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Improving Patch-Based
Convolutional Neural Networks for
MRI Brain Tumor Segmentation by
Leveraging Location Information

Po-Yu Kao 1*, Shailja Shailja 1, Jiaxiang Jiang 1, Angela Zhang 1, Amil Khan 1,

Jefferson W. Chen 2 and B. S. Manjunath 1*

1 Vision Research Lab, Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa

Barbara, CA, United States, 2Department of Neurological Surgery, University of California, Irvine, Irvine, CA, United States

The manual brain tumor annotation process is time consuming and resource consuming,

therefore, an automated and accurate brain tumor segmentation tool is greatly in

demand. In this paper, we introduce a novel method to integrate location information with

the state-of-the-art patch-based neural networks for brain tumor segmentation. This is

motivated by the observation that lesions are not uniformly distributed across different

brain parcellation regions and that a locality-sensitive segmentation is likely to obtain

better segmentation accuracy. Toward this, we use an existing brain parcellation atlas

in the Montreal Neurological Institute (MNI) space and map this atlas to the individual

subject data. This mapped atlas in the subject data space is integrated with structural

Magnetic Resonance (MR) imaging data, and patch-based neural networks, including

3D U-Net and DeepMedic, are trained to classify the different brain lesions. Multiple

state-of-the-art neural networks are trained and integrated with XGBoost fusion in the

proposed two-level ensemble method. The first level reduces the uncertainty of the

same type of models with different seed initializations, and the second level leverages

the advantages of different types of neural network models. The proposed location

information fusion method improves the segmentation performance of state-of-the-art

networks including 3D U-Net and DeepMedic. Our proposed ensemble also achieves

better segmentation performance compared to the state-of-the-art networks in BraTS

2017 and rivals state-of-the-art networks in BraTS 2018. Detailed results are provided

on the public multimodal brain tumor segmentation (BraTS) benchmarks.

Keywords: gliomas, brain tumor segmentation, brain parcellation atlas, convolutional neural network, DeepMedic,

3D U-Net, ensemble learning, XGBoost

1. INTRODUCTION

Glioma is a common type of brain tumor in adults originating in the glial cells that support neurons
and help them function. The World Health Organization (WHO) classification system categorizes
gliomas from grade I (lowest grade) through grade IV (highest grade), based upon histopathologic
characteristics that predict their behavior over time (Louis et al., 2007). Low-grade gliomas (LGGs)
consist of WHO-grade I tumors andWHO-grade II tumors, that tend to exhibit benign tendencies
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and indicate a better prognosis for the patient. WHO-grade
III and IV tumors are included in high-grade gliomas (HGG)
that are malignant and more aggressive. Patients with HGG had
median survival time (MST) 18 months, and the MST of patients
with Grade III and IV gliomawere 26 and 13months, respectively
(Noiphithak and Veerasarn, 2017). Gliomas are further divided
into four types of sub-regions, namely edema, non-enhancing
core, necrotic core, and enhancing core based on the acuteness
of the tumor cells that have different appearances in MR imaging
data. However, segmenting the different sub-regions of gliomas
is a daunting task because of the intrinsic heterogeneity which
affects their visual appearance as well as shape. Clinically, MR
images help a doctor to evaluate the tumor and plan treatment.
Moreover, the treatment depends on the type, size, shape, grade,
and location of the tumor, which varies widely. Consequently,
this observation leads to the importance of an accurate brain
tumor segmentation for better diagnosis of brain tumors. Also,
the manual annotation process is time consuming and resource
consuming, therefore, an automated and accurate brain tumor
segmentation tool is greatly in demand.

Deep neural networks (DNNs) have achieved state-of-the-
art segmentation performance on the recent Multimodal Brain
Tumor Segmentation (BraTS) Challenges (Bakas et al., 2018).
Kamnitsas et al. (2017a) conducted the comparative study on
performance and concluded that deep learning along with
ensemble learning-based methods outperform the others as they
leverage the advantage of each deep learning model. Wang
et al. (2017) analyzed three different binary segmentations task
rather than a single multi-class segmentation task, and three
different binary segmentations task has a better performance
than a single multi-class segmentation task. Along this line,
Isensee et al. (2017) proposed to integrate segmentation layers at
different levels of optimized 3DU-Net-like architectures followed
by element-wise summation. Myronenko (2018) implemented
a modified decoder and encoder structure of CNN to generate
dense segmentation. Likewise, Isensee et al. (2018) demonstrated
that an original U-Net architecture trained with additional
institution dataset improved the dice score of enhancing tumor.
McKinley et al. (2018) also proposed a U-Net-like network
and introduce a new loss function, a generalization of binary
cross-entropy, to account for label uncertainty. Furthermore,
Zhou et al. (2018) explored the ensemble of different networks
including multi-scale context information, and also segmented
three tumor compartments in cascade with an additional
attention block.

Our recent work (Kao et al., 2018) utilizes an existing
parcellation to bring location information of the brain into
patch-based neural networks that improve the brain tumor
segmentation performance of networks. Outputs from 26 models
were averaged, including 19 different types of DeepMedics
(Kamnitsas et al., 2017b) and seven different types of 3D U-Nets
(Çiçek et al., 2016), to get the final tumor predictions. Different
from our previous ensemble, the proposed ensemble only
contains six models including three DeepMedics and three 3D
U-Nets with different seed initializations that only take <1 min
in the inference time.We also propose a novel two-level ensemble
method which reduces the uncertainty of predictions in the first

level and takes advantage of different types of models in the
second level. In this paper, we also demonstrate that the proposed
location fusion methods improve the segmentation performance
of the single state-of-the-art patch-based network and an
ensemble of multiple state-of-the-art patch-based networks.
The proposed ensemble has better segmentation performance
compared to state-of-the-art networks in BraTS 2017 dataset
and competitive performance to the state-of-the-art networks
in BraTS 2018 dataset. The main contribution of this paper is
two-fold. First, it proposes a location information fusion method
that improves the segmentation performance of state-of-the-
art networks including DeepMedic and 3D U-Net. Second, it
proposes a novel two-level ensemble method which reduces
the uncertainty of prediction and leverages the advantages of
different segmentation networks.

2. MATERIALS AND METHODS

This section describes the details of (i) a proposed location
information fusion method for improving brain tumor
segmentation using a patch-based convolutional neural network
(CNN), and (ii) a proposed ensemble learning method which
takes advantage of model diversity and uncertainty reduction.
This section includes the data description, data pre-processing,
network architectures, training, and test procedure, proposed
location information fusion method, and proposed ensemble
methods. The evaluation metrics are also described at the end of
this section.

2.1. Dataset
The Multimodal Brain Tumor Segmentation Challenges (BraTS)
2017 dataset and BraTS 2018 dataset (Menze et al., 2015;
Bakas et al., 2017a,b,c) comprise clinically-acquired pre-operative
multimodal MRI scans of glioblastoma (GBM/HGG) and lower-
grade glioma (LGG) as training, validation and test data. There
are 285 subjects in the training set and 46 and 66 subjects in the
validation set of BraTS 2017 and BraTS 2018, respectively. The
lesion ground-truth labels are available for the training subjects
but withheld for both the validation and test subjects. MRI
scans were available as native (T1), post-contrast T1-weighted
(T1Gd), T2-weighted (T2), and T2 Fluid Attenuated Inversion
Recovery (FLAIR) volumes. These scans were distributed after
being skull-stripped, pre-processed, re-sampled, and interpolated
into 1 mm isotropic resolution with an image size of 240 ×

240 × 155 in x-, y-, and z-direction. Tumor segmentation labels
were produced manually by a trained team of radiologists and
radiographers. The edema was segmented primarily from T2
images, non-enhancing and enhancing the core of the tumor
from T1c together with the lesions visible in T1 and necrotic
core from T1c. We used the annotated and co-registered imaging
datasets including the Gd-enhancing tumor, the peri-tumoral
edema and the necrotic and non-enhancing tumor core for our
training and test procedure.

2.2. Data Pre-processing
Different modalities used for mapping tumor-induced tissue
changes include MR-T1, MR-T1Gd, MR-T2, and MR-FLAIR,
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which leads to varying intensity ranges. We first normalize each
modality to a standard range of values. Each MR image is pre-
processed by first clipping it at (0.2 percentile, 99.8 percentile)
of non-zero voxels to remove the outliers. Subsequently, each
modality is normalized individually using x̄i = (xi−µ)/σ where
i is the index of voxel inside the brain, x̄i is the normalized voxel,
xi is the corresponding raw voxel, and µ and σ are the mean and
standard deviation of the raw voxels inside the brain, respectively.

2.3. Network Architectures
Two different network architectures adapted from DeepMedic
(Kamnitsas et al., 2017b) and 3D U-Net (Çiçek et al., 2016) are
examined in this study. DeepMedic was initially designed for
brain lesion segmentation, e.g., stroke lesions (Kamnitsas et al.,
2015) and brain tumor lesions (Kamnitsas et al., 2016), and 3DU-
Net which is the 3D version of U-Net (Ronneberger et al., 2015)
is widely used for the volumetric image segmentation tasks (Yu
et al., 2017; Li et al., 2018; Jiang et al., 2019). More details of
network architectures are described below.

2.3.1. Modified DeepMedic
The first network architecture shown in Figure 1 is modified
from DeepMedic (Kamnitsas et al., 2017b). The number of
convolutional kernels is indicated within the white box. Batch
normalization (Ioffe and Szegedy, 2015) is used. Residual
connection (He et al., 2016) is used in the normal resolution

path, and trilinear interpolation is used in the upsampling layer
of the downsampled resolution path. The size of the receptive
field of the normal resolution path is 25 × 25 × 25, and the
size of the receptive field of the downsampled resolution path
is 19 × 19 × 19. The receptive field of downsampled resolution
path is downsampled from an image patch of size 55 × 55 ×

55 by a factor of 3 in the same center as the receptive field
of normal resolution path. The modified DeepMedic predicts
the central 9 × 9 × 9 voxels of the receptive field of normal
resolution path.

2.3.1.1. Training and test procedure
The modified DeepMedic is only trained with patches that have
approximately 50% foreground (lesion) and 50% background
to solve the class imbalance problem, and it is trained with
batch size 50. In every epoch, 20 patches are extracted from
each subject. The network is trained for a total of 500 epochs.
The weights of the network are updated by Adam algorithm
(Kingma and Ba, 2015) with an initial learning rate of l0 =

10−3 following the schedule of l0 × 0.1epoch, L2 penalty
weight decay of 10−4, and AMSGrad (Reddi et al., 2018).
A standard multi-class cross-entropy loss is used. Randomly
flipping in x-, y-, and z-axis with a probability of 50%, and
random noise are applied in the data augmentation of the
training procedure. At the test time, a sliding window scheme
of step size 9 is used to get the tumor lesion prediction

FIGURE 1 | The network architecture of modified DeepMedic. conv(3), 3× 3× 3 convolutional layer; BN, batch normalization; upsample(3), trilinear interpolation by a

factor of 3; and conv(1), 1× 1× 1 convolutional layer.
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FIGURE 2 | The network architecture of modified 3D U-Net. conv(3), 3× 3× 3 convolutional layer; GN, group normalization; D(0.3), dropout layer with 0.3 dropout

rate; maxpool(2), 2× 2× 2 max pooling layer; and conv(1), 1× 1× 1 convolutional layer.

of the test subject. Training takes approximately 6 h, and
a test for each subject takes approximately 24 s on an
Nvidia 1080 Ti GPU and an Intel Xeon CPU E5-2696 v4
@ 2.20 GHz.

2.3.2. Modified 3D U-Net
The second network architecture shown in Figure 2 is modified
from 3D U-Nets (Çiçek et al., 2016). Different colors of blocks
represent different types of layers. The number of convolutional
kernels is indicated within the white box. Group normalization
(Wu and He, 2018) is used, and the number of groups is
set to 4. Residual connection (He et al., 2016) is used in
the encoding path, and trilinear interpolation is used in the
upsampling layer.

2.3.2.1. Training and test procedure
The modified 3D U-Net is trained with randomly cropped
patches of size 128 × 128 × 128 voxels and batch size 2.
In every epoch, a cropped patch is randomly extracted from
each subject. The network is trained for a total of 300 epochs.
The weights of the network are updated by Adam algorithm
(Kingma and Ba, 2015) with an initial learning rate l0 =

10−3 following the schedule of l0 × 0.1epoch, L2 penalty weight
decay of 10−4, and AMSGrad (Reddi et al., 2018). For the
loss function, the standard multi-class cross-entropy loss with
the hard negative mining is used to solve the class imbalance
problem of the dataset. We only back-propagate the negative
(background) voxels with the largest losses (hard negative)
and the positive (lesions) voxels to the gradients. In our
implementation, the number of selected negative voxels is at
most three times more than the number of positive voxels.
Besides, data augmentation is not used for both training and
testing. At the test time, we input the entire image of size 240 ×
240 × 155 voxels into the trained 3D U-Net for each patient
to get the predicted lesion mask. Training takes approximately
12.5 h, and the test takes approximately 1.5 s per subject
on an Nvidia 1080 Ti GPU and an Intel Xeon CPU E5-
2696 v4 @ 2.20 GHz.

2.4. Incorporating Location Information
With Patch-Based Convolutional Neural
Network
The heatmaps (see Figure 3) of different brain tumor lesion sub-
regions reveal that different lesion sub-regions have different
probability occurring in different locations. The heatmaps are
generated by first registering the ground-truth lesions of 285
training subjects from the subject space to the MNI 152 1mm
space using FMRIB’s Linear Image Registration Tool (FLIRT)
(Jenkinson and Smith, 2001) from FSL, extracting the binary
masks of different types of lesion sub-regions from each subject,
and applying element-wise summation to the same type of binary
masks of each subject in the MNI 152 1mm space. However,
the patch-based convolutional neural networks (CNNs), e.g.,
DeepMedic or 3D U-Net, do not consider location information
for brain tumor segmentation. That is, the patch-based CNNs do
not know location information of the input patches.

In this study, an existing brain parcellation atlas, Harvard-
Oxford Subcortical atlas (see Figure 3), is used as location
information of the brain for the patch-based CNN. The details
of Harvard-Oxford Subcortical parcellation regions are described
in Table 1. There are two main reasons for choosing this atlas: (1)
this atlas covers more than 90% of a brain region, and (2) lesion
information and location information are converted into this
atlas (see Figure 3). The distribution in Figure 3E is calculated
by dividing the total volume of the lesion sub-regions from 285
training subjects by the total volume of the corresponding brain
parcellation in the MNI 152 space. Figure 3 shows that different
lesion sub-regions have different probabilities happening in
different parcellation regions.

Our proposed location information fusion method which
is shown in Figure 4 explicitly includes location information
as input into a patch-based CNN. First, the Harvard-Oxford
subcortical atlas is registered to the individual subject space
from MNI 152 1 mm space (Grabner et al., 2006) using FLIRT
(Jenkinson and Smith, 2001) from FSL. The registered atlas
is then split into 21 binary masks and concatenated with the
multimodal MR images as input to a patch-based CNN for both
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FIGURE 3 | Top row shows the heatmaps of different lesion sub-regions, (A): edema, (B): necrosis & non-enhancing tumor, and (C): enhancing tumor, from 285

training subjects of BraTS 2018 in the MNI 152 1 mm space. The brighter (yellow) voxel represents higher value. (D) Shows Harvard-Oxford subcortical structural atlas

(Desikan et al., 2006), and (E) the percentage of brain lesion sub-regions observed in different parcellation regions of the Harvard-Oxford subcortical atlas from 285

training subjects of BraTS 2018. The x-axis indicates the brain parcellation label ID. Regions not covered by the Harvard-Oxford subcortical atlas are in label 0.

training and test. As a result, the fused input has 25 channels. The
first four channels provide the image information, and the last 21
channels contain the location information of the brain.

It is noted that the registration involving in our research
only contain a linear (affline) transformation which has 9
degrees of freedom. In general, the registration should include a
linear transformation followed by a deformable transformation.
However, for the patient having brain lesions, a lesionmask has to
be given in the deformable transformation in order to account for
the effect of the lesion (Kuijf et al., 2013). The problem we have
here is finding the brain tumor lesion based on the multimodal
MR scan. Therefore, we are not able to use any ground truth
lesion information, and the registration only contains a linear
(affine) transformation.

2.5. Ensemble Methods
Ensemble methods aim at improving the predictive performance
of a given statistical learning or model fitting technique. The

general principle of ensemble methods is to construct a linear
combination of some model fitting methods, instead of using
a single fit of the method (Bühlmann, 2012). Ensembles have
been proven to have better performance than any single model
(Dietterich, 2000). Two-level ensemble approach, including the
arithmetic mean and boosting, is proposed in this study, and
more details of these methods are explained below.

2.5.1. Arithmetic Mean
The arithmetic mean, x̄, is the average of n values x1, x2, . . . xn,
i.e., x̄ = (x1 + x2 + . . . + xn)/n. If we have n models in our
ensemble, then the arithmetic mean P is defined by the formula:

P =
1

n

n∑

i=1

pi =
p1 + p2 + . . . + pn

n
(1)

where pi is the probability map of model i. The arithmetic mean
ensemble method reduces the uncertainties of different models.
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2.5.2. XGBoost
Boosting algorithms are widely used in machine learning to
achieve state-of-art performance. It improves the prediction of
the models by training the base learners sequentially to improve
their predecessor. There are different boosting algorithms such
as AdaBoost (Freund and Schapire, 1997; Hastie et al., 2009),
short for Adaptive Boosting, and Gradient Boosting (Friedman,
2001, 2002). AdaBoost tunes the weights for every incorrect
classified observation at every iteration while Gradient Boosting

TABLE 1 | The label ID and corresponding brain region of Harvard-Oxford

Subcortical Atlas.

Label ID Brain region

1 Left Cerebral White Matter

2 Left Cerebral Cortex

3 Left Lateral Ventrical

4 Left Thalamus

5 Left Caudate

6 Left Putamen

7 Left Pallidum

8 Brain-Stem

9 Left Hippocampus

10 Left Amygdala

11 Left Accumbens

12 Right Cerebral White Matter

13 Right Cerebral Cortex

14 Right Lateral Ventricle

15 Right Thalamus

16 Right Caudate

17 Right Putamen

18 Right Pallidum

19 Right Hippocampus

20 Right Amygdala

21 Right Accumbens

tries to fit the new predictor to the residual errors made by
the previous predictor. Both of the boosting algorithms are
generally very slow in implementation and not very scalable.
Chen and Guestrin (2016) described a scalable tree boosting
system called XGBoost which is an implementation of gradient
boosted decision trees that are efficient in run-time and space
complexity. It also supports parallelization of tree construction,
distributed computing for training very large models, out-of-core
computing for very large datasets that do not fit into memory
and cache optimization to make the best use of hardware. These
features make XGBoost ideal for our purpose of study in brain
tumor segmentation, therefore, it is used in our study.

2.5.3. Two-Level Ensemble Approach: Arithmetic

Mean and XGBoost
The ensemble of multiple identical network architectures
with different seed initializations has been proven to reduce
the uncertainty of models and improve the segmentation
performance (Lakshminarayanan et al., 2017). Moreover,
Dietterich (2000) demonstrated that the boosting algorithm has
the best performance compared to bagging and randomized
trees. Inspired by their works, we propose a two-level ensemble
approach shown in Figure 5 that averages the probability maps
from the same type of models in the first level and then boosts
the averaged probability maps from different models by using the
XGBoost algorithm in the second level. We have examined three
different classification strategies in the second level, and these
classification strategies are based on multi-class classification
and binary class classification. More details are described in
sections 2.5.3.1 and 2.5.3.2.

2.5.3.1. Multi-class classification
The multi-class classification problem refers to classifying voxels
into one of the four classes. It produces segmentation labels of
the background and different glioma sub-regions that include:
(1) the enhancing tumor, (2) the edema, and (3) the necrosis

FIGURE 4 | The proposed location information fusion method for brain tumor segmentation using a patch-based convolutional neural network.
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FIGURE 5 | The workflow of two-level ensemble approach.

& non-enhancing tumor. Since XGBoost is known to produce
better results in different machine learning problems (Nielsen,
2016), XGBoost is used in our multi-class classification problem
with the softmax function objective. The softmax function σ is
defined by

σ (z)i =
ezi

∑K
j=1 e

zj
for i = 1, . . . ,K and

z = (z1, . . . , zK) ∈ R
K .

where K is the number of classes in the classification problem.
Using the softmax objective function, we get a neural network
that models the probability of a class zi as multinominal
distribution.

2.5.3.2. Binary classifications
The multi-class classification problem can be reduced to several
binary classification problems where each binary classifier is
trained to classify voxels into two classes. There are two different
approaches, one-versus-all and one-versus-one, to perform
such a transformation. For a k-class problem, the one-versus-all
method trains k different binary classifiers where the two-class
classifier Ci learns to distinguish the class i from all the other
k− i classes.

C+ = Ci and C− = {Cj|j = 1, · · · ,K, j 6= i}

One-vs.-one approach is based on training k×(k−1)/2 classifiers,
where each classifier learns to distinguish 2 classes only.

C+ = Ci and C− = {Cj|j 6= i}

where C+ and C− are the two classes of the binary class
classification problem.

2.6. Evaluation Metrics
Two evaluation metrics, dice similarity score (DSC) and
Hausdorff distance, are commonly used in the brain tumor
segmentation problem. DSC is used to measure the similarity
of the predicted lesions and ground-truth lesions, and Hausdorff

distance is used tomeasure how far the predicted lesions are from
the ground-truth lesions. More details of these two evaluation
metrics are explained in the following sections.

2.6.1. Dice Similarity Score
Dice similarity score (DSC) is a statistic used to measure the
similarity of two sets. It is defined as

DSC =
2|G ∩ P|

|G| + |P|
(2)

where |G| and |P| are the number of voxels in the ground-truth
and prediction, respectively. DSC ranges between 0 and 1 (1
means perfect matching).

2.6.2. Hausdorff Distance
Hausdorff distance dH(X,Y) measures how far two subsets {X,Y}
of a metric space are from each other. It is defined as

dH(X,Y) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)} (3)

where d is the Euclidean distance, sup is the supremum, and inf
is the infimum. Hausdorff distance ranges from 0 to infinity (0
means perfect matching). In this study, 95 percentile of Hausdorff
distance (HD95) is used to disregard the outliers.

3. EXPERIMENTS AND RESULTS

In this section, we demonstrate the advantage of the proposed
location information fusion method and the proposed two-
level ensemble learning method. In Experiment 1, we first
examine the segmentation performance of the proposed location
information fusion method on a single model. In Experiment
2, we examine the performance of the proposed location
information fusion method on an ensemble of the same type
of models. In Experiment 3, we examine different ensemble
methods that predict the final brain tumor lesions based on the
output probability maps from DeepMedics and 3D U-Nets. In
Experiment 4, we compare the segmentation performance of the
proposed method with state-of-the-art methods. The details of
each experiment and experimental results are described in the
following sections.
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TABLE 2 | Results of the first experiment on the BraTS 2018 validation set.

Model description DSC_ET DSC_WT DSC_TC HD95_ET HD95_WT HD95_TC

DeepMedic 78.1(25.4) 89.5(6.8) 81.4(21.3) 4.21(8.19) 10.60(15.30) 9.90(20.13)

DeepMedic + BP 79.0(22.6) 89.6(6.4) 81.3(21.8) 3.78(7.23) 8.87(15.23) 6.55(6.81)

3D U-Net 74.9(25.8) 89.7(7.7) 76.6(20.3) 5.85(9.50) 4.88(4.41) 10.46(13.51)

3D U-Net + BP 76.4(25.4) 90.1(6.4) 76.9(24.4) 5.48(9.50) 4.87(6.28) 10.07(13.99)

The results are reported as mean (standard deviation). Bold numbers highlight the improved results with additional brain parcellation masks within the same type of model.

TABLE 3 | Results of the second experiment on the BraTS 2018 validation set.

Ensemble description DSC_ET DSC_WT DSC_TC HD95_ET HD95_WT HD95_TC

DeepMedic 79.7(23.6) 90.0(6.8) 81.4(22.1) 3.94(7.77) 7.44(13.36) 8.88(14.03)

DeepMedic + BP 78.4(25.3) 90.2(6.4) 81.8(21.9) 3.37(5.18) 5.64(7.53) 7.01(12.29)

3D U-Net 77.6(24.2) 90.0(9.0) 78.0(21.2) 5.01(9.22) 4.39(4.05) 9.77(13.60)

3D U-Net + BP 77.4(25.1) 90.4(6.6) 79.3(22.4) 4.25(8.31) 4.59(6.29) 9.66(14.20)

The results are reported as mean (standard deviation). Bold numbers highlight the improved results with additional brain parcellation masks within the same type of ensemble.

TABLE 4 | Results of the third experiment on BraTS 2018 validation set.

Ensemble methods DSC_ET DSC_WT DSC_TC HD95_ET HD95_WT HD95_TC

Arith. mean 78.3(25.4) 90.6(6.4) 81.3(21.8) 3.72(7.90) 4.35(6.21) 7.77(13.45)

TLMC 78.3(25.5) 90.7(6.3) 81.0(22.1) 2.81(3.55) 4.38(6.26) 7.80(13.49)

TLBC 76.6(26.8) 90.7(6.2) 82.2(21.2) 7.93(2.66) 4.39(6.27) 8.34(16.98)

TLFC 78.2(25.6) 90.8(6.1) 82.3(21.2) 2.96(3.80) 4.39(6.22) 6.91(12.64)

The results are reported as mean (standard deviation). Bold numbers highlight the best performance between different ensemble methods.

3.1. Experiment 1: Location Information
Fusion Method on a Single Model
In the first experiment, we would like to examine the
performance of the proposed location information fusion
method on a single patch-based neural network. We first train a
DeepMedic and a 3D U-Net using only multimodal MR images.
Thereafter, we train another identical DeepMedic and another
identical 3D U-Net with multimodal MR images and binary
brain parcellation masks. BraTS 2018 training set is used to train
the models with five-fold cross-validation, and the BraTS 2018
validation set is used as the test set. The experimental results are
shown in Table 2.

3.2. Experiment 2: Location Information
Fusion Method on an Ensemble
In the second experiment, we would like to examine the
performance of the proposed location information fusion on the
ensemble of DeepMedics and the ensemble of 3D U-Nets. Each
ensemble has identical network architectures with different seed
initializations, and the output of the ensemble is the arithmetic
mean from networks. We first train ensembles of DeepMedics
without additional brain parcellation masks. Thereafter, we train
ensembles of 3D U-Nets without additional brain parcellation
masks. In the end, we train another identical ensemble of
DeepMedics and another identical ensemble of 3D U-Nets with
additional brain parcellation masks. BraTS 2018 training set is

used to train the models with five-fold cross-validation, and the
BraTS 2018 validation set is used as the test set. The experimental
results are shown in Table 3.

3.3. Experiment 3: Different Ensemble
Methods
In the third experiment, we would like to exam the performance
of different ensemble methods including arithmetic mean and
two-level ensemble approaches described in section 2.5. We
first train three identical DeepMedics with additional brain
parcellation channels and different seed initializations. We also
train three identical 3D U-Nets with additional brain parcellation
channels and different seed initializations. Then, we apply
different ensemble methods on the probability maps from these
models to generate the final tumor segmentation mask. More
details of different ensemble methods are described below.

3.3.1. Experiment 3.1: Arithmetic Mean
In this experiment, the final tumor segmentation mask is
directly generated by averaging the probability maps from three
DeepMedics and three 3DU-Nets. BraTS 2018 training set is used
to train the models with five-fold cross-validation, and the BraTS
2018 validation set is used as the test set. The experimental results
are shown in Table 4.
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3.3.2. Experiment 3.2: Two-Level Ensemble:

Multi-Class Classification
In this experiment, we directly apply an XGBoost classifier on the
probability maps from three DeepMedics and three 3D U-Nets.
The input vector of the XGBoost classifier has 10 dimensions
(5-class probability maps from 2 ensembles of the same type of
models). The XGBoost classifier outputs the 5-class labels which
contain a background (label 0), enhancing tumor (label 1), edema
(label 2), and necrosis & non-enhancing tumor (label 4). BraTS
2018 training set is used to train the models with five-fold cross-
validation, and the BraTS 2018 validation set is used as the test
set. The experimental results are shown in Table 4 as TLMC.

3.3.3. Experiment 3.3: Two-Level Ensemble: Binary

Classification
In this experiment, we train three XGBoost binary classifiers on
the resulting probability maps generated from three DeepMedics

and three 3D U-Nets in the first level. During training,
each classifier uses a one-vs.-one approach to distinguish
between two binary classes. We trained three different models
namely, model_WT (whole tumor), model_TC (tumor core), and
model_ET (enhancing tumor) as shown in Figure 6.

For model_WT: C+ = CWT and C− = Cbackground

For model_TC: C+ = CTC and C− = CWT

For model_ET: C+ = CET and C− = CTC

The whole tumor region is the union of edema, non-enhancing
tumor & necrosis, and enhancing tumor, and the tumor core
regions is the union of edema and non-enhancing tumor &
necrosis. Therefore, the tumor core class is a subset class of
the whole tumor, and the enhancing tumor class is a subset
of the tumor core class. For prediction, we feed the average
probability maps from three DeepMedics and three 3D U-Nets

FIGURE 6 | The training workflow of two-level binary classification approach.

FIGURE 7 | The workflow of Fusion Classification method. For post processing step, we classify the voxels into three classes with background, whole tumor, tumor

core, and necrosis & non-enhancing tumor in decreasing order of priority. For example, if a voxel is classified into both whole tumor and tumor core, we give the final

label as that of tumor core according to the preference mentioned before.
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to the three models. The input vector has 10 dimensions (5-class
probability maps from 2 ensembles of the same type of models).
The model_WT classifies the voxels into the whole tumor and
background. Formodel_TC, we feed the probability maps of such
voxels that are classified as the whole tumor from the experiment
in section 3.3.1. For model_ET, we feed the probability maps of
such voxels that are classified as tumor core from the previous
prediction in the experiment. BraTS 2018 training set is used to

train the models with five-fold cross-validation, and the BraTS
2018 validation set is used as the test set. The experimental results
are shown in Table 4 as TLBC.

3.3.4. Experiment 3.4: Two-Level Ensemble: Fusion

Classifications
This is the final experiment to integrate the methods from the
previous experiments. We observe that while the experiment

TABLE 5 | The first three rows show the results of our proposed method and the state-of-the-art methods on the BraTS 2017 validation set, and the bottom four rows

show the results of our proposed method and the state-of-the-art methods on BraTS 2018 validation set.

DSC HD95

Methods No. of models ET WT TC ET WT TC

Kamnitsas et al. (2017a) 7 73.8 90.1 79.7 4.50 4.23 6.56

Isensee et al. (2017) 5 73.2 89.6 79.7 4.55 6.97 9.48

Proposed method 6 74.3 90.4 78.5 3.49 4.46 8.45

Myronenko (2018) 10 82.3 91.0 86.6 3.93 4.52 6.85

Isensee et al. (2018) 10 81.0 90.8 85.4 2.54 4.97 7.04

Kao et al. (2018) 26 78.8 90.5 81.3 3.81 4.32 7.56

Proposed method 6 78.2 90.8 82.3 2.96 4.39 6.91

The results are reported as mean. Bold numbers highlight the best performance in each dataset. These results are directly copied from their paper.

FIGURE 8 | Examples of predictions from single model with different inputs. Top row shows the predictions from DeepMedic, and bottom row shows the predictions

from 3D U-Net (from left to right: ground-truth lesions, prediction from single model, and prediction from single model with additional brain parcellation masks.) Red:

enhancing tumor, yellow: necrosis & non-enhancing tumor, and green: edema. ITK-SNAP (Fedorov et al., 2012) is used to visualize the MR images and lesion masks.
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in section 3.3.3 performs best for classifying voxels into the
background, whole tumor and tumor core, the experiment in
section 3.3.1 has the best performance on necrosis & non-
enhancing tumor. We use model_WT, model_TC, and multi-
class classifier model for the fusion model. For prediction, we
feed the average probability maps from three DeepMedics and
three 3D U-Nets to the three models. The input vector has 10
dimensions (5-class probability maps from 2 ensembles of the
same type of models). The model_WT classifies the voxels into
the whole tumor and background. For model_TC that is trained
to classify voxels into the whole tumor and tumor core, we feed
the probability maps of such voxels that are classified as the
whole tumor from the experiment in section 3.3.1. For necrosis
& non-enhancing tumor class, we feed the probability maps to
the multi-class classifier as in section 3.3.2. To merge the three
different predicted results, we classify the voxels into three classes
with background, whole tumor, tumor core, and necrosis & non-
enhancing tumor in decreasing order of priority. For example, if a
voxel is classified into both whole tumor and tumor core, we give
the final label as that of tumor core according to the preference
mentioned before. Therefore integrating these two gives the
effective scores as shown inTable 4 as TLFC. BraTS 2018 training
set is used to train the models with five-fold cross-validation, and

the BraTS 2018 validation set is used as the test set. The workflow
of fusion classification is shown in Figure 7.

3.4. Experiment 4: Compare to the
State-of-the-Art Methods
In this experiment, we compare the brain tumor segmentation
performance of the proposed method described in section 3.3.4
with the state-of-the-art methods on both BraTS 2017 and BraTS
2018 dataset. The quantitative results are shown in Table 5.

4. DISCUSSION AND CONCLUSION

Due to the computational limitation of training the state-of-
the-art networks using GPU, we are not able to input the
whole brain volume of size 240 × 240 × 155 to a neural
network for training purposes. Alternatively, we randomly
crop sub-regions of the brain and input these sub-regions
to the neural network for training. For the current patch-
based neural networks, we noted that these neural networks
lack location information of the brain for both training and
test procedure. That is, these patch-based neural networks
do not have the information about where the patch comes

FIGURE 9 | Examples of predictions from ensemble with different inputs. Top row shows the predictions from ensemble of DeepMedics, and bottom row shows the

predictions from ensemble of 3D U-Nets (from left to right: ground-truth lesions, prediction from ensemble, and prediction from ensemble with additional brain

parcellation masks.) Red: enhancing tumor, yellow: necrosis & non-enhancing tumor, and green: edema. ITK-SNAP (Fedorov et al., 2012) is used to visualize the MR

images and lesion masks.
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from the brain. Therefore, we proposed the location fusion
method which explicitly carries location information of the
brain into patch-based neural networks such as 3D U-Net
and DeepMedic. An existing structural brain parcellation atlas,
HarvardOxford Sub-cortical Atlas, is used as additional location
information to these patch-based neural networks in both
training and test.

From Table 2, we demonstrate that the proposed location
fusion method improves the brain tumor segmentation
performance of both a single state-of-the-art model. We also
demonstrate that the proposed location fusion method improves
the ensemble of multiple same types of state-of-the-art models in
Table 3. The proposed location fusion method yields a smoother
prediction for both 3D U-Net and DeepMedic compared to
the resulting prediction without location information (see
Figures 8, 9).

From Table 4, the proposed ensemble method, two-level
fusion classification (TLFC) method, has the best performance
compared to other ensemble methods including arithmetic
mean, two-level multi-class classification (TLMC), and two-level
binary classification (TLBC). TLFC takes advantage of TLMC and
TLBC.Moreover, Figure 10 shows the predictions of brain tumor
lesions from different ensemble methods, and TLFC method has
the best performance among other methods.

From Table 5, the proposed method has the best tumor
segmentation performance compared to other state-of-the-art
methods in BraTS 2017 with a similar number of models in
the ensemble. Also, the proposed method has a competitive
tumor segmentation performance compared to other state-
of-the-art methods in BraTS 2018 with fewer models in the
ensemble. It is noted that the model of Myronenko (2018)
requires a large amount of GPU memory (32 GB) for training,

FIGURE 10 | Examples of predictions from different ensemble methods. The top left image shows the ground-truth lesion mask, and the top middle image shows the

predictions using the arithmetic mean. The top right image shows the prediction using a two-level multi-class classification (TLMC) method. The bottom left image

shows the prediction using a two-level binary classification (TLBC) method, and the bottom right image shows the prediction using a two-level fusion classification

(TLFC) method. Red: enhancing tumor, yellow: necrosis & non-enhancing tumor, and green: edema. ITK-SNAP (Fedorov et al., 2012) is used to visualize the MR

images and lesion masks.
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and Isensee et al. (2018) trained the models with additional
public and institutional data. In addition, Myronenko (2018)
and Isensee et al. (2018) have 10 models in their ensemble
but our proposed ensemble only has six models. The proposed
ensemble has much fewer models with a better segmentation
performance compared to our previous work which has 26
models (Kao et al., 2018). The test time of our previous ensemble
takes approximately 30 min on an Nvidia 1080 Ti GPU and
an Intel Xeon CPU E5-2696 v4 @ 2.20 GHz. However, the
proposed ensemble only takes approximate 3 min on the same
infrastructure. Our previous ensemble ranked 6th out of 63
teams in BraTS 2018 segmentation challenge, and the proposed
ensemble even has a better performance and less inference time
compared to the previous ensemble.

Summarizing, in this paper we proposed a novel method
to integrate location information about the brain into a patch-
based neural network for improving brain tumor segmentation.
Our experimental results demonstrate that the proposed
location information fusion approach improves the segmentation
performance of the baseline models including DeepMedic
and 3D U-Net. Moreover, the proposed location information
fusion method can be easily integrated with other patch-based
network architectures to potentially enhance their brain tumor
segmentation performance. We also proposed a two-level fusion
classificationmethod which reduces the uncertainty of prediction
in the first level and takes advantage of different types of models
in the second level. Also, the proposed ensemble method can also
be easily integrated with more different types of neural networks.
The proposed ensemble helps the neurologists on delineating
brain tumors and improves the quality of the neuro-surgery.
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