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ABSTRACT OF DISSERTATION 

 

Quantitative Diffusion Magnetic Resonance Imaging of 

the Brain: Validation, Acquisition, and Analysis 

 

by 

 

Nathan S. White 

 

Doctor of Philosophy in Cognitive Science 

University of California, San Diego, 2010 

 

Professor Marta Kutas, Chair 

Professor Ander Dale, Co-chair 

 

 

Owing to its exquisitely sensitive contrast mechanism, diffusion magnetic resonance 

imaging is a powerful non-invasive approach for studying the microstructural properties of the 

human brain in vivo. Magnetic resonance images are made sensitive to the microscopic 

displacements of water molecules that take place in brain tissue as part of the natural, physical 

diffusion process. Tissue water is used as an intrinsic probe, revealing important clues into the 

subtle architectural features of normal and pathologic brain tissue. Typical inferences include 

the intravoxel orientation distribution of neuronal fibers and changes in diffusion resulting 
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from cell swelling in acute stroke. However, despite the many important advances made in the 

field of diffusion magnetic resonance imaging over the past decade, quantitative inference in 

the human brain remains somewhat limited due to the lack of direct quantitative validation 

against realistic biological architectures and practical limitations in data collection due to sub-

optimal design parameters and artifacts caused by patient motion during scanning. In addition, 

current methods to resolve neuronal fiber orientations are unable to disambiguate fiber 

structures at different microscopic length (size) scales. In this dissertation I present a series of 

studies addressing each of these important limitations, starting with a general real-time image-

based technique for motion correction in magnetic resonance images and ending with a series 

of studies on inferring complex fiber orientations from diffusion data, addressing issues such 

as quantitative histological validation, optimal acquisition, and improved multi-scale analysis. 
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Chapter 1 

 

Introduction 

 

1.1 Introduction 

The human brain is an immensely complex organ, containing over 10 billion neurons 

with each neuron forming roughly 10,000 connections with other neurons. Biomedical 

imaging has become a powerful approach to sort through this maze of information and provide 

insight into the intrinsically complex functional and structural properties of the brain. 

Magnetic resonance imaging (MRI) in particular is an increasingly popular imaging modality 

because it allows for non-invasive, in vivo assessment of the entire brain in a matter of 

minutes. By using the natural diffusion-driven displacements of water molecules as an 

intrinsic probe, magnetic resonance imaging of water diffusion, called diffusion MRI, 

provides researchers and clinicians with an unparalleled view of the fine architectural features 

of both normal and pathologic brain tissue.  

Yet despite the tremendous advances made in the field of diffusion MRI over the last 

decade, a number of important research questions remain unanswered. Specifically, how well 

can the microscopic displacements of water molecules, as assessed with diffusion MRI, be 

used to estimate complex neuronal fiber orientations compared with gold standard histological 

techniques, especially in regions with complex tissue geometries? Furthermore, can these 
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measures be obtained in a reasonable amount of time on today’s clinical MRI machines, and if 

so, what is the most efficient way to do so? Are there any alternative analysis strategies for 

obtaining more informative quantitative biomarkers of tissue microstructure from diffusion 

MRI measures? And finally, given the well-known practical limitations of patient head motion 

during MRI scans, especially during scans that are made sensitive to the microscopic motion 

of tissue water, are there more efficient methods for mitigating the detrimental effects of 

patient motion during MRI scans in general? The work presented in this dissertation will 

provide at least some preliminary answers to all these questions. 

 

1.2 Research Summary 

This dissertation is divided into three main parts. In Part I (Chapters 2-4) I provide a 

basic overall introduction to the field of diffusion nuclear magnetic resonance (NMR) and 

magnetic resonance imaging (MRI) (Chapter 2), the fundamental physical principles 

governing the approach (Chapter 3), and a brief synopsis of some of the most current state-of-

the-art diffusion MRI techniques (Chapter 4). Having established the requisite historical and 

technical background on the subject, in Part II (Chapter 5-7) I present the work that I view as 

the major contribution of this dissertation.  

In the first chapter of Part II (Chapter 5) my colleagues and I quantitatively compared 

and validated the extent to which complex neuronal fiber orientations can be derived from 

diffusion MRI measures using gold standard histological techniques in ex vivo rat brain tissue. 

Having validated the measures, in the next chapter (Chapter 6) we address the question of 

what is the most efficient clinical MRI scan protocol that can be used to derive these neuronal 

fiber orientations in vivo. Finally, in the last chapter of Part II (Chapter 7), my colleagues and 
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I describe a novel real-time motion compensation technique for obtaining MRI scans in vivo 

that are insensitive to patient motion during the scan acquisition.  

In the final Part III (Chapter 8) of this dissertation, I describe a novel and preliminary 

analysis strategy for diffusion MRI scans that can be used to resolve and disambiguate 

neuronal fiber orientations at various microscopic length-scales. I view this later work as an 

initial step towards bridging the gap between the classic material science application of 

diffusion NMR to quantify the morphology of various porous materials (pore sizes, spacing, 

etc), and today’s wide-spread application of diffusion MRI to resolve the orientation structure 

of brain tissue in vivo. 

 
1.3 Original Contributions 

In his doctoral dissertation at Harvard University and Massachusetts Institute of 

Technology, David Tuch wrote a wonderful brief history of diffusion nuclear magnetic 

resonance and magnetic resonance imaging, which inspired me to start with a similar 

introduction to this dissertation (Chapter 2).  

Chapter 5 was performed in conjunction with colleagues at the University of Oslo, 

Norway (Trygve B. Leergaard, Ingeborg Bolstad, and Jan G. Bjaalie), and Harvard University 

(Alex de Crespigny and Helen D’Arceuil). Alex de Crespigny and Helen D’Arceuil collected 

the original datasets, while Trygve B. Leergaard, Ingeborg Bolstad, and Jan G. Bjaalie, 

conducted the stereological analysis of the histology data. I conducted the MR image analysis 

and Trygve B. Leergaard and I shared responsibility for production of the manuscript, which 

appears in the journal PLoS One, entitled: “Quantitative Histological Validation of diffusion 

MRI Fiber Orientation Distributions”.  
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Chapter 6 is a theoretical paper conceived by my advisor (Anders Dale) and I, which 

can be found published in the journal Human Brain Mapping, entitled: “Optimal Diffusion 

MRI Acquisition for Fiber Orientation Density Estimation: An Analytic Approach”.  

Chapter 7 was performed in collaboration with colleagues at General Electric Inc. 

(Ajit Shankaranarayanan, Eric Han, and Dan Rettmann), and Stanford University (Juan 

Santos), as well as members of our own lab (Cooper Roddey and Josh Kuperman). Ther spiral 

navigator pulse-sequence and real-time communication code was written by Ajit 

Shankaranarayanan, Eric Han, Dan Rettmann, and Juan Santos. The motion tracking 

procedure was originally conceived and tested by my advisor (Anders Dale) and I. Cooper 

Roddey was responsible for the C implementation of the motion tracking code, and Josh 

Kuperman help collect much of the imaging data. I was responsible for production of the 

manuscript, which can be found in the journal Magnetic Resonance in Medicine, entitled: 

“PROMO: Real-Time Prospective Motion Correction in MRI Using Image-based Tracking”. 

Chapter 8 is an extension of the abstract I submitted to the 17th Annual Meeting of the 

International Society of Magnetic Resonance in Medicine in 2009, entitled: “Restriction 

Spectrum Imaging (RSI): A new Method for Resolving Complex Tissue Microstructures in 

Diffusion MRI”.  
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Chapter 2 

 

A Historical Note 

 

2.1 Brownian Motion 

In his seminal paper entitled “A brief account of microscopical observations made in 

the months of June, July, and August 1827 on the particles contained in the pollen of plants, 

and on the general existence of active molecules in organic and inorganic bodies”, the Scottish 

botanist Robert Brown reported observing the seemingly “random oscillatory motion” of 

pollen grains of Clarkia pulchella suspended in water when viewed under the microscope (1). 

While he initially hypothesized this peculiar behavior must somehow be specific to the male 

sexual cells of plants, similar observations made later using inorganic materials such as 

fragments of glass and very small rocks compelled him to conclude that this seemingly 

random dance was rather a general property of all particles suspended in solution. The 

physical basis of such Brownian motion remained a mystery until the mid to late 19th century, 

when a general kinetic theory of matter began to emerge, the pioneers of which included the 

minds of Rudolf Claussius, James Maxwell and Ludwig Boltzmann. Together, they proposed 

the radical idea that such Brownian motion was actually driven by thermal energy, and vis-à-

vis particle motions in solution are manifest as heat. 
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 It wasn’t until the early part of the 20th century when Albert Einstein, apparently 

unaware of Brown’s earlier observations and eager to prove the existence of all atoms, derived 

the important statistical laws governing such a kinetic theory (2). His laws, which were also 

independently formulated by Marian Smoluchowski around the same time (3), not only 

accounted for the temperature and viscosity of the solution, but also the size of the particles. In 

his work Einstein combined what was known about thermodynamics and statistical mechanics 

at the time to obtain the first experimentally testable theory for Brownian motion. Some four 

years later in 1909 the French physicist Jean Baptist Perrin performed the seminal experiments 

validating Einstein’s theory and proving once and for all the existence of atoms, work which 

later earned him the Nobel Prize in physics 1926. The macroscopic behavior of Brownian 

motion as formulated by Einstein is the physical process known today as diffusion. 

 

2.2 Diffusion NMR 

The phenomenon of nuclear magnetic resonance (NMR) was first discovered in 1946 

by the seminal works of Block, Hanson and Packard (4), and Purcell, Torrey, and Pound (5). 

Together they observed that when certain atomic nuclei1 are placed in a magnetic field, they 

begin to align with and rotate around the applied magnetic field with a frequency of precession 

proportional to the field strength, the so called “Larmor frequency”. Block, Hanson and 

Packard demonstrated how the oscillating nuclei absorb electromagnetic energy when 

delivered at the Larmor frequency, while Purcell, Torrey, and Pound demonstrated how the 

nuclei re-emit this energy when in the process of returning to their equilibrium state. Four 

years later, Hahn published a seminal paper (6) on the formation of NMR spin echos, in which 

                                                 
1 Specifically, any nucleus with an odd number of protons and or neutrons which results in an intrinsic 
magnetic moment and angular momentum called “spin”. 
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he showed how the phase incoherence of precessing nuclei in the presence of magnetic field 

inhomogeneities could be recovered using a 180° radio-frequency (RF) pulse. In so doing, 

Hahn noted that only part of the signal could be recovered due to the diffusion of spins to a 

different location along the magnetic field. Car and Purcell (7) later quantified the expected 

NMR spin echo attenuation due to discrete changes in spin position, and this was extended to 

continuous diffusion description by Torrey (8), in what is now know as the Block-Torrey 

equation.  

In 1965, Stejskal and Tanner developed an experimental framework to directly read 

out the diffusion function using a pair of pulsed gradient magnetic fields before and after 

application of Hahn’s 180° refocusing pulse (9). This opened the door for a wide range of 

studies over the next twenty years aimed at studying the molecular self-diffusion properties of 

both non-biological (10-13) and biological materials (14-17). In the early 1990’s Cory (18) 

and Callaghan (19) began to observe diffraction-like effects in porous materials at high 

diffusion wavelengths, as predicted by the original diffusion propagator formalism of Stejskal 

(11). These diffraction-like effects demonstrated how the morphology of porous materials 

(pore size, shape, etc) could be inferred through NMR “q-space” measurements (20). 

 

2.3 Diffusion MRI 

In 1973 a chemist at the State University of New York at Stony Brook named Paul 

Lautebur published a short paper in the journal Nature2 entitled “Image formation by induced 

local interactions: examples employing nuclear magnetic resonance” (21). In it, he described 

how to separate NMR signals from different spatial locations in the sample by superimposing 

                                                 
2 The paper was originally rejected by the editor for not having a sufficiently broad appeal for 
acceptance into the journal Nature. 
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a small magnetic field gradient on top of the main magnetic field. Owing to the Larmor 

principle, this procedure thus labeled the position of the nuclei with their variable resonant 

frequencies. Armed with this simple, yet elegant Fourier encoding strategy, Lautebur was able 

to demonstrate the formation of NMR images, which today are known throughout the medical 

community as magnetic resonance images, or MRIs. 

 Soon after Lauebur’s discovery, in 1977 Peter Mansfield at the University of 

Nottingham in England, developed a technique for rapid magnetic resonance imaging called 

echo-planar imaging (EPI), which required only one signal excitation per image, reducing the 

scan time by orders of magnitude (22). Then, following the formal conceptualization and 

demonstration of diffusion MRI by Taylor and Bushell (23), Denis LeBihan collected the first 

diffusion images obtained in vivo on both healthy human subjects and patients with 

neurological disorders using a whole-body 0.5T scanner (24). Years later Michael Moseley 

and others (25,26) at the University of San Francisco published a historical paper which 

demonstrated the important clinical significance of diffusion MRI in detecting early cerebral 

infarct associated with acute stroke.  

 

2.4 References 

1. Brown R. A brief account on microscopical observations on the particles contained in 
the pollen of plants and on the general existence of active molecules in organic and 
inorganic bodies. 1828. 

2. Einstein A. Über die von der molekularkinetischen Theorie der Wärme geforderte 
Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 
1905;322(8):549-560. 

3. Smoluchowski M. Zur kinetischen Theorie der Brownschen Molekularbewegung und 
der Suspensionen. Ann Phys 1906;326(14):756-780. 

4. Bloch F, Hansen WW, Packard M. Nuclear induction. Physical Review 1946;69(3-
4):127. 



9 
 

5. Purcell EM, Torrey HC, Pound RV. Resonance Absorption by Nuclear Magnetic 
Moments in a Solid. Physical Review 1946;69(1-2):37. 

6. Hahn EL. Spin Echoes. Physical Review 1950;80(4):580. 

7. Carr HY, Purcell EM. Effects of Diffusion on Free Precession in Nuclear Magnetic 
Resonance Experiments. Physical Review 1954;94(3):630. 

8. Torrey HC. Bloch Equations with Diffusion Terms. Physical Review 
1956;104(3):563. 

9. Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a 
time-dependent field gradient. The Journal of Chemical Physics 1965;42(1):288-292. 

10. Woessner DE. NMR spin-echo self-diffusion measurements on fluids undergoing 
restricted diffusion. J Phys Chem 1963;67(6):1365-1367. 

11. Stejskal EO. Use of spin echoes in a pulsed magnetic-field gradient to study 
anisotropic, restricted diffusion and flow. The Journal of Chemical Physics 
1965;43(10):3597-3603. 

12. Tanner JE, Stejskal EO. Restricted self-diffusion of protons in colloidal systems by 
the pulsed-gradient, spin-echo method. The Journal of Chemical Physics 
1968;49(4):1768-1777. 

13. Murday JS, Cotts RM. Self-Diffusion Coefficient of Liquid Lithium. The Journal of 
Chemical Physics 1968;48(11):4938-4945. 

14. Tanner JE. Self diffusion of water in frog muscle. Biophysical Journal 
1979;28(1):107-116. 

15. Finch ED, Harmon JF, Muller BH. Pulsed NMR measurements of the diffusion 
constant of water in muscle. Arch Biochem Biophys 1971;147(1):299-310. 

16. Cleveland G, Chang D, Hazlewood C, Rorschach H. Nuclear magnetic resonance 
measurement of skeletal muscle: anisotrophy of the diffusion coefficient of the 
intracellular water. Biophysical Journal 1976;16(9):1043-1053. 

17. Cooper RL, Chang DB, Young AC, Martin CJ, Ancker-Johnson B. Restricted 
Diffusion in Biophysical Systems: Experiment. Biophysical Journal 1974;14(3):161-
177. 

18. Cory DG, Garroway AN. Measurement of translational displacement probabilities by 
NMR: an indicator of compartmentation. Magn Reson Med 1990;14(3):435-444. 

19. Callaghan, Macgowan, Packer, Zelaya FO. High-resolution q-space imaging in porous 
structures. Journal of magnetic resonance 1990;90:177-182. 



10 
 

20. Callaghan PT, Coy A, MacGowan D, Packer KJ, Zelaya FO. Diffraction-like effects 
in NMR diffusion studies of fluids in porous solids. Nature 1991;351(6326):467-469. 

21. Lauterbur PC. Image formation by induced local Interactions: examples employing 
nuclear magnetic resonance. Nature 1973;242(5394):190-191. 

22. Mansfield P. Multi-planar image formation using NMR spin echoes. Journal of 
Physics C: Solid State Physics 1977;10(3):L55-L58. 

23. Taylor DG, Bushell MC. The spatial mapping of translational diffusion coefficients by 
the NMR imaging technique. Physics in Medicine and Biology 1985;30(4):345-349. 

24. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR 
imaging of intravoxel incoherent motions: application to diffusion and perfusion in 
neurologic disorders. Radiology 1986;161(2):401-407. 

25. Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, 
Wendland MF, Weinstein PR. Early detection of regional cerebral ischemia in cats: 
comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med 
1990;14(2):330-346. 

26. Moseley ME, Kucharczyk J, Mintorovitch J, Cohen Y, Kurhanewicz J, Derugin N, 
Asgari H, Norman D. Diffusion-weighted MR imaging of acute stroke: correlation 
with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR 
Am J Neuroradiol 1990;11(3):423-429. 

 
 



11 
 

Chapter 3 

 

Diffusion MRI Principles 

 

3.1 Introduction 

In diffusion MRI (dMRI), the microscopic translational motion of water molecules 

occurring as part of the physical diffusion process is used as an intrinsic probe that can reveal 

fine geometric and microstructural features of both normal and diseased tissue. In this chapter, 

I provide a brief review of the basic physical principles of dMRI, starting with molecular 

diffusion physics and ending with the classic MR experiment through which diffusion is 

measured, namely the pulsed field gradient spin echo (PGSE) experiment of Stejskal and 

Tanner (1). The concept of the “diffusion coefficient” and “diffusion propagator” is introduced 

as well as the distinction between “hindered” and “restricted” diffusion processes in neural 

tissue. Terms such as the “b-value” and “q-space” are also introduced. 

 

3.2 Molecular Diffusion Physics 

3.2.1 Diffusion coefficient 

The basic statistical laws of Brownian motion were laid out in the early 20th century 

with the seminal works of Einstein (2) and Smoluchowski (3). Together, albeit through 
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different means, they introduced the important statistical concept of the “displacement 

distribution” of diffusing particles. The displacement distribution is a macroscopic descriptor 

of the diffusion process that quantifies the statistical likelihood of observing a given particle 

displacement over some finite diffusion time Δ. They showed that in a free medium, the 

displacement distribution is Gaussian with a mean-square displacement given by 

 

 2 2r dD= Δ , [3.1] 

 

where { }1,2,3d =  is the physical dimension of the diffusion space, and D is the classical 

diffusion coefficient appearing in Fick’s first law (4). The diffusion coefficient takes into 

account the temperature and viscosity of the medium as well as the mass of the particles on 

their average displacement. The Einstein-Smoluchowski relation in Eq. [3.1] asserts that if 

one were to release all the particles at some origin in three-dimensional space (d = 3) at time 

zero, after some time Δ, one can expect to find about 68% of them (or one standard deviation) 

within a sphere of radius 6r D= Δ , centered at the origin. Note that the physics of diffusion 

makes no distinction between the diffusing particles and the suspended medium, and thus the 

same diffusion theory applies for particles diffusing in their own medium, such as water 

diffusing in water – a process known as self-diffusion. 

 

3.2.2 Water diffusion in neural tissue 

At normal brain temperatures (37° C), the diffusion coefficient D of free water is 

approximately 3 × 10-3 mm2 s-1, which translates into a root mean-squared displacement r 

along one dimension of approximately 17 μm in 50 ms. However, in neural tissue, during their 
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diffusion-driven displacements, water molecules constantly collide with, bounce off, and 

interact with various obstacles, such as neuronal fibers, cell membranes, and large 

macromolecules. The net effect of these obstacles is to not only reduce their overall root 

mean-squared displacement compared to free water, but to cause their displacement 

distribution to vary as a function of direction in which it is measured. Thus, while free water 

diffusion is isotropic, water diffusion in neuronal tissue is anisotropic with a displacement 

distribution that is no longer Gaussian. Yet it is this complex diffusion behavior and 

directional anisotropy that ultimately provides the inferential power through which subtle 

geometric and microstructural features can be derived from the diffusion measures. That is to 

say, if the water displacement distributions were trivial, they wouldn’t carry much information 

about their local environment. 

 

3.2.3 Hindered and restricted diffusion 

A single volume element (voxel) in a typical diffusion MR image is on the order of 

~10-30 mm3, and will therefore contain thousands if not hundreds of thousands of cells and 

various tissue components depending on its location in the brain. As mentioned above, water 

diffusion in this space is highly complex and will depend on many factors including the 

viscosity, composition, geometry, and permeability of each compartment (axons, dendrites, 

cell bodies, etc.). At very short times scales, viscosity and composition play the dominant role 

in the diffusion displacements, while at long time scales geometry and permeability start to 

dominate, as the diffusing molecules are allowed time to probe their environment. It is 

generally thought that the reduced mean-squared displacement of water molecules in neural 

tissue compared to free water can be attributed to increased viscosity, macromolecular 

crowding, and restriction effects for intracellular water (5)  
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Figure 3.1. Diffusion in biological tissue is impeded by tissue components. In the extracellular space 
(red), tissue components provide an overall hindrance to water diffusion resulting in an increased 
tortuosity of their paths. In the intracellular space (blue), water diffusion is mainly restricted by cell 
membranes, although some effect of exchange between the compartments may persist.  
 

and increased tortuosity effects for extracellular water (6-8). An increased tortuosity to water 

diffusion in the extracellular space is consistent with the view that cellular components 

provide an overall hindrance to diffusing molecules in this space, rather than a restriction, 

which makes sense given the prevailing notion of the brain’s extracellular space as an 

important communication channel between nerve cells allowing water, nutrients, electrolytes, 

etc. to navigate between cells without getting trapped per se. Cell membranes on the other 

hand provide restrictions to diffusing water such that their mean-squared displacement 

becomes invariant to the diffusion time at long Δ (neglecting for the moment the effect of 

exchange). Thus, at long Δ, the mean-squared displacement of intracellular water provides 

information on compartment sizes (9), and has been used as a surrogate measure of axon 

diameters (10). However, so far, evidence of restricted diffusion in vivo remains elusive 

(11,12), which may be due in part to the effects of exchange (12) and in part due to hardware 

limitations of most clinical MRI scanners. 
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Figure 3.2. Stejskal-Tanner pulsed gradient spin echo (PGSE) experiment. 
 

3.3 Diffusion MRI Measurement 

3.3.1 Pulsed gradient spin echo experiment 

The classic diffusion MRI experiment is the pulsed gradient spin echo (PGSE) 

experiment pioneered by Stejskal and Tanner in 1965 (1). The basic idea is to magnetically 

label the hydrogen protons (spins) carried by water molecules at some initial time zero and 

then try to undo the effects of the label at some later time Δ. The extent to which the label 

can’t be reversed is related to their net displacement, and thus can be used to measure the 

apparent diffusion coefficient (ADC) in tissue. The term “apparent diffusion coefficient” was 

originally introduced by Le Bihan (13) to highlight the fact that the measured diffusion 

coefficient in neural tissue may include contributions from other biological processes such as 

perfusion.  

To measure diffusion, the PGSE experiment builds on the classic Hahn spin-echo 

sequence (14) to include a pair of gradient pulses with a magnitude G and duration δ before 

and after the 180° refocusing RF pulse (Fig 3.2). After an initial 90° pulse excites the spins 

into phase (Fig. 3.3a), the first gradient pulse is applied, which encodes the position of the 

spins along the gradient with a particular phase offset relative to each other (Fig. 3.3b).  
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Figure 3.3. Spin phase distribution for the PGSE experiment during three hypothetical situations: 1) no 
diffusion (top row), 2) diffusion parallel to the applied diffusion gradients (middle row), and 3) 
diffusion perpendicular to the applied diffusion gradients (bottom row). Only diffusion parallel to the 
gradients during the diffusion time Δ result in a net phase dispersion and an associated signal 
attenuation. 
 

Then, the spins are allowed to diffuse, during which time a 180° pulse is used to invert their 

phase and set up the formation of a spin echo (Fig. 3.3c). However, prior to the echo readout, 

and at time Δ after the start of the first gradient pulse, a second gradient pulse is applied with 

same magnitude and duration as the first gradient pulse (Fig. 3.3d). This second pulse will 

“rewind” the phase of the first, provided the spins remained in their original location at the 

time of encoding. If not, and the spins moved incoherently (i.e. diffused) to a different location 

along the gradient, then a net phase incoherence will result, reducing the echo amplitude and 

causing a net signal attenuation. Note that a coherent flow along the gradient would result in a 

net phase offset, rather than an overall phase dispersion. Note also that the echo attenuation 

results only from the vector component of diffusion that takes place along the gradient 

direction (Fig 3.3).  
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The degree of signal attenuation for a single isotropic Gaussian spin ensemble with 

diffusion coefficient D is given by the well-known Stejskal-Tanner equation (1) 

 

 ( )2 2 2 3
0/ G D bDS S e eγ δ δ− Δ− −= = , [3.2] 

 

where 0/S S  is the normalized signal attenuation, 0S  is the signal measured in the absence of 

any gradients (G = 0), γ is the gyromagnetic ratio of protons, and ( )2 2 2 3b Gγ δ δ= Δ −  is 

called the diffusion weighting factor, or “b-value” (13). Conceptually, the b-value controls the 

overall degree of diffusion sensitivity (expected degree of signal loss), which is dependent on 

the strength of the initial phase labeling 2 2 2Gγ δ , and the effective time allotted for the spins 

to diffuse ( )/ 3δΔ − . 

 

3.3.2 Fourier relationship and the ensemble average propagator 

The classic Stejskal-Tanner equation in Eq. [3.2] allows one to relate the signal 

attenuation to the diffusion coefficient of a Gaussian diffusing ensemble of spins through use 

of the b-value. However, recall that the Gaussian assumption can easily be violated in 

neuronal tissue due to restriction effects and heterogeneity of tissue components. Recognizing 

the importance of generalizing their result to the more general case of non-Gaussian diffusion, 

Stejskal-Tanner also provided an elegant relationship between the spin displacement 

probability density function ( ),P r Δ , also called the “ensemble average propagator” to the 

normalized signal attenuation (1) 
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 ( )0/ , ,i GrS S P r e drγδ= Δ∫  [3.3] 

 

where ( ),P r Δ  is the probability a spin will experience a net displacement r in time Δ. The 

average propagator in Eq. [3.3] makes no assumptions on the form of the diffusion process, 

and reduces to the classic Stejskal-Tanner in Eq. [3.2] when the spin displacement distribution 

is Gaussian. 

 

3.3.3 q-Space formalism 

Building on the classic pulsed-field gradient spin-echo (PGSE) experiment of Stejskal 

and Tanner (1), Callaghan (15) and Cory and Garroway (16) proposed to rewrite Eq. [3.3] as a 

Fourier transform (F) with respect to the reciprocal wavevector ( ) 12q Gγ δ π −=   

 

 
( ) ( )

( ){ }

2
0/ ,

, .

i q rS q S P r e dr

F P r

π− ⋅= Δ

= Δ

∫  [3.4] 

 

This allows one to conceptualize the acquired data as a “q-space” image of the displacement 

distribution, whose reconstruction can be obtained through simple Fourier inversion of the 

normalized diffusion signal. However, the Fourier relationship in Eq. [3.3] relies on a few key 

assumptions. First, the width of the gradient pulses δ is considered to be infinitesimally short, 

such that the area of the gradient pulse is time-independent and can be approximated as Gδ. 

This condition is called the “narrow pulse field approximation”. Second, the diffusion time Δ 

must be sufficiently longer than δ (Δ>>δ), such that nearly all the spin diffusion takes place 

during the diffusion time and not during the gradient pulses (cf. Fig 3.2). These assumptions 
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will be called into question in Chapter 4 when reviewing certain diffusion MRI analysis 

techniques. 
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Chapter 4 

 

Diffusion MRI Techniques 

 

4.1 Introduction 

Diffusion in biological tissue is a complex process. Equally complex is the process of 

inferring biological information from diffusion MRI (dMRI) measurements. In this chapter, I 

provide a brief overview of some of today’s current state-of-the-art dMRI techniques, what 

they purport to measure, and some of their advantages and disadvantages. The main goal of 

this chapter is to provide the requisite background into the specific techniques referenced in 

the remaining chapters of this dissertation (Chapters 5-8), as well as to provide the motivation 

for such work. 

 

4.2 Diffusion MRI Techniques 

Generally speaking, most dMRI techniques fall within one of two categories. The first 

category of methods attempt to characterize some aspect of the diffusion process, either 

through measurement of the water displacement probability density function (PDF), also 

called the ensemble average propagator, or through measurement of the apparent diffusion 

coefficient (ADC). These methods can be either model-free or model-based. The second 

category of methods attempt to estimate microstructural features directly through application 
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of some type of biophysical model for water diffusion in neural tissue. Below I review some 

popular techniques in both categories. 

 

4.2.1 Model-free methods 

4.2.1.1 q-Space imaging (QSI) 

Building on the classical pulsed gradient spin echo experiment (PGSE) of Stejkal and 

Tanner (1), Callaghan (2) and Cory and Garroway (3) proposed the q-space framework to gain 

insight into the microscopic diffusion properties of complex materials. q-Space imaging (QSI) 

is a model-free (unbiased) method for obtaining the water displacement probability density 

function (PDF) through Fourier inversion of the normalized diffusion signal, without recourse 

to a mathematical model for the displacements. It was observed early on that the “diffraction” 

peaks of the q-space signal and the reconstructed displacement PDF for reflecting molecules 

trapped within simple geometries, such as spheres and cylinders, may (at sufficiently long Δ) 

be used to derive information on the size and shape of the confinement (4-6). Kuchel and co-

workers (7) found similar diffraction-like effects in suspensions of human red blood cells, 

which were indicative of their cell diameters and intracellular spacing. However, the 

diffraction peaks were not as sharp as in other porous materials, most likely due to the 

variability of cell sizes and the effects of exchange between intracellular and extracellular 

compartments. Diffraction-like peaks resulting from restricted diffusion have yet to be 

observed in vivo, but King et al. (8,9) and Assaf et al. (10) demonstrated that other quantities 

derived from the displacement PDF, such as the root mean-squared displacement or 

probability of zero displacement still reveal important structural parameters of CNS tissue, 

such as the compartment size. Today, there remains growing interest in using QSI for studying 

spinal cord trauma (11,12) and multiple sclerosis (13,14). 
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The main limitation of q-space imaging is an experimental one. Recall the Fourier 

relationship between the displacement PDF and normalized diffusion signal requires the 

diffusion sensitizing gradients have an infinitesimally short duration δ (the “narrow pulse field 

approximation”), and that all the spin diffusion takes place during the diffusion time Δ, rather 

than during the gradient pulses themselves, i.e. δ<<Δ (cf. Chapter 3). This subsequently 

requires very large amplitude gradient pulses with rapid rise times that even the most 

advanced whole-body (head) gradient systems cannot provide. For this reason, the classic q-

space framework is primarily limited to ex vivo applications on small bore animal scanners 

with powerful gradient coils. 

 

4.2.1.2 Diffusion spectrum imaging (DSI) 

Diffusion spectrum imaging (DSI) (15) is a model-free technique closely related to 

conventional QSI, but adapted for three-dimensional (3D) in vivo applications on clinical 

scanners. In DSI, the diffusion data are acquired on a Cartesian grid in q-space, and the 3D 

water displacement PDF, or “displacement spectrum”, is reconstructed for each voxel using 

the inverse Fourier transform. Rather than use the reconstructed PDF for estimating 

microstructural features, it is often integrated in the radial direction to obtain a measure that 

reflects the overall likelihood of water diffusion along any arbitrary solid angle in 3D space. 

This derived quantity, called the water displacement orientation distribution function (ODF) 

(16) is often used as a surrogate measure of neuronal fiber orientations (15), and is gaining 

popularity for in vivo white matter fiber tracking applications (17).  

Similar to QSI, the main advantage of DSI is that it provides a model-free description 

of the diffusion process without recourse to a mathematical model or prior description of the 

water displacement function. However, in order to resolve the displacement spectrum, DSI 



24 
 

requires collecting hundreds of images on a 3D Cartesian lattice in q-space, which increases 

scan time significantly (several hours for whole brain coverage), and precludes its application 

for routine clinical use. Also, at a more fundamental level, DSI applies the formalism of 

conventional QSI without satisfying any of its essential requirements. For example, it’s not 

uncommon for a typical DSI acquisition to have relatively long gradient pulses (δ≈50ms) that 

fill up almost the entire diffusion time, i.e. Δ≈δ. This means that essentially all the molecular 

spin diffusion takes place during the gradient encoding, resulting in a displacement spectrum 

that reflects a quantity more in line with the center-of-mass propagator (18), rather than the 

ensemble average propagator. Deriving microstructural information from the displacement 

spectrum is therefore complicated and warrants careful interpretation (19). With that said, in 

light of the fact that the center-of-mass propagator can be viewed as a convolved (smoothed) 

version of the ensemble average propagator (18), the course-scale orientation structure of the 

displacement spectrum may still be well preserved, and thus the peaks of the ODF may still 

reflect the general orientation structure of the tissue. 

 

4.2.1.3 q-Ball imaging (QBI) 

q-Ball imaging (QBI) is a model-free approach for recovering the diffusion ODF 

using measurements collected on the sphere in q-space (20). Such spherical acquisitions, also 

called high angular resolution diffusion imaging (HARDI) acquisitions, require far fewer 

measurements compared with the lattice sampling of DSI, and thus can reduce the scan time 

significatly. As such, the q-ball technique is generally considered more clinically applicable 

compared with DSI. While the original q-ball technique computes the ODF numerically (20), 

several recent works (21-24) have used spherical harmonic basis functions to compute the 

ODF analytically, resulting in a solution that is much faster and more robust to measurement 
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noise. Furthermore, by truncating the spherical harmonic series and setting an upper limit to 

the desired angular frequency of the recovered ODF, more specific and efficient reduced 

spherical encoding strategies can be performed. One important limitation of QBI is that the 

displacement spectrum itself is not measured, only its angular information via the diffusion 

ODF, and thus inferring quantitative microstructural parameters of the tissue is limited.  

 

4.2.1.4 Spherical harmonics (SH) 

Spherical harmonic (SH) basis functions have also been used to provide a model-free 

description of the intravoxel apparent diffusion coefficient (ADC) (25,26). Similar to other 

model-free approaches, the advantage of using a spherical harmonic representation is that it 

makes no prior assumption on the three-dimensional shape of the ADC, which may become 

quite complex in voxels containing multiple fiber orientations. However, although this method 

is classified as being model-free, implicit in the assumption of reconstructing the ADC (albeit 

with any arbitrary shape), is that the water displacement distribution is treated as Gaussian 

when measured along an arbitrary solid angle in 3D. This Gaussian assumption is clearly 

violated if the diffusion measurements are sensitive enough (i.e. with sufficient diffusion 

weighting) to pick up the slow diffusing water component in the intracellular space which is 

non-Gaussian due to restricted diffusion (cf. Chapter 3). 

 

4.2.2 Model-based Methods 

4.2.2.1 Diffusion tensor imaging (DTI) 

Diffusion tensor imaging (DTI) (27) is by far the most popular diffusion MRI 

technique used today. As its name suggests, DTI is a model-based technique that posits a 

single 3D Gaussian distribution for the ADC, such that an effective diffusion tensor can be 
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estimated in each voxel. In regions of coherently organized microstructure with a high degree 

of diffusion anisotropy, such as the myelinated axons of large white matter fiber bundles (28), 

the principle eigenvector of the reconstructed tensor is a reliable indicator the principle mode 

of orientation. This observation opened the door for a whole new field of study aimed at 

mapping white matter fiber tracks throughout the brain (29,30). Scalar quantities derived from 

the tensor eigenvalues, such as the fractional anisotropy (FA) and mean diffusivity (31,32) 

also provide an important rotationally invariant scalar description of the diffusion process 

within voxels. These measures have found widespread application, from studying white matter 

deficits associated with various psychiatric disorders such as Schizophrenia (33-35), 

Alzheimer’s disease (36,37), and addiction (38,39), to identifying tissue damage associate 

with the acute and chronic stages of stroke (40-42) and traumatic brain injury (43,44). 

Despite its growing popularity and widespread acceptance in the field, DTI is limited 

by the simplifying assumption of a single Gaussian diffusing component in each voxel. Not 

only is the Gaussian model inadequate to model the slow and fast diffusing components 

resulting (presumably) from the intracellular and extracellular space, respectively, but a single 

tensor cannot capture the complex orientation structure present in heterogeneous tissue, for 

example in regions where white matter fiber bundles cross. 

 

4.2.2.2 Multi-tensor imaging 

Multi-tensor imaging, or the multi-tensor model, is a natural extension to DTI which 

allows for a finite mixture of diffusion tensors to characterize the intravoxel ADC (16,45). The 

obvious advantage of multi-tensor imaging is it allows for two or more Gaussian diffusing 

components to be recovered, and therefore can be used to resolve or separate the orientations 

of crossing white matter fiber tracks (16,46). 



27 
 

 The main disadvantage of the multi-tensor, or Gaussian mixture model, is the number 

of mixture components must be specified a priori, although some work have been performed 

using various information criterion to help with the model selection problem (47,48).  

 

4.2.2.3 Spherical deconvolution (SD) 

Spherical deconvolution (SD), first purposed by Tournier and colleagues (49) in 2004, 

is a novel model-based analysis technique for dMRI that is becoming increasingly popular in 

recent years. Rather than try to model the ADC explicitly, in SD the signal is modeled as 

stemming from an unknown distribution of fibers, each with a fixed three-dimensional 

Gaussian ADC. Thus, the diffusion signal can be viewed as the convolution of the neuronal 

fiber orientation distribution (FOD) with the expected signal response from a single 

“canonical” fiber, or bundle of fibers. This is a slight, but important interpretive shift from 

previous dMRI techniques, in that the quantity of interest, i.e. the fiber orientation distribution, 

is estimated directly from the data, rather than hypothesized from the peaks of the ADC or 

ODF.  

 Various techniques for estimating the FOD via spherical deconvolution or related 

approaches exist today (21,50-54). Recent work also suggests that the FOD may outperform 

the ODF for fiber tracking applications (55), which may not be surprising in light of the view 

that the ODF is a convolved or “smoothed” version of the FOD (21,55). One disadvantage of 

the deconvolution approach is that the response function must be chosen a priori, although 

various data driven approaches for simultaneous estimation of the response function 

parameters and the FOD do exist (21,56). However, all these approaches make the assumption 

that the fiber distribution is composed of fiber elements with identical Gaussian diffusion 

characteristics, regardless of what that might be. However, the Gaussian assumption of water 
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diffusion for a single canonical nerve fiber does not hold under certain experimental 

conditions where the measurements become sensitive to the restricted water pool inside the 

cell. 

 

4.2.2.4 CHARMED model 

Assaf et al. (57) proposed a “composite hindered and restricted model” (CHARMED) 

for the diffusion signal in white matter, where water in the extra- and intra-axonal space are 

modeled as Gaussian (hindered) and non-Gaussian (restricted), respectively. The CHARMED 

model assumes Neuman’s analytic approximation (58) for restricted spins in cylinders under 

the condition where the narrow pulse field approximation of the q-space signal is violated (cf. 

Chapter 3). The advantage of CHARMED is that by fitting the model for restricted spins, 

inferences on the axon diameters can be extracted, a feature that incorporated into their new 

technique called “Axcaliber” (59). However, the Axcaliber method has only been applied ex 

vivo using small bore systems with extremely powerful gradient coils, and thus it remains 

unclear to what extent these findings will translate to the in vivo situation. The most recent 

study employing CHARMED on the human brain in vivo, showed the ability to separate 

hindered and restricted diffusion components along with their orientations, but did not use the 

data to infer axon diameter distributions (60). 

 
4.3 Present Limitations and Motivation 

There has growing interest in the field of diffusion MRI to resolve quantitative 

measures of tissue microstructure non-invasively. Of particular interest presently, is to use 

high dimensional diffusion MRI data to extract neuronal fiber orientation distributions (FOD) 

throughout the brain. While many promising methods have been purposed to estimate FODs 
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from diffusion measures, direct quantitative validation of the results remain missing. This lack 

of quantitative validation is addressed in Chapter 5 of this dissertation. Furthermore, provided 

diffusion MRI-derived FOD measures provide an accurate characterization of the underlying 

histoarchitecture, it is presently unclear how to optimize the experimental scan protocol on a 

clinical scanner to maximize the statistical efficiently for deriving the FODs. This is addressed 

in Chapter 6 of this dissertation. As all in vivo MRI applications are ultimately limited by 

patient motion, especially when sensitized to the microscopic displacements of water 

molecules as in diffusion MRI, a robust and efficient method to correct for these motion 

artifacts is highly desired. In Chapter 7 of this dissertation I describe a novel and general real-

time method for obtaining motion insensitive MRI scans. Finally, in Chapter 8 of this 

dissertation I present some preliminary results of a novel method for deriving FODs at 

different microscopic length scales, addressing the assumption of a fixed scale ADC used by 

current spherical deconvolution methods. 
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Chapter 5 

 

Histological Validation of Fiber 

Orientation Distributions 

 

5.1 Abstract 

Diffusion MRI (dMRI) is widely used to measure microstructural features of brain 

white matter, but commonly used dMRI measures have limited capacity to resolve the 

orientation structure of complex fiber architectures. While several promising new approaches 

have been proposed, direct quantitative validation of these methods against relevant 

histological architectures remains missing. In this study, we quantitatively compare neuronal 

fiber orientation distributions (FODs) derived from ex vivo dMRI data against histological 

measurements of rat brain myeloarchitecture using manual recordings of individual myelin 

stained fiber orientations. We show that accurate FOD estimates can be obtained from dMRI 

data, even in regions with complex architectures of crossing fibers with an intrinsic orientation 

error of approximately 5-6 degrees in these regions. The reported findings have implications 

for both clinical and research studies based on dMRI FOD measures, and provides an 

important biological benchmark for improved FOD reconstruction and fiber tracking methods. 



36 
 

5.2 Introduction 

Diffusion magnetic resonance imaging (dMRI) (1,2) is a powerful tool increasingly 

applied in clinical and research settings for investigating structural properties of biological 

tissue in vivo (3,4). The basic concept of dMRI is to quantify the microscopic self diffusion of 

water along prescribed directions in three-dimensional (3D) space using a series of diffusion 

sensitive MR images (5). In biological tissue, the diffusion-driven displacements of water 

molecules are impeded by intra- and extra-cellular tissue components (6), and therefore their 

measured displacement distributions provide unique microstructural and architectural 

information in both normal and pathologic brain tissue (7).  

The standard dMRI method is diffusion tensor imaging (DTI) (8), which uses a single 

3D Gaussian distribution model for the measured apparent diffusion coefficient (ADC) in each 

imaging voxel. The shape and orientation of the Gaussian distribution is fully specified by its 

covariance matrix, or diffusion tensor (DT). In coherent, densely packed, white matter fiber 

bundles, the direction of fastest diffusion, given by the principal axis (or primary eigenvector) 

of DT, points along the main axis of the fiber bundle and is commonly used to map the 

trajectory of white matter fiber tracts in the brain (9-11). However, while the orientation of the 

DT has been validated in large fiber bundles with coherent fiber orientations in brain (12-15) 

and myocardial tissues (14,16,17) the tensor model cannot be used to resolve multiple fiber 

bundles within voxels containing more than one principal direction (18). Such complex fiber 

architectures frequently occur both in grey and white matter regions containing crossing or 

branching fiber tracks, and as a consequence of partial volume effects when different 

neighboring tissue architectures are included in the same voxel. In both cases, the ADC will 

have multiple diffusion peaks and the DT no longer provides an accurate mathematical 

description of the apparent diffusion patterns.  
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This limitation of DTI has prompted numerous efforts to develop dMRI techniques 

capable of resolving complex fiber architectures within voxels. Diffusion spectrum imaging 

(DSI) (19) is a popular model-free method that applies the classical formalism of “q-space” 

theory (20,21) to recover the three-dimensional (3D) diffusion propagator, or displacement 

spectrum in each voxel. The orientation structure of the diffusion propagator can be revealed 

by summing the propagator in the radial direction, yielding a measure that quantifies the 

overall likelihood of water diffusion in a given direction in 3D space. This derived function, 

called the water diffusion orientation distribution function (ODF) can be used as a surrogate 

measure of complex fiber orientations within voxels (19,22). A related model-free method 

called q-ball imaging (QBI) (23) provides an alternative approach for recovering the diffusion 

ODF in each voxel using less time intensive and reduced encoding (spherical) diffusion 

acquisition protocols.  

While DSI and QBI are established model-free techniques for recovering important 

aspects of the water diffusion function in tissue (through measurement of the diffusion 

propagator or ODF), they do not provide a direct quantitative description of the underlying 

distribution of fibers or the intrinsic diffusion properties of these fibers (24). This additional 

level of inference requires a biophysical model for the diffusion properties of the tissue fibers. 

One popular model-based method is to model the diffusion function of the neuronal fibers 

with a single diffusion tensor, where the parallel and perpendicular diffusivity of the tensor is 

fixed for all fibers within the voxel. Under this model, the intrinsic neuronal fiber orientation 

distribution (FOD) can be estimated via spherical deconvolution of the diffusion signal with a 

tensor response function (24-29) or using more sophisticated Bayesian methods (30,31). 

Similar to the water diffusion ODF, the peaks of the FOD can reveal the orientation structure 

of complex fiber architectures within voxels and is gaining popularity for use in fiber tracking 
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applications (25,32). Yet another model-based approach is to impart a composite model for the 

restricted and hindered water inside and outside the myelinated axons to obtain estimates of 

white matter fiber orientations (33) and diameter distributions (34,35) within voxels.  

To date, validation of the orientation structure of both the water diffusion ODF and 

underlying FOD have primarily involved numerical simulations in conjunction with 

qualitative comparison with known anatomical features (25-29,36-38), and comparisons with 

ex vivo biological (19,39-41) and non-biological (39,42-44) diffusion phantoms. Thus, there is 

a lack of direct quantitative validation against realistic biological fiber architectures, and this 

poses an important limitation to the further development of improved FOD methods and 

studies which seek to apply these methods for research and clinical purposes. 

To amend this, we here quantitatively compare FOD measures derived from ex vivo 

dMRI data against histological measures of rat brain myeloarchitecture. We conclude that 

FOD measures derived from tomographic dMRI data provide an accurate characterization of 

underlying myelinated fiber orientation distributions, even in regions with complex fibers 

architectures where the application of DTI is limited. 

 

5.3 Methods 

5.3.1 Material and data acquisition 

Adult male Sprague-Dawley rats were anesthetized (ketamine hydrochloride 

50 mg/kg, and sodium pentobarbital 12 mg/kg, i.p.) and euthanized by transcardial perfusion 

with 4% paraformaldehyde. The isolated brains were immersed for 4 weeks at 4oC in a 

solution of 1mM Gd-DTPA (Magnevist®, Bayer HealthCare Pharmaceuticals, Wayne, NJ, 

USA) in phosphate buffered saline, and positioned in a sealed plastic tube filled with 

Fomblin® LC8 liquid (Solvay Solexis, Thorofare, NJ, USA) (45). High b-value QSI data were 
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acquired using a 2D spin echo echo planar imaging (EPI) sequence on a 4.7T Bruker scanner 

equipped with a 3 cm solenoid receiver coil. QSI data were collected using a conventional DSI 

(Cartesian) acquisition scheme. Pulse-sequence parameters for the QSI acquisition were: 

TR/TE = 650/49 msec, Δ/δ = 23/12 msec, 515 q-space directions, |G|max = 380 mTm-1, b-max 

= 30452 sec/mm2, matrix = 64x64x128, voxel size = 265 μm isotropic. Following MR 

imaging, the brain was coronally sectioned at 50 μm on a freezing microtome, at an angle 

closely matching the tomographic images. The right side of the brain was marked with a 

shallow razor-blade cut in the tissue to ensure correct orientation of the sections. One in four 

sections was stained for myelin using a standard procedure modified from Woelcke (46), 

yielding an effective through-plane spacing of 200 μm. High-resolution mosaic images were 

obtained through UPlanApo 20/0.70 and 40/0.85 dry objectives using a motorized Olympus 

BX52 microscope running the Neurolucida 7.0 software (Virtual Slice module, MBF 

Bioscience, Inc, Williston, VT, USA). 

 

5.3.2 Registration 

As any voxel-wise quantitative comparison requires accurate spatial registration of 

image data, several measures were taken to minimize the potential error of misalignment. 

First, care was taken during histological processing to ensure that the coronal sectioning angle 

matched the tomographic slice orientation. Trigonometric measurements of multiple 

corresponding anatomical landmarks confirmed that the angle of the histological section plane 

and tomographical slice orientation only differed by about 2 degrees (rotation around the 

mediolateral axis), thus allowing direct registration without resampling of the QSI slice 

orientation. Second, the selected ROIs (procedure described below) were confirmed to have 1) 

minimal nonlinear distortion in both the histological data (due to histological processing) and 
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QSI data, and 2) consistent myeloarchitecture across multiple coronal (through-plane) 

sections. Third, a careful and detailed manual registration protocol was performed for both 

ROIs. Corresponding anatomical landmarks (brain surface, genu and splenium of the corpus 

callosum, anterior commisure, the ventricular system, the oculomotor nerve, and several 

mesencephalic and brain stem nuclei) were identified on basis of general gray and white 

contrast and used to assign relative anterioposterior position coordinates across the whole 

brain for both image modalities. Then, for each ROI (one in the forebrain at the level of the 

genu of the corpus callosum, and the other in the brain stem at level of the superior colliculus, 

see Fig. 5.1), histological images were manually registered to corresponding QSI images. 

Groups of corresponding tomographical and histological images from a volume approximating 

a ~1 mm thick coronal brain section (corresponding to 4 QSI and 20 histological slices) 

through both ROIs were assembled as separate layers using the program Adobe Illustrator CS3 

(Adobe Systems Inc. San Jose, CA, USA). Each layer was scaled appropriately depending 

upon the native voxel size. Finally, using the QSI images as a reference, the histological 

images were individually adjusted using affine transformations to match multiple local gray 

and white matter landmarks. This final alignment procedure was iterated until optimal spatial 

matching was achieved.  

 

5.3.3 ROI selection 

ROIs were selected on the basis of 1) color-coded DT maps, 2) 3D DT and FOD 

reconstructions, and 3) visual inspection of myeloarchitecture. The first ROI (ROI-1) was 

selected to contain relatively uniform white matter fiber orientations (Figs. 5.1A,B; 5.2A). To 

help find this location, a red-green-blue (RGB) map was created using the primary eigenvector 

1e  of the DT (”preferred” direction), where each vector element defined the red, green, and 
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blue components of each voxel, respectively. The brightness of this preferred RGB map was 

determined using a measure of the degree of linear anisotropy, defined as Cl = (λ1 - λ2)/ λ1 

(47), where λ1, λ2, and λ3 are the first, second, and third eigenvalues of DT, respectively. 

Thus, a bright red color in the preferred RGB map indicates a high degree of linear anisotropy 

with left-right orientation (Fig. 5.1A,A’). The second ROI (ROI-2) was selected to contain 

complex crossing fiber orientations (Figs. 5.1C,D; 2B). To help find this location an RGB map 

of the third eigenvector 3e  (”non-preferred” direction) was created and the brightness of this 

non-preferred RGB map was defined using a measure of the degree of planar anisotropy, 

defined as Cp = (λ2 - λ3)/ λ1 (47). Voxels with a bright blue color would thus indicate a “disk-

like” DT (indicative of crossing fibers) within the image plane ( 3e  points through-plane, Fig. 

5.1D,D’). 3D DT and FOD reconstructions provided additional confirmation of apparent 

crossing fiber architectures that were highly consistent across animals. Finally, the 

myeloarchitecture in ROI-1 and ROI-2 were microscopically inspected in the original 

histological sections to confirm the neuroarchitectural patterns suggested by the tomographic 

data. 

 

5.3.4 Computation of HIST-FODs 

The HIST-FODs in ROI-1 and 2 were derived using a systematic random 

stereological approach adapted from (12). High-resolution histological images from two 

consecutive myelin stained sections (spaced at 200 μm) were assembled in separate layers in 

the Adobe Illustrator file used for image registration (see registration section above). A grid 

derived from the voxel matrix of the spatially corresponding QSI slice was superimposed onto 

the histological images. Each voxel domain was further subdivided using a 5x5 rectangular 

sampling grid. In four systematically positioned sample grids (Fig. 5.2A,B), individual myelin 
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fiber trajectories were traced as vector lines using Adobe Illustrator. The vector coordinates 

were exported to Matlab (The Mathworks, Inc. Natick, MA) and HIST-FODs were computed 

for each QSI voxel by calculating the angular histogram of the line plots (fiber vectors) with a 

bin size of 1° (360 points) from the four sub regions. To further increase the robustness of the 

HIST-FODs, corresponding angular histograms from two neighboring myelin sections spaced 

200 μm apart were averaged together and the averaged histogram was smoothed with a 

Gaussian kernel with a FWHM of 8°. In this way, our histological sampling included a 

through-plane distance approximately corresponding to the depth of a single 265 �m QSI 

voxel. To quantify the intrinsic degree of fiber spreading within ROI-1 of the corpus callosum, 

Gaussian distributions were fit to the final angular histograms of each voxel, yielding an 

average FWHM of approximately 34º. 

 

5.3.5 Computation of DT-FODs 

Since the diffusion tensor (DT) is a model for the apparent diffusion coefficient 

(ADC), a direct comparison with the HIST-FODs would be misleading. Under the DT model, 

the fiber orientation is given by a single delta function pointed in the direction of the primary 

eigenvector. To generate DT equivalent FODs (DT-FODs), the resultant delta functions were 

convolved with a Gaussian smoothing kernel with a FWHM of 34°. This level of smoothing 

was chosen to match the intrinsic angular dispersion of fibers within the ROI-1 of the corpus 

callosum. 
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5.3.6 Computation of QSI-FODs 

To estimate the QSI-FODs, we extend the traditional spherical deconvolution method 

in Reference (29) to arbitrary (multi-b-value) q-space acquisitions. A axially symmetric tensor 

model (48) was chosen for the single fiber response function with perpendicular (λ⊥ = λ2 = λ3 = 

4.0 x 10-5 mm2s-1) and parallel diffusivities (λ║= λ1 = 3.5 x 10-4 mm2s-1) estimated directly from 

the QSI data in ROI-1, similar to the approach used in (29). Tikhonov regularization was used 

to improve the conditioning of the inversion. The FOD solution was parameterized using 

radial-basis functions, as in Ref (26). The radial-basis functions themselves are parameterized 

by the desired FOD reconstruction points and the radial-basis function width parameter σ. For 

the 3D QSI-FOD reconstructions in Fig. 5.2, a 3rd order icosahedral tessellation of the sphere 

was chosen for the FOD reconstruction points (642 vertices) and σ was set to 20. For the 2D 

QSI-FOD reconstructions in Figs. 5.4 and 5.5, 360 equally spaced points on the unit circle was 

chosen for the FOD reconstruction points, and σ was set to 10. This value of σ was chosen 

because it optimized the correlations with the HIST-FODs in ROI-2. However, we tested a 

range of different values for σ (from 1 to 20) and found that the average correlations and 

angular error for the FOD peaks were largely robust to variations in this parameter.  

 

5.4 Results 

High b-value q-space imaging (QSI) data were acquired from fixed adult rat brains 

that had been immersed in a contrast enhancing gadolinium solution (Magnevist® (45)). 

Following tomographic imaging, coronal histological sections of the tissue were obtained and 

stained for myelin and high resolution digital images acquired. Tomographic and histological  
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Figure 5.1. Anatomical ROIs containing coherent or crossing fiber orientations without anterior-to-
posteriorly orientated fibers were identified using red-green-blue (RGB) maps of the preferred 
(A,A’,C,C’) and non-preferred (B,B’,D,D’) diffusion direction, indicated by the first and third 
eigenvector of the DT, respectively. Voxel colors indicate the direction of the respective eigenvectors 
(cf. color code insert, bottom left), while the voxel brightness is given by the degree of linear and planar 
diffusion anisotropy for the preferred and non-preferred maps, respectively. (A,B) Coronal RGB maps 
through the genu of the corpus callosum, and (C,D) coronal RGB maps through the brain stem at level 
of the superior colliculus (position indicated on the 3D rat brain insert). (A’-D’) Overlay of RGB maps 
and corresponding myelin stained section images. The bright red color in (A,A’) indicates a high degree 
of linear anisotropy with left-right orientation, consistent with coherent mediolaterally oriented 
commissural fibers in this region (see, also Fig. 5.2C). In the corresponding non-preferred map (B,B’), 
the same voxels are dark, indicating a lack of planar diffusion anisotropy. The bright blue color of the 
non-preferred map in (D,D’) indicates a high degree of planar anisotropy (typical of crossing fibers, see, 
also Fig. 5.2D) within the coronal plane. In the corresponding preferred map (C,C’) these voxels are 
dark, consistent with a lack of uniformly oriented fibers. For our quantitative analysis, we selected four 
voxels in a 1x4 grid in the bright red region in the corpus callosum (ROI-1; dotted white frame in 
A,A’,B,B’) and twelve voxels in a 3x4 grid in the bright blue region in the tectum  (ROI-2; dotted white 
frame in C,C’, D,D’). dpg, deep gray layer of the superior colliculus; dpwh, deep white layer of the 
superior colliculus; gcc, genu of the corpus callosum. Scale bars, 1 mm. 
 

 

images from corresponding regions-of-interest (ROIs) were co-registered using affine 

transformations and quantitatively compared.  

 

5.4.1 ROI specification 

Our first objective was to identify suitable ROIs in which 3D FODs can be compared 

to inherently 2D, coronally sectioned histological data. We focused our analysis on two ROIs 

with  little or no through-plane (anterioposteriorly oriented) fiber orientations containing 1)  
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Figure 5.2. Three-dimensional DT and FOD reconstructions in brain regions with parallel and crossing 
fiber orientations. (A-D) Detailed visualization of the parallel (A,C) and crossing (B,D) 
myeloarchitecture in ROI-1 and -2. (E) Comparison of 3D DT and FOD reconstructions from ROI-1 
and -2 across all six animal specimens. Reconstructions are overlaid on a gray scale map of the 
fractional anisotropy (FA) index (49) derived from the DT eigenvalues and quantifying the overall 
degree of diffusion anisotropy on a 0-1 scale (1 being highly anisotropic and 0 being isotropic). The 
high FA values and elongated DT and FOD profiles in ROI-1 are characteristic of coherent (parallel) 
fiber orientations, while the low FA values and disk-like DT profiles in ROI-2 are characteristic of 
crossing fibers, which is further evidenced by the FOD reconstructions and myeloarchitecture. All DT 
and FOD reconstructions are shown min-max normalized for reasons discussed in the main text. Scale 
bars, 1 mm (A,C) and 100 μm (C,D). 
 
 

coherently oriented fibers, or 2) more complex crossing fiber architectures where the DT 

model is known to be insufficient. The ROIs were selected on the basis of color-coded DT 

maps, 3D reconstructions of the DT and FOD, and visual inspection of myelin stained 

histological sections (Figs. 5.1, 5.2). The first region selected (ROI-1) was a 1x4 voxel grid 

within an area of the anterior part (genu) of the corpus callosum containing high densities of 

within-plane mediolaterally oriented commissural fibers (50-52), apparent from red colored 
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voxels in the color-coded DT maps (Figs. 5.1A,B). Because the DT model has previously been 

validated in regions with uniform fiber orientations (12-15), this region was used primarily as 

a benchmark to confirm that both the DT and FOD provided accurate assays of 

myeloarchitecture in this region. The second region selected (ROI-2) was a 3x4 voxel grid 

within an area of the deep gray and white layers of the superior colliculus containing 

transversely oriented bundles of intratectal and tectal afferent and efferent projection fibers 

(53,54) (Figs. 5.1C,D; 5.2D). Here the color-coded DT maps showed planar “disk-like” 

diffusion profiles indicative of crossing fibers (Fig. 5.1D. blue color). In both ROIs, 

histological assessment confirmed predominantly contained structures with in-plane 

orientations (Fig. 5.2C,D), suitable for two-dimensional histological validation. 

 

5.4.2 Qualitative comparison of DT, FOD and myeloarchitecture 

Our second objective was to assess the resemblance of DT and FOD measurements 

with histological visualizations of myeloarchitecture in the selected ROIs. In ROI-1, 3D DT 

and FOD reconstructions across all six animals showed the expected “cigar-like” profiles with 

left-right orientation (Fig. 5.2E). In ROI-2, 3D DT reconstructions in all six animals 

confirmed the “disk-like” shape of the DT, and 3D FOD reconstructions indicated the 

expected crossing fiber patterns (Fig. 5.2E). The orientation of the FOD reconstructions were 

highly consistent across animals in both ROIs and with the morphology evidenced in the 

myelin stained sections (Fig. 5.2C,D). Taken together, these results demonstrate a high 

qualitative resemblance between 3D FOD measures and histological observations of crossing 

fibers which is highly consistent across several animals. To provide a more rigorous 

quantitative histological validation of this relationship, we continued to perform a detailed 

voxel-wise quantitative  
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Figure 5.3. Computation of a single HIST-FOD from multiple myelin stained section images. (A) 
Myelin fiber orientations were manually traced as vector lines within 53x53 μm sample grids positioned 
above high-resolution images of myelin stained sections. (B) For each histological section, 4 sample 
grids were systematically positioned within a voxel domain. (C) For each QSI voxel, myelin fiber 
orientations were estimated from vector data collected from 8 sample grids across two histological 
sections spaced at 100 μm. This procedure was repeated for all voxels in both ROI-1 and 2. Scale bar, 
50 μm. 
 

comparison between these measures in ROI-1 and -2 in one of the animal specimens (animal 

1). 

 

5.4.3 Quantitative histological validation of FOD estimates 

Our third objective was to quantitatively evaluate the correspondence between high b-

value QSI-derived FOD measures (QSI-FODs) and myeloarchitecture in both ROI-1 and 2. As 

a benchmark for the comparisons we also included DT fiber orientation estimates (DT-FOD) 

in both regions (see also “Computation of DT-FODs” in the “Materials and Methods” 

section).  

To validate the QSI-FODs, we used a voxel-wise stereological sampling approach to 

manually record several hundred myelin stained fiber orientations from multiple registered 

myelin stained histological images (Fig. 5.3A,B). The angular histogram of all fiber samples 

(or fiber counts in a given angular bin) within each voxel constitutes the empirical histology-

derived FOD (HIST-FOD; Fig. 5.3C) used as the validation standard to compare against the  
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Figure 5.4. Comparison of FOD estimates against myeloarchitecture. (A,B) High resolution images of 
myeloarchitecture corresponding to one QSI voxel with overlay of 4 sample grids of manually-recorded 
fiber directions (yellow lines) used in part to compute HIST-FODs (8 total sample grids were used, cf. 
Fig. 5.2). Purple and blue frames indicate corresponding voxel locations across panels. (C,D) Coronal 
myelin sections through the genu of the corpus callosum (C) and superior colliculus (D) (levels 
indicated on 3D rat brain insert) showing the position of the 1x4 voxel ROI-1 and 3x4 voxel ROI-2 
(white frames, cf. Fig 5.1). (E,F and G,H) Comparison of QSI-FODs and DT-FODs against 
corresponding HIST-FODs (E,F: ROI-1and G,H: ROI-2). gcc, genu of the corpus callosum; dpg, deep 
gray layer of the superior colliculus; dpwh, deep white layer of the superior colliculus. Scale bar, 50 μm 
(B) and 1mm (C,D).  
 

DT- and QSI-FOD estimates. Prior to comparison, all fiber models were min-max normalized 

to remove the isotropic component and normalize the maximum amplitude of the respective 

distributions. The isotropic component was removed because in conventional QSI-FOD 

measures there is no way to separate the isotropic fiber orientation from the isotropic ADC, 

and thus if not removed, the QSI-FODs would have a (biased) larger isotropic component 

compared with the HIST-FODs. 
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We found that in ROI-1, which contained fibers with relatively homogeneous fiber 

orientations, both the QSI-FOD and DT-FODs correlated well with the HIST-FODs (average 

Pearson correlation coefficients r = 0.98; SD = 0.02 for QSI-FODs, and 0.99; SD = 0.01 for 

DT-FODs, n = 4 voxels; Fig. 5.4E,F). By contrast, in ROI-2, which contained crossing fibers, 

the DT-FODs correlated poorly with HIST-FODs (average Pearson correlation coefficients r = 

0.16; SD = 0.38; n = 12 voxels), while QSI-FODs correlated substantially better (average 

Pearson correlation coefficients r = 0.86; SD = 0.07; Fig. 5.4GH). A non-parametric 

permutation-based 2-sample t-test revealed that the difference in correlation between the DT-

FODs and QSI-FODs were not significant in ROI-1 (p>>0.05), but highly significant in ROI-2 

(p<0.0001). These results quantitatively confirm that QSI-FODs provide accurate assays of 

the underlying myeloarchitecture in regions of both uniform and complex crossing fiber 

orientations.  

We also quantitatively evaluated the orientation error of the QSI-FOD peaks in ROI-2 

(Fig. 5.5). We found that the peak orientations of the QSI-FODs closely matched the peaks of 

the HIST-FODs, with an average angular error (across all 12 voxels) of 5.7°; SD 3.8° (Fig. 

5.5). The average (acute) intersection angle of the HIST-FOD peaks was θ = 73°; SD = 8° 

(Fig. 5.5, Table 1). It should be noted that these results were obtained using a radial-basis 

function parameterization of the QSI-FODs with a width of σ = 10 (see "Materials and 

Methods"), which maximized the correlation with the HIST-FODs in ROI-2. However, further 

testing revealed that the angular error and correlation were relatively robust to variations in σ. 

When testing a range of σ between 1 and 20, the average angular error and correlation 

coefficient only varied between 5.4°-6.2° and 0.83 and 0.86, respectively (data not shown). 
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Figure 5.5. Quantitative comparison of fiber orientation distributions in ROI-2. (A)  Superimposed 
HIST-FODs (red) and QSI-FODs (blue) are shown for each of the 12 voxels in ROI-2, together with 
peak orientations (black lines) for the respective fiber orientation distributions. Purple color indicates 
FOD overlap. (B) For quantitative analysis, the acute intersection angle of the HIST-FODs (θ), and the 
angular error of both FOD peaks (ε1 and ε2) are given for each of the 12 voxels together with the 
Pearson correlation coefficients (r) between the HIST- and QSI-FODs. The average Pearson correlation 
was r = 0.86; SD = 0.07, average intersection angle was θ = 73°; SD = 8°, average angular error (ε1 and 
ε2 combined) was 5.7°; SD = 3.8°.  
 

 

5.5 Discussion 

While methods for estimating neuronal fiber orientation distributions (FODs) in dMRI 

are becoming increasingly popular, the correspondence between FOD measures and realistic 

biological fiber architectures has been unclear. Using detailed manual recordings of individual 

myelin stained fiber orientations in ex vivo rat brain tissue we have shown that tomographic 

dMRI FOD estimates provide accurate assays of the underlying myeloarchitecture, even in 

regions with complex multi-directional crossing fiber architectures.  

In this study, FODs were quantitatively validated using a voxel-wise approach against 

empirical FOD estimates derived from registered myelin stained images. As evident in Fig. 

5.4F,E, QSI-FODs provided an accurate characterization of the underlying myelinated fiber 

orientation distribution in regions of both uniform (r > 0.9) and crossing fiber (r > 0.8) 
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architectures. A subsequent evaluation of the angular error of the QSI-FOD peaks in ROI-2 

demonstrated an average angular error of approximately 5-6º, with an average (acute) fiber 

crossing angle of approximately 73° (Fig. 5.5). Because it seems reasonable to assume that 

some of this error is likely due to image registration and stereological errors (e.g., through-

plane fiber contributions and sampling limitations), the actual intrinsic angular error of the 

QSI-FOD peaks is  probably even less than 5-6º.  

It should be noted that the FODs in this paper were computed from QSI data with high 

b-values and a large number of diffusion measurements (b-max = 30452 sec/mm2, 515 

diffusion measurements, see "Materials and Methods"). Thus, it remains to be determined to 

what extent similarly accurate assays of myeloarchitecture can be derived using more 

conservative spherical acquisition protocols as often employed on clinical 1.5T and 3.0T 

scanners for in vivo applications. However, numerous simulation studies (44,55) have 

demonstrated that FODs (with the ability to resolve crossing fibers down to about 45°) can be 

derived from spherical acquisition protocols using moderate b-values (b ~ 2000-4000 s/mm2) 

and reasonable scan times (SNR ~30, scan time < 10 min). These simulation studies suggest 

that accurate FODs can be achieved in regions with complex architectures with use of reduced 

encoding spherical acquisition protocols. Hence, the validation benchmarks established in this 

paper will likely also have a high degree of translational value for the clinical situation.   

The histological FODs were based on manually traced myelin fibers sampled from 

high-resolution digital images of 50 μm thick sections using a systematic random approach. 

Sampling occurred both within (using sampling bins) and across planes (one focal plane in 

two sections spaced at 200 μm) to ensure that a representative fraction of the 

myeloarchitecture was recorded per voxel volume. It should also be noted that water diffusion 

is influenced by the complete tissue microarchitecture and not only mylinated fibers (for 
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review, see Ref (6)), which will bias the dMRI measurements relative to the histological 

measurements. However, the high correlations measured suggest that the contribution of other 

tissue elements is relatively small in the regions investigated. 

The QSI-FODs showed a remarkable consistency across animal specimens (Fig. 

5.2E). We thus chose to restrict the quantitative validation to extensive, in depth anatomical 

analyses of fiber architectures in one specimen. In these analyses, FOD estimates within each 

voxel were derived from several hundred manually traced histological measurements across 

multiple coronal sections and several hundred QSI diffusion measurements. Thus, although 

the total number of voxels compared was relatively small (4 for ROI-1 and 12 for ROI-2), the 

statistical correlations were based on measurements derived from extremely high dimensional 

datasets. It should further be noted that the statistical correlations were only used to provide a 

quantitative metric of similarity at each voxel, and not as a statistical test of consistency or 

generalizability across animal specimens.  

The voxel-wise histological validations were conducted in paraformaldehyde fixed 

tissue that had been immersed in contrast enhancing Magnevist® liquid (see "Materials and 

Methods"). Because this treatment is known to reduce the ADC (45), some care should be 

exercised when extrapolating these results to the in vivo case. However, it has been shown that 

fixation has relatively small effects on the overall amount of diffusion anisotropy, as the ADC 

is reduced equally in all directions (45). Therefore, the fixation process itself is not likely to 

have influenced the general orientation structure of the QSI-FOD measurements in this study.  

We conclude that fiber orientation distributions derived from high dimensional 

diffusion MRI data provide accurate assays of the underlying myeloarchitecture, even in 

regions with complex crossing fiber architectures. These results have important implications 

for both clinical and research studies investigating structural aspects of biological tissues using 
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estimates of the fiber orientation distribution. Furthermore, this study provides an important 

biological benchmark for further improvement of fiber orientation reconstruction and tracking 

methods.  
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Chapter 6 

 

Optimal MRI Acquisition for Fiber 

Orientation Distribution Estimation 

 

6.1 Abstract 

An important challenge in the design of diffusion MRI experiments is how to optimize 

statistical efficiency, i.e., the accuracy with which parameters can be estimated from the 

diffusion data in a given amount of imaging time. In model-based spherical deconvolution 

analysis, the quantity of interest is the fiber orientation density (FOD). Here, we demonstrate 

how the spherical harmonics (SH) can be used to form an explicit analytic expression for the 

efficiency of the minimum variance (maximally efficient) linear unbiased estimator of the 

FOD. Using this expression, we calculate optimal b-values for maximum FOD estimation 

efficiency with SH expansion orders of L = 2, 4, 6, and 8 to be approximately b = 1500, 3000, 

4600, and 6200 sec2/mm, respectively. However, the arrangement of diffusion directions and 

scanner-specific hardware limitations also play a role in determining the realizable efficiency 

of the FOD estimator that can be achieved in practice. We show how some commonly used 

methods for selecting diffusion directions are sometimes inefficient and propose a new 

method for selecting diffusion directions in MRI based on maximizing the statistical 
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efficiency. We further demonstrate how scanner-specific hardware limitations generally lead 

to optimal b-values that are slightly lower than the ideal b-values. In summary, the analytic 

expression for the statistical efficiency of the unbiased FOD estimator provides important 

insight into the fundamental tradeoff between angular resolution, b-value, and FOD estimation 

accuracy.  

 

6.2 Introduction 

Diffusion tensor imaging (DTI) is an established non-invasive MR technique for 

studying the microstructural properties of brain white matter (WM) tissue in vivo (1,2). In 

DTI, all information about the tissue microstructure is inferred from the eigensystem of the 

estimated water diffusion tensor at each voxel. Commonly, the primary eigenvector is used to 

indicate the principal direction of WM fiber bundles, and the eigenvalues, are used to describe 

features of the diffusion process, such as the degree of fractional anisotropy (FA) (3). 

However, a well-known limitation of DTI is its inability to resolve complex tissue 

microstructures (e.g. crossing or bending WM fibers) due to the reliance on a single Gaussian 

diffusion function in each voxel. This shortcoming has motivated the development of high 

angular resolution acquisition and processing methods capable of modeling the complex 

diffusion patterns observed in heterogenous fiber populations. These new “multi-fiber” 

methods generally fall within one of two categories. The first is based on modeling high 

angular features of the apparent diffusion coefficient (ADC) (4-8), while the second is based 

on estimating the water displacement probability density function (PDF) or related functions 

(9-15). Within the second class of methods are the model-free and model-based techniques. In 

this paper, we focus on optimizing the statistical efficiency of one of the most popular model-

based techniques. 
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A number of model-free approaches have been used to describe diffusion in complex 

tissue microstructures. Diffusion spectrum imaging (DSI) provides a direct quantification of 

the water diffusion PDF by exploiting the Fourier relationship between the PDF and the 

normalized diffusion signal (14). The radial integral of the PDF, called the orientation density 

function (ODF), describes the likelihood of water diffusion along any direction in three-

dimensional (3D) space and can be used to map multiple fiber orientations within voxels (14). 

However, DSI is limited by the prohibitively long scan times required to adequately sample q-

space on the Cartesian grid necessary for Fourier inversion. However, the ODF can be 

numerically approximated using the Funk-Radon transform in a technique called Q-ball 

imaging (QBI) (13), or computed analytically using the diffusion orientation transform (DOT) 

(16). Both of these methods can be implemented using less sampling intensive spherical q-

space acquisitions called high angular resolution diffusion imaging (HARDI) acquisitions 

(8,17,18).  

While model-free methods provide important information regarding the water 

diffusion PDF they do not provide a quantitative description of the underlying distribution of 

fibers or diffusion properties within these fibers. Model-based methods, on the other hand, 

impose additional mathematical constraints on the diffusion process in order to estimate these 

quantities directly. One model-based approach is to impart a persistent angular structure (PAS) 

to the PDF prior to estimation (15). Another model-based approach is to estimate the fiber 

orientation density (FOD) through deconvolution of the HARDI signal with a single-fiber 

response function (9-12). Spherical deconvolution reconstruction of the FOD is an attractive 

approach to modeling HARDI data because it gives an estimate of a well-defined biological 

quantity, namely the density of fibers oriented along a particular direction in 3D space, which 

can be validated quantitatively against myeloarchitecture (19).  
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A significant challenge in the design and analysis of any HARDI experiment is to 

maximize the statistical efficiency, or equivalently, the accuracy with which microstructural 

information can be inferred from the diffusion measurements in a given amount of imaging 

time. While numerous promising techniques have been developed for estimating the FOD 

from HARDI measurements (9-12,20,21), a focused study into the optimal HARDI acquisition 

for FOD estimation has not been conducted to the best of our knowledge. Here, we expand on 

previous works using the spherical harmonic (SH) basis to derive a simple analytic expression 

for the efficiency of the maximally efficient linear unbiased estimator for the FOD. We then 

show how the actual efficiency of the FOD estimate differs from the ideal efficiency 

depending on the gradient sampling scheme of the acquisition and practical constraints on the 

pulse-sequence parameters due to scanner-specific hardware limitations. Finally, we discuss 

how these expressions can be used for optimizing the b-value and directional sampling of the 

HARDI acquisition. 

 

6.3 Methods 

6.3.1 Linear convolution model 

In the following, we assume a linear convolution model for the observed diffusion 

signal. According to this model, the response to any arbitrary angular distribution of fibers is 

equal to the sum of the individual responses to each fiber. More formally, the measured 

diffusion signal ( , )S b r  in each voxel is given by the spherical convolution 

 

 
0

( , ) = ( , , ) ( ) ( , )S b R b f d n b
S Ω

+∫
r r x x x r , [6.1] 
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where b  is the diffusion weighting factor, or "b-value", r  is a unit (column) vector indicating 

the direction of the applied diffusion gradient, 0S  is the signal measured with no diffusion 

weighting (i.e. ( )0 0S S b≡ = ), ( , , )R ⋅ ⋅ x  is the signal response to a single ideal fiber with 

orientation given by the unit (column) vector x , ( )f ⋅  is a real-valued function of the unit 

sphere describing the fiber orientation density (FOD), ( , )n b r  is additive measurement noise, 

and 
Ω∫  indicates integration of the unit sphere. 

Note, in a typical HARDI experiment the data are collected using a discrete set of M  

evenly distributed and unique diffusion directions =1{ }M
i ir  with constant (non-zero) b-value, 

together with one or more measurements with = 0b  for normalization. Given N  desired 

FOD reconstruction points on the surface =1{ }N
i ix , Eq. [6.1] can be written in matrix form 

 

 = +s Rf n , [6.2] 

 

where 1 0 0= [ ( , ) / , , ( , ) / ]T
MS b S S b Ss r r  is a vector of normalized diffusion 

measurements, 1= [ ( ), , ( )]T
Nf ff x x  is a vector representation of the FOD, and R  is an 

M N×  linear convolution matrix relating the FOD to the normalized measurement data. 

Assuming an axially symmetric tensor model (22) for the single-fiber response function, the 

ij -th entry of R  can be written 

 

 
2( )( )

( ) =
Tbb i j

ij e e
λ λλ − −− ⋅ ⊥⊥

r x
R , [6.3] 
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where λ⊥  and λ  are the perpendicular and parallel diffusivities (ADC parameters) with 

respect to the fiber axis jx , with λ λ⊥≥ , and the inner product T
i jr x  is the cosine of the 

angle between the i -th measurement direction and j -th fiber axis. While the tensor model in 

Eq. [6.3] assumes the single-fiber response function is Gaussian, non-Gaussian or hybrid 

models of diffusion (23) can also be used within this framework without any loss of 

generality.  

 

6.3.2 SH basis 

The SH form a complete orthonormal basis for functions on the sphere much like the 

Fourier series form a complete orthonormal basis for functions in Euclidian space. In this 

section, we show how the convolution matrix R  can be expressed in terms of the SH basis. 

While similar expressions appear in earlier works (10,12), the focus here is to extend this 

framework to derive an analytic expression for the efficiency of the minimum variance 

(maximally efficient) linear unbiased estimator for the FOD, which can subsequently be used 

for optimizing the HARDI acquisition. 

We begin by expressing the response function in Eq. [6.3] as a sum of Legendre 

polynomials ( )lP ⋅ . Following (10) (Appendix A, Equation 36) we can write  

 

 
2( )( )

=0
(  even)

= ( ( )) ( )
Tbb bi j T

l l i j
l

l

e e e A b P
λ λλ λ λ λ

− −− −⊥⊥ ⊥
⊥

∞
⋅ ⋅ − ⋅∑

r x
r x , [6.4] 

 

where the scalar coefficients can be computed by evaluating the integral  
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21 ( )

1

2 1( ( )) = ( )
2

b

l l
lA b e P d

λ λ τ
λ λ τ τ

− − ⊥
⊥ −

+
− ⋅ ∫ . [6.5] 

 

Notice, only even orders = 0, 2, ,l ∞  are considered in the expansion in Eq. [6.4] 

as the response function is symmetric around the fiber axis jx . Applying the Addition 

Theorem of Spherical Harmonics, we can write ( )T
l i jP r x  in terms of the spherical harmonics 

( )m
lY ⋅  evaluated in the direction of each vector (24)  

 

 
*

=

4( ) = ( ) ( )
2 1

l
T m m

l i j l i l j
m l

P Y Y
l
π

−

⋅ ⋅
+ ∑r x r x , [6.6] 

 

where l  and m  are the order and degree of the spherical harmonic function, respectively, and 

*  denotes the complex conjugate. Substituting Eq. [6.6] into Eq. [6.4] yields and expression 

for the ij -th entry of R  in terms of the SH 

 

 
*

=0 =
(  even)

4( ) = ( ( )) ( ) ( )
2 1

l
b m m

ij l l i l j
l m l

l

e A b Y Y
l

λ π λ λ− ⊥
⊥

−

∞
⋅ − ⋅ ⋅

+∑ ∑R r x . [6.7] 

 

Enumerating all measurement and reconstruction points, the full convolution matrix 

can be written as a weighted superposition of matrices having the form  

 

 
=0 =

(  even)

= ( ) ( )
l Hm m

l l l
l m l

l

z
−

∞
∑ ∑R y r y x , [6.8] 
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where it follows from Eq. [6.7] that  

 

 
4= ( ( ))

2 1
b

l lz e A b
l

λ π λ λ− ⊥
⊥⋅ −

+
, [6.9] 

 

and the vectors of SH are 

 

 1 2( ) = ( ); ( ); ; ( )m m m m
l l l l MY Y Y⎡ ⎤⎣ ⎦y r r r r , [6.10] 

 1 2( ) = ( ); ( ); ; ( )m m m m
l l l l NY Y Y⎡ ⎤⎣ ⎦y x x x x , [6.11] 

 

where H  now denotes conjugate transpose. 

Equation [6.8] indicates that the convolution matrix can be represented by an infinite 

sum of even order SH, weighted by the coefficients lz . This is analogous to representing a 

delta function as an infinite series of Fourier basis functions. In practice, however, the number 

of diffusion directions, M, limits the maximum order that can be used in the expansion and 

thus the series must be truncated. Truncation of the SH series limits the angular resolution of 

the FOD much like truncating the Fourier series limits the bandwidth of reconstructed 

Cartesian signals.  

Consider, for example, a maximum order of = 2L , such that = 0, 2l . Expanding Eq. 

[6.8], we can write an expression for the truncated convolution matrix, denoted LR  
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=0,2 =

= ( ) ( )
l Hm m

L l l l
l m l

z
−

∑ ∑R y r y x , [6.12] 
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y x
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, [6.13] 

 = ( ) ( )H
L L LY r Z Y x , [6.14] 

 

where ( )LY r , LZ , and ( )H
LY x  have dimensions M p× , p p× , and p N× , respectively, 

and ( ) ( 1)( 2) / 2p L L L= + +  is the number of terms (free parameters) in the SH series. For 

= 2L , (2) 6p =  and thus M should be greater than or equal to six to avoid an under-

determined set of equations. Therefore, the number of diffusion directions, in effect, 

determines the upper bound on the angular resolution of the FOD, such that 

( 1)( 2) / 2L L M+ + ≤ . 

Inspection of Eqs. [4.12-4.14] yields several interesting properties of the FOD 

reconstruction problem. First, the SH form a natural basis for both the diffusion signal and the 

FOD, as it can be shown that the matrices ( )LY r  and ( )LY x  are unitary in the limit of 

,M N →∞  (25)  

 

 ( ) ( ) = ( / 4 ) , asH
L L M Mπ →∞Y r Y r I , [6.15] 

 ( ) ( ) = ( / 4 ) , asH
L L N Nπ →∞Y x Y x I . [6.16] 
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Second, when expressed in terms of the SH basis, the diffusion signal is simply a 

weighted sum of the FOD signal and vice versa (i.e. LZ  is diagonal) where the weighting is a 

function of the b-value and ADC of the single-fiber response model. 

 

6.3.3 Estimation 

Using the truncated convolution matrix, we can rewrite the signal equation in Eq. 

[6.2] as 

 

 = L +s R f n . [6.17] 

 

Then, assuming the noise n  is white with mean zero and variance 2
nσ , an efficient 

unbiased estimate of the FOD is provided by the ordinary least-squares (OLS) solution to Eq. 

[6.17] 

 

 1ˆ = ( )H H
L L L

−f R R R s  [6.18] 

 1= ( ) ( )H
L L L

−Y x Z Y r s . [6.19] 

 

The OLS estimator for a linear model perturbed by white noise is optimal in the sense 

that it has the minimum variance among all linear unbiased estimators of the FOD. Note, 

however, f̂  is technically an unbiased estimator of the projection of the true FOD into the 

subspace spanned by the columns of ( )LY x . If part of the true FOD lies outside this subspace, 

for example, f̂  has higher angular frequency features not captured by the columns of ( )LY x , 
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then f̂  will be a biased (smoothed) estimate of the true FOD. f̂  can also be viewed as the 

truncated SVD solution.  

 

6.3.4 Ideal efficiency 

As mentioned previously, the OLS estimator has the lowest variance among all linear 

unbiased estimators of the FOD. The goal here is to determine the MRI pulse-sequence 

parameters which maximize the statistical efficiency. The efficiency of an estimator, which 

can also be viewed as a measure of the expected accuracy of the estimator, is typically defined 

as the reciprocal of estimator per unit scan time 

 

 2 1ˆ= /E T−〈 − 〉f f , [6.20] 

 

where 〈⋅〉  is the expectation operator and T  is the total time required for the acquisition. For 

simplicity, and without loss of generality, in the remainder of this paper we set = 1T  (i.e. 

assuming a constant scan time). Combining Eq. [6.19] with Eq. [6.20], we get the following 

expression for the efficiency of the OLS FOD estimator 

 

 1 2 1= ( ) ( )H
L L LE − −〈 − 〉f Y x Z Y r s  [6.21] 

 

Substituting the expression for the normalized signal in Eq. [6.17] into Eq. [6.21] and 

simplifying, we get 

 

 1 2 1= ( ) ( )H
L L LE − −〈 〉Y x Z Y r n  [6.22] 
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Finally, recalling n  is white noise with mean zero and variance 2
nσ , we get the 

following expression for the efficiency of the OLS FOD estimator f̂  

 

 2 2 2
0

1=
trace( / )n L

E
sσ −⋅Z

 [6.23] 

 2 2 2
0

1=
/n l

l

s zσ −⋅∑
 [6.24] 

 2
2

1= SNR
l

l

z−⋅
∑

, [6.25] 

 

where the root mean squared (RMS) signal-to-noise ratio (SNR) is defined as 0SNR / ns σ . 

Eq. [6.25] together with Eq. [6.9] demonstrate how the ideal efficiency of the FOD estimate is 

a function of the b-value, the ADC of the single-fiber response, and the SNR at 0b = .  

 

6.3.5 Realizable efficiency 

The expression for the efficiency of the OLS FOD estimator in Eq. [6.25] is ideal in 

the sense that it assumes a continuous sampling of measurement directions and FOD 

reconstruction points (i.e. as ,M N →∞ ) and pulse-sequence parameter that are independent 

of the b-value. In practice, however, the “realizable” efficiency of the FOD estimate depends 

on the efficiency of gradient sampling vectors in q  and the dependence of the echo-time (TE) 

and repetition time (TR) on the b-value. Taken together, we can write an expression for the 

realizable efficiency E  (per unit scan time) as  
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( )2TE( )/T2
0

2

SNR 1
TR( ) ( , )

b

i
i

e
E

b M γ

−

−

⋅
≈ ⋅

⋅∑ r x
 [6.26] 

 

where 0SNR  is the SNR in RMS units at TE = 0 and b = 0, ( , )iγ r x  is the i -th singular value 

of the forward convolution matrix ( , )R r x  (given by Eq. [6.3]), and = 1, 2, ,i p  is the 

spherical harmonic index for an L -th order series expansion. The first term on the left hand 

side of Eq. [6.26] can be viewed as a reduction in efficiency due to constraints imposed by the 

pulse-sequence and scanner hardware, while the second term on the right hand side of Eq. 

[6.26] can be viewed as the relative efficiency of the gradient sampling scheme. Note, the 

expression for the realizable efficiency E  in Eq. [6.26] is no longer analytic, and requires 

computing the singular values numerically. 

 

6.4 Results and Discussion 

Figure 6.1 shows a plot of the magnitude coefficients | |lz  computed analytically 

using Eq. [6.9] for several different b-values and fixed ADC parameters ( 3= 1.7 10λ −×  

2mm / sec  and 3= 0.2 10λ −
⊥ ×  2mm / sec ). These ADC values are consistent with 

experimental estimates in the adult human brain (26), and are used throughout the remainder 

of this paper. Notice the characteristic "staircase" pattern for each plot in the figure, where 

each "step" corresponds to a different spherical harmonic order l . The heights of the steps  



71 
 

 

Figure 6.1. The magnitude of the coefficients | |lz  are shown for four different b-values (sec2/mm) 
with a maximum SH expansion order of L = 6. The height of each step reflects the relative power to 
estimate features of the FOD spanned by the corresponding SH basis vectors. As the b-value decreases, 
the relative power to estimate higher order angular frequency features of the FOD decreases. 

 

reflect the relative power to estimate features of the FOD spanned by the corresponding SH 

basis vectors. In all cases, power decreases with increasing SH order, reflecting an overall 

reduction in the ability to estimate higher angular frequency features of the FOD, irrespective 

of the b-value. However, the rate at which power is lost is also dependent on the b-value, with 

lower b-values resulting in greater losses in power to estimate higher angular frequency 

components of the FOD.  

Figure 6.1 can also be viewed as a plot of the analytic singular values of LR . Small 

singular values cause the inverse solution in Eq. [6.18] to become increasingly sensitive to 

small amounts of noise in the data. Several authors have introduced various linear and non-

linear regularization techniques to better condition both the FOD and ODF reconstruction 
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problem, including Tikhonov regularization (27), Laplace-Beltrami regularization (21,28), 

non-negative least squares (11,20,29), and Maximum Entropy (9). These regularization 

techniques can decrease the mean squared error of the estimate, but this comes at a price of 

introducing estimator bias. The performance of each regularization method is critically 

dependent on whether the a priori constraints imposed on the solution are valid. The 

efficiency optimization approach presented here is valid for unbiased estimators where the 

estimation error is driven solely by the measurement error. The expression for the truncated 

SVD solution in Eq. [6.19] provides an optimum unbiased estimator of the projection of the 

true FOD into the subspace spanned by the columns of ( )LY x .  

The overall efficiency of the unbiased FOD estimate in Eq. [6.25] takes into account 

the relative power to estimate all the angular frequency components of the FOD. Figure 6.2 

shows a plot of the ideal FOD estimation efficiency E as a function of b-value for L = 2, 4, 6, 

and 8. Again, note the decrease in efficiency for estimating FODs with higher order series 

expansions (and thus greater angular resolutions). Also, note the optimal b-value which 

maximizes the efficiency depends on the expansion order, with higher order expansions 

requiring higher b-values. The optimal b-values which maximize the ideal efficiency of the 

FOD estimator using L = 2, 4, 6, and 8 are b = 1500, 3000, 4600, and 6200 sec2/mm, 

respectively. 

Figures 6.1 and 6.2 illustrate the fundamental relationship between angular resolution, 

b-value, and estimation efficiency. The theoretical angular resolution of a L-th order SH 

expansion can be quantified using the angular point spread function (PSF) (27). The full-width 

at half maximum (FWHM) of the main lobe of the PSF determines the upper bound on 

angular resolution and is inversely proportional to L. For L = 2, 4, 6, and 8 the theoretical  
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Figure 6.2. Relative ideal efficiency E  of the OLS FOD estimator is plotted as a function of b-value 
(sec2/mm) for four different SH expansion orders L. Note that the exact value of the ideal efficiency is 
proportional to the SNR, and thus the relative efficiency measure plotted here is in arbitrary units 
assuming an SNR = 1. Optimal b-values which maximize the ideal efficiency for L = 2, 4, 6, and 8 are b 
= 1500, 3000, 4600, and 6200 sec2/mm, respectively. 

 

angular resolution of the FOD estimator is approximately 110º, 65º, 46º, and 36º, respectively 

(27). Thus, in practice, increasing L would allow for resolving crossing fibers at increasingly 

finer separation angles, but as mentioned earlier, this comes at a price of decreasing efficiency. 

From Fig. 6.2 one can see that using an expansion order of L = 6 at the optimal value of b = 

4600 is approximately 10 times less efficient than using an L = 4 expansion at its optimal 

value of b = 3000 (1×10-2/9×10-4 ≈10) and 300 times less efficient than using a tensor 

description for the FOD (L = 2) at its optimal value of b = 1500 (3×10-1/9×10-4 ≈300).  

In addition to the expansion order L, the b-value also plays a critical role in 

determining the efficiency of the FOD estimator, especially when higher order expansions are 

used. For example, inspection of Fig. 6.2 reveals that the efficiency for estimating the 
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diffusion tensor (L = 2) is fairly constant between b = 500 and b = 3000, but then falls off 

rapidly at higher b-values. However, the efficiency for estimating crossing fibers (L ≥ 4) is 

more strongly dependent on the b-value. Scanning at b = 1000 using L = 4 would result in 

approximately 1/3 the efficiency of scanning at its optimum value of b = 3000 (3×10-3/1×10-2 

≈1/3). This means one would have to collect three times as many diffusion directions, or 

equivalently, three times as many averages at b = 1000 to achieve the same estimation 

accuracy as scanning at b = 3000. On the other hand, scanning at b = 2000 would only result 

in a 10% drop in efficiency when compared to b = 3000 (9×10-3/1×10-2 ≈9/10). 

While the expression for the ideal efficiency in Eq. [6.25] provides important insight 

into the FOD estimation problem, in practice, the realizable efficiency of the FOD estimator 

also depends on the arrangement of diffusion directions on the sphere (term on the right hand 

side of Eq. [6.26]) and scanner-specific hardware constraints (term on the left hand side of Eq. 

[6.26]). Two of the most commonly used methods for selecting diffusion directions in MRI 

are to 1) minimize the electrostatic energy of pairs of equal and opposite points on the sphere, 

called the electrostatic repulsion (ER) model (30), and 2) to minimize the 1/r potential, which 

we call the minimum potential (MP) model (Hardin, Slone, and Smith, Spherical Codes, 

published electronically at www.research.att.com/~njas/electrons/index.html). Shown in Fig. 

6.3 are the relative efficiencies of both models for expansion orders L = 2, 4, 6, and 8. Also 

included is the efficiency of an “optimized” set of diffusion directions generated by searching 

for sampling arrangements which maximize Eq. [6.26]. We refer to this new method for 

selecting diffusion directions as the "optimal efficiency" (OE) model. As illustrated in Fig. 6.3 

some sampling arrangements of the MP model are highly inefficient for estimating the FOD 

with L > 2 (i.e. for reconstructing crossing fibers). The ER model, on the other hand, achieves  



75 
 

 

Figure 6.3. Effect of gradient sampling scheme on the realizable efficiency E  of the FOD estimator. 
Shown are the relative efficiencies of the electrostatic repulsion (ER) model, minimum potential (MP) 
model, and the newly proposed “optimal efficiency” (OE) model. For each order L, the efficiency is 
calculated using their respective optimal b-values and plotted in arbitrary units (term on the left hand 
side of Eq. [6.26] was set to 1). The FOD reconstruction vectors x  were chosen using a 2-nd order 
icosahedral sampling of the sphere (162 vertices). 

 

nearly optimal efficiency for L ≤ 6, but has suboptimal efficiency for some sampling 

arrangements when using L = 8 and presumably for higher orders as well.  

Another important factor in the realizable efficiency of the FOD estimator is the 

minimal TE and TR allowed for a given b-value. The effects of these scanner-specific 

hardware constraints on the FOD estimation efficiency are illustrated in Fig. 6.4. Shown in 

black are the efficiencies of a 51 direction acquisition (selected using the ER model) for 

multiple expansion orders using TE and TR values that are consistent with those prescribed on 

a General Electric Signa HDx 1.5T scanner (Waukesha, WI). Shown in gray are the 

efficiencies of this same acquisition using a fixed TE and TR calculated at b = 500 for 

reference. From Fig. 6.4 one can see that the general effect of adjusting the TE and TR is to  
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Figure 6.4. Effect of scanner-specific hardware constraints on the realizable efficiency E  of the FOD 
estimator. Black lines show the relative efficiencies of a 51 direction acquisition (selected using the ER 
model) using realistic TE and TR values that are consistent with those prescribed in practice. Gray lines 
show the relative efficiencies of the same acquisition using a fixed TE and TR calculated at b = 500. All 
efficiencies are calculated numerically using SNR0 = 1, T2 = 80 msec., and a 2-nd order icosahedral 
sampling for the FOD reconstruction vectors x .  

 

reduce the efficiency at higher b-values which results in slightly lower b-values for optimal 

FOD estimation efficiency compared to the ideal case. For L = 2, 4, 6, 8 the optimal b-values 

which maximize the realizable efficiency on a Signa Hdx 1.5T system are approximately b = 

1000, 2200, 3600, and 5200, respectively. Note that under these realistic conditions the 

relative efficiency for estimating crossing fibers using L = 4 at b = 1000 only now results in 

about half the efficiency of scanning at its optimum value of b = 2200 (compared to 1/3 the 

efficiency in the ideal case). Also, it should be noted that while the actual change in efficiency 

will vary depending on the scanner specifics, the general trend will remain the same, i.e., a 

reduction in the efficiency at higher b-values and a subsequent decrease in the optimal b-

values required for maximally efficient FOD estimation. 
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6.5 Conclusion 

Several authors have used the SH basis to derive analytic expressions for both the 

FOD and ODF reconstruction problem. Here, we extend this framework and derive a simple 

analytic expression for the efficiency of the maximally efficient (minimum variance) linear 

unbiased estimator of the FOD. This expression highlights the important fundamental 

relationship between angular resolution, b-value, and the expected accuracy of the FOD 

estimate per unit scan time. As expected, the FOD estimation efficiency decreases with 

increasing SH expansion order L (increasing angular resolution) and the relative efficiencies at 

each order vary as a function of the b-value. b-values which maximize the efficiency under 

ideal conditions using L = 2, 4, 6, and 8 are calculated to be approximately b = 1500, 3000, 

4600, and 6200 sec2/mm, respectively.  

However, the efficiency that can be realized in practice also depends on the 

arrangement of diffusion directions on the sphere and the scanner-specific hardware 

limitations. We demonstrate how some commonly used methods for selecting diffusion 

directions can lead to suboptimal FOD estimation efficiencies especially when higher order 

SH expansions are required, and we propose a new criterion for selecting diffusion directions 

based on optimizing the statistical efficiency. Finally, scanner-specific limitations on the TE 

and TR will tend to decrease the efficiency at higher b-values resulting in slightly lower b-

values for optimal FOD estimation efficiency.  
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Chapter 7 

 

Real-time Motion Correction 

 

7.1 Abstract 

Artifacts caused by patient motion during scanning remain a serious problem in most 

MRI applications. The prospective motion correction technique attempts to address this 

problem at its source by keeping the measurement coordinate system fixed with respect to the 

patient throughout the entire scan process. In this study, a new image-based approach for 

prospective motion correction is described, which utilizes three orthogonal 2D spiral navigator 

acquisitions (SP-Navs) along with a flexible image-based tracking method based on the 

Extended Kalman Filter (EKF) algorithm for online motion measurement. The SP-Nav/EKF 

framework offers the advantages of image-domain tracking within patient-specific regions-of-

interest and reduced sensitivity to off-resonance-induced corruption of rigid-body motion 

estimates. The performance of the method was tested using offline computer simulations and 

online in vivo head motion experiments. In vivo validation results covering a broad range of 

staged head motions indicate a steady-state error of the SP-Nav/EKF motion estimates of less 

than 10 % of the motion magnitude, even for large compound motions that included rotations 

over 15 degrees. A preliminary in vivo application in 3D inversion recovery spoiled gradient 

echo (IR-SPGR) and 3D fast spin echo (FSE) sequences demonstrates the effectiveness of the 
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SP-Nav/EKF framework for correcting 3D rigid-body head motion artifacts prospectively in 

high-resolution 3D MRI scans.  

 

7.2 Introduction 

Artifacts caused by patient motion during scanning remain a serious problem in most 

clinical and research MRI applications. In fast single-shot sequences, such as dynamic 2D 

echo-planar imaging (EPI), between-scan motion can introduce significant motion-related 

variance to the voxel-time courses and disrupt the spin excitation history of the acquisition 

(1,2). In multi-shot 2D and 3D sequences, within-scan patient motion results in k-space data 

inconsistencies, causing artifacts such as ghosting, blurring and ringing in the images 

themselves. Offline image registration can mitigate most between-scan motion artifacts in 

time-series data (3-5), but cannot correct for changes in the spin excitation history caused by 

through-plane motion. In addition, while some within-scan motion artifacts can be corrected 

retrospectively using knowledge of the motion history derived from either navigator scans 

(6,7) or overlapping k-space data (8,9), most of these methods are limited by the inability to 1) 

fully correct for through-plane motion in 2D sequences and 2) avoid k-space data 

inconsistencies caused by interpolation errors.  

An alternative approach to motion correction, which shares none of these drawbacks, 

is modify the pulse-sequence online, in real-time, during the acquisition itself. Some of the 

first real-time methods used straight-line navigators to prospectively correct for linear 

translations of organs in the chest (10-12). Since then, navigators with more sophisticated k-

space trajectories have been developed for higher order motion correction. Ward et al. used 

orbital (circular) navigators (O-Navs) (13) acquired in three orthogonal 2D planes for 

prospective correction of full 3D rigid-body motion artifacts in 2D EPI (14). To account for 



83 
 

motion outside the plane of each navigator (through-plane motion effects), multiple O-Navs 

are acquired in series where each O-Nav provides an adjustment to the subsequent O-Nav 

planes. Spherical navigators (S-Navs), which generalize the O-Nav trajectory to 3D shells in 

k-space, do not suffer from through-plane motion effects and can be used to estimate 3D rigid-

body motion in a single navigator (15-17). However, the spherical technique works best for 

rotations along the navigator trajectory as apposed to rotations across them (15). In addition, a 

real-time application of the S-Nav remains missing due in part to the slow iterative procedure 

required to register S-Nav magnitude data (15). One of the most recent real-time navigator 

techniques, introduced by van der Kouwe (18), used an optimized "cloverleaf" k-space 

trajectory for prospective correction of 3D rigid-body motion in 3D spoiled gradient echo 

sequences. Compared to the orbital and spherical trajectories, the cloverleaf method offers the 

advantages of a more rapid k-space readout, together with improved translation estimation by 

including linear segments through the center of k-space (18).  

In some applications, prospective motion correction can be achieved through self-

navigation. Thesen et al. described a self-navigated approach for 2D EPI called “Prospective 

Acquisition CorrEction", or PACE, where each individual time-series volume is reconstructed 

online and registered to the first volume in the sequence (19). While the image-base tracking 

(registration) procedure in PACE provides accurate 3D rigid-body motion estimates, the 

correction itself is performed on a slow volume-by-volume basis, or approximately every four 

seconds (19). Zaitsev et al. (20) and Speck. et al. (21) developed an optical tracking device for 

improved real-time slice-by-slice correction in 2D EPI. In general, the advantage of optical 

tracking is that it does not require modification of the pulse-sequence. However, this comes at 

a price of requiring significant additional hardware to implement, including a MRI compatible 
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camera system mounted inside the scanner room and repeated calibration for optimal tracking 

performance (22). 

In this study, we present an alternative image-based framework for prospective 

motion correction called "PROMO" (PROspective MOtion correction). The PROMO 

approach utilizes three orthogonal 2D spiral navigator acquisitions (SP-Navs) along with a 

flexible image-based tracking method based on the Extended Kalman Filter (EKF) algorithm 

(23,24) for real-time motion measurement. The Kalman filter framework for image-based 

tracking in MRI was introduced by White et al. (25), and applied in 3D spiral-navigated image 

sequences by Shankaranarayanan et al. (26,27) and Roddey et al. (28) and in MR spectroscopy 

by Keating et al. (29). Spincemaille et al. also recently introduced a novel application of the 

Kalman filter for real-time separation of cardiac and respiratory components in navigator data 

(30). Here, we describe the PROMO motion correction method in detail and provide some 

preliminary results in 3D inversion recovery spoiled gradient echo (IR-SPGR) and fast spin 

echo (FSE) sequences.  

 

7.3 Methods 

7.3.1 Spiral navigator acquisition 

The navigator acquisition included three orthogonal low flip-angle, thick-slice, single-

shot spiral acquisitions (SP-Navs) with the following pulse-sequence parameters: TE/TR = 

3.4/14 ms, Flip (δ) = 8º (to minimize the impact of signal saturation on the acquired 3D 

volume), BW = ± 125 kHz, field-of-view (FOV) = 32 cm, effective in-plane resolution = 10 x 

10 mm, reconstruction matrix = 128 x 128, slice thickness = 10 mm. Spiral readouts were 

selected because they provide an efficient k-space coverage and allow for image-based  
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Figure 7.1. SP-Nav pulse-sequence and reconstructed image used for motion tracking. 
 

tracking with reduced sensitivity to distortion. The off-resonance effect is somewhat mitigated 

by the optimization of spiral length since the requirement for the in-plane resolution of the 

navigators is not very high. Initial experiments were done without any trajectory 

measurement. However, it should be noted that in case of severe off-resonance (> ± 100 Hz) 

the measurement errors will increase significantly. To avoid this, we perform center frequency 

correction (prescan software on the scanner) before every scan. The orientation convention 

adopted in this work defined the x-axis as the left-right direction, the y-axis as the anterior-

posterior direction, and the z-axis as the inferior-superior direction with respect to the patient. 

The axial, sagittal, and coronal planes of each SP-Nav spanned the x-y, y-z, and the x-z axes, 

respectively. The SP-Nav pulse-sequence and example reconstructed image is shown in Fig. 

7.1.  
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Figure 7.2. Spiral-navigated (a) 3D IR-SPGR and (b) 3D FSE pulse-sequence. A train of J = 5  SP-
Navs are played out prior to each of the M inversion or excitation pulses of the two sequences, 
respectively. Prospective motion correction is performed after each individual SP-Nav using the EKF 
algorithm. 
 

7.3.2 Integration in 3D IR-SPGR and 3D FSE 

SP-Navs were integrated into a 3D IR-SPGR and 3D FSE sequence (Fig. 7.2). To 

enable prospective correction without impacting scan time, multiple SP-Navs were played out 

during the intrinsic longitudinal (T1) recovery time of the two sequences. Immediately after 

acquisition, each SP-Nav was reconstructed and used as input to the EKF motion tracking and 

correction algorithm (described next). The time required to collect a single SP-Nav was 

approximately 42 ms, followed by 6 ms for image reconstruction of all three planes. To allow 

ample time for estimation and feedback, the repetition time for each SP-Nav was programmed 
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for 100 ms. A total of J = 5 SP-Navs (~500 ms) were acquired during the T1 recovery times of 

both sequences, which were programmed for approximately 700 ms and 1200 ms, 

respectively. For the IR-SPGR sequence, a recessed elliptical centric ky-kz ordering was used 

for the imaging segment (31), with an entire ky-kz plane acquired after each inversion pulse. 

The thickness of the IR pulse was twice that of the imaging slab. The IR-SPGR pulse-

sequence parameters were: TE/TR = 3.9/8.7 ms, Inversion time (TI) = 270 ms, Flip (α) = 8º, 

BW = ± 15.63 kHz, FOV = 24 cm, voxel size = 1.25 x 1.25 x 1.2 mm, # k-space segments 

(M) = 192. For the 3D FSE sequence, an eXtended Echo Train Acquisition (XETA) (32) was 

used with the following parameters: TE/TR = 110/2500 ms, Flip = 90º, BW = ± 31.25 kHz, 

FOV = 24 cm, voxel size = 1.25 x 1.25 x 1.2 mm, echo train length (ETL) = 90, M = 90. The 

overall scan times of the IR-SPGR and FSE sequences were 8 min and 4.5 min, respectively. 

All scans were collected using a 1.5T GE Signa HDx system (Waukesha, WI) using an 8-

channel head coil. 

 

7.3.3 EKF motion tracking and correction 

7.3.3.1 Dynamic state space model 

Real-time 3D rigid-body motion tracking and correction on the SP-Nav data was 

performed using the well-known EKF algorithm (23). The EKF itself provides recursive state 

estimates in nonlinear dynamic systems perturbed by Gaussian noise. The basic dynamic state-

space model of the EKF, as implemented here, is shown in Fig. 7.3 and can be written as a set 

of system equations of the form  
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Figure 7.3. Dynamic state space model of the EKF. The a priori state is used to update the pulse-
sequence at each time step.  
 

 

 ( )1= ; (0, )k k P N− +x Ax w w Q∼  [7.1] 

 ( )= h( ) ; (0, ).k k P N+y x v v R∼  [7.2] 

 

kx  is the (unobserved) state of the dynamic system at time-step k and ky  are the (observed) 

measurements. Also shown in Fig. 7.3 are the EKF state estimates, which are described in 

detail later.  

For image-based motion tracking, = [ , , , , , ]T
k x y z x y zt t t θ θ θx  is a 6-dimensional 

vector of rigid-body motion parameters, where the first three and last three elements are 

translations and rotations in x-y-z space, respectively and ky  is an Nv-dimensional vector of 

voxel intensities of the k-th SP-Nav, where Nv  is the total number of voxels in all three 

navigator planes. The time evolution of the state vector is given by the 6 x 6 state transition 

matrix A and the Gaussian process noise by w, with mean zero and covariance Q. Because of 

the relatively unpredictable nature of patient head motions over the sampling interval of the 

SP-Navs, the dynamics are modeled using a simple random walk, with A as the identity 
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matrix. ( ) 6h ; N⋅ →\ \  is a nonlinear vector-valued function of the current state called the 

measurement model, which describes how the states are observed through the noisy 

measurements. For image-based tracking, the measurement model h( )⋅  describes a 2D 

interpolation into a fixed reference navigator refy  (collected at the beginning of the scan) at 

the locations specified by kx . The exact mathematical form of h( )⋅  is provided in the 

Appendix. To improve the robustness of the tracking to potential variations in the mean signal 

level of each SP-Nav, the measurements ky  are forced to have unit norm at each time-step. 

The error in the measurement process is given by the Gaussian measurement noise v, with 

mean zero and covariance R. In the dynamic state-space model above, the noise processes are 

time-invariant and statistically independent (i.e. ( ) = 0TE wv ).  

From a Bayesian point of view, the a posteriori filtering density ( )0:k kP x y  of the 

state given the complete history of observations { }0: 0 1, , ,k k=y y y y…  constitutes the 

complete solution to the motion tracking problem. The EKF algorithm provides recursive 

estimates of the conditional mean of the a posteriori filtering density 

( )| 0: 0:ˆ k k k k k k k kE P d= ⎡ ⎤ =⎣ ⎦ ∫x x y x x y x  using a two-stage recursion of prediction and 

correction at each time-step. Here, |ˆ k kx  refers to the corrected, or a posteriori state estimate at 

time-step k, given all the measurements up to and including ky . For prospective motion 

correction in MRI, an additional scanner update step is included in the recursion. 
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7.3.3.2 Prediction 

In the prediction step, the state transition matrix A and assumed process noise 

covariance Q are used to predict the state and error covariance at each time-step. With A as 

the identity matrix, the predicted state and error covariance become 

 

 | 1 1| 1ˆ ˆ=k k k k− − −x x  [7.3] 

 | 1 1| 1
ˆ ˆ=k k k k− − − +P P Q , [7.4] 

 

where | 1ˆ k k−x  is the predicted or a priori state estimate at time-step k, given the a posteriori 

state estimate 1| 1ˆ k k− −x  at the previous time-step k-1 (see Fig. 7.3). 

( )( )| 1 | 1 | 1
ˆ ˆ ˆ

T

k k k k k k k kE− − −
⎡ ⎤= − −⎢ ⎥⎣ ⎦

P x x x x  is a priori state estimation error covariance at time-

step k, given the a posteriori state estimation error covariance 1| 1
ˆ

k k− −P  at k-1. 

 

7.3.3.3 Update 

For prospective motion correction, the predicted state | 1ˆ k k−x  of the EKF is used to 

update the scanner pulse-sequence prior to collecting the measurements ky . This includes 

updating the slice, phase, and frequency encoding of the imaging volume as well as the 

navigators, given the 3D translations and rotations in | 1ˆ k k−x . A real-time communication 

system described in Ref (33) and implemented as in Ref (34), was used for efficient and near 

real-time communication of SP-Nav data, EKF state estimates, and associated meta data 

between the EKF module and the scanner pulse-sequence/receive chain. 



91 
 

 

7.3.3.4 Correction 

Immediately following the scanner update, the measurements ky  are acquired and 

used to correct the predicted state | 1ˆ k k−x  and error covariance | 1
ˆ

k k−P . The basic idea of EKF 

correction is to approximate the nonlinear function h( )⋅  using a Taylor series expansion 

around | 1ˆ k k−x  and apply the standard linear Kalman filter equations to the new linearized 

model. In this study, the first-order iterated EKF correction  was implemented (23), which 

truncates the Taylor series to first-order and iterates the correction a total of N times. The first-

order iterated EKF correction is analogous to performing an online Gauss-Newton 

optimization of the following nonlinear cost function (35) 

 

 
( ) ( )( ) ( )( )

( ) ( )

1

1
| 1 | 1 | 1

h h

ˆˆ ˆ

T
i k k k k k

Ti i
k k k k k k k k

C −

−
− − −

= − −

+ − −

x y x R y x

x x P x x
 [7.5] 

 

for i = 0, 1, …, N. When N is set to zero, the first-order iterated EKF correction reduces to the 

standard EKF correction. Details of how the cost function ( )i kC x  is minimized given the 

online updates to the scanner pulse-sequence are provided in the Appendix.  

The first term on the left hand side of Eq. [7.5] is the “data prediction error” while the 

second term on the right hand side of Eq. [7.5] is the “model estimation error”. Note, most 

offline intensity-based image registration algorithms are based on iteratively minimizing the 

“data prediction error”, or some variant of this function. The EKF can therefore be viewed as a 

generalization of traditional intensity-based image registration that incorporates an additional 
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model for the dynamics and is uniquely suited for online applications because 1) it is causal in 

nature and 2) does not require iterating the cost function (by setting N = 0), which is important 

in time-sensitive applications. Thus, in the limit of infinitely large process noise covariance Q, 

the “model estimation error” is effectively ignored when minimizing the cost, and the EKF is 

analogous to traditional image-based least-square registration with N iterations. The weighting 

of the “data prediction error” and “model estimation error” to the overall cost depends on both 

error terms Q and R. Selection of these priors is an important step in optimal EKF 

performance and is described next. 

 

7.3.3.5 Filter tuning 

Because the EKF is unchanged by scaling Q  and R  by the same factor, it is often 

convenient to define a single scalar that controls the relative weighting of the “data prediction” 

and “model estimation errors”. To do this, we factor Q  and R  into 

 

 2= w Qσ ⋅Q  [7.6] 

 2= ,v Rσ ⋅R  [7.7] 

 

where 2
wσ  and 2

vσ  are scalars, and Q  and R  are matrices of unit norm containing the 

structure of the respective noise processes. The ratio 2 2= /v wS σ σ  then controls the effective 

"bandwidth" of the filter, with increased tracking ability on the one hand (high weighting of 

data information with low values of S ) and increased noise suppression on the other (high 

weighting of model information with high values of S ). Throughout the remainder of this 

work, we refer to S  as the “smoothness factor”. 
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The noise covariance structure, or entries of Q  and R , can be selected to utilize prior 

knowledge about the object’s dynamics and measurement errors, respectively. Given the 

physical constraints of the patient inside the MRI environment, some of the off-diagonal 

entries of Q  will likely be non-zero. However, for the sake of simplicity, we assume each 

motion parameter is independent, thus Q  is diagonal and can be written 

 

 ( )2 2 2 2 2 2diag 1 1 1 ( /180) ( /180) ( /180) ,
T

Q π π π⎡ ⎤= ⎣ ⎦  [7.8] 

 

where the first three and last three elements have units mm2/TN2 and rad2/TN2, respectively, 

with TN being the time between the onset of two consecutive SP-Navs. In addition, we 

assume the measurement errors are white, thus R  is diagonal, and the inverse can be written  

 

 

1

21

0 0 0
0 0 0

= 0 0 0
0 0 0 Nv

d
d

R

d

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

% . [7.9] 

 

The scalars along the diagonal of 1R−  10 { } 1vN
i id =≤ ≤  provide a means of weighting the 

contributions of each voxel to the motion estimate and thus setting the appropriate weights id  

to zero provides a principled approach for motion tracking within a priori regions-of-interest 

(ROIs). This procedure is described next.  

  



94 
 

 

Figure 7.4. Online EKF schematic for patient-specific ROI tracking. app
kx  is the “applied” state used to 

collect the measurements ky  and is described in the Appendix. 
 

7.3.3.6 ROI tracking 

The advantage of image-based ROI tracking with the EKF is that the estimation can 

focus on a particular region (ROI) in object space while ignoring other regions that may 

corrupt the rigid-body motion estimates. In this study, a brain ROI is adapted to each patient to 

remove the effects of non-rigid motion of the neck and jaw. The general procedure is shown 

schematically in Fig. 7.4 and can be separated into two principal phases. During the first phase 

(Phase I), a train of 20 SP-Navs are played out in rapid succession immediately prior to the 

start of the “dummy” scans. During collection of this SP-Nav train, the EKF is used to register 

a fixed 3D proton density (PD) weighted head atlas to the patient. Once the registration is 

complete, the entries of 1R−  (data weights) are set to the voxel values in a 3D binary brain 

mask, defined in atlas space. The construction of both the 3D head atlas and associated brain 

mask was performed offline and is described in detail in Ref (28). Immediately after the brain 

ROI is specified, a series of 4 dummy scans are acquired to allow equilibration of the  
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Figure 7.5. Results from Phase I of the EKF tracking procedure showing the SP-Nav reference image 
(bottom row), registered head atlas (top row), and brain ROI (white lines). All voxels outside of the 
brain ROI in the SP-Nav are ignored during tracking. 
 

longitudinal magnetization. Once the dummy scans are complete, the final EKF parameters, 

such as the Jacobian H (see the Appendix for a description of the Jacobian and how it is 

calculated), reference navigator refy  (which is set to the last SP-Nav prior to scan start) and 

covariance matrices Q and R  are calculated and stored in memory. The entire duration of 

Phase I takes approximately 10 s. An example reference navigator, registered head atlas and 

brain ROI are shown in Fig. 7.5. 

In the second phase (Phase II), the “tuned” EKF is run online for prospective motion 

correction during the scan. Because the SP-Navs are only acquired during the T1 recovery 

period of the pulse-sequences, no correction is performed during the imaging segment itself, 

which typically lasts about 2 s. To account for this, motion corrupted k-space segments were 
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re-acquired at the end of the scan. To determine which segments needed to be re-acquired a 

simple “rescan metric” was defined 

 

 2
ˆ ˆ( ) = ( ) ( ) ,n n nρ − +−x x

 [7.10] 

 

where ˆ ( )n−x  and ˆ ( )n+x  are used to denote the a posteriori motion estimates (in mm and deg) 

immediately prior and immediately after the collection of the n-th k-space segment, 

respectively. All k-space segments with ( )nρ  greater than or equal to a user-specified 

threshold T are then marked for rescanning. In this study, the rescan threshold was selected 

based on in vivo experiments performed during no motion and is described in the section titled 

“In vivo validation experiment”. 

 

7.3.4 Offline simulation 

Offline Monte Carlo simulations were used to test the performance of the EKF for 

motion tracking in the SP-Nav sequence. For each Monte Carlo run, a time-series of 10 SP-

Navs was synthesized by interpolating into a single isotropic 3D SP-Nav volume (collected 

with similar acquisition parameters to the online 2D SP-Navs). To simulate online motion 

correction, the orientation of each synthesized SP-Nav was determined by combining both the 

simulated motion with the predicted state of the EKF at each time-point. Two different 

simulation experiments were performed. The first tested simple 1D motions in each parameter 

separately and the second tested compound random amplitude motions in all parameters 

simultaneously. In all experiments, step functions were used to simulate motion (starting at the 

forth time-point) so that the convergence behavior of the EKF could easily be visualized using 
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different filter parameters. Both “large” and “small” motions were tested using either a 10 

mm/deg or 1 mm/deg step (for the 1D simulation experiment) or constraining the vector norm 

across all parameters (in mm and deg) to be either 10 or 1 (for the compound motion 

experiment), respectively. Prior to estimation, random Rician noise was added to each image 

with various signal-to-noise ratios (SNR). The measurement noise level 2
vσ  of the EKF was 

determined empirically for each SNR level using the mean (within brain) signal magnitude 

estimated from the native 3D SP-Nav volume. Thus, when testing the effect of different 

“smoothness factors” S, only the process noise level 2
vσ  of the EKF was varied. All 

simulations were performed on a Dell Precision workstation using Matlab (Mathworks, Inc.). 

 

7.3.5 Online in vivo experiments 

Three different types of in vivo experiments were performed to test the online 

performance of the SP-Nav/EKF tracking framework in the 3D IR-SPGR and 3D FSE 

sequences. Prior to scanning, all subjects provided informed consent in accordance with the 

University of California, San Diego institutional review board.  

 

7.3.5.1 In vivo validation experiment 

The first in vivo experiment was designed to assess the steady-state accuracy of the 

SP-Nav/EKF motion estimates. The basic procedure consisted of modifying the IR-SPGR 

sequence (Fig. 7.2a) to collect the same three volumes back-to-back (V1, V2, and V3). During 

the scan, a highly motivated volunteer was instructed to either remain motionless throughout 

("no-motion" trial), or make a single brief motion during the middle of the second volume 

(V2) and remain in that position until the end of the scan ("motion" trial). No instruction was 
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given as to what type of motion to perform, only to vary the magnitude and direction of 

motion from trial to trial. During each trial, prospective motion correction was performed with 

respect to the reference navigator of the first volume. After the scans were complete, three 

quantities were estimated for each trial: 1) the steady-state EKF motion estimate, calculated by 

averaging the online motion estimates during V3, 2) the steady-state error of the EKF motion 

estimates, calculated offline by registering V1 to V3 using an iterative 3D rigid-body 

registration algorithm, and 3) the “true” motion of the subject, calculated by combining the 

steady-state EKF estimate with the steady-state error. Prior to computing these quantities, all 

motion plots were inspected to verify the subject did not move during the collection of V1 or 

V3. Each trial of the validation experiment required approximately 24 minutes of scanning 

and a total of 15 trials were performed (2 “no motion” trials and 13 “motion trials”). The 

rescan threshold T was selected based on data obtained during the two “no motion” trials. The 

mean ( )nρ  during all six volumes of both trials was 0.31, with a minimum of 0.07 and a 

maximum of 0.68. Thus, to be conservative, the rescan threshold T was set to 1 for all 

subsequent in vivo scans in this study.  

 

7.3.5.2 Repeated staged motion experiment 

The second in vivo experiment was designed to assess the performance of the SP-

Nav/EKF framework for reducing 3D rigid-body head motion artifacts in the MRI scans 

themselves under relatively controlled conditions. Three types of scans were performed on a 

single subject: 1) a scan without motion correction where the subject was asked to perform 

repeated staged motions continuously during the scan (PROMO OFF condition), 2) a scan 

with motion correction where the subject was asked to repeat the same motions as in (1)  
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Figure 7.6. EKF tracking results for 1D motion steps. The true motion is shown in gray and the 
estimated motion in black. A total of 6 trials (columns) where used to create each 6 x 6 matrix. Off-
diagonal plots indicate the “cross-talk” error of the EKF. 
 

(PROMO ON condition), and 3) a baseline scan without motion correction where the subject 

was asked to stay as still as possible (NO MOTION condition). Two types of staged head 

motions were performed: 1) "side-to-side" motion and 2) "nodding" motion.  

 

7.3.5.3 Real life experiment 

The final in vivo experiment was designed to assess the overall performance of the 

SP-Nav/EKF framework for reducing 3D rigid-body head motion artifacts in the MRI scans 

under realistic conditions. To do this, two healthy young males were scanned (ages 10 and 11) 

with the 3D IR-SPGR sequence with and without PROMO correction twice (total of 4 scans 

per subject). Young males were recruited because of their known tendency to move during the 

scan sequence despite being instructed not to. No specific instruction was given to either 

subject, only to remain “as still as possible”. 

  



100 
 

 

Figure 7.7. Average EKF tracking errors (over 500 Monte Carlo runs) for compound random amplitude 
motion steps plotted on a log scale. (a) Translation and rotation error for “large” and “small” motion 
steps. (b) Overall error (norm across all six parameters) as a function of SNR for “large” and “small” 
motion steps. (c) Overall error as a function of EKF iteration (N) for “large” and “small” motion steps 
with an SNR of 10. (d) Overall error as a function of “smoothness factor” S for “small” motion steps 
with an SNR of 10. In all plots, the arrow indicates the onset of the motion. Time-point 1 is omitted as 
the predicted state (motion) of the EKF is zero. 
 

7.4 Results 

7.4.1 Offline simulations 

EKF tracking results for the 1D steps along each motion parameter are shown in Fig. 

7.6 for both “large” (10 mm/deg) and “small” (1 mm/deg) motion magnitudes with an SP-Nav 

SNR of 10 (which approximates the actual SNR of the online SP-Navs). The results are shown 

in “matrix” format where the columns indicate the simulated parameter and the rows indicate 
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the estimated parameter. Not surprisingly, the error variance in the estimates due to noise is 

more apparent for the “small” sub-voxel motions than the “large” motions.  

EKF tracking results for compound random amplitude motion steps are shown in Fig. 

7.7. For all plots, the average norm error ±  std over 500 Monte Carlo runs are shown. Figure 

7.7a shows the norm error for translations and rotations. Figure 7.7b shows the effect of SNR 

on the overall (norm across all six parameters) EKF tracking error. Figure 7.7c shows the 

effect of adding additional iterations (N) on the overall tracking error for a fixed SNR of 10. 

Only N = 2 iterations are shown because increasing the number of iterations beyond this point 

had little effect on the tracking results (algorithm had converge to a local minimum). In Fig. 

7.7a, b, and c, the “smoothness factor” is set arbitrarily low (S = 6.1 x 103) to remove the 

weight of the “model estimation error” on the Kalman cost function and reducing S any further 

had minimal effect on the tracking performance. Because only the “data prediction error” is 

used during estimation, one can interpret the iterated EKF in Fig. 7.7c as a standard image-

based least-squares registration with N iterations. Figure 7.7d shows the effect of increasing 

the “smoothness factor” (i.e., increasing the weight on the “model estimation error”) on the 

overall tracking error for “small” motions only with a fixed SNR of 10. 

 

7.4.2 In vivo validation experiment 

Results from the in vivo validation experiment are shown in Fig. 7.8. Online motion 

estimates for a single representative “motion-trial” are shown in Fig. 7.8a. Note how the 

subject made a single brief motion during the middle of V2 and remained fixed in this position 

throughout the remainder of the scan. The steady-state EKF motion estimates are plotted 

against the "true" motion of the subject for all 15 trials in Fig. 7.8b. The mean absolute steady-

state error (MAE) ± std and mean magnitude of the “true” motion across all trials is shown in  
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Figure 7.8. Results from the in vivo validation experiment. (a) Online motion estimates for a single 
representative “motion” trial. Insert shows a close-up of the tracking estimates during the motion onset 
interval. (b) The “true” vs. steady-state EKF motion estimates over all 15 experimental trials. (c) The 
mean absolute steady-state EKF error (MAE, dark gray) compared with the mean magnitude of the 
“true” motion (light gray) for each parameter across all trials. 
 

Fig. 7.8c. The MAE ± std was calculated to be: = 0.14 0.15xt ±  mm, = 0.35 0.39yt ±  mm, 

= 0.17 0.15zt ±  mm, = 0.39 0.31xθ ±  deg, = 0.25 0.20yθ ±  deg, and = 0.27 0.30zθ ±  

deg. The mean magnitude of the “true” motion was calculated to be: = 1.34xt  mm, = 1.22yt  

mm, = 2.11zt  mm, = 4.33xθ  deg, = 2.55yθ  deg, and = 7.03zθ  deg. The overall steady-

state error (mean across all parameters and trials) was 0.26 and the overall magnitude of 

motion (mean across all parameters and trials) was 3.09, which yields an expected overall 

steady-state error of less than 10 % of the true motion.  
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Figure 7.9. Example EKF motion estimates for the PROMO ON IR-SPGR scan during the “side-to-
side” and “nodding” motion experiments. 
 

7.4.3 Repeated staged motion experiment 

Online EKF motion estimates obtained during the repeated staged “side-to-side” and 

“nodding” motion experiments for the two PROMO ON 3D IR-SPGR scans are shown in Fig. 

7.9. As shown in the figure, “side-to-side” motion is characterized by rotations around the z-

axis and translations around the x-axis, while “nodding” motion were characterized by 

rotations around the y-axis and translations around the z-axis. Although not shown, similar 

motion estimates were evident during all other “side-to-side” and “nodding” motion 

experiments.  

The images from the repeated staged motion experiment are shown in Fig. 7.10. In 

order to compare corresponding slices, all reconstructed volumes were registered and 

resampled (using high dimensional sinc interpolation) to the NO MOTION 3D FSE volume. 

As evident in the figure, the PROMO corrected images have significantly reduced motion 

artifacts for both types of staged motion to a level that is qualitatively similar to the NO 

MOTION scans.  
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Figure 7.10. Reconstructed images for the repeated staged motion experiment. Only a single axial and 
sagittal slice through the volumes are shown. The number of rescanned k-space segments for the 
PROMO ON scans using a threshold of T = 1 were (from top to bottom) 20, 10, 35 and 5, respectively. 
The two images highlighted with arrows are shown again in Fig. 7.11. 
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Figure 7.11. Comparison of the PROMO ON 3D IR-SPGR scan during “nodding” motion and the NO 
MOTION 3D IR-SPGR scan. White arrows highlight a region of the neck outside the brain ROI of the 
EKF, which moved non-rigidly during the scan and is subsequently uncorrected in the image.  

 

A close-up of the PROMO ON and NO MOTION IR-SPGR sagittal slices shown in 

Fig 7.10 for the “nodding” motion experiment are shown by themselves in Fig. 7.11. The 

white arrows in the figure highlight an area of the neck outside the EKF brain mask that 

underwent non-rigid motion during the scan and was subsequently uncorrected in the final 

image. 

 

7.4.4 Real life experiment 

Corresponding coronal sections through the PROMO ON and PROMO OFF IR-SPGR 

scans for each of the two young male subjects are shown in Fig. 7.12. Both sets of PROMO 

ON and PROMO OFF scans were selected from the set of 4 to have qualitatively similar 

motion statistics as assessed with the “rescan metric” ( )nρ , also included in the figure. 

Again, the images with PROMO correction have significantly reduced motion artifacts  
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Figure 7.12. Real life images taken from two healthy young males with and without PROMO 
correction along with the “rescan metric” ( )nρ . 
 

compared to the images without correction. The number of rescanned k-space segments for 

Subject 1 and Subject 2 using a threshold of T = 1 were 23 and 38, respectively. 

 

7.5 Discussion 

This work describes a new technique for prospective motion correction that utilizes 

three orthogonal 2D spiral navigator acquisitions (SP-Navs) along with a flexible image-based 

tracking method based on the EKF algorithm for online motion measurement. A preliminary 

application of the SP-Nav/EKF tracking framework in 3D IR-SPGR and 3D FSE pulse-

sequences demonstrates the effectiveness of the approach for significantly reducing 3D rigid-

body motion artifacts prospectively in these sequences. 
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7.5.1 Offline simulations 

Offline simulations revealed some important properties of the SP-Nav/EKF 

framework for rigid-body motion tracking. Figure 7.6 demonstrated how both “large” and 

“small” 1D translations and rotations in all three degrees of freedom could be estimated with 

minimal transient “cross-talk” error. The term “cross-talk” error is used here to describe the 

apparent motion in one parameter due to motion in another (i.e. the off-diagonal plots in Fig. 

7.6). While there was a tendency for rotations to have slightly larger “cross-talk” errors than 

translations, this effect was minimal and in general, both rotations and translations could be 

estimated with similar accuracy and precision. 

Figure 7.7 shows the performance of the SP-Nav/EKF framework for tracking 

compound random amplitude motion steps using various filter parameters and SNR levels. 

Consistent with the 1D motion simulation results, Fig. 7.7a shows how translations and 

rotations could be estimated with similar accuracy and precision. Reducing the SP-Nav SNR 

increased the overall error due to noise (i.e. the baseline error when in the steady-state), but 

had little effect on the overall tracking error due to “large” and “small” compound motions, 

i.e. the filter response times (Fig. 7.7b). Thus, the number of SP-Navs (post motion onset) 

required to estimate “large” and “small” compound motions was relatively insensitive to SP-

Nav SNR. Furthermore, increasing the number of EKF iterations (N) at each time-point 

(which increases the computation time significantly) was generally unnecessary, as it only 

marginally improved the overall tracking error for “large” compound motions but had no 

effect on the overall tracking error for “small” compound motions (Fig. 7.7c). An inspection 

of Fig 7.7a, b and c revealed that on average, 2-3 SP-Navs (post motion onset) were required 

to estimate “large” compound motions while only about 1-2 SP-Navs were required for 
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“small” compound motions, regardless of the number of EKF iterations. This result suggests 

that the majority of the transient SP-Nav/EKF tracking error comes from through-plane 

motion of the SP-Navs, which is greater for “large” compound motions. Transient tracking 

errors caused by through-plane motion was also observed using orthogonal 2D orbital 

navigators (14) and is likely to have contributed substantially to the transient “cross-talk” 

errors in the 1D simulations. However, as demonstrated in Fig. 7.6 and 7.7, this effect is 

mitigated when collecting multiple navigators back-to-back such that the through-plane 

motion component is reduced iteratively in time. The set of 5 SP-Navs played out during the 

3D IR-SPGR or 3D FSE sequences should therefore be sufficient even in extreme situations 

where the patient makes a “large” transient motion during this interval.  

Finally, varying the “smoothness factor” S (i.e., changing the degree to which the 

motion model influences the tracking estimates) resulted in a trade-off between increased 

noise suppression on the one hand (low filter bandwidths with high values of S) and reduced 

tracking error due to transient motion on the other (high filter bandwidths with low values of 

S). This is evidenced in Fig. 7.7d. Because the level of noise suppression was relatively small 

compared with the increase in overall tracking error, low “smoothness factors” (and no EKF 

iterations) were used for all subsequent in vivo scans. It should be noted that this finding is not 

surprising given 1) the large number of measurement voxels in each SP-Nav (effectively about 

16,000 after masking) compared to the small number of rigid-body motion parameters to be 

estimated at each time-point and 2) the image SNR is relatively high (SNR = 10). Both of 

these factors suggest that the “data prediction error” should contribute more information to the 

Kalman cost than the “model estimation error”. However, it should also be noted that although 

the model information played a relatively minor role in the current application of the Kalman 

filter for tracking in the SP-Nav sequence, in applications where 1) there is reduced 
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information in the measurements through either reduced SNR or number of imaging voxels 

(e.g., self-navigated head motion tracking in 2D EPI slice data), 2) there are more rapid image-

based measurements available online, 3) there are more than six parameters in the state vector 

(e.g. modeling non-rigid motion or including velocity terms), and 4) there are strong 

regularities over time in the state parameters (e.g. when tracking cardiac or respiratory 

motion), increasing the weight on the dynamic model will likely play a more important role 

during tracking.  

 

7.5.2 In vivo validation experiment 

The steady-state error in the online SP-Nav/EKF motion estimates was quantified in 

vivo using real biological staged head motions (Fig. 7.8). In general, the accuracy of the in 

vivo estimates scaled with the magnitude of motion, with larger head motions leading to larger 

estimation errors. However, these errors were consistently less than one tenth of the overall 

magnitude, even for trials that included large compound motions with rotations over 15 deg 

(Fig. 7.8b and c). While the accuracy of the estimates from a single SP-Nav could not be 

assessed in vivo, an inspection of the tracking results suggests that the steady-state level of 

accuracy was reached in about 2-3 SP-Navs, consistent with the offline simulation results (c.f. 

insert in Fig. 7.8a). It should be noted that the range of motion magnitudes tested in this study 

was more than double the range used to benchmark the orbital (14), spherical (15) and 

cloverleaf (18) methods and yet in all trials the error never exceed the 10% level for any 

parameter and was typically well below this mark. It should also be noted that our validation 

procedure focused on motions that are more “likely” to be experienced in practice, given the 

nature of the scanner environment. Thus, not all parameters were tested to an equal extent 

during the validation experiment because the head coil itself limited some types of motions 
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from being performed. This is evidenced by the fact that the subject made larger rotations 

versus translations during the validation experiment (c.f. “true” motion in gray in Fig. 7.8c). 

 

7.5.3 Repeated staged motion experiment 

Results from the repeated staged motion experiment demonstrated the effectiveness of 

the SP-Nav/EKF framework for reducing periodic “nodding” and “side-to-side” head motion 

artifacts in both the 3D IR-SPGR and 3D FSE sequences (Fig. 7.10). Because the EKF was 

“tuned” to estimate rigid-body motion within the brain ROI, areas outside this region were 

ignored and subsequently uncorrected in the final images. This is illustrated in Fig. 7.11, 

which shows a close-up of the PROMO ON 3D IR-SPGR scan during “nodding” motion and 

the NO MOTION 3D IR-SPGR scan. The area highlighted with a white arrow in the figure 

corresponds to a region in the neck outside the brain ROI that is uncorrected in the image.  

 

7.5.4 Real life experiment 

The results from the real life experiments on the two healthy young males again 

demonstrated the overall effectiveness of the SP-Nav/EKF framework for significantly 

reducing 3D rigid-body head motion artifacts in 3D IR-SPGR scans under real life conditions 

(Fig. 7.12). Qualitatively similar motion statistics, as quantified using the “rescan metric” 

( )nρ , suggests that the improvement in image quality was not due to an overall difference in 

the level of motion between the two scans (Fig. 7.12).  
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7.5.5 Advantages / limitations 

The image-based SP-Nav/EKF tracking framework implemented in this study offers 

several advantages over existing k-space-based orbital (14), spherical (15) and cloverleaf 

navigator techniques (18). All k-space-based navigator methods require precise and 

reproducible k-space sampling trajectories from shot-to-shot such that rotations and 

translations in image-space can be estimated from k-space magnitude and phase information, 

respectively. Consequently, any effect that violates the assumptions of this Fourier model, 

such as 1) off-resonance due to magnetic field inhomogeneities and susceptibility differences, 

2) gradient instabilities and 3) non-rigid motion of the object, will degrade the accuracy and 

precision of k-space-based rigid-body motion estimates. The SP-Navs, on the other hand, 

provide reduced sensitivity to motion estimation inaccuracies due to off-resonance by blurring 

these effects equally in all directions in image-space. Moreover, tracking in image-space 

allows for masking areas of the object that may corrupt the rigid-body motion estimates. In 

this study, we show how the EKF can be “tuned” during the “dummy” acquisition period to 

prevent non-rigid motion of the neck and jaw from corrupting the rigid-body estimates of the 

brain and skull. This type of masking using a k-space-based approach is difficult and requires 

tuning the RF pulse to excite only the rigid-body tissue component (s). However, although the 

motion estimates from a single SP-Nav have reduced sensitivity to off-resonance, any slow 

change in SP-Nav image quality over time due to scanner instabilities or time-varying off-

resonance effects will corrupt the SP-Nav rigid-body motion estimates and ultimately reduce 

the quality of the final reconstructed images.  

In terms of time requirements, a single 3-plane SP-Nav can be collected and 

reconstructed in approximately the same time (48 ms) as a 3-plane orbital navigator (33 ms) 

(14) and spherical navigator (27 ms) (15), but requires substantially more time than a single 
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cloverleaf (4.2 ms) (18). Therefore, the cloverleaf method may be advantageous in certain 

steady-state sequences where there is no intrinsic sequence “dead time” for navigator 

acquisition. However, in non-steady-state sequences such as 3D IR-SPGR and 3D FSE, a train 

of SP-Navs can be played out during the intrinsic T1 recovery period of the acquisition without 

adding to the overall scan time. However, no motion correction is performed during the 

imaging segment itself, which typically lasts about 2 s. To account for this, corrupted k-space 

segments were rescanned at the end of the sequence depending on whether an online “rescan 

metric” exceeded a user-specified threshold. In this study, all in vivo scans were performed 

using a rescan threshold of T = 1, derived empirically from repeated no motion scans. This 

type of rescan procedure should be generally acceptable in most clinical applications, given 

that the number of rescanned k-space segments for the two young (and fairly uncooperative) 

males who participated in this study only resulted in an additional scan time of 50 s (Subject 

1) and 90 s (Subject 2), respectively.  

One limitation of the EKF tracking algorithm, as implemented in this study, is the 

inability to correct (rather than just ignore) non-rigid motion. In principle, however, one can 

augment the EKF state vector to include higher order motion parameters for nonlinear motion 

tracking. Velocity and acceleration terms can also be incorporated in the dynamic model when 

more rapid measurement information is available. For example, Sprincemaille et al. recently 

applied the linear Kalman filter with first-order constant velocity (CV) dynamics for rapid 

(~15 ms) real-time separation of cardiac and respiratory waveforms from navigator least-

squares motion estimates (30). In general, the flexibility afforded by the dynamic state-space 

model framework of the EKF should allow for online image-based tracking of many different 

body parts using various types of measurements including 2D slice information for self-

navigated tracking in EPI time-series data (25). 
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7.5.6 Summary 

In summary, the results presented in this paper demonstrate the effectiveness of the 

PROMO motion correction technique for significantly reducing 3D rigid-body motion 

artifacts prospectively in high-resolution 3D scans. While the current implementation focused 

on spiral-navigated 3D IR-SPGR and 3D FSE scans, the flexible image-based EKF tracking 

procedure in PROMO may be useful in other applications such as self-navigated prospective 

motion correction in 2D EPI time-series data. 

 

7.6 Appendix 

To describe the online first order iterated EKF algorithm for prospective motion 

correction in the scanner sequence, let ( )M x  be a 4 x 4 affine transform matrix that is 

parameterized by the state variable = [ , , , , , ]T
x y z x y zt t t θ θ θx  

 

 ( ) ( ) ( ) ,=M x T x R x  [7.11] 

 

Where 
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T x  [7.12] 

 

and 
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and xc , yc  and zc  are the cosines and xs , ys  and zs  are the sines of the parameters xθ , yθ  

and zθ , respectively. Furthermore, let 4 4 6 1;X × ×→\ \  be a function which describes the 

inverse mapping between the affine transform matrix ( )M x  and the state vector x 
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where mij is the ij-th entry of ( )M x  and atan2 is the four quadrant inverse tangent.  

Now let [ ]0 0 0 0 0 0 0 T=x  be the initial state of the EKF at time k = 0 and 

( )ref 0h=y x  be the initial fixed reference SP-Nav. In the ideal online correction scenario, the 

affine transform matrix ( )| 1ˆ k k−M x  associated with the predicted state | 1ˆ k k−x  is then used to 

update the scanner pulse-sequence at each time-step prior to collecting the measurements ky . 

However, to generalize the method in case this condition is not met (e.g., if real-time 
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communication is interrupted or the previous corrected state 1| 1ˆ k k− −x  is not obtained in the 

time allowed), let app
kx  be the actual “applied” state used to collect ky . Now, let 

( ) ( )( )1 app
| 1 | 1ˆ ˆk k k k kX+ −
− −= ⋅x M x M x  be the “adjusted” state that takes into account the 

potential mismatch between the predicted and “applied” state at time-step k. When the 

predicted state is equal to the “applied” state at each time-step, the “adjusted” state is simply 

the initial state 0x . 

The goal of EKF correction is to use the measurements ky  to refine the predicted 

state | 1ˆ k k−x  and error covariance | 1
ˆ

k k−P  at each time-step. Recall, this is accomplished by 

minimizing the cost  

 

 ( ) ( )( ) ( )( ) ( ) ( )1 1
| 1 | 1 | 1

ˆˆ ˆh h ,
TT i i

i k k k k k k k k k k k k kC − −
− − −= − − + − −x y x R y x x x P x x  [7.15] 

 

using i = 0, 1 , … , N iterations. The first order iterated EKF (Gauss-Newton) solution to such 

an optimization problem is the following update function 

 

 ( ) ( )( )1 +
| 1 | 1 | 1 | 1 | 1ˆ ˆ ˆ ˆ ˆhi i i

k k k k i k k k i k k k k
+ +
− − − − −= + − − −x x K y x H x x , [7.16] 

 

where ( ) ( )( )1 app
| 1 | 1ˆ ˆi i

k k k k kX+ −
− −= ⋅x M x M x , iH  is the Jacobian of the measurement function 

( )h ⋅  evaluated at the “adjusted” state | 1ˆ i
k k

+
−x , and ( ) 11 1

| 1
ˆT T

i i i k k i

−
− −

−= +K H R H P H R  is the 

Kalman gain. Details of the derivation of Eq. [7.16] is provided in many texts including Ref. 

(23) and is omitted here due to space constraints. At the end of all iterations, the a posteriori 
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state |ˆ k kx  is set to 1
| 1ˆ N

k k
+ +

−x  and the a posteriori covariance |
ˆ

k kP  is set to ( )1 1 | 1
ˆ

N N k k+ + −−I K H P . 

Note, when no iterations are performed (i.e. N = 0) Eq. [7.16] reduces to the standard EKF. It 

should also be noted that when predicted state is equal to the “applied” state at each time-step 

and N = 0, the Jacobian iH  is always evaluated around the initial state 0x  and thus can be 

calculated once and stored in memory. 

To describe the details of the measurement function ( )h ⋅ , let axy , say  and coy  be the 

respective 2D axial, sagittal and coronal images of the concatenated reference navigator vector 

ref vec( ) vec( ) vec( )
TT T T

ax sa coy y y⎡ ⎤= ⎣ ⎦y , where the operator ( ) 2 1vec ; m m m× ×⋅ →\ \  

concatenates a 2D matrix into a 1D vector. Furthermore, let axr , sar , and cor  be 4 x M 

matrices of initial (homogenous) voxel coordinates for axy , say  and coy , respectively. Then, 

the measurement function ( )h x  can be written 

 

 ( )

( )( )( )
( )( )( )
( )( )( )

ax ax ax

sa sa sa

co co co

vec

h vec ,

vec

y

y

y

⎡ ⎤⋅ ⋅
⎢ ⎥
⎢ ⎥= ⋅ ⋅
⎢ ⎥
⎢ ⎥⋅ ⋅⎣ ⎦

P M x r

x P M x r

P M x r

 [7.17] 

 

where ( )ax diag [1 1 0 1]T=P , ( )sa diag [0 1 1 1]T=P  and 

( )co diag [1 0 1 1]T=P  are matrices which project the transformed 3D homogenous 

coordinates onto the respective planes of the reference prior to interpolation. In this study, 2D 

linear interpolation was used throughout. 
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Chapter 8 

 

Future Directions: Restriction Spectrum 

Imaging 

 

8.1 Introduction 

Diffusion tensor imaging (DTI) (1) is a powerful non-invasive technique for studying 

brain tissue microstructure in vivo. However, a well-known limitation of DTI is the inability to 

characterize diffusion in complex tissue microstructures (2). Recently, model-based 

deconvolution techniques have become increasingly popular for resolving multiple fiber 

orientations in heterogeneous fiber populations (3-6). However, these methods rely on the 

assumption that the tissue is composed of fibers with identical water restriction properties (i.e. 

morphology and size scale). Here, we propose a new model-based analysis approach for 

multiple b-value acquisitions called Restriction Spectrum Imaging (RSI). RSI relaxes the 

assumption above and models the tissue using a spectrum of both oriented and non-oriented 

tissue components with different water restriction scales. 
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8.2 Methods 

8.2.1 Data acquisition 

An excised adult male Sprague-Dawley rat brain was immersed for 4 weeks in a 4oC 

1mM GdDTPA solution and positioned in a sealed plastic tube filled with Fomblin liquid. 

Scanning was performed using a 4.7T Bruker scanner equipped with a 3 cm solenoid receiver 

coil. Pulse-sequence parameters: TR/TE = 650/49 msec, Δ/δ = 23/12 msec, 515 q-space 

directions, |G|max = 380 mTm-1, matrix = 64x64x128, 265 µm isotropic voxels, b-max ~32,000 

mm2/sec. However, for this study only 123 q-space directions were used with b-max = 10,000 

mm2/sec. Myelin stained histological sections were obtained and registered to the MRI data as 

described previously (7).  

 
8.2.2 RSI model 

Recall, under the linear convolution model the measured diffusion signal in each 

voxel ( , )S b r  can be written 

 

 
0

( , ) = ( , , ) ( ) ( , )S b R b f d n b
S

+∫
r r x x x r , [8.1] 

 

where b  is the diffusion weighting factor, or "b-value", r  is a unit (column) vector indicating 

the direction of the applied diffusion gradient, 0S  is the signal measured with no diffusion 

weighting (i.e. ( )0 0S S b≡ = ), ( , , )R ⋅ ⋅ x  is the signal response to a single ideal fiber with 

orientation given by the unit (column) vector x , ( )f ⋅  is a real-valued function of the unit 
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sphere describing the fiber orientation density (FOD), and ( , )n b r  is additive measurement 

noise. 

In RSI, an axially symmetric tensor model (8) is used to characterize diffusion at 

multiple microscopic length scales. Under this model, the measured diffusion signal can then 

be written 

 

 
( ) ( ) ( ) ( )0

0

,
, , , , , ,bS b

R b f d d e n b
S

λ

λ

λ λ λ
⊥

−
⊥ ⊥ ⊥= + +∫ ∫

x

r
r x x x r  [8.2] 

 

where 2( , , ) exp( ) exp( (( )( ) )i j i i i jb bR λ λ λ λ
⊥ ⊥ ⊥

= − ⋅ − − ⋅q x r x  is the signal response with 

perpendicular and parallel diffusivities λ⊥  and λ , respectively, and 0λ  is the diffusivity of 

the “free” water component. Note the additional summation over λ⊥  in Eq. 8.2, which allows 

the perpendicular diffusivity to vary across microscopic length scales.  

 

8.2.3 Estimation 

To fit the model above, we discretize the signal equation using P restriction scales 

{ }1 2, , ..., Pλ λ λ λ⊥ =  and use a spherical harmonic (SH) parameterization for the fiber 

orientation function ( )( ) k k

K
Yf β= ∑ xx . This leads to a simple linear model of the normalized 

signal 0

1 2( ) ( ) ( )P e λλ λ λ −= +⎡ ⎤⎣ ⎦
bS R R R β n , where the ik-th element of the matrix 

( )jλR  is ( ) ( , , ) ( )ik j i j kR Y dλ λ= ∫R q x x x  and the parameter vector β  has ( ) 1K P× + elements.  
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Figure 8.1. RSI restriction maps showing the volume fraction of spins at different microscopic length 
(restriction) scales (from left to right in mm2 /sec). (a) 51 10λ −

⊥ = × , (b) 52.4 10λ −
⊥ = × , (c) 

55.8 10λ −
⊥ = × , (d) 41.4 10λ −

⊥ = × , (e) λ λ⊥ = (tissue isotropic), and (f) 0 2λ λ= (free water). Images 
(a-d) have oriented structure, while (e,f) are isotropic. 
 

Here, we use a maximum SH order of 4 (thus 15K = ), set 43.4 10λ −= ×  mm2/sec (which was 

estimated from the data), 0 2λ λ= , and use 5 restriction scales for λ⊥  (P = 5). Maximum a 

posteriori estimates of the parameters β  were obtained using Tikhonov regularization. 

 

8.3 Preliminary Results 

RSI “restriction maps” showing the volume fraction of spins at various microscopic 

length (restriction) scales are shown in Fig. 8.1 for a coronal slice through the genu of the 

corpus callosum. Maps correspond to the 0-th order (isotropic) SH parameter estimates, 

normalized to sum to 1. The first 4 images (a-d) correspond to oriented diffusion, while the 

last 2 images (e,f) correspond to isotropic diffusion. Note, highly restricted spins at fine 

microscopic length scales are predominantly located in white matter (a,b), while spins at 

courser length scales are mainly seen in gray matter (d). Also, note the separation between the 

tissue isotropic (e) and free water spins (f). Fiber orientation distributions (FODs) at each 

restriction scale can also be estimated with RSI using the higher order SH. An example of this 

is shown in Fig. 8.2 at corresponding scales to those in Fig. 8.1 (a-d). FOD reconstructions are 

shown for a single voxel in the striatum (c) along with corresponding myelin stain images 

showing the striated myeloarchitecture in this region (d). Note that the fiber orientation is  
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Figure 8.2. RSI direction maps for the oriented diffusion components. (a) RGB colormaps indicating 
the primary fiber direction (FOD maximum) at each restriction scale. (b) close-up sections of the 
striatum for the highest (top) and lowest (bottom) restriction levels. (c) 3D fiber-orientation 
distributions (FODs) for the voxel highlighted in (b) with the FOD corresponding to the highest 
restriction scale on top and the lowest restriction scale on bottom. (d) histological section images 
showing the corresponding myeloarchitecture in this region. 
 

dependent on the restriction scale with mainly mediolateral and anterioposterior directionality 

for the highest restriction scale (top row) and rostro-caudal (through-plane) orientation for the 

lowest restriction scale (bottom row). This may potentially reflect separated spin diffusion in 

and around striatal gray and white matter compartments.  

 

8.4 Discussion 

Restriction spectrum imaging (RSI), presented here, is a new model-based analysis 

strategy for multiple b-value acquisitions designed to differentiate tissue components with 

dissimilar morphologies and size scales on the basis of their water diffusion characteristics. 

Both volume fraction and orientation information can be extracted at each microscopic 

length/restriction scale using simple linear estimation methods. As such, RSI provides a new 

computationally efficient framework for studying complex neuroarchitectures in the brain and 
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may allow for improved in vivo characterization of neuromorphology in healthy and 

pathological tissue. Diffusion at the finest length scale most likely stems from the restricted 

water pool within the intracellular space, while diffusion at courser length scales most likely 

stems from hindered diffusion in the extracellular space representative of the intrinsic 

tourtosity. Current work is focused on validating these later claims and studying the conditions 

under which intracellular/restricted water is sufficiently modeled with a diffusion tensor.  

 

8.5 Acknowledgements 

Funded by grants from the NIH (R01-EB00790, U24-RR021382) and the Norwegian 

Research Council. Chapter 8, in full, is part of a presentation at the 17th Annual Meeting of the 

International Society of Magnetic Resonance in Medicine (ISMRM) in 2009, entitled: 

“Restriction Spectrum Imaging (RSI): A New Approach for Resolving Complex Tissue 

Microstructures with Diffusion MRI”, Nathan White, Trygve B. Leergaard, Alex de 

Crespigny, and Anders Dale. The dissertation author was the primary investigator and first 

author of this abstract, and the material is currently being prepared for submission for 

publication. 

 

8.6 References 

1. Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor 
from the NMR spin echo. J Magn Reson B 1994;103:247-254. 

2. Le Bihan D, Poupon C, Amadon A, Lethimonnier F. Artifacts and pitfalls in diffusion 
MRI. J Magn Reson Imaging 2006;24(3):478-488. 

3. Alexander DC. Maximum entropy spherical deconvolution for diffusion MRI. Inf 
Process Med Imaging 2005;19:76-87. 



126 
 

4. Dell'Acqua F, Rizzo G, Scifo P, Clarke RA, Scotti G, Fazio F. A model-based 
deconvolution approach to solve fiber crossing in diffusion-weighted MR imaging. 
IEEE Trans Biomed Eng 2007;54:462-472. 

5. Jian B, Vemuri BC. Multi-fiber reconstruction from diffusion MRI using mixture of 
Wisharts and sparse deconvolution. Inf Process Med Imaging 2007;20:384-395. 

6. Tournier JD, Calamante F, Gadian DG, Connelly A. Direct estimation of the fiber 
orientation density function from diffusion-weighted MRI data using spherical 
deconvolution. Neuroimage 2004;23:1176-1185. 

7. White NS, Leergaard TB, Bolstad I, Bjaalie JG, D'Arceuil H, de Crespigny A, Dale 
AM. Quantitative histological validation of fiber-orientation distributions based on 
high-angular resolution diffusion imaging.; 2008; Proc 16th Annual Meeting of the 
ISMRM, Toronto, Canada. 

8. Hsu EW, Mori S. Analytical expressions for the NMR apparent diffusion coefficients 
in an anisotropic system and a simplified method for determining fiber orientation. 
Magn Reson Med 1995;34:194-200. 

 
 



127 
 

Chapter 9 

 

Conclusion 

 

9.1 Conclusion 

The focus of this dissertation was to tackle some of the most pressing practical 

limitations for in vivo quantitative magnetic resonance imaging of the human brain. In 

Chapter 5, my colleagues and I presented what we believe to be the first direct quantitative 

histological validation of neuronal fiber orientation distributions in brain tissue. In this study 

we demonstrated that accurate fiber orientations can be extracted from diffusion MRI data 

with an intrinsic angular error of about 5 degrees. However, with that said, there remain some 

important questions left unanswered. For example, as the method employed for estimating 

fiber orientations (spherical deconvolution) relies on a model for the diffusion signal, to what 

extent to the results depend on the model assumptions? If we were to vary the assumed ADC, 

for example, could we get an even stronger match to the histoarchitecture. Also, how do other 

multi-directional diffusion MRI techniques such as Q-ball and Diffusion Spectrum Imaging 

stack up compared to spherical deconvolution? How do these techniques fair in more complex 

tissue architectures, for example in regions with three or more principle fiber orientations? 

Having validated the diffusion MRI derived neuronal fiber orientations in Chapter 5, 

in Chapter 6 we presented a study into the optimal (maximally efficient) diffusion MRI 
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acquisition for in vivo quantification of the fiber orientation distribution. The results were 

again based on the assumption of a fixed ADC that were derived from in vivo measurements. 

If we were, however, to allow for a spectrum of ADCs to be fit to the data (i.e. the model 

presented in Chapter 8), what might be the optimal parameter settings for resolving the 

corresponding fiber orientations at the various microscopic length scales? Because, the 

spectrum model can also be formulated in a linear unbiased sense, a similar approach could in 

principle be used to derive the optimal combination of b-values and diffusion directions for 

fitting this more informed model.  

In Chapter 8, a model for the diffusion MRI signal was presented which allows for a 

spectrum of neuronal fiber orientation distributions to be extracted from each voxel at various 

microscopic length scales. Although we fit for a range of different length-scales, we found that 

fiber orientations at two scales dominated: one at a fine length-scale with a corresponding 

slow ADC (i.e. restricted), and one at a course length-scale with a faster ADC consistent with 

the transport of water in the extracellular space. This finding is further consistent with a large 

body of evidence pointing to a multi-exponential (slow and fast) decay of the diffusion NMR 

signal in biological tissue samples. Taken together these findings suggest that one can in 

principle separate the orientation structure of the intra and extracellular water diffusion pools 

with their relative volume fractions. If so, some interesting inferences could be made. For 

example, the volume fraction of the intracellular component could be used to derive spatial 

maps of the cellular (fiber) density, a potentially valuable biomarker for studying various 

neural pathologies. Likewise the volume fraction and the specific ADC value at the course 

scale could provide insight into pathologies and physiological conditions affecting the 

tortuosity of diffusion in the extracellular space, such as cell swelling. However, future 

scientific study is needed to address these questions in more detail. In particular, as the 
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majority of these studies were conducted in ex vivo fixed tissue, it will be highly desirable to 

perform these investigations in the human brain in vivo. More sophisticated biophysical 

models taking into account cell permeability, axon diameters, and other structural and 

physiological properties will also likely play an important role in future diffusion MRI 

investigations of brain tissue microstructure, allowing researchers to ask the harder questions 

and possibly providing them with the tools necessary to help answer them. 
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