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ABSTRACT OF THE THESIS 

 

The Realism of Precipitation Extremes in High-Resolution Gridded Datasets: A Case Study over 

California 

 

by 

 

Matthew Brian Grieco 

Master of Science in Atmospheric and Oceanic Sciences 

University of California, Los Angeles, 2017 

Professor Alexander Hall, Chair 

 

There is a growing need for high-resolution, spatially complete meteorological data.  

These data are utilized within weather, climate, ecological, and environmental research.  With so 

many different gridded datasets available, it is unclear which is best for a given application. 

There are few comprehensive studies that have examined the strengths and weaknesses of 

gridded datasets, and they have mainly identified flaws or differences without understanding 

how these differences arise from the methodologies or suggesting ways to improve.  

Precipitation extremes are especially difficult to capture in gridded data.  Here we assess 

precipitation extremes of five high-resolution gridded datasets over California to by comparing 

with daily station data and interpret the results in the context of each dataset’s methodology. 

Multiple statistics of extreme precipitation were considered, reflecting intensity, frequency, and 

duration.  Large differences are found both between the gridded datasets and relative to the 
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station data.  Maximum single day precipitation is underestimated in nearly all datasets, and 

precipitation frequency is severely overestimated in many cases.  Datasets differ most notably in 

magnitude and precipitation occurrence in mountainous and coastal regions.  The errors of these 

gridded datasets can vary significantly when compared to station data; one dataset within this 

study gives a 54% error for consecutive precipitation frequency.  The results of this assessment 

are likely to be useful for users of gridded datasets looking to select a dataset appropriate for 

their research. They could also aid gridded dataset creators in improving existing products or 

building new ones. 
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1. Introduction 

1.1 Gridded Datasets Definition and Background 

Accurate historical meteorological data are key to many hydrologic, weather system, and 

climate models.  While quality-controlled weather stations are generally understood as our best 

primary source precipitation data, they are point measurements, and spatially complete data is 

necessary for many applications (Behnke et al. 2016a; Abatzoglou 2013).  Many gridded datasets 

–defined here as spatially complete data on regular grid– exist but few studies have attempted to 

evaluate their systematic errors (Behnke et al. 2016a).  Gridded datasets vary in their gridding 

algorithms, parent or training station data, temporal adjustments, and resolution.  Having high 

resolution (<12 km) is useful for better capturing the realistic distribution of parameters that vary 

with topography; such as precipitation.  Gridded datasets have been utilized within fields of 

hydrology and agriculture (Thornton et al. 1997, Mote et al. 2005, Abatzoglou 2013), as well as 

to evaluate regional climate models (Caldwell et al. 2009, Walton et al. 2015) and even to train 

statistical models (Pierce et al. 2014).  It is widely acknowledged that gridded datasets have 

flaws and their meteorological products are intrinsically uncertain due to their approximations 

and methodological choices (Daly et al. 2008, Newman et al. 2015, Behnke et al. 2016a, Walton 

et al. 2018).  Some factors which lead to this uncertainty are interpolation methods, sparse or 

questionable data, and unrealistic reliance on physical properties such as topography (Newman et 

al. 2015).  Walton et al. (2018) performed a comprehensive comparison of temperature in 

gridded datasets, but differences in precipitation gridded datasets may be even more severe.  

Behnke et al. (2016a) supports this assumption as their findings show differences in precipitation 

extremes to be especially large. 
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1.2 Known Issues from the Literature 

Although there have been multiple studies revealing that the collection of gridded 

datasets are unique amongst each other and have important differences compared to the most 

trusted station data (Ensor and Robeson 2008, Mannshardt-Shamseldin et al. 2010, Mizukami 

and Smith 2012, Gervais et al. 2014, Prein and Gobiet 2016, Behnke et al. 2016a, Henn et al. 

2018) much reliance and trust is put into these gridded datasets.  Most users are interested 

temperature and precipitation variables, especially for areas where station density is low 

(Bajamgnigni et al. 2016).  Even for places with high station density, well-known errors exist.  

One such error may be from the raw data itself, which can have systematic errors.  For 

precipitation gauges, these errors include precipitation undercatch due to the turbulent wind field 

created around the gauge’s catch opening, precipitation underestimation from water’s adhesive 

properties to the gauge sides, and evaporation of the water before the exact measurement is taken 

(Adam and Lettenmaier 2003; Legates 1987; Sevruk 1982).  The underestimation from the 

gauges at many stations is not unique to liquid precipitation.  Pan et al. (2003) found that 

snowfall is also underestimated because of the same issues described above.   A few of studies 

have supported these findings, stating that within mountainous areas of Europe, station gauges 

can generally be corrected 3 to 20% for liquid precipitation, and between 40 and 80% (depending 

on gauge shielding) for snow, because of these well-known physical issues (Førland and 

Institutt, 1996; Goodison et al., 1997). 

As stated above, while it is understood that gridded datasets house many imperfections, 

precipitation errors from these gridded datasets, to the best of our knowledge, have not been 

analyzed with as much scrutiny as their gauge-based counterparts.  Nonetheless, some errors are 

prevalent within the literature.  Through an analysis of gridded precipitation datasets within the 
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central U.S., Ensor and Robeson (2008) revealed a significant increase in days with low 

precipitation and conversely, a large reduction of frequency of days with extreme precipitation, 

when comparing against station data.  They also noted, that even with this variation amongst 

precipitation days, the time series between the station data and grid points are well correlated.  

Eum et al. (2014) also found various quantitative differences among precipitation datasets from 

their study domain in Canada.  They found quantitative inconsistencies (minor and major) 

amongst gridded datasets, particularly in within mountainous regions, and concluded that these 

inconsistencies lead to an intensified differencing among output for hydrologic modeling.  Tozer 

et al. (2012) also concluded that clear differences in hydrologic run-off modeling exist amongst 

gridded precipitation datasets, particularly in very dry or very wet areas.  These inconsistencies 

lead to vastly different runoff values and feedbacks in hydrologic models.  In general, Behnke et 

al. (2016a) highlighted a rather consistent underestimation of precipitation extremes, with some 

areas exhibiting biases of more than 50% for high precipitation events in all the gridded datasets 

within their study.  Others, like Hofstra et al. (2010), have hypothesized this to be a common 

error due to the interpolation methods utilized to create these gridded datasets.  Hofstra et al. 

(2010) noted that interpolation methods generally smooth spatial variability as a correction 

factor, leading to non-realistic results, and in the case of precipitation, underestimated extremes.  

Modeling exercises have shown that the differences in precipitation extrema between station and 

gridded data is extremely large; some stations give return values for these extremes two or three 

times that of the gridded data (Mannshardt-Shamseldin et al. 2010).  As one would expect, 

estimating precipitation in complex topography is challenging (Gutmann et al. 2012, Henn et al. 

2018).  Henn et al. (2018) found that within the Western U.S., the greatest quantitative 

differences among datasets exist in high elevation regions, specifically coastal mountain ranges, 



 

 4 

like the Sierra Nevada Mountains.  Their analysis found precipitation differences of 200 

mm/year or greater, or 5-60%, within the complex terrain of this area, as well as extremely 

variable multi-year trends with the gridded datasets (Henn et al. 2018).  

Interpolation methods are a highly important factor in determining the differences 

between gridded datasets and station data.  There are many different methods to generating a 

spatially complete precipitation field from point measurements.  Interpolation methods may rely 

on: station to grid point distance, station density, or topographic features like elevation, slope, 

and ground type.  Station distance is typically a key factor in the interpolation methods.  Methods 

like simple inverse distance weighting (Cressman 1959; Shepard 1984), schemes that see 

optimize mean-square errors (Gandin 1965), kriging methods (identifying spatial data as a 

function of distance and direction) (Journel and Huijbregts 1978), and even blending techniques 

together (Johns et al. 2003) all heavily rely on station to grid point distance.  All methods 

employed to create gridded datasets (including the ones named above) do come with intrinsic 

errors for any variable chosen.  Thus, comparison amongst datasets with different interpolation 

methods can help to solidify known flaws and reveal others.  In terms of precipitation, station 

density is also an extremely important factor for the interpolation methods.  As station density 

decreases, the interpolation methods must use stations farther and farther away from current grid 

point, possibly resulting in a grid point’s precipitation calculated from stations with very 

dissimilar precipitation distributions (Gervais et al. 2014).  A study by Daly (2006) suggested 

that objectively, inland grid points (>100 km from coast) are much easier to represent as opposed 

to grid points influenced by coastal and topographical features.  Daly also suggests that grid 

points with more coastal or topographical influences require higher station density to achieve 

equal accuracy. 
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1.3 Objectives of Study 

The above studies show that some assessment of gridded datasets have been made.  

However, these studies have been (1) too spatially vast, generalizing flaws to a whole country 

with immensely different meteorological and/or topographic influences, (2) have only a small 

number of datasets with similar interpolation methods, or (3) do not necessarily assess the 

reasoning behind the flaws that arise from careful analysis (i.e., because of algorithms, 

topography, fit to station data, etc.).  Also, for gridded dataset users, choosing a single dataset 

from the many that exist without knowledge of differences and flaws they possess can be 

overwhelming.  Therefore, the one goal of this paper is to comprehensively evaluate the 

suitability of available gridded datasets for studying extreme precipitation.  The author hopes this 

will aid gridded dataset users in the selection process, but also spur gridded dataset creators to 

improve existing products and/or build new ones.  This paper is structured as follows.  In Section 

2, all gridded datasets and the station data initially analyzed in this study are explained in detail.  

This section highlights each gridded dataset’s important characteristics, such as interpolation 

methods, resolution, parent station data utilized, and (if any) spatial and/or temporal corrections 

made (see Table 1 and data section for succinct gridded dataset information).  Section 3 

describes, in detail, the methods employed to assess the differences in precipitation extremes 

between these datasets.  Section 4 houses the results from this analysis, described in high 

quantitative detail.  The final section (Section 5) gives potential reasons behind the precipitation 

differences identified within the paper, as well as discussions and recommendations about these 

findings as a whole 
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2. Data 

2.1 GHCND (station data) 

Station data are our best primary source for precipitation data and are used here to 

identify biases and errors in the gridded datasets.  Here we use a quality-controlled subset of the 

Global Historical Climatology Network – Daily station data (GHCND; Menne et al. 2012), 

provided by Behnke et al. (2016b) via the Dryad data package 

(http://dx.doi.org/10.5061/dryad.7tv80).  This dataset contains 3855 stations over the contiguous 

U.S. with the temperature and precipitation values for at least 83% of the 1981-2010 period, 

making it appropriate for our study.  Because this study addresses extreme precipitation, it is 

important that days having the most extreme precipitation are not missing from the station 

record.  Therefore, we added further restrictions; stations must have daily precipitation data for at 

least 90% of the 1981-2010 period, and of the stations with data that passed this criterion, less 

than 10% of that remaining data must have non-trivial values in between this same temporal 

period.  Overall, 221 California stations passed this threshold criteria and were utilized in the 

analysis (Fig 1).  While a handful of stations in the central Sierra Nevada mountains, near the 

California-Nevada border, passed the imposed criteria, individual case analysis showed that the 

data from these stations were incorrectly recorded, and therefore not used within the analysis.  In 

total, 13 stations from the GHCND dataset were omitted from further extreme and statistical 

analysis.  The number of stations mentioned above –221 California stations– already accounted 

for these omitted 13 stations.   
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2.2 WRF  

The first dataset analyzed in this study was produced by dynamically downscaling 32-km 

resolution NCEP North American Regional Reanalysis (NARR; Mesinger et al. 2006) for the 

period 1981-2010 using the Weather Research and Forecasting model v3 (WRF; Skamarock et 

al. 2008) performed by Walton et al. (2018).  Under this setup, WRF is forced at the lateral and 

ocean surface boundaries by NARR.  WRF is setup with three nested grids of 27-km, 9-km, and 

3-km resolution.  This study focuses on the middle domain (D2) with 9-km resolution that covers 

the entire state of California (Fig 1).  For a full description of the model setup, see Walton et al. 

(2018). WRF is the only dynamically downscaled dataset in this analysis, while the others are 

station-based. Thus, an important aspect of this work will be characterizing the differences 

between WRF and the other datasets. 
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2.3 Livneh 

The third dataset (Livneh et al. 2015; henceforth referred to as Livneh) is a station-based 

gridded dataset of daily minimum temperature, maximum temperature, and precipitation.  The 

data were downloaded from https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374. 

This 1/16° (approximately 6-km) resolution gridded dataset covers the contiguous U.S., Mexico, 

and portions of southern Canada over the period between 1950 and 2013.  This dataset is an 

updated version of the Livneh et al. 2013 dataset, with improvements upon spatial extent, 

orographic precipitation representation over Canada and Mexico, and transboundary 

Figure 1: California Stations, Topography and Domains.  (LEFT) Topography for the 
Western U.S., GHCND stations within California with <90% time coverage (red), and 
GHCND stations within California with ≥90% time coverage (white); i.e., stations utilized in 
this study.  (RIGHT) Western U.S. topography within WRF domain “D1”, and WRF domain 
“D2”.  D2 is the downscaled domain utilized within this study. 
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discontinuities.  The precipitation values are adjusted so that the 1981-2010 precipitation 

monthly climatology matches PRISM (see part d of this section).  The gridding is performed via 

the synergraphic mapping system (SYMAP, Shepard 1984), where the grid point in question is 

given a value using a weighted average of four nearest stations.  Weighting of the nearby stations 

is determined by a combination of inverse distance weighting (IDW) and down-weighting those 

that are in a similar direction as other nearby stations.  For details of the implementation, see 

Maurer et al. (2002) and Livneh et al. (2013). 

 

2.4 PRISM 

The Parameter-elevation Relationships on Independent Slopes Model (PRISM; Daly et 

al. 1994, Daly et al. 2008) is a used to develop spatial climate datasets for precipitation, 

maximum and minimum temperature and several other variables over the contiguous U.S.  There 

are many different versions available, with different temporal frequency, resolution, and extent 

of period covered; several versions of lower frequency data (monthly or annual) have data from 

1895 to the present.  There are two resolutions from http://prism.oregonstate.edu (the PRISM 

Climate Group at Oregon State University) with daily temperature and precipitation variables, 

the 800 m and ~4-km (2.5 min).  The free and accessible 4-km resolution AN81d dataset from 

the period 1981 to the present was utilized in this study (version: 14.1-20140502-1000; 

downloaded on February 21, 2017).  PRISM uses an elevation regression function calibrated at 

each grid point using a moving window approach.  Station weights incorporate physically-based 

factors such as: distance, elevation, vertical layer, topographical facet, station density, position, 

topographic features, coastal proximity and effective terrain height.  PRISM utilizes data from 

many networks, including RAWS, COOP, CDEC, Agrimet, SNOTEL, NCRS, EC (Canada), and 
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more.  It is important to note that the station data are scrutinized through multiple quality control 

measures, but the final data are not calibrated to achieve any temporal homogeneity.  For more 

information about the gridding algorithm and the station networks used, visit 

http://prism.oregonstate.edu. 

 

2.5 Daymet 

Daymet (Thornton et al. 1997; Thornton et al. 2017) provides daily hydrological 

variables for North America (including Hawaii, Puerto Rico and Bermuda) on a 1-km resolution 

grid for the period 1980-2016. The most recent daily data (released in mid 2017) used in this 

study is version 3, retrieved from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1328 

(Thornton et al. 1997; Thornton et al. 2017).  Daymet uses daily data from the Global Historical 

Climatology Network – Daily (GHCND) stations and the Community Collaborative Rain, Hail 

and Snow Network (CoCoRaHs) stations.  Daymet fits a smooth surface in x, y, z using nearby 

stations.  The grid cells are weighted using truncated Gaussian filter centered around the grid 

point, with the filter radius varying continuously in accordance with varying station density.   It 

is important to note that Daymet utilizes an extrapolation smoothing technique where the 

smoothing weight for no precipitation days is zero, resulting in values as weighted averages of 

daily precipitation events.  This extrapolation smoothing technique is implemented to avoid a 

continuous drizzle bias seen with most smoothing techniques of daily precipitation in gridded 

datasets (Thorton et al. 1997). 

For more information on the algorithms and revisions of the Daymet daily data please visit 

https://daac.ornl.gov/DAYMET/guides/Daymet_V3_CFMosaics.html. 
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2.6 Newman 

The Newman data (Newman et al. 2015) is an observation-based ensemble of daily 

gridded datasets over the contiguous U.S., northern Mexico, and southern Canada with 

temperature and precipitation variables for the period 1980-2012.  The probabilistic quantitative 

precipitation and temperature estimation is achieved through ensemble variance.  Within the 

Newman dataset, there are 100 ensemble members, each with a slightly modified interpolation of 

temperature and precipitation.  To generate each ensemble member, spatially correlated random 

noise was added with the purpose of increasing simulating realistic variability away from 

stations, where precipitation would otherwise be underestimated.  Only a single ensemble 

member was used here, “conus_ens_001.nc”.  Although the 12-km resolution of the Newman 

data is the coarsest in this study, it was included in the study because it is independent from other 

datasets in that it doesn’t scale to PRISM climatology like some of the others.  Its unique 

methods of gridded, which were designed for the specific purpose of improving the 

representation or precipitation variability, also make it important to include within our study. 

 

2.7 Other Datasets 

Other datasets were analyzed, but ultimately not included in the results of this study.  The 

first is the PERSIANN-CDR dataset (PERSIANN; Soroosh et al. 2014, Ashouri et al. 2015).  

PERSIANN provides daily precipitation amounts, estimated by GridSat-B1 infrared satellite 

data.  Thus, PERSIANN is the only satellite-based gridded dataset within the study, making it 

important to compare the distinctions across the remaining datasets.  However, the differences 

between PERSIANN and the other gridded datasets were ultimately too great to include within 

the final analysis.  There were too many temporal, spatial, and resolution limitations, which lead 
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to the decision to omit this dataset.  Firstly, available data for PERSIANN only spanned 1983-

2010, inconsistent with the normal 1981-2010 period analyzed within all other datasets.  The 

spatial coverage was inconsistent, with many daily precipitation days missing due mechanical 

difficulties of the satellite’s daily measurements.  Finally, the dataset’s resolution of 0.25° 

(approximately 27-km) was rather coarse compared to all other datasets.  This was especially 

obvious within the daily precipitation patterns, as the Sierra Nevada mountains were not 

distinguishable, unlike all other datasets (Fig 2; pg 20).  With these limitations and differences 

PERSIANN was ultimately discarded from final analysis.  The second dataset was a secondary 

ensemble of the available Newman data.  Due to the availability of multiple ensembles from the 

Newman data, it is important to note the variation between the different ensemble members.  

Therefore, “conus_ens_002.nc” was also analyzed to compare any distinctions (denoted as 

Newman (002) in Figure 2).  The error metrics, precipitation statistics and extremes, and daily 

progression of precipitation amounts were examined.  For this analysis, the results of these 

comparisons show that the secondary ensemble data –Newman (002)– were not too different to 

treat the separate ensemble members of Newman as completely independent datasets.  Therefore, 

only the original ensemble member, denoted as “Newman” pertaining to the “conus_ens_001.nc” 

ensemble, is displayed in the Results section of this paper.  Figure 2 best depicts the 

differences/inconsistencies of PERSIANN and the similarities of Newman (002), leading to 

decision to exclude both datasets from final analysis.  A more detailed analysis on the storm 

depicted in Figure 2 is explained the Results section of this paper.
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Dataset Name WRF Livneh PRISM (AN81d) Daymet Newman (conus_ens_001.nc) 

Category/Type 
Dynamically downscaled 

reanalysis 
Station-based Station-based Station-based Station-based 

Citation Walton et al. 2018 Livneh et al. 2015 Daly et al. 2008 Thornton et al. 2017 Newman et at. 2015 

Data available 

from 

http://research.atmos.ucla.e

du/csrl/data/ 

ftp://ftp.hydro.washingto

n.edu/pub/blivneh/ 

http://prism.oregonstat

e.edu 
https://daymet.ornl.gov 

https://www.earthsystemgrid.org/datas

et/gridded_precip_and_temp.html 

Native 

Resolution 
9-km 1/16° (~6 km) ~4-km (2.5 min) 1-km 12-km 

Time Period 1980-2015 1915-2013 1981-2017 1980-2016 1980-2012 

Input Data for 

Precipitation 
NARR COOP 

COOP, WBAN, 

SNOTEL, RAWS, 

CDEC, Agrimet, & 

others 

GHCN-Daily (Menne et al., 

2012), and CoCoRaHs 

(https://www.cocorahs.org) 

GHCN-Daily, and SNOTEL (from 

Natural Resources Conservation 

Service (NRCS) Snowpack 

Telemetry) 

Downscaling/ 

Interpolation 

Method 

WRF coupled to Noah-MP 

SYMAP algorithm: 

inverse distance 

weighting with 

directional adjustment 

Elevation-regression 

model with stations 

weighted based on 

multiple physical 

factors 

Truncated Gaussian filter 

combined with elevation-

regression 

Probabilistic quantitative precipitation 

and temperature estimation is 

achieved through ensemble variance 

Table 1: Individual Dataset Details.  Specific attributes of each gridded dataset utilized within study. 
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3. Methods 

3.1 Example Storm 

A great deal of information regarding timing, magnitude and spatial smoothness of each 

dataset’s precipitation field can be understood by looking at the daily variability during a 

particular storm.  Therefore, a storm that passed through the domain, distributing a large amount 

of precipitation for many regions over a few days, was analyzed for comparison.  Dozens of 

storms which passed through the area were assessed, and the storm highlighted in this paper – a 

storm from February 5-10, 1985, shows the daily distribution of precipitation amongst all the 

datasets –Newman (002) and PERSIANN included (Fig 2).  This storm is a typical example of 

the kind of high precipitation events in California. This 6-day window was chosen intentionally, 

so as to investigate how each dataset differs (spatially, temporally, and quantitatively) in its 

development of daily precipitation to areas within our region. 

 

3.2 Precipitation Statistics  

To compare the five gridded datasets to station data, first extreme statistics were 

calculated for each gridded dataset, and then nearest grid cell was selected to compare with the 

station data.  Thirteen indices of extreme precipitation were computed at each grid cell for every 

dataset.  Most of these indices come from CCl/CLIVAR/JCOMM Expert Team (ET) on Climate 

Change Detection and Indices (ETCCDI) 

(https://www.clivar.org/organization/etccdi/etccdi.php.; http://www.climdex.org/indices.html).  
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Statistic Units Description/Comments 

Rx1day mm Maximum 1-day precipitation value for time-
period analyzed (either annual or record) 

Rx5day mm 
Maximum consecutive 5-day precipitation value 
for the time-period analyzed (either annual or 

record) 

SDII (simple day 
intensity index) mm/day 

For precipitation, it is defined as the ratio of total 
rainfall during the period analyzed to the number 

of days when rainfall occurred –generally 
regarding daily amounts ≥ 1 mm as wet days 

(https://gmao.gsfc.nasa.gov/research/subseason
al/atlas/Pindices-html/SDII.html) 

R10mm days Total count of days when precipitation amount 
exceeds 10 mm during the time-period analyzed 

R20mm days Total count of days when precipitation amount 
exceeds 20 mm during the time-period analyzed 

R1mm days Total count of days when precipitation amount 
exceeds 1 mm during the time-period analyzed 

Wet Day 
Frequency days Total count of wet days; i.e., when precipitation 

values are ≥ 1 mm 

Dry Day 
Frequency days Total count of dry days; i.e., when precipitation 

values are < 1 mm 

CDD days 

(Consecutive Dry Days is the maximum length of 
a dry spell; i.e., maximum number of consecutive 
dry days within the time-period analyzed.  A dry 

day is defined as any daily precipitation amount < 
1 mm 

CWD days 

(Consecutive Wet Days is the maximum length of 
a wet spell; i.e., maximum number of consecutive 
wet days within the time-period analyzed.  A wet 
day is defined as any daily precipitation amount 

≥ 1 mm 
Annual Mean 
Precipitation 

(AMP) 
mm/day The average precipitation amounts over all the 

days in the time-period analyzed (1981-2010) 

R95pTOT mm (or %; see text) Defined as the total accumulated precipitation 
that fell above the 95th percentile 

R99pTOT mm (or %; see text) Defined as the total accumulated precipitation 
that fell above the 99th percentile 

 

 
Table 2: Precipitation Statistics Descriptions.  Specific attributes of each precipitation statistic 
utilized within this study. 
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Table 2 gives the indices calculated in this study, their abbreviations, and descriptions. The 

RXXpTOT variables were calculated only on wet days over the 1981-2010 period.  Each of these 

percentile statistics is a simple accumulation amount (usually in thousands of mm for the 30-year 

period).  To gain better insights from the statistics, these will be presented as percentages, 

denoting what percentage of precipitation fell above the XX percentile.  Each statistic is 

calculated in one of two ways: either as a “record” value indicating that it is calculated once over 

the entire 1981-2010 time period, or as an “average” in which case the statistic is calculated 

every year and then average value of these years is reported.  For example, “Rx1day Record” 

yields the single largest daily precipitation amount within the entire 1981-2010 period.  

However, “Rx1day Average” denotes the average of the largest daily precipitation amount taken 

over each year in 1981-2010.  In some cases, like wet day frequency or annual mean 

precipitation, the results are equivalent, so the distinction is unnecessary.  The above extreme 

indices are calculated at each grid cell and are displayed in this paper in two ways: as differences 

and as percent differences relative to the GHCND station data.  As station data are the best 

primary source data for precipitation, if a gridded dataset is consistently different from station 

data, then it is considered a strong indication of a bias. 

 

3.3 Error Metrics  

To distill these statistics into a succinct and digestible format, as well as to compare 

across datasets, two error metrics were used: mean absolute error (MAE) and bias, each 

expressed as a percent of the average value of that statistic.  The mathematical formulas for these 

metrics are, 
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"#$%	'()*+,-#	.//*/ = ∑$()(34567787	9:;:<8; − 34>?@9)
∑34>?@9

× 100 

EF$) = 	∑(34567787	9:;:<8; − 34>?@9)∑ 34>?@9
× 	100,	

where S represents an extreme precipitation statistic, and the summations are taken over all 221 

stations in California.  The MAE reveals how close, on average, a gridded dataset is to the station 

data and the bias tells us whether a gridded dataset tends to overestimate or underestimate that 

statistic in California, giving a sense of directionality of the errors, not present in the mean 

absolute error metric alone. 
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4. Results 

4.1 Example Storm 

Figure 2 shows the daily precipitation amounts from a storm that went through California 

February 5-10, 1985.  Each dataset provides a different spatially complete picture of 

precipitation.  First, the station data seem to have a sharper gradient for the allotment of daily 

precipitation compared with the gridded datasets.  As the datasets’ intrinsic goal is to make a 

spatially complete picture from spatially incomplete data, this may be somewhat expected, 

however, the differences in daily precipitation magnitudes are rather large. The timing of 

precipitation varies between gridded datasets.  In particular, Livneh and Newman (especially 

ensemble 002), show as much as 30 mm of precipitation on February 6th in the parts of Northern 

California, while others are almost completely dry (Fig 2).  These timing differences are also 

evident on February 8th, when Livneh and Newman (both ensemble members) have precipitation 

in Southern California, while the other datasets don’t have precipitation there until the next day.  

On the 9th of February, when the storm appears to be moving out of the area, PRISM and 

Newman (particularly ensemble 002) still show a considerably larger amount of precipitation 

over the central Sierra.  The proceeding date (February 10th) also shows extreme variation.  All 

other datasets (including the station data) show no precipitation through California, while 

PRISM allots approximately 20 mm of precipitation for most of coastal Southern California.  

Indeed, these timing differences are not just limited to this storm are prevalent throughout the 

time period.  It is theorized that this “pre-allotting” of precipitation a day early is due to the 

timing of the observations from Livneh’s parent station data; which are somewhat irregular.    

Daymet also appears to have more sharp cut offs of precipitation compared to the other 

gridded datasets.  On this same day –i.e., when the bulk of the storm’s precipitation occurs, the 
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magnitudes are also rather distinct.  Daymet’s magnitudes vary smoothly where precipitation 

occurs, but abruptly drops to zero elsewhere.  This pattern exists as a result of Daymet’s 

interpolation method which includes the fitting of a smooth curve in (x,y,z) through the data, and 

explicitly computing the probability of precipitation occurrence, applying a threshold of 50% to 

determine whether precipitation occurs. 

For this storm, WRF and Newman appear to have the peak daily precipitation values, yet 

WRF’s highest magnitudes appear in the Sierras and Newman’s (both ensembles) highest 

magnitudes appear near the coast.  The magnitudes of Livneh, Daymet, and PERSIANN are 

rather muted compared to the others.  However, due to the fact that Livneh’s precipitation regime 

began a day earlier, the overall total from the storm isn’t too dissimilar to the others’ totals (Did 

you calculate totals?  If so, you should plot it, maybe at the end?  Otherwise, I wouldn’t talk 

about totals).  Effects of the Sierra Nevada and other topographic features are not evident in 

PERSIANN.  This may be because it is a satellite-based product, or because it’s resolution of 

approximately 27-km is rather coarse.  Either way, it is obvious that, unlike the other datasets, it 

does not capture the orographic enhancements of precipitation that are a defining characteristic 

of precipitation in California. 
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4.2 Precipitation Statistics 

Thirteen different extreme precipitation statistics were calculated.  With so many 

statistics, we focus on a representative subset: annual mean precipitation (AMP), precipitation 

amount on the wettest day (Rx1day Record), fraction of total precipitation from the wettest days 

(R95pTOT; as a percent), wet days per year, and consecutive dry days (CDD).  For each statistic 

Figure 2: Example Storm Daily Progression.  This figure shows the differences between the datasets for a storm 
that moved through the area of interest in February 1985.  Each row shows the daily precipitation values for each 
dataset; GHCND, WRF, Livneh, PRISM, Daymet, Newman, Newman: secondary ensemble, and PERSIANN 
(satellite dataset), starting on February 5, 1985 and ending on January 10, 1985. 
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(plotted in figures 3-7), the top row of each plot displays the value of the statistic in each dataset.  

The second row shows the differences with GHCND at the station locations.  The second row 

also shows the value of the statistic’s two error metrics (MAE and bias) in the top right corner of 

each plot.  The third row shows the percent differences of the GHNCD values at the station 

locations, while also including the average percent difference in the top right corner of each plot. 

 

4.2.1 Annual Mean Precipitation (AMP) 

AMP varies significantly with topography (Fig 3 Row 1).  Most of the station-based 

datasets are within ~0.25 mm/day of the station values (Fig 3, row 2).  Spatially, the pattern 

amongst all datasets, is very similar, with the largest disagreements in magnitude in high 

precipitation areas.  WRF appears to underestimate slightly in the driest regions (such as the 

Mojave Desert) and overestimate slightly in the wettest (the high peaks of the Northern Sierra 

Nevada).  Meanwhile, Newman consistently overestimates this statistic (bias of +17%), with 

percent differences >50% across the drier areas north and east of the moutnains in Southern 

California and east of the Sierra Nevada. Newman and WRF, both have similar MAEs of 0.4 

mm/day (approximately 25%).  The consistent overestimation in Newman is likely due to the 

spatially correlated random noise added to the precipitation field.  WRF’s small bias of -6% 

reflects offsetting errors, as WRF underestimates coastal precipitation and overestimates 

precipitation in the Northern Sierra Nevada.  In contrast, Livneh and PRISM perform better 

match station data, with MAE of 12% (0.2 mm/day) and 11% (0.2 mm/day), respectively, and 

biases of 5% and 6%, respectively.  Qualitatively, Daymet’s results are consistently wetter than 

station data, especially in semi-arid regions east of the Sierra Nevada, and north and east of 

mountain ranges in Southern California.  This could be to Daymet’s desire to fit a smooth curve 
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through the data, which may not catch the abrupt drop changes in precipitation going from the 

windward to the lee side of these mountain ranges.  Overall, it appears that the four station-based 

gridded datasets slightly to moderately overestimate AMP, while WRF underestimates AMP.  

That the station-based datasets differ from the stations is somewhat surprising, since they are 

trained on the station data. 
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Figure 3: Annual Mean Precipitation (AMP).  Top Row: Annual Mean Precipitation (1981-2010) for all 5 datasets.  Middle Row: 
Quantitative difference between datasets regridded onto the GHCND data.  The Mean Absolute Error (MAE) and Bias raw values and percent 
values are also shown in the top right of each plot; raw value units are the same as middle row units.  Bottom Row: Same as Middle Row, but 
in percent difference. The average percent difference is also shown in the top right of each plot. 
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4.2.2 Rx1day (Record) 

Rx1day Record (henceforth Rx1day) is the maximum single-day precipitation amount 

over the entire 1981-2010 period (Fig 4).  Rx1day shows very significant differences among the 

datasets. WRF simulates more precipitation in on the windward side of the Sierra Nevada 

mountains.  This could be due to the methodology applied to WRF’s precipitation.  Being the 

only dynamically downscaled dataset, the forcing applied to the boundaries create a spatially 

complete picture, precipitation magnitudes may be more sensitive to the highest topography of 

region.  There is good reason to believe that WRF precipitation could be higher on the windward 

side, since the orography forces ascent of air masses for these storms.  PRISM shows peculiar 

high magnitude values of highest single day precipitation in Northeastern California, near the 

King mountain range.  It is speculated these high magnitudes are seen in this area because 

PRISM includes many different networks, many with stations in the King mountain range, 

leading to the notoriously high precipitation values of this area.  Furthermore, unlike Daymet, 

which includes a similarly large number of stations, PRISM doesn’t employ a surface smoothing 

technique to create a smooth precipitation surface.  Thus, PRISM is able to capture this 

important peak.  Daymet has the smoothest and smallest maximum single-day precipitation 

values, especially at high elevations.  Overall, WRF, Livneh, PRISM, and Daymet all 

underestimate Rx1day, exhibiting dry biases: -12% for WRF, -17% for Livneh, -9% for PRISM, 

and -16% for Daymet; and underestimating station data by 20-50% at many stations.  In stark 

contrast, Newman shows high values (>120 mm) over a much wider area compared to other 

datasets, especially near the Mojave Desert and east of the Sierra Nevada.  It is not surprising 

that most station-based gridded datasets underestimate Rx1day.  Typically, interpolation 

algorithms use a weighted average or regression function using multiple station locations.  Thus, 
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the value at any given grid cell is a weighted average over multiple station locations.  So, if a 

station is experiencing its all-time maximum value, it will most likely be averaged out with 

slightly lower values from surrounding stations, producing a gridded value that is lower than the 

closest station. In stark contrast to the others, Newman frequently overestimates Rx1day, with a 

wet bias of +25% (CA average: +28.3 mm). It’s not that Newman’s peak values are higher but 

that high values extend over a much wider area than the other datasets, especially in areas like 

the Central Valley, the Mojave Desert, east of the Sierras.  Newman exceeds station values by 

50% at many stations in these regions, a strong indication that Newman is biased here.  It seems 

highly likely that the overestimation of this extreme statistic is a result of adding spatially 

correlated random noise, which allows a grid cell value to exceed its nearest station.  
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Figure 4: Rx1day Record.  Top Row: Maximum daily precipitation amount for the entire time period (1981-2010) for all 5 datasets.  Middle 
Row: Quantitative difference between datasets regridded onto the GHCND data. The Mean Absolute Error (MAE) and Bias raw values and 
percent values are also shown in the top right of each plot; raw value units are the same as middle row units.  Bottom Row: Same as Middle 
Row, but in percent difference.  The average percent difference is also shown in the top right of each plot. 
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4.2.3 R95pTOT (Percentages) 

R95pTOT, the amount of precipitation accumulated on days above the 95th percentile, 

expressed as a percentage of total rainfall, varies considerably across the five datasets (Fig 5).   

Daymet consistently underestimates R95pTOT (MAE: 12%, bias: -10%), while Newman 

overestimates R95pTOT (MAE: 22%, bias: +22%).  In Southern California, Newman shows that 

more than 35% of all precipitation fell from extreme days, a much higher fraction than station 

data suggest (typically around 20-25%, see Fig 5 Row 1).  The spatial pattern of Newman in 

Southern California is also different than the others, with high values east and north of the 

Southern California mountain complexes that are not supported by the station data.  In fact, 

Newman overestimates R95pTOT by a factor of 1.5 at stations in these areas.  Unlike Daymet 

and Newman, which uniformly under and overestimate R95pTOT, respectively, the other 

datasets, WRF, Livneh, and PRISM, have smaller differences with station data, underestimating 

in some areas and overestimating in others. Errors are especially small for Livneh (MAE: 6%, 

bias: <1%) and PRISM (MAE: 6%, bias: +2%).  For WRF (MAE: 11%), errors in R95pTOT are 

topographically dependent, with the windward sides of the Sierra Nevada and coastal mountain 

ranges seeing the largest overestimations (by a factor of approximately 2).
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Figure 5: R95pTOT (Percentages).  Top Row: Percentage of precipitation that fell above the 95th percentile of total precipitation for all 5 
datasets.  Middle Row: Quantitative difference between datasets regridded onto the GHCND data. The Mean Absolute Error (MAE) and Bias 
raw values and percent values are also shown in the top right of each plot; raw value units are the same as middle row units. Bottom Row: Same 
as Middle Row, but in percent difference. The average percent difference is also shown in the top right of each plot. 
 
*Note: Middle row refers to the quantitative difference in percentages, while the bottom row calculates regular percent differences for variable 
R95pTOT. 
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4.2.4 Wet Day Frequency 

All datasets overestimate the number of wet days (daily precipitation ≥ 1 mm; Fig 6).  

Still, there are significant differences between the datasets in the locations and magnitudes of 

these overestimations.  WRF agrees most closely with the station data (MAE: 14%, bias: +10%).  

Daymet agrees the best of the station-based datasets (MAE: 18%, bias: +17%) and, like WRF, 

does a better job of capturing the low frequency of precipitation in Southern California (< 30 wet 

days per year).  Livneh, PRISM, and Newman all overestimate wet days in Southern California.  

Livneh has the largest domain-wide overestimation (MAE: 35%, bias: +35%), with Newman a 

close second (MAE: 34%, bias: +34%), and PRISM third most (MAE: 18%, bias: +17%).  These 

datasets have especially large overestimations in the coastal mountains of Northern California 

and the Sierra Nevada, where their values can exceed the stations’ by more than 30 wet days per 

year.  The overestimation results across all gridded datasets are somewhat expected, as many 

gridded datasets are known to have a “drizzle problem”, whereby the datasets record trace or 

small amounts of precipitation (drizzle) more frequently than observations suggest (Ensor and 

Robeson 2008).  Within gridded datasets, this known “drizzle” issue is hypothesized to arise 

from the averaging between various stations some with and some without precipitation, resulting 

in small values assigned to many grid cells throughout the domain.  
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Figure 6: Number of Wet Days.  Top Row: Annual number of Wet Days (≥1 mm) (averaged over 1981-2010) for all 5 datasets.  Middle Row: 
Quantitative difference between datasets regridded onto the GHCND data.  The Mean Absolute Error (MAE) and Bias raw values and percent 
values are also shown in the top right of each plot; raw value units are the same as middle row units.  Bottom Row: Same as Middle Row, but 
in percent difference. The average percent difference is also shown in the top right of each plot. 
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4.2.5 CDD (Consecutive Dry Days) 

There are large variations in CDD (representing the average length of the longest 

continuous streak of daily precipitation amounts < 1 mm within a year; Figure 7) in California, 

with areas of Southern California averaging over 150 consecutive dry days a year, while 

Northern California and the Sierra Nevada average less than 50 per year.  Among all the datasets, 

CDD agrees reasonably well with the station data, with no dataset having CA-average larger than 

13 days/year (11%).  In general, Livneh slightly, but consistently overestimates the longest dry 

streak (MAE: 8%, bias: +5%).  WRF (MAE: 11%, bias: +3%) and Daymet (MAE: 9%, bias: 

+2%) also slightly overestimate in some places (like the Mojave Desert). Although WRF’s bias 

is only +3%, this is the result of offsetting errors: WRF overestimates in some locations by up to 

40% (like the Mojave Desert) and underestimates in others by up to 40%.  In general, the biases 

and results of PRISM (MAE: 7%, bias: -1%) and Newman (MAE: 9%, bias: -2%) suggest very 

little systematic over or underestimation for longest dry streak.  In total, these two datasets 

perform best in simulating consecutive dry days. 
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Figure 7: CDD (Consecutive Dry Days).  Top Row: The average length of the longest continuous streak of daily precipitation < 1mm (averaged 
over 1981-2010) for all 5 datasets.  Middle Row: Quantitative difference between datasets regridded onto the GHCND data.  The Mean Absolute 
Error (MAE) and Bias raw values and percent values are also shown in the top right of each plot; raw value units are the same as middle row 
units. Bottom Row: Same as Middle Row, but in percent difference. The average percent difference is also shown in the top right of each plot. 
 
*Note: the middle and bottom row’s shading has been flipped to continue the notion of blue as too wet and red as too dry. 
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4.3 All Statistics/Extremes 

Figure 8 shows the MAE and bias for all statistics as a percentage of the California-

average value of that statistic.  Across all statistics, MAEs range from 6%-54% and biases range 

from -19% to 54%.  Differences in Annual Mean Precipitation between the gridded datasets and 

the station data (MAEs ranging from 11 to 25%, biases ranging from -6 to +17%) were larger 

than expected.  Given that the station-based datasets are trained on the station data and the fact 

that AMP is average quantity, one would expect this variable to closely match the station data, 

yet MAE exceeded 10% for all station-based datasets.  The remaining dataset, WRF, has a 

relatively low AMP bias of -6%.  Being on par with station-based datasets, this is a rather 

impressive feat for the dynamically-downscaled dataset. 

The Rx1day Record and Average MAE values differ from the station data by an average 

of approximately 26% and 22%, respectively, while their biases differ by an average of by an 

average of about +14% –across all datasets, save Newman– showing a clear underestimation in 

maximum daily precipitation.  Newman overestimates this statistic by +25% and +19%, 

respectively.  These four overestimating results were also expected as per the reasoning 

discussed previously; the datasets generally have set maximum precipitation amounts, in which 

the algorithms determining precipitation do not allow daily accumulations to exceed.  This 

suggests that the maximum single day precipitation is often a very difficult extreme statistic to 

produce within gridded datasets. 

The extreme precipitation distribution statistics, R99pTOT and R95pTOT, are well 

simulated for most of the datasets, except Newman and Daymet.  While most datasets 

consistently overestimate the amount of extreme precipitation, Daymet appears to underestimate 

these statistics by -13% and -10%, respectively.  This suggests that much of the precipitation 
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from Daymet occurs on non-extreme precipitation days.  This conclusion is also substantiated by 

the Rx1day and Rx5day results, with Daymet having the second greatest underestimations across 

the datasets.  Newman (again) appears to be the outlier, overestimating these statistics by +31% 

and +22%, respectively. 

Across all datasets, no matter the interpolation method, frequency of wet days is 

overestimated by as little as +10% (bias from WRF) to as much as +35% (bias of Livneh).  With 

the overestimated wet day frequency results, it is not surprising that CWD (consecutive wet 

days) is also overestimated, sometimes by severe amounts; +43% bias of Newman and +54% 

bias of Livneh.  This may be exposing the known issue from gridded datasets, drizzle problem: 

precipitation allotment is often too freely given to grid cells due to averaging problems. 

Overall, Newman appears to have the largest errors and consistently overestimates the 

amount of precipitation.  When averaged over all of the statistics, Newman MAE of 30% and an 

average bias of +21%.  The consistent overestimation of precip intensity from Newman may be 

due to the added spatially correlated random noise to the daily precipitation distribution.  On the 

other hand, PRISM appears has the lowest average MAE of 14% and an average bias of +4%.  In 

all, it is important to remember that although users may assume that gridded datasets are as 

trustworthy as the station data they are generated from, our results, however suggest that gridded 

datasets differ significantly from station data in many respects. 
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Figure 8: Mean Absolute Error (MAE) and Bias Metrics.  (LEFT) The mean absolute error for all gridded 
datasets compared to GHCND California stations.  The shading and number reflect the percentage difference 
for each particular statistic; 0 being perfect.  (RIGHT) The bias for all the gridded datasets compared to 
GHCND California stations.  The shading and number reflect the percentage difference for each particular 
statistic; red being an underestimation (too dry) and blue being an overestimation (too wet).   
 
*Note: the shading for CDD has been flipped to continue the notion of blue as too wet and red as too dry.  
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5. Discussion and Conclusions 

5.1 General Gridded Dataset Biases and/or Errors  

In total, this assessment of extreme precipitation statistics shows gridded datasets differ –

sometimes greatly– from each other and from station data.  The regridded datasets onto station 

data grids give quantitative differences –which can be thought of as the extreme precipitation 

errors and/or biases– and show clear overestimations or underestimations that can be tied directly 

back to interpolation methodology.  In identifying such errors and the reasoning behind them, 

hopefully these results can be useful in selecting the appropriate dataset for the task at hand, for 

identifying areas where the datasets could be improved, and for creating new ones.  Overall, 

PRISM has the least bias and smallest errors, giving it the highest marks.  However, it may not 

be the best for each individual statistic. 

All of the gridded datasets (save Newman) tend to underestimate the intensity of 

precipitation extremes.  This result was not surprising for the station-based datasets, due to the 

interpolation methods used.  Typically, interpolation algorithms use a weighted average or 

regression function of multiple nearby stations to calculate the value at a grid point.   Thus, the 

value at a grid point is essentially the weighted average of it nearest neighbors, meaning that it 

will nearly always be greater than the lowest nearby station value and less than the highest 

nearby station value.  So, if a station is experiencing it’s all time maximum—a value unlikely to 

be exceeded by another nearby station—the nearest grid point will have a less than that. This 

underestimation of precipitation intensity is consistent with the findings of Behnke et al. (2016a), 

which found large and systematic underestimation of precipitation at high intensities.   
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5.2 Individual Gridded Dataset Assessments 

Newman is consistently too wet, overestimating precipitation amounts and frequency.  

This is consistent with findings of the dataset’s creators, which noted generally good agreement 

except for precipitation extremes, specifically, events with precipitation magnitudes > 50 

mm/day, for which a slight wet bias was identified (Newman et al. 2015).  The addition of the 

spatially correlated random noise to daily precipitation amounts forces the distribution to become 

more normally distributed, intentionally altering an observed daily precipitation distribution that 

is highly skewed.  Personal communications with the authors indicate that this is a known issue 

and that fixes are likely to be made. 

Daymet appears to underestimate precipitation intensity.  This is true for Rx1day, where 

it has muted precipitation in high elevation areas, but also in R99pTOT and R95pTOT, where it 

shows smaller fractions of precipitation coming from extremes.  Since total precipitation is not 

underestimated, then Daymet must be compensating by having more precipitation on less intense 

days.  produces more precipitation on its less intense days and less on the most extreme days 

than the other datasets.  Indeed, the frequency of heavy and very heavy precipitation (R10mm 

and R20mm) are overestimated compared to the other gridded datasets.  Therefore, it can be 

deduced that Daymet underestimates intensity on the most extreme days while overestimating 

the frequency of mid to high values.  This could be the result of the smoothing nature Daymet’s 

interpolation algorithm and its methods for determining precipitation occurrence.  Haylock et al. 

(2008) and Hofstra et al. (2010) found that smoothing methods have a strong tendency to lead to 

daily precipitation and/or temperature values less than the “true” area average, also noting that 

the smoothing is most severe for higher percentiles, leading to underestimated extremes. Thus, 

their idea that underestimation of extreme precipitation due to smoothing is supported by this 
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paper’s findings.  First, Daymet’s creators believed in the importance of having spatially smooth 

temperature and precipitation fields; specifically stating, “We prefer an interpolation surface that 

is continuous, though we do not impose the condition that it be perfectly smooth, in that its first- 

and higher-order derivatives are allowed to be discontinuous” (Thornton et al. 1997).  Second, 

for determining precipitation amounts, the interpolation method first determines the probability 

of precipitation occurrence for that location and date, and if the probability is less than an 

assigned threshold, the daily precipitation is assigned a value of zero.  Also, the smoothed value 

for precipitation represents a weighted average of daily precipitation events, except on zero 

precipitation days; in which case the smoothing filter is also set to zero (Thornton et al. 1997).  

This was implemented to solve the “constant drizzle” problem which would arise from a 

standard smoothing filter applied to a precipitation time series.  Daymet is the only dataset in this 

analysis to explicitly account for this known “drizzle” issue by calculating the probability of 

precipitation occurrence. 

WRF is the only dynamically-downscaled dataset within this study.  While the station-

based gridded datasets start with the station data and try to create a spatially complete picture, 

WRF solves for the entire picture at once, using only forcings at the domain boundaries.  For this 

reason, it is inherently different.  One consistent way that WRF differs from the other datasets is 

that the direction of its errors varies in space: WRF may overestimate in one region while 

underestimating in another.  Meanwhile the station-based datasets typically overestimate or 

underestimate over the whole state. For many statistics, WRF performs similarly compared to the 

station-based datasets.  However, WRF has a dry bias in the coastal mountains.  This may be due 

to WRF’s relatively coarse 9-km resolution. 
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Livneh and PRISM are not only the most similar of the datasets, but also appear to be the 

best performing datasets when compared to the station data.  Much of the similarity can be 

attributed to Livneh correcting its monthly climatology to that of PRISM.  Unlike most of the 

other datasets, Livneh partitions daily precipitation totals from station between the current and 

previous day based on time of observation.  Thus, single daily precipitation values may be spread 

over multiple days.  This could explain why Livneh severely overestimates the number of wet 

days and consecutive wet days. 

 

5.3 Overall Conclusions and Outlook 

One reasonable question is whether using GHCND data to validate the gridded datasets is 

improper, since all of the station-based gridded datasets use many if not all of the GHCND 

stations as input.  It would be difficult to achieve the extensive temporal and spatial coverage 

needed to evaluate extreme precipitation without GHCND.  Indeed, one challenge of evaluating 

gridded datasets is that as more and more station networks are used in gridded datasets, it 

becomes harder to find independent datasets.  For California, one possible option would be the 

CIMIS station (e.g. Behnke et al. 2016a), but it doesn’t have nearly sufficient spatial coverage.  

In fact, one key result of this study is that most gridded datasets still underestimate precipitation 

extremes at station locations, despite being trained on that station data.  This shows that 

interpolation methods applied to the gridded datasets are almost certainly the main causes for the 

corresponding errors and/or biases.  It is possible that the nearest neighbor technique used to 

sample the gridded datasets at the station locations introduces errors as well, especially in areas 

with strong terrain gradients where a mismatch in elevation between the station and nearest grid 

cell could arise.  One additional critique of evaluating against GHCND data is that interpolation 
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methods that try to fit to the station data exactly are extended an advantage that they would not 

have when tested on an independent dataset.  If this were the main cause of errors and/or biases, 

then –within this study– one would expect Livneh to give the absolute best results for the 

extreme statistics, due to the fact that it uses inverse distance weighting to generate its values; 

but it does not perform the best. 

Although these results focused on California specifically, it is likely these errors and/or 

biases identified here would be present for other areas throughout the country and beyond.  This 

due to the fact that the gridded datatsets’ errors and/or biases can be at least partially attributable 

to interpolation methods, and not necessarily to the distinct California topography or climate.  In 

particular, the underestimation of maximum single day precipitation is most likely to show 

similar results over the entire US and beyond, as the study shows this phenomenon to be a more 

systematic error, present in every dataset unless certain interpolation methods override this bias 

(i.e., Newman’s added spatially correlated noise).  In all, these results show that there are large 

differences between the gridded datasets as well as significant differences with station 

observations.  This should serve as a strong reminder that gridded datasets are imperfect and 

should not be treated as absolute fact, but rather as the best spatially complete estimates of a 

complex and sometimes unknown picture. 
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