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Abstract of the Dissertation

Extensions of Classic Theorems

in Extremal Combinatorics

by

Shagnik Das

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2014

Professor Benjamin Sudakov, Chair

Extremal combinatorics deals with the following fundamental question: “how large can a

structure be without containing forbidden configurations?” The structures studied are ex-

tremely flexible, allowing for a wide range of applications to diverse fields such as theoretical

computer science, operations research, discrete geometry and number theory. Moreover,

tools from probability theory, algebra and analysis have proven incredibly useful, spurring

the development of new techniques in combinatorics. This synergy between different fields

has led to incredible growth in recent decades, inspiring numerous directions for research.

In this dissertation, we present new extensions of classic theorems in extremal combi-

natorics, employing probabilistic and analytic arguments to solve problems connected to

number theory and coding theory. In Chapter 2, we greatly improve the bounds for the

rainbow Turán problem for even cycles, a problem merging the graph theoretic disciplines of

Turán theory and graph colouring. In Chapter 3, we use the analytic method of flag algebras

to study a variant of Turán’s theorem proposed by Erdős. We then shift to extremal set the-

ory, and in Chapter 4 study the supersaturation problem for the Erdős–Ko–Rado Theorem.

In Chapter 5 we discuss a probabilistic measure of supersaturation for intersecting families,

introduced recently by Katona, Katona and Katona. These problems represent the various

fields within extremal combinatorics that the author has worked in.
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support over these past five years. I have also appreciated the opportunity to visit and work
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Publications

S. Das, C. Lee and B. Sudakov, Rainbow Turán problem for even cycles, Eur. J. Combin.

34 (2013), 905–915.

S. Das, H. Huang, J. Ma, H. Naves and B. Sudakov, A problem of Erdős on the minimum
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CHAPTER 1

Introduction

Extremal combinatorics is a central area of discrete mathematics, whose origins can be

traced back hundreds of years. However, it is in recent decades that the field has experi-

enced tremendous growth, a spurt that is no doubt due to its deep connections with other

disciplines. On the one hand, techniques from probability, algebra and analysis have been ap-

plied to combinatorial problems with great success, leading to the development of new areas

of study within the subject. On the other hand, much research has been driven by appli-

cations to theoretical computer science, operations research, discrete geometry and number

theory. This synergy between combinatorics and other areas, both within mathematics and

without, continues to grow stronger, inspiring both new directions of research and extensions

of classic theorems.

The typical extremal problem takes the following form: “how large can a structure be

without containing some forbidden configuration?” One of the major areas of study is ex-

tremal graph theory, where the structures studied are graphs, and the configurations to be

avoided are forbidden subgraphs. The fundamental result in this direction is Turán’s theorem

[Tur41], determining the largest number of edges in graphs without large cliques. Another

central area is that of extremal set theory, where the structures are families of sets, and the

forbidden configurations are restricted intersection patterns. The prototypical result is the

Erdős–Ko–Rado theorem [EKR61], which gives the size of the largest uniform intersecting

family of sets. As is befitting of such important theorems, countless extensions and varia-

tions have been developed. We shall discuss some of these in the following chapters, but the

interested reader may wish to consult the books of Bollobás [Bol04] and Jukna [Juk01] for a

detailed study of extremal graph theory, while the monograph of Babai–Frankl [BF92] and
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the book of Anderson [And87] are excellent resources for extremal set theory.

In this dissertation, we strengthen these celebrated results in extremal combinatorics,

sometimes through the use of probabilistic or analytic methods, and in the process answer

some questions arising from fields such as number theory or coding theory. We provide below

a brief overview of these results, although a more thorough discussion of the background and

motivation of each problem is contained in the introductions of the relevant chapters.

Our first extension concerns the rainbow Turán problem, first introduced by Keevash,

Mubayi, Sudakov and Verstraëte [KMS07]. As suggested by its name, this problem combines

two key areas of extremal graph theory, namely Turán theory and graph colouring.

Turán theory asks how many edges a graph on n vertices may have if it does not contain

a forbidden subgraph H. Turán [Tur41] resolved the problem in the case of H being a

complete graph. This was later extended by Erdős and Stone [ES46], who showed that the

Turán number of a graph H is essentially determined by its chromatic number. This result

resolves the problem asymptotically except when H is bipartite. To this day, bipartite Turán

problems remain widely open, with very few bounds known. One such bound was found by

Bondy and Simonovits [BS74], who gave an upper bound on the number of edges in a graph

without an even cycle of given length.

Graph colouring problems also enjoy a long history. We say a graph is properly edge-

coloured if no two edges sharing a vertex receive the same colour. Given a proper colouring,

one usually is interested in finding rainbow subgraphs, where every edge is of a different

colour. The Canonical Ramsey Theorem of Erdős and Rado [ER50] implies that for any

finite number of colours, every proper colouring of the edges of a sufficiently large complete

graph produces a rainbow copy of a complete graph on k vertices.

The rainbow Turán problem for a given graph H fuses these two areas together by asking

how many edges a properly edge-coloured n-vertex graph may have without containing a

rainbow copy of H. In the original paper [KMS07], Keevash et al. resolve the problem for

non-bipartite graphs. They also demonstrate the connection between a problem in number

theory and the rainbow Turán problem for even cycles, highlighting the latter as the most

2



interesting open case of this problem. In Chapter 2 we combine probabilistic and structural

arguments to greatly improve the best-known bounds on the rainbow Turán number of even

cycles, and also provide better bounds on the size of graphs without any rainbow cycles.

We return now to Turán’s theorem [Tur41], which determines the largest n-vertex graphs

not containing a complete subgraph on ` vertices. While the original theorem was concerned

with maximising the number of edges, or complete subgraphs on two vertices, Zykov [Zyk49]

showed that the same graphs also maximise the number of complete subgraphs on any num-

ber of vertices. By considering the complementary graph, Turán’s theorem states that these

graphs have the fewest edges while not containing an independent set of size `. Erdős [Erd62b]

conjectured that, just as in Zykov’s theorem, these complementary graphs also minimise the

number of cliques of size k, giving rise to what we call the (k, `)-problem. However, Nikiforov

[Nik01] disproved the conjecture for the (4, 3)-problem, and further showed the conjecture

could only hold for finitely many pairs (k, `) when k, ` ≥ 3.

This appears to be a very difficult problem to solve in full generality, and a complete

solution would seem to be beyond our current means. However, the method of flag alge-

bras, recently introduced by Razborov [Raz07], allows us to solve particular cases of the

(k, `)-problem. This method translates extremal problems into semidefinite programming

problems, which can be solved numerically. These numerical solutions provide asymptotic

bounds for the extremal problem, although often much work is required to find a rational

solution that is not subject to rounding errors. When these bounds match those coming

from constructions, one has an asymptotic solution to the original problem. A detailed in-

troduction to the method is included in Section 3.3. For a survey of the many results it has

led to, see [Raz13].

In Chapter 3, we attack the (k, `)-problem with the machinery of flag algebras. By

carefully analysing the output from the semidefinite programming problems, we obtain sta-

bility results that further allow us to precisely characterise the extremal graphs. In partic-

ular, we verify the Erdős conjecture for the (3, 4)-problem, while showing that Nikiforov’s

counterexample is optimal for the (4, 3)-problem. Finally, we combine random and explicit

constructions to provide much sharper bounds on when the conjecture of Erdős can hold.
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The remaining results in this dissertation concern supersaturation problems in extremal

set theory, which we now describe. Recall that the typical extremal result bounds how large a

structure can be if it does not contain a forbidden configuration. Equivalently, it asserts that

larger structures must contain at least one forbidden configuration. A natural strengthening

is to then ask how many such forbidden configurations actually appear in larger structures,

and this is known as the supersaturation problem. These problems have long guided research

in extremal combinatorics – indeed, in the context of graph theory, Razborov’s development

of flag algebras was motivated by the much-studied supersaturation problem for the minimum

number of triangles in graphs with many edges [Raz08].

Supersaturation problems for extremal set theory have also received much attention over

the years. It is well-known that the largest intersecting family of subsets of an n-element

universe has size 2n−1. Frankl [Fra77] and, independently, Ahlswede [Ahl80] studied the

problem of how many disjoint pairs of sets must appear in larger families, showing that

it is optimal to take sets as large as possible. This determines the large-scale structure of

the extremal families, but the exact solution depends on which sets are chosen in the final

level. Ahlswede [Ahl80] explicitly asked which k-uniform set families minimise the number

of disjoint pairs, a problem which may also be thought of as the supersaturation problem

for the celebrated Erdős–Ko–Rado theorem [EKR61].

In Chapter 4, we study supersaturation for the Erdős–Ko–Rado theorem. Utilising shift-

ing arguments, we are able to determine the exact solutions for a wide range of parameters,

and furthermore classify the extremal families. In doing so, we partially prove a conjecture

of Bollobás and Leader [BL03]. Our methods also provide similar results for some classic

extensions of the Erdős–Ko–Rado theorem, allowing us to determine both the minimum

number of matchings of size q and the minimum number of pairs intersecting in fewer than

t elements. As a special case, the latter result provides a partial solution to a problem of

Kleitman and West from coding theory.

Recently, Katona, Katona and Katona [KKK12] introduced a probabilistic notion of

supersaturation. The standard supersaturation problem asks how many forbidden configu-

rations must appear beyond the extremal threshold. In the probabilistic variant, we instead

4



consider random substructures of large structures, and seek to maximise the probability

that these substructures avoid any forbidden configurations. Note that below the extremal

threshold, it is possible for the original structure itself to be free of any forbidden config-

urations, and hence this probability is one. Thus, just as in the original supersaturation

problem, we are only interested in structures larger than the corresponding extremal bound.

In their original paper, Katona et al. [KKK12] focus on the probabilistic supersaturation

problem for non-uniform intersecting families, showing that within a certain rainge it is again

optimal to take large sets. This was furthered by Russell [Rus12] and Russell and Walters

[RW13], who extended the result to a much wider range of family sizes. In the latter paper, it

was shown that there is no nested sequence of extremal families, thus disproving a conjecture

of Katona et al.

Despite these results, very little was known in the uniform setting. In Chapter 5, we

extend our methods from Chapter 4 to handle probabilistic supersaturation for uniform

families. In particular, we show that for a range of parameters, the solutions to the two

problems coincide. However, the probabilistic version is a much more delicate problem, and

in certain ranges the answer can vary depending on the underlying probability.

Each of the subsequent chapters will contain its own introduction, both covering the

background and motivation of the relevant problem in greater detail, and formally presenting

our results. Any specific notation will be introduced in the individual chapters, but below

we define the standard notation used throughout this dissertation.

Notation: We denote by [n] the first n natural numbers {1, 2, . . . , n}. Our set families,

typically denoted F , shall be collections of subsets of the ground set, usually [n]. Given a set

X,
(
X
k

)
represents the family of all k-subsets of X. A graph G = (V,E) is an ordered pair

of a set V of vertices and a set E ⊂
(
V
2

)
of edges. Given a subset U ⊂ V of the vertices, we

write G[U ] for the subgraph induced by the vertices in U . Finally, we make use of asymptotic

notation throughout this paper. Given two functions f, g : N → R, we write f(n) ∼ g(n)

if limn→∞ f(n)/g(n) = 1. If there is a constant C > 0 such that f(n) ≤ Cg(n), we write

f(n) = O(g(n)), and if there is c > 0 such that f(n) ≥ cg(n), we write f(n) = Ω(g(n)).
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CHAPTER 2

Rainbow Turán problem for even cycles

2.1 Introduction

An edge-coloured graph is rainbow if all its edges have distinct colours. The rainbow Turán

problem, first introduced by Keevash, Mubayi, Sudakov and Verstraëte [KMS07], asks the

following question: given a fixed graph H, what is the maximum number of edges in a

properly edge-coloured graph G on n vertices with no rainbow copy of H? This maximum is

denoted ex∗(n,H), and is called the rainbow Turán number of H. In this chapter, we study

the rainbow Turán problem for even cycles.

2.1.1 Background

The rainbow Turán problem has a certain aesthetic appeal, as it lies at the intersection

of two key areas of extremal graph theory. On the one hand we have the classical Turán

problem, which, for a given graph H, asks for the maximum number of edges in an H-

free graph on n vertices. This maximum, the Turán number of H, is denoted by ex(n,H),

and determining it is one of the oldest problems in extremal combinatorics. Turán [Tur41]

solved the problem for cliques by finding ex(n,Kk). Erdős and Stone [ES46] then found the

asymptotics of ex(n,H) for all non-bipartite graphs H. The problem of determining the

Turán numbers of bipartite graphs is still largely open. Of particular interest is the case of

even cycles. Erdős conjectured that ex(n,C2k) = Θ(n1+ 1
k ). Bondy and Simonovits [BS74]

gave the corresponding upper bound, but as of yet a matching lower bound is only known

for k = 2, 3, or 5.

On the other hand, there is a great deal of literature on extremal problems regarding

6



(not necessarily proper) edge-coloured graphs. The Canonical Ramsey Theorem of Erdős

and Rado [ER50] shows, as a special case, that when n is large with respect to t, then any

proper edge-colouring of Kn contains a rainbow Kt. Another variation is when one allows

at most k colours to be used for edges incident to each vertex. This notion, called local k-

colourings, has been first introduced by Gyárfás, Lehel, Schelp, and Tuza [GLS87], and has

been studied in a series of works. More recently, Alon, Jiang, Miller and Pritikin [AJM03]

studied the problem of finding a rainbow copy of a graph H in an edge-colouring of Kn

where each colour appears at most m times at any vertex. The rainbow Turán problem is a

Turán-type extension in the case m = 1. From this point on, we shall only consider proper

edge-colourings.

The rainbow Turán problem for even cycles is of particular interest because of the follow-

ing connection to a problem in number theory, as noted in [KMS07]. Given an Abelian group

Γ, a subset A is called a B∗k-set if it does not contain disjoint k-sets B,C with the same sum.

Given a set A, we form a bipartite graph G as follows: the two parts X and Y are copies of

Γ, and we have an edge from x ∈ X to y ∈ Y if and only if x− y ∈ A. Moreover, the edge

xy is given the colour x − y ∈ A. It is easy to see that this is a proper edge-colouring of

a graph with |Γ||A| edges, and A is a B∗k-set precisely when G has no rainbow C2k. Hence

bounds on B∗k-sets give bounds on ex∗(n,C2k), and vice versa.

2.1.2 Known results

Note that we trivially have the lower bound ex(n,H) ≤ ex∗(n,H), since if a graph is H-free,

then it is rainbow-H-free under any proper edge colouring. One is thus generally interested

in either finding a matching upper bound, or showing that ex∗(n,H) is asymptotically larger

than ex(n,H) by a multiplicative constant. In the original paper of Keevash, Sudakov,

Mubayi and Verstraëte [KMS07], this problem was resolved for a wide range of graphs.

In particular, it was shown that for non-bipartite H, the Rainbow Turán problem can be

reduced to the Turán problem, and as a result ex∗(n,H) is asymptotically (and in some cases

exactly) equal to ex(n,H). For bipartite H with a maximum degree of s in one of the parts,

7



they found an upper bound of ex∗(n,H) = O(n2− 1
s ). This matches the general upper bound

for Turán numbers of such graphs, and in particular is tight for C4 (where s = 2).

An interesting case which is not implied by the above mentioned results is the case of

even cycles of length at least 6, and special attention was paid to this case, in light of the

connection to B∗k-sets discussed earlier. Using Bose and Chawla’s [BC62] construction of

large B∗k-sets, the authors gave a lower bound of ex∗(n,C2k) = Ω(n1+ 1
k ) - this is better than

the best known bound for ex(n,C2k) for general k. A matching upper bound was obtained in

the case of the six-cycle C6, so it is known that ex∗(n,C6) = Θ(n1+ 1
3 ). However, surprisingly,

ex∗(n,C6) is asymptotically larger than ex(n,C6) by a multiplicative constant.

Another problem considered was that of rainbow acyclicity - what is the maximum num-

ber of edges in an edge-coloured graph on n vertices with no rainbow cycle of any length?

Let f(n) denote this maximum. In the uncoloured setting, the answer is given by a tree,

which has n− 1 edges. However, as described in [KMS07], colouring the d-dimensional hy-

percube with d colours, where parallel edges get the same colour, gives a rainbow acyclic

proper edge-colouring, and hence f(n) = Ω(n lnn). The best known upper bound to date

was f(n) = O(n1+ 1
3 ), which follows from the bound ex∗(n,C6) = Θ(n1+ 1

3 ).

Keevash, Mubayi, Sudakov, and Verstraëte listed the questions of determining ex∗(n,C2k)

and f(n) as the two most interesting open problems in the study of rainbow Turán numbers.

2.1.3 Our results

In this chapter we improve the upper bound on the rainbow Turán number of even cycles,

and make progress towards the two open problems mentioned in the previous subsection.

Following is the main theorem of this chapter:

Theorem 2.1.1. For every fixed ε > 0 there is a constant C(ε) such that any properly

edge-coloured graph on n vertices with at least C(ε)n1+ε edges contains a rainbow copy of an

even cycle of length at most 2k, where k =
⌈

ln 4−ln ε
ln(1+ε)

⌉
.

Our result easily gives an upper bound on the size of rainbow acyclic graphs.1

1As we remark in Section 2.5, one can do somewhat better than this corollary.
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Corollary 2.1.2. Let f(n) denote the size of the largest properly edge-coloured graph on n

vertices that contains no rainbow cycle. Then for any fixed ε > 0 and sufficiently large n,

we have f(n) < n1+ε.

With a little more work, we can show that a graph satisfying the condition of Theorem

2.1.1 must contain a rainbow cycle of length exactly 2k. Therefore inverting the relationship

between k and ε gives a bound on ex∗(n,C2k).

Corollary 2.1.3. For every fixed integer k ≥ 2, ex∗(n,C2k) = O
(
n1+(1+εk) ln k/k

)
, where

εk → 0 as k →∞.

2.1.4 Outline and notation

This chapter is organised as follows. Section 2.2 provides a couple of quick probabilistic

lemmas. The proof of Theorem 2.1.1 is then given in Section 2.3, although the proof of the

key proposition is deferred until Section 2.4. The final section contains some further remarks

and open problems.

A graph G is given by a pair of vertex set V (G) and edge set E(G). For a vertex

v ∈ V (G), we use d(v) to denote its degree, and for a subset of vertices X, we let d(v,X)

be the number of neighbors of v in the set X. We use the notation Bin(n, p) to denote a

binomial random variable with parameters n and p. Throughout the chapter, log is used for

the logarithm function of base 2, and ln is used for the natural logarithm.

2.2 Preliminary lemmas

In this section we will prove a couple of technical lemmas that will be used in our proof of

Theorem 2.1.1. Both will be proven using the probabilistic method, and will rely on the

following form of Hoeffding’s Inequality as appears in [McD98, Theorem 2.3].

Theorem 2.2.1. Let the random variables X1, X2, . . . , Xk be independent, with 0 ≤ Xi ≤ 1
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for each i. Let S =
∑k

i=1 Xi, and µ = E[S]. Then for any s ≤ 1
2
µ and t ≥ 2µ, we have

P(S ≤ s) ≤ exp
(
−s

4

)
and P(S ≥ t) ≤ exp

(
− 3t

16

)
.

Our first lemma asserts that for any edge-coloured graph with large minimum degree,

the colours of the graph can be partitioned into disjoint classes in such a way that for every

colour class, the edges using colours from that class form a subgraph with large minimum

degree.

Lemma 2.2.2. Let G be an edge-coloured graph on n vertices with minimum degree δ, and

let k be a positive integer. Let C be the set of colours in G. If nk exp
(
− δ

8k

)
< 1, then there

is a partition C =
⊔k
i=1 Ci such that for every vertex v and colour class Ci, v has at least δ

2k

edges with colours from Ci.

Proof. Independently and uniformly at random assign each colour c ∈ C to one of the k

colour classes Ci. We will show that the resulting partition has the desired property with

positive probability.

Fix a vertex v and a colour class Ci. Let d(v) be the degree of v in G, and let dv,i

denote the number of edges incident to v that have a colour from Ci. Note that the colour

of every edge is in Ci with probability 1
k
. Moreover, since the colouring is proper, the edges

incident to v have distinct colours, and hence are in Ci independently of one another. Thus

dv,i ∼ Bin
(
d(v), 1

k

)
, and E[dv,i] = d(v)

k
≥ δ

k
by our assumption on the minimum degree.

By Theorem 2.2.1, we have

P

(
dv,i ≤

δ

2k

)
≤ exp

(
− δ

8k

)
.

By a union bound,

P

(
∃v, i : dv,i ≤

δ

2k

)
≤ nk exp

(
− δ

8k

)
< 1,

and hence P
(
∀v, i : dv,i >

δ
2k

)
> 0. Thus the desired partition exists. 2

Given a set X with a family of small subsets, the second lemma allows us to choose a

subset of X of specified size while retaining control over the sizes of the subsets.
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Lemma 2.2.3. Let β, γ ∈ (0, 1) be parameters. Suppose we have a set X and a collection of

subsets Xj, 1 ≤ j ≤ m, such that |Xj| ≤ β|X| for each j. Provided 3m exp
(
−1

8
βγ|X|

)
< 1,

there exists a subset Y ⊂ X with 1
2
γ|X| ≤ |Y | ≤ 2γ|X| such that for every j, we have

|Xj ∩ Y | ≤ 4β|Y |.

Proof. Let Y be the random subset of X obtained by selecting each element indepen-

dently with probability γ. Let Yj = Xj ∩ Y . Then we have |Y | ∼ Bin(|X|, γ), and

|Yj| ∼ Bin(|Xj|, γ).

By Theorem 2.2.1,

P

(
|Y | ≤ 1

2
γ|X|

)
≤ exp

(
−1

8
γ|X|

)
, and P (|Y | ≥ 2γ|X|) ≤ exp

(
−3

8
γ|X|

)
.

Since E[|Yj|] = γ|Xj| ≤ βγ|X|, Theorem 2.2.1 also gives

P (|Yj| ≥ 2βγ|X|) ≤ exp

(
−3

8
βγ|X|

)
.

By a union bound, the probability of any of these events occurring can be bounded by

exp

(
−1

8
γ|X|

)
+ exp

(
−3

8
γ|X|

)
+m exp

(
−3

8
βγ|X|

)
≤ 3m exp

(
−1

8
βγ|X|

)
< 1.

Hence, with positive probability, none of these events occur. In this case we have a subset

Y ⊂ X with 1
2
γ|X| < |Y | < 2γ|X| and |Xj ∩ Y | < 2βγ|X| < 4β|Y |, as required. 2

2.3 Proof of the main theorem

We will restrict our attention to bipartite graphs, and prove Theorem 2.1.1 for bipartite

graphs by using induction within this class. The theorem for general graphs will then easily

follow since every graph contains a bipartite subgraph that contains at least half of its original

edges.

Our general strategy for proving Theorem 2.1.1 is as follows. We will choose an arbitrary

vertex v0, and grow a subtree T of G rooted at v0. This subtree will have the property that

every path from v0 in T will be rainbow. The key proposition will show that if G has no
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short rainbow cycles, then the levels of the tree must grow very rapidly, and will eventually

need to be larger than G, which is impossible.

In this section we formalise this argument, although the proof of the key proposition is

deferred to the next section.

Proof of Theorem 2.1.1. Fix ε > 0. Without loss of generality, we may assume ε < 1
2
, as

otherwise the result follows from the bound of ex∗(n,C2k) = O
(
n2− 1

s

)
(with s = 2) given

in [KMS07]. We wish to show there is a constant C such that any edge-coloured bipartite

graph G on n vertices with at least Cn1+ε edges contains a rainbow cycle of length at most

2k, where k =
⌈

ln 4−ln ε
ln(1+ε)

⌉
.

We will prove this by induction on n. For the base case, note that if n ≤ C, then

Cn1+ε > n2. Hence there is no graph on n vertices with Cn1+ε edges, and so the statement

is vacuously true. Thus by making the constant C large, we force n to be large in the

induction step below. In particular, we will require C > 8k to be large enough that every

n ≥ C satisfies the following inequalities:

nk exp (−nε) < 1, n
1
4
ε3 > [4(k + 1)]2+ε log n, and n

1
2
ε2 > 27+(3k+2)εk2+ε(log n)1+kε.

Now suppose n > C, and G has at least Cn1+ε edges. If G has a vertex of degree

at most Cnε, then by removing it we have a subgraph on n − 1 vertices with at least

Cn1+ε − Cnε > C(n− 1)1+ε edges. By induction, this subgraph contains a rainbow cycle of

length at most 2k. Hence we may assume G has minimum degree at least Cnε.

We now apply Lemma 2.2.2. By our bound on C, we have nk exp
(
−Cnε

8k

)
< 1. Hence

we can split the colours into disjoint classes Ci, 1 ≤ i ≤ k, such that for each class Ci, every

vertex is incident to at least C
2k
nε edges of a colour in Ci.

Let v0 be an arbitrary vertex in G. We will construct a subtree T rooted at v0, with

vertices arranged in levels Li, starting with L0 = {v0}. Given a level Li, the next level Li+1

will be a carefully chosen subset of neighbors of Li using just the edges with colours from

Ci+1. Note that this ensures that every vertex has a rainbow path back to v0 in T . Moreover,

since every vertex in Li has a path of length i back to v0, and G is bipartite, it follows that
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Li is an independent set in G. It is useful to parameterise the size of the levels by defining

αi such that |Li| = nαi .

As mentioned above, every vertex v ∈ T has a rainbow path back to v0. It will be

important to keep track of which colours are used on this path. Hence for every colour c and

level i, we define Xi,c to be the vertices in Li with an edge of colour c in their path back to

v0. Since the path from v to v0 has length i, it follows that {Xi,c}c forms an i-fold cover of

Li. If we have a vertex w ∈ Li+1 adjacent to v1, v2 ∈ Li with v1 and v2 using disjoint sets of

colours on their paths back to v0, then this gives a rainbow cycle of length 2(i + 1). Hence

there must be some overlap in the colours on their paths back to v0. It turns out that this

implies large expansion from Li to Li+1.

The key proposition below formalises the above observation and shows that the levels

grow quickly. As shown below, we will need to maintain control over the sets Xi,c. To see

the necessity of this, suppose that we had Xi,c = Li for some i and c. Then every path

through Li to v0 would use the colour c, and we could not hope to find a rainbow cycle using

our strategy. Note that in the special case where the given graph is Cnε-regular and the

graph is coloured using exactly Cnε colours, for every index i, there exists a colour c such

that |Xi,c| ≥ |Li|
Cnε

= Ω(nαi−ε). This implies that we cannot hope for a upper bound on |Xi,c|

that is better than |Xi,c| = O(nαi−ε). The bound we achieve in the following proposition is

a poly-logarithmic factor off this ‘optimal’ bound.

Proposition 2.3.1. Given 1 ≤ i < k, suppose that we are given sets L0, · · · , Li and sets

{Xi,c}c satisfying the following:

(i) |Li| ≥ 1
4
|Lj| for 0 ≤ j < i, and αi ≤ 1− 1

4
ε2, and

(ii) |Xi,c| ≤ (8 log n)inαi−ε for all c ∈ C.

Then there is a set Li+1 of neighbors of Li using colours from Ci+1 such that:

1.
(
1 + ε

2

)
− αi+1 ≤ (1 + ε)−1 [(1 + ε

2

)
− αi

]
, and

2. for all colours c, we have |Xi+1,c| ≤ (8 log n)i+1nαi+1−ε.
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Moreover, even if we have (ii′) |Xi,c| ≤ 4(8 log n)inαi−ε instead of (ii), we can still find a set

Li+1 satisfying Property 1.

This proposition will be proven in Section 2.4. Here we show how to prove Theorem

2.1.1 using this proposition. We first show how to construct sets L0, L1, and {X1,c}c. For

i = 0, as mentioned above, we have L0 = {v0} and thus α0 = 0. Note that v0 has at

least C
2k
nε neighbors with edge colours from C1. Let L1 be these neighbors. Then we have

|L1| = nα1 ≥ C
2k
nε, and so α1 ≥ ε. Hence

(
1 + ε

2

)
− α1 ≤ 1 − ε

2
< (1 + ε)−1

[(
1 + ε

2

)
− α0

]
.

Since v0 has at most one edge of each colour, we have |X1,c| ≤ 1 < (8 log n)1nα1−ε. Now we

can iteratively apply Proposition 2.3.1 to construct sets Li and Xi,c for i = 2, · · · , k as long

as αi−1 ≤ 1− 1
4
ε2. Note that Property 1 above ensures that Condition (i) is always satisfied

with every iteration.

Suppose we successfully construct the sets L0, L1, . . . , Lk by repeatedly applying Propo-

sition 3.1. Recalling that α0 = 0, we get(
1 +

ε

2

)
− αk ≤ (1 + ε)−1

[(
1 +

ε

2

)
− αk−1

]
≤ . . . ≤ (1 + ε)−i

[(
1 +

ε

2

)
− α0

]
,

and so

αk ≥
(

1 +
ε

2

)(
1− (1 + ε)−k

)
.

Substituting k =
⌈

ln 4−ln ε
ln(1+ε)

⌉
, we have

αk ≥
(

1 +
ε

2

)(
1− 1

4
ε

)
≥ 1 +

1

8
ε,

and so |Lk| = nαk ≥ n1+ 1
8
ε. Thus |Lk| > n, which gives the necessary contradiction.

Hence there must be some i < k such that 1 − 1
4
ε2 < αi ≤ 1. The sizes of the sets Xi,c

satisfy |Xi,c| ≤ (8 log n)inαi−ε = (8 log n)in−ε|Li|. Note that the total number of colours is

m = |C| < n2, since there cannot be more colours than edges in G. Apply Lemma 2.2.3 with

X = Li, subsets Xi,c for all c ∈ C, β = (8 log n)in−ε and γ = 1
2
n1− 1

4
ε2−αi . This is possible

since

3m exp

(
−1

8
βγ|Li|

)
< 3n2 exp

(
− 1

16
(8 log n)in1−ε− 1

4
ε2
)
< 1.
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We obtain a set Y ⊂ Li such that 1
2
γ|Li| ≤ |Y | ≤ 2γ|Li| and |Y ∩Xi,c| ≤ 4β|Y | for all c. Note

that 1
4
n1− 1

4
ε2 ≤ |Y | ≤ n1− 1

4
ε2 and |Xi,c ∩ Y | ≤ 4(8 log n)i|Y |n−ε. Moreover, since we must

have had αi−1 ≤ 1− 1
4
ε2, we have |Y | ≥ 1

4
|Lj| for all 0 ≤ j < i. Let L′i = Y , |L′i| = nα

′
i , and

let X ′i,c = Xi,c∩Y . Then the above inequalities imply 1− 1
3
ε2 < 1− 1

4
ε2− 2

logn
≤ α′i ≤ 1− 1

4
ε2,

and |X ′i,c| ≤ 4(8 log n)inα
′
i−ε. We can now apply Proposition 2.3.1 to the sets L′i and X ′i,c.

This gives the next level Li+1 with(
1 +

ε

2

)
− αi+1 ≤ (1 + ε)−1

[(
1 +

ε

2

)
− α′i

]
≤ (1 + ε)−1

[
ε

2
+
ε2

3

]
,

and so αi+1 ≥ 1 + ε2

6(1+ε)
. Again, this implies |Li+1| ≥ n1+ ε2

6(1+ε) > n, which is a contradiction.

Thus G must have a rainbow cycle of length at most 2k, which completes the inductive

step, and hence the proof of Theorem 2.1.1. 2

2.4 Proof of Proposition 2.3.1

In this section, we furnish a proof of Proposition 2.3.1. Our goal is to construct the level

Li+1 with associated sets Xi+1,c satisfying the following properties:

1.
(
1 + ε

2

)
− αi+1 ≤ (1 + ε)−1

[(
1 + ε

2

)
− αi

]
, and

2. for all colours c, we have |Xi+1,c| ≤ (8 log n)i+1nαi+1−ε.

Proof of Proposition 2.3.1. Suppose that 1 ≤ i ≤ k − 1, and levels Lj for j ≤ i satisfy

Properties (i) and (ii) given in Proposition 2.3.1. Recall that by the inductive hypothesis,

we know that Theorem 2.1.1 is true for any graph whose number of vertices n′ is less than

n. Thus we may assume that all the subgraphs of G on n′ vertices contain at most C[n′]1+ε

edges (otherwise we would already have a rainbow cycle of length at most 2k). Using this,

we will show how to construct the level Li+1 satisfying both properties.

Consider the edges of colours from Ci+1 coming out of Li. Each vertex in Li has at least

C
2k
nε such edges; importantly, we will use only C

2k
nε of them, and disregard any additional

edges. The reason we expand the levels ‘slowly’ in such a way is to prevent some of the sets
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Xi,c from expanding too fast. Indeed, if we were to use all the edges, then some Xi,c might

expand faster than we would wish, and this eventually might violate Property 2.

Thus we have a total of C
2k
|Li|nε edges. If at least half of these edges went back to vertices

in L0 ∪ L1 ∪ . . . ∪ Li−1, then the vertices in L0 ∪ L1 ∪ . . . ∪ Li would span at least C
4k
|Li|nε

edges. This gives us a graph on at most 4k|Li| vertices with at least C
4k
|Li|nε edges. By the

inductive hypothesis, we have

C

4k
|Li|nε ≤ C [4k|Li|]1+ε ,

which is equivalent to (
n

|Li|

)ε
= n(1−αi)ε ≤ (4k)2+ε.

However, by the condition that αi ≤ 1− 1
4
ε2, this contradicts our bound on n.

Hence we may assume that at least C
4k
|Li|nε edges go to vertices not in L0∪L1∪ . . .∪Li−1;

call this set of new vertices Y . Partition the vertices in Y into log n sets Yj, 0 ≤ j ≤ log n−1,

with y ∈ Yj if and only if 2j ≤ d(y, Li) < 2j+1 (here we are only considering edges of a colour

from Ci+1). By the pigeonhole principle, there is some j∗ such that Yj∗ receives at least

C
4k logn

|Li|nε edges from Li. Let Li+1 = Yj∗ , and for convenience define d = 2j
∗
. As always,

we will define αi+1 by |Li+1| = nαi+1 . Let δi = αi+1 − αi.

Every vertex y ∈ Li+1 has degree between d and 2d in Li. Double-counting the edges

between Li and Li+1, we have

C

4k log n
|Li|nε ≤ e(Li, Li+1) ≤ 2d|Li+1|.

This gives

d ≥ C

8k log n

|Li|nε

|Li+1|
=

C

8k log n
nε−δi . (2.1)

We will show below that the set Li+1 is large enough to provide the expansion required

for Property 1. First, however, note that every vertex y ∈ Li+1 can have many edges back

to Li. In order to make this a level in our tree T , for each vertex we need to choose one edge

to add to T . The choice of edge induces a path from y back to v0, and hence these choices

determine the sets Xi+1,c. We will later show that we can choose the edges so as to satisfy

Property 2 as well.
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2.4.1 Property 1

We begin by providing a heuristic of the argument. Given the level Li and the sets Xi,c,

we show that Li+1 can be partitioned into sets Wc such that for every colour c, the number

of edges between Xi,c and Wc is Ω(d|Wc|). Suppose that there exists an index c such that

|Xi,c| ≤ |Wc|. On one hand, the fact that we used only C
2K
nε edges from each vertex in Xi,c

gives an upper bound on the size of |Wc| in terms of δi. On the other hand, the fact that we

have a subgraph G[Xi,c∪Wc] which has at most 2|Wc| vertices and contains at least Ω(d|Wc|)

edges, will by our inductive hypothesis give a lower bound on the size of |Wc| in terms of δi.

By combining these bounds, we conclude that δi has to be quite large.

We will use Condition (ii′) instead of (ii) in Proposition 2.3.1. Thus for all c ∈ C, we

have |Xi,c| ≤ 4(8 log n)inαi−ε. First we claim a rather weak bound |Li+1| > k|Li|. Suppose

this were not the case. Then in the set Li ∪ Li+1 of at most (k + 1)|Li| vertices, we have

at least C
4k logn

|Li|nε edges. By induction, we must have C
4k logn

|Li|nε ≤ C[(k + 1)|Li|]1+ε, or,

equivalently, (
n

|Li|

)ε
= n(1−αi)ε ≤ 4k(k + 1)1+ε log n,

which contradicts our choice of n (recall that αi ≤ 1− 1
4
ε2). Thus we must have |Li+1| > k|Li|.

Consider a fixed vertex y ∈ Li+1, and recall that d(y, Li) ≥ d. Consider any neighbor

x ∈ Li of y. The path from v0 to x in T uses i different colours {cj : 1 ≤ j ≤ i}. If any

other neighbor x′ ∈ Li of y has a path to v0 that avoids the colours {cj}, then we have

a rainbow cycle of length 2(i + 1) ≤ 2k. Thus for every neighbor x′ ∈ Li of y, we must

have x′ ∈ ∪ij=1Xi,cj . By the pigeonhole principle, there is some j such that d(y,Xi,cj) ≥ d
i
.

Informally, this observation asserts that every vertex y ∈ Li+1 sends a large proportion of

its edges to some set Xi,cj .

For each colour c, let Wc be the set of vertices y ∈ Li+1 such that d(y,Xi,c) ≥ d
i
, and

note that {Wc} forms a cover of Li+1. Thus
∑

c |Wc| ≥ |Li+1| > k|Li|. On the other hand,

the sets {Xi,c}c form an i-fold cover of Li, and so
∑

c |Xi,c| = i|Li| < k|Li|. Consequently,∑
c(|Wc| − |Xi,c|) > 0, and so for some particular colour c we have |Wc| > |Xi,c|. As stated

above, we will exploit the fact that there are at least d
i
|Wc| edges between Wc and Xi,c in
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two different ways to get two inequalities. Together, these will give the claimed inequality

between αi and αi+1.

First, recall that we used at most C
2k
nε edges incident to each vertex in Li to construct

the set Li+1. By double-counting the edges between Wc and Xi,c, we have

d

k
|Wc| <

d

i
|Wc| ≤ e(Wc, Xi,c) ≤

C

2k
|Xi,c|nε,

which by (2.1), gives |Wc| < C
2d
|Xi,c|nε ≤ 4k log n|Xi,c|nδi . Using Condition (ii′) of Proposi-

tion 2.3.1, which says that |Xi,c| ≤ 4(8 log n)inαi−ε, we have

|Wc| < 4k log n|Xi,c|nδi ≤ 2k(8 log n)i+1nαi+1−ε ≤ 2k(8 log n)knαi+1−ε. (2.2)

Second, since there is no rainbow cycle of length at most 2k between Xi,c and Wc, by the

inductive hypothesis we have

d

k
|Wc| < e(Wc, Xi,c) < C [|Wc|+ |Xi,c|]1+ε < C [2|Wc|]1+ε ,

which gives d < 21+εCk|Wc|ε. Hence we have

C

8k log n
nε−δi ≤ d < 21+εCk|Wc|ε. (2.3)

Combining the inequalities (2.2) and (2.3), we get

nε−δi < 24+εk2 log n|Wc|ε < 24+εk2 log n
(
2k(8 log n)knαi+1−ε

)ε
= 24+(3k+2)εk2+ε(log n)1+kεn(αi+1−ε)ε.

For our choice of n, we have 24+(3k+2)εk2+ε(log n)1+kε < n
1
2
ε2 , and so nε−δi ≤ n

1
2
ε2+(αi+1−ε)ε.

This gives ε− δi ≤ 1
2
ε2 + (αi+1 − ε)ε = αi+1ε− 1

2
ε2, which, using δi = αi+1 − αi, becomes

ε− αi+1 + αi ≤ αi+1ε−
1

2
ε2.

Rearranging and adding
(
1 + ε

2

)
to both sides, we get

(1 + ε)
[(

1 +
ε

2

)
− αi+1

]
≤
(

1 +
ε

2

)
− αi,

which establishes Property 1.
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2.4.2 Property 2

To obtain Property 2, we assume Condition (ii) of Proposition 2.3.1 instead of (ii′). We

have shown that the next level Li+1 is large enough. For each of its vertices, we now need

to select an edge back to Li in such a way that the sets Xi+1,c formed satisfy the bound in

Property 2. For each y ∈ Li+1, let dy = d(y, Li). Recall that there is a parameter d such

that d ≥ C
8k logn

nε−δi and d ≤ dy < 2d for all y ∈ Li+1. Also recall that each edge back to Li

extends to a rainbow path to the root v0 in the tree T . For each vertex, we choose one edge

uniformly at random, and show that with positive probability the resulting sets Xi+1,c are

small enough.

We can represent |Xi+1,c| as a sum of indicator variables:

|Xi+1,c| =
∑
y∈Li+1

1{y∈Xi+1,c}.

Since each vertex y chooses its path independently of the others, the indicator random

variables in the summand are independent. We would first like to obtain an estimate on

µc = E [|Xi+1,c|].

First consider those c ∈ Ci+1. |Xi+1,c| counts the number of times the colour c is used

between the levels Li and Li+1. Since the colouring is proper, there are at most |Li| such

edges. Since all the vertices of Li+1 have degree at least d, each such edge is chosen with

probability at most 1
d
. Thus µc ≤ |Li|

d
, and by our bound (2.1) on d,

µc ≤
|Li|
d
≤ 8k(log n)nαi

Cnε−δi
< (log n)nαi+1−ε.

Now we consider those c /∈ Ci+1. Note that for y ∈ Li+1, we have y ∈ Xi+1,c only if we

choose for y an edge back to Xi,c. Thus,

µc =
∑
y

d(y,Xi,c)

dy
≤ 1

d

∑
y

d(y,Xi,c) =
1

d
e(Li+1, Xi,c).

Since all the vertices in Li send at most C
2k
nε edges into Li+1, the above is at most

µc ≤
C

2kd
|Xi,c|nε ≤

C(8 log n)i

2kd
nαi .
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Using (2.1), this gives µc ≤ 1
2
(8 log n)i+1nαi+1−ε. Thus for t = (8 log n)i+1nαi+1−ε, we have

t ≥ 2µc for all colours c.

By Theorem 2.2.1, for every colour c, we have

P (|Xi+1,c| ≥ t) ≤ exp

(
− t

8

)
.

Recalling that αi+1 ≥ α1 ≥ ε, and i + 1 ≥ 2, we have t = (8 log n)i+1nαi+1−ε ≥ 64 log n ≥

32 lnn. Hence P (|Xi+1,c| ≥ t) ≤ exp (−4 lnn) = n−4. There are at most n2 colours c, and so

a union bound gives

P (∃c : |Xi+1,c| ≥ t) ≤ n2 · n−4 = n−2 < 1.

Thus there is a choice of edges such that Property 2 holds.

This completes the proof of Proposition 2.3.1. 2

2.4.3 Proof of Corollary 2.1.3

We can establish Corollary 2.1.3 by slightly twisting the argument given above. The structure

of the proof of Corollary 2.1.3 is the same as that of Theorem 2.1.1. The only difference lies

in how we establish Property 1. In this section, we show how to use the weaker condition of

the graph having no rainbow cycle of length exactly 2k in order to derive Property 1. We

first restate Property 1 here for the reader’s convenience:(
1 +

ε

2

)
− αi+1 ≤ (1 + ε)−1

[(
1 +

ε

2

)
− αi

]
.

If d ≤ 16k, then by (2.1), we have

16k ≥ d ≥ C

8k log n
nε−δi ,

from which it follows that

nδi ≥ C

128k2 log n
nε ≥ nε−ε

2/2,

and δi ≥ ε− 1
2
ε2. Since δi = αi+1 − αi and αi ≥ α1 ≥ ε, we see that(

1 +
ε

2

)
− αi+1 ≤

(
1− ε

2
+
ε2

2

)
− αi ≤ (1 + ε)−1

[(
1 +

ε

2

)
− αi

]
.
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Thus Property 1 follows.

Hence it suffices to consider the case when d > 16k. In this case, we use the following

lemma.

Lemma 2.4.1. If d > 16k, then there exists a subset L′i+1 ⊂ Li+1 of size |L′i+1| ≥ 1
2
|Li+1|

such that for every y ∈ L′i+1, there exists a colour c for which y has at least d
2k

neighbors in

Xi,c.

Proof. Let L′i+1 ⊂ Li+1 be the subset of vertices y such that there exists a colour c for which

y has at least d
2k

neighbors in Xi,c. We assume for contradiction that |L′i+1| < 1
2
|Li+1|. Let

L′′i+1 = Li+1 \ L′i+1.

The number of edges in the bipartite graph induced by the sets Li and L′′i+1 is at least

d|L′′i+1| > 16k|L′′i+1| ≥ 8k|Li+1| ≥ 4k(|Li|+ |L′′i+1|).

Hence there exists a subgraph H of minimum degree at least 4k. Fix a vertex v ∈ Li which

lies in this subgraph. Let P0 be the rainbow path from v0 to v. We can find a rainbow

path P1 of length 2k − 2i− 1 in H starting at v by greedily extending the current path one

vertex at a time, choosing any edge that avoids a previously used vertex or colour. Indeed,

we need to avoid at most 2k − 2i − 1 vertices and at most 2k − 2i − 1 colours. Since H is

properly coloured and has minimum degree at least 4k, we always have 4k > 2(2k − 2i− 1)

edges of different colours incident to a given vertex and therefore can extend the path. Also,

having split the colours into disjoint classes, we have that the colours of P0 are disjoint from

the colours of P1. Thus concatenating P0 and P1 gives a rainbow path of length 2k − i− 1

starting at v0. Let w ∈ L′′i+1 be the other endpoint of this path.

In order to avoid a rainbow cycle of length 2k, all the neighbors of w in Li must either

lie on P1, use a colour from P1, or lie in the set Xi,c for some colour c in the path P0. There

are at most 4k neighbors accounted for by the first two cases. Hence there exists a colour c

for which the number of neighbors of w in Xi,c is at least

d− 4k

k
≥ d

2k
.

However, this contradicts the definition of L′′i+1. Thus we have |L′i+1| ≥ 1
2
|Li+1|. 2
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Note that in Section 2.4.1 we used the fact that for all y ∈ Li+1, there exists a colour c

for y has at least d
i

neighbors in Xi,c. The conclusion of Lemma 2.4.1 is slightly weaker than

this statement since it asserts only that there exists a subset L′i+1 of size 1
2
|Li+1| for which

for all y ∈ L′i+1, there exists a colour c for which y has at least d
2k

neighbors in Xi,c.

Thus to proceed further, by slightly abusing notation, we redefine Li+1 as the set L′i+1.

This adjustment, and the fact that each vertex has only d
2k

neighbors in Xi,c, instead of d
i

neighbors, are different from Section 2.4.1, but these will only affect the constants involved

in the proof. We omit the straightforward adjustments that are necessary.

2.5 Further remarks

We note that at the beginning of our argument, we used Lemma 2.2.2 to separate the colours

into disjoint classes to be used between levels of the tree T . This simplifies the proof, at the

cost of a worse constant C(ε). It is possible to remove this step from the proof, and use most

of the edges out of a vertex at each stage. While we would not gain much in our argument

above, this might be important if dealing with cycles of length growing with n.

Recall that f(n) denotes the maximum number of edges in a rainbow acyclic graph

on n vertices. In this chapter, we showed that for any fixed ε > 0 and large enough n,

f(n) < n1+ε. In fact, one can use our method to obtain an upper bound of the form

f(n) < n exp
(

(log n)
1
2

+η
)

for any η > 0. On the other hand, the hypercube construction

of Keevash, Mubayi, Sudakov and Verstraëte gives a lower bound of f(n) = Ω(n log n).

It would be very interesting to determine the true asymptotics of f(n). The problem of

determining the rainbow Turán number for even cycles also remains. It would be interesting

to further narrow the gap Ω
(
n1+ 1

k

)
≤ ex∗(n,C2k) ≤ O

(
n1+

(1+εk) ln k

k

)
, and establish the

order of magnitude of the function. We believe the lower bound to be correct.
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CHAPTER 3

A problem of Erdős on the minimum number of

k-cliques

3.1 Introduction

Let Kl denote a complete graph on l vertices and let Kl be its complement, i.e., an indepen-

dent set of size l. One of the central results in extremal combinatorics is Turán’s theorem

[Tur41], which asserts that the maximum number of edges in a Kl-free graph on n vertices

is attained by the Turán graph Tn,l−1, a complete (l − 1)-partite graph with nearly-equal

parts. This theorem has since been extended and generalised in many different ways. Since

an edge can be thought of as a clique on 2 vertices, a natural generalisation is to ask for the

maximum number of Kk in an n-vertex graph with no Kl. Zykov [Zyk49] showed that this

maximum was also attained by the Turán graph Tn,l−1.

For any integers k, l ≥ 2 and n, we define f(n, k, l) to be the minimum number of copies

of Kk in a Kl-free graph on n vertices. If one takes the complements of the graphs in Turán’s

theorem, then the theorem gives the minimum number of edges in an n-vertex Kl-free graph.

Thus the question of determining f(n, k, l) is precisely the Zykov-type generalisation of this

complementary version. Fifty years ago Erdős [Erd62b] asked to determine f(n, k, l) and

conjectured that the minimum is given by the complement of the Turán graph, Tn,l−1, which

is the disjoint union of l − 1 complete graphs of equal size. When k = 2, this follows from

Turán’s theorem.

Note that a graph is Kl-free precisely when its independence number is less than l. One

can thus also view this problem as a strengthening of Ramsey’s theorem, which states that
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any sufficiently large graph either has a clique of size k or an independent set of size l. The

(k, l)-problem asks how many cliques of size k a graph must have when its independence

number is less than l.

Lorden [Lor62] proved Erdős’ conjecture to be true for the (3, 3)-case by a simple double-

counting argument. However, no further progress was made in the next forty years, until

Nikiforov [Nik01] disproved the conjecture in the case (4, 3) by showing the balanced blow-

up of C5, which is K3-free, contains fewer 4-cliques than the disjoint union of two cliques,

Tn,2. In a blow-up of a graph, we replace every vertex with a clique, and every edge with a

complete bipartite graph. We say the blow-up is balanced if the cliques are all of the same

size. In a subsequent preprint [Nik05], Nikiforov showed that his construction is optimal

under the additional assumption that the graph should be nearly-regular.

Moreover, by considering blow-ups of Ramsey graphs, Nikiforov showed that the con-

jecture could only hold for finitely many (k, l) when k, l ≥ 3. In particular, he conjectured

that equality held only for the cases (3, 3) and (3, 4), the latter of which remained an open

problem.

3.1.1 Our results

In this chapter, we first sharpen Nikiforov’s result by showing that Erdős’ conjecture is

always false when k ≥ 4 and l ≥ 3, or when k = 3 and l ≥ 2074. We obtain these results

through a combination of explicit and random counterexamples.

We then solve the problem in the cases (k, l) = (4, 3) and (3, 4). Using the machinery of

flag algebras developed by Razborov [Raz07], we are able to obtain the asymptotic values

of f(n, 4, 3) and f(n, 3, 4). By analyzing the corresponding semi-definite programming solu-

tions, we are then able to derive stability results for these cases, which in turn allow us to

determine f(n, 4, 3) and f(n, 3, 4) exactly for large n, and also to characterise the extremal

graphs. In particular, we show that a blow-up of C5 is indeed optimal for the (4, 3) problem,

while Erdős’ conjecture holds for the (3, 4) problem. Our results are summarised in the

following theorems.
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Theorem 3.1.1. f(n, 4, 3) = 3
25

(
n
4

)
+ O(n3), where the minimum is achieved by a blow-up

of C5 with five parts of roughly equal sizes. Moreover, the extremal structure is unique for

sufficiently large n.

We determine the exact sizes of the parts of the blow-up by solving an integer optimisation

problem, the precise results of which are given in Section 3.4.

Theorem 3.1.2. f(n, 3, 4) =
(bn/3c

3

)
+
(b(n+1)/3c

3

)
+
(b(n+2)/3c

3

)
∼ 1

9

(
n
3

)
, where for large n the

minimum is achieved by three disjoint cliques that are as equal as possible. Moreover, any

extremal graph must be spanned by three such cliques.

Note that in this case the extremal graph is not unique, as we may have partial matchings

between the cliques without introducing any extra triangles.

As we remark in our concluding section, solutions of corresponding SDP problems strongly

suggest that a disjoint union of cliques remains optimal for the (3, 5)- and (3, 6)-problems,

contrary to Nikiforov’s conjecture.

3.1.2 Notation and organisation

Given a graph G on vertices V (G), and a vertex v ∈ V (G), we denote by N(v) the set of

neighbors of v in G, and by N(v) the set of non-neighbors of v. The complement graph G

shares the same vertices as G, and has an edge {u, v} if and only if {u, v} is not an edge of

G. We denote the independence number of G by α(G). The complete graph on k vertices

is denoted by Kk. In particular, a graph G is Kl-free if and only if α(G) < l. Some other

graphs we will use are the cycles Ck, and paths Pk where in each case the subscript refers to

the number of edges.

Given a fixed graph H, for any graph G we let tH(G) denoted the number of induced

copies of H in G. In the case H = Kk, we simplify the notation to tk(G). Using this notation,

we can define

f(n, k, l) = min{tk(G) : |V (G)| = n, tl(G) = 0}.

The rest of the chapter is organised as follows. In the next section, we construct coun-

25



terexamples to Erdős’ conjecture in the case k ≥ 4 and l ≥ 3 or k = 3 and l large. In Section

3.3, we provide an informal introduction to our main tool, flag algebras. Sections 3.4 and 3.5

contain the proofs of our main results for the (4, 3)- and (3, 4)-problems respectively. The

final section contains some concluding remarks and open problems.

Some technical details are given in the final sections: Section 3.7 provides some remarks

regarding implementation of flag algebras, and Section 3.8 contains the proof of the integer

optimisation result for the (4, 3)-problem.

3.2 Counterexamples to Erdős’ conjecture

Nikiforov [Nik01] showed that not only was Erdős’ conjecture not true in general, but that

it held only finitely often. He used bounds on the Ramsey numbers R(3, l) to show the

existence of k0 and l0 such that whenever k > k0 or l > l0, blow-ups of Ramsey graphs did

better than disjoint unions of cliques Tn,l−1. In the following theorem, we use a combination

of explicit and random constructions to further improve this result.

Theorem 3.2.1. Tn,l−1 is not optimal for the (k, l)-problem when

(i) k ≥ 4 and l ≥ 3, or

(ii) k = 3 and l ≥ 2074.

3.2.1 The (k, l)-problem with k ≥ 4

Let us first consider the case l = 3. That is, we are looking to minimise the number of

k-cliques in a graph with independence number at most 2. For the (4, 3)-problem, Nikiforov

[Nik05] gave an explicit counter-example to Erdős’s conjecture by showing that a blow-up

of C5 contains fewer triangles than the graph Tn,2, which consists of two disjoint cliques.

In fact, it is easy to see that this construction is better than Tn,2 for any k ≥ 4. Indeed,

a disjoint union of two cliques contains, asymptotically, 2
(n

2
k

)
∼ 1

2k−1

(
n
k

)
k-cliques. On the

other hand, the blow-up of C5 contains 5
(( 2n

5
k

)
−
(n

5
k

))
∼ 2k−1

5k−1

(
n
k

)
k-cliques. For k ≥ 4, we

have 2k−1
5k−1 <

1
2k−1 , and so Tn,2 is asymptotically not optimal for the (k, 3)-problem.
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For l ≥ 4, the graph Tn,l−1 consists of l − 1 disjoint cliques. However, as shown above,

if we replace two of these cliques with a blow-up of C5 on the same number of vertices, we

will reduce the number of k-cliques. Formally, this construction has a blow-up of C5 on five

parts of size 2n
5(l−1)

, and l − 3 disjoint cliques of size n
l−1

, and contains fewer k-cliques than

Tn,l−1. This shows that a disjoint union of cliques is not optimal for the (k, l)-problem for

any k ≥ 4 and l ≥ 3.

3.2.2 The (3, l)-problem

The situation is quite different when k = 3. As we will show later, the disjoint union

of cliques is optimal for the (3, 3)- and (3, 4)-problems. However, unlike the case k = 2,

this construction ceases to be optimal for large values of l. We consider the random graph

G ∼ G(m, p) on m vertices, with every edge appearing independently with probability p.

For suitable parameters l,m, and p, we show that with positive probability the balanced

blow-up of G has no independent set of size l and has fewer triangles than Tn,l−1. First we

count the number of triangles in a balanced blow-up of an m-vertex graph G to n vertices.

There are three ways to obtain a triangle in the blow-up. The vertices of the triangle

can all come from one part, in which case there are n
m

vertices to choose from. As there are

m vertices in G, there are m
( n
m
3

)
∼ 1

m2

(
n
3

)
such triangles. Alternatively, the vertices of the

triangle can come from an edge in G, with two vertices from one part, and the third vertex

from the other. There are two ways to split the vertices, and e(G) edges, so the total number

of such triangles is 2e(G)
( n
m
2

)( n
m
1

)
∼ 6e(G)

m3

(
n
3

)
. Finally, the vertices of the triangle can come

from a triangle in G, with one vertex from each of the three parts. There are t3(G) triangles

in G, and so the number of such triangles is t3(G)
(
n
m

)3 ∼ 6t3(G)
m3

(
n
3

)
. Thus the total number

of triangles in the blow-up of G is asymptotically
(

6(e(G)+t3(G))
m3 + 1

m2

) (
n
3

)
.

On the other hand, Tn,l−1 has (l−1)
( n
l−1
3

)
∼ 1

(l−1)2

(
n
3

)
triangles. Thus to obtain a counter-

example to Erdős’s conjecture, we need to show that for some l,m and p, with positive

probability the random graph G ∼ G(m, p) has no independent set of size l and 6(e(G)+t3(G))
m3 +

1
m2 <

1
(l−1)2

, or e(G) + t3(G) < m3

6(l−1)2
− m

6
. Let us call such a graph ‘suitable’.
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Let B1 be the event that α(G) ≥ l, where α(G) is the independence number of G. For

some parameters s and t, let B2 be the event {e(G)−E[e(G)] ≥ s}, and B3 the event {t3(G)−

E[t3(G)] ≥ t}. If E[e(G) + t3(G)] + s+ t ≤ m3

6(l−1)2
− m

6
, then

{
e(G) + t3(G) ≥ m3

6(l−1)2
− m

6

}
⊂

B2 ∪B3. Then we have

P(G not suitable) ≤ P(B1 ∪B2 ∪B3) ≤ P(B1) + P(B2 ∪B3).

We use a union bound for B1: there are
(
m
l

)
sets of l vertices, and the probability that a

given set has no edges is (1− p)(
l
2). Using the bound

(
n
r

)
≤
(
ne
r

)r
, we have

P(B1) ≤
(
m

l

)
(1− p)(

l
2) ≤

(
me(1− p) l−1

2

l

)l

.

Note that the other two events are increasing; that is, they are preserved by the addition

of edges. It then follows from Kleitman’s Lemma (see Chapter 6 in [AS08]) that P(B2∩B3) ≥

P(B2)P(B3), and so

P(B2 ∪B3) = P(B2) + P(B3)− P(B2 ∩B3) ≤ P(B2) + P(B3)− P(B2)P(B3)

= P(B2) + P(B3) (1− P(B2)) .

Moreover, since the right-hand side is increasing in both P(B2) and P(B3), we can replace the

probabilities with upper bounds to obtain an upper bound on P(B2 ∪ B3). To obtain these

upper bounds, we use the following second moment concentration inequality from [AS08]:

Proposition 3.2.2. Let X be a random variable with expectation E[X] = µ and variance

σ2. Then for all λ > 0,

P(X − µ ≥ λ) ≤ σ2

λ2 + σ2
.

For the event B2, with X = e(G), we have X ∼ Bin
((
m
2

)
, p
)
, and so µ =

(
m
2

)
p and

σ2 =
(
m
2

)
p(1− p). This gives P(B2) ≤ (m2 )p(1−p)

s2+(m2 )p(1−p)
.

For the event B3, let X = t3(G). There are
(
m
3

)
possible triangles, each of which appears

with probability p3, and hence µ =
(
m
3

)
p3. To find the variance, we note that any fixed

triangle T is independent of all triangles except those that share at least two vertices with
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T . A quick calculation gives σ2 =
(
m
3

)
p3 [(1− p3) + 3(m− 3)p2(1− p)]. Thus P(B3) ≤

(m3 )p3[(1−p3)+3(m−3)p2(1−p)]
t2+(m3 )p3[(1−p3)+3(m−3)p2(1−p)]

.

Thus if we can find l,m, p, s and t such that
(
m
2

)
p+

(
m
3

)
p3 + s+ t ≤ m3

6(l−1)2
− m

6
, and(

me(1−p)
l−1
2

l

)l
+

(m2 )p(1−p)
s2+(m2 )p(1−p)

+
(m3 )p3[(1−p3)+3(m−3)p2(1−p)]

t2+(m3 )p3[(1−p3)+3(m−3)p2(1−p)]

[
1− (m2 )p(1−p)

s2+(m2 )p(1−p)

]
< 1,

then we prove that there is a suitable graph, and therefore Tn,l−1 is not optimal for the

(3, l)-problem.

A computer search determined that l = 2074, m = 164397, p = 0.0051707, s = 14000

and t = 35000 are suitable values. Hence the graph with 2073 disjoint cliques is not optimal

for the (3, 2074)-problem. Moreover, if l > 2074, then in Tn,l−1 we can replace 2073 cliques

by a graph with fewer triangles. Hence Tn,l−1 is not optimal for the (3, l)-problem for any

l ≥ 2074.

It would be interesting to find better constructions and to determine when Tn,l−1 stops

being optimal for the (3, l)-problem. Our flag algebra calculations suggest that it is still

optimal for at least the (3, 5)- and (3, 6)-problems.

3.3 Flag algebra calculus

In this section we provide a brief introduction to the technique of flag algebras. First in-

troduced by Razborov in [Raz07], it has been applied with great success to a wide variety

of problems in extremal combinatorics (see, for example, [BT11, HHK12, HHK13, FV13,

Raz10, Raz08]).

We will begin with a general overview of the calculus, by introducing some key definitions

and providing some intuition behind the machinery. The second subsection will show how

we express extremal problems in the language of flag algebras. In Section 3.7 we discuss

some practical considerations regarding implementation of the method, to explain how we

obtained our results in the later sections.

It is neither our goal to be rigorous nor thorough, but rather to emphasise that the com-

29



binatorial arguments behind the flag algebra calculus are as old as extremal combinatorics

itself. Indeed, the main tools available to us are double-counting and the Cauchy-Schwarz

inequality. To highlight this fact, we will use the (3, 3)-problem as a running example, and

indeed, the proof we obtain through flag algebras will be essentially the same as the original

proof Lorden gave in 1962.

The flag algebra calculus is powerful because it provides a formalism through which the

problem of finding relations between subgraph densities can be reduced to a semi-definite

programming (SDP) problem. This in turn enables the use of computers to find solutions,

with rigorous proofs, to problems in extremal combinatorics. For a more complete survey

of the technique, we refer you to the excellent expositions in [Kee11] and [FV13], while for

a technical specification of flag algebras, we refer you to the original paper of Razborov

[Raz07].

3.3.1 Basic definitions and notation

The flag algebra calculus is typically used to find the extremal density of some fixed subgraph

J amongst graphs that avoid some forbidden subgraph. For our example, the (3, 3)-problem,

we wish to minimise the density of triangles K3 in graphs that do not contain K3, the empty

graph on 3 vertices. While our definitions will be general, all our examples will come from

this setting.

We say that a graph is admissible if it contains no induced copies of the forbidden graph.

A type σ is an admissible labeled graph on vertices [k] for some non-negative integer k called

the size of σ, denoted by |σ|. In what follows, an isomorphism between graphs must preserve

any labels that are present.

Given a type σ, a σ-flag is an admissible graph F on a partially labeled vertex set, such

that the subgraph induced by the labeled vertices is isomorphic to σ. The underlying graph

of the flag F is the graph F with all labels removed. The size of a flag is the number of

vertices. Note that when σ is the trivial type of size 0 (denoted by σ = 0), a σ-flag is just an

usual unlabeled admissible graph. We shall write Fσl for the collection of all σ-flags of size
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l. Let Fσ =
⋃
l≥0Fσl . When the type σ is trivial, we shall omit the superscript from our

notation.

Let us now define two fundamental concepts in our calculus, namely those of flag densities

in larger flags and graphs. Let σ be a type of size k, let m ≥ 1 be an integer and let

{Fi}mi=1 be a collection of σ-flags of sizes li = |Fi| ≥ k. Given a σ-flag F of order at least

l = k +
∑m

i=1(li − k), let T ⊆ V (F ) be the set of labeled vertices of F . Now select disjoint

subsets Xi ⊆ V (F ) \ T of sizes |Xi| = li − k, uniformly at random. This is possible because

F has at least
∑

i(li− k) unlabeled vertices. Denote by Ei the event that the σ-flag induced

by T ∪Xi is isomorphic to Fi, for i ∈ [m]. We define pσ(F1, F2, . . . , Fm;F )
def
= P(∩mi=1Ei) to

be the probability that all these events occur simultaneously.

If G is just an admissible graph of order at least l, and not a σ-flag, then there is no

pre-labeled set of vertices T that induces the type σ. Instead, we uniformly at random select

a partial labeling L : [k]→ V (G). This random labeling turns G into a σ′-flag FL, where the

type σ′ is the labeled subgraph induced by the set of vertices L([k]). If σ′ = σ, we can then

proceed as above, otherwise we say the events Ei have probability 0. Finally, we average

over all possible random labelings. Formally, let Y be the following random variable

Y
def
=

 pσ(F1, F2, . . . , Fm;FL) if σ′ = σ

0 otherwise
.

Define dσ(F1, . . . , Fm;G)
def
= E(Y ) as the expected value of the random variable Y . The quan-

tities pσ(F1, F2, . . . , Fm;F ) and dσ(F1, F2, . . . , Fm;G) are called flag densities of {Fi}i∈[m] in

F and in G, respectively. Clearly these flag densities are the same whenever σ = 0, in which

case we omit the subscript from both notations.

To better illustrate these definitions, we give some examples. Let dot be the only type of

size one. Let ρ and ρ be the two dot-flags of size two, and let Zi, for 1 ≤ i ≤ 5, be the five

admissible dot-flags of size three (recall that we are forbidding K3). These flags are shown

in Figure 3.1.
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1

dot

1

ρ

1

ρ

1

Z1

1

Z2

1

Z3

1

Z4

1

Z5

Figure 3.1: Some examples of flags of type dot.

We now compute the flag densities of ρ and ρ in the flags Zi. For example, to compute

pdot(ρ;Z1), note that to induce a copy of ρ we must choose an unlabeled non-neighbor of

1. As only one of the two unlabeled vertices in Z1 is a non-neighbor of 1, we conclude that

pdot(ρ;Z1) = 1
2
. Similarly, pdot(ρ;Z3) = 1, because to induce ρ we must select a neighbor

of 1, and all the unlabeled vertices in Z3 are neighbors of 1. The other flag densities are

pdot(ρ;Z5) = pdot(ρ;Z2) = 1, pdot(ρ;Z1) = pdot(ρ;Z4) = pdot(ρ;Z1) = pdot(ρ;Z4) = 1
2
, and

pdot(ρ;Z2) = pdot(ρ;Z3) = pdot(ρ;Z5) = 0.

Figure 3.2: Graph W .

To see how to compute flag densities in an unlabeled graph, consider W , the graph on

5 vertices depicted in Figure 3.2. It is easy to see that ddot(ρ;W ) and ddot(ρ;W ) are the

edge and non-edge densities of W respectively, and so ddot(ρ;W ) = 7
10

and ddot(ρ;W ) = 3
10

.

The computation of ddot(Zi;W ) is a little more involved. As an example, we explain how

to compute ddot(Z3;W ). Note that Z3 consists of two nonadjacent neighbors of the labeled

vertex 1. Hence for every vertex v ∈ V (W ), let κv denote the number of nonadjacent pairs

neighbors of v divided by the total number of pairs of vertices in V (W ) \ {v}. ddot(Z3;W ) is

then the average of κv over all vertices in W , which comes out to 1
6
. Computing the other flag

densities gives ddot(Z1;W ) = 2
15

, ddot(Z2;W ) = 1
15

, ddot(Z4;W ) = 1
3
, and ddot(Z5,W ) = 3

10
.
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We can also compute the joint flag densities of multiple flags. For instance, let us consider

ddot(ρ, ρ;W ). In this case, we first randomly choose a vertex v to be the labeled vertex. We

must then make an ordered choice of two vertices in V (W ) \ {v}, as we have two flags, each

with one unlabeled vertex. If both of these vertices are neighbors of v, then we have induced

two copies of the flag ρ (note that the adjacency of these two vertices is unimportant). Hence

we obtain ddot(ρ, ρ;W ) by averaging over all vertices v the ratio of the number of ordered

pairs of neighbors of v to the number of ordered pairs of vertices in V (W )\{v}. In this case,

we have ddot(ρ, ρ;W ) = 7
15

.

Suppose as before we have a type σ of size k, a σ-flag F of size l ≥ k, and an unlabeled

graph G. To compute dσ(F ;G), we averaged over all random partial labelings of G the prob-

ability of finding a flag isomorphic to F . A simple double-counting argument shows that we

can do the averaging before the random labeling, which is the idea behind Razborov’s aver-

aging operator, as defined in Section 2.2 of [Raz07]. Let F |0 denote the unlabeled underlying

graph of F . We can compute dσ(F ;G) by first computing d(F |0;G), the probability that l

randomly chosen vertices in G form an induced copy of F |0 as a subgraph. Given this copy

of F |0, we then randomly label k of the l vertices, and compute the probability that these k

vertices are label-isomorphic to σ. This amounts to multiplying d(F |0;G) by a normalizing

factor qσ(F ), that is, dσ(F ;G) = qσ(F )d(F |0;G) = qσ(F )p(F |0;G).

We can interpret the normalizing factor as qσ(F ) = dσ(F ;F |0). From our previous

example, we have qdot(ρ) = qdot(ρ) = qdot(Z5) = 1, qdot(Z3) = qdot(Z2) = 1
3

and qdot(Z4) =

qdot(Z1) = 2
3
. Since qdot(Z5) = 1, it follows that ddot(Z5;G) = d(K3;G) is the triangle density

of G.

There are more relations involving dσ and pσ than the one mentioned previously. We

will now state, without proof, a basic fact about flag densities that can be proved easily by

double counting.

Fact 3.3.1 (Chain rule). If σ is a type of size k, m ≥ 1 is an integer, and {Fi}mi=1 is a family

of σ-flags of sizes |Fi| = li, and l ≥ k +
∑m

i=1(li − k) is an integer parameter, then
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1. For any σ-flag F of order at least l, we have

pσ(F1, . . . , Fm;F ) =
∑
F ′∈Fσl

pσ(F1, . . . , Fm;F ′)pσ(F ′;F ).

2. For any admissible graph G of order at least l, we have

dσ(F1, . . . , Fm;G) =
∑
H∈Fl

dσ(F1, . . . , Fm;H)d(H;G) =
∑
F∈Fσl

pσ(F1, . . . , Fm;F )dσ(F ;G).

If we apply the chain rule for m = 1, we have the equation

pσ(F ;F ′) =
∑

F ′′∈Fσl

pσ(F ;F ′′)pσ(F ′′;F ′).

For instance, this gives

pdot(ρ;F ) = pdot(ρ;Z1)pdot(Z1;F ) + pdot(ρ;Z2)pdot(Z2;F ) + pdot(ρ;Z3)pdot(Z3;F )+

pdot(ρ;Z4)pdot(Z4;F ) + pdot(ρ;Z5)pdot(Z5;F )

=
1

2
pdot(Z1;F ) + pdot(Z3;F ) +

1

2
pdot(Z4;F ) + pdot(Z5;F ).

Similarly, we can expand pdot(ρ;F ) = 1
2
pdot(Z1;F ) + pdot(Z2;F ) + 1

2
pdot(Z4;F ).

For the ease of notation, we can express these two identities using the syntax of flag

algebras:

ρ =
1

2
Z1 + Z3 +

1

2
Z4 + Z5, (3.1)

ρ =
1

2
Z1 + Z2 +

1

2
Z4.

In this syntax, the equation
∑

i∈I αiFi = 0 means that for all sufficiently large σ-flags F ,

we have
∑

i∈I αipσ(Fi;F ) = 0, where αi ∈ R for all i ∈ I. We call
∑

i∈I αiFi an eventually

zero expression. We use Aσ to denote the set of linear combinations of flags of type σ. It is

convenient to define a product of flags in the following way:

F1 · F2
def
=
∑
F∈Fσl

pσ(F1, F2;F )F, F1 ∈ Fσ, F2 ∈ Fσ, l ≥ |F1|+ |F2| − |σ|.

(Note that it does not matter what l we choose, as the difference will be an eventually zero

expression.) For example, instead of writing pdot(ρ, ρ;F ) = pdot(Z3;F ) + pdot(Z5;F ), we
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could simply write ρ2 = ρ · ρ = Z3 + Z5. For the flags of our running example, involving

K3-free graphs, the following equations are also easily verifiable: ρ2 = Z3 +Z5, ρ2 = Z2, and

ρ · ρ = 1
2
Z4 + 1

2
Z1. Combining these equations, we arrive at the following equation, which

we shall later require in Section 3.4:

4ρ2 · ρ2 = 4Z2 · (Z3 + Z5) = (Z4 + Z1)2. (3.2)

To further simplify the notation, we can extend the definitions of pσ and dσ to Aσ

by making them linear in each coordinate. For example, pσ(F1 + 2F2, 4F3;F4 − F5) =

4pσ(F1, F3;F4) − 4pσ(F1, F3;F5) + 8pσ(F2, F3;F4) − 8pσ(F2, F3;F5). The product notation

simplifies these extended definitions, because pσ(f1 · f2; f) = pσ(f1, f2; f) and dσ(f1 · f2; g) =

dσ(f1, f2; g), for any f1, f2, f ∈ Aσ and for any g ∈ A0.

The last piece of notation we introduce is that of the averaging operator. Recall that for

any σ-flag F , we had the normalizing factors qσ(F ) such that dσ(F ;G) = qσ(F )p(F |0;G). In

the syntax of flag algebra, this averaging operation is denoted by [[F ]]σ
def
= qσF |0 . We can

extend this linearly to all elements of Aσ. For example

[[ρ]]dot = K2, [[Z5]]dot = K3, and [[Z4 + Z2]]dot =
2

3
P2 +

1

3
P2,

where P2 is a path of length two on three vertices, and P2 is its complement. This notation

is useful, because dσ(f ; g) = p([[f ]]σ; g) for any f ∈ Aσ and for any g ∈ A0, and hence we

have a unified notation for both types of flag densities.

3.3.2 Extremal problems in the flag algebra calculus

Recall that the typical problem is to minimise the density of some fixed graph J amongst all

admissible graphs G not containing a forbidden subgraph. We will show how flag algebras

can be applied to this problem to reduce it to a semi-definite programming (SDP) problem,

which can then be solved numerically.

For any t ≥ |J |, the equation d(J ;G) =
∑

H∈Ft d(J ;H)d(H;G) follows from the chain

rule. Since
∑

H∈Ft d(H;G) = 1, we have

d(J ;G) ≥ min
H∈Ft

d(J ;H),
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which is a bound that clearly does not depend on G.

This inequality is often very weak, since it only uses very local considerations about the

subgraphsH ∈ Ft, and does not take into account how the subgraphs fit together in the larger

graph G; that is, how they intersect. For instance, returning to our example of the (3, 3)-

problem, where J = K3 and t = 3, we obtain d(K3;G) ≥ minH∈F3 d(K3;H) = d(K3;P2) = 0,

which is the most trivial bound. However, by considering how the graphs in F3 must intersect

in G, one might hope to find inequalities of the form
∑

H∈Ft αHd(H;G) ≥ 0, such that when

we combine them with the initial identity, we get

d(J ;G) ≥ d(J ;G)−
∑
H∈Ft

αHd(H;G) =
∑
H∈Ft

(d(J ;H)− αH)d(H;G) ≥ min
H∈Ft
{d(J ;H)− αH}.

Since αH can be negative for some graphs H, the hope is that this will improve the low

coefficients by transferring weight from high coefficients. In order to find such inequalities,

we need another property of the flag densities.

Fact 3.3.2. If σ is a type of size k, m ≥ 1 is an integer, {Fi}mi=1 is a family of σ-flags of sizes

|Fi| = li, and l ≥ k +
∑m

i=1(li − k) is an integer, then for any flag F of order n ≥ l, we have

pσ(F1, . . . , Fm;F ) =

[
m∏
i=1

pσ(Fi;F )

]
+O(1/n).

One can prove Fact 3.3.2 by noting that, if we drop the requirement that the sets Xi are

disjoint in the definition of pσ(F1, . . . , Fm;F ), the events Ei will become independent, and

thus P(∩mi=1Ei) =
∏m

i=1 P(Ei) =
∏m

i=1 pσ(Fi;F ). The error introduced is the probability that

these sets Xi will intersect in F , which is O(1/n). It is tempting to claim a similar product

formula for the unlabeled flag densities dσ, but we cannot do so. In the above equation, it

is essential that all the σ-flags Fi share the same labeled type σ, and hence we require F to

be a σ-flag.

We are now ready to establish some inequalities. Let’s first fix a type σ of size k. If Q is

any positive semi-definite |Fσl | × |Fσl | matrix with rows and columns indexed by the same

set Fσl , where l ≥ k, define

Q{Fσl }
def
=

∑
F1,F2∈Fσl

QF1,F2F1 · F2 ∈ Aσ.
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Since Q was chosen to be positive semi-definite, we have

pσ(Q{Fσl };F ) =
∑

F1,F2∈Fσl

QF1,F2pσ(F1;F )pσ(F2;F ) ≥ 0

for any σ-flags F of order at least t = 2l − k. When averaging, we do not necessarily have

p([[Q{Fσl }]]σ;G) ≥ 0 for an admissible graph G of order n ≥ t, but we do have the following

inequality:

[[Q]]σ(G)
def
= p([[Q{Fσl }]]σ;G) =

∑
F1,F2∈Fσl

QF1,F2dσ(F1, F2;G)

=
∑

F1,F2∈Fσl

QF1,F2

∑
F∈Fσn

pσ(F1, F2;F )dσ(F ;G)


=
∑
F∈Fσn

 ∑
F1,F2∈Fσl

QF1,F2pσ(F1, F2;F )

 dσ(F ;G)

=
∑
F∈Fσn

 ∑
F1,F2∈Fσl

QF1,F2pσ(F1;F )pσ(F2;F )

 dσ(F ;G) +O(1/n) ≥ on→∞(1).

Therefore, when n is large, we have that [[Q]]σ(G) is asymptotically non-negative. For

each admissible graphH of size exactly t, let αH = [[Q]]σ(H) =
∑

F1,F2∈Fσt
QF1,F2dσ(F1, F2;H).

We then have

[[Q]]σ(G) =
∑
H∈Ft

αHd(H;G) ≥ on→∞(1).

The expression in the middle of the above equation is called the expansion of [[Q]]σ(G) in

graphs of size t, with αH the coefficients of the expansion. For the sake of conciseness,

we often omit the parameter G and express this asymptotic inequality (combined with the

expansion in size t) in the syntax of flag algebras

[[Q]]σ
def
= [[Q{Fσl }]]σ =

[[ ∑
F1,F2∈Fσl

QF1,F2F1 · F2

]]
σ

=
∑
H∈Ft

αHH ≥ 0. (3.3)

(Note that all inequalities between flags stated in the language of flag algebras are asymp-

totic.)

For a concrete example, we return to the (3, 3)-problem. If we use the type σ = dot, flags
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of size l = 2, expand in graphs of size t = 3, and consider

Q =

+3
4
−3

4

−3
4

+3
4

 ,

where the rows and columns are indexed by ρ and ρ (in that order), we obtain Q{Fdot2 } =

3
4
(ρ − ρ)2 = 3

4
(−Z1 − Z4 + Z2 + Z3 + Z5). This expansion is obtained by substituting

the expressions for ρ2, ρ2 and ρ · ρ that are given above Equation 3.2. Averaging gives

[[Q]]σ = 3
4
[[(ρ− ρ)2]]dot = 3

4
K3− 1

4
P2− 1

4
P2. Recall that K3 + P2 + P2 = 1, since we are only

considering K3-free graphs. Therefore d(K3;G) ≥ minH∈F3 {d(K3;H)− [[Q]]σ(H)} = 1
4
,

which is the correct bound for the (3, 3)-problem.

In general, if we have more than one inequality available, we can combine them together,

provided they are all expanded in the same size t. Suppose we have r inequalities given by

the positive semi-definite matrices Qi of the σi-flags of size li. Adding them together, we

obtain
r∑
i=1

[[Qi]]σi =
∑
H∈Ft

αHH ≥ 0,

where

αH =
r∑
i=1

 ∑
F1,F2∈F

σi
li

(Qi)F1,F2dσi(F1, F2;H)

 ,

and we want to maximise minH∈Ft {d(J ;H)− αH}.

Thus we have transformed the original problem of finding a maximum lower bound for

d(J ;G) into a linear system involving the variables (Qi)Fk,Fl . As we have the constraint that

the matrices Qi should be positive semi-definite, this is a semi-definite programming problem.

To take the minimum coefficient in the expansion, we introduce an artificial variable y, and

require it to be bounded above by all the coefficients. Hence we have the following SDP

problem in the variables y and (Qi)F1,F2 :

Maximise y, subject to the constraints:

• sH = d(J ;H)−
∑r

i=1

(∑
F1,F2∈F

σi
li

(Qi)F1,F2dσi(F1, F2;H)
)
−y ≥ 0 for all H ∈ Ft. (The

variables sH are called surplus variables.)
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• Qi is positive semi-definite for i ∈ [r]. (The matrices Qi are often called the block

variables of the SDP problem. We can assume without loss of generality that each Qi

is symmetric, as otherwise we could replace Qi by (Qi +QT
i )/2.)

A computer can solve this SDP problem numerically, allowing for an efficient determina-

tion of the inequalities required to prove the extremal problem. For some practical remarks

on the implementation of flag algebras, please see Section 3.7. We note at this point, as

shall be seen in Section 3.4, that the solution to the SDP problem need not only give the

asymptotic bound, but can also provide some structural information about the extremal

graphs.

3.4 The (4, 3)-problem

In this section we will apply the flag algebra calculus to solve the (4, 3)-problem. Recall

in the (4, 3)-problem we are interested in finding the minimum number of 4-cliques in a

graph with independence number less than 3. We prove that any graph on n vertices with

independence number at most 2 must contain at least 3
25

(
n
4

)
+O(n3) 4-cliques. This bound is

attained by a balanced blow-up of C5, which Nikiforov conjectured to be optimal in [Nik05].

The first subsection contains our flag algebra results, which leads to the asymptotic

minimum density of 4-cliques. In the second subsection we use the structural information

from the flag algebras to derive a stability result. This allows us to determine the value of

f(n, 4, 3) exactly for large n, and we show that a nearly-balanced blow-up of C5 is the unique

extremal graph.

3.4.1 The asymptotic result

We begin by listing the admissible graphs of size 5, the types used in the proof, and the

corresponding flags. Note that the flags of size 3 and type dot in Figure 3.6 are those we

used as examples in Section 3.3.1, Figure 3.1.
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G8 G9 G10 G11 G12 G13 G14

Figure 3.3: Graphs of size 5 with independence number at most 2.
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Figure 3.4: Type τ1 and its flags of size 4.
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Figure 3.5: Type τ2 and its flags of size 4.
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Figure 3.6: Type dot and its flags of size 3.
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For each of the types used in the proof, we express the corresponding positive semi-definite

matrices as a sum of squares. In the lemmas that follow, we give these sums of squares, their

expansions into the admissible graphs of size 5, and provide sketches of combinatorial proofs

(note that the lemmas were initially obtained by solving the corresponding SDP problem).

We begin with the type τ1.

Lemma 3.4.1.

∆1 =

[[
(M2 +M4 −M1 −M3)2

]]
τ1

=
1

30
· (2G2 + 3G3 −G5 −G8 − 4G9 − 2G10 − 5G11) ≥ 0.

Sketch of proof. Let G = (V,E) be a graph on n vertices. Define τ1(G) = {(x, y, z) ∈ V (G)3 :

{x, y}, {x, z} ∈ E(G) and {y, z} 6∈ E(G)}. Every triple (x, y, z) ∈ τ1(G) induces a copy of

of the type τ1 in G, where vertex x is labelled “1”, vertex y is labelled “2” and vertex z

is labelled “3”. Fix some p = (x, y, z) ∈ τ1(G). Note that M2 and M4 are flags where the

unlabeled vertex is adjacent to 2 but not 3, while M1 and M3 are flags with the unlabeled

vertex adjacent to 3 but not 2. Hence we define

dp(v)
def
=


1, if {v, y} ∈ E(G) but {v, z} 6∈ E(G),

−1, if {v, z} ∈ E(G) but {v, y} 6∈ E(G),

0, otherwise,

for each v ∈ V (G) \ {x, y, z}. If we denote by F the flag induced by the labelled vertices

{x, y, z} together with the unlabelled vertex v, we have

dp(v) =


1, if F = M2 or F = M4,

−1, if F = M1 or F = M3,

0, otherwise.

Thus the combinatorial interpretation of the lemma is
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∆1(G) =
1

3!
(
n
3

) ·
 ∑
p=(x,y,z)∈τ1(G)

1

2
(
n−3

2

)
 ∑
v,w 6∈{x,y,z}

v 6=w

dp(v)dp(w)




=
1

120
(
n
5

) ∑
p=(x,y,z)∈τ1(G)

∑
v,w/∈{x,y,z}

v 6=w

dp(v)dp(w) ≥ on→∞(1).

The proof that this summation is asymptotically non-negative is very simple, since

∑
v,w 6∈{x,y,z}

v 6=w

dp(v)dp(w) =

 ∑
v 6∈{x,y,z}

dp(v)

2

−
∑

v 6∈{x,y,z}

dp(v)2,

and

1

120
(
n
5

) ·
 ∑
p=(x,y,z)∈τ1(G)

 ∑
v 6∈{x,y,z}

dp(v)2

 = O(1/n).

It remains to expand the products of the flags into admissible graphs of size 5, and thus show

that ∆1 = 1
30
· (2G2 + 3G3 −G5 −G8 − 4G9 − 2G10 − 5G11). For the sake of conciseness, we

omit the full details of this calculation. We show how to compute the coefficient of G10, that

is, ∆1(G10); the other coefficients follow similarly.

In this case, the set {x, y, z, v, w} spans a copy of G10.

y
x

z

−4

z
x

y

−4

yx

z

0

zx

y

0

y

x z

0

z

x y

0

Figure 3.7: Possible configurations of p inside G10 and corresponding contributions to

∆1(G10).

We have the following cases:

1. Vertex x is one of the vertices of degree 3. There are two choices of x satisfying this

condition. We have the following subcases:
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(a) Vertex y is the vertex of degree 2 of the triangle containing x and z is only

neighbor of x which is not adjacent to y. This configuration corresponds to the

first graph in Figure 3.7. As one of the unlabeled vertices is adjacent to y and not

z, and the other is adjacent to z and not y, both assignments of v and w, we have

dp(v)dp(w) = −1. As there are two choices for the pair (v, w) and two choices for

x, the total contribution for this configuration is −4.

(b) The same configuration as above, but with the roles of y and z swapped. This

configuration corresponds to the second graph in Figure 3.7 and its contribution

is −4.

(c) Vertex y is the other vertex of degree 3 and z is the only neighbor of x which is

not adjacent to y. This configuration corresponds to the third graph in Figure

3.7. For any possible choice of v and w, we have dp(v) ·dp(w) = 0, hence the total

contribution is 0.

(d) The same configuration as above, but with the roles of y and z swapped. This

configuration corresponds to the fourth graph in Figure 3.7 and its contribution

is 0.

2. Vertex x is one of the vertices of degree 2 not in the triangle. Again we have two

choices of x satisfying this condition. We also have the following subcases:

(a) Vertex y is the only neighbor of x of degree 3 and z is the other neighbor. This

configuration corresponds to the fifth graph in Figure 3.7. For any possible choice

of v and w, we have dp(v) · dp(w) = 0, hence the total contribution for this

configuration is 0.

(b) The same configuration as above, but with the roles of y and z swapped. This

configuration corresponds to the last graph in Figure 3.7 and its contribution is

0.

When we sum the contributions we get −8, and hence the coefficient of G10 is ∆1(G10) =

− 8
120

= − 1
15

. 2
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We now consider the type τ2.

Lemma 3.4.2.

∆2 =

[[
(−3N1 − 3N2 − 3N3 − 3N4 + 2N5 + 2N6 + 2N7 + 2N8)2

]]
τ2

=
1

10
· (−24G1 − 12G2 − 24G3 − 8G5 + 28G6 + 9G7 + 9G8+

18G9 + 9G10 − 12G12 + 16G13 + 40G14) ≥ 0.

Sketch of proof. Let G = (V,E) be a graph on n vertices. Define τ2(G) = {(x, y, z) ∈ V (G)3 :

{x, y}, {x, z}, {y, z} ∈ E(G)}. Every triple (x, y, z) ∈ τ2(G) induces a copy of of the type τ2

in G, where vertex x is labelled “1”, vertex y is labelled “2” and vertex z is labelled “3”.

Fix p = (x, y, z) ∈ τ2(G). Note that the flags Ni for 1 ≤ i ≤ 4 are those where the unlabeled

vertex has at most one neighbour in the triangle τ2, while in the flags Ni for 5 ≤ i ≤ 8, the

unlabeled vertex has at least two neighbours in τ2. This motivates the definition

dp(v)
def
=

 −3, if v is connected to at most one vertex in {x, y, z},

2, otherwise,

for each v ∈ V (G) \ {x, y, z}. The combinatorial interpretation of the lemma is

∆2(G) =
1

5!
(
n
5

)
 ∑
p=(x,y,z)∈τ2(G)

 ∑
v,w 6∈{x,y,z}

v 6=w

dp(v)dp(w)


 ≥ on→∞(1).

As in Lemma 3.4.1, this is easily seen to be asymptotically positive. We omit the computation

of ∆2(Gi) for i = 1, 2, . . . , 14, which can be performed as in the proof of the previous lemma.

2

Finally we consider the dot type. Note that in this case the positive semi-definite matrix

takes the form of a sum of three squares.

Lemma 3.4.3.

∆3 =

[[
(Z1 − 2Z2)2 +

1

16
· (6Z2 − 7Z3 + 8Z4 − 6Z5)2 +

11

80
· (2Z2 + 3Z3 − 2Z5)2

]]
dot

=
1

150
(204G1 − 118G2 + 54G3 + 60G4 − 17G5 + 42G6 − 144G7 − 94G8+

2G9 − 64G10 + 160G11 − 258G12 − 281G13 + 420G14) ≥ 0.

44



Proof. We omit the proof, noting that the calculations involved are very similar to those in

the previous lemmas. 2

We are now in a position to combine the lemmas to obtain a bound on the minimum

density of 4-cliques in admissible graphs. In what follows, K4 represents the clique on four

vertices, while C4 denotes a cycle on four vertices.

Theorem 3.4.4.

K4 − 2∆1 −
2

25
∆2 −

1

5
∆3 =

3

25
+

1

30
G5 +

2

75
G10 +

24

75
G12 +

19

150
G13

=
3

25
+

1

30
G5 +

2

15
C4 +

4

15
G12 +

1

10
G13.

Proof. We first expand the graphs K4 and C4 into admissible graphs of size 5. A straightfor-

ward calculation gives K4 = 1
5
(G1 +G3 +G4 + 2G6 + 5G14), and C4 = 1

5
(G10 + 2G12 +G13).

Note that the density of graphs on k vertices is measured with respect to
(
n
k

)
, and so the

normalisation factor of 1
5

appears when expanding graphs on four vertices to graphs on five

vertices. Now we use Lemmas 3.4.1, 3.4.2 and 3.4.3 to expand ∆1, ∆2 and ∆3 into the graphs

Gi. Noting that
∑

iGi = 1, we can replace 3
25

∑
iGi with 3

25
, which results in the above

theorem. 2

We conclude this section by using the above theorem to deduce some structural informa-

tion about extremal graphs. Recall that t4(G) denotes the number of 4-cliques in G, while

for any graph H, tH(G) counts the number of induced copies of H in G.

Corollary 3.4.5. Suppose G is a graph on n vertices with t4(G) =
(

3
25

+ o(1)
) (

n
4

)
. Then

(i) tG5(G) = o(n5),

(ii) tC4(G) = o(n4), and

(iii) all but o(n) vertices of G have degree (3
5

+ o(1))n.
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Proof. Applying Theorem 3.4.4 to G, we have

d(K4;G)−2∆1(G)− 2

25
∆2(G)− 1

5
∆3(G)

=
3

25
+

1

30
d(G5;G) +

2

15
d(C4;G) +

4

15
d(G12;G) +

1

10
d(G13;G).

In particular, using the asymptotic non-negativity of ∆i(G), we have

d(K4;G) ≥ 3

25
+

1

30
d(G5;G) +

2

15
d(C4;G) +

1

5
∆3(G) + o(1).

Thus if d(K4;G) = 3
25

+ o(1), we must have d(G5;G) = d(C4;G) = ∆3(G) = o(1). This

immediately gives tG5(G) = o(n5) and tC4(G) = o(n4), and so it remains to justify (iii). We

have

∆3(G) =

[[
(Z1 − 2Z2)2 +

1

16
(6Z2 − 7Z3 + 8Z4 − 6Z5)2 +

11

80
(2Z2 + 3Z3 − 2Z5)2

]]
dot

= o(1).

For every vertex v, let Fv be the dot-flag obtained from G by labeling the vertex v

with 1. By definition of the averaging operator, ∆3(G) is the average over vertices v of the

corresponding flag densities in Fv. The expression is a sum of squares, and thus will be

asymptotically non-negative. Since the average is o(1), the expression must be o(1) for all

but o(n) vertices. In particular, for these vertices we have

pdot(Z1;Fv)− 2pdot(Z2;Fv) = o(1),

6pdot(Z2;Fv)− 7pdot(Z3;Fv) + 8pdot(Z4;Fv)− 6pdot(Z5;Fv) = o(1), and

2pdot(Z2;Fv) + 3pdot(Z3;Fv)− 2pdot(Z5;Fv) = o(1).

Since the sum of the flag densities must be 1, we also have

pdot(Z1;Fv) + pdot(Z2;Fv) + pdot(Z3;Fv) + pdot(Z4;Fv) + pdot(Z5;Fv) = 1.

Finally, recall from Equation (3.2) in Section 3.3 that 4Z2 · (Z3 + Z5)− (Z4 + Z1)2 = 0.

Applying this to Fv, we have

4pdot(Z2;Fv) (pdot(Z3;Fv) + pdot(Z5;Fv))− (pdot(Z4;Fv) + pdot(Z1;Fv))
2 = o(1).
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This gives us a system of five equations in the five variables pdot(Zi;Fv). The first four

equations form a linear system of full rank, which we can use to express all the vari-

ables in terms of pdot(Z5;Fv). Substituting these terms into the fifth equation gives a

quadratic equation in pdot(Z5;Fv), which results in two solutions, namely (pdot(Zi;Fv))
5
i=1 =(

8
25
, 4

25
, 2

25
, 4

25
, 7

25

)
+ o(1) or

(
1
2
, 1

4
, 0, 0, 1

4

)
+ o(1).

We now show that the second solution implies a large number of 4-cliques. Indeed,

suppose v ∈ V was a vertex with (pdot(Zi;Fv))
5
i=1 =

(
1
2
, 1

4
, 0, 0, 1

4

)
+ o(1). Recall from

Equation (3.1) in Section 3 we have ρ = 1
2
Z1 +Z3 + 1

2
Z4 +Z5, where ρ is the dot-flag of size

2 corresponding to an edge. Applying this to the flag Fv, we deduce that the degree of v is(
1
2
· 1

2
+ 1

4
+ o(1)

)
n = 1

2
n+ o(n). Thus there are 1

2
n+ o(n) vertices v is not adjacent to, and

since G is K3-free, these vertices must form a clique. This clique contains
( 1

2
n+o(n)

4

)
∼ 1

16

(
n
4

)
4-cliques. Consider now the neighborhood of v. Since pdot(Z3;Fv) = o(1), it follows that

the neighborhood is missing at most o(n2) edges. Hence the number of 4-cliques in the

neighborhood of v is
( 1

2
n+o(n)

4

)
− o(n4) ∼ 1

16

(
n
4

)
. Thus we have t4(G) ≥

(
1
8

+ o(1)
) (

n
4

)
, which

contradicts our assumption that t4(G) =
(

3
25

+ o(1)
) (

n
4

)
.

Hence for almost all vertices v, we have (pdot(Zi;Fv))
5
i=1 =

(
8
25
, 4

25
, 2

25
, 4

25
, 7

25

)
+ o(1). Ap-

plying Equation (3.1), we deduce that the degree of v is
(

1
2
· 8

25
+ 2

25
+ 1

2
· 4

25
+ 7

25
+ o(1)

)
n =(

3
5
n+ o(1)

)
n, as claimed.

2

3.4.2 The stability analysis

We will now use the results of the preceding section to show that, for sufficiently large n, a

blow-up of C5 is the unique extremal graph for the (4, 3)-problem. Recall that in a blow-

up, we replace every vertex with a clique, and every edge with a complete bipartite graph.

Hence a blow-up of C5 consists of five disjoint sets of vertices Vi, with Vi ∪ Vi+1 a clique for

all 1 ≤ i ≤ 5, and no edges between Vi and Vi+2 for all 1 ≤ i ≤ 5 (throughout this section,

indices will be taken modulo 5).

Suppose G is a K3-free graph on n vertices with the minimal number of 4-cliques. Our
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proof consists of three steps. We first use the results of Corollary 3.4.5 to deduce that G

is close to being a blow-up of C5 (note that this holds not only for an extremal graph, but

for any family of graphs that is asymptotically optimal). In the second step we use the

minimality of G to show that G must in fact be a blow-up of C5 with asymptotically equal

parts. Finally, we solve an integer optimisation problem to determine the size of the parts

of G exactly.

Recall that from Corollary 3.4.5, we have that if n is sufficiently large, and G is an

extremal graph on n vertices, then t4(G) = 3
25

(
n
4

)
+ o(n4), tC4(G) = o(n4), tG5(G) = o(n5),

and all but o(n) vertices of G have degree 3
5
n + o(n). From this we shall deduce that

G is almost a blow-up of C5. To this end, we introduce some definitions. Given subsets

A,B ⊂ V (G), we say A is an almost clique if all but o(n2) pairs in A are adjacent, and we

say (A,B) is almost complete (almost empty) if all but o(n2) pairs in A × B are adjacent

(nonadjacent). Finally, we define a triple {a, b, c} ∈ V (G) to be typical if:

(i) {a, b} /∈ E(G), c ∈ N(a) ∩N(b), d(a), d(b), d(c) = 3
5
n+ o(n),

(ii) {a, b} is contained in o(n2) copies of C4,

(iii) {a, b, c} is contained in o(n) copies of C4, and

(iv) {a, b, c} is contained in o(n2) copies of G5.

Note that G[{a, b, c}] is an induced path of length 2. As all but o(n) vertices are of degree

3
5
n+o(n), it is easy to see that there are Ω(n3) induced paths of length 2 in G. As Corollary

3.4.5 asserts that tC4(G) = o(n4) and tG5(G) = o(n5), it follows that almost all induced

paths of length 2 are typical. We will now use the neighborhoods of {a, b, c} to define the

parts corresponding to the blow-up of C5. In particular, we define

V1 = N(a) ∩N(b), V2 = {a} ∪
(
N(a) ∩N(b) ∩N(c)

)
, V3 = N(a) ∩N(b) ∩N(c),

V4 = N(a) ∩N(b) ∩N(c), and V5 = {b} ∪
(
N(a) ∩N(b) ∩N(c)

)
.

We now make some preliminary observations about the sets Vi. Clearly, by definition, the

sets are disjoint. Moreover, since α(G) ≤ 2, and {a, b} /∈ E(G), we must have N(a)∪N(b) =
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V (G) \ {a, b}, and so ∪iVi = V (G). Similarly, for any vertex v ∈ V (G), N(v) must induce

a clique, as any non-edge in N(v) forms an independent set of size three with v. Thus

V2 ∪V3, V3 ∪V4, and V4 ∪V5 are (actual) cliques. Finally, note that if u, v ∈ V1 are such that

{u, v} /∈ E(G), then the set {a, b, u, v} induces a copy of C4. Since {a, b, c} was chosen to be

a typical triple, properties (ii) and (iii) imply that V1 is an almost clique, and c is adjacent

to all but o(n) vertices in V1.

We can also obtain some relations regarding the sizes of these parts. By property (i) of

typical triples, we have d(a), d(b), d(c) = 3
5
n + o(n). Since N(a) ∪N(b) = V (G) \ {a, b}, we

have |V1| = |N(a) ∩ N(b)| = |N(a)| + |N(b)| − |N(a) ∪ N(b)| = 1
5
n + o(n). Moreover, as

N(a) ∪ {a} = V1 ∪ V2 ∪ V3, N(b) ∪ {b} = V1 ∪ V4 ∪ V5, N(c) \ V1 = V3 ∪ V4, and c has o(n)

non-neighbors in V1, we deduce

|V2|+ |V3| =
2

5
n+ o(n), |V3|+ |V4| =

2

5
n+ o(n), and |V4|+ |V5| =

2

5
n+ o(n),

which also imply |V2|+ |V5| = 2
5
n+ o(n).

We are beginning to uncover the approximate C5-blow-up structure of G. Recall that we

have shown that V2 ∪ V3, V3 ∪ V4 and V4 ∪ V5 are cliques, while V1 is an almost clique. We

will establish the relations between the remaining parts by showing:

• (Vi, Vi+2) is almost empty for any 1 ≤ i ≤ 5, and

• (V1, V2) and (V1, V5) are almost complete.

We start by showing that (V1, V3) is almost empty. For any u ∈ V1 ∩ N(c) and v ∈ V3, if

{u, v} ∈ E(G), then the set {a, b, c, u, v} induces a copy of G5. As {a, b, c} is a typical triple,

property (iv) implies that there are at most o(n2) copies of G5 containing {a, b, c}, and so

there are at most o(n2) edges between V1 ∩N(c) and V3. Since c is adjacent to all but o(n)

vertices in V1, this shows that (V1, V3) is almost empty. By the symmetry between a and b

(and hence V3 and V4), it follows that (V1, V4) is also almost empty.

Now consider the vertices in V1. By Corollary 3.4.5, all but o(n) of these vertices have

degree 3
5
n+ o(n). Since (V1, V3 ∪ V4) is almost empty, it follows that all but o(n) vertices in
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V1 have o(n) edges to V3 ∪ V4. Hence, since |V1|+ |V2|+ |V5| = 3
5
n+ o(n), it follows that V1

is almost complete to V1 ∪ V2 ∪ V5. In particular, (V1, V2) and (V1, V5) are almost complete.

Next consider the vertices in V2. We have established that (V2, V1 ∪ V2 ∪ V3) is almost

complete. Once again, using the restriction on the degrees, and the fact that |V1|+|V2|+|V3| =
3
5
n+ o(n), we deduce that (V2, V4) and (V2, V5) are almost empty. Symmetry implies (V5, V2)

and (V5, V3) are almost empty as well, as claimed.

At this point we have determined the global structure of G, in which each part Vi corre-

sponds approximately to the blow-up of a vertex in C5. We now wish to show that G is an

exact blow-up of C5, with parts of size 1
5
n+ o(n).

In order to do so, we shall require greater control over the adjacency of individual vertices,

and not just the parts Vi. With this in mind, for each 1 ≤ i ≤ 5, we define a vertex v ∈ Vi to

be bad if v has Ω(n) non-neighbors in Vi−1∪Vi∪Vi+1 or Ω(n) neighbors in Vi+2∪Vi+3. Since

for each i we have that Vi ∪Vi+1 is an almost clique and (Vi, Vi+2) is almost empty, it follows

that there are o(n) bad vertices. We clean up the partition of V (G) by removing bad vertices

from each Vi and placing them in a set U . This results in a partition V (G) = V1∪ . . .∪V5∪U

satisfying:

(1) for any 1 ≤ i ≤ 5 and vertex v ∈ Vi, v is adjacent to all but o(n) vertices in Vi−1 ∪Vi ∪

Vi+1, and v is not adjacent to all but o(n) vertices in Vi+2 ∪ Vi+3, and

(2) V2 ∪ V3, V3 ∪ V4, V4 ∪ V5 are cliques, and

(3) |V1| = 1
5
n+ o(n), |V2 ∪ V3|, |V3 ∪ V4|, |V4 ∪ V5| = 2

5
n+ o(n), and |U | = o(n).

The following proposition asserts that in an asymptotically optimal graph, the above

conditions imply that the almost cliques are, in fact, true cliques, and that the parts are

asymptotically equal. This will in turn allow us to completely determine the structure of

extremal graphs.

Proposition 3.4.6. If V1, V2, . . . , V5 satisfy (1), (2) and (3), then for any 1 ≤ i ≤ 5, Vi∪Vi+1

is a clique, and |Vi| = 1
5
n+ o(n).
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Proof. We already know from (2) that many of the pairs of neighboring parts are cliques. It

remains to show that V1 ∪ V2 and V5 ∪ V1 are both cliques. We first show that V1 is a clique.

Suppose for contradiction that there are nonadjacent vertices u, v ∈ V1. Since α(G) ≤ 2, we

must have V3 ∪ V4 ⊂ N(u) ∪N(v). By (3) we have |V3 ∪ V4| = 2
5
n+ o(n), and so either u or

v must have at least 1
5
n+ o(n) neighbors in V3 ∪ V4. However, this contradicts (1). Thus V1

is a clique.

We now claim that if (V1, V2) is not complete, we must have |V4| = o(n). Indeed, suppose

u ∈ V1 and v ∈ V2 are not adjacent. Since α(G) ≤ 2, we must have V4 ⊂ N(u) ∪N(v). By

(1), both u and v have o(n) neighbors in V4, which implies |V4| = o(n). By symmetry, if

(V1, V5) is not complete, we must have |V3| = o(n).

Suppose now that one of these sets, say V4, is of size o(n). Using (3), we must have

|V3| = |V5| = 2
5
n + o(n), and |V2| = o(n). Since |V3| 6= o(n), it follows that (V1, V5) is

complete. Thus G has two large disjoint cliques: V3 of size 2
5
n + o(n), and V1 ∪ V5 of size

3
5
n+ o(n). This gives

t4(G) ≥
(

2
5
n+ o(n)

4

)
+

(
3
5
n+ o(n)

4

)
∼ 97

625

(
n

4

)
+ o(n4) >

3

25

(
n

4

)
,

contradicting the asymptotic optimality of G. Hence (V1, V2) and (V1, V5) must be complete,

which implies that V1 ∪ V2 and V1 ∪ V5 are cliques.

Finally, we show that all parts have size 1
5
n+o(n). Recall we already have |V1| = 1

5
n+o(n).

Since |V3| + |V4| = 2
5
n + o(n), we may by symmetry assume |V3| ≥ 1

5
n + o(n). Corollary

3.4.5 implies there is some vertex of V3 whose degree is 3
5
n + o(n). By (1), this implies

|V2| + |V3| + |V4| = 3
5
n + o(n). As |V3| + |V4| = 2

5
n + o(n), this implies |V2| = 1

5
n + o(n).

Combined with the equations in (3), this gives |Vi| = 1
5
n+ o(n) for all 2 ≤ i ≤ 5. 2

We now turn our attention to the set U of bad vertices. In particular, we will show

that in an extremal graph, each u ∈ U can be reintroduced into some part Vi in a way that

is consistent with (1) and Proposition 3.4.6. Since |U | = o(n), we can repeat this process

without affecting (1) or Proposition 3.4.6, and thus we can eliminate the set U .
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Proposition 3.4.7. For every u ∈ U , there is some i = i(u) such that Vi−1∪Vi∪Vi+1 ⊂ N(u),

and u has o(n) neighbors in Vi+2 ∪ Vi+3.

Proof. Fix u ∈ U . We begin with a simple claim. For any 1 ≤ j ≤ 5, if there is some v ∈ Vj

such that u is not adjacent to v, then u is adjacent to all but o(n) vertices in Vj+2 ∪ Vj+3.

Indeed, as α(G) ≤ 2, we must have Vj+2 ∪ Vj+3 ⊂ N(u) ∪ N(v). However, v is adjacent to

o(n) vertices in Vj+2 ∪ Vj+3, and so the claim follows.

Now suppose there is no i such that Vi−1 ∪ Vi ∪ Vi+1 ⊂ N(u). This implies there is an i

such that u is not adjacent to some vertices in both Vi−3 and Vi−1. Applying the previous

claim, it follows that u is adjacent to all but o(n) vertices in Vi−1 ∪ Vi ∪ Vi+1 ∪ Vi+2.

In this case, remove all edges between u and Vi+2, and add any missing edges between u

and Vi−1 ∪ Vi ∪ Vi+1 ∪ U . It is easy to see that we still have α(G) ≤ 2. As u had 1
5
n + o(n)

neighbors in Vi+2, which is a clique, we have removed at least
( 1

5
n+o(n)

3

)
= Ω(n3) 4-cliques.

On the other hand, we have only added o(n) edges, and so created o(n3) new 4-cliques. Thus

we have reduced the number of 4-cliques, which contradicts the extremality of G.

Thus there must be some i = i(u) such that Vi−1 ∪ Vi ∪ Vi+1 ⊂ N(u). It remains to

show that u has o(n) neighbors in Vi+2 ∪ Vi+3. Suppose for contradiction that u has Ω(n)

neighbors in Vi+2∪Vi+3. As Vi+2∪Vi+3 is a clique, these neighbors form Ω(n3) 4-cliques with

u. Instead, we could remove all edges between u and Vi+2 ∪ Vi+3. To prevent the formation

of an independent set of size 3, we add all edges between u and U . This introduces o(n)

new edges, and thus o(n3) new 4-cliques, while maintaining α(G) ≤ 2. Thus the number of

4-cliques is reduced, again contradicting the minimality of G. This completes the proof.

2

Given any u ∈ U , we can apply Proposition 3.4.7 to add u to Vi(u). Repeat this process

until U is empty. In this case we have a partition V (G) = V1 ∪ . . . ∪ V5 such that for every

1 ≤ i ≤ 5, |Vi| = 1
5
n+ o(n) and Vi ∪ Vi+1 is a clique.

In order to conclude that G is a blow-up of C5, it remains to show that there are no edges

between Vi−1 and Vi+1 for any i. Suppose to the contrary there is an edge between some
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v ∈ Vi−1 and w ∈ Vi+1. Note that when n is large, we must have |Vi| = 1
5
n + o(n) ≥ 2. For

any x, y ∈ Vi, {v, w, x, y} is a 4-clique. Thus removing the edge {v, w} reduces the number

of 4-cliques without increasing the independence number. Hence in an extremal graph, there

are no edges between Vi−1 and Vi+1 for any i, and thus G is indeed a blow-up of C5 with

parts of size 1
5
n+ o(n).

We now seek to determine the sizes of the sets Vi exactly. Noting that Vi∪Vi+1 is a clique

for each i, it is easily verified that

t4(G) =
5∑
i=1

(
|Vi ∪ Vi+1|

4

)
−

5∑
i=1

(
|Vi|
4

)
.

Define yi = |V2i−1 ∪ V2i| for all 1 ≤ i ≤ 5. In
∑
yi, each vertex is counted twice, so we

have
∑
yi = 2n. Moreover, as |Vi| = 1

5
n + o(n), we have yi = 2

5
n + o(n). Finally, as

n − yi − yi+1 = n − |V2i−1| − |V2i| − |V2i+1| − |V2i+2| = |V2i−2|, we can rewrite the above

expression as

t4(G) =
5∑
i=1

(
yi
4

)
−

5∑
i=1

(
n− yi − yi+1

5

)
.

Thus to find the extremal graph, we must minimise the above expression over integer values

of yi subject to the conditions given earlier. The solution is given by Lemma 3.4.8, which

we prove in Section 3.8.

Lemma 3.4.8. Let ε > 0 be sufficiently small, and n sufficiently large. Consider the function

g(y1, y2, y3, y4, y5) =
5∑
i=1

(
yi
5

)
−

5∑
i=1

(
n− yi − yi+1

4

)
.

Subject to the constraints that the yi be integers satisfying
∑5

i=1 yi = 2n and
∣∣yi − 2

5
n
∣∣ < εn,

g is uniquely (up to cyclic permutation of the variables) minimised when the yi take values⌊
2n
5

⌋
and

⌈
2n
5

⌉
in ascending order.

From Lemma 3.4.8, we see the minimum occurs when yi =
⌈

2n+i−1
5

⌉
for 1 ≤ i ≤ 5.

Solving for |Vi|, we have that the unique extremal graph on n vertices is the blow-up of C5

to n vertices such that:

• when n = 5k, |Vi| = k for all i,
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• when n = 5k + 1, |V1| = |V2| = k, |V3| = |V5| = k + 1, and |V4| = k − 1,

• when n = 5k + 2, |V1| = |V2| = |V4| = k, and |V3| = |V5| = k + 1,

• when n = 5k + 3, |V1| = |V2| = |V4| = k + 1, and |V3| = |V5| = k, and

• when n = 5k + 4, |V1| = |V2| = k + 1, |V3| = |V5| = k, and |V4| = k + 2.

3.5 The (3, 4)-problem

In this section we solve the (3, 4)-problem, and prove that Erdős’ conjecture holds for this

case. Recall that this entails showing that amongst all graphs of independence number

less than four, Tn,3, a disjoint union of three nearly-equal cliques, minimises the number of

triangles.

In the first subsection we list our flag algebra results, which give the asymptotic minimum

number of triangles to be 1
9

(
n
3

)
. In the second subsection we use the structural information

obtained to determine the value of f(n, 3, 4) exactly. We also analyze the structure of

extremal graphs, and show they must contain Tn,3.

3.5.1 Getting the asymptotic result and densities

We begin by presenting the 29 admissible - that is, K4-free - graphs of size 5, followed by

the three types and associated flags used in the proof.
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G1 G2 G3 G4 G5 G6 G7 G8

G9 G10 G11 G12 G13 G14 G15 G16

G17 G18 G19 G20 G21 G22 G23 G24

G25 G26 G27 G28 G29

Figure 3.8: Graphs of size 5 with independence number at most 3.
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Figure 3.9: Type τ1 and its flags of size 4.
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Figure 3.10: Type τ2 and its flags of size 4.
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1

dot

1

ρ

1

Z1

1

Z2

1

Z3

1

Z4

1

Z5

Figure 3.11: Type dot and its flags.

In the subsequent lemmas, for each type used in the proof, we express the corresponding

positive semi-definite matrices as squares of flags, and give their expansions into graphs of

size 5. The coefficients were obtained through the use of a computer program, but can easily

be verified by hand, just as in the previous section.

Lemma 3.5.1. For the type τ1, we have

∆1 = [[(M1 −M2)2]]τ1

=
1

30

(
G2 −G3 − 4G6

)
,

∆2 = [[(3M1 − 3M2 − 10M3 + 10M4)2]]τ1

=
1

30

(
9G2 − 9G3 − 36G6 − 60G9 + 160G11 + 100G13 + 60G15 − 60G16

− 100G25 − 500G26

)
.

Lemma 3.5.2. For the type τ2, we have

∆3 =[[(−3N1 −N2 + 3N3 + 3N4)2]]τ2

=
1

30

(
− 18G2 + 9G8 + 3G9 − 11G10 + 3G12 + 27G14 − 18G16 + 9G20 + 36G24

)
,

∆4 =[[(−20N1 − 20N2 + 11N3 + 11N4 + 9N5 + 9N6)2]]τ1

=
1

30

(
− 440G2 − 360G3 + 400G8 + 121G9 − 480G10 − 360G11 − 319G12 + 198G13

+ 363G14 − 279G15 − 242G16 + 121G20 + 279G23 + 484G24 + 198G25 + 405G26

)
,
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∆5 =[[(−19N1 − 15N2 + 15N3 + 15N4 + 4N5 + 4N6 + 15N7)2]]τ1

=
1

30

(
− 570G2 − 152G3 − 570G4 + 361G8 + 181G9 − 675G10 − 120G11 − 735G12

+ 240G13 + 675G14 − 136G15 − 450G16 − 1350G18 + 900G19 + 795G20 + 675G21

+ 136G23 + 900G24 + 120G25 + 80G26 + 450G28

)
,

∆6 =[[(−6N1 − 14N2 − 2N3 − 2N4 + 8N5 + 8N6 − 5N7 + 10N8)2]]τ1

=
1

30

(
+ 24G2 − 96G3 + 60G4 − 240G6 + 36G8 − 76G9 + 308G10 − 264G11 + 160G12

− 112G13 + 12G14 − 32G15 − 8G16 − 540G17 + 420G18 + 40G19 − 56G20 + 75G21

+ 32G23 + 16G24 + 88G25 + 320G26 − 80G27 − 150G28

)
.

Lemma 3.5.3. For the type dot, we have

∆7 =[[(−2Z1 + Z2)2]]dot

=
1

15

(
6G1 + 2G2 + 2G3 − 8G5 + 4G6 − 10G8 − 4G9 − 2G11 −G15 +G16 + 6G22 + 2G23

+G25 + 5G26

)
,

∆8 =[[(−2Z1 − Z2 + 4Z3)2]]dot

=
1

15

(
− 42G1 − 2G2 + 10G3 + 24G4 + 24G5 + 36G6 + 48G7 − 2G8 − 4G9 + 2G11 − 4G13

−G15 − 7G16 − 18G22 − 6G23 +G25 + 5G26

)
,

∆9 =[[(7Z1 − 4Z2 + Z3 + 3Z4)2]]dot

=
1

15

(
138G1 + 61G2 + 43G3 − 39G4 − 141G5 − 45G6 + 3G7 − 146G8 − 19G9 + 42G10

− 52G11 + 21G12 − 22G13 + 9G14 − 25G15 + 65G16 + 54G17 + 54G18 + 18G19 − 6G20

+ 72G22 − 21G23 − 96G24 + 19G25 + 125G26 + 18G27

)
,
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∆10 = [[(8Z1 − 2Z2 − 9Z3 + 10Z5)2]]dot

=
1

15

(
− 168G1 + 103G2 + 85G3 + 170G4 + 153G5 + 226G6 + 3G7 − 16G8 + 4G9

+ 160G10 − 16G11 + 120G12 − 132G13 − 120G14 + 16G15 + 80G16 + 240G18 + 70G19

− 120G20 + 600G21 − 138G22 − 136G23 − 260G24 − 86G25 + 20G26 + 200G28 + 1500G29

)
,

∆11 =

[[(
ρ− 1

3

)2
]]

dot

=
1

90

(
G1 +G2 − 2G3 + 4G4 − 2G5 − 2G6 + 10G7 − 5G8 − 2G9 + 4G10 − 2G11 + 7G12

+ 4G13 + 13G14 − 5G15 +G16 +G17 + 13G18 + 19G19 + 10G20 + 28G21 − 5G22

− 2G23 + 4G24 +G25 − 5G26 + 7G27 + 16G28 + 40G29

)
.

We can now combine these lemmas to obtain an asymptotic lower bound on the density

of triangles, K3, in any K4-free graph.

Theorem 3.5.4. We have

K3 −
11∑
i=1

ci∆i ≥
1

9

29∑
j=1

Gj =
1

9
,

where

c = (ci)
11
i=1

=
1

25 · 3 · 1009

(
263984, 4720, 4432,

412192

371
,
72789

112
,
4655105

3392
, 1185, 8437, 3440, 856, 1128

)
.

Proof. We begin by expanding K3 into graphs of size 5. A straightforward calculation gives

K3 =
1

10

(
G1 +G2 + 2G4 + 4G7 +G10 + 2G12 + 2G13 + 4G14 +G16 + 3G18 + 5G19

+ 3G20 + 7G21 +G22 +G23 + 2G24 +G25 + 2G27 + 4G28 + 10G29

)
.

We now use the lemmas to expand the squares ∆i into the graphs Gj. After summing the

coefficients in the linear combination, it can easily be verified that they are all at least 1
9
.

Since the densities must sum to 1, we have
∑29

j=1Gj = 1, which gives the final equality. 2
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Corollary 3.5.5. Any n-vertex graph G with α(G) ≤ 3 satisfies

t3(G)(
n
3

) − 47

4036n

∑
v

(
d(v)

n− 1
− 1

3

)2

≥ 1

9
− on→∞(1).

Proof. Since the ∆i are squares of flags, they are asymptotically non-negative. Hence

discarding the terms for ∆i, 1 ≤ i ≤ 10, maintains the inequality. This gives K3 −
47

4036

[[(
ρ− 1

3

)2
]]

dot
≥ 1

9
− on→∞(1). Interpreting these terms combinatorially gives the

corollary. 2

3.5.2 The stability analysis

In order to derive a stability result for the (3, 4)-problem, we use the following well-known

result of Andrásfai, Erdős and Sós [AES74].

Theorem 3.5.6. (Andrásfai, Erdös, Sós) A Kr-free graph on n vertices that has minimum

degree larger than 3r−7
3r−4

n must be (r − 1)-partite.

Applying this to the complement of a graph with r = 4, we find that a graph G on n

vertices with α(G) ≤ 3 and maximum degree less than 3
8
n must be spanned by three cliques.

The following stability result follows.

Proposition 3.5.7. Suppose 0 < ε < 1
30

. There exists n0 = n0(ε) such that any graph G

on n ≥ n0 vertices with α(G) ≤ 3 and t3(G) <
(

1
9

+ ε5
) (

n
3

)
contains an induced subgraph

G′ ⊂ G on at least (1− 100ε3)n vertices that is spanned by three cliques of size between(
1
3
− 3ε

)
n and

(
1
3

+ ε
)
n. Moreover, every vertex in G′ sends at most 4εn edges outside its

clique.

Proof. We have from Corollary 3.5.5 that for any graph G on n vertices with α(G) ≤ 3,

t3(G)(
n
3

) − 47

4036n

∑
v

(
d(v)

n− 1
− 1

3

)2

≥ 1

9
− on→∞(1).

In particular, if t3(G) <
(

1
9

+ ε5
) (

n
3

)
, and n is large enough, then

∑
v

(
d(v)

n− 1
− 1

3

)2

< 100ε5n.

59



Let B =
{
v : d(v) ≥

(
1
3

+ ε
)
n
}

. Then |B|ε2 <
∑

v

(
d(v)
n−1
− 1

3

)2

< 100ε5n, and so |B| <

100ε3n.

Let G′ be the induced subgraph on V (G) \ B. As claimed, G′ has n′ ≥ (1 − 100ε3)n

vertices. Moreover, since ε < 1
30

the maximum degree ∆(G′) is bounded by

∆(G′) <

(
1

3
+ ε

)
n ≤

1
3

+ ε

1− 100ε3
n′ <

3

8
n′.

Hence we can apply Theorem 3.5.6 in its complementary form to deduce that G′ is spanned

by three cliques.

Since ∆(G′) <
(

1
3

+ ε
)
n, we deduce that the largest clique in G′ has size at most(

1
3

+ ε
)
n. This implies that the smallest clique has size at least (1− 100ε3)n−2

(
1
3

+ ε
)
n >(

1
3
− 3ε

)
n (using the bound ε < 1

30
). This implies that every vertex in G′ can send at most(

1
3

+ ε
)
n−

(
1
3
− 3ε

)
n = 4εn edges outside its own clique.

Finally, consider the vertices in B. If any vertex v ∈ B is adjacent to all vertices in one

of the cliques Ci, and does not have more than 4εn edges outside Ci, then we can add v to

Ci without affecting any of the previous bounds. Thus the only vertices left in B are either

those adjacent to one clique, but with too many neighbors outside the clique, or those with

a non-neighbor in each of the three cliques. 2

This stability result allows us to, for large values of n, deduce the exact value of the

(3, 4)-problem, and also to characterise all extremal graphs. Recall that we define f(n, k, l)

to be the minimum of tk(G) over all graphs G on n vertices with α(G) ≤ l − 1.

Theorem 3.5.8. There exists n0 such that for every n ≥ n0, f(n, 3, 4) =
(bn/3c

3

)
+
(b(n+1)/3c

3

)
+(b(n+2)/3c

3

)
. Moreover, if G is a graph on n ≥ n0 vertices with t3(G) = f(n, 3, 4), then G

contains Tn,3, a disjoint union of three nearly-equal cliques.

Proof. First note that G = Tn,3 has α(G) ≤ 3 and so we have the upper bound f(n, 3, 4) ≤

t3(Tn,3) =
(bn/3c

3

)
+
(b(n+1)/3c

3

)
+
(b(n+2)/3c

3

)
∼ 1

9

(
n
3

)
- note that this upper bound holds for all

n.
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To obtain a matching lower bound, we apply the stability result from Proposition 3.5.7.

Take ε = 1
100

, and let n ≥ n0(ε) be sufficiently large. Suppose G is an extremal graph on

n ≥ n0 vertices. In particular, we have t3(G) <
(

1
9

+ ε5
) (

n
3

)
for n large enough. From the

proof of the proposition, we know that there is a set B of at most 100ε3n ‘bad’ vertices, and

the remainder of the vertices are in three cliques, with at most 4εn edges to the other cliques.

Label the cliques in order of size, say |C1| ≥ |C2| ≥ |C3|. We will show that an extremal

graph cannot have any bad vertices, so G is spanned by the three cliques. We begin with a

simple observation.

Claim: Every vertex v ∈ V (G) is in at most
(|C3|+|B|

2

)
triangles.

Proof: Suppose some vertex v were in more triangles. Delete v, and add a new vertex v′

with N(v′) = C3 ∪B. This does not increase the independence number, and v′ is in at most(|C3|+|B|
2

)
triangles. Hence we have decreased the number of triangles in G, which contradicts

the minimality of G. Note that
(|C3|+|B|

2

)
≤
(|C3|

2

)
+ |B|n ≤

(|C3|
2

)
+ 100ε3n2 =

(|C3|
2

)
+ ε2n2.

Now consider a potential bad vertex v ∈ B. There are two reasons v could be bad:

Case 1: v is adjacent to all vertices of one of the cliques Ci, but has more than 4εn

neighbors in the other cliques.

If v has more than 4εn neighbors in the other cliques, it must have at least 2εn neighbors

in one of them. Note that every pair of these neighbors creates a triangle with v. Thus v is

in at least
(|Ci|

2

)
+
(

2εn
2

)
>
(|C3|

2

)
+ ε2n2 triangles, which contradicts our earlier claim. Hence

this case cannot occur.

Case 2: v has a non-neighbor in each of the three cliques.

Let di = |Ci \ N(v)| be the number of non-neighbors of v in the ith clique. Consider

the cliques in increasing order of these values, that is, suppose di1 ≤ di2 ≤ di3 . Let x be a

non-neighbor of v in Ci1 .

Case 2a: Every vertex y ∈ Ci2 is adjacent to one of {v, x}.

Since x has at most 4εn neighbors in Ci2 , it follows that di1 ≤ di2 ≤ 4εn. Counting

only the neighbors of v in the cliques Ci1 and Ci2 , we see that v is in at least
(|Ci1 |−4εn

2

)
+
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(|Ci2 |−4εn
2

)
≥ 2

(|C3|−4εn
2

)
triangles. We have 2

(|C3|−4εn
2

)
≈ |C3|2 − 8ε|C3|n + 16ε2n2. Since

|C3| ≥
(

1
3
− 3ε

)
n and ε = 1

100
, this is greater than

(|C3|
2

)
+ ε2n2 < 1

2
|C3|2 + ε2n2, which

contradicts the earlier claim.

Case 2b: v and x have a common non-neighbor in Ci2 , say y.

In this case, as α(G) ≤ 3, every vertex in Ci3 must be adjacent to one of {v, x, y}. Since

x and y have at most 4εn neighbors in Ci3 , it follows that di1 ≤ di2 ≤ di3 ≤ 8εn. Thus v

is in at least
(|Ci1 |−8εn

2

)
+
(|Ci2 |−8εn

2

)
+
(|Ci3 |−8εn

2

)
≥ 3
(|C3|−8εn

2

)
≈ 3

2
|C3|2 − 24ε|C3|n + 96ε2n2

triangles. Again, given our bounds on |C3| and ε, this is greater than
(|C3|

2

)
+ ε2n2, which

gives a contradiction.

Thus we have shown that in an extremal graph, there are no bad vertices, and so the three

cliques span all n vertices and |B| = 0. Now note that any vertex in C1 is in
(|C1|−1

2

)
triangles

from within C1 alone. By the earlier claim, we must have
(|C1|−1

2

)
≤
(|C3|+|B|

2

)
=
(|C3|

2

)
, from

which it follows that |C1| − 1 ≤ |C3|. Thus |C3| ≤ |C2| ≤ |C1| ≤ |C3|+ 1, which shows that

the cliques must be nearly equal in size.

This implies that Tn,3 ⊂ G, and so it follows that for any graph G on n vertices with

α(G) ≤ 3, we must have t3(G) ≥ t3(Tn,3). Thus f(n, 3, 4) = t3(Tn,3). Moreover, if G is an

extremal graph, then since we have equality, there can be no triangles with vertices from

different cliques. This means that each vertex can have at most one neighbor in each of

the two other cliques; in other words, the bipartite graphs between cliques are (partial)

matchings. These matchings must be such that there is no triangle with one vertex from

each clique. However, the extremal graph is not unique, as there are many possibilities for

the matchings.

2

3.6 Further remarks

In this chapter, we applied the techniques of flag algebras, combined with stability arguments,

to solve the Erdős problem for the cases (k, l) = (4, 3) and (3, 4). In particular, we showed
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that Nikiforov’s construction of a blow-up of C5 is optimal for the (4, 3)-problem, while

Erdős’ conjecture still holds for the (3, 4)-problem.

We have also run the SDP problem for larger cases, and our calculations suggests that

Erdős’ conjecture remains valid for the (3, 5)- and (3, 6)-problems. Moreover, it would appear

that a blow-up of C5 is also optimal for the (5, 3)-problem. These results, and more, were

obtained by Pikhurko and Vaughan [PV13], who were independently studying the problem.

Note that the extremal graphs we have found are all blow-ups of small graphs. In par-

ticular, the graphs are Ramsey graphs. The construction of l − 1 cliques is a blow-up of

an independent set of size l − 1, which is the R(2, l) Ramsey graph. On the other hand,

C5 is the R(3, 3) Ramsey graph. One may therefore ask if, for large n, the solution of the

(k, l)-problem is always a blow-up of an R(s, t) Ramsey graph, where s and t depend only

on k and l. Solving this problem in general appears to be quite difficult.

A simpler question, first asked by Nikiforov, is to determine the extremal graphs for the

(k, l)-problem as one parameter is fixed and the other grows. In particular, it remains to

determine for which values of l a disjoint union of l − 1 cliques remains optimal for the

(3, l)-problem. In light of the above results, one could also study for which values of k the

blow-up of C5 is optimal for the (k, 3)-problem. Proofs by flag algebras are infeasible for

large values of k and l, as the search space and running time grow exponentially in these

parameters. It would be of great interest to develop new techniques to attack this problem.

3.7 Implementation of flag algebras

In Section 3.3, we covered the basics of the theory behind flag algebras; here we discuss the

actual implementation of the method. In particular, we will discuss how to set up the SDP

problem, and then find a verifiable proof. The main steps are:

1. Identifying the types σi to use, and finding a suitable size t for the expansion of the

positive semi-definite matrices.

2. Finding a verifiable (e.g. rational) solution that leads to a proof.
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3. (Optional) Writing the positive semi-definite matrix as a sum of squares.

We shall address each of these steps in turn.

Identifying types:

The process of identifying the necessary types σi and finding a suitable size t essentially

comes down to trial-and-error. Note that whatever choice of types and size we make will

result in an SDP problem as outlined above, which can then be solved to provide some bound

for the extremal problem. In order to determine whether or not this is the right bound, we

need a conjecture on what the bound should be - this typically comes from a construction.

We then seek to keep improving the flag algebra results until they match the conjectured

bound.

To produce the flag algebra results, we start with the initial size t to be the size of the

subgraph J , the density of which we are trying to bound. Given t, we produce a list of

all admissible graphs G of size t. We then consider all possible types of size suitable for

expansion into graphs of size t. Recall that if we have a type of size k, and use flags of size

l ≥ k + 1, then to compute a product of two flags, we must expand into graphs of size at

least 2l − k ≥ k + 2. This restricts the size of types and flags we can use - our types can be

of size at most t− 2, and given a type of size k, we choose the largest possible size of flags l

that satisfies 2l − k ≤ t.

For each of our types σi, with its associated list of flags Fσili , we compute the product of

each pair of flags, which gives the corresponding block in the SDP problem. This provides

the formulation of the SDP problem, which can then be solved numerically.

If the numerical bound is less than the conjecture, then we do not have enough types to

solve the problem. Thus we increase the size t, which allows the use of larger types, and

repeat the process. If the numerical bound matches the conjecture, we then have enough

types to solve the problem, and can proceed to finding a verifiable proof.

At this stage, we have the block variable matrices Qi for the SDP problem. However,

as they were computed numerically, they are subject to rounding error, and thus we cannot
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be certain that they are truly positive semi-definite matrices, nor that the bound for the

extremal problem they provide is exactly equal to the conjectured bound. To have a rigorous

proof, it is necessary to find solution matrices Qi whose entries are known exactly - they

will ideally be rational. It can then be independently verified that these matrices satisfy the

conditions necessary to prove the desired result. We now outline some of the steps that can

be taken to find such a solution.
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Finding a verifiable solution:

Typically, the space of solutions will be a high-dimensional space, with many degrees

of freedom for the entries of the matrices Qi. To try to force the solution towards rational

entries, we seek to reduce the dimension of the search space. There are three methods we

can apply: reducing the size of the block variables, identifying natural eigenvectors, and

changing the basis to introduce zero-entries.

Recall that for each type σi we have the associated block variable Qi. In identifying

which types to use, we added all possible types until we obtained the right bound. However,

it is possible, and even likely, that some of the types are unnecessary. Given a type σ, we

remove it from the SDP problem, and run the SDP solver again. If we still obtain the correct

bound, then we know the type σ was unnecessary. If instead this results in a worse bound,

then we keep σ, and try removing a different type. In this way we arrive at a minimal set of

necessary types, thus reducing the number of block variables in the SDP problem.

Given a set of minimal types, there is a further reduction possible. Every type σ has the

natural group Γσ of automorphisms of the underlying graph σ0. The group Γσ acts on the

algebra Aσ by relabeling the flags according to the automorphism. We can then decompose

Aσ = Aσ+⊕Aσ− into a positive and negative part, where Aσ+ consists of all elements invariant

under Γσ, while Aσ−
def
=
{
f ∈ Aσ :

∑
γ∈Γσ

γf = 0
}

. For example, given the type and flags

of Figure 3, both labelings of the vertices of σ give rise to automorphisms, and so Γσ is

the symmetric group on two elements. One can verify that F3 ∈ Aσ+, F1 + F2 ∈ Aσ+, and

F1 − F2 ∈ Aσ−.

1 2

σ

1 2

F1

1 2

F2

1 2

F3

Figure 3.12: Decomposition into positive and negative parts.

This decomposition is useful because whenever we have f ∈ Aσ+ and g ∈ Aσ−, we have

[[f · g]]σ = 0. Hence given the semi-definite matrix Q for the type σ, we can split it into its
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‘invariant’ part Q+ and ‘anti-invariant’ part Q−. While this increases the number of block

variables, they are now of smaller size, and hence have fewer degrees of freedom, reducing the

dimension of the search space. Moreover, it may be that not all of these parts are necessary,

so we can proceed as before to remove any unnecessary block variables.

The second technique we use is that of identifying natural eigenvectors. For this, we

require an extremal construction that attains the conjectured bound; let Gn represent an

extremal graph on n vertices, and let {Gn}n∈N. Given a type σ, fix a position of σ in Gn.

This turns Gn into a σ-flag Fn. The family {Fn}n∈N represents a way to consistently label

the type σ in Gn.

Recall that in the flag algebra calculations, we used the bound [[Q]]σ(Gn) ≥ on→∞(1). If

Gn is an extremal graph, then the bounds are tight, and so [[Q]]σ(Gn) = on→∞(1). Hence we

must have pσ(Q{Fσl };Fn) =
∑

F1,F2∈Fσl
QF1,F2pσ(F1;Fn)pσ(F2;Fn) + O(1/n) = on→∞(1).

Taking the limit as n → ∞, this implies that if we have a vector v defined by vF =

limn→∞ pσ(F ;Fn) for F ∈ Fσl , then vF must be a zero-eigenvector of Q. Repeating this

for different embeddings of the type σ in the extremal family of graphs {Gn} can give rise

to several eigenvectors. This procedure is formally defined using the apparatus of ensembles

of random homomorphisms in Section 3.2 of [Raz07].

Having fixed this eigenvectors, we can then reduce the size of the block variables. Note

that if we are able to remove all zero-eigenvectors this way, then we are left with positive

definite matrices as our block variables. This leaves a little room for error, so we can replace

the entries with simple rational entries and hope to still have a positive semi-definite matrix.

Our final method for reducing the dimension of the search space is to change the basis to

introduce zero entries. Ideally the new set of variables will be a rational linear combination of

the previous set, which will lead to a solution with rational entries. Moreover, we introduce

zeros in such a way as to split the block variables into smaller blocks. More formally, consider

the general SDP problem of the following form:
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maximise tr(CX), subject to

• tr(AiX) = ai for i = 1, 2, . . . ,m

• X � 0 (that is, X is positive semi-definite)

where X and Ai are symmetric n× n matrices for i = 1, 2, . . . ,m.

Suppose we had a rational n × n matrix M such that all entries of the first row (and

hence column, by symmetry) of MXMT , except possibly the first, were zero. We can then

change variables to modify the SDP problem into an equivalent one, as below:

maximise tr(C̃Y ), subject to

• tr(ÃiY ) = ai for i = 1, 2, . . . ,m

• Y � 0

where C̃ = (M−1)TCM−1 and Ãi = (M−1)TAiM
−1 for i = 1, 2, . . . ,m.

The solutions of both problems are related by the equation Y = MXMT . We can now

reduce the dimension of the solution space by forcing all the non-principle entries of the first

row/column of C̃ and Ãi to be zero for i = 1, 2, . . . ,m. This is possible because we already

have the existence of a solution Y with Y1,j = Yj,1 = 0 for j = 2, 3, . . . , n, and hence this

restricted solution space contains a solution to the original problem. This operation splits

the block variable Y into a one-dimensional block and an (n−1)-dimensional block. We can

now iterate the procedure.

We find such a matrix M by inspecting the numerical solution to the original SDP

problem, and using a rational approximation to an eigenvector v for the first row. We then

fill in the remaining rows with independent vectors orthogonal to v. Note that if the solution

is initially positive definite, there is a little room for error, so we may hope to choose a simple

rational approximation without worsening the solution to the SDP problem.
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Expressing the solution as a sum of squares:

If we are able to repeatedly iterate the change of basis procedure outlined above, then we

will eventually reach a problem whose solution is a diagonal matrix. This is advantageous for

two reasons. First, the semi-definite programming problem reduces to a linear programming

(LP) problem. This can be solved by only taking rational linear combinations of the entries of

the variables at every step, and so the solution will be a rational combinations of the input

to the LP problem. Hence the solution can be specified exactly, resulting in a verifiable

proof. Second, we can write the positive semi-definite matrix as a sum of squares, which

is easier to understand. This can lead to combinatorial interpretations of the proof, as we

demonstrated in Section 3.4.1. Thus while this step is not necessary for solving problems

with the machinery of flag algebras, it makes the resulting proofs much more understandable.

3.8 Integer optimisation problem

In this section, we prove Lemma 3.4.8 from Section 3.4.2, in which we solve the integer

optimisation problem required to determine the size of the parts in the blow-up of C5 that

minimises the number of 4-cliques.

Lemma 3.8.1. Let ε > 0 be sufficiently small, and n sufficiently large. Consider the function

g(y1, y2, y3, y4, y5) =
5∑
i=1

(
yi
5

)
−

5∑
i=1

(
n− yi − yi+1

4

)
.

Subject to the constraints that the yi be integers satisfying
∑5

i=1 yi = 2n and
∣∣yi − 2

5
n
∣∣ < εn,

g is uniquely (up to cyclic permutation of the variables) minimised when the yi take values⌊
2n
5

⌋
and

⌈
2n
5

⌉
in ascending order.

Proof. First we will show that if (y1, y2, y3, y4, y5) is optimal, the yi should be as equal as

possible. Suppose towards contradiction that this was not the case. Then there are i, j with

yi− yj ≥ 2; let i, j be such that this difference is maximal over all such pairs. There are two

cases:
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Case 1: i and j are consecutive.

Without loss of generality, suppose i = 2 and j = 3, so we have y2 − y3 ≥ 2, with this

difference being maximal. We will show that g(y1, y2 − 1, y3 + 1, y4, y5) < g(y1, y2, y3, y4, y5),

which contradicts our assumption of optimality. Indeed, we have

∆g = g(y1, y2 − 1, y3 + 1, y4, y5)− g(y1, y2, y3, y4, y5)

=

(
y2 − 1

4

)
+

(
y3 + 1

4

)
−
(
n− y1 − y2 + 1

4

)
+

(
n− y3 − y4 − 1

4

)
−
[(
y2

4

)
+

(
y3

4

)
−
(
n− y1 − y2

4

)
−
(
n− y3 − y4

4

)]
=

(
y3

3

)
−
(
y2 − 1

3

)
+

(
n− y3 − y4 − 1

3

)
−
(
n− y1 − y2

3

)
.

Now let s = y2 − y3 − 1 ≥ 1, and let t = (n − y3 − y4 − 1) − (n − y1 − y2) = y1 − y4 +

y2− y3− 1 = y1− y4 + s. If t ≤ 0, then clearly the above expression is negative, which shows

(y1, y2, y3, y4, y5) is not optimal. Hence we must have t ≥ 1. In this case, we can rewrite the

above as

∆g =

[(
t

3

)
+

(
t

2

)
(n− y1 − y2) + t

(
n− y1 − y2

2

)]
−
[(

s

3

)
+

(
s

2

)
y3 + s

(
y3

2

)]
.

From our constraints on the variables yi, we have that y3 =
(

2
5

+O(ε)
)
n, n− y1 − y2 =(

1
5

+O(ε)
)
n, s ≤ 2εn and t ≤ 4εn. These bounds imply that the main terms are those

linear in s and t. We have

∆g =
1

50
[(1 +O(ε)) t− (4 +O(ε)) s]n2 +O((s2 + t2)n).

In particular, for large n, this can only be non-negative if t ≥ (4−O(ε)) s. However, we have

t = y1−y4+s, and by our assumption of maximality of y2−y3, we have y1−y4 ≤ y2−y3 = s+1.

Hence t ≤ 2s+ 1, and we have a contradiction.

Case 2: i and j are not consecutive.

Without loss of generality, suppose i = 2 and j = 4, with y2 − y4 ≥ 2 being the maximal

difference. Let

∆g = g(y1, y2 − 1, y3, y4 + 1, y5)− g(y1, y2, y3, y4, y5).
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By similar calculations to those in Case 1, we have

∆g =

(
y4

3

)
−
(
y2 − 1

3

)
+

(
n− y5 − y4 − 1

3

)
+

(
n− y4 − y3 − 1

3

)
−
(
n− y2 − y3

3

)
−
(
n− y1 − y2

3

)
.

We define s = y2 − y4 − 1, and t = (n− y5 − y4 − 1)− (n− y1 − y2) = y1 − y5 + s. If t ≤ 0,

then ∆g < 0, which contradicts the optimality of (y1, y2, y3, y4, y5). Hence we may assume

t ≥ 1, and rewrite ∆g in terms of s and t as before. In this case we find

∆g =
1

50
[(1 +O(ε)) t− (3 +O(ε)) s]n2 +O((s2 + t2)n).

Hence for ∆g ≥ 0, we must have t ≥ (3−O(ε)) s. However, by maximality of y2 − y4, we

have t = y1 − y5 + s ≤ 2s + 1. The only way these equations can be satisfied is if s = 1

and y1 − y5 = 2. But in this case y1 and y5 are two consecutive variables with a maximal

difference, and so we reduce to Case 1, which leads to a contradiction.

Hence we have shown that subject to the above conditions, g is only minimised when the

variables yi take values
⌊

2n
5

⌋
or
⌈

2n
5

⌉
. If n ≡ 0, 1, 4 (mod 5), there is only one way (up to

cyclic rotation) that these values can be distributed, so the minimum is uniquely determined.

If n ≡ 2, 3 (mod 5), then there are two possible distributions of the values. In each case,

an easy calculation shows g is minimised when the values are in decreasing order. This

completes the proof of the lemma. 2

Note that we assume |yi − 2
5
n| < εn only to simplify the proof. Even without this

condition, we can prove that for any n ≥ 12, the above result holds. However, as the flag

algebra results are asymptotic in nature, we can only determine the unique extremal graph

for the (4, 3)-problem when n is large.
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CHAPTER 4

Set families with few disjoint pairs

4.1 Introduction

A set family F is said to be intersecting if F1 ∩ F2 6= ∅ for all F1, F2 ∈ F . The Erdős–Ko–

Rado Theorem is a classic result in extremal set theory, determining how large an intersecting

k-uniform set family can be. This gives rise to the natural question of how many disjoint

pairs must appear in larger set families.

We consider this problem, first asked by Ahslwede in 1980. Given a k-uniform set family

F on [n] with s sets, how many disjoint pairs must F contain? We denote the minimum by

dp(n, k, s), and determine its value for a range of family sizes s, thus confirming a conjec-

ture of Bollobás and Leader in these cases. This results in a quantitative strengthening of

the Erdős–Ko–Rado Theorem. We also provide similar results regarding some well-known

extensions of the Erdős–Ko–Rado Theorem, which in particular allow us to partially resolve

a problem of Kleitman and West.

We now discuss the Erdős–Ko–Rado Theorem and the history of this problem in greater

detail, before presenting our new results.

4.1.1 Intersecting families

Extremal set theory is one of the most rapidly developing areas of combinatorics, having

enjoyed tremendous growth in recent years. The field is built on the study of very ro-

bust structures, which allow for numerous applications to other branches of mathematics

and computer science, including discrete geometry, functional analysis, number theory and

complexity.
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One such structure that has attracted a great deal of attention over the years is the

intersecting set family; that is, a collection F of subsets of [n] that is pairwise-intersecting.

The most fundamental question one may ask is how large such a family can be. Observe

that we must have |F| ≤ 2n−1, since for every set F ⊂ [n], we can have at most one of F and

[n] \ F in F . This bound is easily seen to be tight, and there are in fact numerous extremal

families. For example, one could take the set family consisting of all sets containing some

fixed i ∈ [n]. Another construction is to take all sets F ⊂ [n] of size |F | > n
2
. If n is odd,

this consists of precisely 2n−1 sets. If n is even, then we must add an intersecting family of

sets of size n
2
; for instance, {F ⊂ [n] : |F | = n

2
, 1 ∈ F} would suffice.

In some sense, having large sets makes it easier for the family to be intersecting. This

leads to the classic theorem of Erdős–Ko–Rado [EKR61], a central result in extremal set

theory, which bounds the size of an intersecting set family with all sets restricted to have

size k. Here we use
(

[n]
k

)
to denote all subsets of [n] of size k.

Theorem 4.1.1 (Erdős–Ko–Rado [EKR61], 1961). If n ≥ 2k, and F ⊂
(

[n]
k

)
is an inter-

secting set family, then |F| ≤
(
n−1
k−1

)
.

This is again tight, as we may take all sets containing some fixed element i ∈ [n], a family

we call a (full) star with centre i.

As is befitting of such an important theorem, there have been numerous extensions to

many different settings, some of which are discussed in Anderson’s book [And87]. We are

particularly interested in two, namely t-intersecting families and q-matching-free families.

A pair of sets F1, F2 is said to be t-intersecting if |F1 ∩ F2| ≥ t, and t-disjoint otherwise.

A set family F is t-intersecting if every pair of sets in the family is. When t = 1, we simply

have an intersecting family. A natural construction of a t-intersecting family is to fix some

t-set X ∈
(

[n]
t

)
, and take all k-sets containing X; we call this a (full) t-star with centre X.

In their original paper, Erdős–Ko–Rado showed that, provided n was sufficiently large, this

was best possible.
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Theorem 4.1.2 (Erdős–Ko–Rado [EKR61], 1961). If n ≥ n0(k, t), and F ⊂
(

[n]
k

)
is a

t-intersecting set family, then |F| ≤
(
n−t
k−t

)
.

There was much work done on determining the correct value of n0(k, t), and how large

t-intersecting families can be when n is small. This problem was completely resolved by the

celebrated Complete Intersection Theorem of Ahlswede and Khachatrian [AK97] in 1997.

The second extension we shall consider concerns matchings. A q-matching is a collection

of q pairwise-disjoint sets. A set family is therefore intersecting if and only if it does not

contain a 2-matching. As an extension of the Erdős–Ko–Rado theorem, Erdős asked how

large a q-matching-free k-uniform set family could be, and in [Erd65] showed that when n is

large, the best construction consists of taking all sets meeting [q−1]. He further conjectured

what the solution should be for small n, and this remains an open problem of great interest.

For recent results on this conjecture, see, e.g., [Fra13, FRR12, HLS12, LM12].

4.1.2 Beyond the thresholds

The preceding results are all examples of the typical extremal problem, which asks how large

a structure can be without containing a forbidden configuration. In this chapter, we study

their Erdős–Rademacher variants, a name we now explain.

Arguably the most well-known result in extremal combinatorics is a theorem of Mantel

[Man07] from 1907, which states that an n-vertex triangle-free graph can have at most
⌊
n2

4

⌋
edges. In an unpublished result, Rademacher strengthened this theorem by showing that

any graph with
⌊
n2

4

⌋
+1 edges must contain at least

⌊
n
2

⌋
triangles. In [Erd62a] and [Erd62c],

Erdős extended this first to graphs with a linear number of extra edges, and then to cliques

larger than triangles. More generally, for any extremal problem, the corresponding Erdős–

Rademacher problem asks how many copies of the forbidden configuration must appear in

a structure larger than the extremal bound.

In the context of intersecting families, the Erdős–Rademacher question was first inves-

tigated by Frankl [Fra77] and, independently, Ahlswede [Ahl80] some forty years ago, who
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showed that the number of disjoint pairs of sets in a set family is minimised by taking the

sets to be as large as possible.

Theorem 4.1.3 (Frankl [Fra77], 1977; Ahlswede [Ahl80], 1980). If
∑n

i=k+1

(
n
i

)
≤ s ≤∑n

i=k

(
n
i

)
, then the minimum number of disjoint pairs in a set family of size s is attained by

some family F with ∪i>k
(

[n]
i

)
⊆ F ⊆ ∪i≥k

(
[n]
i

)
.

Note that while this theorem provides the large-scale structure of extremal families, it

does not determine exactly which families are optimal. Since we have ∪i>k
(

[n]
i

)
⊂ F , each

set of size k contributes the same number of disjoint pairs with larger sets. Hence the total

number of disjoint pairs is minimised by minimising the number of disjoint pairs between

the sets of size k, a problem raised by Ahlswede.

Question 4.1.4 (Ahlswede [Ahl80], 1980). Given 0 ≤ s ≤
(
n
k

)
, which k-uniform set families

F ⊂
(

[n]
k

)
with |F| = s minimise the number of disjoint pairs?

By the Erdős–Ko–Rado Theorem, we know that when s ≤
(
n−1
k−1

)
, we need not have any

disjoint pairs, while for s >
(
n−1
k−1

)
, there must be at least one disjoint pair. This question can

thus be thought of as the Erdős–Rademacher problem for the Erdős–Ko–Rado Theorem.

This question is also deeply connected to the Kneser graph. The Kneser graph K(n, k)

has vertices V =
(

[n]
k

)
, with vertices X and Y adjacent if and only if the sets are disjoint. An

intersecting set family corresponds to an independent set in the Kneser graph. Question 4.1.4

is thus asking which s vertices of the Kneser graph induce the smallest number of edges.

Since the Kneser graph is regular, this is equivalent to the edge-isoperimetric problem of

finding the largest bipartite subgraph of K(n, r) with one part of size s. Kneser graphs have

been extensively studied, and the problem of determining their largest bipartite subgraphs

was first raised by Poljak and Tuza in [PT87].

In 2003, Bollobás and Leader [BL03] presented a new proof of Theorem 4.1.3, by relaxing

the problem to a continuous version and analyzing fractional set families. They further

considered Question 4.1.4, and conjectured that for small families, the initial segment of the

lexicographical ordering on
(

[n]
k

)
should be optimal. In the lexicographical ordering, we say
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A < B if min(A∆B) ∈ A; that is, we prefer sets with smaller elements. More generally,

Bollobás and Leader conjectured that all the extremal families should take the form of

what they named `-balls, as defined below. Note that a 1-ball is an initial segment of the

lexicographical ordering.

Conjecture 4.1.5 (Bollobás-Leader [BL03], 2003). One of the families Ar,l = {A ∈
(

[n]
k

)
:

|A ∩ [r]| ≥ `} minimises the number of disjoint pairs.

When k = 2, we can think of a set family in
(

[n]
2

)
as a graph on n vertices, and are then

asking for which graphs of a given size minimise the number of disjoint pairs of edges. This

problem was solved by Ahslwede and Katona [AK78] in 1978, who showed that the extremal

graphs were always either the union of stars (a collection of vertices connected to all the

other vertices), or their complement.

Theorem 4.1.6 (Ahlswede–Katona [AK78], 1978). Over all graphs on n vertices with m

edges, either Ln,2(m) or Cn,2(m) minimises the number of disjoint pairs of edges. Moreover,

if m < 1
2

(
n
2

)
− n

2
, then Ln,2(m) is optimal, while if m > 1

2

(
n
2

)
+ n

2
, then Cn,2(m) is optimal.

In that paper, they asked for a different generalisation, namely which k-uniform set

families minimise the number of (k−1)-disjoint pairs. This is the Erdős–Rademacher problem

for t-intersecting families when t = k − 1, and is known as the Kleitman–West problem,

which shares some connections to information theory. An exact solution appears difficult to

obtain, and a natural conjecture of Kleitman for this problem has been proven to be untrue

by Ahlswede and Cai [AC99]. They later solved a continuous relaxation of the k = 3 case in

[AC06], marking the furthest progress made on this problem.

4.1.3 Our results

Our main result verifies Conjecture 4.1.5 for small families, showing that initial segments of

the lexicographical ordering minimise the number of disjoint pairs. We denote by Ln,k(s)

the first s sets in the lexicographical ordering on
(

[n]
k

)
. Note that the size of ` full stars, say

with centres {1, 2, . . . , `}, is
(
n
k

)
−
(
n−`
k

)
. The following theorem shows that provided n is

large enough with respect to k and `, it is optimal to take sets from the first ` stars.
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Theorem 4.1.7. Provided n > 108k2`(k + `) and 0 ≤ s ≤
(
n
k

)
−
(
n−`
k

)
, Ln,k(s) minimises

the number of disjoint pairs among all families of s sets in
(

[n]
k

)
.

As a by-product of our proof, we shall obtain a characterisation of the extremal families

in this range, which we provide in Proposition 4.2.8. Corollary 4.2.10 shows that we can also

use Theorem 4.1.7 to determine which families are optimal when s is very close to
(
n
k

)
.

We further show that Ln,k(s) also minimises the number of q-matchings.

Theorem 4.1.8. Provided n > n1(k, q, `) and 0 ≤ s ≤
(
n
k

)
−
(
n−`
k

)
, Ln,k(s) minimises the

number of q-matchings among all families of s sets in
(

[n]
k

)
.

Finally, we extend our methods to determine which families minimise the number of t-

disjoint pairs. When t = k − 1, this provides a partial solution to the problem of Kleitman

and West. When n is large with respect to k, t and `, an extremal family is contained in the

union of ` full t-stars. As we shall discuss in Section 4.4, not all such unions are isomorphic,

and once again it is the lexicographical ordering that is optimal.

Theorem 4.1.9. Provided n ≥ n2(k, t, `) and 0 ≤ s ≤
(
n−t+1
k−t+1

)
−
(
n−t−`+1
k−t+1

)
, Ln,k(s) minimises

the number of t-disjoint pairs among all families of s sets in
(

[n]
k

)
.

We again characterise all extremal families in Corollary 4.4.5, while Corollary 4.4.6 pro-

vides the solution when s very close to
(
n
k

)
.

4.1.4 Outline and notation

The remainder of the chapter is organised as follows. In Section 4.2 we study disjoint pairs,

and prove Theorem 4.1.7. In Section 4.3, we consider the number of q-matchings, and prove

Theorem 4.1.8. In Section 4.4, we extend our results to t-disjoint pairs, proving Theorem

4.1.9. In the final section we present some further remarks and open problems.

We denote by [n] the set of the first n positive integers, and use this as the ground set for

our set families. Given a set X,
(
X
k

)
is the family of all k-subsets of X. The number of disjoint

pairs between two families F and G is given by dp(F ,G) = |{(F,G) ∈ F × G : F ∩G = ∅}|,

and the number of disjoint pairs within a family F is denoted by dp(F) = 1
2
dp(F ,F).
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For given n, k and s, we let dp(n, k, s) denote the minimum of dp(F) over all k-uniform

set families on [n] of size s. We define dp(q)(F) and dp(q)(n, k, s) similarly for the number

of q-matchings in set families, and dpt(F), dpt(F ,G), and dpt(n, k, s) for the number of

t-disjoint pairs.

Given any set family F , and a set X ⊂ [n], we let F(X) = {F ∈ F : X ⊂ F} be those

sets in the family containing X. If X is a singleton, we shall drop the set notation, and write

F(x). Finally, we define a cover of a family to be a set X with ∪x∈XF(x) = F ; that is, a

set of elements that touches every set. A t-cover is a collection of t-sets such that every set

in the family contains one of the t-sets.

4.2 Disjoint pairs

In this section we will show that for small families, initial segments of the lexicographical

ordering, Ln,k(s), minimise the number of disjoint pairs. Note that when s ≤
(
n−1
k−1

)
, Ln,k(s)

is a star, which is an intersecting family and thus clearly optimal. The following result of

Katona et al [KKK12] shows that if we add one set to a full star, the resulting family will

also be optimal.

Proposition 4.2.1. Suppose n ≥ 2k. Any family F ⊂
(

[n]
k

)
with |F| =

(
n−1
k−1

)
+ 1 contains

at least
(
n−k−1
k−1

)
disjoint pairs.

Our first theorem shows that as we add sets to the family, we should try to cover our

family with as few stars as possible, as is achieved by Ln,k(s). Later, in Proposition 4.2.8,

we shall precisely characterise all extremal families. We begin by recalling the statement of

the theorem.

Theorem 4.1.6. Provided n > 108k2`(k + `) and 0 ≤ s ≤
(
n
k

)
−
(
n−`
k

)
, Ln,k(s) minimises

the number of disjoint pairs among all families of s sets in
(

[n]
k

)
.

In our notation, the above theorem gives dp(n, k, s) = dp(Ln,k(s)) for such values of s.

Let 1 ≤ r ≤ ` be such that
(
n
k

)
−
(
n−r+1
k

)
< s ≤

(
n
k

)
−
(
n−r
k

)
. Since Ln,k(s) contains all sets
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meeting {1, 2, . . . , r − 1}, and all the remaining sets contain r, we can provide an explicit

formula for the minimum number of disjoint pairs.

dp(n, k, s) = dp(Ln,k(s)) =
r∑
i=1

∑
F∈Ln,k(s)
minF=i

|{G ∈ Ln,k(s) : minG < i, F ∩G = ∅}|

=
r−1∑
i=2

(
n− i
k − 1

) i−1∑
j=1

(
n− j − k
k − 1

)
+

(
s−

r−1∑
i=1

(
n− i
k − 1

)) r−1∑
j=1

(
n− j − k
k − 1

)
.

It will be useful to have a simpler upper bound on dp(n, k, s). Note that we can assign

each set in Ln,k(s) to an element of [r] it contains. It can then only be disjoint from sets

assigned to different elements. In the worst case, an equal number of sets is assigned to each

element, giving the bound

dp(n, k, s) ≤
(
r

2

)(s
r

)2

=
1

2

(
1− 1

r

)
s2. (4.1)

We shall often require bounds on
(
n−2
k−2

)
in terms of s. Since Ln,k(s) contains all sets

meeting [r − 1] and n is large, the Bonferroni Inequalities give

s = |Ln,k(s)| ≥ (r − 1)

(
n− 1

k − 1

)
−
(
r − 1

2

)(
n− 2

k − 2

)
=

(
(r − 1)(n− 1)

k − 1
−
(
r − 1

2

))(
n− 2

k − 2

)
≥ rn

3k

(
n− 2

k − 2

)
. (4.2)

Our proof of Theorem 4.1.7 will proceed according to the following steps. First we shall

argue that if a family F has at most 1
2

(
1− 1

r

)
s2 disjoint pairs, then it must contain a

popular element; that is, some x ∈ [n] contained in many sets of F . The second step consists

of a series of arguments to show that F can be covered by r elements. The final step will

then show that among all families that can be covered by r elements, Ln,k(s) minimises the

number of disjoint pairs.

Proof of Theorem 4.1.7. We prove the theorem by induction on n and s. For the base case,

suppose 0 ≤ s ≤
(
n
k

)
−
(
n−1
k

)
=
(
n−1
k−1

)
. In this range, Ln,k(s) is a star, consisting only of sets

containing 1, and thus obviously minimises the number of disjoint pairs.

For the induction step, let F be an extremal family with |F| = s >
(
n−1
k−1

)
, and so r ≥ 2.

Suppose first that F contains a full star. Without loss of generality, we may assume F has
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all sets containing 1, so F(1) =
{
F ∈

(
[n]
k

)
: 1 ∈ F

}
. Since F(1) is an intersecting family,

we have dp(F) = dp (F(1),F \ F(1)) + dp (F \ F(1)). Now any set F ∈ F with 1 /∈ F is

disjoint from exactly
(
n−k−1
k−1

)
sets in F(1), giving dp (F(1),F \ F(1)) = |F \ F(1)|

(
n−k−1
k−1

)
=(

s−
(
n−1
k−1

)) (
n−k−1
k−1

)
, regardless of the structure of F \ F(1). Since F \ F(1) is a family of

s −
(
n−1
k−1

)
sets in [n] \ {1}, our induction hypothesis implies dp (F \ F(1)) is minimised by

the initial segment of the lexicographical order. Since Ln,k(s) consists of all sets containing

1, and the initial segment of the lexicographical order on [n] \ {1}, it follows that Ln,k(s) is

optimal, as claimed.

Hence we may assume that F does not contain any full star. Consequently, given any

F ∈ F and x ∈ [n], we may replace F by a set containing x.

Step 1: Show there exists some x ∈ [n] with |F(x)| ≥ s
3r

.

We begin by showing there cannot be too many moderately popular elements.

Claim 4.2.2.
∣∣{x : |F(x)| ≥ s

3kr
}
∣∣ < 6kr.

Proof. Suppose not, and consider X ⊂ {x : |F(x)| ≥ s
3kr
} with |X| = 6kr. Using (4.2), we

have

s = |F| ≥ |∪x∈XF(x)| ≥
∑
x∈X

|F(x)| −
∑
x,y∈X

|F(x) ∩ F(y)|

≥ |X| · s

3kr
−
(
|X|
2

)(
n− 2

k − 2

)
≥ 2s− 18k2r2 · 3k

nr
s =

(
2− 54k3r

n

)
s.

Since n > 54k3r, we reach a contradiction. 2

We now show the existence of a popular element.

Claim 4.2.3. There is some x ∈ [n] with |F(x)| > s
3r

.

Proof. We must have 1
2

(
1− 1

r

)
s2 ≥ dp(Ln,k(s)) ≥ dp(F) = 1

2

∑
F∈F dp(F,F) by the ex-

tremality of F .
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Now dp(F,F) = s− |∪x∈FF(x)| ≥ s−
∑

x∈F |F(x)|, and so we have(
1− 1

r

)
s2 ≥

∑
F∈F

(
s−

∑
x∈F

|F(x)|

)
= s2 −

∑
F∈F

∑
x∈F

|F(x)| = s2 −
∑
x

|F(x)|2 .

Let X = {x : |F(x)| ≥ s
3kr
}, and note that by the previous claim, |X| < 6kr. Moreover,

without loss of generality, suppose 1 is the most popular element, so |F(x)| ≤ |F(1)| for all

x. We split the above sum into those x ∈ X and those x /∈ X, giving

s2

r
≤
∑
x∈X

|F(x)|2 +
∑
x/∈X

|F(x)|2 ≤ |F(1)|
∑
x∈X

|F(x)|+ s

3kr

∑
x/∈X

|F(x)|. (4.3)

We bound the first sum by noting that

∑
x∈X

|F(x)| ≤ |∪x∈XF(x)|+
∑

{x,y}⊂X

|F(x) ∩ F(y)|

≤ s+

(
|X|
2

)(
n− 2

k − 2

)
≤
(

1 +
54k3r

n

)
s ≤ 2s,

using (4.2) and our bound on n. The second sum is bounded by
∑

x/∈X |F(x)| ≤
∑

x |F(x)| =

ks. Substituting these bounds in (4.3) gives s2

r
≤ 2|F(1)|s + s2

3r
, and so |F(1)| ≥ s

3r
, as

required. 2

This concludes Step 1.

Step 2: Show there is a cover of size r.

We begin by using the existence of a popular element to argue that there is a reasonably

small cover, and then provide a number of claims that together imply an extremal family

must in fact be covered by r elements.

Claim 4.2.4. X = {x : |F(x)| ≥ s
3kr
} is a cover for F .

Proof. Suppose for contradiction X is not a cover. Then there must be some set F ∈ F

with F ∩ X = ∅, and so |F(x)| < s
3kr

for all x ∈ F . Hence dp(F,F) = s − |∪x∈FF(x)| ≥

s−
∑

x∈F |F(x)| > s− s
3r

. On the other hand, by Claim 4.2.3, we may assume |F(1)| ≥ s
3r

.

Thus if G is any set containing 1, we have dp(G,F) ≤ s−|F(1)| = s− s
3r

. Hence replacing F
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with such a set G, which is possible since F(1) is not a full star, would decrease the number

of disjoint pairs in F , contradicting its optimality.

Hence X must be a cover for F , as claimed. 2

By Claim 4.2.2, we have |X| ≤ 6kr. Take a minimal subcover of X containing 1; without

loss of generality, we may assume this subcover is [m], for some r ≤ m ≤ 6kr. We shall

now proceed to show that an extremal family must have m = r, giving rise to the smallest

possible cover.

Rather than working with the subfamilies F(i), i ∈ [m], we shall avoid double-counting

by instead considering the subfamilies F∗(i) = {F ∈ F : minF = i}. Note that the families

F∗(i) partition F .

Claim 4.2.5. For every i, j ∈ [m], we have |F∗(i)| ≥ |F∗(j)| − 3mk2

rn
s.

Proof. First we claim that there is some F ∈ F with F ∩ [m] = {i}, which in particular

implies F ∈ F∗(i). Indeed, the number of sets in F(i) intersecting another element in [m] is

less than m
(
n−2
k−2

)
≤ 3mk

rn
s ≤ 18k2

n
s < s

3kr
. However, since [m] is a subcover of X from Claim

4.2.4, it follows that |F(i)| ≥ s
3kr

, and thus we must have our desired set F ∈ F∗(i).

For any j ∈ [m] \ {i}, F can intersect at most k
(
n−2
k−2

)
sets in F(j), since each of these

sets must contain both j and one element from F . Summing over all j and using (4.2) gives

dp(F,F) ≥
∑
j 6=i

dp(F,F∗(j)) ≥
∑
j 6=i

[
|F∗(j)| − k

(
n− 2

k − 2

)]
= s− |F∗(i)| − (m− 1)k

(
n− 2

k − 2

)
≥ s− |F∗(i)| − 3mk2

rn
s.

On the other hand, if we were to replace F with a set containing j, it would intersect at

least those sets in F∗(j), and so introduce at most s− |F∗(j)| disjoint pairs. Since F is an

extremal family, we must have s−|F∗(j)| ≥ s−|F∗(i)|− 3mk2

rn
s, or |F∗(i)| ≥ |F∗(j)|− 3mk2

rn
s,

as required. 2

Claim 4.2.6. m ≤ 6r.
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Proof. We shall now bound |F∗(i)| by taking j = 1 in Claim 4.2.5. Recall that by Claim

4.2.3 we have |F(1)| = |F∗(1)| ≥ s
3r

, and from Claim 4.2.2 it follows that m ≤ 6kr. Since

n > 108k3r, these bounds give

|F∗(i)| ≥ |F∗(1)| − 3mk2

rn
s ≥ s

3r
− 18k3

n
s ≥ s

6r
.

Since s = |∪mi=1F∗(i)| =
∑m

i=1 |F∗(i)| ≥ m · s
6r

, we must have m ≤ 6r. 2

With this tighter bound on m, we are now able to better estimate the number of disjoint

pairs in F , and in doing so show that we must actually have m = r if F is extremal.

Claim 4.2.7. If F minimises the number of disjoint pairs, then F can be covered by r

elements.

Proof. We have dp(F) =
∑

i<j dp(F∗(i),F∗(j)), since {F∗(i)} partitions F into intersecting

families. For i < j, note that every set F ∈ F∗(j) can intersect at most k
(
n−2
k−2

)
sets

in F∗(i), since those sets would have to contain one element from F as well as i. This

shows that dp(F∗(i),F∗(j)) ≥
(
|F∗(i)| − k

(
n−2
k−2

))
|F∗(j)|. Moreover, note that Claim 4.2.5

implies the bound |F∗(1)| ≤ s
m

+ 3mk2

rn
s, since we must have some i ∈ [m] with |F∗(i)| ≤

1
m

∑m
j=1 |F∗(j)| =

s
m

, and |F∗(i)| ≥ |F∗(1)| − 3mk2

rn
s. Thus

dp(F) ≥
∑
i<j

(
|F∗(i)| − k

(
n− 2

k − 2

))
|F∗(j)|

=
∑
i<j

|F∗(i)||F∗(j)| − k
(
n− 2

k − 2

)∑
j

(j − 1)|F∗(j)|

≥ 1

2

(∑
i

|F∗(i)|

)2

−
∑
i

|F∗(i)|2
−mk(n− 2

k − 2

)∑
j

|F∗(j)|

≥ 1

2

(
s2 − |F∗(1)|

∑
i

|F∗(i)|

)
−mk

(
n− 2

k − 2

)∑
j

|F∗(j)|

≥ 1

2

(
s2 −

(
s

m
+

3mk2

rn
s

)
s

)
− 3mk2

rn
s2 =

1

2

(
1− 1

m
− 9mk2

rn

)
s2.

On the other hand, since F is extremal, we have dp(F) ≤ dp(Ln,k(s)) ≤ 1
2

(
1− 1

r

)
s2,

and so we must have 1
r
≤ 1

m
+ 9mk2

rn
≤ 1

m
+ 54k2

n
. Since n > 54k2r(k + r) ≥ 54k2r(r + 1), we

have 54k2

n
< 1

r
− 1

r+1
, and hence we require m ≤ r. Thus F can be covered by r elements. 2
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This completes Step 2.

Step 3: Show that Ln,k(s) is optimal.

We will now complete the induction argument by showing that Ln,k(s) is indeed an

extremal family. From the preceding steps we know F must be covered by r elements, which

we may assume to be [r]. We shall now use a complementarity argument to deduce the

optimality of Ln,k(s).

Let A =
{
A ∈

(
[n]
k

)
: A ∩ [r] 6= ∅

}
be all sets meeting [r], so we have F ⊂ A. Let

G = A \ F . We have

dp(F) = dp(A)− dp(G,A) + dp(G),

since only disjoint pairs contained in F survive on the right-hand side.

Since dp(A) is determined solely by r, and hence s, but is independent of the structure

of F , we may treat that term as a constant.

We have dp(G,A) =
∑

G∈G dp(G,A). For any G, dp(G,A) is determined by |G ∩ [r]|,

and is maximised when |G ∩ [r]| = 1. For F = Ln,k(s), we have G ∩ [r] = {r} for all G ∈ G,

and so Ln,k(s) maximises dp(G,A).

Finally, we obviously have dp(G) ≥ 0, with equality in the case of F = Ln,k(s).

Hence it follows that Ln,k(s) minimises the number of disjoint pairs, completing the proof.

2

This proof also allows us to characterise all extremal families.

Proposition 4.2.8. Provided n > 108k2r(k + r) and
(
n
k

)
−
(
n−r+1
k

)
≤ s ≤

(
n
k

)
−
(
n−r
k

)
, then

a set family F ⊂
(

[n]
k

)
of size s minimises the number of disjoint pairs if and only if it has

one of the two following structures:

(i) F contains r − 1 full stars, with the remaining sets forming an intersecting family, or

(ii) F has a cover X of size r, and if G =
{
G ∈

(
[n]
k

)
\ F : G ∩X 6= ∅

}
, then G is inter-

secting, and |G ∩X| = 1 for all G ∈ G.
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Proof. We prove the proposition by induction on n and s. If 0 ≤ s ≤
(
n−1
k−1

)
, then clearly a

family is extremal if and only if it is intersecting, as there need not be any disjoint pairs.

Since r = 1 for this value of s, this is covered by case (i).

For the induction step, note that if F is extremal and contains a full star, say F(1), then

F \ F(1) must also be extremal. Applying the induction hypothesis gives the result, since

adding a full star to either (i) or (ii) preserves the structure.

Hence we may assume there is no full star. Claim 4.2.7 then shows that F has a cover

of size r, while the complementarity argument from Step 3 gives the above characterisation

of the family G. 2

Finally, we use Theorem 4.1.7 to determine which large families minimise the number

of disjoint pairs. Recall that, as explained in Section 4.1, we can view this problem as an

edge-isoperimetric for the Kneser graph, which is regular. The following lemma links the

edge-isoperimetric problem for small and large vertex sets in regular graphs.

Lemma 4.2.9. Let G = (V,E) be a regular graph on n vertices. Then S ⊂ V minimises the

number of edges e(S) over all sets of |S| vertices if and only if V \ S minimises the number

of edges over all sets of n− |S| vertices.

Proof. Let s = |S|, and suppose G is d-regular. Summing the degrees of vertices in S, we

have

2e(S) = ds− e(S, V \ S) = ds− (d(n− s)− 2e(V \ S)) = d(2s− n) + 2e(V \ S),

and so e(S) is minimised if and only if e(V \ S) is. 2

The following corollary, which is a direct consequence of Theorem 4.1.7 and Lemma 4.2.9,

shows that the complement of the lexicographical initial segments are optimal when s is close

to
(
n
k

)
.

Corollary 4.2.10. Provided n > 108k2`(k + `) and
(
n−`
k

)
≤ s ≤

(
n
k

)
,
(

[n]
k

)
\ Ln,k

((
n
k

)
− s
)

minimises the number of disjoint pairs.
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4.3 q-matchings

In this section, we determine which set families minimise the number of q-matchings. This

extends Theorem 4.1.7, which is the case q = 2. Note that when |F| = s ≤
(
n
k

)
−
(
n−q+1
k

)
,

the lexicographical initial segment does not contain any q-matchings, as all sets meet [q−1].

Indeed, this is known to be the largest such family when n > (2q−1)k−q, as proven by Frankl

[Fra13]. We shall show that, provided n is suitably large, Ln,k(s) continues to be optimal

for families of size up to
(
n
k

)
−
(
n−`
k

)
. Unlike for Theorem 4.1.7, we have made no attempt

to optimise the dependence of n on the other parameters. We provide our calculations in

asymptotic notation for ease of presentation, where we fix the parameters k, ` and q to be

constant and let n→∞. However, our result should certainly hold for n > C`2k5(`2+k2)e3q.

Our proof strategy will be very similar to before: we will first find a popular element,

deduce the existence of a smallest possible cover, and then use a complementarity argument

to show that the initial segment of the lexicographical order is optimal. The main difference

is in the definition of popular - rather than considering how many sets contain the element

x, we shall be concerned with how many (q − 1)-matchings have a set containing x. To this

end, we introduce some new notation. Given a set family F , and a set F , let F (q)(F ) denote

the number of q-matchings {F1, F2, . . . , Fq} in F with ∪qi=1Fi ∩ F 6= ∅. Similarly, for some

x ∈ [n], we let F (q)(x) = F (q)({x}) be the number of q-matchings with x ∈ ∪qi=1Fi.

Theorem 4.1.7. Provided n > n1(k, q, `) and 0 ≤ s ≤
(
n
k

)
−
(
n−`
k

)
, Ln,k(s) minimises the

number of q-matchings among all families of s sets in
(

[n]
k

)
.

As before, we start with some estimates on dp(q)(Ln,k(s)). Let r be such that
(
n
k

)
−(

n−r+1
k

)
< s ≤

(
n
k

)
−
(
n−r
k

)
. We may assign each set in Ln,k(s) to one of its elements in [r].

Note that a q-matching cannot contain two sets assigned to the same element, and so to

obtain a q-matching, we must choose sets from different elements in [r]. By convexity, the

worst case is when the sets are equally distributed over [r], giving the upper bound

dp(q)(Ln,k(s)) ≤
(
r

q

)(s
r

)q
. (4.4)
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In this case we shall also require a lower bound. Note that Ln,k(s) contains all sets

meeting [r− 1], with the remaining sets containing {r}; suppose there are α
(
n−1
k−1

)
such sets.

Note that we have s =
(
n
k

)
−
(
n−r+1
k

)
+ α

(
n−1
k−1

)
≤ (r − 1)

(
n−1
k−1

)
+ α

(
n−1
k−1

)
, so

(
n−1
k−1

)
≥ s

r−1+α
.

We shall consider two types of q-matchings - those with one of the α
(
n−1
k−1

)
sets that only

meet [r] at r, and those without. For the first type, we have α
(
n−1
k−1

)
choices for the set

containing r. For the remaining sets in the q-matching, we will avoid any overcounting by

restricting ourselves to sets that only contain one element from [r − 1]. We can then make

one of
(
r−1
q−1

)
choices for how the remaining q − 1 sets will meet [r − 1]. For each such set,

we must avoid all other elements in [r] and all previously used elements, leaving us with at

least
(
n−kq−r
k−1

)
= (1− o(1))

(
n−1
k−1

)
options.

For the second type of q-matchings, there are
(
r−1
q

)
ways to choose how the sets meet

[r − 1], and then at least
(
n−kq−r
k−1

)
choices for each set. Hence in total we have

dp(q)(Ln,k(s)) ≥ (1− o(1))

(
α

(
r − 1

q − 1

)
+

(
r − 1

q

))(
n− 1

k − 1

)q
≥ (1− o(1))

(
α
(
r−1
q−1

)
+
(
r−1
q

)
(r − 1 + α)q

)
sq.

For any s > 0, this function of α is monotone increasing when 0 ≤ α ≤ 1, and so the

right-hand side is minimised when α = 0. This gives the lower bound

dp(q)(Ln,k(s)) ≥ (1− o(1))

(
r − 1

q

)(
s

r − 1

)q
. (4.5)

Having established these bounds, we now prove Theorem 4.1.8.

Proof of Theorem 4.1.8. Our proof is by induction, on n, q and s. The base case for q = 2 is

given by Theorem 4.1.71. As noted earlier, if s ≤
(
n
k

)
−
(
n−q+1
k

)
, then Ln,k(s) does not contain

any q-matchings, and hence is clearly optimal. Hence we may proceed to the induction step,

with q ≥ 3 and
(
n
k

)
−
(
n−q+1
k

)
< s ≤

(
n
k

)
−
(
n−`
k

)
. In particular, we have q ≤ r ≤ ` and

s = Ω(nk−1).

1Alternatively, we may use the trivial base case of q = 1, where we merely count the number of sets.
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Let F be an extremal family of size s. We again first consider the case where F contains

a full star, which we shall assume to be all sets containing 1. We split our q-matchings based

on whether or not they meet 1, giving dp(q)(F) = |F (q)(1)|+ dp(q)(F \ F(1)).

Note that every (q − 1)-matching not meeting 1 can be extended to a q-matching by

exactly
(
n−k(q−1)−1

k−1

)
sets containing 1, so |F (q)(1)| = dp(q−1)(F \ F(1))

(
n−k(q−1)−1

k−1

)
. By the

induction hypothesis, dp(q−1)(F \F(1)) is minimised by the lexicographical order. Similarly,

dp(q)(F \ F(1)) is also minimised by the lexicographical order, and hence we deduce that

dp(q)(F) ≥ dp(q)(Ln,k(s)).

Thus we may assume that F does not contain any full stars. Hence, for any x ∈ [n] and

any F ∈ F , we may replace F by a set containing x.

Step 1: Show there is a popular element x ∈ [n], with |F (q−1)(x)| = Ω(sq−1).

A (q− 1)-matching in F can be extended to a q-matching by a set F ∈ F precisely when

the other q − 1 sets do not meet F . Thus F is in dp(q−1)(F) − |F (q−1)(F )| q-matchings.

Summing over all F gives

q · dp(q)(F) =
∑
F∈F

(
dp(q−1)(F)− |F (q−1)(F )|

)
= s · dp(q−1)(F)−

∑
F∈F

|F (q−1)(F )|.

By the induction hypothesis, dp(q−1)(F) ≥ dp(q−1)(Ln,k(s)), and since F is extremal, we

must have dp(q)(F) ≤ dp(q)(Ln,k(s)). Combining these facts with the bounds from (4.4) and

(4.5), we get∑
F∈F

|F (q−1)(F )| = s · dp(q−1)(F)− q · dp(q)(F) ≥ s · dp(q−1)(Ln,k(s))− q · dp(q)(Ln,k(s))

≥ (1− o(1))

(
r − 1

q − 1

)
sq

(r − 1)q−1
− q
(
r

q

)
sq

rq
= Ω(sq).

Averaging over the s sets in F , we must have |F (q−1)(F )| = Ω(sq−1) for some F ∈

F . Since F (q−1)(F ) = ∪x∈FF (q−1)(x), by averaging over the k elements in F we have

|F (q−1)(x)| = Ω(sq−1) for some x ∈ F .

This completes Step 1.

Step 2: Show there is a cover of size r.
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From Step 1, we know there is some popular element, which we may assume to be 1. We

start by showing the existence of a reasonably small cover.

Claim 4.3.1. X = {x : |F (q−1)(x)| ≥ 1
k
|F (q−1)(1)|} is a cover for F .

Proof. Suppose for contradiction that X was not a cover for F . Then there is some set

F ∈ F such that F ∩ X = ∅, and so
∣∣F (q−1)(x)

∣∣ < 1
k

∣∣F (q−1)(1)
∣∣ for all x ∈ F . Since

F (q−1)(F ) = ∪x∈FF (q−1)(x), the number of q-matchings F is contained in is given by

dp(q−1)(F)−
∣∣F (q−1)(F )

∣∣ ≥ dp(q−1)(F)−
∑
x∈F

∣∣F (q−1)(x)
∣∣ > dp(q−1)(F)−

∣∣F (q−1)(1)
∣∣ .

On the other hand, a set containing 1 can be in at most dp(q−1)(F)−
∣∣F (q−1)(1)

∣∣ q-matchings.

Since F(1) is not a full star, we may replace F with a set containing 1, which would decrease

the number of q-matchings in F . This contradicts the optimality of F , and it follows that

X is a cover. 2

Having shown that this set X is a cover, we now show that X is not too big; its size is

bounded by a function of k, q and `.

Claim 4.3.2. |X| = O(1).

Proof. As there can be at most sq−1 (q − 1)-matchings in F , we have

1

k
|F (q−1)(1)||X| ≤

∑
x∈X

|F (q−1)(x)| ≤
∑
x∈[n]

|F (q−1)(x)| = k(q − 1)dp(q−1)(F) ≤ k(q − 1)sq−1.

Since |F (q−1)(1)| = Ω(sq−1), this gives |X| = O(1), as required. 2

Now take a minimal subcover of X, which we may assume to be [m], where m = O(1).

We shall shift our focus from (q − 1)-matchings to the individual sets themselves. For each

i ∈ [m], we shall let F−(i) = {F ∈ F : F ∩ [m] = {i}} be those sets in F that meet [m]

precisely at i; by the minimality of the cover, these subfamilies are non-empty. Since any

set in F(i) \ F−(i) must contain not just i but also some other element in [m], we have

|F−(i)| ≥ |F(i)| −m
(
n−2
k−2

)
= |F(i)| − o(s).

We will now show that for an extremal family, we must have m = r. We first require the

following claim.
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Claim 4.3.3. For any i, j ∈ [m], we have |F(i)| = |F(j)|+ o(s).

Proof. Recall that set F ∈ F contributes dp(q−1)(F) − |F (q−1)(F )| q-matchings to F . By

estimating |F (q−1)(F )| for sets containing i or j, we shall show that if |F(i)| and |F(j)| are

very different, then we can decrease the number of q-matchings by shifting sets.

Consider a set F ∈ F−(i). We wish to bound
∣∣F (q−1)(F )

∣∣.
For every (q − 1)-matching in F (q−1)(F ), we must have at least one of the sets in the

(q − 1)-matching meeting F . Either this set can contain i, in which case there are |F(i)|

possibilities, or it contains some element in F \{i}, as well as some element in [m]. However,

the number of options in the latter case is at most mk
(
n−2
k−2

)
= o(s). We can then count the

number of possibilities for the other sets in the matching just as we did when establishing

the inequalities (4.4) and (4.5). First we choose representatives A ⊂ [m] \ {i} for the other

q − 2 sets, and then we choose sets corresponding to the given elements; that is, H ∈ F(a)

for all a ∈ A. This provides an overestimate for
∣∣F (q−1)(F )

∣∣, as some of these collections

of q − 1 sets may not be disjoint, while some are counted multiple times. However, we do

obtain the upper bound

|F (q−1)(F )| ≤ (1 + o(1)) |F(i)|
∑

A∈([m]\{i}
q−2 )

∏
a∈A

|F(a)|. (4.6)

We now consider replacing F by some set G containing j, and determine how many new

q-matchings would be formed. The number of q-matchings G contributes is dp(q−1)(F) −∣∣F (q−1)(G)
∣∣ ≤ dp(q−1)(F)−

∣∣F (q−1)(j)
∣∣, since j ∈ G.

To bound
∣∣F (q−1)(j)

∣∣, note that we can form (q − 1)-matchings containing j by first

choosing a set from F−(j), then choosing a set of q− 2 other representatives A ⊂ [m] \ {j},

and choosing disjoint sets H ∈ F−(a), a ∈ A. To ensure the sets we choose are disjoint, we

must avoid any elements we have already used. There can be at most k(q−1) such elements,

and so we have to avoid at most
(
n−1
k−1

)
−
(
n−k(q−1)−1

k−1

)
≤ k(q − 1)

(
n−2
k−2

)
= o(s) sets each time.

By choosing the sets from F−(a), and not F(a), we ensure there is no overcounting, as each
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such (q − 1)-matching has a unique set of representatives in [m]. Thus we have the bound

∣∣F (q−1)(j)
∣∣ ≥ ∣∣F−(j)

∣∣ ∑
A∈([m]\{j}

q−2 )

∏
a∈A

(∣∣F−(a)
∣∣− o(s)) = (1− o(1)) |F(j)|

∑
A∈([m]\{j}

q−2 )

∏
a∈A

|F(a)|

(4.7)

since |F−(a)| = |F(a)| − o(s) for all a ∈ [m].

Since F is optimal, we must have
∣∣F (q−1)(F )

∣∣ ≥ ∣∣F (q−1)(G)
∣∣. Comparing (4.6) and (4.7),

we find

(1 + o(1)) |F(i)|
∑

A∈([m]\{i}
q−2 )

∏
a∈A

|F(a)| ≥ (1− o(1)) |F(j)|
∑

A∈([m]\{j}
q−2 )

∏
a∈A

|F(a)| .

Some terms appear on both sides of the inequality, and so taking the difference gives

(|F(i)| − |F(j)|)
∑

A∈([m]\{i,j}
q−2 )

∏
a∈A

|F(a)| ≥ o(sq−1).

This implies |F(i)| ≥ |F(j)|+ o(s). By symmetry, the reverse inequality also holds, and

thus |F(i)| = |F(j)|+ o(s), as required. 2

Note that we have s = |F| =
∣∣∪i∈[m]F(i)

∣∣ ≥ ∑m
i=1 |F(i)| −

∑
i<j |F(i) ∩ F(j)|. Since

|F(i) ∩ F(j)| ≤
(
n−2
k−2

)
= o(s) for all i, j, it follows that

∑m
i=1 |F(i)| = s + o(s). Claim 4.3.3

shows that all the stars have approximately the same size, and so |F(i)| = s
m

+ o(s) for each

1 ≤ i ≤ m. We can now show that we have a smallest possible cover.

Claim 4.3.4. If F is extremal, then F can be covered by r elements.

Proof. Now that we have control over the sizes of the subfamilies F(i), we can estimate the

number of q-matchings the family contains. As in our calculations for Claim 4.3.3, we can

obtain a q-matching by choosing a collection A of q elements in [m], and then choosing sets

from the corresponding subfamilies F(a), a ∈ A. In order for this choice of sets to form a

q-matching, each set we choose should avoid the elements of the previously chosen sets, of

which there can be at most k(q − 1). Moreover, to avoid overcounting, we shall choose sets

from F−(a), and so shall avoid the other m−1 elements of [m]. Thus, for a given a ∈ A, the
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forbidden sets are those containing a, and one of at most k(q − 1) + m− 1 other elements,

and so we forbid at most (k(q − 1) +m− 1)
(
n−2
k−2

)
= o(s) sets. Thus we have

dp(q)(F) ≥
∑

A∈([m]
q )

∏
a∈A

(|F(a)| − o(s)) = (1− o(1))

(
m

q

)( s
m

)q
.

On the other hand, since F is extremal, we must have dp(q)(F) ≤ dp(q)(Ln,k(s)) ≤(
r
q

) (
s
r

)q
. As

(
m
q

) (
s
m

)q
is increasing in m, these bounds imply we must have m = r. 2

This concludes Step 2.

Step 3: Show that Ln,k(s) is optimal.

We complete the induction by showing that Ln,k(s) does indeed minimise the number of

q-matchings. From the previous steps, we may assume that an extremal family F is covered

by [r]. As before, we shall let A =
{
A ∈

(
[n]
k

)
: A ∩ [r] 6= ∅

}
, so F ⊂ A, and we let G = A\F .

Note that for every G ∈ G, dp(q−1)(A)− |A(q−1)(G)| counts the number of q-matchings in A

containing G. Hence

dp(q)(F) ≥ dp(q)(A)−
∑
G∈G

(
dp(q−1)(A)− |A(q−1)(G)|

)
= dp(q)(A)− |G|dp(q−1)(A) +

∑
G∈G

|A(q−1)(G)|.

Now the first two terms are independent of the structure of F . We claim that
∣∣A(q−1)(G)

∣∣
is minimised when |G ∩ [r]| = 1. Indeed, fix some G ∈ G. Note that the number of (q − 1)-

matchings in A that only meet G outside [r] is at most kr
(
n−2
k−2

)
sq−2 = o(sq−1), since we must

choose one of k elements of G and one of r elements of [r] for the set to contain, and then

there are at most sq−2 choices for the remaining q − 2 sets. Hence almost all the (q − 1)-

matchings in A(q−1)(G) meet G in G∩ [r], and thus
∣∣A(q−1)(G)

∣∣ is obviously minimised when

|G ∩ [r]| = 1.

When F = Ln,k(s), we have G ∩ [r] = {r} for all G ∈ G, and so the right-hand side

is minimised. Moreover, because G is an intersecting family, it follows that every (q − 1)-

matching in A can contain at most 1 set from G, and so the above inequality is in fact an

equality. This shows that Ln,k(s) minimises the number of q-matchings.
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This completes the induction step, and thus the proof of Theorem 4.1.8. 2

4.4 t-disjoint pairs

We now seek a different extension of Theorem 4.1.7. Recall that we call a pair of sets

F1, F2 t-intersecting if |F1 ∩ F2| ≥ t, and t-disjoint otherwise. As shown by Wilson [Wil84],

provided n ≥ (k − t + 1)(t + 1), the largest t-intersecting family consists of
(
n−t
k−t

)
sets that

share a common t-set X ∈
(

[n]
t

)
; we call such a family a (full) t-star with centre X. Note that

Ln,k(
(
n−t
k−t

)
) is itself a t-star with centre [t]. In the following theorem, we show that when n is

sufficiently large, the minimum number of t-disjoint pairs is attained by taking full t-stars.

In this setting, not all unions of t-stars are isomorphic, as the structure depends on how the

centres intersect. We show that it is optimal to have the centres be the first few sets in the

lexicographical ordering on
(

[n]
t

)
, which is the case for Ln,k(s).

Theorem 4.1.8. Provided n ≥ n2(k, t, `) and 0 ≤ s ≤
(
n−t+1
k−t+1

)
−
(
n−t−`+1
k−t+1

)
, Ln,k(s) minimises

the number of t-disjoint pairs among all families of s sets in
(

[n]
k

)
.

It shall sometimes be helpful to count the number of t-intersecting pairs instead of

t-disjoint pairs. Thus we introduce the notation intt(F) to represent the number of t-

intersecting pairs of sets in F , and intt(F ,G) = |{(F,G) ∈ F × G : |F ∩G| ≥ t}| to count

the number of cross-t-intersections between F and G. Note that a set F is t-intersecting

with itself, since |F ∩ F | = k > t. Since
∑

F∈F intt(F,F) counts the t-intersecting pairs

between distinct sets twice, and those with the same set only once, we obtain the identity∑
F∈F intt(F,F) = 2intt(F)− |F|.

We begin with a heuristic calculation that suggests why it is optimal to have full t-stars.

Let F be a full t-star, say with centre X ∈
(

[n]
t

)
, and let F be a set not containing X. For a

set G in F to be t-intersecting with F , G must contain the t elements of X, as well as some

t−|F ∩X| elements from F . The number of such sets G is maximised when |F ∩X| = t−1,

giving

intt(F,F) ≤ (k − t+ 1)

(
n− t− 1

k − t− 1

)
= O(nk−t−1) = o(|F|). (4.8)
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Hence if a t-star does not contain a set F , F is t-disjoint from almost all its members. It

should thus be optimal to take full t-stars, as that is where the t-intersections come from.

Indeed, this turns out to be the case. As we shall see, for a set family F , the leading term

in dpt(F) is determined by the number of t-stars in F . While unions of t-stars may be

non-isomorphic, the differences only affect the lower order terms of dpt(F).

In order to prove Theorem 4.1.9, we shall require a few preliminary results. Proposition

4.4.1 can be thought of as a rough characterisation of extremal families, as it shows that the

extremal families should be supported on the right number of t-stars. To this end, it will

be useful to define an almost full t-star to be a t-star in F containing (1 − o(1))
(
n−t
k−t

)
sets.

Formally, this means that for all fixed k, t and `, there is some ε = ε(k, t, `) > 0 such that a

t-star will be almost full if it contains (1− ε)
(
n−t
k−t

)
sets.

Proposition 4.4.1. Suppose n ≥ n2(k, `, t), and
(
n−t+1
k−t+1

)
−
(
n−t−r+2
k−t+1

)
< s ≤

(
n−t+1
k−t+1

)
−(

n−t−r+1
k−t+1

)
. If F ⊂

(
[n]
k

)
has the minimum number of t-disjoint pairs over all families of s

sets, then either:

(i) F contains r − 1 full t-stars,

(ii) F consists of r almost full t-stars, or

(iii) F consists of r − 1 almost full t-stars.

Once we have determined the large-scale structure of the extremal families, the following

lemmas allow us to analyze the lower-order terms and determine that the lexicographical

ordering is indeed optimal.

Lemma 4.4.2 shows that of all unions of r full t-stars, the lexicographical ordering contains

the fewest sets. This may seem to contradict the lexicographical ordering being optimal,

given that the heuristic given by (4.8) suggests that it is optimal to take as few t-stars as

possible, and hence we might try to make the union of these stars accommodate as many

sets as possible. However, it is because there is more overlap between the lexicographical

t-stars that there are fewer t-disjoint pairs between stars.
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Lemma 4.4.2. Suppose n ≥ n2(k, t, r), and let F be the union of r full t-stars in
(

[n]
k

)
. Then

|F| ≥
(
n−t+1
k−t+1

)
−
(
n−t−r+1
k−t+1

)
= s, with equality if and only if F is isomorphic to Ln,k (s).

The next lemma shows that if we have r full t-stars, and add a new set to the family, we

minimise the number of new t-disjoint pairs created when we have the lexicographical initial

segment.

Lemma 4.4.3. Suppose n ≥ n2(k, t, r), let L = Ln,k
((
n−t+1
k−t+1

)
−
(
n−t−r+1
k−t+1

))
be the first r full

t-stars in the lexicographical order, and let L be a set containing {1, 2, . . . , t−1} that is not in

L. Let F be the union of r full t-stars with centres {X1, X2, . . . , Xr}, and let F be any k-set

not in F . Then dpt(F,F) ≥ dpt(L,L), which equality if and only if F ∪ {F} is isomorphic

to L ∪ {L}.

However, the comparison in Lemma 4.4.3 is not entirely fair, as Lemma 4.4.2 shows that

L will have fewer sets than F , while we ought to be comparing families of the same size. We

do this in our final lemma, in the cleanest case when the family F is a union of full t-stars.

Lemma 4.4.4. Suppose n ≥ n2(k, t, r), let F be the union of r full t-stars with centres Xi,

1 ≤ i ≤ r, and let L = Ln,k(|F|). Then dpt(F) ≥ dpt(L), with equality if and only if F is

isomorphic to L.

Armed with Proposition 4.4.1 and these three lemmas, whose proofs we defer until later

in this section, we now show how to deduce Theorem 4.1.9.

Proof of Theorem 4.1.9. Let r be such that
(
n−t+1
k−t+1

)
−
(
n−t−r+2
k−t+1

)
< s ≤

(
n−t+1
k−t+1

)
−
(
n−t−r+1
k−t+1

)
.

In this range Ln,k(s) consists of r − 1 full t-stars, with the remaining sets forming a partial

rth t-star. If r = 1, then Ln,k(s) is t-intersecting, and therefore clearly optimal. Hence we

may assume r ≥ 2, and in particular this implies s = Ω(nk−t).

Suppose F is an optimal family of size s. By analyzing the three cases in Proposition 4.4.1

in turn, we shall show that dpt(F) ≥ dpt(Ln,k(s)), thus completing the proof of Theorem

4.1.9.
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Case (i): Suppose F contains r − 1 full t-stars, whose union we shall denote by F1, and

s2 = s− |F1| other sets, denoted by F2. We then have

dpt(F) = dpt(F1) + dpt(F1,F2) + dpt(F2) ≥ dpt(F1) + dpt(F1,F2)

= dpt(F1) +
∑
F∈F2

dpt(F,F1) ≥ dpt(F1) + s2 · dpt(F0,F1),

where F0 ∈ F2 minimises dpt(F,F1).

Let L = Ln,k(s) be the corresponding lexicographical initial segment, L1 = Ln,k(|F1|) be

the first |F1| sets in the lexicographical ordering, and let L2 = L\L1 be the next s2 sets. By

Lemma 4.4.2, it follows that L1 consists of at least r − 1 full t-stars, and so L2 lies entirely

within the rth lexicographical t-star, and is thus t-intersecting. Hence

dpt(L) = dpt(L1) + dpt(L1,L2) + dpt(L2) = dpt(L1) + dpt(L1,L2)

= dpt(L1) +
∑
L∈L2

dpt(L,L1) ≤ dpt(L1) + s2 · dpt(L0,L1),

where L0 ∈ L2 maximises dpt(L,L1) (in fact, by symmetry, this is equal for all L ∈ L2).

Note that L0 will belong to the rth t-star of L, and hence dpt(L0,L1) will only count

t-disjoint pairs between L0 and the union of the first r − 1 t-stars of L1. By Lemma 4.4.3,

we have dpt(F0,F1) ≥ dpt(L0,L1), and by Lemma 4.4.4, we have dpt(F1) ≥ dpt(L1), from

which we deduce dpt(F) ≥ dpt(L), as required.

Case (ii): In this case we have r almost full t-stars. Using a complementarity argument, we

shall reduce this to case (i).

Suppose F is the union of r almost full t-stars with centres {X1, X2, . . . , Xr}, let A =

∪ri=1{A ∈
(

[n]
k

)
: Xi ⊂ A} be the family of all sets containing some Xi, and let G = A \ F .

On account of the t-stars being almost full, we have |G| = o(nk−t).

Running the same complementarity argument as in the proof of Theorem 4.1.7, we have

dpt(F) = dpt(A)− dpt(G,A) + dpt(G) = dpt(A)−
∑
G∈G

dpt(G,A) + dpt(G). (4.9)

To minimise dpt(F), we seek to maximise
∑

G∈G dpt(G,A) while minimising dpt(G). We

shall obtain these extrema by shifting the family so that the missing sets, G, will all belong
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to one of the t-stars A(Xi). In this case, the shifted family, F ′, will contain r− 1 full t-stars.

Hence we will have reduced the problem to case (i), and so dpt(F) ≥ dpt(F ′) ≥ dpt(Ln,k(s)),

as desired.

Note that when G is a subset of one of the t-stars, G is t-intersecting, and so dpt(G) = 0 is

minimised. We now show how to choose which t-star G should belong to in order to maximise∑
G∈G dpt(G,A).

Since A is of fixed size, maximising dpt(G,A) is equivalent to minimising intt(G,A). For

G ∈ G, intt(G,A) is determined by the intersections {G ∩Xi : 1 ≤ i ≤ r}. There are only

a bounded number of possibilities for these intersections, and so we may choose one which

minimises intt(G,A), under the restriction that Xi ⊂ G for some i, since G ∈ A. By (4.8),

the number of t-intersecting pairs between G and a t-star it is not in is o(s), and so this

minimum occurs when G contains some Xi and no other elements from ∪jXj \ Xi. The

number of choices for the set G is then at least
(
n−rt
k−t

)
, since after choosing the t elements of

Xi, we wish to avoid the remaining elements in ∪jXj, of which there are at most (r − 1)t.

Since
(
n−rt
k−t

)
≥ |G| = o(nk−t), we may choose all G ∈ G to come from the t-star with centre

Xi in order to minimise the right hand side of (4.9). We have thus resolved case (ii).

Case (iii): In this case we have r − 1 almost full t-stars. Since the size of this family is at

most (r − 1)
(
n−t
k−t

)
, while the size of the first r − 1 t-stars in Ln,k(s) is

(
n−t+1
k−t+1

)
−
(
n−t−r+2
k−t+1

)
=

(r − 1)
(
n−t
k−t

)
+ o(nk−t), we can conclude that rth partial t-star in Ln,k(s) has only o(nk−t)

sets.

Given the family F , we shall construct a larger family F ′ by filling the r − 1 almost

full t-stars. Suppose we have to add s1 sets in order to do so. Note that since the t-stars

were almost full, we have s1 = o(nk−t). Since each of the s1 sets is added to an almost

full t-star, it contributes at least (1 − o(1))
(
n−t
k−t

)
t-intersecting pairs. Hence intt(F ′) ≥

intt(F) + (1− o(1))s1

(
n−t
k−t

)
.

On the other hand, consider adding the same number of sets to the lexicographical initial

segment. The sets in Ln,k(s + s1) \ Ln,k(s) all belong only to the rth t-star, which has

only o(nk−t) sets. Our calculation in (4.8) shows that each such set also only gains o(nk−t)
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t-intersections from the other stars, and so we have intt(Ln,k(s + s1)) ≤ intt(Ln,k(s)) + s1 ·

o(nk−t).

Now F ′ consists of r − 1 full t-stars, and so by Lemma 4.4.4, we have dpt(F ′) ≥

dpt(Ln,k(s + s1)), or, equivalently, intt(F ′) ≤ intt(Ln,k(s + s1)). Thus intt(F) + (1 −

o(1))s1

(
n−t
k−t

)
≤ intt(Ln,k(s)) + s1 · o(nk−t), and so intt(F) ≤ intt(Ln,k(s)), with a strict

inequality unless s1 = 0. This implies dpt(F) ≥ dpt(Ln,k(s)), as required.

Hence we may conclude that for any family F with s sets, we have dpt(F) ≥ dpt(Ln,k(s)),

proving Theorem 4.1.9. 2

By analyzing the cases when we have equality, and using the fact that in Lemmas 4.4.2,

4.4.3 and 4.4.4 we only have equality when the families are isomorphic to the lexicographical

ordering, we can characterise all extremal families.

Corollary 4.4.5. Suppose n ≥ n2(k, `, t), and 0 ≤ s ≤
(
n−t+1
k−t+1

)
−
(
n−t−`+1
k−t+1

)
, and F ⊂

(
[n]
k

)
minimises the number of t-disjoint pairs over all families of s sets. Then all sets F ∈ F

share some common (t − 1)-set X, and F ′ = {F \ X : F ∈ F} minimises the number of

disjoint pairs over all families of s sets in
(

[n]\X
k−t+1

)
.

Moreover, note that this problem can again be thought of as an isoperimetric inequality

in an appropriate graph. Consider the generalised Kneser graph K(n, k, t), with V =
(

[n]
k

)
and an edge between the sets X and Y if |X ∩ Y | < t. This is a regular graph, with every

vertex having degree
∑t−1

i=0

(
k
i

)(
n−k
k−i

)
. Thus, combining Theorem 4.1.9 with Lemma 4.2.9, we

can determine which large families minimise the number of t-disjoint pairs.

Corollary 4.4.6. Provided n ≥ n2(k, t, `) and 0 ≤ s ≤
(
n−t+1
k−t+1

)
−
(
n−t−`+1
k−t+1

)
,
(

[n]
k

)
\ Ln,k(s)

minimises the number of t-disjoint pairs among all families of
(
n
k

)
− s sets in

(
[n]
k

)
.

It remains to prove the proposition and lemmas. We begin with a proof of Proposition

4.4.1. The strategy will be very similar to that of Theorem 4.1.7; assuming the extremal

family F does not have r− 1 full t-stars, we shall show there is some popular element (that

is, an element contained in many sets of F). From this we will deduce the existence of a

small cover, and shall show that either case (ii) or case (iii) must hold.
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Proof of Proposition 4.4.1. We may assume that r ≥ 2, since if r = 1, then case (i) is

trivially satisfied. We first estimate the number of t-intersecting pairs in Ln,k(s), so that we

have a lower bound on intt(F) for any extremal family F .

Note that Ln,k(s) consists of r − 1 full t-stars, with the remaining sets forming a partial

t-star; suppose there are α
(
n−t
k−t

)
such sets. Since there are

(
n−t−1
k−t−1

)
= o(nk−t) sets common to

any two t-stars, it follows that s = (r − 1 + α)
(
n−t
k−t

)
+ o(nk−t).

Now any two sets in the same t-star are t-intersecting, while (4.8) shows that a set is

t-intersecting with o(nk−t) sets from the other t-stars. Hence for any extremal family F we

have the bound

intt(F) ≥ intt(Ln,k(s)) = (r − 1)

((n−t
k−t

)
2

)
+

(
α
(
n−t
k−t

)
2

)
+ o(n2(k−t))

=
r − 1 + α2

2

(
n− t
k − t

)2

+ o(n2(k−t)).

Suppose F contains p full t-stars. If p = r − 1, then case (i) holds, and we are done.

Hence we may assume 0 ≤ p ≤ r − 2. Let F1 be the union of the p full t-stars, and let

F2 = F \ F1 be the remaining sets.

By the same reasoning as above, we must have |F1| = p
(
n−t
k−t

)
+ o(nk−t), and intt(F1) =

1
2
p
(
n−t
k−t

)2
+ o(n2(k−t)). No set F ∈ F2 is in any of the t-stars of F1, and so (4.8) gives

intt(F1,F2) = |F2| · o(nk−t) = o(n2(k−t)). Thus intt(F) = intt(F1) + intt(F1,F2) + intt(F2) =

1
2
p
(
n−t
k−t

)2
+ intt(F2) + o(n2(k−t)), and hence we must have

intt(F2) ≥ r − p− 1 + α2

2

(
n− t
k − t

)2

+ o(n2(k−t)) = Ω(n2(k−t)).

We shall now deduce the existence of a t-cover of size r− p− 1 or r− p for F2, and then

show that we must fall into case (ii) or (iii). The first step is to find a t-set that is in many

members of F2. Note that none of the t-stars in F2 are full, and hence we may shift sets in

F2.

Claim 4.4.7. There is some set X1 ∈
(

[n]
t

)
with |F2(X1)| = Ω(nk−t).
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Proof. Let X1 ∈
(

[n]
t

)
be the set maximising |F2(X)|. We have

intt(F2)− 1

2
|F| = 1

2

∑
F∈F2

intt(F,F2) =
1

2

∑
F∈F2

∣∣∣∪X∈(Ft )F2(X)
∣∣∣ ≤ 1

2

∑
F∈F2

∑
X∈(Ft )

|F2(X)|

≤ 1

2

∑
F∈F2

(
k

t

)
|F2(X1)| = 1

2

(
k

t

)
|F2| |F2(X1)| .

Since |F2| = (r − p − 1 + α)
(
n−t
k−t

)
= O(nk−t), and intt(F2) = Ω(n2(k−t)), it follows that

|F2(X1)| = Ω(nk−t), as desired. 2

This allows us to find a small t-cover.

Claim 4.4.8. X =

{
X ∈

(
[n]
t

)
: |F2(X)| ≥ 1

2(kt)
|F2(X1)|

}
is a t-cover for F2.

Proof. Suppose not. Then there is some F ∈ F such that for all X ∈
(
F
t

)
, |F2(X)| <

1

2(kt)
|F2(X1)|. Thus intt(F,F2) ≤

∑
X∈(Ft )

|F2(X)| < 1
2
|F2(X1)|. Since F has o(nk−t) t-

intersecting pairs in F1, it follows that intt(F,F) ≤ 1
2
|F2(X1)|+ o(nk−t).

If we were to replace F with some set G containing X1, which is possible as F(X1) is not

a full t-star, then we would create at least |F2(X1)| t-intersecting pairs. Since |F2(X1)| =

Ω(nk−t), it follows that intt(G,F) > intt(F,F), which contradicts F being optimal.

Hence X must be a t-cover for F2, as claimed. 2

Claim 4.4.9. |X | = O(1).

Proof. We have(
k

t

)
|F2| =

∑
F∈F2

∣∣∣∣(Ft
)∣∣∣∣ =

∑
X∈([n]

t )

|F2(X)| ≥
∑
X∈X

|F2(X)| ≥ 1

2
(
k
t

) |F2(X1)| |X | .

Since |F2| = O(nk−t) and |F2(X1)| = Ω(nk−t), it follows that |X | = O(1), as claimed.

2

Hence we can write X = {X1, X2, . . . , Xm}, where m = O(1). Note that there are at

most
(
n−t−1
k−t−1

)
= o(nk−t) sets in common between any two stars, while the number of sets each

t-star contains is at least 1

2(kt)
|F2(X1)| = Ω(nk−t). Thus in what follows, we consider only

those sets in exactly one t-star F2(Xi), and shall only lose o(n2(k−t)) t-intersecting pairs.
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Claim 4.4.10. For all 1 ≤ i < j ≤ m, |F2(Xi)| = |F2(Xj)|+ o(nk−t).

Proof. Consider a set F ∈ F2(Xi). F is t-intersecting with all sets in F2(Xi), and, by (4.8),

t-disjoint from almost all other sets. Thus intt(F,F) = |F2(Xi)|+o(nk−t). If we were instead

to replace F with a set G containing Xj, which is possible as F(Xj) is not a full t-star, then

we would create at least |F2(Xj)| new t-intersecting pairs. Since F is optimal, we must have

|F2(Xi)|+ o(nk−t) ≥ |F2(Xj)|.

By symmetry, it follows that |F2(Xi)| = |F2(Xj)|+ o(nk−t). 2

Recall that we had |F2| = (r − p − 1 + α)
(
n−t
k−t

)
+ o(nk−t). By Claim 4.4.10, it follows

that these sets are almost equally distributed between the m t-stars in the t-cover X , and

so |F2(Xi)| = r−p−1+α
m

(
n−t
k−t

)
+ o(nk−t) for each 1 ≤ i ≤ m. Moreover, since |F2(Xi)| ≤

(
n−t
k−t

)
,

we must have m ≥ r − p− 1 if α = o(1), or m ≥ r − p if α = Ω(1).

We can now estimate intt(F2). We know every set belonging only to the t-star F2(Xi)

contributes |F2(Xi)|+o(nk−t) t-intersecting pairs, while there are only o(n2(k−t)) t-intersecting

pairs from sets in multiple t-stars. Thus

intt(F2) =
1

2

∑
F∈F2

intt(F,F2) +
1

2
|F| = 1

2

m∑
i=1

∑
F∈F2(Xi)

intt(F,F2) + o(n2(k−t))

=
1

2

m∑
i=1

|F2(Xi)|
(
|F2(Xi)|+ o(nk−t)

)
+ o(n2(k−t)) =

1

2

m∑
i=1

|F2(Xi)|2 + o(n2(k−t))

=
(r − p− 1 + α)2

2m

(
n− t
k − t

)2

+ o(n2(k−t))

On the other hand, we had the bound

intt(F2) ≥ r − p− 1 + α2

2

(
n− t
k − t

)2

+ o(n2(k−t)).

Comparing the two, we must have

(r − p− 1 + α)2

2m
≥ r − p− 1 + α2

2
+ o(1). (4.10)
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Note that we can write r−p−1+α2

2
= 1

2

∑m
i=1 x

2
i , where

xi =


1 1 ≤ i ≤ r − p− 1

α i = r − p

0 r − p+ 1 ≤ i ≤ m

.

Let x = 1
m

∑m
i=1 xi = r−p−1+α

m
. With this definition, we then have (r−p−1+α)2

2m
= 1

2
mx2.

Since
m∑
i=1

x2
i = mx2 +

m∑
i=1

(xi − x)2 ,

for (4.10) to hold, we must have
∑m

i=1(xi − x)2 = o(1), and thus xi = x + o(1) for all

1 ≤ i ≤ m.

Since x1 = 1, xr−p = α, and xr−p+1 = 0, we must have m ≤ r − p. Recalling our earlier

bound m ≥ r − p − 1, there are only two possibilities. We could have m = r − p and

α = 1− o(1). In this case, each of the r − p t-stars in F2 has size r−1−p+α
m

(
n−t
k−t

)
+ o(nk−t) =

(1 − o(1))
(
n−t
k−t

)
. Combined with the p full t-stars in F1, we see that F consists of r almost

full t-stars, and so we are in case (ii).

The other possible solution is to have m = r − p − 1, with α = o(1). This implies F2

consists of r− 1− p almost full t-stars, which, combined with the p full t-stars of F1, means

F falls under case (iii). This completes the proof of Proposition 4.4.1. 2

We complete this section by proving the three lemmas. First we show that unions of

lexicographical stars contain the fewest sets.

Proof of Lemma 4.4.2. Note that the first r t-stars in the lexicographical ordering have cen-

tres Yi = {1, 2, . . . , t−1, t+i−1}, 1 ≤ i ≤ r, and their union has size s =
(
n−t+1
k−t+1

)
−
(
n−t−r+1
k−t+1

)
.

Letting L = Ln,k
((
n−t+1
k−t+1

)
−
(
n−t−r+1
k−t+1

))
, note that for any set I ⊂ [r], since | ∪i∈I Yi| =

t+ |I| − 1, we have | ∩i∈I L(Yi)| =
(
n−t−|I|+1
k−t−|I|+1

)
. Thus, by Inclusion-Exclusion,

|L| = | ∪ri=1 L(Yi)| =
∑
i

|L(Yi)| −
∑
i1<i2

|L(Yi1) ∩ L(Yi2)|+O(nk−t−2)

= r

(
n− t
k − t

)
−
(
r

2

)(
n− t− 1

k − t− 1

)
+O(nk−t−2).
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Now we consider the size of F . Suppose F is the union of the r full t-stars with centres

{X1, . . . , Xr}. We have

|F| = |∪ri=1F(Xi)| ≥
r∑
i=1

|F(Xi)|−
∑
i1<i2

|F(Xi1)∩F(Xi2)| = r

(
n− t
k − t

)
−
∑
i1<i2

|F(Xi1)∩F(Xi2)|.

For every i1 < i2 we have |F(Xi1) ∩ F(Xi2)| =
(n−|Xi1∪Xi2 |
k−|Xi1∪Xi2 |

)
. If |Xi1 ∩Xi2| ≤ t− 2, then

|Xi1 ∪Xi2| ≥ t+ 2. Hence |F(Xi1) ∩ F(Xi2)| = O(nk−t−2), and so

|F| ≥ r

(
n− t
k − t

)
−
((

r

2

)
− 1

)(
n− t− 1

k − t− 1

)
+O(nk−t−2) > |L|.

Hence we must have |Xi1 ∩Xi2 | = t− 1 for all i1 < i2.

Now, by Inclusion-Exclusion, we have

|F| − r
(
n− t
k − t

)
+

(
r

2

)(
n− t− 1

k − t− 1

)
=
∑
I⊂[r]
|I|≥3

(−1)|I|+1| ∩i∈I F(Xi)|.

For any set F containing a ≥ 3 sets Xi, the contribution to the right-hand side is

a∑
b=3

(−1)b+1

(
a

b

)
= (1− 1)a + 1− a+

(
a

2

)
= 1− a+

(
a

2

)
≥ 1.

If we have some i1 < i2 < i3 with |Xi1 ∪Xi2 ∪Xi3| = t+ 1, then we would have
(
n−t−1
k−t−1

)
sets

containing Xi1 , Xi2 and Xi3 . By the preceding equation, we then have

|F| ≥ r

(
n− t
k − t

)
−
(
r

2

)(
n− t− 1

k − t− 1

)
+

(
n− t− 1

k − t− 1

)
> |L|.

Hence we may assume |Xi1 ∪Xi2 ∪Xi3| ≥ t + 2 for all i1 < i2 < i3. Since we must have

|Xi1 ∩Xi2 | = t− 1 for all i1 < i2, this implies all of the sets Xi share a common (t− 1)-set,

and hence F is isomorphic to L, as desired. 2

The next lemma showed that when adding a set to r full t-stars, the lexicographical stars

minimise the number of new t-disjoint pairs.

Proof of Lemma 4.4.3. L is the union of the t-stars with centres {Y1, Y2, . . . , Yr}, as in

Lemma 4.4.2. Since all these sets, and L, contain [t − 1], it is easy to bound dpt(L,L)
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from above by

r∑
i=1

dpt(L,L(Yi))−
∑
i1<i2

dpt(L,L(Yi1) ∩ L(Yi2)) +
∑

i1<i2<i3

dpt(L,L(Yi1) ∩ L(Yi2) ∩ L(Yi3))

= r

(
n− k − 1

k − t

)
−
(
r

2

)(
n− k − 2

k − t− 1

)
+O(nk−t−2).

On the other hand, we have

dpt(F,F) ≥
r∑
i=1

dpt(F,F(Xi))−
∑
i1<i2

dpt(F,F(Xi1) ∩ F(Xi2)).

The first term can be evaluated as follows. Since

dpt(F,F(Xi)) =

t−1−|F∩Xi|∑
a=0

(
k − |F ∩Xi|

a

)(
n− k − t+ |F ∩Xi|

k − t− a

)
,

if |F ∩Xi| = t− 1 we have dpt(F,F(Xi)) =
(
n−k−1
k−t

)
, while dpt(F,F(Xi)) ≥

(
n−k−2
k−t

)
+ (k −

t+ 2)
(
n−k−2
k−t−1

)
=
(
n−k−1
k−t

)
+ (k − t+ 1)

(
n−k−2
k−t−1

)
otherwise. Moreover, for every i1 < i2 we have

the bound dpt(F,F(Xi1)∩F(Xi2)) ≤ |F(Xi1)∩F(Xi2)| ≤
(
n−t−1
k−t−1

)
. Hence, if |F ∩Xi| ≤ t−2

for some i,

dpt(F,F) ≥ r

(
n− k − 1

k − t

)
+ (k − t+ 1)

(
n− k − 2

k − t− 1

)
−
(
r

2

)(
n− t− 1

k − t− 1

)
= r

(
n− k − 1

k − t

)
−
((

r

2

)
− (k − t+ 1)

)(
n− k − 2

k − t− 1

)
+O(nk−t−2) > dpt(L,L).

Thus we may assume |F ∩Xi| = t− 1 for all i. Given this condition, it follows that

dpt(F,F(Xi1) ∩ F(Xi2)) =


(
n−k−2
k−t−1

)
if F ∩Xi1 = F ∩Xi2

0 otherwise, since |F ∩ (Xi1 ∪Xi2)| ≥ t
.

Hence, in order to have dpt(F,F) ≤ dpt(L,L) = r
(
n−k−1
k−t

)
−
(
r
2

)(
n−k−2
k−t−1

)
+ O(nk−t−2), we

must have F ∩Xi1 = F ∩Xi2 for all i1 < i2. This implies that F shares a common (t−1)-set

with all the sets Xi, and thus F ∪ {F} is isomorphic to L ∪ {L}, as required. 2

The final lemma showed that the union of any r full t-stars contains at least as many

disjoint pairs as the initial segment of the lexicographical ordering with the same number of

sets.

104



Proof of Lemma 4.4.4. We shall find it more convenient to count the number of t-intersecting

pairs. Suppose F is the union of the full t-stars with centres {X1, X2, . . . , Xr} ⊂
(

[n]
t

)
.

By Lemma 4.4.2, it follows that L = Ln,k(|F|) consists of the full t-stars with centres

{Y1, Y2, . . . , Yr}, possibly with some additional sets in an (r + 1)st t-star with centre Yr+1,

where Yi = {1, 2, . . . , t− 1, t− 1 + i}. Note that in this setting we have |F| = |L|.

We first show that if |Xi ∩Xj| ≤ t− 2 for some 1 ≤ i < j ≤ r, then the r full t-stars of

L alone contain more t-intersecting pairs than F . We have

intt(F) ≤
r∑
i=1

intt(F(Xi)) +
∑
i<j

intt(F(Xi) \ F(Xj),F(Xj) \ F(Xi))

= r

((n−t
k−t

)
2

)
+ r

(
n− t
k − t

)
+
∑
i<j

intt(F(Xi) \ F(Xj),F(Xj) \ F(Xi)), (4.11)

where the inequality is due to the fact that t-intersecting pairs involving sets in multiple

t-stars are overcounted.

First suppose |Xi ∩Xj| = t− 1. Given a set F ∈ F(Xi) \ F(Xj), we wish to bound how

many sets G ∈ F(Xj) \ F(Xi) can be t-intersecting with F . Since Xi ∩ Xj ⊂ F ∩ G, we

require G to contain one additional element of F . However, this element cannot be from Xi,

as then we would have G ∈ F(Xi). Thus there are k − t choices for this additional element.

Given that G already contains Xj, there are
(
n−t−1
k−t−1

)
ways to choose the remaining elements

of G. Hence there can be at most (k − t)
(
n−t−1
k−t−1

)
such sets G, giving

intt(F(Xi) \ F(Xj),F(Xj) \ F(Xi)) ≤ (k − t)
(
n− t− 1

k − t− 1

)
|F(Xi) \ F(Xj)|

≤ (k − t)
(
n− t
k − t

)(
n− t− 1

k − t− 1

)
.

Now suppose |Xi ∩Xj| ≤ t − 2. There are two types of F ∈ F(Xi) \ F(Xj): those

with F ∩Xj = Xi ∩Xj, and those with (F \Xi) ∩Xj 6= ∅. In the first case, note that for

G ∈ F(Xj)\F(Xi) to be t-intersecting with F , G must contain at least 2 elements from F in

addition to Xj. Hence there are at most
(
k
2

)(
n−t−2
k−t−2

)
such sets. In the second case, note that

there are at most t
(
n−t−1
k−t−1

)
such sets F , as we can choose at most t elements from Xj \Xi for

F to contain, and then there are
(
n−t−1
k−t−1

)
ways to choose the remaining elements for F . For
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each such F , in order for G ∈ F(Xj) \ F(Xi) to be t-intersecting with F , G must contain

some element of F in addition to F ∩Xj. There are at most k choices for this element, with(
n−t−1
k−t−1

)
ways to complete G. Thus there are at most kt

(
n−t−1
k−t−1

)2
t-intersections of this type.

Hence we upper-bound intt(F(Xi) \ F(Xj),F(Xj) \ F(Xi)) by(
k

2

)(
n− t
k − t

)(
n− t− 2

k − t− 2

)
+ kt

(
n− t− 1

k − t− 1

)2

= O(n2k−2t−2).

Substituting these bounds into (4.11), if we have d pairs {i, j} with |Xi ∩Xj| ≤ t − 2,

we have

intt(F) ≤ r

((n−t
k−t

)
2

)
+

((
r

2

)
− d
)

(k − t)
(
n− t
k − t

)(
n− t− 1

k − t− 1

)
+O(n2k−2t−2). (4.12)

We now provide a lower bound for intt(L), considering only the r full t-stars. There are

two types of t-intersecting pairs: those from within a single t-star, and those between two

t-stars. Within each of the r t-stars, every pair of sets is t-intersecting, and hence there are

at least r
((n−tk−t)

2

)
pairs of the first type.

Now we count the second type of pairs, and consider two t-stars with centres Yi and Yj.

Since Yi ∩Yj = [t− 1], any sets Gi ∈ L(Yi) and Gj ∈ L(Yj) must have at least t− 1 elements

in common. They will therefore be t-intersecting if they have one more common element.

Moreover, this common element should not be from Yi ∪ Yj, as otherwise the two sets are

in fact in the same t-star, making this pair of the first type. For each fixed Gi, there are

therefore k − t choices for the final intersection, and
(
n−t−1
k−t−1

)
choices for corresponding sets

Gj.

There is some slight error in this calculation, as, for example, pairs involving sets con-

tained in multiple t-stars are overcounted. However, it is easy to check that the error is of

order n2k−2t−2, and thus a lower-order term. This gives

intt(L) ≥ r

((n−t
k−t

)
2

)
+ (k − t)

(
r

2

)(
n− t
k − t

)(
n− t− 1

k − t− 1

)
+O(n2k−2t−2).

Comparing this to (4.12), we find that unless d = 0, we must have intt(L) > intt(F), as

desired. It remains to consider the case when |Xi ∩Xj| = t− 1 for all 1 ≤ i < j ≤ r.
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There are only two possibilities. In the first, all the sets Xi share t − 1 elements in

common, in which case F is isomorphic to L. The second case, up to isomorphism, is when

r ≤ t+ 1, and Xi ∈
(

[t+1]
t

)
. Note that if 1 ≤ r ≤ 2, the two constructions are isomorphic, so

we may assume r ≥ 3.

In this case, as we know the exact structure of both constructions, we are able to compute

the number of intersecting pairs rather more precisely. We begin with F , the union of r full

t-stars with centres from
(

[t+1]
t

)
.

F contains all
(
n−t−1
k−t−1

)
sets containing [t+ 1], and then r

(
n−t−1
k−t

)
sets that meet [t+ 1] in

t elements. The sets containing [t+ 1] are t-intersecting with all other sets in F .

On the other hand, if F ∈ F(Xi) is such that F ∩ [t+ 1] = Xi, then there are three types

of sets in F that can be t-intersecting with F :

(i) a set containing [t+ 1],

(ii) a set whose intersection with [t+ 1] is precisely Xi, or

(iii) a set whose intersection with [t+ 1] is Xj for some j 6= i.

There are
(
n−t−1
k−t−1

)
sets of type (i) and

(
n−t−1
k−t

)
sets of type (ii). For a set to be of type (iii), it

must contain some Xj, not contain Xi, and then meet F in some element of F \Xi. For each

choice of j, the set should contain the t elements of Xj, not the single element in Xi \ Xj,

and should not avoid the remaining k − t elements of F . Hence there are
(
n−t−1
k−t

)
−
(
n−k−1
k−t

)
such sets.

Putting this all together, we find

2intt(F)− |F| =
∑
F∈F

intt(F,F) = I1 + I2, (4.13)

where

I1 =

(
n− t− 1

k − t− 1

)[(
n− t− 1

k − t− 1

)
+ r

(
n− t− 1

k − t

)]
,

and

I2 = r

(
n− t− 1

k − t

)[(
n− t− 1

k − t− 1

)
+

(
n− t− 1

k − t

)
+ (r − 1)

((
n− t− 1

k − t

)
−
(
n− k − 1

k − t

))]
.
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We now turn our attention to L.

First observe that we have r full stars, with centres {Y1, Y2, . . . , Yr}. The remaining sets

fall into an (r + 1)st star with centre Yr+1. To avoid overcounting, we shall partition L into

the subfamilies L∗(i) = {L ∈ L : min(L\ [t−1]) = t−1+ i}, 1 ≤ i ≤ r+1; that is, L ∈ L∗(i)

if L(Yi) is the first t-star L is in.

For 1 ≤ i ≤ r, L∗(i) consists of all sets containing [t− 1] ∪ {t− 1 + i}, but disjoint from

the interval [t, t − 2 + i]. Hence we have |L∗(i)| =
(
n−t−i+1
k−t

)
. Summing up the telescoping

binomial coefficients, we find the first r t-stars contain
(
n−t+1
k−t+1

)
−
(
n−t−r+1
k−t+1

)
sets. L∗(r + 1)

then contains enough sets to make L the right size, and so |L∗(r + 1)| is equal to

|F| − |∪ri=1L∗(i)| =
[(
n− t− 1

k − t− 1

)
+ r

(
n− t− 1

k − t

)]
−
[(
n− t+ 1

k − t+ 1

)
−
(
n− t− r + 1

k − t+ 1

)]
.

Note that all the subfamilies L∗(i) are t-intersecting. Moreover, if j < i, and L ∈ L∗(i),

then for a set K ∈ L∗(j) to be t-intersecting with L, it must contain [t − 1] ∪ {t − 1 + j},

be disjoint from the interval [t, t − 2 + j], and contain one of the k − t + 1 elements in

L \ [t − 1 + j]. Hence we have intt(L,L∗(j)) =
(
n−t−j+1
k−t

)
−
(
n−k−j
k−t

)
. We can now count the

number of t-intersecting pairs in L:

2intt(L)− |L| =
∑
L∈L

intt(L,L) =
r+1∑
i=1

(
intt(L∗(i),L∗(i)) + 2

∑
j<i

intt(L∗(i),L∗(j))

)

=
r+1∑
i=1

|L∗(i)|2 + 2
∑
j<i

|L∗(i)|
[(
n− t− j + 1

k − t

)
−
(
n− k − j
k − t

)]
. (4.14)

We now wish to show intt(L) ≥ intt(F); that is, to show the quantity in (4.14) is greater

than that in (4.13). To make this task easier, we shall rewrite all products of binomial

coefficients in the form
(
n−t
k−t

)2
,
(
n−t
k−t

)(
n−t
k−t−1

)
, or

(
n−t
k−t−1

)2
, using the identities(

m− a
r

)
=

(
m

r

)
− a
(

m

r − 1

)
+

(
a+ 1

2

)(
m

r − 2

)
+O(mr−3) and(

n− t
k − t

)(
n− t

k − t− 2

)
=
n− k + 1

n− k + 2
· k − t− 1

k − t
·
(

n− t
k − t− 1

)2

=
k − t− 1

k − t

(
n− t

k − t− 1

)2

+O(n2k−2t−3).
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After performing the routine but tedious calculations, we find,

2intt(F)− |F|+O(n2k−2t−3) = r

(
n− t
k − t

)2

+ r(r − 1)(k − t)
(
n− t
k − t

)(
n− t

k − t− 1

)
−
[

1

2
r(r − 1)(k − t)2 + 2r(r − 1)(k − t)−

(
3r

2
− 1

)
(r − 1)

](
n− t

k − t− 1

)2

,

and 2intt(L)− |L|+O(n2k−2t−3) = r

(
n− t
k − t

)2

+ r(r − 1)(k − t)
(
n− t
k − t

)(
n− t

k − t− 1

)
−
[

1

2
r(r − 1)(k − t)2 + 2r(r − 1)(k − t)− 1

4
(r − 1)2(r2 + 4)

](
n− t

k − t− 1

)2

.

The coefficient of the leading term of the difference between the two constructions is thus

2intt(L)− 2intt(F)(
n−t
k−t−1

)2 −O
(

1

n

)
=

1

4
(r−1)2(r2+4)−

(
3r

2
− 1

)
(r−1) =

1

4
(r+1)r(r−1)(r−2),

which is at least 6 for r ≥ 3. Hence we indeed find intt(L) > intt(F), as required. 2

4.5 Further remarks and open problems

In this chapter, we have provided a partial solution to a problem of Ahlswede on the minimum

number of disjoint pairs in set families. For small families, we verified Bollobás and Leader’s

conjecture by showing that the initial segment of the lexicographical ordering is optimal. By

considering the complementary set families, this also resolves the problem for very large set

families. However, it remains to determine which families are optimal in between.

When k = 2, Ahlswede and Katona showed that the optimal family was always ei-

ther a union of stars or its complement. For k ≥ 3, Bollobás and Leader suggest a

larger family of possible extremal families. We note that for families of size s = 1
2

(
n
k

)
,

the lexicographical family is at least near-optimal. A straightforward calculation shows

dp(n, k, s) ≤ dp(Ln,k(s)) ≤ 1
2

(
1− 21/kk2

n
+O(n−2)

)
s2. On the other hand, exploiting

the connection to the Kneser graph, we can use spectral techniques to obtain the bound

dp(n, k, s) ≥ 1
2

(
1− k(k+2)

n
+O(n−2)

)
s2.

While our focus has been showing that a family with more than
(
n−1
k−1

)
sets must contain

many disjoint pairs, a closely related problem is to determine whether such a family must
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have any sets disjoint from many other sets. This type of question has been studied before

in other settings. For example, when one is considering the number of triangles in a graph,

Erdős showed in [Erd62a] that any graph with
⌊
n2

4

⌋
+ 1 edges must contain an edge in at

least n
6

+ o(n) triangles. It is well-known and easy to see that the hypercube, a graph whose

vertices are subsets of [n], with two vertices adjacent if they are comparable and differ in

exactly one element, has independence number 2n−1. In [CFG88], it is proved that any

induced subgraph on 2n−1 +1 vertices contains a vertex of degree at least (1
2

+o(1)) log2 n. It

is an open problem to determine whether or not this bound is tight (the corresponding upper

bound is O(
√
n)), and the answer to this question has ramifications in theoretical computer

science.

In the context of the Erdős–Ko–Rado Theorem, it is trivial to show that in a family

of
(
n−1
k−1

)
+ 1 sets, there must be a set disjoint from at least 1

2

(
1− k3

n

) (
n−1
k−1

)
other sets.

Indeed, by the Erdős–Ko–Rado theorem, there exists a pair F1, F2 of disjoint sets. At most

k2
(
n−2
k−2

)
< k3

n

(
n−1
k−1

)
sets can intersect both F1 and F2, and so either F1 or F2 must be disjoint

from at least half of the remaining sets, resulting in the above bound. Furthermore, this

is easily seen to be asymptotically tight, as one may take all sets containing {1, 2}, and

then take half the remaining sets to contain 1, and half to contain 2. It may be of interest

to obtain sharper estimates for this problem, especially as the aforementioned construction

shows that this is closely related to the original problem when s ≈ 1
2

(
n
k

)
, since one should

choose the sets containing 1 or 2 optimally. A related problem, that of determining the

largest possible family where no set is disjoint from more than ` other sets, was studied in

[GLP12].

We find most exciting the prospect of studying Erdős–Rademacher-type problems in

other settings. In an earlier paper [DGS14b], we presented an Erdős–Rademacher-type

strengthening of Sperner’s Theorem, a problem that was also studied in [DGK14]. However,

as one can investigate similar extensions for any extremal result, there is truly no end to

the number of directions in which this project can be continued. We hope that further work

of this nature will lead to many interesting results and a greater understanding of classical

theorems in extremal combinatorics.
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CHAPTER 5

Most probably intersecting hypergraphs

5.1 Introduction

A family of sets F is said to be intersecting if F1 ∩ F2 6= ∅ for all F1, F2 ∈ F . A central

result in extremal set theory is the Erdős-Ko-Rado theorem, which determines the largest

size of an intersecting k-uniform family over [n]. Given this extremal result, one may then

investigate the appearance of disjoint pairs in larger families of sets.

Recently Katona, Katona and Katona introduced a probabilistic version of this super-

saturation problem. Given a set family F , let Fp denote the random subfamily obtained

by keeping each set independently with probability p. They asked, for a given p, n and m,

which set families on [n] with m sets maximise the probability of Fp forming an intersecting

family. We study this problem for k-uniform set families. In the case k = 2, we determine

the optimal graphs when they are not too dense. In the hypergraph setting, we provide an

approximate structural result, and are able to determine the extremal hypergraphs exactly

for some ranges of values of m. These mark the first general results for the probabilistic

supersaturation problem for k-uniform set families.

Recall from Chapter 4 that the initial segments of the lexicographic order, where A < B

if min(A∆B) ∈ A, minimise the number of disjoint pairs in small k-uniform set families. We

write Ln,k(m) for the first m sets in
(

[n]
k

)
under the lexicographic order. The complement

of Ln,k(m) is isomorphic to the corresponding initial segment of the colexicographic order,

where A < B if max(A∆B) ∈ B. We write Cn,k(m) for an initial segment of this order.

We now introduce the probabilistic supersaturation problem due to Katona, Katona and

Katona, and then present our new results.
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5.1.1 Probabilistic supersaturation

In 2012, Katona, Katona and Katona [KKK12] introduced a probabilistic measure of su-

persaturation for large families. Rather than minimising the total number of disjoint pairs

in large families, they sought to maximise the probability of a random subfamily being

intersecting. More formally, given a (not necessarily uniform) family F of sets, and some

p ∈ [0, 1], let Fp denote the random subfamily of F , where each set is retained independently

with probability p. For a given 0 ≤ m ≤ 2n, they asked for the families F of m subsets of

[n] maximising P(Fp is intersecting).

Clearly, if F is intersecting, then Fp must also be intersecting, and hence one should

take an intersecting family if possible. Thus, as in the case of the counting supersaturation

problem, one is interested in families larger than the extremal bound.

We observe here that the probabilistic problem is in fact stronger than the counting

version described before. Indeed, note that by conditioning on the number of sets in Fp, we

have

P(Fp is intersecting) =
m∑
t=0

P (Fp is intersecting ||Fp| = t)P (|Fp| = t)

=
m∑
t=0

int(F , t)pt(1− p)m−t, (5.1)

where int(F , t) denotes the number of intersecting subfamilies of F of size t. In particular,

it follows that int(F , t) < 2m for all t. If we take p = o(2−m), then 2mp3 = o(p2), and so

expanding the first few terms of the sum on the right-hand side gives

P(Fp is intersecting) = (1− p)m +mp(1− p)m−1 + int(F , 2)p2(1− p)m−2 + o(p2).

This quantity is maximised if and only if the number of intersecting pairs of sets in F is

maximised, and thus the number of disjoint pairs must be minimised. Hence a solution to

the probabilistic problem for all values of p provides a solution to the counting problem as

well.

Katona, Katona and Katona [KKK12] determined the extremal families for m ≤ 2n−1 +(
n−1

d(n−3)/2e

)
. In particular, they showed that for all 0 ≤ p ≤ 1, it is optimal to take all sets
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of size larger than n
2
, with the remaining sets of size

⌊
n
2

⌋
chosen to minimise the number of

disjoint pairs. They further conjectured the existence of a nested sequence F0 ⊂ F1 ⊂ . . . ⊂

F2n of families such that Fm is the most probably intersecting family of size m.

In the same year, Russell [Rus12] provided some evidence towards this conjecture, by

proving a result similar to Theorem 4.1.3, showing that there is a most probably intersecting

family consisting of sets that are as large as possible. However, in a later paper with Walters

[RW13], they used the non-nestedness of the extremal graphs in Theorem 4.1.6 to show that

the most probably intersecting families are not nested for
∑n

i=3

(
n
i

)
≤ m ≤

∑n
i=2

(
n
i

)
.

While the above results hold for non-uniform families, much less was known in the uniform

setting. By the Erdős-Ko-Rado theorem [EKR61], when n ≥ 2k, the largest k-uniform

intersecting family has size
(
n−1
k−1

)
, a bound attained when we take all sets containing some

fixed element. We call such a structure a star ; note that for m ≤
(
n−1
k−1

)
, Ln,k(m) is a star

consisting of m sets containing 1.

Hence it follows that for m ≤
(
n−1
k−1

)
, Ln,k(m) is an intersecting family, and thus a most

probably intersecting family. Once we have m >
(
n−1
k−1

)
, we can no longer take an intersecting

family. Katona, Katona and Katona showed in [KKK12] that for m =
(
n−1
k−1

)
+1, it is optimal

to add any set to a full star, and thus Ln,k(m) is again optimal. By applying i, j-compressions,

Russell and Walters [RW13] were able to show that for any m, there is a left-compressed most

probably intersecting family, but were unable to show which compressed family is optimal.

5.1.2 Our results

We apply the shifting arguments developed in [DGS14a] to this probabilistic supersaturation

for k-uniform set families. In the case k = 2, we show that the lexicographic order provides

the most probably intersecting graphs for all sizes up to c
(
n
2

)
, with c approximately 1

17
.

Theorem 5.1.1. For n, ` and m satisfying n ≥ 32` and 0 ≤ m ≤
(
n
2

)
−
(
n−`

2

)
, the lexico-

graphic graph Ln,2(m) is the most probably intersecting graph on [n] with m edges.

When k ≥ 3, the situation is rather more intricate. In Proposition 5.3.3, we provide
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a rough structural description of most probably intersecting hypergraphs that are not too

dense. While this approximation holds for all small families, it is only for some particular

sizes that this result allows us to determine the most probably intersecting hypergraphs

exactly, as given below.

Theorem 5.1.2. Let k and ` be integers, and suppose n ≥ n0(k, `) and
(
n
k

)
−
(
n−`
k

)
≤ m ≤(

n
k

)
−
(
n−`
k

)
+ n − ` − k + 1. For this range of parameters, Ln,k(m) is the most probably

intersecting k-uniform hypergraph on [n] with m sets.

We note that in both cases we actually prove something stronger, showing that Ln,k(m)

simultaneously maximises the number of intersecting subfamilies of size t for all t, as stated

in Propositions 5.2.1 and 5.3.4. Our proofs also extend to show that in these ranges, the

most probably intersecting graph is essentially unique.

5.1.3 Outline and notation

The remainder of this chapter is organised as follows. In Section 5.2, we study the most prob-

ably intersecting graphs, proving Theorem 5.1.1. In Section 5.3, we extend these methods

to hypergraphs, and prove Theorem 5.1.2. Finally, in Section 5.4, we provide some further

remarks and open questions.

Our notation is fairly standard. We denote by [n] the first n natural numbers, and for

any set X, we write
(
X
k

)
for the subsets of X of size k. Ln,k(m) represents the first m sets

in
(

[n]
k

)
in the lexicographic order, while Cn,k(m) is the corresponding initial segment of the

colexicographic order; see the paragraph preceding Theorem 4.1.6 for a description of these

orders.

If F is a k-uniform family of subsets of [n], then for any vertex i ∈ [n], we write di for its

degree; that is, the number of sets containing i. A subset X ⊂ [n] of elements covers F if

for every set F ∈ F , we have F ∩X 6= ∅. We let int(F , t) denote the number of intersecting

subfamilies of F of size t. We say that an intersecting family G is trivially intersecting if

∩G∈GG 6= ∅, and we call such a family a star with centre ∩G∈GG. Finally, we say a star with
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centre i is full if it contains all
(
n−1
k−1

)
sets containing i, and almost-full if it has (1−o(1))

(
n−1
k−1

)
sets.

5.2 Intersecting graphs

In this section we prove Theorem 5.1.1, thus showing the initial segment of the lexicographic

order is the most probably intersecting graph when the graphs in question are not too dense.

We recall the statement below.

Theorem 5.1.3. For n, ` and m satisfying n ≥ 32` and 0 ≤ m ≤
(
n
2

)
−
(
n−`

2

)
, the lexico-

graphic graph Ln,2(m) is the most probably intersecting graph on [n] with m edges.

In order to prove this theorem, we use (5.1) to convert the problem into one of counting

intersecting subgraphs of a given size. At the heart of the proof, therefore, is the following

proposition, which shows that in this range of densities, Ln,2(m) maximises the number of

intersecting subgraphs of size t for any t. Proposition 5.2.1 can be viewed as an extension

of Theorem 4.1.6 to larger intersecting subgraphs.

Proposition 5.2.1. Suppose t ≥ 0, and n and ` satisfy n ≥ 22+6/(t−1)`. Then, for any

0 ≤ m ≤
(
n
2

)
−
(
n−`

2

)
, the lexicographic graph Ln,2(m) maximises int(G, t) over all graphs G

on [n] with m edges.

Note that in the case of graphs, there are only two possible intersecting structures: the

star and, when t = 3, the triangle. We will show that there are relatively few triangles, and

hence the number of intersecting subgraphs is essentially determined by the number of stars.

By considering the central vertex of a star, we find that, for t ≥ 2, the number of stars in a

graph G is given by
∑

i∈V (G)

(
di
t

)
. As it is cleaner to first count only the stars, we separate

this (main) case into the following proposition.

Proposition 5.2.2. Suppose t ≥ 0, and n and ` satisfy n ≥ 22+6/(t−1)`. Then, for any

0 ≤ m ≤
(
n
2

)
−
(
n−`

2

)
, the lexicographic graph Ln,2(m) maximises f(G, t) =

∑
i

(
di
t

)
over all

graphs G on [n] with m edges.
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We now begin by showing how Theorem 5.1.1 follows easily from Proposition 5.2.1.

Proof of Theorem 5.1.1. We wish to find a graph G on [n] with m edges that maximises

P(Gp is intersecting). Recall Equation (5.1):

P(Gp is intersecting) =
m∑
t=0

int(G, t)pt(1− p)m−t.

By Theorem 4.1.6 for t = 2 and Proposition 5.2.1 otherwise, among all graphs on [n]

with m edges, int(G, t) is maximised by Ln,2(m) for all t ≥ 0. Thus we have

P(Gp is intersecting) =
m∑
t=0

int(G, t)pt(1− p)m−t

≤
m∑
t=0

int(Ln,2(m), t)pt(1− p)m−t

= P(Ln,2(m)p is intersecting),

and so Ln,2(m) is the most probably intersecting graph, as claimed. 2

In the remainder of this section, we seek to prove Proposition 5.2.1. We begin by dealing

with the cleaner case of counting stars, namely Proposition 5.2.2.

Proof of Proposition 5.2.2. Our proof is by induction on m + t. Note that when t = 0, the

statement is obvious, and for t = 1, f(G, 1) =
∑

i

(
di
1

)
=
∑

i di = 2m, and is thus maximised

by Ln,2(m) and, indeed, by any other graph with m edges.

For the case t = 2, note that since ` ≤ 2−2−6/(t−1)n ≤ 1
4
n, we have at most

(
n
2

)
−
( 3n

4
2

)
<

1
2

(
n
2

)
− 1

2
n edges. Hence, by Theorem 4.1.6, it is known that Ln,2(m) maximises the number

of intersecting pairs of edges, which is precisely the quantity f(G, 2).

Moreover, when m ≤ n − 1, it is easy to see that Ln,2(m) is again optimal. Indeed,

f(G, t) =
∑

i

(
di
t

)
counts the number of t-edge stars in G. For m ≤ n− 1, Ln,2(m) is itself a

star, and thus all subgraphs of t edges are stars. Clearly, f(Ln,2(m), t) =
(
m
t

)
is optimal.

Hence we may assume t ≥ 3 and m ≥ n. Suppose first that G is an extremal graph

containing a full star; without loss of generality, we may assume it has all edges containing
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the vertex 1. Let G̃ be the induced subgraph of G on the vertices [n] \ {1}. Note that for all

2 ≤ i ≤ n, the degrees in G̃ are given by d̃i = di− 1, as we lose the edge to 1. Thus we have

f(G, t) =
∑
i

(
di
t

)
=

(
n− 1

t

)
+

n∑
i=2

(
d̃i + 1

t

)

=

(
n− 1

t

)
+

n∑
i=2

((
d̃i
t

)
+

(
d̃i

t− 1

))
=

(
n− 1

t

)
+ f(G̃, t) + f(G̃, t− 1).

By the induction hypothesis, both f(G̃, t) and f(G̃, t − 1) are maximised by G̃ =

Ln−1,2(m − (n − 1)). Adding to this the full star with centre 1, we obtain Ln,2(m), thus

proving its optimality.

Now suppose G is an extremal graph with the largest possible maximum degree ∆, and

that ∆ ≤ n − 2. This means for any edge e and vertex i, we can replace e by an edge

containing i. This shifting operation, coupled with the assumption of optimality, will allow

us to determine the structure of G, and eventually derive a contradiction.

To begin with, we establish a lower bound for f(G, t). Let 1 ≤ r ≤ ` − 1 be such that(
n
2

)
−
(
n−r

2

)
< m ≤

(
n
2

)
−
(
n−r−1

2

)
. In this range, Ln,2(m) consists of r full stars and a partial

star. Thus if G is extremal, we must have f(G, t) ≥ f(Ln,2(m), t) ≥ r
(
n−1
t

)
+ (n − r)

(
r
t

)
>

r
(
n−1
t

)
.

We shall now double-count to deduce the existence of a high-degree vertex. Since every

star we count in f(G, t) contains t edges, and the number of stars an edge is in is determined

by the degrees of its endpoints, we have

tf(G, t) =
∑

e={i,j}∈E(G)

((
di − 1

t− 1

)
+

(
dj − 1

t− 1

))
≤ 2m

(
∆− 1

t− 1

)
,

where ∆ is the maximum degree in G. Applying the previous lower bound on f(G, t) gives(
∆−1
t−1

)
≥ rt

2m

(
n−1
t

)
= r(n−1)

2m

(
n−2
t−1

)
> 1

4

(
n−2
t−1

)
, since m < (r + 1)(n − 1). Since

(
αp
q

)
≤ αq

(
p
q

)
for

0 ≤ α ≤ 1 (see Lemma 5.3.2), it follows that ∆ > 4−1/(t−1)(n − 2) + 1 ≥ 4−1/(t−1)n − 1.

Without loss of generality, suppose 1 is a vertex of maximum degree.

Consider any edge e = {i, j} ∈ E(G), and suppose without loss of generality di ≥ dj. e

is in
(
di−1
t−1

)
+
(
dj−1
t−1

)
≤ 2
(
di−1
t−1

)
stars of size t. On the other hand, if we replace e with an edge
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containing 1, we would create at least
(

∆
t−1

)
new stars. Hence, by the extremality of G, we

must have 2
(
di−1
t−1

)
≥
(

∆
t−1

)
, so di − 1 ≥ 2−1/(t−1)∆ ≥ 2−3/(t−1)n− 1.

This implies that X = {x ∈ [n] : dx ≥ 2−3/(t−1)n} forms a vertex cover of G. This cover

cannot be too large, as we have the bound

2(r + 1)(n− 1) > 2m =
∑
i

di ≥
∑
x∈X

dx ≥ 2−3/(t−1)n |X| ,

and so s = |X| < 21+3/(t−1)(r + 1).

Moreover, let j be any vertex not adjacent to 1. We claim that j must in fact be isolated.

Suppose to the contrary there were some vertex i 6= 1 with the edge {i, j} ∈ E(G). This

edge is contained in
(
di−1
t−1

)
+
(
dj−1
t−1

)
stars of t edges. If we were to replace {i, j} with the edge

{1, j}, we would create
(

∆
t−1

)
+
(
dj−1
t−1

)
>
(
di−1
t−1

)
+
(
dj−1
t−1

)
stars, contradicting the optimality of

G.

Thus it follows that all the edges of G are supported on the ∆ + 1 vertices in the closed

neighbourhood of 1, and that G has a cover X of size s < 21+3/(t−1)(r + 1) vertices, all of

which have degree at least 2−3/(t−1)n. Note that the vertices outside the cover have degree

at most s, as they can only be adjacent to vertices in X.

To complete the argument, we shall show by shifting some edges that a graph with

isolated vertices cannot be optimal. Without loss of generality, let X = [s] be the cover

mentioned above, and further assume that v has the lowest degree in X. Note that v has

at least 2−3/(t−1)n − (s − 1) ≥ s − 1 neighbours outside X, since s < 21+3/(t−1)(r + 1). Let

G′ be the graph obtained from G by removing s − 1 edges from v to neighbours N ⊂ Xc,

and replacing them with s− 1 edges from a previously isolated vertex w to the other s− 1

vertices in X. Note that these vertices all have degree at least dv.

Comparing degrees in G′ to those in G, we find that the s − 1 vertices in X \ {v} have

degree one larger, the degree of v has decreased by s− 1, the degrees of the s− 1 vertices in

N , which were previously at most s, have decreased by 1, and w now has degree s− 1. The

change in the number of intersecting subgraphs is thus
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f(G′, t)− f(G, t)

=
∑
i

(
d′i
t

)
−
∑
i

(
di
t

)
=

∑
i∈X\{v}

((
di + 1

t

)
−
(
di
t

))
+

((
dv − s+ 1

t

)
−
(
dv
t

))

+
∑
i∈N

((
di − 1

t

)
−
(
di
t

))
+

(
d′w
t

)

=
∑

i∈X\{v}

(
di

t− 1

)
−

s−1∑
j=1

((
dv − j + 1

t

)
−
(
dv − j
t

))
−
∑
i∈N

(
di − 1

t− 1

)
+

(
s− 1

t

)

≥
∑

i∈X\{v}

(
dv
t− 1

)
−

s−1∑
j=1

(
dv − j
t− 1

)
− (s− 1)

(
s− 1

t− 1

)

=
s−1∑
j=1

((
dv
t− 1

)
−
(
dv − j
t− 1

))
− (s− 1)

(
s− 1

t− 1

)

≥
s−1∑
j=1

j

(
dv − j
t− 2

)
− (s− 1)

(
s− 1

t− 1

)
(5.2)

≥
s−1∑
j=1

j

(
dv − s+ 1

t− 2

)
− (s− 1)

(
s− 1

t− 1

)
=

(
s

2

)(
dv − s+ 1

t− 2

)
− (s− 1)

(
s− 1

t− 1

)
≥
(
s

2

)(
s+ 1

t− 2

)
− (s− 1)

(
s− 1

t− 1

)
[since dv ≥ 2−3/(t−1)n ≥ 22+3/(t−1)(r + 1) > 2s]

=

(
s

2

)(
s+ 1

t− 2

)
− (s− 1)2

t− 1

(
s− 2

t− 2

)
≥
(
s

2

)((
s+ 1

t− 2

)
−
(
s− 2

t− 2

))
≥ 0,

since t ≥ 3. Hence, by shifting edges, we can increase the maximum degree of G without

decreasing the objective function. This contradicts the assumption that G was optimal with

the largest maximum degree. 2

Finally, we show how to deduce the general case of Proposition 5.2.1 from this result.

This requires only minor modifications of the above proof, which we highlight below.

Proof of Proposition 5.2.1. Note that f(G, t) counts precisely the number of stars of t edges

in the graph G (except when t = 0, when the empty graph is counted n times, and t = 1,

in which case the single edges are counted twice). When t 6= 3, these stars are the only
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intersecting graphs of t edges, and thus Proposition 5.2.1 follows directly from Proposition

5.2.2.

When t = 3, we must augment the proof of Proposition 5.2.2 to also account for the

triangles in the graph. However, the number of possible triangles is a lower order term that

can be taken care of by slightly altering the argument.

We begin by observing that the inductive argument still holds. The theorem holds for

m ≤ n − 1, as every 3-edge subgraph is intersecting, which is clearly the best possible.

Moreover, suppose G contains a full star, and let G′ denote the subgraph with the full star

removed. Then each edge in G′ induces one triangle with edges from the full star. Thus

we can again write the number of intersecting subgraphs of 3 edges as a constant term,

independent of the structure of G′, plus the corresponding terms from G′, and can then

apply the inductive hypothesis.

We next need a lower bound on the maximum degree ∆. Note that an edge {i, j} can

be involved in at most min{di − 1, dj − 1} triangles, and thus in at most
(
di−1

2

)
+
(
dj−1

2

)
+

min{di − 1, dj − 1} intersecting subgraphs of three edges in total. Hence we have

3int(G, 3) ≤
∑

{i,j}∈E(G)

((
di − 1

2

)
+

(
dj − 1

2

)
+ min{di − 1, dj − 1}

)

≤ 2m

((
∆− 1

2

)
+ ∆− 1

)
= 2m

(
∆

2

)
.

On the other hand, we have int(G, 3) ≥ int(Ln,2(m)) ≥ r
(
n−1

3

)
. From these inequalities, we

can deduce ∆(∆ − 1) ≥ 1
4
(n − 2)(n − 3). Again, assume that 1 is a vertex of maximum

degree.

Now if we have the edge e = {i, j} with di ≥ dj, then e is contained in at most
(
di−1

2

)
+(

dj−1
2

)
+ dj − 1 ≤

(
di−1

2

)
+
(
dj
2

)
≤
(
di−1

2

)
+
(
di
2

)
intersecting families of three edges. Since

replacing e with an edge containing 1 would create at least
(

∆
2

)
new stars of three edges, we

must have
(
di−1

2

)
+
(
di
2

)
>
(

∆
2

)
, which, given our above bound on ∆, showsX = {i : di ≥ 1

2
√

2
n}

is a cover for G. In fact, these shifting arguments also show that X must be a clique. As

before, we can also show that if v is not adjacent to 1, then v must in fact be an isolated

vertex.
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To complete the argument, we show that graphs with isolated vertices cannot be optimal

by shifting s− 1 edges to an isolated vertex, where |X| = s ≥ 2. In the proof of Proposition

5.2.2, we saw that such a shift results in a gain of at least
(
s
2

) ((
s+1
t−2

)
−
(
s−2
t−2

))
= 3
(
s
2

)
stars of

three edges. On the other hand, as V (G) \X is an independent set, we lose at most (s− 1)2

triangles, since every edge removed can only form a triangle with another vertex from X.

However, by adding s− 1 edges from a clique to a new vertex, we create
(
s−1

2

)
new triangles.

Hence we incur a net loss of at most
(
s
2

)
triangles. For s ≥ 3 we have 3

(
s−1

2

)
≥
(
s
2

)
, and so

shifting the edges increases the maximum degree without decreasing int(G, 3), contradicting

our choice of G. If s = 2, then we are shifting one edge from the vertex of second-highest

degree, say 2, to the vertex of maximum degree. By performing the preceding calculations

more carefully, we find that we gain at least d2−2 > 0 intersecting subgraphs of three edges,

again contradicting the optimality of G. 2

This completes the proof of Theorem 5.1.1, showing that the initial segment of the lex-

icographic order is the most probably intersecting graph up to moderate densities. Note

that, as in all previously obtained results in [KKK12] and [RW13], these graphs actually

simultaneously maximise the number of intersecting subgraphs of all sizes, and hence the

most probably intersecting graphs do not depend on p. This phenomenon fails to hold for

denser graphs, but we defer this discussion until Section 5.4.

We conclude with some remarks on the uniqueness of the extremal graphs. To have

equality, we must in particular have equality in (5.2), namely that
(
dv
t−1

)
−
(
dv−j
t−1

)
= j
(
dv−j
t−1

)
for all 1 ≤ j ≤ s − 1. There are only three possible cases: t ≤ 2, t ≥ dv + 2 or s = 2.

In the first case, if t = 0 or t = 1 it is trivially that there is no uniqueness, as any graph

with m edges will be extremal. When t = 2, this reduces to the question of uniqueness in

Theorem 4.1.6. In this case, the extremal graphs are completely characterised by Ábrego et

al [AFN09], where it is shown that they are closely related to Ln,2(m).

If s = 2 and t ≤ dv, it is easy to see that shifting an edge to the vertex of highest

degree increases the number of intersecting subgraphs. For t ≥ dv (and t ≤
(
n−1
k−1

)
), the edges

meeting the cover X only at v are not contained in any intersecting subgraphs of size t,

121



and hence we may remove them to complete a star and increase the number of intersecting

subgraphs. Thus in these cases it follows that the extremal graph must contain r full stars,

and Ln,2(m) is uniquely extremal if the number of additional edges is at least t− r.

5.3 Intersecting hypergraphs

We now seek to extend these results to the hypergraph setting and prove Theorem 5.1.2,

which we recall below.

Theorem 5.1.4. Let k and ` be integers, and suppose n ≥ n0(k, `) and
(
n
k

)
−
(
n−`
k

)
≤ m ≤(

n
k

)
−
(
n−`
k

)
+ n − ` − k + 1. For this range of parameters, Ln,k(m) is the most probably

intersecting k-uniform hypergraph on [n] with m sets.

The general proof strategy will follow that of Section 5.2, in that we shall deduce the

probabilistic result by counting the number of intersecting subfamilies. However, in contrast

to the graph case, there is a rich variety of non-isomorphic intersecting structures we shall

have to account for. We call intersecting families that are not stars non-trivially intersecting.

Despite the wide range of non-trivially intersecting families, these are very small families, as

the Hilton-Milner theorem [HM67] shows that the largest non-trivially intersecting family

has size
(
n−1
k−1

)
−
(
n−k−1
k−1

)
+1 = o

((
n−1
k−1

))
. It remains the case that most intersecting subfamilies

are stars, as we show in the following lemma.

Lemma 5.3.1. For F ∈ F , the number of non-trivially intersecting families of size t

in F containing F is O
(
n−t/4k

((n−1
k−1)
t−1

))
, and the total number of such families in F is

O
(
n−t/4k

((n−1
k−1)
t

))
.

While the bounds required on n can be explicitly calculated, we have chosen to simplify

the presentation through the use of asymptotic notation, where we fix k and ` and let n tend

to infinity. Note, however, that we make no assumption on the relative magnitudes of n and

t; t may be as large as
(
n−1
k−1

)
.

The proof of Lemma 5.3.1 is slightly technical, and so we defer it until the end of this
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section. However, throughout this section we shall require some estimates on binomial

coefficients, which we collect below.

Lemma 5.3.2. Suppose we have integers 0 ≤ a ≤ b ≤ c and 0 < M ≤ S. Then

(i)
(
b
r

)
≤
(
b
c

)r (c
r

)
,

(ii) for r ≥ 1, if
∑

i ni = S and 0 ≤ ni ≤M for all i, then
∑

i

(
ni
r

)
≤ S

M

(
M
r

)
, and

(iii) for r ≥ 2,
[(
b−a
r

)
+
(
c+a
r

)]
−
[(
b
r

)
+
(
c
r

)]
≥
(
1− b−a

c

)
ar

c−r+1

(
c
r

)
.

Proof of Lemma 5.3.2. (i) By definition, we have(
b

r

)
=

1

r!

r−1∏
j=0

(b− j) ≤ 1

r!

r−1∏
j=0

b

c
(c− j) =

(
b

c

)r (
c

r

)
.

(ii) Suppose we had i and j such that 0 < nj ≤ ni < M . Fixing the other variables, we

have(
nj − 1

r

)
+

(
ni + 1

r

)
=

(
nj
r

)
−
(
nj − 1

r − 1

)
+

(
ni
r

)
+

(
ni

r − 1

)
=

(
nj
r

)
+

(
ni
r

)
+

(
ni

r − 1

)
−
(
nj − 1

r − 1

)
≥
(
nj
r

)
+

(
ni
r

)
.

This shows we may assume there is at most one i for which 0 < ni < M . Since∑
i ni = S, this implies we have m =

⌊
S
M

⌋
variables nj = M , with one variable equal

to S −mM . Hence, using (i),∑
i

(
ni
r

)
≤ m

(
M

r

)
+

(
S −mM

r

)
≤ m

(
M

r

)
+

(
S −mM

M

)r (
M

r

)
≤
(
m+

S −mM
M

)(
M

r

)
=

S

M

(
M

r

)
.

(iii) We rearrange and telescope the sums[(
b− a
r

)
+

(
c+ a

r

)]
−
[(

b

r

)
+

(
c

r

)]
=

[(
c+ a

r

)
−
(
c

r

)]
−
[(

b

r

)
−
(
b− a
r

)]
=

a∑
j=1

([(
c+ j

r

)
−
(
c+ j − 1

r

)]
−
[(
b− a+ j

r

)
−
(
b− a+ j − 1

r

)])

=
a∑
j=1

[(
c+ j − 1

r − 1

)
−
(
b− a+ j − 1

r − 1

)]
.
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Using (i), we can estimate these differences(
c+ j − 1

r − 1

)
−
(
b− a+ j − 1

r − 1

)
≥
(
c+ j − 1

r − 1

)
−
(
b− a+ j − 1

c+ j − 1

)r−1(
c+ j − 1

r − 1

)
≥
(

1− b− a+ j − 1

c+ j − 1

)(
c+ j − 1

r − 1

)
≥
(

1− b− a
c

)(
c

r − 1

)
.

Thus we have[(
b− a
r

)
+

(
c+ a

r

)]
−
[(

b

r

)
+

(
c

r

)]
≥
(

1− b− a
c

) a∑
j=1

(
c

r − 1

)
=

(
1− b− a

c

)
ar

c− r + 1

(
c

r

)
.

2

Armed with these lemmas, we may now proceed to deduce our counting result. In

particular, Lemma 5.3.1 implies that when counting intersecting subfamilies of size t, the

non-trivially intersecting families are a lower order term, and so we may focus on the number

of stars with t edges. Applying similar shifting arguments to those in Section 5.2, we shall

deduce a rough structural characterisation of optimal families. Recall that we say a star with

centre i is full if F contains all
(
n−1
k−1

)
sets containing i, and almost-full if it has (1−o(1))

(
n−1
k−1

)
such sets.

Proposition 5.3.3. Let k, ` and t ≥ 2 be integers, and suppose n ≥ n0(k, `) and
(
n
k

)
−
(
n−`
k

)
≤

m ≤
(
n
k

)
−
(
n−`−1
k

)
. If F is a k-uniform set family on [n] of size m maximising the number

of intersecting subfamilies of size t, then either

(i) F contains ` full stars, or

(ii) F consists of `+ 1 almost-full stars.

Before we begin to prove Proposition 5.3.3, we first analyse the initial segment of the

lexicographic order to obtain a lower bound on the number of intersecting subfamilies in an

optimal family. Note that, for m in the above range, Ln,k(m) consists of all sets intersecting

[`], with m−
(
n
k

)
+
(
n−`
k

)
additional sets all containing `+ 1. Hence Ln,k(m) falls under case

(i) above.
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When counting the intersecting subfamilies in Ln,k(m), we consider only the stars with

centre i for some 1 ≤ i ≤ `. There are ` choices for the centre of the star, and then for each

star we must choose t of the
(
n−1
k−1

)
possible sets. A star is overcounted only if all its sets

contain at least two elements from [`], giving at most
(
n−2
k−2

)
sets for each choice of elements

from [`]. By the Bonferroni Inequalities and Lemma 5.3.2, we have

int(Ln,k(m), t) ≥ `

((n−1
k−1

)
t

)
−
(
`

2

)((n−2
k−2

)
t

)
≥

[
`−

(
`

2

)(
k − 1

n− 1

)t]((n−1
k−1

)
t

)
= (`− o(1))

((n−1
k−1

)
t

)
.

This gives us a lower bound on int(F , t) for any optimal family F . We now proceed with

the proof of Proposition 5.3.3.

Proof of Proposition 5.3.3. Suppose F is optimal for the given parameters. Note that we

may assume ` ≥ 1, as (i) is trivially satisfied for ` = 0.

Let di denote the degree of vertex i. Our goal is to show that either di =
(
n−1
k−1

)
for `

vertices i, or di = (1− o(1))
(
n−1
k−1

)
for `+1 vertices that cover F . Suppose F has p full stars,

which we may assume have centres 1 ≤ i ≤ p. If p = ` we are done, so assume p ≤ `− 1.

Note that for i > p, none of the vertices have full degree, and so we may replace any set

in F with a set containing i. In order to fully utilise this shifting, we will first show there is

a vertex of relatively large degree. From this, we shall deduce the existence of a small set of

vertices covering all the edges. Finally, we shall shift sets in this small cover to obtain the

desired result.

To begin, note that by optimality we must have

int(F , t) ≥ int(Ln,k(m), t) ≥ (`− o(1))

((n−1
k−1

)
t

)
.

By Lemma 5.3.1, it follows that almost all of these intersecting subfamilies should be

stars. Let di denote the degree of vertex i. Then, counting over the centres of the stars, we

have

int(F , t) ≤
∑
i

(
di
t

)
+ o

(((n−1
k−1

)
t

))
= (p+ o(1))

((n−1
k−1

)
t

)
+
∑
i>p

(
di
t

)
,
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and so ∑
i>p

(
di
t

)
≥ (`− p− o(1))

((n−1
k−1

)
t

)
.

Note that by double-counting the edges, we have
∑

i>p di ≤
∑

i di = km ≤ k(`+ 1)
(
n−1
k−1

)
.

Suppose we had di ≤M = c
(
n−1
k−1

)
for all i > p. By Lemma 5.3.2, we have

∑
i>p

(
di
t

)
≤
k(`+ 1)

(
n−1
k−1

)
M

(
M

t

)
≤ k(`+ 1)ct−1

((n−1
k−1

)
t

)
.

Comparing this to the lower bound, we must have k(` + 1)ct−1 ≥ ` − p − o(1), which

implies c = Ω(1). Hence we have some vertex, which we may assume to be i = p + 1, with

dp+1 ≥ c
(
n−1
k−1

)
.

We shall now show that there is a small cover of vertices of large degree. Let X ={
i : di ≥ c

k

(
n−1
k−1

)}
, and suppose for contradiction we have F ∈ F with F ∩X = ∅.

We have {G ∈ F : G ∩ F 6= ∅} = ∪i∈F{G ∈ F : i ∈ G}, and so, since F ∩X = ∅, there

are at most
∑

i∈F di < c
(
n−1
k−1

)
sets in F intersecting F . Since any intersecting subfamily

containing F must consist only of sets intersecting F , there are fewer than
(c(n−1

k−1)
t−1

)
such

subfamilies.

On the other hand, if we replace F with a set containing p + 1, the new set would be

in
(
dp+1

t−1

)
≥
(c(n−1

k−1)
t−1

)
stars in F . This shift would thus increase the number of intersecting

subfamilies in F , contradicting the optimality of F . Hence we must have F ∩X 6= ∅ for all

F ∈ F ; that is, X covers F .

We now show this cover is small. Indeed, we have

k(`+ 1)

(
n− 1

k − 1

)
≥ km =

∑
i

di ≥
∑
i∈X

di ≥
c

k

(
n− 1

k − 1

)
|X| ,

and so |X| ≤ k2(`+1)
c

= O(1), as desired.

Now take a minimal subcover in X, which we may assume to be [r]. Thus r ≤ |X| = O(1).

Since m ≥
(
n
k

)
−
(
n−`
k

)
, we must have r ≥ `+1 (we cannot have r = `, as we have assumed F

only has p < ` full stars). Note that every vertex in [r] has degree at least c
k

(
n−1
k−1

)
. Moreover,

for any vertex i /∈ [r], all sets containing i must also meet [r], and so we have di ≤ r
(
n−2
k−2

)
.
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We shall employ shifting arguments to show that all vertices in [r] that are not of full

degree should have approximately equal degrees. Indeed, let i and j be two such vertices.

By the minimality of the cover, there must be some set F with F ∩ [r] = i. From the

preceding remarks, it follows that the number of sets intersecting F is at most
∑

v∈F dv ≤

di + r(k − 1)
(
n−2
k−2

)
. Hence F is in at most

(di+r(k−1)(n−2
k−2)

t−1

)
intersecting subfamilies.

On the other hand, if we were to add a new set containing j, it would be in at least
(
dj
t−1

)
stars of sets containing j. By optimality, it cannot be desirable to shift F to a set containing

j, and so we must have
(di+r(k−1)(n−2

k−2)
t−1

)
≥
(
dj
t−1

)
, and hence dj ≤ di + r(k − 1)

(
n−2
k−2

)
=

di + o
((
n−1
k−1

))
. By symmetry, we have dj = di + o

((
n−1
k−1

))
for all such vertices i, j.

Let us now review what we have revealed of the structure of F . There are p vertices [p]

of degree
(
n−1
k−1

)
, and a further r − p vertices [r] \ [p] of almost-equal degree that cover the

remaining edges. Let α ∈ [0, 1] be such that m =
(
n
k

)
−
(
n−`
k

)
+α
(
n−1
k−1

)
= (`+ α− o(1))

(
n−1
k−1

)
.

Since the first p vertices cover (p− o(1))
(
n−1
k−1

)
edges, the degrees of the remaining r − p

vertices must be `−p+α+o(1)
r−p

(
n−1
k−1

)
. Let us assume they are listed in order of decreasing degrees,

so dp+1 ≥ dr.

Suppose for some fixed 0 < ε < c
k

we had `−p+α+o(1)
r−p < 1 − ε. Since dr ≥ c

k

(
n−1
k−1

)
, and

there are o
((
n−1
k−1

))
sets containing r that also contain another element of [r], we can find a

set of ε
(
n−1
k−1

)
edges that only meet [r] at r. We shall shift these edges to the vertex p+ 1.

By Lemma 5.3.1, the number of non-trivially intersecting subfamilies created or destroyed

is a lower-order term, while the degrees of vertices outside [r] are so small that by Lemma

5.3.2 we may ignore the number of stars with centres outside [r]. Hence the only intersecting

subfamilies we need to consider are the stars with centres p+ 1 or r.

Before the shift, we had
(
dp+1

t

)
+
(
dr
t

)
such stars, and after the shift, there are

(dp+1+ε(n−1
k−1)

t

)
+(dr−ε(n−1

k−1)
t

)
stars. Applying Lemma 5.3.2, we gain at least(

1−
dr − ε

(
n−1
k−1

)
dp+1

)
εt
(
n−1
k−1

)
dp+1 − t+ 1

(
dp+1

t

)
> ε2

(
dp+1

t

)
stars. This is strictly positive unless t > dp+1 ≥ c

k

(
n−1
k−1

)
. In this case, it follows by the

Hilton-Milner theorem [HM67] that the only intersecting families of size t are stars. Since
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no set meeting the cover X only in p + 1 is contained in a star of size t (as t > dp+1 ≥ di

for any vertex i in such a set), we may shift sets containing p + 1 to other vertices in the

cover. We can repeat this process until we obtain a full star, which will strictly increase the

number of t-stars, contradicting the optimality of F .

This contradicts the optimality of F . Hence we must have `−p+α+o(1)
r−p = 1 − o(1). Since

r ≥ ` + 1, this is only possible when r = ` + 1 (and α = 1− o(1)), and so it follows that F

consists of `+ 1 almost-full stars, and thus we are in case (ii).

This completes the proof of Proposition 5.3.3. 2

This result provides us with the approximate structure of the extremal families. In

particular, when α is not 1 − o(1), we know that any extremal family contains ` full stars,

and hence is close to Ln,k(m) in structure. In order to show that Ln,k(m) is in fact optimal,

it remains to determine the structure of the sets outside the ` full stars. In some special

cases, we are able to do this exactly, as given by the following proposition.

Proposition 5.3.4. Let k, ` and t be integers, and suppose n ≥ n0(k, `) and
(
n
k

)
−
(
n−`
k

)
≤

m ≤
(
n
k

)
−
(
n−`
k

)
+ n − ` − k + 1. If F is a k-uniform set family on [n] with m edges, then

int(F , t) ≤ int(Ln,k(m), t).

Proof of Proposition 5.3.4. If t = 0 or t = 1, then there is nothing to prove, as int(F , 0) = 1

and int(F , 1) = m for all such families F . Hence we may assume t ≥ 2, and thus apply

Proposition 5.3.3. It follows that F must contain ` full stars. Let us write F = F0 ∪ F1,

where F0 is the union of the ` full stars, and F1 consists of the remaining sets. Let m1 =

|F1| = m−
(
n
k

)
+
(
n−`
k

)
denote the number of additional sets F contains. If m1 = 0 then we

are done, as all edges are accounted for. If m1 = 1, then by symmetry it does not matter

which set we add outside the ` stars, and so it again follows that Ln,k(m) is optimal. Hence

we may assume m1 ≥ 2.

We will now show that int(F , t) is maximised when |∩F∈F1F | = k − 1; that is, when the

sets in F1 have the maximum possible intersection. In our case, since m1 ≤ n − ` − k + 1,

the additional sets in Ln,k(m) all share the elements {`+ 1, `+ 2, . . . , `+ k − 1}, and hence
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it will follow that Ln,k(m) is optimal.

We count the intersecting subfamilies of F based on their intersection with F1. Given

some H ⊂ F1 with h sets, let ext(H) denote the number of extensions of H to an intersecting

subfamily of F of size t. In other words, it is the number of intersecting subfamilies in F0

of size t− h that intersect all sets in H. We then have

int(F , t) =
t∑

h=0

∑
H∈(F1h )

ext(H).

When h = 0, we simply obtain the number of intersecting subfamilies of size t in F0,

which is independent of F1. If h = 1, then by symmetry it does not matter which set we

choose for H. Hence we may assume h ≥ 2. Suppose we have |∩H∈HH| = a. The number

of sets F ∈ F0 that intersect H without containing one of the a common elements is very

small. Indeed, fix any set H ∈ H. Since F ∩H 6= ∅, there are k options for this intersection

x. As we are not selecting one of the a common elements of H, there must be some other

set H ′ ∈ H not containing x. Hence we must again select an element of H ′, giving a further

k options at the most. Finally, since F belongs to F0, we must choose one of the ` centres of

the stars. There are then a further k − 3 elements to choose for F . Thus there are at most

`k2
(
n−3
k−3

)
< `k3

n

(
n−2
k−2

)
such sets F . This will be a lower order term, which we may disregard.

In particular, this implies that we should have a ≥ 1 for H to have a significant number of

extensions.

We shall now estimate ext(H). Calculations similar to those in the proof of Lemma 5.3.1

show that the number of extensions that are not themselves stars is a lower-order term,

and hence we need only consider trivially intersecting extensions. There are three cases to

consider.

The centre of the star could be one of the centres of the ` full stars in F0. There are thus

` choices for the centre, and then the sets chosen must intersect H. In light of our previous

remarks, the number of such sets is dominated by those containing one of the a common

elements, giving (a + o(1))
(
n−2
k−2

)
options. We double-count very few extensions, as then the

sets from F0 must all contain two of the ` centres of the stars, giving at most
(
`
2

)
a
(
n−3
k−3

)
such
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sets. Thus the number of extensions of this type is (`− o(1))
((a+o(1))(n−2

k−2)
t−h

)
.

The second type of trivially intersecting extension is that where the centre is one of the

a common elements of H. These sets must then contain any one of the ` centres of the stars

in F0, and thus the number of extensions is (a− o(1))
((`−o(1))(n−2

k−2)
t−h

)
.

The final type is that where the centre of the star x is neither one of the ` centres from

F0 nor one of the a common elements from F1. These sets must then contain x, one of the

` centres, and some elements from H, and thus there are very few such sets.

We thus conclude that ext(H) = (`−o(1))
((a+o(1))(n−2

k−2)
t−h

)
+(a−o(1))

((`−o(1))(n−2
k−2)

t−h

)
. This is

increasing in a, and so to maximise ext(H) we must have a = k−1. However, all subfamilies

H with a = k−1 are isomorphic, as they consist of h distinct vertices attached to a common

core of k − 1 vertices. Hence in this case ext(H) does not depend on which sets we choose,

and thus ext(H) is maximised if and only if a = k − 1.

This completes the proof of Proposition 5.3.4.

2

Note that for a family F to be extremal, it should maximise ext(H) for all H ⊂ F1.

In particular, provided t is not too large, this implies that F is extremal if and only if it

contains ` full stars and, for 2 ≤ h ≤ t− 1, any collection of h sets in F outside the full stars

have k − 1 vertices in common. When t is large, we will have ext(H) = 0 for all H, as it

will be impossible to find t sets that intersect H and meet the centres of the sets [`]. Hence

in this case F1 may be chosen arbitrarily, and F is extremal if and only if it contains ` full

stars.

Unfortunately, in contrast to the graph case, this gives a rather narrow range of family

sizes for which we are able to determine the extremal families exactly. However, it is necessary

to have a somewhat more restricted range, as we shall show in Section 5.4 that even for(
n−1
k−1

)
< m < 2

(
n−1
k−1

)
, Ln,k(m) is not always optimal.

Finally, note that the exact counting result in Proposition 5.3.4 implies that for these

ranges of family sizes, Ln,k(m) is a most probably intersecting family, thus giving Theorem
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5.1.2. The proof is exactly the same as the derivation of Theorem 5.1.1 from Proposition

5.2.1, and so we do not repeat it here.

To complete this section, we now furnish a proof of Lemma 5.3.1, bounding the number

of non-trivially intersecting families.

Proof of Lemma 5.3.1. We begin by bounding the total number of non-trivially intersecting

families of size t in
(

[n]
k

)
. Given such a family F , we write F = F0 ∪ F1, where F0 is the

largest star in F . Note that we must have F1 6= ∅, as F is non-trivially intersecting. Let

S = ∩F∈F0F be the centre of F0, and let M⊂ {F \ S : F ∈ F0} be the largest matching in

the sets of the star after the centre is removed. We denote the sizes of these sets as follows:

|F0| = t0, |S| = s and |M| = b.

Let us first provide some bounds on these parameters. Clearly, s ≤ k, as S is a subset

of each set in the star F0. Moreover, we claim b ≤ k as well. Indeed, every set F in F1

must be disjoint from S, as otherwise F1 ∪ {F} would form a larger star. However, it must

intersect the sets {S ∪M : M ∈M} ⊂ F0, and thus it must contain one element from each

of the b disjoint sets in M. Since |F | ≤ k, we must have b ≤ k. An easy lower bound on

t0 is t0 ≥ 2, since any pair of sets in F forms a star. We in fact claim t0 ≥ t
k
. Taking any

set F ∈ F , note that all the other sets in F must intersect F . By the pigeonhole principle,

there is some element of F contained in at least a 1
k
-proportion of the other sets, giving a

star of size at least t
k
, as desired.

We now construct the intersecting family F . There are
(
n
s

)
choices for the centre S. We

then have to select b sets of size k− s for the matchingM. There are
(
n−s
k−s

)
options for each

set, giving
((n−sk−s)

b

)
possible matchings M. By the maximality of M, each of the remaining

sets in F0 must meet the (k− s)b elements covered by the matchingM. Hence there are at

most (k−s)b
(
n−s−1
k−s−1

)
choices for each set, providing

((k−s)b(n−s−1
k−s−1)

t0−b

)
ways to completing F0. As

mentioned earlier, each set in F1 must avoid S and contain at least one element from each

set inM. This leaves at most (k−s)b
(
n−s−b
k−b

)
sets, from which we have to choose t−t0. Thus

the number of non-trivially intersecting families with these parameters is bounded above by(
n

s

)((n−s
k−s

)
b

)(
(k − s)b

(
n−s−1
k−s−1

)
t0 − b

)(
(k − s)b

(
n−s−b
k−b

)
t− t0

)
.
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Applying the estimates in part (i) of Lemma 5.3.2, this can be further bounded by

ns

[(
k

n

)b(s−1)((n−1
k−1

)
b

)][(
ks+1b

ns

)t0−b((n−1
k−1

)
t0 − b

)][(
k2b−1

nb−1

)t−t0 ((n−1
k−1

)
t− t0

)]

=
bt0−bk2b(t−t0−1)+(s+2)t0−t

n(b−1)(t−t0−1)+s(t0−1)−1

((n−1
k−1

)
b

)((n−1
k−1

)
t0 − b

)((n−1
k−1

)
t− t0

)
We now simplify this expression. Since b, s ≤ k and t0 ≤ t, we can easily bound

the numerator above by k4kt. For the denominator, note that t0 ≤ t − 1, as F1 6= ∅,

s ≥ 1 and t0 − 1 ≥ t
2k

, as 1 ≤ t0
2

and t0 ≥ t
k
, giving a lower bound of nt/2k−1. Thus

the number of non-trivially intersecting families with parameters s, b and t0 is at most

n
(

k4k

n1/2k

)t ((n−1
k−1)
b

)((n−1
k−1)
t0−b

)((n−1
k−1)
t−t0

)
.

For the total number of non-trivially intersecting families, we now sum over all s, b and

t0, obtaining a bound of

k∑
s=1

k∑
b=1

t−1∑
t0=t/k

n

(
k4k

n1/2k

)t((n−1
k−1

)
b

)((n−1
k−1

)
t0 − b

)((n−1
k−1

)
t− t0

)

≤ kn

(
k4k

n1/2k

)t ∑
0≤b≤t0≤t

((n−1
k−1

)
b

)((n−1
k−1

)
t0 − b

)((n−1
k−1

)
t− t0

)

≤ kn

(
8k4k

n1/2k

)t((n−1
k−1

)
t

)
.

To obtain the last inequality, we interpret the sum of the products of the three binomial

coefficients as selecting, with repetition, from a collection of
(
n−1
k−1

)
objects three sets A,B

and C whose sizes sum to t. We could instead first select t elements from this collection,

and then for each element decide which sets among A,B and C the elements should belong

to. As the selection was with repetition, an element could belong to several of the sets, and

hence there are 23 choices for each element.

By symmetry, every set in
(

[n]
k

)
is in the same number of non-trivially intersecting families

of size t. Hence, averaging over all sets, we find that each set F ∈ F can be in at most

tkn

(
8k4k

n1/2k

)t((n−1
k−1

)
t

)
/

(
n

k

)
= k2

(
8k4k

n1/2k

)t((n−1
k−1

)
− 1

t− 1

)
< n−t/4k

((n−1
k−1

)
t− 1

)
for sufficiently large n.

132



Summing over the m sets F ∈ F , the number of non-trivially intersecting families of size

t in F is no larger than

mn−t/4k
((n−1

k−1

)
− 1

t− 1

)
/t ≤ (`+ 1)n−t/4k

(
n− 1

k − 1

)((n−1
k−1

)
− 1

t− 1

)
/t = (`+ 1)n−t/4k

((n−1
k−1

)
t

)
,

thus giving the desired bounds.

2

5.4 Further remarks

In this chapter, we have extended the shifting arguments of [DGS14a] to determine which

uniform families of sets are most probably intersecting. To derive the probabilistic result,

we studied the counting version of the problem, finding families with the maximum number

of intersecting subfamilies of any given size.

In particular, for graphs we showed that, provided the graphs are not too dense, the initial

segment of the lexicographic order Ln,2(m) maximises the number of intersecting subgraphs

with t edges. This leaves open the question for denser graphs, on which we provide some

remarks.

In the case t ≥ n
2
, it is easy to show by shifting that Ln,2(m) is optimal for any m.

Indeed, suppose we have a graph with vertices x, y, z of degrees dx ≤ dy ≤ dz < n − 1, and

suppose {x, y} is an edge of the graph. The number of stars this edge is contained in is(
dx−1
t−1

)
+
(
dy−1
t−1

)
. On the other hand, if we were to add an edge containing z, it would be

contained in at least
(
dz
t−1

)
stars. Since t ≥ n

2
, we have t− 1 ≥ n−2

2
> dx−1

2
, and so(

dx − 1

t− 1

)
+

(
dy − 1

t− 1

)
≤
(
dx − 1

t− 2

)
+

(
dy − 1

t− 1

)
≤
(
dy − 1

t− 2

)
+

(
dy − 1

t− 1

)
=

(
dy
t− 1

)
≤
(

dz
t− 1

)
.

Hence we may always shift edges to the vertex of highest degree until that star is filled.

Repeating the process for the remaining vertices, we obtain a graph isomorphic to Ln,2(m),

and hence Ln,2(m) maximises int(G, t) over all graphs G with m edges.

By the theorem of Ahlswede-Katona [AK78], we know for m ≥ 1
2

(
n
2

)
+ n

2
, the number

of intersecting pairs of edges is maximised not by Ln,2(m), but by its complement, Cn,2(m).
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Hence for such m we cannot hope to have one graph G that simultaneously maximises the

number of intersecting subgraphs of all given orders. Referring to Equation (5.1), it follows

that in this regime the most probably intersecting graph depends on the probability p. For

very small values of p, Cn,2(m) is optimal, while for very large values of p, Ln,2(m) is better.

However, the convexity of the binomial coefficients (see, for instance, Lemma 5.3.2),

suggests that if Ln,2(m) maximises int(G, t), then it should maximise int(G, t′) for all t′ ≥ t.

In particular, we believe that the result in Theorem 5.1.1 should extend to m ≤ 1
2

(
n
2

)
− n

2
.

In the case of hypergraphs, the situation is even more intricate. We showed that when(
n
k

)
−
(
n−`
k

)
≤ m ≤

(
n
k

)
−
(
n−`
k

)
+ n − ` − k + 1, Ln,k(m) maximises int(F , t). Thus we are

able to determine the extremal families for the counting problem for a number of isolated

ranges of family sizes. One might hope that, as in the graph case, Ln,k(m) remains optimal

between these ranges as well. However, we show now that this is not the case.

Suppose, for simplicity, that we are counting the number of intersecting subfamilies of

size three in 3-uniform hypergraphs, whose number of edges is between one and two full stars.

Then m =
(
n−1

2

)
+m′, where 0 ≤ m′ ≤

(
n−2

2

)
. Provided we do not have two almost-full stars,

Proposition 5.3.3 shows that any extremal family is of the form F = F0 ∪F1, where F0 is a

full star, and F1 consists of the remaining m′ sets.

There are four types of intersecting subfamilies of three sets: those with 0, 1, 2 and 3

sets from F1 respectively. To maximise the number of subfamilies with 3 sets from F1, it

suffices to take F1 to be intersecting. The number of subfamilies with 0 and 1 sets from F1

is independent of the structure of F1. Finally, to maximise the number of subfamilies with

two sets from F1, it follows from the calculations in Proposition 5.3.4 that we should seek

to maximise the number of pairs of sets in F1 that intersect in two elements.

Note that in Ln,3(m), the sets in F1 all share a common element. If we remove this

common element, F1 will be the lexicographic graph with m′ edges. Since we have removed a

common element from each set, we are trying to maximise the number of pairs of intersecting

edges. By the result in [AK78], if m′ > 1
2

(
n−2

2

)
+ n−2

2
, this maximum is attained by the

colexicographic graph instead, and hence it follows that Ln,3(m) does not maximise int(F , t).
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This phenomenon holds in general, and shows that determining the exact optimal k-

uniform families for all
(
n
k

)
−
(
n−`+1
k

)
≤ m ≤

(
n
k

)
−
(
n−`
k

)
may require a complete solution to

the counting problem for the number of t-intersecting subfamilies of a (k − 1)-uniform set

family. Indeed, it further suggests that even in this initial range, there may not be one set

family that simultaneously maximises the number of intersecting subfamilies of any given

size, and thus the optimal families may depend on the probability p.

Finally, as with the results in [KKK12], [Rus12] and [RW13], the extremal families we

obtain here are simultaneously optimal for the counting problems as well, and thus we use

Equation (5.1) to resolve the probabilistic problem. It would be very interesting to develop

techniques to attack the probabilistic problem directly, as one might then find a complete

solution even in the regime where the optimal family depends on the underlying probability

p.
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