MS have either been cross-sectional (not able 
to discern temporality) or cohort studies limited by the rarity 
of MS to detect significant effects. These issues may be 
resolved by mendelian randomization (MR) analyses, 
whereby genetic variants serve as proxies for an exposure 
(“instrumental variable” (IV)) and are used to test the 
causal effect of the exposure on the outcome. Because 
alleles are randomly assigned at conception, they occur 
before the respective outcome which avoids reverse 
causation.  
 
Second, MS and migraine might share genetic variants (i.e., “pleiotropy”) (Figure 1B). Studies 
have shown strong evidence for genetic factors contributing to MS risk, and genome-wide 
association studies (GWAS) have identified more than 230 variants that contribute to MS risk.[9] 
The major histocompatibility complex (MHC) is a region of the genome involved in the adaptive 
immune response and is widely known to be associated with MS susceptibility, particularly the 
HLA-DRB1*15:01 allele.[10,11] GWAS have identified 32 independent loci in the HLA that 
contribute to MS risk. Over 200 non-MHC variants, predominantly located near genes that regular 
adaptive and innate immune function, have also been identified in MS GWAS.[12]. The largest 
migraine GWAS identified 38 independent risk loci, most located near genes involved in neuronal, 
vascular, and smooth muscle functions.[13] No migraine genome-wide significant variants were 
identified within the MHC, but results from several non-GWAS suggests immunological 
dysfunction may be partially responsible for migraine.[14,15] Given the strong role of immune 
genes in MS and inconclusive role within migraine, it is plausible the two disorders share genetic 
variants. No studies have explicitly investigated this.  
 
Third, migraine that occurs comorbid with MS might be a symptom of MS rather than a separate 
disorder with genuine migraine pathology (Figure 1C). This migraine headache symptom could be 
part of the prodrome for MS or occur after diagnosis. If this is the case, there might be observed 
differences in clinical features, genetic risk factors, or environmental/behaviors risk factors of MS 
by migraine status. MS-specific clinical differences by migraine status have been reported in 
small-to-moderate sized studies but did not account for potential confounders such as interferon 

Figure 1. Potential hypotheses for the observed 
co-occurrence of MS and migraine tested in this 
study. A. Migraine causes MS. B. Genetic variants 
are associated with both MS and migraine 
(pleiotropy). C. Migraine observed in individuals 
with MS is a symptom of MS, occurring because 
of MS processes, which could be prodromal or 
after MS diagnosis.  
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beta use and sex.[16–19] Whether MS-specific genetic or environmental risk factors are more (or 
less) prevalent among MS cases with migraine has not been assessed.   
 
This study’s objective was to test these three hypothesized mechanisms responsible for the 
comorbidity of migraine and MS using large, publicly available GWAS summary statistics and 
rich individual-level data from a large MS study from Northern California. Our aims were three-
fold: 1) test for evidence of a causal relationship between migraine and MS using MR analysis; 2) 
test for evidence of pleiotropy between migraine and MS using genetic correlation, globally and 
locally across the genome; and 3) identify whether individuals with MS and migraine had distinct 
clinical characteristics or more frequent MS-specific genetic or environmental risk factors 
compared to MS cases without migraine.  
 

METHODS 
Genome-wide association study summary statistics 
GWAS summary statistics used for MR and genetic correlation analyses were from multiple 
publicly available sources (Table 1). For MR analyses, summary statistics for migraine were from 
the latest migraine GWAS (2016) by the International Headache Genetic Consortium (only 
summary statistics with p<1x10-5 were available) 
(http://www.headachegenetics.org/content/datasets-and-cohorts).[13], and summary statistics for 
MS were from the latest 2019 International Multiple Sclerosis Genetic Consortium (IMSGC) 
GWAS (extracted from the MRC-IEU GWAS database using TwoSampleMR).[12,20] For genetic 
correlation analyses, migraine GWAS summary statistics were from the Neale Lab UKBB pipeline 
(http://www.nealelab.is/uk-biobank), and MS GWAS summary statistics were from the IMSGC. 
 
Kaiser Permanente 
Northern California 
MS case subjects 
Individual-level data were 
from the Kaiser 
Permanente Northern 
California (KPNC) MS 
Research Program which 
recruited two cohorts of individuals: 1) non-Hispanic MS cases (n=1,479) recruited between 2005 
and 2012, and 2) MS cases recruited between 2019-2021 (n=515). At enrollment, all were part of 
the KPNC Health Plan which includes over four million people, representing 25-30% of the 22-
county service area population in Northern California. For both cohorts, eligible cases were 
diagnosed with MS by a neurologist (International Classification of Diseases, Ninth Revision, 
code 340.x) and aged 18-69 years old. Three individuals had missing migraine data, leaving a total 
of 1,991 MS cases available for analyses.  
 
Standard protocol approvals, registrations, and patient consents 
Study protocols were approved by the institutional review boards for human subjects at the 
University of California Berkeley and KPNC. Informed consent was obtained for all study 
participants. 
 

Table 1. GWAS summary statistic data sources for statistical analyses 

Phenotype Source  No. cases No. controls Analysis 

Self-reported 
(SR) or clinician 
diagnosed (CD) 

Migraine IHGC 59,674 316,078 MR IV SR or CD 
Migraine UKBB 10,647 350,494 GC SR  
MS IMSGC 47,429 68,374 MR outcome, GC CD 
Abbreviations: CD, clinician diagnosed; GC, genetic correlation; GWAS, genome-wide 
association study; IHGC, International Headache Genetics Consortium; IMSGC, International 
Multiple Sclerosis Genetics Consortium; IV, instrumental variable; No, number; SR, self-
reported; UKBB, United Kingdom Biobank 
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Migraine classification 
The migraine status of MS cases was identified in two ways: self-report and validated electronic 
health record (EHR) probability algorithm. Participants were asked during a computer-assisted 
telephone interview (CATI), “Has a doctor or other health professional ever told you that you have 
migraine?” or “Have you ever had a migraine?”. Additionally, EHR was used to identify 
individuals who have experienced migraine using a previously validated migraine probability 
algorithm (MPA).[21] Briefly, codes identified in each participant’s EHR were given a point value. 
For example, one outpatient or emergency room visit with migraine diagnosis equaled 10 points. 
Participants were considered “migraineurs” if they either self-reported migraine or had an MPA 
score >10.   
 
Clinical data 
For all MS cases, the CATI included MS-specific questions including use of medications, age at 
first MS symptom and diagnosis, MS subtype, and depression status. Depression was assessed as 
described previously.[22] Age of onset was confirmed by review of electronic health records. For 
each MS case, we calculated the Multiple Sclerosis Severity Scale (MSSS), an indicator of disease 
severity that uses the Expanded Disability Status Scale and disease duration.[23] The CATI 
included two cognitive assessments: the Modified Telephone Interview for Cognitive Status 
(TICS-M) and the Perceived Deficits Questionnaire (PDQ). The PDQ was designed for MS to 
provide a self-report measure of cognitive dysfunction.[24] The total PDQ score was calculated 
from the abbreviated 5-item version by summing raw scores resulting in a score ranging from 0-
20 (higher indicates more perceived impairment). The TICS-M is a widely used 14-item cognitive 
screening test for mild cognitive impairment and dementia and has been validated for use in MS 
cases.[22,25] The total TICS-M score was the unweighted sum of correct answers with a maximum 
of 35 possible points (higher is better).  
 
Environmental/behavioral risk factor data 
The CATI asked participants hundreds of questions including behaviors, health conditions, and 
demographics. Relevant CATI variables for our analyses included: whether or not the participant 
had ever smoked at least one cigarette per day for one month or more, whether or not a parent or 
someone living in the participant’s home smoked inside the house before the participants was 19 
years old, body mass index (BMI) at time of interview, lowest and highest BMI during ages 20-29 
years, weight when 10 years old (underweight, about right, little overweight, very overweight), 
had ever had infectious mononucleosis, had ever been pregnant, age at first pregnancy, whether or 
not they were breastfed for ≥4 months as a child (no, yes, unknown), and age at menarche.  
 
Genetic data 
Single nucleotide polymorphism (SNP) genotyping was performed on samples provided from non-
Hispanic white MS cases recruited from 2006 and 2014 using the HumanOmniExpress BeadChip 
array. Samples with >10% failed genotypes were removed. Related individuals were identified 
and removed if pihat >0.2. SNPs were imputed against haplotypes from Phase I of the 1000 
Genomes Project using SHAPEIT and IMPUTE2. Variants were excluding if they had a 
genotyping success rate <90%, minor allele frequency <1%, Hardy-Weinberg equilibrium 
p<0.001, or info score <0.8. Genetic ancestry proportions were estimated using snpweights, and 
the dataset was restricted to individuals with >80% CEU ancestry to limit the possibility of 
confounding by genetic ancestry. Principal components analysis (PCA) was conducted to generate 
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principal components (PCs) to use as covariates in genetic statistical analyses. There were 1,103 
MS cases with high quality genotypes available for statistical analyses.  
 
Statistical analyses 
Mendelian randomization 
To identify whether migraine had a causal effect on MS, we performed two-sample MR using 
publicly available MS and migraine GWAS summary statistics from European ancestry men and 
women. Using the TwoSampleMR package in R, we created a migraine IV using summary statistics 
from the 2016 IHGC GWAS. SNPs were included in the IV if genome-wide significant at p<5x10-

8 in the GWAS and uncorrelated (linkage disequilibrium (LD)-based clumping threshold r2<0.001 
within a 10,000kb window). Migraine IV SNPs were then extracted from MS IMSGC GWAS 
summary statistics. If IV variants were not available in the MS GWAS, proxies (variant with r2>0.8 
in European 1000 Genomes population) were selected, if possible. Data were harmonized to ensure 
estimation of the effect of the migraine IV on MS corresponded to the same alleles, and 
palindromic and strand ambiguous variants were removed. This resulted in 23 SNPs in the 
migraine IV.  
 
For the main analysis, we applied inverse variance weighted two-sample MR to obtain effect 
estimates of the migraine genetic IV on MS. For MR studies, the relevance assumption (all IV 
SNPs are associated with risk of the exposure), independence assumption (no unmeasured 
confounding between IVs and outcome), and exclusion restriction (IVs cannot affect the outcome 
through pathways other than the exposure or “horizontal pleiotropy”) are essential for the method 
to avoid bias and be considered causal. To address these assumptions, several measures were taken. 
First, we included estimation methods (weighted median, weighted mode, and simple mode) that 
assume only a portion of the variants in an migraine IV were associated with migraine. We also 
used MR-Egger regression which provides a causal estimate largely robust to horizontal 
pleiotropy. Additionally, we measured the degree of heterogeneity across the individual migraine 
IV SNP effect estimates using the Cochran Q test. A Q statistic much larger than nSNP-1 would 
suggest violation of either the independence assumption or exclusion restriction. We also 
conducted a leave-one-out analyses of individual SNPs from the migraine IV to determine whether 
the estimate was driven by a single SNP. 
 
Genome-wide genetic correlation 
Linkage disequilibrium score regression (LDSC) was used to estimate genetic correlation across 
the genome (excluding the MHC region) between MS and migraine using the LDSC tool in 
Python2.[26,27] We utilized non-MHC summary statistics from the UKBB (migraine) and 
IMSGC (MS) and a pre-computed LD matrix of European ancestry individuals from the 1000 
Genomes Project. GWAS summary statistics were excluded if MAF ≤0.01, on sex chromosomes, 
not SNPs (e.g., indels), strand ambiguous, or duplicated. Variants were also filtered to HapMap3 
SNPs which are well-imputed in most studies. This resulted in a total of 1,171,211 non-MHC SNPs 
for LDSC analyses. Genetic correlation but not heritability estimates were presented because both 
source GWAS corrected for genomic control/ancestry which can result in an underestimation of 
SNP-heritability but not genetic correlation. 
 
Local genetic correlation 
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We used LOcal Genetic cOrrelation Detector (LOGODetect) to identify non-MHC regions of the 
genome associated with both MS and migraine, using summary statistics from GWAS (IMSGC 
for MS and UKBB for migraine).[27–29] LOGODetect achieves this by utilizing partitioned 
LDSC and a scan statistic approach, as opposed to pre-specifying candidate regions of interest. 
The scan statistic (Q) was defined as the LD-weighted inner product of two z-score vectors in a 
respective region. Larger absolute values represent larger genetic correlation in the respective 
region. Similar to our LDSC analysis, we utilized a pre-computed LD matrix of European ancestry 
individuals from the 1000 Genomes Project. For each GWAS summary dataset, we removed 
variants that were indels, strand-ambiguous, or not present (or if MAF<0.01) in the pre-computed 
LD matrix. We also filtered to variants in HapMap3. We then took the overlapping SNPs from 
each GWAS and confirmed allele coding schemes were consistent. This resulted in 1,049,383 
SNPs for LOGODetect analyses. Within significant regions, we identified independent SNPs were 
using LD clumping procedures (r2<0.01 and window size=250kb), used the UCSC Genome 
Browser to annotate SNPs, used PANTHER to classify gene pathways, and used GTEx to identify 
whether genes were expressed in specific tissues. 
 
Shared variants in the MHC 
The MHC contains the largest genetic risk factors for MS, but its complex LD patterns make it 
difficult to include in LDSC-based analyses. To test whether variants within the MHC might be 
associated with both MS and migraine, we first identified all variants in the MHC from the largest 
MS GWAS (IMSGC) that reached genome-wide statistical significance (p<5x10-8). We subset 
these variants to those in the migraine GWAS summary statistics dataset (UKBB) that had 
MAF>0.01 and tested whether they were significant in migraine GWAS. To determine the 
significance threshold for migraine, we used the clumping procedure in Plink (r2>0.01 and 
kb=250) to determine the number of independent SNPs in the significant MHC MS SNP set.[30] 
We used a significance threshold p < 0.05/number of independent significant MS MHC SNPs 
available in migraine GWAS dataset. MS and migraine significant SNPs were input into 
LocusZoom (http://locuszoom.org/) to identify patterns of LD using a European reference 
population. LD-based clumping was performed in Plink to identify an independent SNP in each 
region.   
 
Analyses of individual risk factors and clinical features among MS cases 
To determine whether individuals with MS and migraine had distinct clinical characteristics or 
more frequent MS-specific genetic or environmental risk factors compared to MS cases without 
migraine, we estimated odds ratios (ORs) and 95% confidence intervals (CIs) using logistic 
regression (migraine as the outcome) for each risk factor/clinical characteristic among MS cases 
in the KPNC MS Research Program. Clinical features included MS subtype, age at MS onset, 
MSSS score, PDQ score, TICS-M score, depression (ever), and ever used interferon beta. For each 
clinical analysis, we adjusted for interferon beta use (ever), disease duration, sex, and race (white 
or other). The model for age of MS onset and MSSS did not adjust for disease duration to avoid 
collinearity. Cognitive outcomes (PDQ and TICS-M) also adjusted for education level (college or 
not). All environmental/behaviors risk factor logistic regression models, except those pertaining 
to menarche and pregnancy, adjusted for race, age, and sex. The model for age at menarche 
adjusted for race only. The model for “ever pregnant” adjusted for race and age. The age at first 
pregnancy model only adjusted for race. Genetic risk variants included the largest known genetic 
contributors to MS, HLA-DRB1*1501 and HLA-A*02, and non-MHC and MHC alleles found to 
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be associated with both MS and migraine in analyses above. For all variants, minor alleles were 
coded additively, and all logistic regression models adjusted for the first three genetic PCs. In 
addition to estimating ORs for individual genetic variants, we created polygenic risk scores (PRSs) 
for MS and migraine and estimated their association with migraine among MS cases, adjusting for 
the first three genetic PCs. Included in each PRS were genome-wide significant non-MHC variants 
from the IMSGC GWAS or IHCG GWAS, respectively, that were available in our data and met 
quality control thresholds. This resulted in 39 migraine SNPs and 158 MS SNPs. GWAS beta 
coefficients from these variants were used as weights, and PRSs were calculated using the --score 
command in Plink.  
 

RESULTS 
No evidence of migraine causing MS 
Inverse-variance weighted MR analysis did 
not reveal a causal association between the 
migraine IV and MS (beta=0.09, se=0.08, 
p=0.29) (Table 2). Effect estimates from 
weighted median, weighted mode, and mode 
estimation methods did not differ 
considerably from the inverse-variance 
weighted method. The MR-Egger regression 
slope was consistent with the absence of an 
effect of migraine on MS risk. The Cochran Q 
test statistic did not reveal large heterogeneity 
among the individual migraine IV SNP effect 
estimates in the inverse-variance weighted 
(Q=38.81) and MR-Egger analyses (Q=37.30). 
Leave-one-out analyses for migraine IV SNPs 
indicated consistent effect estimates when one 
SNP was iteratively removed (Supplementary 
Figure 1). Together, these results suggest the 
assumptions of relevance and no horizontal 
pleiotropy were met and there is no evidence 
for migraine causing MS.  
 
Four non-HLA genomic regions were 
associated with both MS and migraine 
Using publicly available GWAS summary 
statistics from the UKBB and IMSGC, we did 
not find evidence of global genetic correlation 
between MS and migraine (rg=0.01, se=0.05, 
p=0.88). Because estimating global genetic 
correlation can oversimplify the shared genetic architecture between phenotypes, we sought to 
identify if local regions of the genome contributed to genetic correlation between MS and migraine 
using LOGODetect. In total, we identified four genomic regions showing associations with MS 
and migraine (FDR q< 0.05; Figure 2 and Table 3). The size of the identified genome segments 

Table 2. Results of two-sample MR analyses of a migraine genetic IV on 
MS 

Method beta (se) p-value 

Inverse variance weighted 0.09 (0.08) 0.29 

MR Egger -0.11 (0.23) 0.64 

Weighted median 0.13 (0.10) 0.17 

Simple mode 0.10 (0.18) 0.60 

Weighted mode 0.17 (0.16) 0.29 

Abbreviations: IV, instrumental variable; MR, Mendelian 
randomization; MS, multiple sclerosis; se, standard error 

 

Figure 2. LOGODetect identified four regions across the genome 
associated with both MS and migraine. Significant regions were 
highlighted in green. Each point represented a variant from source 
GWAS (filtered to HapMap3 SNPs) that were input into the 
LOGODetect program. P-values represent those from source GWAS, 
not regional p-values identified from LOGODetect.  
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ranged from 26kb to 94kb. One of the regions (chr12: 57,508,649 – 57,534,64) had a positive test 
statistic, while the other three regions had negative statistics (indicating negative genetic 
correlation). Genes identified in or near these regions were involved in RNA polymerase II binding 
and transcription (GO:0006366, GO:0006357), lipid homeostasis (GO:0055088), fatty acid beta-
oxidation (GO:0006635), meiotic cell cycle (GO:0007127 and GO:0007134), and cytokine-
mediated signaling pathway (GO:0019221). These genes were not significantly enriched in 
specific tissue types (Supplementary Figure 2). Comparatively, lung, thyroid, and stomach tissues 
and EBV-transformed cell lines had upregulated expression of genes in these regions while testis, 
prostate, hippocampus, and spinal cord tissues had down-regulated expression.  
 

Table 3. Characteristics of four regions of the genome where genetic correlation between MS and migraine was detected (FDR q<0.05) 

chr position stat p-value q-value  Nearby genesa  GO biological process 

1 3,070,829 – 3,116,620 -4.80 2.0e-4 0.02 PRDM16 0006366, 0006357 

2 111,854,342 – 111,948,541 -2.95 4.0e-4 0.02 ACOXL, BCL2L11 0005088, 0006635, 0007127 

12 57,508,649 – 57,534,641 4.30 2.0e-4 0.04 LRP1, STAT6 0019221, 0042127, 0006366 

16 1,048,390 – 1,079,298 -5.66 2.0e-4 0.01 - - 

aAll genes were within 5kb of the specified region 
Abbreviations: chr, chromosome; FDR, false discover rate; GO, gene ontology; stat, statistic; MS, multiple sclerosis 

 
Four HLA regions were associated with both MS and migraine 
When assessing whether there were genetic variants in the MHC region shared between MS and 
migraine, we identified 18,803 MHC variants significantly (p<5x10-8) associated with MS. Of 
these, 10,896 (40 independent loci) had available summary statistics in migraine GWAS. Ninety-
eight variants were significantly associated with migraine (p<1.25x10-3) and were located in four 
high-LD regions of the MHC (Supplementary Figure 3). These variants clumped into four 
independent loci (Table 4) in the following genes: HCG20, HLA-B, MSH5, TNXA, and TNXB. For 
all four independent loci, the major allele, not minor allele, conferred risk of MS and migraine.  

 
Clinical features and risk factors among MS cases with migraine 

Table 4. Characteristics of four independent MHC variants associated with both MS and migraine 

position rsid 

  MS GWAS Migraine GWAS 

Gene 
Allele 
comparison 

Minor 
allele beta p-value beta p-value 

6:30758126 rs13210146 T:A T -1.50x10-3 4.70x10-5 -0.19 1.58x10-10 HCG20 

6:31249398 rs9264764 C:T C -1.26x10-3 4.10x10-4 -0.22 1.14x10-37 HLA-B 

6:31724219 rs805826 C:G C -1.84x10-3 1.20x10-5 -0.15 8.49x10-15 MSH5 

6:32018573 rs35214850 C:A C -2.18x10-3 4.20x10-4 -0.26 2.54x10-13 TNXA, TNXB 

Abbreviations: GWAS, genome-wide association study; MHC, major histocompatibility complex; MS, multiple sclerosis  
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To determine whether individuals with MS and migraine had distinct clinical characteristics or 
more frequent MS-specific genetic or environmental risk factors compared to MS cases without 
migraine, we utilized a large study of MS cases (n=1,991). Demographic characteristics of MS 
cases were shown in Table 5. The prevalence of migraine among MS cases was 38.9%. Those who 
experienced migraine were more likely to be female (88.6%) compared to non-migraine MS cases 
(70.3%) and had a lower educational 
attainment (40.4% had a bachelor’s degree 
or higher compared to 48.3% among non-
migraine MS cases). Compared to non-
migraine MS cases, those with migraine 
had more frequent relapsing remitting or 
relapsing progressive disease course 
(69.4% vs. 74.3%), earlier age at MS onset 
(32.8 (sd=9.6) vs. 31.5 (sd=10.2)), more 
frequent experience of depression (35.0% 
vs. 45.0%), and more frequently had ever 
used interferon beta treatment (50.7% vs. 
54.1%). After adjusting for potential 
confounders such as age, sex, and 
interferon beta use, MS cases had a higher 
odds of migraine if they had a relapsing 
progressive disease course (compared to 
primary progressive) (OR=2.37, 95% CI: 
1.26, 4.52) or depression (OR=1.48, 95% 
CI: 1.22, 1.80) (Table 6). When compared to individuals with primary progressive MS, there was 
not a significant difference in odds of migraine among those with relapsing-remitting (OR=1.28, 
95% CI: 0.85, 1.95) or secondary progressive (OR=1.11, 95% CI: 0.70, 1.79) disease courses. No 
other clinical symptoms, including age at onset, MSSS, and cognitive assessments, were 
significantly associated with migraine status. The only environmental or behavioral risk factor for 
MS that was associated with migraine status was smoking, whereby MS cases who had ever 
smoked had 1.30 times the odds of migraine compared to non-smokers (95% CI: 1.08, 1.57). MHC 
variants, including HLA-DRB1*1501, HLA-A*02, and four leading MHC variants identified above 
as associated with both MS and migraine, were not associated with migraine status among 
individuals with MS (Table 6). One leading SNP (rs108990) on chromosome 16 identified from 
significant LOGODetect regions was available in the MS case data; it was not associated with 
migraine status (OR=1.13, 95% CI: 0.91, 1.41). Neither MS nor migraine PRSs were significantly 
associated with migraine status among MS cases (OR=0.87, 95% CI: 0.74, 1.04 and OR=1.13, 
95% CI: 0.965, 1.96, respectively).   
 

DISCUSSION 
Using large, publicly available GWAS summary statistics and rich individual-level data from a 
large MS study from Northern California, this study tested three mechanistic hypotheses for the 
co-occurrence of MS and migraine: migraine causes MS, genetic variants were shared between the 
two disorders, or migraine within the context of MS was a distinct phenotype/symptom of MS. 
Using two-sample MR, we did not find evidence for a causal relationship between migraine and 

Table 5. Demographic and clinical characteristics of 1,991 MS cases in 
the Kaiser Permanente Northern California MS Research Program 
stratified by migraine status 
Characteristic Migraine No migraine 
N 774 1217  
Age (mean, sd) 47.4 (9.9) 47.5 (9.9) 
Sex, female (n, %) 686 (88.6) 856 (70.3) 
Hispanic (n, %) 44 (5.7) 72 (5.9) 
Race (n, %)   

White 683 (88.2) 1010 (83.0) 
Black 69 (9.0) 126 (10.4) 
Other 22 (2.8) 80 (6.6) 

Bachelor’s degree or higher (n, %) 313 (40.4)  588 (48.3) 
MS subtype (n, %)   

Relapsing remitting 539 (69.6) 808 (66.4) 
Secondary progressive 99 (12.8) 177 (14.5) 

Primary progressive 47 (6.1) 97 (8.0) 
Relapsing progressive 36 (4.7) 36 (3.0) 

Unknown 53 (6.9) 99 (8.1) 
Age at MS onset (years) (mean, sd) 31.5 (10.2) 32.8 (9.6) 
MS Severity Score (mean, sd) 3.8 (2.4) 3.9 (2.5) 
PDQ score (mean, sd) 6.8 (5.7) 5.5 (5.2) 
TICS-M score (mean, sd) 21.5 (3.9) 21.2 (3.8) 
Ever depressed (n, %) 348 (45.0) 426 (35.0) 
Ever used interferon beta (n, %) 419 (54.1) 617 (50.7) 
MS, multiple sclerosis; MSSS, multiple sclerosis severity score; PDQ, 
Perceived Deficits Questionnaire; TICS-M, Telephone Interview for 
Cognitive Status- Modified 
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MS. We did identify regions, 
particularly within the MHC, that were 
shared between MS and migraine. We 
also identified that MS cases who 
experienced migraine had a higher odds 
of ever being depressed and of having a 
relapsing-progressive disease course. 
Collectively, this suggests that MS and 
migraine may co-occur because they 
share several genetic variants, rather 
than migraine causing MS. It also 
highlights that if migraine is a symptom 
of MS, it does not also occur more 
frequently with cognitive or physical 
deficits or result from a higher burden 
of MS-specific genetic or 
environmental/behavioral risk factors. 
This has important implications for 
treatment of migraine among 
individuals with MS and even the 
diagnosis of MS if migraine is indeed a 
symptom. 
 
This study’s finding that a causal 
relationship between migraine and MS 
was not identified addressed a major, 
unresolved question regarding MS and 
migraine. For decades, there have been 
conflicting observations that migraine 
often preceded MS by several years and 
that migraine often occurred after MS 
relapses.[31] To date, the largest 
prospective study to investigate this 
was the Nurses’ Health study which 
separately examined the risk of 
developing MS among migraineurs and the risk of developing migraine among individuals with 
MS.[32] They found a higher risk of MS among migraineurs and a higher risk of migraine among 
participants with MS. Despite having over 116,000 participants, this study was still underpowered 
due to the rarity of MS.[33] Our use of genetics and MR helped to elucidate this (lack of) cause 
and effect because inherited genetic variants are not subject to reverse causation. The clear 
comorbid association of MS and migraine in our study and others but the lack of evidence proving 
it is a causal relationship suggests that MS and migraine may either share risk factors or migraine 
in MS may be a separate phenotype.  
 
Our study identified four regions of the MHC significantly associated with both MS and migraine. 
Two were within the MHC class I region and two were inside the class III region. Within these 

Table 6. Results from logistic regression estimating the association between 
clinical factors and MS risk factors and migraine among individuals with MS 
 Clinical featurea OR 95% CI 
MS subtype (ref=primary progressive)   

Relapsing remitting 1.28 0.85, 1.95 
Secondary progressive 1.11 0.70, 1.79 
Relapsing progressive 2.37 1.26, 4.52 

Age at MS onset (years)  0.99 0.98, 1.00 
MSSS  1.01 0.97, 1.05 
PDQ score  1.04 1.02, 1.06 
TICS-M score  1.02 0.99, 1.05 
Ever depressed 1.48 1.22, 1.80 
Ever used beta interferon beta 1.08 0.89, 1.32 
Environmental risk factorb OR 95% CI 
Current BMI 1.02 1.00, 1.03 
Highest BMI in 20s 1.00 0.99, 1.02 
Weight at 10 years (ref= “about right”)   

Underweight 1.25 0.96, 1.76 
A little overweight 0.91 0.71, 1.62 

Very overweight 1.48 0.91, 1.15 
Ever smoker 1.30 1.08, 1.57 
Lived with indoor smoker as child 0.95 0.76, 1.18 
Ever had infectious mononucleosis 0.85 0.66, 1.10 
Breastfed as a child (ref= <4 months)   

>=4 months 0.89 0.67, 1.18 
Unknown  0.91 0.74, 1.13 

Age at menarche, year 0.98 0.91, 1.04 
Ever pregnant 1.12 0.87, 1.45 
Age at first pregnancy 0.97 0.95, 0.99 
Genetic risk factorc OR 95% CI 
HLA-DRB1*1501 0.98 0.80, 1.19 
HLA-A*02 1.14 0.93, 1.39 
rs13210146 1.07 0.89, 1.29 
rs9264764 0.91 0.77, 1.09 
rs805826 0.88 0.72, 1.08 
rs35214850 0.91 0.66, 1.24 
rs108990 1.13 0.91, 1.41 
MS PRS 0.87 0.74, 1.04 
Migraine PRS 1.13 0.65, 1.96 

aFor each clinical analysis, we adjusted for beta interferon beta use (ever), disease 
duration, sex, and race (white or other) unless. The model for age of MS onset and 
MSSS did not adjust for disease duration to avoid collinearity. Cognitive 
outcomes (PDQ and TICS-M) also adjusted for education level (college or not). 
bAll environmental/behavioral models except those pertaining to menarche and 
pregnancy adjusted for race, age, and sex. The model for age at menarche only 
adjusted for race. The “ever pregnant” model adjusted for race and age, and the 
age at first pregnancy model only adjusted for race.  
Abbreviations: BMI, body mass index; CI, confidence interval; MS, multiple 
sclerosis; MSSS, multiple sclerosis severity score; OR, odds ratio; PDCS, 
Perceived Deficits Questionnaire; PRS, polygenic risk score; ref=reference 
category; TICS-M, Modified Telephone Interview for Cognitive Status. 
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significant regions, we identified four independent leading SNPs: rs13210146, rs9264764, 
rs805826, and rs35214850. For each, the major allele conferred increased risk of both MS and 
migraine. These MHC variants have not previously been implicated in MS or migraine pathology 
and might serve as new targets and hypotheses for their shared etiology.  
 
We also identified four regions on chromosomes 1, 2, 12, and 16 exhibiting local genetic 
correlation between MS and migraine. The region on chromosome 12 was near LRP1, which 
encodes a protein necessary for clearing amyloid precursor protein and beta-amyloid, the main 
components of amyloid plaques found in Alzheimer patients. This region was also near STAT6, a 
gene involved in IL-4 mediated biological responses (a cytokine with many immune regulatory 
functions). Interestingly, the family of transcription factors encoded by the STAT family target 
BCL2L11 and ACOXL, genes near our significant regions on chromosome 2. This pathway might 
be a particularly interesting target for future research and therapies. Apart from the significant 
chromosome 12 region, the remaining significant regions all had negative test statistics. This 
means the loci within those regions were associated with increased prevalence of MS or migraine 
but reduced prevalence of the other. This is called “antagonistic pleiotropy”. For these alleles to 
confer risk of both phenotypes, there would need to be a mechanism that alters expression of 
associated genes at different timepoints or scenarios. For example, it may be possible that a variant 
increases risk of MS while decreasing risk of migraine; however, after MS treatment, the relevant 
biological process that prevented migraine was affected by the drug and is no longer conferring 
protection. This antagonistic pleiotropy finding is an important reminder that shared genetic 
variants can increase the risk of one disorder while reducing the risk of another which has 
important implications for therapeutic targets of either condition.  
 
Finally, we did not observe that MS cases with migraine had many distinct clinical features apart 
from a higher prevalence of ever being depressed and a relapsing-progressive disease course. Other 
studies have also observed that age of MS onset, disease duration, and disability were similar in 
MS patients with and without migraine.[16–19] Our sample is one of the largest to confirm this 
and adjusted for sex and interferon beta use, the latter of which has frequently been reported as a 
trigger for migraine in patients with MS.[34,35] MS cases with migraine also did not have more 
(or less) frequent environmental risk factors apart from being more likely to have ever smoked. 
Previous studies have shown that smoking is a risk factor for MS, that smokers experienced a 
greater severity of headache, and that individuals with migraines tended to smoke more heavily 
than individuals without migraines.[36,37] Whether migraines are exacerbated by smoking is an 
important area of future work and potential intervention. MS cases with migraine also did not have 
more (or less) frequent MS-specific genetic risk factors. This included the strongest genetic risk 
factors for MS, HLA-DRB1*1501 and HLA-A*02. This suggested that MS risk variants were not 
driving the occurrence of migraine. It is possible that genetic variants associated with MS 
progression, rather than risk, play a more active role in migraine symptoms and should be 
investigated. We also did not observe that four leading MHC variants associated with both MS 
and migraine were more (or less) frequent among MS cases with migraine. This further indicated 
that migraine within the context of MS might be a different type of headache without traditional 
migraine etiology or genetic risk factors. 
 
This study has several notable strengths. First, use of MR allowed for testing hypotheses regarding 
the temporal relationship of migraine and MS and avoided sources of confounding that might be 
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present in traditional observational studies. Through use of large GWAS summary statistics, it also 
allowed for increasing power to detect associations among MS cases. Also, the availability of a 
large MS cohort with deep phenotyping and genotyping allowed for a unique assessment of 
characteristics of MS cases with migraine. This study had several limitations. The causal MR 
method is unbiased if all three causal assumptions are met. While we did use multiple estimation 
and statistical methods that loosen these assumptions, it was possible that horizontal pleiotropy or 
confounding existed, or the strength of the genetic instruments were weak. Another limitation, 
implicated in most migraine-related research, is that migraine may be misclassified. In responding 
to a self-report, the difference in migraine versus headache might seem ambiguous whereas they 
are distinct in clinical practice. In this way, migraine prevalence might be over-estimated. Yet, 
migraine is generally under-reported in the population; an estimated 48% of adult migraineurs in 
the U.S. have ever received a physician diagnosis of migraine.[38] This makes is more likely that 
studies of migraine are under-representations of the true distribution of migraine. Therefore, 
individuals included in GWAS who were classified as not having migraine, might be misclassified. 
This could lead to null GWAS findings or underestimation of the genetic contribution of migraine. 
Within the context of MS, it is possible that patients had a higher diagnosis of migraine because 
they saw a neurologist more frequently than healthy individuals. Given then rarity of MS, this 
would likely not significantly influence our observed results from GWAS. Finally, there may be 
additional mechanisms for the comorbidity of MS and migraine not tested in this study. For 
example, we did not assess shared environmental risk factors between MS and migraine. This 
should be investigated in the future.  
 
In conclusion, our results did not show a causal relationship between migraine and MS. Several 
genetic variants, particularly those in the MHC, may account for some of the overlap observed 
between the two conditions. Given the well-documented strong association between MS and 
migraine, it seems likely that migraine within the context of MS is a symptom of MS, rather than 
a distinct disorder. If it were possible to define a MS-typical headache, patients with these 
headaches might be able to be treated earlier, reducing their risk of MS relapse/progression and 
related reductions in quality of life. 
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Supplementary Figure 1. Leave-one-out analysis testing the effect of migraine genetic 
instrumental variables on multiple sclerosis with one of 23 migraine variants iteratively 
excluded (y-axis) from the Mendelian randomization analysis. 
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Supplementary Figure 2. GTEx tissue expression of genes located within four significant LOGODetect regions.  
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Supplementary Figure 3. Location and LD patterns of 98 MHC variants associated with both MS and migraine. Significant 
variants were in four regions of the MHC: a) pos:30,746,633-30,758 ,707; b) 31,240,041-31,318,630; c) 31,629,096-31,806,479; 
and d) 32,014,456-32,066,765. The independent variant identified from LD-based pruning was considered the LD reference 
variant (triangle) and the amount of LD with surrounding significant variants was indicated (color). Genes within the selected 
regions were shown below each plot.  




