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ABSTRACT OF THE DISSERTATION

Efficient Processing of Large Irregular Graphs on GPUs and Multicores

by

Amir Hossein Nodehi Sabet

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2021

Dr. Zhijia Zhao, Chairperson

Graph analytics is fundamental in unlocking key insights by mining large volumes

of highly connected data. However, comparing to many other data analytics, it is difficult

to perform graph analytics efficiently on modern computers due to three reasons. First, the

structures of graphs are often highly irregular. For example, a small portion of vertices may

own a large number of neighbors while most vertices have very few neighbors. The structure

irregularity leads to computation irregularity, resulting in workload imbalance among worker

threads. Second, real-world graphs tend to be large. It is oftentimes impractical to find

individual machines with memory capacity that can accommodate such large graphs entirely,

not to mention accelerators (like GPUs) which have more limited memory capacity. Third,

it remains open questions how graph processing systems should be designed for emerging

graph analytics, which often involves the tradeoff among multiple key factors, such as data

locality, amount of parallelism, and computation redundancy.

This thesis aims to address the above three challenges of graph processing under

some specific contexts. First, it focuses on improving the performance of graph analytics
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on modern highly-parallel processors – GPUs. Note that GPUs are conventionally designed

for regular computations. To address the irregularity of graph computations, this thesis

proposes a graph transformation technique that can convert irregular graphs into regular

ones while preserving the correctness of the graph analytics. Second, this thesis further

examines the performance bottleneck in processing oversized graphs that cannot fit into

the memory of GPUs. It finds that the data movement between CPU and GPU is very

costly. To address the issue, this thesis proposes a subgraph extraction technique which

can dynamically extract the active parts of the graph in each processing iteration – they

are usually small enough to fit into the GPU memory. Finally, this thesis looks into an

underexplored yet important graph application – large-scale program analysis, and proposes

to systematically exploit the design space of a graph system for this new application in order

to realize its full potential.
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Chapter 1

Introduction

1.1 Major Challenges

Graph analytics is fundamental in unlocking key insights by mining large volumes

of highly connected data, such as identifying influencers in social networks, spotting frauds in

bank transactions, optimizing supply chain distribution, and developing recommendations

and more effective medical treatments. However, comparing to many other data analytics,

it is actually very difficult to perform graph analytics efficiently on modern computers due

to the following three major challenges.

First, the structures of graphs are often highly irregular. For example, a small

portion of vertices may own a large number of neighbors while most vertices have very few

neighbors (i.e., the degree distribution follows the power law). The structure irregularity

leads to computation irregularity. Under the popular “vertex-centric” programming model

for graph analytics, each vertex is assigned to a thread to process based on states of its

neighbors. As a result, threads assigned with high-degree vertices (vertices with a large
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number of neighbors) take much longer to complete than those running on vertices of low

degrees, leading to workload imbalance.

Second, real-world graphs tend to be large. For example, the Twitter follow graph

(as of 2012) has over 175 million vertices and approximately 20 billion edges. It is oftentimes

impractical to find individual machines with memory capacity that can accommodate such

large graphs entirely, not to mention accelerators (such as GPUs) which have more limited

memory capacity. As a result, such ”oversized” graphs have to be partitioned, and each

partition has to be loaded into the main memory (or device memory) every processing

iteration, also known as out-of-core (or out-of-GPU-memory) processing. A basic design of

the out-of-core processing strategy may lead to a huge amount data movements for large

graphs, seriously impacting the performance of graph processing.

Third, it remains open questions how graph processing systems should be designed

for emerging graph analytics. Given a new graph analytics, there are often different ways

to model the underlying graph computations. It is non-trivial to estimate the performance

under each model due to the influences of multiple factors, such as data locality, amount of

parallelism, and computation redundancy.

1.2 Contributions of This Thesis

This thesis aims to address the above three challenges of graph processing under

some specific contexts, as illustrated in Figure 1.1. First, Chapter 2 focuses on improving

the performance of graph analytics on modern highly-parallel processors – GPUs. Note

that GPUs are conventionally designed for accelerating computations on regular data with

2



Disk

Pattern Matching-based Graph Analytics
(CFL-reachability, regular paths, etc.)

GPU CPU

Chapter 3 (Subway)
address oversized graphs

Conventional (Value-based) Graph Analytics
(BFS, SSSP, PageRank, etc.)

device memory host memory

Chapter 2 (Tigr)
address graph irregularity

Ap
pl

ic
at

io
ns

Pl
at

fo
rm

s
Sy

st
em

s

Chapter 4 (Holistic Design)
address emerging analytics

in-GPU-memory out-of-GPU-memory out-of-core

Figure 1.1: Contributions of This Thesis.

SIMD executions, but graph processing tends to be highly irregular. This mismatch can

seriously compromise the computing power of GPUs. Existing solutions to the inefficiency

of GPU-based graph analytics either modify the graph programming abstraction or rely on

changes to the low-level thread execution models. The former requires more programming

efforts for designing and maintaining graph frameworks; while the latter couples with the

underlying architectures, making it difficult to adapt as architectures quickly evolve.

Unlike prior efforts, Chapter 2 proposes to address the above fundamental problem

at its origin – the irregular graph data itself. It raises a critical question in irregular graph

processing: Is it possible to transform irregular graphs into more regular ones such that the

graphs can be processed more efficiently on GPU-like architectures, yet still producing the

same results? Inspired by the question, Chapter 2 introduces Tigr – a graph transformation

framework that can effectively reduce the irregularity of real-world graphs with correctness

guarantees for a wide range of graph analytics. To make the transformations practical,

Tigr features a lightweight virtual transformation scheme, which can substantially reduce

3



the costs of graph transformations, while preserving the benefits of reduced irregularity.

Evaluation on Tigr-based GPU graph processing shows significant and consistent speedup

over the state-of-the-art GPU graph processing frameworks for several graph algorithms on

a spectrum of irregular graphs.

To address the second challenge, Chapter 3 focuses on processing oversized graphs

on the memory-limited GPUs (i.e., GPU memory oversubscription). When the graph size

exceeds the GPU memory capacity, a large graph has to be partitioned and loaded into

the GPU memory from the CPU memory partition by partition in each iteration of the

graph processing. Due to the sheer amount of data transfer between CPU and GPU, the

performance of graph processing often degrades dramatically. To reduce the volume of data

transfer, existing approaches track the activeness of graph partitions and only load the ones

that need to be processed. In fact, the recent advances of unified memory implements this

optimization implicitly by loading memory pages on demand. However, either way, the

benefits are limited by the coarse-granularity activeness tracking – each loaded partition or

memory page may still carry a large ratio of inactive edges (i.e., edges needing not to be

processed in the current iteration).

Different from prior efforts, Chapter 3 presents the first solution (to our best

knowledge) that only loads the active edges of the graph to the GPU memory. To achieve

this, it proposes a fast subgraph generation algorithm with a simple yet efficient subgraph

representation and a GPU-accelerated implementation. They allow the subgraph generation

to be applied in almost every iteration of the vertex-centric graph processing. Furthermore,

the solution brings asynchrony to the subgraph processing, delaying the synchronization

4



between a subgraph in the GPU memory and the rest of the graph in the CPU memory.

This can safely reduce the needs of generating and loading subgraphs for many common

graph algorithms. A prototyped system, Subway (subgraph processing with asynchrony) is

developed and evaluated. The results show over 4X speedup on average comparing with

existing out-of-GPU-memory solutions and the unified memory-based approach, based on

an evaluation with six common graph algorithms.

Finally, regarding the third challenge mentioned above, Chapter 4 addresses the

graph system design for an emerging graph application – large-scale program analysis. In

general, it is challenging to perform interprocedural program analysis at large scale. To

address this, recent research proposes to build dedicated graph systems for solving program

analyses that can be formalized as context free language (CFL)-reachability problems, where

new edges are iteratively inserted into an edge-labeled graph based on a set of context-free

grammar rules. Despite some promising results, several major design questions remain to

be systematically addressed to tape into the full potential of such a graph system.

Unlike the previous method, Chapter 4 presents a systematic exploration of the

design space of the graph system used for large-scale program analysis by revealing and

exploiting multiple key design aspects that critically affect the performance. First, inspired

by the graph system design for classic graph problems, it introduces two basic computation

models for CFL-reachability analysis, namely vertex-centric and edge-centric models, where

each model exhibits its own pros and cons. On top of them, it proposes a grammar-driven

processing scheme which enables the use of indexing to avoid unnecessary graph traversals

and grammar rule matching. Finally, to ensure termination, the graph system needs to check

5



and remove duplicated edges when new edges are inserted to the graph, for which Chapter

4 shows that the hashing-based mechanism is more efficient than the existing sorting-based

solution. Based on the above exploration, multiple representative graph systems for CFL-

reachability analysis are implemented and evaluated on program analysis graphs extracted

from real-world large system software. The results show that all the proposed graph systems

can significantly outperform the state-of-the-art solution. Among them, the best performed

one achieves significant speedups over the state-of-the-art under in-memory and out-of-core

processing scenarios, respectively.

Note that Chapter 4 does not cover GPUs, instead, it focuses on CPU-based

graph processing and out-of-core processing. However, the ideas proposed in Chapter 4

might be expanded to include GPUs as part of the underlying platform, which would allow

to explore the synergy among the ideas from all three chapters (Chapters 2-4). This could

be an interesting yet challenging future research work.

1.3 Dissertation Organization

This dissertation contains published works. Specifically, Chapter 2 is based on

a paper accepted for publication at the 23rd International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS’18) [92]. Chapter

3 is based on a paper published in the Proceedings of European Conference on Computer

Systems (EuroSys’20) [110]. Chapter 4 is based on a to-be-submitted work which explores

the design space of graph system for large-scale program analysis.
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Chapter 2

Transforming Irregular Graphs for

GPU-Friendly Graph Processing

2.1 Introduction

Graph analytics is fundamental in unlocking key insights by mining large volumes

of highly connected data. Unlike the traditional analytics based on “one-to-one” or “one-to-

many” relationships, graph analytics allows more complex reasoning by exploring “many-

to-many” relationships, such as identifying influencers in social networks [86], spotting

frauds in bank transactions [111], optimizing supply chain distribution [133], and developing

recommendations [29] and more effective medical treatments [20]. There is a growing need

for accelerating graph analytics by taking advantages of modern parallel architectures.

Packed with up to thousands of computing units, GPUs have emerged as an at-

tractive computing platform for large graph processing. Recent work [61] has shown orders

7



of magnitude efficiency improvement over traditional CPU-based graph processing, such as

GraphLab [70]. Despite the promise, existing GPU-based graph processing suffers from low

efficiency due to the highly irregular degree distribution in real-world graphs. By nature,

the degree distribution of real-world graphs tend to follow the power law (known as power-

law graphs) – a small portion of nodes 1 own a large number of neighbors (i.e., one-hop

nodes) while most nodes are connected to only a few neighbors. Such a highly skewed

degree distribution makes these graphs ill-suited to GPUs’ single-instruction multiple-data

(SIMD) execution, which is primarily designed for accelerating computations with more

regular data structures [73].

In the popular vertex-centric graph programming where the nodes of a graph are

distributed across threads for processing, graph irregularity results in severe load imbalance

among threads. On GPU architectures, threads are organized in warps and threads in the

same warp proceed in an SIMD execution fashion – threads that finish their tasks earlier

have to wait until other threads in the same warp finish their computations, before swapping

in the next warp of threads. In this case, the load imbalance among threads can lead to

inefficiencies at both intra-warp and inter-warp levels. As a result, the GPU utilization

drops to merely 25.3%-39.4% for commonly used graph analytics [61].

State of The Art. To address the above barrier, research so far either modifies GPU thread

execution models [46, 40, 58] or changes the graph programming paradigm [35, 61, 60, 137].

For instance, warp segmentation [58] and maximum warp [46] improve the GPU efficiency

by decomposing a warp of threads into a group of sub-warps. With enhanced flexibility,

changes like these tightly couple with underlying GPU architectures, making them harder

1We use node and vertex interchangeably in the context of graph structures.
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G (high irregularity) G’ (low irregularity)

G’=trans(G)

Figure 2.1: Illustration of Graph Irregularity Reduction.

to adapt as GPU architectures quickly evolve. By contrast, CuSha [61] and Gunrock [137]

propose new graph representations and new programming abstractions, respectively, which

often require extra programming efforts to adopt.

Different from prior efforts, this work proposes to address the irregularity issue

at its origin by transforming irregular graphs into more regular ones, namely Tigr, as

illustrated in Figure 2.1. Note that this is radically different from changing graph repre-

sentations [61, 69] (e.g., CSR to CSR5 format) or partitioning graphs [70, 36]. Tigr allows

to change the topology of a graph (i.e., structural transformations) while does not generate

any graph partitions, thus there is no need for explicit partition synchronization.

To achieve this goal, there are three key challenges:

• Effectiveness. How should graphs be transformed such that their irregularity can be

effectively reduced?

• Correctness. How can we ensure that the processing of transformed graphs still yields

the same results?

• Efficiency. How can we minimize the transformation cost while preserving its effective-

ness?
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First, to reduce the graph irregularity, this work proposes a class of structural

transformations based on a simple yet effective idea – node splitting. Basically, the trans-

formations first identify nodes with high degrees, then iteratively split the nodes until their

degrees reach a predefined limit. We refer to these transformations as split transformations.

The design complexity of split transformations lies in the connection among the

split nodes. Different connections may lead to different extent of irregularity reduction.

Even more complex, they may affect the convergence rate of graph analytics and alter the

final results. In general, there exists a basic tradeoff between graph irregularity reduction

and the convergence rate of graph algorithms. More importantly, this work identifies a

promising type of split transformations that is able to achieve a good balance between

irregularity reduction and convergence speed, while preserving the result correctness for a

wide range of graph algorithms, called uniform-degree tree transformation or UDT.

As the name suggests, UDT transforms a high-degree node into a tree structure

with nodes of identical degrees. This special design leads to two important properties. First,

it ensures that the distances (i.e., #hops) among split nodes only increase logarithmically

as the degree of the to-split node increases. This minimizes the negative impact of split

transformations on the convergence rate of graph algorithms. Second, it preserves basic

graph properties, like connectivity, paths, and degrees, which in turn supports the correctness

of UDT for a variety of graph analytics.

Physically transforming graphs may incur substantial costs in time and space. To

address it, this work proposes virtual split transformations, which add a virtual layer on top

of the original irregular graph, making it “look more regular”. Essentially, virtualization
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separates programming abstraction from the physical graph. The separation allows com-

putation tasks to be scheduled at the virtual layer (on the transformed graph) while the

actual value propagation is carried at the physical layer (on the original graph). In this way,

it eliminates the needs of physical graph transformations while preserving the benefits of

reduced graph irregularity. Moreover, the virtual transformation simplifies the correctness

enforcement by preserving the original value propagation pattern at the physical layer.

Finally, we integrate the proposed graph transformations Tigr into a lightweight

GPU graph processing framework. Thanks to the data-level transformations, its code base

is much smaller than other GPU graph processing solutions. Evaluation on six important

graph analytics confirms the effectiveness and efficiency of the proposed transformations

with substantial speedups over existing solutions.

Contributions. This work makes a four-fold contribution.

• This work directly targets the irregular graph data for addressing the fundamental effi-

ciency issue in irregular graph processing, complementary to existing techniques.

• It proposes a class of novel structural transformations that can effectively reduce the

irregularity of real-world graphs while guaranteeing the correctness.

• To make the graph transformations practical, it designs a virtual transformation scheme,

which eliminates the needs of expensive physical graph transformations.
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initial dist values after 1st iter. after 2nd iter.

vertex_func (vertex v, bool finished) {
foreach nbr of v.nbrs {

alt = v.dist + weight[v,nbr]
if (alt < nbr.dist)    /* a shorter path ? */

nbr.dist = alt 
finished = false

}
}
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Figure 2.2: Example of (Push-based) Vertex-Centric Programming.

tim
e

SIMD lanes of a warp

idle active

Figure 2.3: SIMD Execution.

• Finally, it implements the proposed transformations and compares with the state-of-the-

art GPU graph processing frameworks. The results confirm both the effectiveness and cor-

rectness of the transformations. (Repository: https://github.com/amirnodehi/Tigr)

2.2 Background and Motivation

This section briefly introduces the parallel programming model for graph analyses,

the SIMD execution model on GPU architectures, and the special challenges for GPU-based

graph processing.
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2.2.1 Vertex-Centric Programming

Graph analytics is notoriously difficult to parallelize due to its inherent depen-

dencies [73]. In response to the challenge, vertex-centric programming model has quickly

established its popularity in recent years for its simplicity, high scalability and strong ex-

pressiveness. Since implemented by Google Pregel [76], this model has been widely adopted

by many parallel graph engines, including Apache Giraph [10], GraphLab [70], Power-

Graph [36], MaxWarp [46], CuSha [61], and many others. The model is based on a simple

paradigm “thinking like a vertex” – computations are defined from the view of a vertex

rather than a graph. In specific, a vertex function is first defined, and then applied on

each vertex. Based on the Bulk Synchronous Parallel (BSP) model [131], computations of

different vertices are synchronized at the graph level, iteration by iteration, until a certain

number of iterations or a convergence property is met.

Example. Figure 2.2 provides a vertex-centric programming example for finding the short-

est path from the source node to the other nodes iteratively. Initially, each node in the graph

has an infinite distance to the source node (dist=∞), except the source node (dist=0). By

invoking the vertex function vertex func, each node attempts to update its neighbors’

distance values, based on its own value from the last iteration and the distances to its

neighbors (weight[v,nbr]). The updates of different nodes are synchronized iteration by

iteration. The whole computation halts when all node values stop changing – the algorithm

converges.

In the above scheme, node values are propagated by updating neighbors’ values

through outgoing edges. This scheme is known as push-based. By contrast, the node values
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can also be propagated by gathering values from neighbors through incoming edges and

updating the node’s own value, which is known as pull-based. Both schemes have been used

by some prior graph frameworks. In the following, we assume a push-based vertex-centric

programming on directed graphs, but similar ideas can also be applied to pull-based scheme

and undirected graphs – which actually are special cases of directed graphs with each edge

having both directions.

2.2.2 GPU and SIMD Execution

On GPU architectures, computing units (i.e., GPU cores) are organized by a num-

ber of streaming multiprocessors (SM). Typically, GPU applications distribute computation

tasks to thousands of parallel threads. These threads are grouped into warps. In NVIDIA’s

GPU architectures, a warp typically contains 32 threads. Threads in the same warp are

assigned to a single SM, and proceed in an SIMD fashion 2. That is, threads execute the

same instructions (or nothing), but on different data. Following the SIMD execution model,

even though some threads have finished their computations earlier, their occupied comput-

ing units (also called SIMD lanes) cannot be released for other computations, until all the

threads in the warp have finished, as illustrated in Figure 2.3.

Though offering massive threads for parallel executions, whether the tremendous

computing power of GPUs can be utilized effectively depends on the computation regularity.

2Single-instruction multi-thread (SIMT) model in NIVIDA’s term.
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2.2.3 Challenges of GPU-based Graph Processing

Real-world graphs, like social networks and the web, are highly irregular. For ex-

ample, a basic graph characteristic profiling on three popular real-world graphs (LiveJournal,

Higgs Twitter [67], and Hollywood [17]) reveals that over 90% of nodes have degrees less

than 20 while less than 2% of nodes have degrees around 1000, up to 14,000.

The high irregularity in real-world graphs poses a major challenge to efficiently

utilizing GPU’s processing power for many graph analytics. In vertex-centric graph pro-

gramming, each node communicates with its neighbors to update their values (see Sec-

tion 2.2.1). The higher number of neighbors a node has, the more computations it has to

perform. When mapping nodes to GPU threads, a highly biased node degree distribution

would lead to severe load imbalance across GPU threads. At intra-warp level, some threads

may finish earlier, leaving their SIMD lanes idle. At inter-warp level, this leads to some

GPU SMs underused while others being busy.

Next, we will describe how to address this basic issue with graph transformations.

2.3 Graph Transformations

This section first introduces the general ideas of a class of novel structural trans-

formations – split transformation, then focuses on a promising type of split transformation

with desired properties – uniform-degree tree transformation.
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2.3.1 Split Transformations

Graph irregularity can be reflected by the highly skewed node degree distribution.

To reduce such irregularity, we consider transforming nodes with high degrees into sets

of nodes with lower degrees. In (push-based) vertex-centric programming (Section 2.2.1),

values are propagated through outgoing edges. Therefore, we focus on the outdegree – the

number of outgoing edges of a node 3. For simplicity, we refer to outdegree as degree, unless

otherwise noted. Formally, we define high-degree nodes in a graph as follows.

Definition 1 Given a directed graph G = (V,E), where V is the set of vertices and E is the

set of edges, and a predefined degree threshold K (K ≥ 1), Node v, v ∈ V , is a high-degree

node if and only if it has an outgoing degree d(v) such that d(v) > K. The threshold K is

called degree bound.

To transform high-degree nodes, our strategy is to split each high-degree node

into a set of split nodes and evenly distribute its (outgoing) edges to some split nodes

based on the degree bound K, as illustrated in Figure 2.4. We refer to this process as split

transformation. Assume the neighbor set of a node v via outgoing edges is denoted as Nv.

Similarly, the neighbor set of node set S is denoted as NS , NS = ∪v∈S Nv. Then, split

transformation can be formally defined as below.

Definition 2 Given a high-degree node v and the degree bound K, a split transformation

of node v is a mapping

T : (v, Nv) 7→ (I ∪B, NI ∪NB) (2.1)

3Similarly, indegree should be used in a pull-based scheme.
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A family of split nodes (K = 4)A high-degree node

residual node

Figure 2.4: Illustration of Split Transformation.

where (i) I is the internal split node set i.e., NI ∩ Nv = ∅; (ii) B is the boundary

split node set i.e., B = {v′|Nv′ ∩Nv ̸= ∅}; (iii) NB ⊇ Nv and |B| = ⌈|Nv|/K⌉.

Condition (iii) ensures the original outgoing edges are evenly distributed based on

degree bound K. Together, we refer to I ∪B as a family. The degree of a family equals to

the highest degree of all nodes in the family. Different families form disjoint sets of nodes.

For a split node with degree less than K, we name it a residual node.

Though the basic idea of split transformation is intuitive, the concrete designs

of splitting is non-trivial, due to the complexities in connecting the split nodes, that is,

designing internal split node set I and its outgoing neighbor set NI .

Design Tradeoffs. In general, there are various topologies to connect the split nodes of a

family. We illustrate the tradeoffs in designing connection topologies with three represen-

tative transformations that are based on a clique connection (T cliq), a circular connection

(T circ), and a star-shaped connection with a “hub” node (T star), respectively (see Fig-

ure 2.5). For T cliq and T circ, the incoming edges of the original node (red dashed arrows)

are randomly assigned to the split nodes; For T star, the incoming edges all connect to the

hub node.
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(a) Tcliq (b) Tcirc (c) Tstar

...

Figure 2.5: Three Example Connections.

Tstar (K=3)
Tudt (K=3)

two residual nodes no residual nodes
degree < K

Figure 2.6: Comparison between T star and T udt.

Table 2.1 summaries the impacts of the three designs on graph size, degree, and

the maximum number of hops to propagate a value to the split nodes. In terms of graph

size, T cliq introduces the highest space cost, for its quadratic increase of extra edges. As

to the irregularity reduction, T circ wins – the new degree only depends on degree bound

K. Besides space cost and irregularity reduction, a less obvious yet critical effect of split

transformation is its influence on value propagation speed, that is, how fast node values

are propagated through the graph. This directly affects the convergence rate of graph

algorithms. The influence can be estimated by the maximum number of hops needed to

propagate a value within a family. As shown in the fifth column of Table 2.1, T circ performs

the worst as it needs up to ⌈d/K⌉ − 1 hops to propagate a value from one split node (with
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Table 2.1: Properties of Split Transformations (K: degree bound; d: degree of original
high-degree node).

#new
nodes

#new
edges

new
degree

max
#hops

space
cost

irreg.
reduction

value
prop.

T cliq ⌈d/K⌉ − 1 (⌈d/K⌉ − 1) · ⌈d/K⌉ K + ⌈d/K⌉ − 1 1 high low fast

T circ ⌈d/K⌉ − 1 ⌈d/K⌉ − 1 K + 1 ⌈d/K⌉ − 1 low high slow

T star ⌈d/K⌉ ⌈d/K⌉ max{K + 1,⌈d/K⌉} 1 low varies fast

an incoming edge) to another. By contrast, T cliq and T star only need one hop to cover all

the split nodes.

The above analysis indicates a general tradeoff among space cost, irregularity re-

duction, and value propagation rate. Weighing the advantages and disadvantages, T star

shows relative superiority for its low space cost and fast value propagation. The only down-

side is the relatively high family degree caused by the adding of the hub node. Next, we

show a promising type of split transformation that shares benefits with T star while without

the hub node issue.

2.3.2 Uniform-Degree Tree (UDT) Transformations

One straightforward solution to the hub node issue of T star is recursively applying

T star to the hub node until its degree drops to K. As a consequence of the recursive

splitting, a hierarchy of families would be created, where the height of the hierarchy equals

to the depth of the recursion. However, this recursive T star may introduce more residual

nodes, as shown in Figure 2.6-(a). Applying T star to a node of degree five results in two

residual nodes. Situations like this not only compromise the irregularity reduction, but also

introduce unnecessary split nodes. To avoid such issues, we propose another transformation
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scheme, called uniform-degree tree transformation, or UDT (T udt), which ensures at most

one residual node in the generated family.

Algorithm 1 illustrates the how UDT works. Instead of creating a hub node at each

splitting, UDT introduces new split nodes on demands. This is achieved by maintaining

a queue of split nodes to connect. Initially, the queue contains all neighbors of the high-

degree node. If the queue has more than K (degree bound) nodes, a new node is created

and connected to K nodes popped from the queue. After that, the new node is appended to

the queue. This process iterates until the queue has no more than K nodes. The remaining

ones are assigned to the original node.

Figure 2.6-(b) shows a UDT example on a node of degree five. After the transfor-

mation, the new structure has no residual nodes, comparing to the two residual nodes in

T star.

Properties of UDT. The output of Algorithm 1 forms a tree structure where the degree of

each node (or except the root) equals to K. We refer to this tree structure as uniform-degree

tree, hence the name of UDT transformation.

Besides the uniform degree property, UDT also features the following important

properties:

• P1: UDT is a type of split transformation (Definition 2).

• P2: After the transformation, there exits a unique path connecting the incoming edges

of the original node to each of its outgoing edges. Because (i) the original node with

all incoming edges becomes the tree root (see Lines 12-13 in Algorithm 1) and (ii) each
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Algorithm 1 UDT Transformation

1: if degree(v) > K then ▷ for each high-degree node
2: q = new queue()
3: for each vn from v’s neighbors do
4: q.add(vn) ▷ add all original neighbors
5: v.remove neighbor(vn)

6: while q.size() > K do
7: vn = new node()
8: for i = 1..K do
9: vn.add neighbor(q.pop())

10: q.push(vn) ▷ add a new node

11: S = q.size()
12: for i = 1..S do ▷ connect to the root node
13: v.add neighbor(q.pop())

outgoing edge of the original node is only connected to one node in the tree (i.e., pushed

once into the queue at Line 4 in Algorithm 1).

• P3: The number of hops to propagate a value through the split nodes (i.e., tree height)

only increases logarithmically O(logKd) to the degree of the original node d.

Since the transformation at most traverses each node and each edge once, the time

complexity of UDT for the entire graph is linear to the graph size O(|V | + |E|).

Similar to the side effects of other split transformations, UDT increases the size

of the graph. However, our analysis indicates that, with the benefits of reducing degree d

to a constant K, the graph size only increases linearly O(d/K) in terms of both nodes and

edges. As to the graph diameter D, the increase is at most O(D · logK(|E|/d)) .

Next, we discuss how UDT can preserve the correctness for a diverse set of graph

algorithms.
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2.3.3 Enforcing the Correctness for T udt

As discussed above, UDT, like other split transformations, may substantially

change the structure of the original graph. In this case, will graph analyses still yield the

same results as processing on the original graphs? If not, how can we enforce the correctness

for this type of transformations?

It is obvious that the correctness of UDT depends on graph analyses, in particular,

the graph properties that various graph analyses rely on. Hence, instead of discussing the

correctness for each graph analysis, we first present the important graph properties that

UDT preserves. Base on that, we can infer what kinds of graph algorithms can yield correct

results and what cannot.

We define a path P (vi, vj) as the set of edges on the path from node vi to node vj .

Theorem 3 Given a graph G(V, E), let v1, v2 ∈ V , then there exists a path P (v1, v2) in

G iff there exists a path P ′(v1, v2) in the UDT-transformed graph G’. Furthermore,

P ′(v1, v2) = P (v1, v2) ∪ Enew (2.2)

where Enew is a set of new edges, that is, Enew ∩ E = ∅.

Proof. If none of the nodes on original path P (v1, v2) are high-degree nodes, then

P ′(v1, v2) = P (v1, v2) and Enew = ∅. Otherwise, assume pi is a high-degree node, then pi

will be transformed into a uniform-degree tree, as illustrated in Figure 2.7. Assume pi−1

and pi+1 are the nodes before and after pi on path P (v1, v2), then based on the P2 property

of UDT, there exists a unique path from pi−1 to pi+1. Assume pi−1 and pi+1 connect to m
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Figure 2.7: A Path Before and After UDT.

and n in the tree, respectively. Then we have P ′(v1, v2) = P (v1, v2) ∪ Enew, where Enew

= P ′(m,n). On the other hand, by removing the edges in P ′(m,n) from P ′(v1, v2), we

can recover the original path P (v1, v2), except a node notation difference, that is, edges

pi−1 → pi and pi → pi+1 become pi−1 → m and n → pi+1.

Based on Theorem 3, we have three corollaries.

Corollary 4 UDT preserves graph connectivity.

Proof. By the definition of connectivity and Theorem 3.

Corollary 4 ensures the correctness of UDT for connected components (CC), by

preserving both the inter and intra connectivities of all the connected components in a

graph.

Dumb Weights. For some graph analyses, like finding the shortest path, the calculation

also involves the edge weights. Here, we show that, by carefully assigning weights to the

newly introduced edges, UDT can preserve some even more interesting graph properties.

The key to the weight assignment is to make the new edges contribute nothing to

the calculation. We can achieve this by assigning “dumb weights” to the new edges. We

next present two such cases (Corollary 5 and Corollary 5).
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Corollary 5 UDT preserves the distance between any pair of nodes in a weighted graph by

assigning weight zero to all UDT-introduced edges.

Proof. See Equation 2.2 in Theorem 3. By assigning weight zero to all edges in Enew,

P ′(v1, v2) and P (v1, v2) will have the same total weight. By preserving the total weight on

every path, the distances between pairs of nodes remain.

According to Corollary 5, it is easy to find that UDT can preserve the results for

single-source shortest path (SSSP) and between centrality (BC), for which the calculations

are only based on the distances between node pairs. Since breath-first search (BFS) is

equivalent to SSSP on graphs with all edge weights of 1, UDT can also preserve the results

for BFS.

Figure 2.8 shows the UDT with dumb weights for SSSP. The distance between A

and B remain six after transformation.

Corollary 6 UDT preserves the minimal edge weight in a path by assigning weight infinity

to all UDT-introduced edges.

Proof. See Equation 2.2 in Theorem 3. By assigning weight infinity to all edges in Enew,

P ′(v1, v2) and P (v1, v2) will have the same minimal edge weight.

Corollary 6 confirms that UDT can preserve the results for single-source widest

path (SSWP), for which the calculation is purely based on the minimal edge weight along

a path.

Finally, we have a corollary for degree-based analyses.

Corollary 7 For push-based and pull-based vertex-centric programming, UDT preserves the

indegrees and outdegrees, respectively, for all nodes in the original graph.
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Figure 2.8: Example of UDT with dumb weights for SSSP.

Proof. By definition, UDT keeps all the incoming edges of the original node unchanged,

as values are only propagated along the outgoing edges in a push-based scheme. Similarly,

for a pull-based scheme, UDT keeps the outgoing edges of the original node unchanged.

Corollary 7 ensures the correctness for graph analyses that rely on indegrees or

outdegrees for node value calculation, such as PageRank (PR). Since PR depends on outde-

grees only, its correctness can be ensured by using a pull-based vertex-centric programming

model.

Applicability Discussion. Together, UDT can preserve the correctness for a spectrum of

connectivity-based, path-based, and degree-based graph analyses, including the widely used

CC, SSSP, SSWP, BC, BFS, and PR.

Despite the promises, there are graph analyses for which UDT or other split trans-

formations may fail to preserve the results. These include analyses that require preserving

the neighborhood of nodes, such as graph coloring (GC), triangle counting (TC), clique detec-

tion (CD), and some others. By checking the graph property requirements, the applicability

of UDT or other split transformations for a specific graph analysis can be determined.

Note that physically transforming irregular graphs takes extra time and space.

Furthermore, the transformed graphs may take more iterations to process due to the slow-
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Figure 2.9: Illustration of Virtual Split Transformation.

down of value propagation (caused by splitting). To address these issues, we propose to

virtually apply split transformations, without physically changing the graphs.

2.4 Enabling Virtual Graph Transformations

This section discusses how to apply the split transformations virtually, such that

the benefits of physical split transformation – reduced graph irregularity – can be preserved,

while without suffering from its practical issues.

2.4.1 Virtual Split Transformations

To avoid physical graph transformations, we propose to add a virtual layer on top

of the original graph (physical layer), then perform split transformations only at the virtual

layer, leaving the original graph intact, as shown in Figure 2.9. We refer to this scheme

as virtual split transformation. The nodes at physical and virtual layers are called physical

nodes and virtual nodes, respectively.

The key to virtual split transformation is to separate the programming model from

the physical graph data:
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• First, by exposing the virtual layer to the vertex-centric programming model, node value

computation tasks are scheduled at the virtual layer.

• Second, computed (virtual) node values are propagated at the physical layer, hidden from

the programming model.

From the view of vertex-centric programming model, the graph has been trans-

formed and become more regular; while physically, it is still the original irregular graph.

Next, we discuss the design of virtual split transformation and explain how it

ensures the correctness.

Virtualization Design. Essentially, virtualization is about constructing a mapping be-

tween the physical layer and the virtual layer. In the context of graph virtualization, it

needs to define a node mapping mapv and a edge mapping mape.

v = mapv(v′), e = mape(e
′)

In fact, split transformations do not specify the edge assignment from a high-degree

node to the split nodes, except that the edges should be distributed evenly (Section 2.3.1).

This flexibility allows edge mapping to be implicitly defined based on the node mapping,

the order of edges in the storage, and the degree bound K (see an example shortly). That

is, a node mapping itself is sufficient to define the virtualization.

Depending on when the node mapping is generated, we propose two alternative

virtualization designs: virtual node array and on-the-fly mapping reasoning.

• Virtual Node Array. This design creates a node mapping before graph processing and

store it in a structural array, namely virtual node array. Each element in the array is
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Figure 2.10: Integrating Virtual Node Array into CSR Format.

a structure of two nodes {v,v′}, representing a mapping between physical node v and

virtual node v′. This array can be effectively integrated into the popular compressed

sparse row (CSR) graph representation. See the example in Figure 2.10, a high-degree

node v2 is split into two virtual nodes v′2 and v′′2 . Node v2’s original edges to nodes v5,

v4 and v6 are implicitly mapped to virtual node v′2 based on their order in the edge array

and the setting of K (i.e., 3), the rest are mapped to virtual node v′′2 (i.e., edge mapping).

Note that any incoming edges to the original node (v2) would be shared by split nodes

(v′2 and v′′2).

The space cost of virtual node array is bounded by the number of virtual nodes and

controllable by tuning the degree bound K (more details in Section 3.4).

• Dynamic Mapping Reasoning. In certain scenarios, even allocating a little extra memory

is undesirable. In this case, we can dynamically compute the mapping based on the node

splitting logic (i.e., degree bound K). See the example in Figure 2.10. Before processing
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node v2, a reasoning runtime finds its degree is 6, which is greater than K, hence splits

it into two virtual nodes (⌈6/3⌉), each with three edges of v2. In this way, we determine

the node mapping dynamically, eliminating the needs for storing a mapping. Essentially,

this design trades off computation cost for better memory efficiency.

As shown above, virtual split transformations are more lightweight compared to

physical graph transformations. Next, we discuss how (virtual) nodes’ values are propagated

after the virtual split transformation.

Implicit Value Synchronization. As mentioned earlier, with virtualization, node values

are propagated at the physical layer (i.e., on the original graph). Consider the virtual node

array design 4 as shown in Figure 2.10. Despite the fact that a physical (high-degree) node

is split into multiple virtual nodes, the values of these virtual nodes are all stored to the

same memory location - the place for the value of the original physical node. Notice that,

in Figure 2.10, the value array remains unchanged. This allows virtual nodes of the same

family automatically synchronize their values.

The synchronization brings two key benefits:

• Faster value propagation comparing to that on a physically transformed graph. Consider

the virtually transformed graph in Figure 2.10. A value from node v1 can immediately

reach both nodes v′2 and v′′2 without any extra hopping. By contrast, it may one or

multiple hops to reach a split node on a physically transformed graph.

• Correctness enforcement for general vertex-centric graph analyses. We elaborate this

benefit in the next subsection.

4Similar ideas are also applicable to on-the-fly mapping reasoning.
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Figure 2.11: Correctness for Push-based Scheme.

2.4.2 Enforcing Correctness

The correctness of virtual split transformations is enforced by a simple yet effective

mechanism – implicit value synchronization, which relaxes the constraints for applying split

transformations, leading to much stronger conclusions.

Theorem 8 Virtual split transformations preserve the results for all push-based vertex-

centric graph analyses.

Proof. In push-based vertex-centric programming, a node updates the value of

each neighbor one by one, based on its own value and the neighbor’s value obtained from the

last iteration. Consider the node v and its neighbor vn in Figure 2.11. Suppose both of them

are high-degree nodes. After virtual split transformation, the values of virtual nodes at both

ends, such as v′ and v′n, remain unchanged, thanks to the implicit value synchronization.

By applying the same function f(·), the new value of the neighbor vn.xi+1 would also be

the same as the one calculated on the original graph, that is, v′n.xi+1 = vn.xi+1. Since the

equality holds from initialization (i.e., i = 0), it will continue to hold for all the following

iterations till convergence or termination.
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Theorem 9 For pull-based vertex-centric graph analyses, to ensure the correctness of vir-

tual split transformations, the vertex function needs to be associative.

Proof. In pull-based vertex-centric programming, a node v uses the values of its

neighbors vi.w to update its own value based on the vertex function v.w = f(v.w, v1.w, v2.w,

· · · , vn.w)5, vi ∈ v.nbrs. In the transformed graph, a virtual node v′ is only connected to a

subset of the neighbors of the original node v (i.e., v′.nbrs ⊂ v.nbrs). Hence, the calculated

value v′.w may not equal to v.w. However, because of implicit value synchronization, virtual

nodes of the same family will repeatedly update the same value at the physical layer, that

is, f(f(· · · f(v.w, · · · ), · · · )). Since the neighbors of virtual nodes (of the same family) are

disjoint, each of them appears exactly once in the nested function. If the vertex function f

is associative, then nested function can be reduced to exactly the original vertex function

with all neighbors included.

Fortunately, many graph analyses once implemented in pull-based scheme are

purely based on associative vertex functions [61], such as SUM, MIN, and MAX. These

include popular ones like SSSP, BC, SSWP, BFS, and PR6. Besides associativity require-

ments, virtual split transformation for pull-based scheme further requires the updates to

the value array are performed with atomic operations.

Together, Theorems 8 and 9 guarantee correctness for vertex-centric graph analyses

in a broad sense.

5We assume vertex function includes the node value itself as a parameter.
6PageRank requires modifying the logic of its vertex function.
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Algorithm 2 SSSP on Virtually Transformed Graph

1: global SSSP Kernel(bool finished)

2: nodeId = virtualNodes[tid].physicalNodeId ▷ main difference
3: d = distance[nodeId] ▷ value array
4: start = virtualNodes[tid].edgePointer
5: end = virtualNodes[tid+1].edgePointer - 1
6: for i = start..end do ▷ push value to each neighbor
7: alt = d + edges[i].weight
8: if alt < distance[edges[i].nbr] then
9: atomicMin(&distance[edges[i].nbr], alt)

10: finished = false

2.4.3 Example

Algorithm 2 shows an example of programming SSSP for the virtually transformed

graph using virtual node array. Since threads are scheduled at the virtual layer, the virtual

node ID is also the thread ID – tid, which is reflected by vituralNodes[tid]. At Line

2, a virtual node ID is mapped to the corresponding physical node ID. This is the main

difference comparing to the vertex function for the original graph. The remaining code is

the same as that in the original vertex function, except that nodes[tid] gets replaced by

vituralNodes[tid].edgePointer.

2.4.4 Optimization for GPU Architectures

Data locality plays a critical role in the performance of GPU applications. Here,

we examine the potential issues in the design of virtual split transformations that may harm

the data locality, and address them with a memory access optimization, namely edge-array

coalescing.

Edge-array Coalescing. We assume the virtual node array design for the virtualization,

but the idea is also applicable to the other design on-the-fly mapping reasoning.
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Figure 2.12: Edge-array Coalescing.

With virtual split transformations, threads are scheduled based on the virtually

transformed graph. Specifically, each thread is assigned to process a virtual node by prop-

agating its value to its neighbors. This requires accessing the edges of this virtual node. In

the default setting, the edges of a virtual node are stored consecutively in the edge array,

as shown in Figure 2.10. Hence, from a single thread’s view, the edge array accesses have

good locality. However, GPU threads are grouped into warps (of 32 threads) and proceed

in an SIMD fashion. From a warp’s view, the access to the edge array is actually strided,

where the stride length equals to the degree bound K. Consider the two virtual nodes in

Figure 2.10, the first virtual node starts from index 3 of the edge array, while the second

virtual node starts from index 6. Since the threads of the same warp share local caches,

such a strided accessing pattern hurts the data locality.

To address the locality issue, we reorder the edges during the construction of

CSR. Instead of assigning consecutive edges to a virtual node, the new assignment follows

a strided pattern (see Figure 2.12). The stride and offset are the number of virtual nodes in

the family and virtual node ID within the family, respectively. That is, the second virtual

node is assigned with edges 1, 3, and 5 (index starts from 0). In this way, when the virtual

nodes of the same family are scheduled to the same warp (as they are consecutive in the
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Algorithm 3 SSSP with Edge-array Coalescing.

1: global SSSP Kernel(bool finished)

2: nodeId = virtualNodes[tid].physicalNodeId
3: offset = nodes[nodeId] + virtualNodes[tid].offset
4: stride = virtualNodes[tid].stride
5: d = distance[nodeId]
6: for i = 1..K do ▷ K: degree bound
7: e = offset + stride × i ▷ compute edge array index
8: alt = d + edges[e].weight
9: if alt < distance[edges[e].nbr] then

10: atomicMin(&distance[edges[e].nbr], alt)
11: finished = false

virtual node array), each time they access an edge, a consecutive chunk of memory will

be loaded. We refer to this reordering technique as edge-array coalescing. Algorithm 3

describes SSSP with edge-array coalescing. The main differences happen at Lines 3, 4 and

7, which calculate the edge index.

2.5 Implementation

We implemented the proposed split transformations as a graph transformation

framework – Tigr and integrated it into a lightweight GPU graph processing engine, writ-

ten in C++ and CUDA. For physical graph transformation, Tigr implements UDT (Sec-

tion 2.3.1); For virtual transformation, Tigr uses virtual node array (Section 2.4.1) for lower

runtime cost. In addition to edge-array coalescing (Section 2.4.4), our GPU graph engine

also implements worklist and synchronization relaxation. The former tracks a set of active

nodes and only processes the active ones in each iteration; The latter allows to use values

computed in the current iteration (along with values from the last iteration) for node value

updates. Both optimizations are orthogonal to split transformations.
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Selection of K. Degree bound K can be tuned based on graph algorithms and graph

characteristics to maximize the benefits. However, for virtual graph transformation, we

only observed marginal improvements by turning K. Hence, for simplicity, we empirically

choose K = 10 for its overall best performance across settings.

By contrast, for physical graph transformation (UDT), we did observe substantial

performance variations for different values of K. In fact, the best value of K primarily

depends on the degree distribution. As more nodes are with higher degrees, the best K

increases correspondingly. In practice, we use a simple heuristic that pre-defines a mapping

between K and the maximum degree of a graph for selecting K.

2.6 Evaluation

This section evaluates the efficiency and effectiveness of split transformations for

graph processing on GPUs.

2.6.1 Methodology

We compare Tigr-based GPU graph processing with three state-of-the-art general

GPU graph processing frameworks: maximum warp [46], CuSha [61], and Gunrock [137].

Both implementations of CuSha and Gunrock are obtained from their public repositories.

For maximum warp, we use an implementation from the CuSha repository. Table 2.2 lists

the methods used in our comparison.

Besides, we compared with low-level implementations of some specific graph prim-

itives, such as ECL-CC [51], Elsen and Vaidyanathan’s PR [30], Davidson and others’
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Table 2.2: Methods in Evaluation.

Abbr. Framework

MW Maximum warp w/ warp size range: 2˜32 [46]
CuSha CuSha w/ G-Shards or Concatenated Windows [61]

Gunrock Gunrock graph processing library [137]
Tigr-UDT UDT split transformation-based graph processing

Tigr-V Virtual split transformation-based graph processing
Tigr-V+ Virtual split transformation w/ edge-array coalescing
baseline Our lightweight GPU graph engine w/ Tigr disabled

Table 2.3: Datasets in Evaluation
dmax: maximal outdegree, d: diameter, Kudt and Kv: degree bounds

Dataset #Nodes #Edges dmax d Kudt Kv

Pokec social [67] 1.6M 31M 8.8K 11 500 10
LiveJournal [67] 4.0M 69M 15K 13 1K 10
Hollywood [17] 1.1M 114M 11K 8 1K 10

Orkut [67] 3.1M 234M 33K 7 1K 10
Sinaweibo [108] 59M 523M 278K 5 10K 10

Twitter2010 [108] 21M 530M 698K 15 10K 10

SSSP [28], as well as the BFS by Merrill and others [82]. In fact, Gunrock [137] has system-

atically compared with several “hardwired” implementations and has shown performance

superiority (except CC). Therefore, we choose to compare with Gunrock and leave the

comparisons with these specific implementations to our project website 7.

The hardware platform is a Linux workstation equipped with an Intel Xeon E3-

1225 v6 CPU (4 cores, 3.30GHz), 32GB memory, and an NVIDIA Quadro P4000 GPU with

8GB memory and 1792 cores. All GPU code is compiled with CUDA 8.0 using the highest

optimization level. The timing results reported are the average of 10 repetitive runs.

Table 2.3 lists the graph datasets used in our experiments, all of which are real-

world power-law graphs. The evaluation includes six widely used graph analyses: breath-first

7https://github.com/amirnodehi/Tigr.
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Table 2.4: Performance Comparison.
execution time: ms; the best performance is bolded

Alg. Dataset MW CuSha Gunrock Tigr-V+

BFS pokec 60.32 21.73 28.23 14.64
BFS LiveJournal 149.6 57.62 51.47 27.76
BFS hollywood 89.4 142.26 24.54 15.9
BFS orkut 276.13 129.93 227.83 77.73
BFS twitter 1514.44 1060.85 344.06 178.53
BFS sinaweibo 1160.01 OOM OOM 299.24

SSSP pokec 94.37 44.49 73.34 40.77
SSSP LiveJournal 228.39 115 127.54 62.21
SSSP hollywood 180.16 331.46 85.49 44.84
SSSP orkut 538.99 279.33 452.89 159.85
SSSP twitter 1670.21 OOM 533.47 269.75
SSSP sinaweibo 1529.09 OOM 1297.46 699.35

PR pokec 20.81 2.06 30.67 22.1
PR LiveJournal 30.63 4.61 33.04 34.25
PR hollywood 16.73 20.35 12.7 15.09
PR orkut 135.65 16.59 171.7 156.32
PR twitter 216.21 OOM 243.07 221.49
PR sinaweibo 445.8 OOM 444.02 463.06

CC pokec 54.94 17.94 37.44 42.32
CC LiveJournal 133.98 49.42 59.54 47.4
CC hollywood 71.08 98.87 89.36 21.38
CC orkut 221.67 132.37 170.51 207.93
CC twitter 1427.73 979.03 683.89 573.53
CC sinaweibo 928.45 OOM 772.52 579.13

search (BFS), connected components (CC), single-source shortest path (SSSP), single-source

widest path (SSWP), between centrality (BC), and PageRank (PR).

2.6.2 Comparison With Existing Methods

Tables 2.4, 2.5 and 2.6 report the performance results of tested methods (we will

discuss Tigr-UDT and Tigr-V in Section 2.6.3). For MW with varying virtual warp sizes,

the best performance is chosen. Similarly, for CuSha, we report results of the better one
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Table 2.5: Performance Comparison for SSWP algorithm.
execution time: ms; the best performance is bolded

Alg. Dataset MW CuSha Tigr-V+

SSWP pokec 111.44 52.29 36.86
SSWP LiveJournal 353.02 163.58 65.67
SSWP hollywood 141.2 239.13 22.63
SSWP orkut 479.12 211.38 121.48
SSWP twitter 1546.68 OOM 240.48
SSWP sinaweibo 1527.14 OOM 635.23

Table 2.6: Performance Comparison for CC algorithm.
execution time: ms; the best performance is bolded

Alg. Dataset Gunrock Tigr-V+

BC pokec 87.09 42.86
BC LiveJournal 109.56 73.61
BC hollywood 55.77 39.21
BC orkut 399.96 207.58
BC twitter 732.28 475.23
BC sinaweibo 1507.25 1033.97

between G-Shards and Concatenated Windows. Some results on SSWP and BC are missing

as the corresponding frameworks are lack of such graph primitives.

Memory Requirements. Our performance results indicate that some graph processing

frameworks require larger memory space in order to accommodate their special graph repre-

sentations or their growing runtime memory consumption. When the memory requirement

exceeds the GPU memory limit, an error of out of memory (OOM) is thrown. This happened

to both CuSha and Gunrock when running on relatively large datasets such as sinaweibo or

twitter. In comparison, Tigr-V+ did not encounter any OOM issue in all tested datasets

and algorithms, thanks to its limited space cost (see Section 2.4). Besides our method,

MW is also free from OOM issues, since it is based on the modifications to GPU thread

execution model which does not introduce significant space cost.
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Performance. On one hand, there is no such a single method that always performs the

best in all tested cases. On the other hand, the results clearly show that Tigr-V+ achieves

substantial performance improvements over the existing methods for most datasets and

algorithms, thanks to its capability in graph irregularity reduction. In particular, Tigr-V+

achieves up to 5.43X speedup over MW method on LiveJournal dataset when running

SSWP algorithm. It also outperforms CuSha by 10.4X on the same algorithm with the

hollywood dataset. Comparing with Gunrock, Tigr-V+ achieves around 3X speedup when

running BFS and SSSP algorithms on the orkut dataset. For the other cases where Tigr-V+

wins, the speedup ranges from 1.04X to 2.93X.

Despite improvements for most datasets and algorithms, Tigr-V+ performs worse

than some existing methods in a few cases, especially with the PR algorithm. This is mainly

because Tigr-V+ implements a push-based programming strategy. Different from the other

evaluated algorithms, PR requires to processes every node in each iteration. For such kind

of computation pattern, a pull-based graph processing (like CuSha) often performs more

efficiently, by taking the advantages of parallel scan-style parallelism.

2.6.3 Performance Breakdown of Tigr

Figure 2.13 reports the speedups of different versions of Tigr over the baseline –

a lightweight GPU graph engine without any transformations, for SSSP algorithm. The

speedups with other graph algorithms follow a similar trend.

Physical v.s. Virtual. First, the results indicate that both physical and virtual split

transformations bring performance benefits to the original GPU graph framework, with 1.2X
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Figure 2.13: Speedups of Tigr over baseline (SSSP).

(Tigr-UDT) and 1.7X (Tigr-V) average speedups, respectively. The reason Tigr-UDT shows

less speedup is that physically transforming graphs with splitting increases the number

of hops among nodes, which cause more iterations to converge for graph algorithms (see

Section 2.6.5), while the number of iterations remains the same on a virtually transformed

graph, as the values are directly propagated at the physical layer – with no extra hoping

(see Section 2.4.1).

Memory-coalescing Optimization. Besides, Figure 2.13 also shows that the proposed

edge-array coalescing optimization boosts the performance of virtual split transformations

from 1.7X to 2.1X. The benefits come from the enhanced memory locality with more intel-

ligent edge assignments to the virtual nodes (see Section 2.4.4 for more details).
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Table 2.7: Space Cost of Physical Transformation (UDT).

K=100 K=1000 K=10000

pokec 100.13% 100.00% 100.00%
LiveJournal 100.41% 100.00% 100.00%

hollywood 101.37% 100.05% 100.00%
orkut 100.99% 100.01% 100.00%

twitter 101.29% 100.07% 100.00%
sinaweibo 100.96% 100.06% 100.00%

Table 2.8: Space Cost of Virtual Transformation.

K=4 K=8 K=16 K=32 K=100

pokec 147.32% 124.42% 113.24% 108.00% 105.32%
LiveJournal 146.69% 124.28% 113.46% 108.47% 105.86%

hollywood 149.28% 124.66% 112.38% 106.29% 102.35%
orkut 149.05% 124.55% 112.31% 106.23% 102.28%

twitter 148.05% 125.07% 113.88% 108.52% 105.15%
sinaweibo 145.99% 126.61% 117.60% 113.51% 111.05%

2.6.4 Transformation Costs of Tigr

As mentioned earlier (Section 2.6.2), despite the increases in graph size, Tigr-based

graph processing still require less memory than other frameworks like CuSha and Gunrock.

Here, we further examine the time and space costs of Tigr.

Space Cost. Tables 2.7 and 2.8 report the space increases for physical and virtual transfor-

mations, respectively, in terms of the graph size in CSR format. For physical transformation,

in order to keep sufficient value propagation rate, K is often set to a relatively large value

(Table 2.3). As a result, the size of the graph only increases marginally, by up to 1.37%

(K=100). As the degree bound increases, the sizes of transformed graphs decrease since

less number of nodes will be transformed.

In comparison, as shown in Table 2.8, the space cost of virtual graph transforma-

tion is much higher due to the use of relatively smaller K. Because virtual split transfor-
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Table 2.9: Transformation Time Cost (ms).

Dataset pokec LiveJournal hollywood orkut twitter sinaweibo

Physical 403 1,088 994 2,164 10,161 16,444

Virtual 20.7 38.6 50.4 98.3 211.5 289.7

Table 2.10: Performance Details (SSSP, LiveJournal, K = 8).

Without Worklist With Worklist

#iter time / iter. #instr. warp effi. #iter #instr. warp effi.

Original 14 29.92 3.3 ×109 25.98% 18 9 ×108 60.53%
Physical 29 24.68 8.9 ×109 91.15% 45 4.6 ×109 70.11%
Virtual 14 17.64 7.6 ×109 92.81% 18 2.2 ×109 85.51%

mation only introduces a virtual node and the edge array dominates the sizes of power-

law graphs, the overall space cost of virtual transformation remains around 25% even for

K = 8. Note that despite the increased graph sizes, the memory footprint of Tigr-V is

still much smaller than some other general graph frameworks, like CuSha and Gunrock (see

Section 2.6.2).

Time Cost. Table 2.9 reports the transformation time. Note that the current implementa-

tion of transformations is serial and can be parallelized. In general, the transformation time

is proportional to the size of the graph for both physical and virtual graph transformations.

For the same K, virtual transformation is more lightweight than physical transformation as

it only needs to build a virtual node array, rather than creating new nodes and edges. Since

physical transformation can be performed offline, its cost can be amortized across different

runs. For virtual transformation, it can be easily integrated into the graph loading phase,

in which case the transformation time cost could be negligible.
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2.6.5 Case Study: SSSP

To obtain deeper insights on how irregular graph processing benefits from physical

and virtual split transformations, we use SSSP as an example and break down the perfor-

mance into lower-level contributing factors, such as the number of iterations, runtime of

each iteration, GPU warp efficiency, and the total amount of instructions executed.

Table 2.10 lists the detailed profiles of SSSP running on the original LiveJournal

graph, the physically transformed graph and the virtually transformed graph, respectively.

When the worklist optimization is not used, all the nodes in the graph are processed in

each iteration. In this case, the physically transformed graph needs over 2X iterations to

converge, due to the increased node distances caused by physical splitting. By contrast,

the virtually transformed graph needs no extra iterations at all, thanks to its implicit value

synchronization. As to processing time per iteration, both physical and virtual transforma-

tions are able to reduce it substantially, due to the irregularity reduction. Meanwhile, both

of them lead to more instructions to execute because of the extra computations on new

nodes and edges. As shown by the warp efficiency columns, both transformations boost the

efficiency with more balanced computations.

The results for the cases with worklist optimization, in general, follow similar

patterns. However, the processing time per iteration can vary a lot depending on the set of

active nodes, hence is not listed. Note that the total number of instructions is dramatically

reduced in all three cases, as only active nodes are involved in the computations.
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2.7 Related Work

This section discusses related work in three aspects: general graph processing

frameworks, GPU-based graph processing, and techniques for GPU efficiency optimizations.

2.7.1 General Parallel Graph Processing

There is a rich body of work on designing distributed graph programming sys-

tems. Boost Graph Library [120], as an early effort, offers a high-level abstraction for

programming graphs. To enable parallel execution, Gregor and Lumsdaine implement par-

allel BGL [38]. Inspired by the Bulk Synchronous Parallel model [131], Google designs the

first vertex-centric graph programming framework Pregal [76]. Since then, vertex-centric

graph programming has been adopted by many parallel graph engines, such as Apache

Giraph [10], GraphLab [71], and PowerGraph [36]. Targeting distributed platforms, the

above systems require to partition graphs and store the partitions across machines, based

on edges [57, 98], vertices [36], or value vectors [148]. PowerLyra [24] has shown improved

performance by differentiating the partitioning between high-degree and low-degree vertices.

Though vertex partitioning [36, 24] shares similarities with split transformation,

the two approaches differ in a few key aspects. First, split transformation allows to change

the graph topology meanwhile does not result in any graph partitions; Second, targeting

distributed platforms, vertex partitioning requires to synchronize the partitioned vertices

explicitly; More critically, vertex partitioning often has to replicate both high-degree and

low-degree vertices (called mirroring).
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On shared-memory platforms, Ligra [119] and Galois [99] support programming

over a subset of vertices. Featuring amorphous data parallelism, Galois offers a new per-

spective on irregular graphs processing [90, 101]. Charm++ [54] and STAPL [31, 138]

are general parallel programming systems. The former supports intensively for irregular

computations, while the latter features a parallel container data structure for graph pro-

cessing. For easier adoption, graph processing based on single PCs also receives significant

attentions, such as GraphChi [65], GraphQ [136], and Graspan [135].

In addition, some work focuses on specific parallel graph algorithms, such as

connected components [39], BFS [13], SSSP[25, 84], and betweenness centrality [19] or

the design choice between pull and push-based processing schemes [16]. Some recent

work parallelizes automata executions which are essentially input-guided graph traver-

sals [155, 154, 102].

2.7.2 Graph Processing on GPUs

By mapping nodes of a graph to GPU threads, Harish and others [43] implement

a GPU graph processing framework based on vertex-centric programming. To minimize

path divergence and load imbalance in GPU graph processing, Maximum warp [46] decom-

poses GPU warps into smaller sub-warps. By contrast, CuSha [61] addresses the efficiency

issues with two new graph representations, namely G-shard and concatenated windows, to

achieve coalesced accesses. Based on the concept of frontiers, Gunrock [137] proposes a new

programming abstraction for GPU graph processing.

Some other work targets efficient GPU implementations of specific graph algo-

rithms, including hierarchical queue or prefix-sum based BFS [74, 82], GPU-optimized con-
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nected components [121, 39], SSSP based on ∆-stepping or hybrid approaches [93, 28] and

betweenness centrality based on Brandes formulation [52, 113, 79].

Besides, GPU graph processing for specific applications, such as program anal-

ysis [81], and general applications, like compiler-level optimizations [95] have also been

proposed. There are also a series of work on multi-GPU graph processing, including

TOTEM [33], Medusa [158], METIS [56], as well as hybrid CPU-GPU methods [35, 47].

Graphie [41] and GraphReduce [116] target the GPU memory constraints for processing

large graphs – another important problem in GPU-based graph processing. In general, our

proposed methods are orthogonal to these existing techniques.

2.7.3 GPU Efficiency Optimizations

Minimizing non-coalesced memory accesses is shown as a NP-complete problem [139].

To optimize memory access efficiency on GPUs, Dymaxion [23] and G-streamline [147] use

methods like data reordering, memory remapping, and job swapping. Similar to the load

balancing with local worklists [89], a queue-based approach handles irregularities in task

loads [130]. By contrast, other work [145, 66] proposes static decomposition to overcome

load imbalance in nested patterns. The idea of dividing the warp into virtual warps is also

used in CUSP library [14] for SpMV operation on CSR matrices. Sartori and Kumar [114]

explore the tradeoff between path divergence and the accuracy of the results, by forcing all

the warp lanes to follow the majority.

In addition to path divergence elimination, there are also methods trying to avoid

the uses of atomic instructions for processing irregular graphs [88], and a study on identifying
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the bottlenecks of implementing GPU applications, such as data transfers, kernel invocations

and memory latencies [142].

In fact, the graph irregularity issue exhibits as a special case of the path divergence

problem in GPU processing. However, we are not aware of any systematic studies that

address the divergence issue at the input graph level by directly transforming the structures

of graph data.

2.8 Summary

This chapter addresses the critical irregularity issue in GPU graph processing by

transforming irregular input graphs. Comparing to existing solutions, graph transformation

does not require significant changes to the graph programming system or the GPU thread

execution model.

Specifically, to reduce the graph irregularity, this chapter presents a class of split

transformations, which split nodes with high degrees into sets of nodes with lower degrees. It

further identifies a type of split transformation – UDT, with desirable properties, including

correctness guarantees for a variety of graph algorithms. To reduce the transformation costs,

this chapter introduces a virtual transformation scheme, which allows a separation between

the programming model and the graph data. Based on implicit value synchronization, the

correctness of virtual split transformation is guaranteed for vertex-centric graph analyses

in a broader sense. Finally, the evaluation confirms the effective and efficiency of the split

transformations on real-world power-law graphs.
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Chapter 3

Reducing Data Transfer during

Out-of-GPU-Memory Graph

Processing

3.1 Introduction

In many graph-based applications, graphs naturally grow over time. Considering web an-

alytics [18, 94], the sizes of web graphs quickly increase as more webpages are crawled. In

social networks [85, 115] and online stores [100], graphs related to user interactions (e.g.,

following and liking) and product purchases (e.g., who bought what item) also grow con-

sistently. These growing graphs pose special challenges to GPU-based graph processing

systems. When the size of an input graph exceeds the GPU memory capacity, known as
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Figure 3.1: Time Breakdown of Partitioning-based Approach
(six analytics on two real-world graphs from Section 3.4).

memory oversubscription, existing GPU-based graph systems either fail to process (such as

CuSha [61], Gunrock [137], and Tigr [92]), or process it with dramatic slowdown [116, 42].

State of The Art. Existing efforts [116, 62, 42] in addressing the GPU memory oversub-

scription for graph applications mainly follow ideas in out-of-core graph processing, such

as GraphChi [64], X-Stream [109], and GridGraph [161]. Basically, the oversized graph is

first partitioned, then explicitly loaded to the GPU memory in each iteration of the graph

processing. Hereinafter, we refer to this explicit memory management as the partitioning-

based approach. A major challenge for this approach is the low computation to data transfer

ratio due to the nature of iterative graph processing. As a result, the data movement cost

usually dominates the execution time, as shown in Figure 3.1. For this reason, one focus in

optimizing this approach is asynchronously streaming the graph data to the GPU memory

to overlap the data transfer with the GPU kernel executions [116, 62, 42]. Unfortunately,

as Figure 3.1 indicates, for many graph applications, the computation cost is substantially

smaller than the data transfer cost. Moreover, it varies significantly over iterations. Both

factors limit the benefits of this overlapping. A more promising direction is to directly
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reduce the data movements between CPU and GPU. To achieve this, GraphReduce [116]

and Graphie [42] track the partitions with to-be-processed (active) vertices/edges and only

load those to the GPU memory, which have shown promises in reducing data movements.

However, the benefits of this activeness checking are limited to the partition level. For

example, a partition with few active edges would still be loaded entirely. Moreover, for

real-world power-law graphs, most partitions may stay active due to their connections to

some high-degree vertices, further limiting the benefits.

As a more general solution, unified memory recently has become available with

the release of CUDA 8.0 and the Pascal architecture (2016) 1. It allows GPU applications

to access the host memory transparently with memory pages migrated on demand. By

adopting unified memory, graph systems do not have to track the activeness of graph par-

titions, instead, the memory pages containing active edges/vertices will be automatically

loaded to the GPU memory triggered by the page faults. Despite the ease of programming

and on-demand “partition” loading, unified memory-based graph systems suffer from two

limitations: First, on-demand page faulting is not free. As shown later, there are significant

overheads with page fault handling (such as TLB invalidations and page table updates);

Second, similar to the explicit graph partition activeness tracking, the loaded memory pages

may also contain a large ratio of inactive edges/vertices, wasting the CPU-GPU data trans-

fer bandwidth.

Unlike prior efforts and unified memory-based approach, this work aims to load

only the active edges (and vertices), which are essentially a subgraph, to the GPU memory.

1CUDA 6.0 supports automatic data migration between CPU and GPU memories, but does not support
GPU memory oversubscription.
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The challenges lie in the costs. Note that the subgraph changes in every iteration of the

graph processing. The conventional wisdom is that repetitively generating subgraphs at

runtime is often too expensive to be beneficial [132]. Contrary to the wisdom, we show

that, with the introduction of (i) a concise yet efficient subgraph representation, called

SubCSR; (ii) a highly parallel subgraph generation algorithm; and (iii) a GPU-accelerated

implementation, the cost of the subgraph generation can be low enough that it would be

beneficial to apply in (almost) every iteration of the graph processing.

On top of subgraph generation, we bring asynchrony to the in-GPU-memory sub-

graph processing scheme. The basic idea is to delay the synchronization between a subgraph

(in GPU memory) and the rest of the graph (in host memory). After the subgraph is loaded

to GPU memory, its vertex values will be propagated asynchronously (to the rest of the

graph) until they have reached a local convergence before the next subgraph is generated

and loaded. In general, this changes the behavior of value convergences and may not be

applicable to every graph algorithm. However, as we will discuss later, it can be safely

applied to a wide range of common graph algorithms. In practice, the asynchrony tends to

reduce the number of iterations and consequently the number of times a subgraph must be

generated and loaded.

Together, the proposed techniques can reduce both the number of times the input

graph is loaded and the size of loaded graph each time. We prototyped these techniques

into a runtime system called Subway. By design, Subway can be naturally integrated into

vertex-centric graph processing systems with the standard CSR graph representation. Our

evaluation with six commonly used graph applications on a set of real-world and synthesized
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graphs shows that Subway can significantly improve the efficiency of GPU-based graph

processing under memory oversubscription, yielding 5.6X and 4.3X speedups comparing to

the unified memory-based approach and the existing techniques, respectively.

Contributions. In summary, this work makes three major contributions to GPU-based

graph processing:

• First, this work presents a highly efficient subgraph generation technique, which can

quickly and (often) significantly “shrink” the size of the loaded graph in each graph

processing iteration.

• Second, it brings asynchrony to the in-GPU-memory subgraph processing, making it

possible to reduce the times of subgraph generations and loading.

• Third, it compares the proposed techniques (Subway) with existing out-of-GPU-

memory graph processing solutions, unified memory-based graph processing, as well

as some of the state-of -the-art CPU-based graph systems. The source code of Subway

is available at: https://github.com/AutomataLab/Subway.

Next, we first provide the background of this chapter.

3.2 Background

This section first introduces the basics of graph applications and their programming model,

including a discussion of the major issues in GPU-based graph processing.
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Figure 3.2: Graph Representation and Vertex-Centric Graph Processing (Connected Com-
ponents).

3.2.1 Graph Applications and Programming Model

As a basic yet versatile data structure, graphs are commonly used in a wide range of appli-

cations to capture their linked data and to reveal knowledge at a deeper level, ranging from

influence analysis in social networks [87] and fraud detection in bank transactions [112] to

supply chain distribution [134] and product recommendations [50]. As a sequence, there

have been consistent interests in developing graph processing systems, covering shared-

memory graph processing (e.g., Galois [91] and Ligra [119]), distributed graph process-

ing (e.g., Pregel [76] and Distributed GraphLab [70]), out-of-core graph processing (such

as GraphChi [64] and X-Stream [109]), and GPU-accelerated graph processing (such as

CuSha [61] and Gunrock [137]). More details about these graph systems and others will be

shown later in Section 3.5.

To support graph application developments, vertex-centric programming [76] has

been widely adopted as a popular graph programming model, thanks to its simplicity, high

scalability, and strong expressiveness. It defines a generic vertex function f(·) based on

the values of neighbor vertices. During the processing, the vertex function is evaluated on

all (active) vertices iteratively until all vertex values stop changing or the iterations have

reached a limit. Depending on the value propagation direction, the vertex function can be
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Algorithm 4 Vertex Function (CC) on CSR.

1: /* Connected Components */
2: procedure CC
3: tid = getThreadID()
4: if isActive[tid] == 0 then
5: return
6: sourceValue = value[tid]
7: for i = vertex[tid] : vertex[tid+1] do
8: nbr = edge[i]
9: if sourceValue < value[nbr] then

10: atomicMin(value[nbr], sourceValue)
11: isActiveNew[nbr] = 1 /* active in next iter. */

either pull-based (gathering values along in-coming edges) or push-based (scattering values

along out-going edges) [91].

Algorithm 4 illustrates the push-based vertex function for connected components

(CC), where the graph is in CSR (Compressed Sparse Row) format, a commonly used graph

representation that captures the graph topology with two arrays: vertex array and edge

array. As shown in Figure 3.2-(b), the vertex array is made up of indexes to the edge array

for locating the edges of the corresponding vertices (Line 8-9 in Algorithm 4). In addition,

the vertex function also accesses activeness labeling array to check vertex activeness (Line 4)

and update its neighbors’ (Line 12), as well as the value array for reading and updating the

connected component IDs (Line 7 and 10-11). Its iterations on the example graph are shown

in Figure 3.2-(c). Initially, all vertices are active with connected component IDs the same

as their vertex IDs. After three iterations, the vertices fall into two connected components,

labelled with the smallest vertex IDs.
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3.2.2 GPU-based Graph Processing

With the abundant parallelism exposed by the vertex-centric programming, GPUs built

with up to thousands of cores have great potential in accelerating graph applications [44,

46, 83, 61, 137, 15, 92, 153]. Despite this promise, two main challenges arise in GPU-based

graph processing: the highly irregular graph structures and the ever-increasing graph sizes.

The graph irregularity causes non-coalesced accesses to the GPU memory and

load imbalances among GPU threads. Existing research on GPU-based graph processing,

including CuSha [61], Gunrock [137], and Tigr [92], mainly focus on addressing the graph

irregularity problem and have brought significant efficiency improvements. For example,

CuSha brings new data structures (i.e., G-Shards and Concatenated Windows) to enable

fully coalesced memory accesses. In compaison, Gunrock designs a frontier-based abstrac-

tion which allows easy integrations of multiple optimization strategies. More directly, Tigr

proposes to transform the irregular graphs into more regular ones.

However, big gap remains in efforts towards the second challenge - processing

oversized graphs. Despite that GPU memory capacity has been increasing, it is still too

limited to accommodate many real-world graphs [116, 42]. There are two basic strategies to

handle such cases: (i) partitioning-based approach and (ii) unified memory-based approach.

Partitioning-based Approach. This approach follows the ideas in out-of-core graph

processing [64, 109, 161] – it first partitions the oversized graph such that each partition

can fit into the GPU memory, then loads the graph partitions into the GPU memory

in a round-robin fashion during the iterative graph processing. Most existing solutions

adopt this strategy, including GraphReduce [116], GTS [62], and Graphie [42]. To improve
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the processing efficiency under GPU memory oversubscription, two main optimizations

have been proposed: the first one tries to hide some data transfer cost by asynchronously

streaming the graph partitions to the GPU memory while the kernels are executing [116,

62, 42]; The second optimization tracks the activeness of each graph partition and only

loads the ones with active edges (i.e., active partitions) to the GPU memory [116, 42].

Unfortunately, as discussed in Section 3.1, the benefits of both optimizations are limited by

the sparsity nature of iterative graph processing – in most iterations, only a small subset of

vertices tend to be active (a.k.a the frontier). First, the sparsity results in low computation-

to-transfer ratio, capping the benefits of overlapping optimization. Second, in each loaded

active partition, there might still be a large portion of inactive edges (i.e., their vertices are

inactive) due to the sparsity.

Unified Memory-based Approach. Rather than explicitly managing the data move-

ments, a more general solution is adopting unified memory [2], a technique has been fully

realized in recent Nvidia GPUs. The main idea of unified memory is defining a managed

memory space in which both CPU and GPU can observe a single address space with a

coherent memory image [2]. This allows GPU programs to access data in the CPU memory

without explicit memory copying. A related concept is zero-copy memory [1], which maps

pinned (i.e., non-pageable) host memory to the GPU address space, also allowing GPU

programs to directly access the host memory. However, a key difference is that, in unified

memory, the memory pages containing the requested data are automatically migrated to

the memory of the requesting processor (either CPU or GPU), known as on-demand data

migration, enabling faster accesses for the future requests.
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Adopting the unified memory for graph applications is straightforward: when al-

locating memory for the input graph, use a new API cudaMallocManaged(), instead of the

default malloc(). In this way, when the graph is accessed by GPU threads and the data

is not in the GPU memory, a page fault is triggered and the memory page containing the

data (active edges) is migrated to the GPU memory. On one hand, this implicitly avoids

loading memory pages with only inactive edges, sharing similar benefits with the partition

activeness-tracking optimization in the partitioning-based approach. On the other hand, it

also suffers from a similar limitation – loaded memory pages may contain a large ratio of in-

active edges. Moreover, as we will show later, the page fault handling introduces substantial

overhead, compromising the benefits of on-demand data migration.

In addition, unified memory can be tuned via APIs such as cudaMemAdvise() and

cudaMemPrefetchAsync() [2] for better data placements and more efficient data transfer

(more details will be given in Section 3.4). In addition, a recent work, ETC [68], also pro-

poses some general optimization strategies, such as proactive eviction, thread throttling,

and capacity compression. However, as we will show in Section 3.4, such general optimiza-

tions either fail to improve the performance or bring limited benefits, due to their inability

in eliminating the expensive data transfer of inactive edges in each iteration of the graph

processing.

In summary, both the existing partitioning and unified memory-based methods

load the graph based on coarse-grained activeness tracking, fundamentally limiting their

performance benefits. Next, we present Subway, a low-cost CPU-GPU graph data transfer

solution based on fine-grained activeness tracking.
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Table 3.1: Ratio of Active Vertices and Edges
V-avg (max): average ratio of active vertices (maximum ratio); E-avg (max): average ratio of

active edges (maximum ratio).

friendster-snap [67] uk-2007 [4]
Algo. V-avg (max) E-avg (max) V-avg (max) E-avg (max)

SSSP 4.4% (43.3%) 9.1% (85.1%) 4.6% (60.4%) 5.1% (67.7%)
SSWP 2.1% (38.4%) 5.2% (78.3%) 0.6% (12.6%) 0.6% (12.4%)
BFS 2.1% (32.3%) 4.1% (75.8%) 0.6% (12.6%) 0.6% (12.4%)
CC 8.1% (100%) 9.8% (100%) 3.2% (100%) 3.2% (100%)

SSNSP 2.1% (32.3%) 4.1% (75.8%) 0.6% (12.6%) 0.6% (12.4%)
PR 6.6% (100%) 24.1% (100%) 1.1% (100%) 1.7% (100%)

3.3 Subway

The core to Subway is a fast subgraph generation technique which can quickly

extract a subgraph from a standard CSR formatted graph based on the specified vertices.

When fed with the active vertices (i.e., the frontier), this technique can “shrink” the original

graph such that only a subgraph needs to be loaded to the GPU memory. In addition, Sub-

way offers an in-GPU-memory asynchronous subgraph processing scheme, which can reduce

the needs of subgraph generation and loading. Together, these techniques can significantly

bring down the cost of CPU-GPU data transfer, enabling efficient out-of-memory graph

processing on GPUs. Next, we present these techniques in detail.

3.3.1 Fast Subgraph Generation

For many common graph algorithms, it is often that a subset of vertices are active

(need to be processed) in an iteration of the graph processing. In most iterations, the

ratio of active vertices is often very low, so as to the ratio of active edges. Table 3.1

reports the average and maximum ratios of active vertices and edges across all iterations,

collected from six graph algorithms on two real-world graphs. In these tested cases, the

58



average ratios of active vertices and active edges are always below 10%. Motivated by

this fact, we explore the possibility of separating the active parts of the graph from the

rest and only load those to the GPU memory. This can greatly improve the state of the

art [42, 116] which is only able to separate the inactive partitions. Despite the promise,

the key challenge with this fine-grained separation is the cost. Recent work [132] shows

that dynamically restructuring a graph could be very expensive in the out-of-core graph

processing. Fortunately, in GPU-based graph processing, we can always leverage the power

of GPU to accelerate this subgraph generation. Along with a concise design of the subgraph

representation and a highly parallel generation algorithm, we find that the cost of subgraph

generation can be quite affordable in comparison to the benefits that it brings. Next, we

first introduce the subgraph representation, then present its generation algorithm.

Subgraph Representation. Subway assumes that the input graph is in CSR format 2,

the commonly used graph format in GPU-based graph processing (see Section 3.2). Also,

following a prior assumption [42], Subway allocates the vertex array (and its values) in the

GPU memory and the edge array (usually dominating the graph size) in the host memory,

as shown in Figure 3.3-(a). This design completely avoids writing data back to host memory

at the expense of less GPU memory for storing the graph edges. Recall that the task is to

separate the active vertices and edges (i.e., a subgraph) from the rest of the graph, while

satisfying two objectives:

• First, the representation of the separated subgraph should remain concise, just like

the CSR format;

2Note that using edge list, another common graph format, does not simplify the subgraph generation,
but increases the memory consumption.
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Figure 3.3: SubCSR Representation.

• Second, the vertices and edges of the subgraph can be efficiently accessed during the

graph processing.

To achieve these goals, we introduce SubCSR – a format for representing a subset

of vertices along with their edges in a CSR-represented graph. Figure 3.3-(b) shows the

SubCSR for the active vertices and edges of the CSR in Figure 3.3-(a). At the high level,

it looks close to the CSR representation. The main difference is that the vertex array in

the CSR is replaced with two arrays: subgraph vertex array and offset array. The former

indicates the positions of active vertices in the original vertex array, while the latter points

to the starting positions of their edges in the subgraph edge array. In the example, the active

vertices are V2, V6, and V7, hence their indices (2, 6, and 7) are placed in the subgraph vertex

array. The subgraph edge array in the SubCSR consists only the edges of selected vertices.

Obviously, the size of SubCSR is linear to the number of selected vertices plus their edges.

To demonstrate the access efficiency of SubCSR, we next illustrate how SubCSR

is used in the (sub)graph processing. Algorithm 5 shows how a GPU thread processes the

subgraph after it is loaded to the GPU memory. Comparing it with Algorithm 4, except that

vertex[] and edge[] are replaced with offset[] and subEdge[], the only difference is at
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Algorithm 5 Vertex Function (CC) on SubCSR.

1: /* Connected Components */
2: procedure CC
3: tid = getThreadID()
4: vid = subVertex[tid] /* difference: an extra array access */
5: if isActive[vid] == 0 then
6: return
7: sourceValue = value[vid]
8: for i = offset[tid] : offset[tid+1] do
9: nbr = subEdge[i]

10: if sourceValue < value[nbr] then
11: atomicMin(value[nbr], sourceValue)
12: isActiveNew[nbr] = 1

Line 4, an extra access to the subgraph vertex array subVertex[]. This extra array access

may slightly increase the cost of vertex evaluation. However, as shown in the evaluation,

this minimum increase of computation can be easily outweighed by the significant benefits

of subgraph generation.

Next, we describe how to generate the SubCSR efficiently for a given set of active

vertices with the help of GPU.

Generation Algorithm. Algorithm 6 and Figure 3.4 illustrate the basic ideas of GPU-

accelerated SubCSR generation. The inputs to the algorithm include the CSR (i.e., vertex[]

and edge[] ), the vertex activeness labeling array isActive[] 3, and the degree array

degree[] (can also be generated from CSR). The output of the algorithm is the SubCSR

for active vertices (i.e., subVertex[], offset[], and subEdge[]). At the high level, the

generation follows six steps.

Step-1: Find the indices of active vertices subIndex[] using an exclusive prefix sum over

the vertex activeness labeling array isActive[] (Line 2). Assuming the active vertices

3Note that using a labeling array of the same length as edge[] may simplify the subgraph generation,
but this large labeling array may not fit into the GPU memory, thus making its maintenance very expensive.
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Algorithm 6 SubCSR Generation.
1: procedure genSubCSR(vertex[], edge[], isActive[], degree[])
2: subIndex[] = gpuExclusivePrefixSum(isActive[])
3: subVertex[] = gpuSC1(isActive[], subIndex[])
4: subDegree[] = gpuResetInactive(isActive[], degree[])
5: subOffset[] = gpuExclusivePrefixSum(subDegree[])
6: offset[] = gpuSC2(isActive[], subIndex[], subOffset[])
7: subEdge = cpuSC(vertex[], edge[], subVertex[], offset[])
8: return subVertex[], offset[], subEdge[]

9:
10: procedure gpuSC1(isActive[], subIndex[]) ▷ /* GPU stream compact vertex indices */
11: tid = getThreadID()
12: if isActive[tid] == 1 then
13: subVertex[subIndex[tid]] = tid

14: return subVertex[]

15: procedure gpuResetInactive(isActive[], degree[]) ▷ /* GPU reset degrees of inactive vertices */
16: tid = getThreadID()
17: if isActive[tid] == 0 then
18: subDegree[tid] = 0
19: else
20: subDegree[tid] = degree[tid]

21: return subDegree[]

22: procedure gpuSC2(isActive[], subIndex[], subOffset[]) ▷ /* GPU stream compact offset array */
23: tid = getThreadID()
24: if isActive[tid] == 1 then
25: offset[subIndex[tid]] = subOffset[tid]

26: return offset[]

27: procedure cpuSC(vertex[], edge[], subVertex[], offset[]) ▷ /* CPU stream compact edge array */
28: parallel for i = 0 to numActiveVertices do
29: v = subVertex[i]
30: subEdge[offset[i]:offset[i+1]]
31: = edge[vertex[v]:vertex[v+1]]
32: end parallel for
33: return subEdge[]

are V2, V6, and V7, this step puts the IDs of active vertices into corresponding positions of

subIndex[] (see Figure 3.4).

Step-2: Create the subgraph vertex array subVertex[] with a stream compaction based

on subIndex[], isActive[], and the array index tid (Line 3, 11-18). If a vertex is active,

put its ID (such as 2, 6, or 7 in the example) into subVertex[].
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Step-3: Based on the degree array of CSR degree[] (assume it is available or has been

generated), create a degree array subDegree[] for the active vertices, where the degrees of

inactive vertices are reset to zeros (Line 4, 20-29).

Step-4: Compute the offsets of active vertices subOffset[] with an exclusive prefix sum

over subDegree[] (Line 5). In the example, the offset of the first active vertex (V2) is

always zero, and since V2 has two edges (see degree[]), the second active vertex (V6) has

offset two. Similarly, V7 has an offset of four. Note that this step depends on the reset in

Step-3.

Step-5: Compact subOffset[] into offset[] by removing the elements of inactive vertices

(Line 6, 31-38). Note that this step needs not only isActive[], but also subIndex[].

Step-6: Finally, compact the edge array edge[] to subEdge[] by removing all inactive

edges (Line 7, 40-48). This requires to access the CSR as well as subVertex[] and offset[].

Basically, edges of active vertices are copied from edge[] to subEdge[]. Note that offset[]

is critical here in deciding the target positions of the copying.

Though there are six steps, each step only involves a few simple operations. More

importantly, all the six steps are highly parallel, making it straightforward to take advantage

of the massive parallelism of GPU. More specifically, as the comments in Algorithm 6

indicate, the first five steps are offloaded to the GPU, where the activeness labeling array

isActive[] is maintained. After the fifth step, two arrays (subVertex[] and offset[])

are transferred back to the host memory, where the sixth step is performed. At the end of

the generation, the SubCSR for the active vertices are formed in the host memory and are

ready to be loaded to the GPU memory.
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Figure 3.4: SubCSR Generation for Example in Figure 3.3.

Cost-Benefit Analysis. In Algorithm 6, the first five steps have a time complexity of

O(|V |), where V is the vertex set; while the last step takes O(|Eactive|), where Eactive

is the set of active edges. Hence, the overall time complexity of SubCSR generation is

O(|V | + |Eactive|). Since set V is fixed, the cost of SubCSR generation varies depending

on the amount of active edges. On the other hand, the benefit of SubCSR generation

comes from the reduced data transfer: instead of loading the whole edge array (with a

size of |E|, where E is the edge set) to the GPU memory, only the SubCSR of active

vertices is loaded, with a size of |Eactive| + 2 ∗ |Vactive|, where Vactive is the set of active

vertices. Note that, there is also data transfer during the SubCSR generation (between

Step-5 and Step-6), with a size of 2 ∗ |Vactive|. Therefore, the total saving of data transfer

is |E| − |Eactive| − 4 ∗ |Vactive|. Assuming the CPU-GPU data transfer rate is rtrans, then

the time saving Strans = rtrans ∗ (|E| − |Eactive| − 4 ∗ |Vactive|).

Assuming the concrete cost of SubCSR generation is Cgen, that is, Cgen = O(|V |+

|Eactive|), then, theoretically speaking, if Cgen < Strans, applying SubCSR would bring net
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benefit to the out-of-memory graph processing on GPUs. In practice, we can set a threshold

for enabling SubCSR generation based on a simpler metric – the ratio of active edges,

denoted as Pactive. As Pactive increases, the cost of SubCSR generation increases, but the

benefit decreases. Hence, there is a sweet spot beyond which the SubCSR generation will not

bring any net benefit (i.e., the threshold). Based on our evaluation (Section 3.4), we found

Pactive = 80% is a threshold that works well in general for tested applications and graphs.

In fact, for most tested cases, we found Pactive is below (often well below) 80% for almost

all iterations of the graph processing, making the SubCSR generation applicable across

(almost) all iterations. When Pactive is beyond 80%, SubCSR generation would be disabled

and the conventional partitioning-based approach would be employed as a substitution.

Oversized SubCSR Handling. Though Pactive is usually low enough that the generated

SubCSR can easily fit into the GPU memory, there are situations where the SubCSR re-

mains oversized. To handle such cases, the conventional partitioning-based approach can be

adopted. Basically, an oversized SubCSR can be partitioned such that each partition can

fit into the GPU memory, then the SubCSR partitions are loaded into GPU memory and

processed one after another. The partitioning of SubCSR is similar to the partitioning of

the original graph (CSR): logically partition the subgraph vertex array subVertex[] such

that each vertex array chunk, along with its offset array offset[] and subgraph edge array

subEdge[], are close to but smaller than the available GPU memory size. Since logical par-

titioning is free and the total cost of SubCSR loading remains the same, handling oversized

SubCSR keeps the benefits of SubCSR generation.
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3.3.2 Asynchronous Subgraph Processing

Traditionally, there are two basic approaches to evaluate the vertex function: the

synchronous approach [76] and the asynchronous approach [70, 64]. The former only allows

the vertices to synchronize at the end of each iteration, that is, all (active) vertices read

values computed from the last iteration. This design strictly follows the bulk-synchronous

parallel (BSP) model [131]. By contrast, the asynchronous approach allows the vertex func-

tion to use the latest values, which may be generated in the current iteration (intra-iteration

asynchrony). In both schemes, a vertex is only evaluated once per iteration. This simplifies

the development of graph algorithms, but results in a low computation to data transfer

ratio, making the data transfer a serious bottleneck under GPU memory oversubscription.

To overcome this obstacle, Subway offers a more flexible vertex function evaluation strategy

– asynchronous subgraph processing.

Asynchronous Model. Under this model, after a subgraph (or a subgraph partition) is

loaded into the GPU memory, it will be processed asynchronously with respect to the rest

of the graph in the host memory. Algorithm 7 illustrates its basic idea. Each time when

a subgraph partition, say Pi, is loaded to the GPU memory (Line 6), the vertices in Pi

are iteratively evaluated until there is no active ones in Pi (Line 7-11). This adds a second

level of iteration inside the whole-graph level iteration (Line 1-13). The outer level iteration

ensures that the algorithm will finally reach a global convergence and terminate, while the

inner level iteration maximizes the value propagations in each loaded subgraph partition.

Since the inner iteration makes the vertex values “more stable” – closer to their eventual

values, the outer level iterations tend to converge faster. Thus, there will be less need for
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generating and loading subgraphs (Line 3 and 6). Next, we illustrate this idea with the

example in Figure 3.5.

Example. Initially, all the vertices are active (also refer to Figure 3.2-(c)). Assume that

their edges cannot fit into the GPU memory, hence the (sub)graph is partitioned into two

parts: P1 and P2, as shown in Figure 3.5-(a). First, P1 is loaded to the GPU memory and

processed iteratively until their values are (locally) converged. Note that, at this moment,

the values of V4 and V5 have been updated (under a push-based scheme). After that, P2

is loaded to the GPU memory and processed in the same way. Since vertices in P2 observe

the latest values (3 for V4 and V5), they can converge to “more stable” values, in this case,

their final values. The whole processing takes only one outer iteration to finish, comparing

to three iterations in the conventional processing (see Figure 3.2-(c)).

Note that choosing the above asynchronous model does not necessarily reduce

the total amount (GPU) computations, which include both the inner and outer iterations.

According to our experiments, the change to the total computations fluctuates slightly case

by case (see Section 3.4). On the other hand, the saving from reduced subgraph generation

and loading is significant and more consistent. As shown in the above example, it only

needs to load the (sub)graph into the GPU memory once, rather than three times.

Related Ideas. One closely related processing scheme is the TLAG model (“think like a

graph”) proposed in distributed graph processing [129]. In this case, a large input graph

is partitioned and stored on different computers connected by the network. During the

iterative processing, different computers send messages to each other to synchronize their
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Algorithm 7 Asynchronous Subgraph Processing

1: do /* whole-graph-level iteration */
2: Vactive = getActiveVertices(G)
3: Gsub = genSubCSR(G, Vactive)
4: /* the subgraph may be oversized, thus partitioned */
5: for Pi in partitions of subgraph Gsub do
6: load Pi to GPU memory
7: do /* partition-of-subgraph-level iteration */
8: for vi in vertices of Pi do
9: f(vi) /* evaluate vertex function */

10: while anyActiveVertices(Pi) == 1

11: while anyActiveVertices(G) == 1

V1

V2

V4
V5

V6

V7

V0 V0 V1 V2 V3
0 1 2 3

(b) Iterations (one outer iteration)(a) Partitioned Graph

V3 V4 V5 V6 V7

3 3 6 7

process P1

V0 V1 V2 V3

0 0 0 3

process P2

P1

P2

0 0 0 3
...

V4 V5 V6 V7
3 3 6 7

3 3 3 3
...

Figure 3.5: Example under Asynchronous Model.

values. To reduce the amount of messages generated in the distributed system, TLAG lifts

the programming abstraction from vertex level to partition level. In the new abstraction,

graph programming becomes partition-aware, permitting vertex values to be freely prop-

agated within each partition. As the vertex values may become “more stable” when they

are propagated to the other partitions, the communications across partitions tend to be

reduced, so as to the messages generated in the distributed systems.

Both TLAG and asynchronous subgraph processing extend the conventional intra-

iteration asynchrony to some kind of inter-partition asynchrony. However, the key differ-

ence is that, in TLAG, all partitions are processed simultaneously, while in asynchronous

subgraph processing, the partitions are processed in serial, one partition at a time. The dif-
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ference makes the latter “more asynchronous” than the former: in a partition-by-partition

processing, a later loaded partition can directly observe the latest values computed from

earlier partitions, while in TLAG, the latest values from the other partitions are not exposed

until all partitions have reached their local convergences. Due to this reason, asynchronous

subgraph processing may converge even faster than TLAG. For example, it takes one more

outer iteration for the example in Figure 3.5 to converge when implemented in TLAG.

Correctness. The use of asynchronous subgraph processing may alter the value propa-

gation priority (i.e., preferring to evaluate vertices in the “current” partition), similar to

TLAG. Therefore, it may not be suitable for every graph algorithm, especially those that

are sensitive to the value propagation order. For example, prior work [129] has shown that

TLAG is applicable to three major categories of graph algorithms: graph traversal, random

walk, and graph aggregation. But, for some other algorithms (e.g., PageRank), it requires

some changes to the algorithm design. As a general sufficient (but not necessary) condition,

as long as the final vertex values do not depend on the vertex evaluation order, it is ensured

that the asynchronous subgraph processing will preserve the convergence and the converged

values. It is not hard to manually verify that the commonly used graph traversal algorithms,

such as SSSP (single-source shortest path), BFS (breath-first search), SSWP (single-source

widest path), and CC (connected components), all satisfy the above condition. In addition,

after adopting the accumulative update-based algorithm [152], PageRank can also satisfy

this condition, thus runs safely under asynchronous subgraph processing. The correctness of

these graph algorithms has also been verified by our extensive experiments (see Section 3.4).
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Note that, automatically reasoning about the necessary correctness conditions for

a specific graph algorithm under asynchronous subgraph processing is a challenging research

problem not covered by this work. For this reason, Subway provides asynchronous subgraph

processing as an optional feature, enabled only when the correctness has been verified.

3.3.3 Implementation

We prototyped Subway as a runtime system with both the fast subgraph generation tech-

nique (Section 3.3.1) and the asynchronous subgraph processing (Section 3.3.2). In order

to demonstrate the effectiveness of Subway, we integrated it into an existing open-source

GPU-based graph processing framework, called Tigr 4 [92]. In fact, Subway uses Tigr for

in-memory graph processing when the input graph fits into GPU memory. Another reason

we choose Tigr is for its use of the standard vertex-centric programming and the CSR graph

representation, which make it immediately ready to adopt Subway. For simplicity, we refer

to this integrated graph system as Subway when the reference context is clear. By default,

the fast subgraph generation is enabled when the ratio of active vertices in the current

iteration is beyond the threshold 80%. By contrast, the asynchronous subgraph processing

scheme is disabled by default for the correctness reason mentioned earlier. In the implemen-

tation of fast subgraph generation, we used the Thrust library [6] for the exclusive prefix

sum in the first and fourth steps of the SubCSR generation, and the Pthread library for

the parallel edge array compaction in the sixth step (see Section 3.3.1).

In-Memory Processing. Subway automatically detects the size of the input graph, when

the graph fits into the GPU memory, it switches to the in-memory processing mode (i.e.,

4https://github.com/AutomataLab/Tigr
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Tigr). The performance of Subway would be the same as Tigr, which has been compared to

other well-known GPU-based frameworks such as Gunrock [137] and CuSha [61], showing

promising results [92]. On the other hand, when the graph cannot fit into the GPU mem-

ory, optimizations from Tigr would be disabled and the system mainly relies on Subway

runtime (subgraph generation and asynchronous processing if applicable) for performance

optimizations.

3.4 Evaluation

In this section, we evaluate the prototyped system Subway under the scenarios of GPU

memory oversubscription, with an emphasis on the cost of CPU-GPU data movements and

the overall graph processing efficiency.

3.4.1 Methodology

Our evaluation includes the following approaches:

• Basic Partitioning-based Approach (PT): This one follows the basic ideas of partitioning-

based memory management without further optimizations. It logically partitions the

graph based on the vertex array, then loads the partitions into the GPU memory one by

one during each iteration of the graph processing. We include this approach to make the

benefits reasoning of other approaches easier.

• Optimized Partitioning-based Approach (PT-Opt): On top of PT, we incorporated several

optimizations from existing solutions [116, 42], including asynchronous data streaming

(with 32 streams), active partition tracking (see Section 3.1), and reusing loaded active
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partitions [42]. This approach roughly approximates the state-of-the-art in GPU-based

graph processing under memory oversubscription.

• Optimized Unified Memory-based Approach (UM-Opt): To adopt unified memory, we al-

located the graph (i.e., edge array) with cudaMallocManaged() 5, so active edges can

be automatically migrated to the GPU memory as needed. After that, we tried to opti-

mize this approach based on CUDA programming guidance [2] and ideas from a recent

work on unified memory optimizations, ETC [68]. First, we provided a data usage hint

via cudaMemAdvise() API to make the edge array cudaMemAdviseSetReadMostly. As

the edge array does not change, this hint will avoid unnecessary writes back to the host

memory. Based on our experiments, this optimization reduces the data transfer by 47%

and total processing time by 23% on average. Second, we applied thread throttling [68] by

reducing the number of active threads in a warp. However, we did not observe any per-

formance improvements. A further examination revealed two reasons: (i) the maximum

number of threads executing concurrently on a GPU is much smaller than the number

of vertices (i.e., 2048×30 on the tested GPU versus tens of millions of vertices), so the

actual working set is much smaller than the graph (assuming that each thread processes

one vertex), easily fitting into the GPU memory; (ii) the accesses to the edge array ex-

hibit good spatial locality thanks to the CSR representation. For these reasons, thread

throttling turned out to be not effective. Besides the above two optimizations, another

optimization we considered but found not applicable is prefetching [2]. The challenge is

that the active vertices in next processing iteration are unpredictable, so to the edges

5The version of CUDA driver is v9.0.
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needed to load. Finally, some lower-level optimizations such as memory page compres-

sion [68] and page size tuning 6 might be applicable, but they are not the focus of this

work; we leave systematic low-level optimizations to the future work.

To the best of our knowledge, this is the first time that unified memory is systematically

evaluated for GPU-based graph processing, since it is fully realized recently.

• Synchronous Subgraph Processing (Subway-sync): In this approach, the asynchronous

processing scheme in Subway is always disabled. Therefore, its measurements will solely

reflect the benefits of subgraph generation technique.

• Asynchronous Subgraph Processing (Subway-async): In the last approach, the asyn-

chronous processing scheme in Subway is enabled, but may be disabled temporarily as

needed, depending on the ratio of active edges.

Datasets and Algorithms. Table 3.2 lists the graphs used in our evaluation, including

five real-world graphs and one synthesized graph. Among them, friendster-konect and

twitter-mpi are from the Koblenz Network Collection [3], friendster-snap is from the

Stanford Network Analysis Project [67], uk-2007 and sk-2005 are two web graphs from

the Laboratory for Web Algorithmics [4], and RMAT is a widely used graph generator [21].

In addition, Table 3.2 reports the numbers of vertices and edges, the range of estimated

diameters, and the in-memory graph sizes with and without the edge weights, respectively.

There are six widely used graph analytics evaluated. They include breath-first

search (BFS), connected components (CC), single-source shortest path (SSSP), single-source

6The default page size, 4KB, is used in our evaluation.
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Table 3.2: Graph Datasets
|V |: number of vertices; |E|: number of edges; Est. Dia.: estimated diameter range; Sizew:

in-memory graph size (CSR) with edge weights; Sizenw: in-memory graph size (CSR) without edge
weights.

Abbr. Dataset |V | |E| Est. Dia. Sizew Sizenw

SK sk-2005 [4] 51M 1.95B 22-44 16GB 8GB
TW twitter-mpi [3] 53M 1.96B 14-28 16GB 8GB
FK friendster-konect [3] 68M 2.59B 21-42 21GB 11GB
FS friendster-snap [67] 125M 3.61B 24-48 29GB 15GB
UK uk-2007 [4] 110M 3.94B 133-266 32GB 16GB
RM RMAT [21] 100M 10.0B 5-10 81GB 41GB

widest path (SSWP), single-source number of shortest path (SSNSP), and PageRank (PR).

Note that SSSP and SSWP work on weighted graphs, thus, the sizes of their input graphs

are almost doubled comparing to other algorithms. To support asynchronous subgraph

processing, PageRank and SSNSP are implemented using accumulative updates [152].

Evaluation Platform. We evaluated Subway mainly on a server that consists of an

NVIDIA Titan XP GPU of 12 GB memory and a 64-core Intel Xeon Phi 7210 processor

with 128 GB of RAM. The server runs Linux 3.10.0 with CUDA 9.0 installed. All GPU

programs are compiled with nvcc using the highest optimization level.

Out-of-GPU-memory Cases. With edge weights (required by SSSP and SSWP), none

of the six graphs in Table 3.2 fit into the GPU memory. In fact, besides the first two graphs

(SK and TW), the sizes of the other four graphs, as shown in the second last column of Table

3.2, are well beyond the GPU memory capacity (12GB). Without weights, three graphs

(SK, TW, and FK) fit into the GPU memory. In the following, we only report results of the

out-of-GPU-memory cases.

Next, we first compare the overall performance of different approaches, then focus

on evaluating UM-Opt and the two versions of Subway: Subway-sync and Subway-async.
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3.4.2 Overall Performance

Table 3.3 reports the overall performance results, where the PT column reports the

raw execution time, while the following ones show the speedups of other methods over PT.

First, PT-Opt shows consistent speedup over PT, 2.0X on average, which confirms

the effectiveness of optimizations from existing work [42, 116]. By contrast, UM-Opt does

not always outperform PT, depending on the algorithms and input graphs. The numbers

in italics correspond to the cases UM-Opt runs slower than PT. We will analyze the benefits

and costs of UM-Opt in detail shortly in Section 3.4.3. On average, UM-Opt still brings in

1.5X speedup over PT.

Next, Subway-sync shows consistent improvements over not only PT (6X on av-

erage), but also existing optimizations PT-Opt (3X on average) and unified memory-based

approach UM-Opt (4X on average). The significant speedups confirm the overall benefits

of the proposed subgraph generation technique, despite its runtime costs. Later, in Sec-

tion 3.4.4, we will breakdown its costs and benefits.

Finally, Subway-async shows the best performance among all, except for six

algorithm-graph cases, where Subway-sync performs slightly better. More specifically, it

yields up to 41.6X speedup over PT (8.5X on average), 15.4X speedup over PT-Opt (4.3X on

average), and 12.2X speedup over UM-Opt (5.7X on average). In addition, it outperforms

synchronous Subway (Subway-sync) by 1.4X on average. These results indicate that, when

asynchronous subgraph processing is applicable (ensured by developers), it is worthwhile to

adopt it under the out-of-GPU-memory scenarios. We will evaluate Subway-async in depth

in Section 3.4.5.
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Table 3.3: Performance Results
Numbers (speedups) in bold text are the highest among the five methods; Numbers (speedups) in italics

are actually slowdown comparing to PT.

PT PT-Opt UM-Opt Subway-sync Subway-async

SSSP

SK 118.3s 1.5X 3.5X 5.8X 9.5X
TW 20.4s 1.7X 0.8X 2.9X 6.0X
FK 53.0s 1.7X 0.6X 4.2X 8.0X
FS 68.5s 1.6X 0.7X 4.2X 6.7X
UK 492.7s 2.9X 1.9X 6.5X 15.6X
RM 66.6s 1.3X 0.6X 2.0X 3.1X

SSWP

SK 174.7s 1.8X 5.2X 13.2X 23.1X
TW 19.7s 2.2X 1.2X 4.4X 7.0X
FK 50.3s 2.1X 1.2X 7.4X 13.1X
FS 71.3s 1.8X 1.1X 8.0X 12.5X
UK 350.8s 3.7X 4.9X 38.8X 36.3X
RM 58.3s 1.1X 0.5X 2.2X 3.7X

BFS
FS 30.9s 1.9X 0.9X 6.7X 9.6X
UK 176.3s 3.2X 10.3X 28.8X 21.8X
RM 32.7s 1.5X 0.7X 3.2X 3.7X

CC
FS 22.9s 2.1X 1.1X 4.2X 5.7X
UK 388.1s 5.7X 4.0X 10.9X 26.0X
RM 25.5s 1.3X 0.5X 1.9X 2.3X

SSNSP
FS 59.1s 1.5X 0.9X 4.4X 5.6X
UK 349.4s 4.0X 8.9X 25.6X 25.2X
RM 61.7s 1.1X 0.8X 4.6X 3.9X

PR
FS 278.4s 2.5X 1.9X 2.8X 2.2X
UK 577.9s 2.7X 3.4X 16.5X 41.6X
RM 319.5s 1.2X 0.9X 3.2X 3.0X

GEOMEAN 2.0X 1.5X 6.0X 8.5X

3.4.3 Unified Memory: Benefits and Costs

To better understand the inconsistent benefits from unified memory, we further

analyze its benefits and costs with more detailed measurements. First, as mentioned earlier,

recent releases of unified memory (CUDA 8.0 and onwards) come with on-demand data

migration, which essentially resembles the partition activeness-tracking optimization [116,

42]. With this new feature, CUDA runtime only loads the memory pages containing the
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Figure 3.6: CPU-GPU Data Transfer (by volume).

data that GPU threads need, skipping the others. In the context of vertex-centric graph

processing, on-demand data migration avoids loading the memory pages consisting only

inactive edges. To confirm this benefit, we measured the volume of data transfer between

CPU and GPU in UM-Opt and compared it with that in PT. The data was collected with the

help of Nvidia Visual Profiler 9.0 [5]. As reported in Figure 3.6, comparing to PT, the data

transfer in UM-Opt is greatly reduced, up to 99% (occurred to BFS-UK). Moreover, unified

memory also simplifies the programming by implicitly handling out-of-GPU-memory cases.

Despite the promises, the benefits of using unified memory for graph processing

are limited by two major factors. First, the on-demand data migration is not free. When a

requested memory page is not in the GPU memory, a page fault is triggered. The handling

of page faults involves not only data transfer, but also TLB invalidations and page table

updates, which could take tens of microseconds [2]. To estimate the significance of this

extra overhead, we first collected the data transfer cost and the cost of graph computations,

then subtracted them from the total runtime of UM-Opt 7. The remaining time is used as

7We also tried to measure the page fault cost with Nvidia Visual Profilers 9.0 and 10.0, which unfortu-
nately do not produce reasonable results.
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the estimation of page fault-related overhead. Figure 3.7 reports the breakdown, where

overhead related page fault takes 23% to 69% of the total time. These substantial overhead

may outweigh the benefits of reduced data transfer. As shown in Table 3.3 (UM-Opt column),

in 5 out of 18 tested cases, UM-Opt runs slower than PT.

The second major factor limiting the benefits of unified memory-based graph pro-

cessing lies in the granularity of data migration – memory pages: a migrated page may still

carry inactive edges due to the sparse distributions of active vertices. We will report the

volume of unnecessary data migration in the next section. While reducing memory page

size may mitigate this issue, it increases the costs of page fault handling as more pages

would need to be migrated.

3.4.4 Subgraph Generation: Benefits and Costs

Similar to the unified memory-based approach, using our subgraph generation

brings both benefits and costs. The benefits come from reduced data transfer – only active

edges are transferred to the GPU memory. On the other hand, the costs of subgraph

generation occur on the critical path of the iterative graph processing – the next iteration
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waits until its subgraph (SubCSR) is generated and loaded. In addition, there is a minor cost

in the subgraph processing due to the use of SubCSR, as opposed to CSR (see Section 3.3.1).

Before comparing its costs and benefits, we report the frequencies of SubCSR generation

and partitioning first.

Table 3.4 reports how frequently the SubCSR is generated and how many times

the SubCSR/CSR is partitioned across iterations. Here, we focus on Subway-sync, we

will discuss Subway-async shortly in Section 3.4.5. Note that the criterion for enabling

SubCSR generation is that the ratio of active edges is over 80%. Among 24 algorithm-

graph combinations, in 11 cases, this ratio is always under 80%; in 10 cases, the ratio

exceeds 80% only in one iteration; and in the remaining three cases (CC-RM, PR-FS, and

PR-RM), the ratio exceeds 80% more often: in 2 iterations, 11 iterations, and 7 iterations,

respectively. This is because RM is the largest graph among the tested ones and algorithms

PR and CC often activate more edges due to their nature of computation – all vertices (and

edges) are active (100%) initially according to the algorithms.

When SubCSR is not generated (i.e., the activeness ratio is below 80%), the graph

(CSR) has to be partitioned; Otherwise, the graph (SubCSR) only needs to be partitioned

if it remains oversized for the GPU. Both partitioning cases in general happen infrequently,

except for algorithms PR and CC and graph RM, due to the same reasons just mentioned

earlier.

Next, we report the benefits of reduced data transfer. As Figure 3.8 shows, the

volume of data transfer in Subway-sync is dramatically reduced comparing to PT, with

a reduction ranging from 89.1% to 99%. It is worthwhile to note that the reduction in
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Table 3.4: SubCSR Generation and Partitioning Statistics
Itr: total number of iterations; Itr>80%: number of iterations with more than 80% active edges (iteration
IDs); Itr>GPU : number of iterations with SubCSR greater than GPU memory capactity (iteration IDs).

Subway-sync Subway-async

Itr Itr>80% Itr>GPU Itr Itr>80% Itr>GPU

SSSP

SK 90 0 0 86 1(1) 1(1)
TW 15 1(5) 1(5) 10 1(1) 1(1)
FK 30 1(7) 3(6-8) 22 1(1) 1(1)
FS 27 1(7) 3(6-8) 21 1(1) 1(1)
UK 187 0 16(17-32) 179 1(1) 1(1)
RM 8 1(3) 2(3-4) 8 1(1) 3(1-3)

SSWP

SK 134 0 0 115 1(1) 1(1)
TW 15 0 0 6 1(1) 1(1)
FK 30 1(7) 2(6-7) 18 1(1) 1(1)
FS 30 0 2(6-7) 25 1(1) 1(1)
UK 134 0 0 122 1(1) 1(1)
RM 10 1(3) 2(3-4) 9 1(1) 1(1)

BFS
FS 24 0 1(6) 15 1(1) 1(1)
UK 134 0 0 122 1(1) 1(1)
RM 6 1(3) 1(3) 4 1(1) 1(1)

CC
FS 15 1(1) 2(1-2) 8 1(1) 1(1)
UK 291 1(1) 6(1-6) 122 1(1) 1(1)
RM 4 2(1-2) 2(1-2) 4 1(1) 1(1)

SSNSP
FS 24 0 1(6) 18 1(1) 1(1)
UK 134 0 0 127 1(1) 1(1)
RM 6 0 1(3) 5 1(1) 2(1-2)

PR
FS 75 11(1-11) 17(1-17) 44 1(1) 12(1-12)
UK 359 1(1) 3(1-3) 310 1(1) 1(1)
RM 45 7(1-7) 21(1-21) 33 5(1-5) 14(1-14)

Subway-sync is more significant than that in UM-Opt (Figure 3.8 vs. Figure 3.6). On

average, the data transfer volume in UM-Opt is 3.3X of that in Subway-sync. The extra

2.3X data transfer is due to the saving of loading inactive edges carried by the migrated

memory pages.

As to the cost of subgraph generation, instead of reporting its cost ratios, we

combine the costs of subgraph generation and the subgraph transfer together (a breakdown

80



9.9% 1% 

0
0.2
0.4
0.6
0.8
1

FS UK FS UK FS UK FS UK FS UK FS UK

SSSP SSWP BFS CC SSNSP PR

Da
ta
	T
ra
ns
.	(
re
la
tiv
e)

PT Subway-sync
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Figure 3.9: Time Costs of SubCSR Generation + Data Transfer.

between the two can be found in Figure 3.11), then compare the total cost to the transfer

cost without subgraph generation. As reported in Figure 3.9, even adding the two costs

together, the total remains significantly less than the data transfer cost without subgraph

generation, with a reduction of time ranging from 83% to 98%. These results confirm the

subgraph generation as a cost-effective way to reduce the data transfer. For this reason,

Subway-sync exhibits significantly higher speedup than UM-Opt on average (see Table 3.3).
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3.4.5 Asynchronous Processing: Benefits and Costs

Next, we examine the benefits and costs of asynchronous subgraph processing. As

discussed in Section 3.3.2, adopting the asynchronous model tends to reduce the (outer)

iterations of graph processing, thus saving the needs for subgraph generations and loading.

To confirm this benefit, we profiled the total number of iterations in the outer loop of graph

processing (also refer to Algorithm 7). Figure 3.10 compares the numbers of iterations with

and without the asynchronous model. In general, the numbers of iterations are consistently

reduced across all tested cases, except for SSNSP-FS, where the number of iterations remains

unchanged. On average, the number of iterations is reduced by 31%. Correspondingly, the

number of times for generating a subgraph and loading it to GPU is also reduced, as shown

82



0.63

2.03

0
0.5
1

1.5
2

2.5

FS UK FS UK FS UK FS UK FS UK FS UK

SSSP SSWP BFS CC SSNSP PR

Co
m
p.
	T
im
e	
(r
el
at
iv
e)

Subway-sync Subway-async

Figure 3.12: Impacts on Graph Computation Time.

on the right of Table 3.4. Note that in asynchronous processing mode, to maximize the

value propagation within a subgraph (i.e., more inner iterations), Subway-async always

partitions and loads the entire graph in the first outer iteration.

However, it is interesting to note that the costs of subgraph generation and data

transfer may not be reduced in the same ratios as the number of iterations, as indicated by

Figure 3.11. For example, in the case of PR-UK, the number of iterations is reduced from 434

to 278 (about 36% reduction). However, its costs of subgraph generation and data transfer

are reduced more significantly, by 71%. The opposite situations may also happen (e.g., in

the case of PR-FS). The reason is that the asynchronous model affects not only the number

of (outer) iterations, but also the amounts of active vertices and edges in the next (outer)

iteration, thus altering the cost of subgraph generation and the volume of data transfer.

In general, the overall impacts on the costs of subgraph generation and data transfer are

positive, leading to a 52% reduction on average. Among the 12 examined cases, only 2 cases

(SSWP-UK and BFS-UK) show cost increases, by up to 23%.

At last, by altering the way that values are propagated, the asynchronous model

may also change the overall amount of graph computations, as reported in Figure 3.12. In
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general, the changes to the graph computation time vary across tested cases, ranging from

0.63X to 2.03X.

Adding the above impacts together (Figures 3.11 and 3.12), adopting the asyn-

chronous model remains beneficial overall, yielding speedups in 18 out of 24 tested cases

(see Table 3.3). For the others, the performance loss is within 10% on average.

3.4.6 Out-of-GPU-Memory vs. CPU-based Processing

Instead of providing out-of-GPU-memory graph processing support, another op-

tion is switching to the CPU-based graph processing, though this will put more pressure

on the CPU, which may not be preferred if CPU is already overloaded. Nonetheless, we

compare the performance of the two options for reference purposes. Note that the perfor-

mance comparison depends on the models of CPU and GPU. In our setting, the GPU is

Nvidia Titan XP with 3840 cores and 12GB memory while the CPU is Intel Xeon Phi 7210

processor with 64 cores. Both processors are hosted on the same machine with a RAM of

128GB. Note that the cost of the CPU is 4 to 5X more expensive than the GPU (according

to our purchasing price). The CPU-based graph processing system we chose for comparison

is a state-of-the-art system, Galois [91]. We also tried Ligra [119], another popular shared-

memory graph system, however, due to its high memory demand, we found none of our

tested graphs can be successfully processed on our machine. Table 3.5 reports the running

time of both graph systems for the graph algorithms that both natively support. Note that

Galois provides alternative implementations for each graph analytics. We used the best

implementation in our setting: default for BFS and CC, and topo for SSSP. Overall, we

found the performance of Subway is comparable to Galois in our experimental setup. In
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Table 3.5: Subway (Out-of-GPU-memory) vs. Galois (CPU)
GPU: Titan XP (3840 cores, 12GB);

CPU: Xeon Phi 7210 (64 cores); RAM: 128GB

Subway-sync Subway-async Galois

SSSP

SK 20.28s 12.51s 5.42s
TW 6.94s 3.41s 7.94s
FK 12.54s 6.65s 22.129s
FS 16.17s 10.26s 29.28s
UK 75.47s 31.54s 13.44s
RM 33.1s 21.49s 29.63s

BFS
FS 4.65s 3.21s 8.35s
UK 6.12s 8.1s 5.07s
RM 10.2s 8.72s 17.32s

CC
FS 5.49s 4.03s 5.23s
UK 35.76s 14.93s 4.88s
RM 13.7s 11.11s 10.47s

fact, Subway (async version) outperforms Galois in 7 out of 12 tested algorithm-graph com-

binations. Also note that, as an out-of-GPU-memory solution, the time of Subway includes

not only all the data transfer time from CPU to GPU, but also the SubCSR generation

time.

3.5 Related Work

Graph Processing Systems. There have been great interests in designing graph process-

ing systems. Early works include Boost Graph Library [120] and parallel BGL [38]. Since

the introduction of Pregal [76], vertex-centric programming has been adopted by many

graph engines, such as Giraph [10], GraphLab [70], and PowerGraph [36]. More details

about vertex-centric graph processing systems can be found in a survey [77]. A number

of graph processing systems are built on distributed platforms to achieve high scalabil-

ity [76, 70, 36, 37, 24, 160, 26, 122, 27]. They partition graphs and store the partitions
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across machines, based on edges [57, 98], vertices [36], or value vectors [148]. Some of the

distributed graph processing systems adopt the idea of asynchronous processing among ma-

chines to improve the convergence rate and/or reduce the communication costs [70, 129, 27].

On shared-memory platforms, Ligra [119] and Galois [91] are widely recognized

graph processing systems for their high efficiencies. Charm++ [55] and STAPL [127] are

two more general parallel programming systems, with intensive supports for irregular com-

putations, like graph processing.

A more relevant body of research is the out-of-core graph processing systems.

Some representative systems include GraphChi [64], X-Stream [109], GraphQ [136], Grid-

Graph [161], CLIP [8], Wanderland [149], Graspan [135], and among others. Some of their

ideas have been adopted for handling GPU memory oversubscription, as discussed earlier.

In addition, ideas in some prior work [132, 8] are also closely related to the techniques pro-

posed in this work, but different in both contexts and technical details. In prior work [132],

a dynamic graph partitioning method is proposed for disk-based graph processing, which

operates on shards [64], a data structure optimized for disk-based graph processing. In

comparison, our subgraph generation is based on CSR, a more popular representation in

GPU-based graph processing. Furthermore, our technique features a new subgraph rep-

resentation and a GPU-accelerated generation. In another prior work, CLIP [8], local

iterations are applied to a graph partition loaded from the disk, which resembles our asyn-

chronous model, but in a different context. Moreover, they only applied it to two graph

analytics. In comparison, we have discussed the correctness of the asynchronous model and

successfully applied it to a much broader range of graph analytics.
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GPU-based Graph Processing. On GPU-based platforms, research has been growing

to leverage the computation power of GPUs to accelerate graph processing. Early works

in this area include the one from Harish and others [43], Maximum warp [46], CuSha [61],

Medusa [159], and many algorithm-specific GPU implementations [83, 121, 39, 93, 52, 32].

More recently, Gunrock [137] introduced a frontier-based model for GPU graph processing,

IrGL [96] presents a set of optimizations for throughput, and Tigr [92] proposed a graph

transformation to reduce the graph irregularity.

Most of the above systems assume that the input graph can fit into the GPU mem-

ory, thus they are unable to handle GPU memory oversubscription scenarios. To address this

limitation, GraphReduce [116] proposed a partitioning-based approach to explicitly man-

age the oversized graphs, with the capability to detect and skip inactive partitions. More

recently, Graphie [42] further improved the design of the partitioning-based approach, with

an adoption of X-Stream style graph processing and a pair of renaming techniques to reduce

the cost of explicit GPU memory management.

In general, Subway is along the same direction as the above systems, with two crit-

ical advancements. First, it introduces a GPU-accelerated subgraph generation technique,

which pushes the state-of-the-art partition-level activeness tracking down to the vertex level.

Second, it brings asynchrony to in-GPU-memory subgraph processing to reduce the needs

for subgraph generations and reloading. As demonstrated in Section 3.4, both techniques

can significantly boost the graph processing efficiency under memory oversubscription.

Besides single-GPU graph processing scenarios, prior work also built graph systems

on multi-GPU platforms [59, 97, 15, 159, 53] and proposed hybrid CPU-GPU processing
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scheme [34, 75, 45]. In these cases, the idea of asynchronous processing can be adopted

among different graph partitions to reduce inter-GPU and CPU-GPU communications,

similar to that in distributed graph processing (such as TLAG [129]).

3.6 Summary

For GPU-based graph processing, managing GPU memory oversubscription is a fundamen-

tal yet challenging issue to address. This chapter provides a highly cost-effective solution to

extracting a subgraph that only consists of the edges of active vertices. As a consequence,

the volume of data transfer between CPU and GPU is dramatically reduced. The bene-

fits from data transfer reduction outweigh the costs of subgraph generation in (almost) all

iterations of graph processing, bringing in substantial overall performance improvements.

In addition, this chapter introduces an asynchronous model for in-GPU-memory subgraph

processing, which can be safely applied to a wide range of graph algorithms to further

boost the processing efficiency. In the evaluation, the proposed system (Subway) is com-

pared with not only the existing techniques, but also an optimized unified memory-based

implementation. The results confirm both the effectiveness and efficiency of the proposed

techniques.
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Chapter 4

Towards a Holistic Graph System

Design for CFL-Reachability

Analysis

4.1 Introduction

As software applications become more sophisticated and more deeply integrated

into daily life, concerns regarding their correctness, efficiency, and security also increase. To

address these concerns, researchers and engineers have been increasingly leveraging program

analysis to find bugs [11] and reveal software vulnerabilities [9], not to mention its original

uses in performance optimizations [7]. In general, there are strong interests in increasing

both the analysis precision, as well as the ability to scale to large system software.
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Figure 4.1: Graph System for Program Analysis [135].

Recently, Wang and others [135] proposed a novel dedicated graph system, called

Graspan, to support large-scale program analysis with high precision. As illustrated by

Figure 4.1, the basic idea is to leverage a classic formalization [106] that can reduce an in-

terprocedural program analysis to an equivalent CFL (Context-Free Language)-reachability

problem, where an edge-labeled graph is extracted from the source code and a corresponding

context-free grammar is derived based on the analysis. By iteratively concatenating symbols

along graph paths and matching them against the grammar rules, new edges with labels

are generated and inserted to the graph, until no new edges can be found (i.e., reaching a

fixed point). This formalization enables the use of graph systems to solve program analysis

problems. Thanks to its “big data” perspective, the graph system makes it possible to an-

alyze large system software, such as Linux kernel and PostgreSQL database, within hours

or even minutes [135]. As a consequence of the analyses, more and deeper-level software

issues have been discovered and reported.

Despite its promising results, this work finds that the full potential of a graph

system for program analysis has not yet been realized. There are several major design

questions that need to be addressed in depth:
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• First, from a graph system design’s perspective, what are the alternative ways to

model the computations involved in CFL-reachability analysis? What are the pros

and cons of each computation model, in terms of redundancy, data locality, and the

degree of parallelism?

• Second, comparing to the conventional value-based graph systems (like Ligra [119] and

Galois [91]), are there any new opportunities for optimizing a graph system dedicated

for grammar rule matching?

• Third, to prevent edge duplications, the existing graph system leverages sorting to

identify and remove duplicated edges. However, is it possible to avoid inserting du-

plicated edges in the first place? Can it be more cost-efficient?

• Finally, during out-of-core processing, is it possible for the graph system to avoid

loading graph partitions in pairs, which in theory requires quadratic times of loading

with respect to the number of partitions?

The above questions may critically affect the performance of a graph system for

large-scale program analysis. The main goal of this work is to systematically explore the

design space of graph processing system for CFL-reachability analysis by addressing the

aforementioned questions.

First, inspired by the conventional graph systems [78, 109] designed for solving

classic value-based graph problems, like single source shortest path (SSSP) and PageRank,

this work categorizes the computations involved in CFL-reachability analysis into two basic

models, which are referred to as the vertex-centric model and edge-centric model.
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• The vertex-centric model arranges computations from the perspective of a vertex—it

traverses the neighbors of a given vertex to find possible new edges of the vertex;

• The edge-centric model, instead, organizes computations from the perspective of an

edge—it examines the adjacent edges of a given edge to discover new edges.

Interestingly, as this work reveals, the two “perspectives” can lead to distinct

computation patterns with substantially different data locality, redundancy (unnecessary

grammar rule matching), and the degree of parallelism. As shown later in evaluation,

depending on their interactions with the input graph and the grammar, the performance

gaps between the two computation models can vary dramatically.

Second, most existing graph systems are designed mainly for value-based analysis

(e.g., SSSP and PageRank). Unlike these scenarios, CFL-reachability analysis is centered

around grammar rule matching, which is based on symbols, rather than numeric values. To

take advantage of this property, this work proposes a grammar-driven processing scheme,

which arranges the data structure and computations based on the symbols appearing in

the grammar rules. This enables the use of indexing to bypass certain graph traversals and

avoid unnecessary grammar rule matching.

Third, to ensure termination, it is critical that the graph system can detect edge

duplications and remove/avoid them. The existing graph system Graspan [135] proposes

an efficient merge-sorting-based solution to detect edge duplications in each iteration of the

graph processing. However, instead of detecting and removing the duplicated edges, this

work finds that it could be more efficient to prevent inserting duplicated edges in the first
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place. In specific, it shows that a hashing-based duplication edge checking can be more

cost-efficient than the sorting-based edge duplication removal.

Finally, to make the system scalable to large graphs that may not fit into the

memory (before or after edge insertions), it is important that the graph system provides an

efficient out-of-core processing mode. To achieve this, Graspan loads partitions pair by pair

to find possible new edges within and between partitions. In the worst case, however, this

design requires to load partitions P (P − 1)/2 times, where P is the number of partitions.

To avoid intensive partition loading in unfavorable scenarios, this work presents a new out-

of-core processing strategy, which only loads one partition per time. On top of that, it can

process each partition asynchronously to accelerate the convergence.

To demonstrate their efficiency, we implemented multiple representative designs of

the graph system based on the proposed techniques, then evaluated them using a group of

program analysis graphs extracted from real-world system software. The results are aligned

with the discussion of the two basic computation models, confirm the effectiveness of the

proposed optimizations, showing significant speedups over the state-of-the-art graph system

Graspan for in-memory graph processing and out-of-core graph processing.

In summary, this works makes a three-fold contribution to the system development

for large-scale program analysis.

• First, it categorizes the computations in CFL-reachability analysis into two basic mod-

els and discusses their pros and cons in terms of redundancy, locality, and parallelism;

• Second, it introduces multiple critical optimizations to the graph system that substan-

tially boost the performance in both in-memory and out-of-core processing scenarios;
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• Finally, it evaluates multiple designs of the proposed graph system and demonstrates

their performance benefits over the state-of-the-art graph system, making it possible

to analyze large software within minutes or even seconds.

Next, we first present the background of this work.

4.2 Background

In this section, we first introduce the classic formalization that maps a large class of

interprocedural program analysis problems to graph reachability problems, then we present

a state-of-the-art graph processing system for solving such graph reachability problems.

4.2.1 Program Analysis and CFL-Reachability

In their seminal work [106], Reps and others introduced the ideas of transforming

a class of interprocedural data-flow analysis problems, including but not limited to, the clas-

sical separable problems (like reaching definitions, live variables and available expressions)

and many non-separable problems (like constant propagation and uninitialized variables),

into graph reachability problems. Following this formalization, many program analyses have

been proposed [12, 63, 103, 128, 140, 143, 150, 151] based on graph reachability, including

variations of points-to analysis [156, 124]. In the following, we use pointer analysis as an

example to illustrate its basic idea.

The goal of pointer analysis or points-to analysis is to statically reason about a set

of heap objects (allocation sites) that a pointer may point to—the points-to set. Based on

the points-to information, one can also derive aliasing relations among pointers—whether
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two pointers may point to the same heap object or not. For simplicity, we present a flow and

field-insensitive pointer analysis [135] which considers all the pointer relevant operations (as

listed below) in a program but ignores the control flows and field accesses.

x = y value assignment x = *y indirect load
*x = y store to address x = &y address of

To formulate the pointer analysis as a graph reachability problem, a graph is

constructed where nodes represent the variables and abstract locations and edges indicate

the value flows among the variables. Each edge in the graph can be of one of the following

three types:

• Assignment edge (A): There is an A edge from y to x if and only if there is an

assignment x = y in the program;

• Dereference edge (D): There is a D edge from x to *x and a D edge from &x to x for

each *x and &x in the program;

• Alloc edge (M): For each allocation x = malloc(), there is an M edge from the

allocation site to its reference x.

Figure 4.2-(b) illustrates an example (incomplete) graph for pointer analysis for

the code segment given in Figure 4.2-(a), based on the context free grammar given in

Figure 4.2-(c), where the blue arrows are generated based on the code, while the orange

arrows are transitive edges added based on the grammar rules. The first rule in the grammar

defines a value flow – how a value flows among variable expressions. Note that each value

can flow from the variable carrying it to the variable itself – a self-loop in the graph (not
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Figure 4.2: Pointer Analysis as CFL-Reachability Analysis [135].

shown here for conciseness). The second and third rules define the memory and value

aliases, recursively based on each other and the referencing/dereferencing relations, as well

as the value flows (a symbol with a bar on top means a direction-reversed edge with the

symbol). For example, consider the nodes &x and z in the graph, they are clearly value

aliases (according to the first and third rules), thus a VA edge is added between them.

After that, there is a path from x to *z satisfying the second rule, so an MA edge is added

between x and *z, indicating their memory aliasing relation. Finally, a path from y to t

becomes available to match the third rule, thus a VA edge is added between the two nodes.

A more comprehensive example involving memory allocations can be found in [135].

Next we present the basic idea of a state-of-the-art graph system solution to the

above CFL-reachability problem.

4.2.2 Existing Graph System for CFL-Reachability Analysis

Motivated by its importance, Wang and others recently developed a dedicated

graph system for solving CFL-reachability analysis in the context of large-scale program

analysis, namely, Graspan [135]. Unlike traditional solutions that do not add new edges
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Figure 4.3: CFG in Chomsky Normal Form.

to the graph physically (with the concern of memory blowup), Graspan explicitly add

transitive edges to the graph. As new edges are inserted, the graph may grow quickly,

representing an evolving dataset. Furthermore, the computations involved in this analysis

are relatively very simple – just adding new edges based on the grammar rule matching.

These two characteristics make it a great opportunity to develop a “big data” solution – a

graph system that supports frequent edges insertions, efficient graph traversals and symbol

matching, as well as handling scenarios where the graph cannot fit into the memory.

First, Graspan generates the initial graph from the given program using a modified

compiler front end. To support the high-precision interprocedural analysis, the front end

inlines functions based on a bottom-up traversal of the call graph. For recursive functions,

it collapses the functions in each strongly connected component (SCC) into a single function

and treats it context insensitively. With the generated graph, it is the users’ responsibil-

ity to specify a context-free grammar that guides the insertion of transitive edges to the

graph. Following an edge-pari-centri model, it requires the grammar to be normalized into

the Chomsky normal form, where the right-hand side of each grammar rule contains at

most two symbols. Figure 4.3 lists the grammar rules for the prior example after applying

normalization. Note that two extra grammar symbols (T1 and T2) are created to facilitate

the normalization. Graspan takes the initial graph and the normalized CFG as inputs.
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Before the actual processing, Graspan first partitions the graph by dividing vertices

into logical intervals, such that edges whose source vertices fall into the same interval belong

to the same partition. Moreover, edges are sorted first based on the source vertex ID, then

based on the target vertex ID. Figure 4.4 shows the partitioning of an example graph.

src dst lab

0 1 A

4 D

1 2 B

5 D

src dst lab

2 5 C

3 0 A

4 B

4 1 C

Partition 0 Partition 1

0 1 2

3 4

A B

D

5

D CA

B C

Figure 4.4: Example Partitions in Graspan.

During the actual processing, Graspan loads two partitions each time and adds new

transitive edges whose source vertices belong to the two partitions. This process is repeated

until no new edges can be added to any pair of partitions – a fixed point. Assume the

number of partitions is P , then it takes at least P (P −1)/2 rounds of partition pair loading

to complete. To avoid unnecessary loading, Graspan maintains some meta-information

– the destination distribution map (DDM) which capture the percentage of edges in one

partition p with destinations in another partition q. With DDM, Graspan prioritizes the

loading of partition pairs that are better “matched”. However, in the worst case, it still

needs P (P − 1)/2 rounds of loading.

Algorithm 8 shows the detailed processing of a pair of partitions in Graspan. First,

after the partitions are loaded, they are immediately merged into one graph (V , E). The

in-memory representation of the initial graph is given in Figure 4.5. To avoid unnecessary
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Algorithm 8 Graspan’s Algorithm for CFL-Reachability
1: Input: Partitions P1 and P2

2: Combine P1 and P2 into one graph (V , E)
3: for edges of each vertex v ∈ E do
4: Ov = ∅ /* old edges of vertex v */
5: Dv = edges of v /* delta: (newly added) edges of vertex v */

6: for each vertex v whose Dv ̸= ∅ do
7: mergeResult = ∅
8: /* merge old edges of v with new edges of others */
9: V1 = (target vertices of Ov) ∩ V /* exclude those that are not in V */

10: listsToMerge = Ov

11: for v′ ∈ V1 do
12: listsToMerge.add(Dv′)

13: mergeResult = MatchAndMergeSortedArrays(listsToMerge)
14:

15: /* merge new edges of v with all edges of others */
16: V2 = (target vertices of Dv) ∩ V /* exclude those that are not in V */
17: listsToMerge = {Dv, mergeResult}
18: for v′ ∈ V2 do
19: listsToMerge.add(Ov′ , Dv′)

20: mergeResult = MatchAndMergeSortedArrays(listsToMerge)
21:

22: /* update Ov and Dv */
23: listsToMerge = {Ov, Dv}
24: Ov = MergeSortedArrays(listsToMerge)
25: Dv = mergeResult − Qv

checking of previously examined cases, Graspan separates the edges of a vertex v into the

old edge list Ov and the new (delta) edge list Dv. When merging the edges of two adjacent

vertices v1 and v2, it is safe to avoid those from the two old edge lists (i.e., Ov1 and Ov2).

To achieve this, the algorithm first initializes Ov with ∅ and Dv with the initial edges of

v, respectively (see Line 4-5). Then, for each vertex with a non-empty Dv (i.e., new edges

added in the last iteration), the algorithm considers two scenarios: (i) merging the old edges

of v with new edges of its neighbors (Line 8-13) and (ii) merging the new edges of v with

all edges of its neighbors (Line 15-20). In both scenarios, the key operation is to merge

the sorted input lists into a new sorted list with new edges inserted (Lines 13 and 20).

For high efficiency, Graspan uses a min-heap style mechanism which repetitively finds the
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Figure 4.5: In-Memory Graph Representation in Graspan.

minimum in a slice of the lists and make a copy of it to an output list. Label matching is

also performed before an edge is copied to the output.

Note that the sorting can automatically remove redundant edges, which is critical

to the termination of the iterations – if redundant edges are allowed, the algorithm may

continuously add duplicated edges without finishing. Moreover, with the partitioning-based

design, Graspan naturally supports out-of-core processing. When a pair of loaded partitions

generate too many new edges, it gets re-partitioned.

So far, we have presented the basic ideas of the existing graph system for CFL-

reachability analysis. In the following, we will discuss various design aspects of the system

and explain some insights in better designing such a graph system.

4.3 Overview: A Holistic Approach to Graph System Design

Despite that Graspan has demonstrated promising performance results over some

other existing solutions to the CFL-reachability problem, we believe that the full potential of

a graph system has not yet been realized. In this section, we provide a high-level discussion

on the design space of the graph system for CFL-reachability analysis. The discussion will
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be arranged along three major dimensions: (i) the modeling of underlying computations;

(ii) the data structures; (iii) and the processing mode, as illustrated in Figure 4.6.
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Figure 4.6: Design Dimensions of A Graph System for CFL-Reachability Analysis.

First, for conventional value-based graph systems, it is well-known that the graph

computations can be modeled differently, such as push and pull models for in-memory graph

processing and the GAS (gather-apply-scatter) model for distributed platforms. Though

different algorithmic solutions have been discussed for CFL-reachability analysis, there are

no systematic discussions on its alternative computation models from the perspective of a

graph system. In this work, we present two basic computation models for CFL-reachability

analysis, namely the vertex-centric model and the edge-centric model. More importantly,

we will discuss their pros and cons in terms of the degree of parallelism, the amount of

computation redundancy, and the data locality.

Second, from the data structures point of view, the existing solution (Graspan)

mainly leverage lists and sorting for better efficiency. In this work, we will also consider the

uses of hashing and indexing to further boost the performance. More specifically, we will

101



consider a hashing-based edge duplication checking mechanism, as opposed to the sorting-

based strategy, and to further accelerate the grammar rule matching, we will consider to

integrate symbol indexing into the graph representation. We find that both techniques can

substantially improve the performance.

Finally, regarding the processing mode, a well-designed graph system should be

able handle the graph efficiently during both in-memory and out-of-core processing. Note

that supporting out-of-core processing is a highly demanded feature given that the graph’s

growing nature (new edges are inserted during the processing). Though the existing solution

(Graspan) supports out-of-core processing, its design may suffer from degraded performance

when new edges are scattered across partitions. As it loads partitions in pair, in the worst

case, it may take P (P − 1)/2 rounds of loading (for just one iteration). In this work, we

will discuss an alternative design that only loads one partition to the memory each time.

In the following sections, we first present the basic computation models, discuss

their pros and cons, then we will focus on the design of an optimized model.

4.4 Computation Modeling

4.4.1 Two Basic Models

Inspired by prior work on value-based graph systems [78, 109], we propose to model

the computations in CFL-reachability analysis from the “perspective of a vertex or an edge”.

The resulted models are referred to as the vertex-centric model and the edge-centric model,

respectively. Next, we present each of them with more details.
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Figure 4.7: Vertex-Centric Model v.s. Edge-Centric Model.

• Vertex-centric model. As illustrated by Figure 4.7-(a), for each vertex v ∈ V , the

model tries to find new transitive edges by concatenating its outgoing edges with its

out-neighbors’ outgoing edges. This requires the model to traverse v’s out-neighbors

and their out-neighbors. Here, a out-neighbor adjacency list is sufficient.

• Edge-centric model. As illustrated by Figure 4.7-(b), for each edge e ∈ E, the model

tries to find new transitive edges by concatenating edges adjacent to e, including the

incoming edges of e’s source and the outgoing edges of e’s destination. Thus, this

model needs both the out-neighbor and in-neighbor adjacency lists.

Note that, based on its design explained in the prior section, Graspan clearly falls

into the vertex-centric model (see Line 6 in Algorithm 8). In the following, we compare the

two models in aspects that critically affect the overall performance of the processing.

4.4.2 Comparison: Pros and Cons

Before the discussion, we first make one basic assumption: to ease the analysis

and avoid data contention in parallel processing, we assume the edges newly added in the
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current iteration are not subsequently considered for generating other new edges within the

same iteration, referred to as the synchronized processing. To support this, the new edges

found in the current iteration need to be saved in a separated list. Later, we will include

the discussion of asynchronous processing in the context of parallel processing.

In the following, we first discuss the basic implementations of both models in

different aspects, along with some optimization ideas.

Time Complexity. First, assume the processing is synchronized, then both models would

have the same number of iterations to complete, denoted as I. For the vertex-centric model,

assume the average number of out-neighbors is K (i.e., |E|/|V |), then the time complexity of

vertex-centric model is O(|V |×K×K×I) = O(|E|2/|V |×I)1. For the edge-centric model,

the time complexity is O(|E| × (K +K)× I) = O(2|E|2/|V | × I). Clearly, the edge-centric

model doubles the total amount of work comparing to the vertex-centric model, because

each pair of adjacent edges in the edge-centric model are considered twice in each iteration.

Consider the example in Figure 4.7-(b), the edge pair 3 −→ 1 −→ 2 is considered when edge

1 −→ 2 is processed and when edge 3 −→ 1 is processed.

Memory Cost. As explained earlier in the prior section, the vertex-centric model needs

the out-neighbor adjacency list, while the edge-centric model needs both the out-neighbor

and in-neighbor adjacency lists. As a result, the graph memory consumption of edge-centric

model is doubled comparing to that of the vertex-centric model.

Parallelism. In terms of the parallelism exposed by the two computation models, both can

be easily parallelized with abundant amount of parallelism, as different vertices (or edges)

can be processed independently from each other under the synchronized processing strategy.

1Assume the grammar rule match cost for each pair of edges is a constant.
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Note that if the processing is asynchronous – new edges found in the current iteration are

used for finding other new edges, then there are risks of data races as the new edge list may

be updated and read at the same time by different threads.

Data Locality. Assume adjacency list(s) are used for both models. For the vertex-centric

model, consider vertex v, like vertex 0 in Figure 4.7-(a), it is needed to access the outgoing

edge lists of out-neighbors of v, which can be located in different memory regions, thus

incurring irregular accesses. However, the traversal of each edge list of a out-neighbor (e.g.,

edge list of vertex 1) is sequential – good spatial locality. In comparison, the edge-centric

model only needs to access the in/out-neighbors of the source and the destination of an

edge, both of which are sequential. In this sense, the data locality of edge-centric model

appears to be better that that of the vertex-centric model. However, as the edge-centric

model needs to access two adjacency lists, which puts higher pressure on the cache.

Explicit Redundancy. With a basic implementation, both models may produce a large

ratio of redundant computations. Recall that Graspan separates the newly added edges

from the old edges to avoid unnecessary concatenations of some of the edge pairs, referred

to as new-old edge separation. As Graspan follows the vertex-centric model, thus the latter

also suffers from the same redundancy. For edge-centric model, the situation of redundancy

is slightly different. Consider the processing of edge 1 −→ 2 in Figure 4.7-(b) in iteration

i, a basic implementation would concatenate the edge with every outgoing edge of the

destination (vertex 2) and every incoming edge of the source (vertex 1), regardless when

they are generated. It is possible that some of the edges have been concatenated with

this edge before. The new-old edge separation can be adopted here as well to avoid such
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unnecessary concatenations. So far, we have discussed the “explicit redundancy” regarding

unnecessary edge concatenations and grammar rule matching, which can be addressed with

the old-new edges separation optimization (from Graspan).

Implicit Redundancy. In fact, even with the above old-new edges separation, the models

may still exhibit some “implicit redundancy” regarding unnecessary graph traversals. For

the vertex-centric model, every vertex v ∈ V may still need to be processed and its out-

neighbors need to be traversed. However, not every vertex may need to be processed in each

iteration. If a vertex along with its out-neighbors do not have any new edges added in the

last iteration, then its processing can be safely skipped in the current iteration. However,

to find this out, we need to track, for each vertex, not only the “new edge status”, but also

the “new edge status of neighbors”, which could be expensive (O(|V |+ |E|)). Similarly, for

the edge-centric model, not every edge may need to be processed in each iteration. If an

edge was not added in the prior iteration, and neither its source nor its destination has new

edges added in the prior iteration, then its processing can be safely skipped in the current

iteration. More precisely, we can prove that only edges added in the prior iteration need

to be processed in the current iteration (thanks to its consideration of both incoming and

outgoing edges). With this optimization, the edge-centric model turns out to be the same

as a classic worklist-based algorithm for solving CFL-reachability [80].

So far, we have discussed the pros and cons of the basic implementations of the

two models, meanwhile, we also introduced optimizations for addressing some of the “cons”.

In summary, both models can adopt the old-new edges separation optimization. For the
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edge-centric model, it can further adopt the worklist optimization. Next, we assume these

optimizations are enabled, then revisit some aspect discussed earlier.

Parallelism - Revisited. First, under the synchronous processing mode, the old-new

edges separation optimization does not affect the degree of the parallelism of each model,

as it simply separates the edges added in prior iterations into two sub-lists, while the new

edges found in the current iteration are store separately and write-only. As to the worklist

optimization for the edge-centric model, the situation is more complex. If the worklist is

implemented as a global data structure shared among threads, then updates to the worklist

need to be serialized (i.e., atomic operations are needed). As there could be many new edges

found in one iteration, the cost of this worklist maintenance could become the bottleneck.

Later, we will introduce some alternative designs to better support the parallelism.

In summary, both basic models have their pros and cons. Overall, we consider the

edge-centric model with the worklist optimization is more promising, especially consider the

extra optimizations that will be discussed in the following. For this reason, we next focus

on this model, especially its parallel implementation.

4.5 Parallel Edge-Centric Model

In this section, we present a detailed design of the parallel edge-centric model. Note

that the aforementioned worklist optimization to the edge-centric model is like a “double-

edged sword”. On one hand, it reduces the redundancies; on the other hand, it makes it

more challenging to achieve parallel efficiency due to the use of a global edge list shared by

different threads. Based on our experiments, processing the worklist using multiple threads
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with locks is not efficient; actually, the performance is no better than the sequential version.

In the following, we design a parallel lock-free edge-centric algorithm.

4.5.1 Partitioning

First, we partition the graph into subgraphs in a way that each thread can process

one subgraph at a time. There are two challenges. First, the graph grows during the

processing. Second, to process an edge, all the incoming edges to the source and outgoing

edges from the destination are required. To make the partitioning feasible, we do not restrict

our algorithm to process an edge using one thread and in one partition – new incoming and

outgoing edges can be generated using two different threads in different partitions and there

are no constraints.

In specific, the partitioning is based on the vertices. Vertices will be partitioned

into disjoint sets of vertices. Each partition contains all the incoming and outgoing edges

to the vertices of that partition (Figure 4.8).

Each edge may be in one partition or in two partitions. If both the source and the

destination of an edge are in one partition, the edge belongs to that partition only; otherwise
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it belongs to two partitions. If an edge belongs to two partitions, the computations on it are

split and will be done by two threads. New incoming and outgoing edges will be generated

by two different threads, respectively, and the new edges corresponding to rules with one

symbol on the right-hand side will be generated by both threads. If an edge only belongs

to one partition, the new edges will be generated using one thread. Figure 4.9 illustrates

both cases mentioned above.

4.5.2 Processing

The computations have two phases. Phase 1 is to generate new edges and add

the new edges to the current partition if they belong to it. Phase 2 is to add the newly

generated edges that belong other partitions to the corresponding partitions. Even for an

edge with both source and destination belonging to one partition, it is possible to generate

new edges that belong to other partitions. There is a synchronization after each phase.

Phase 1 and 2 repeat until there are no new edges generated.

If we assign one simple worklist to each partition, the process of generating new

edges for other partitions and gathering edges from other partitions creates conflicts among
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threads. To address this, we introduce 3D-worklist, a lock-free data structure to prevent

conflicts and speedup the processing.

As illustrated in Figure 4.10, in a 3D-worklist, we assign one worklist for each

partition in each partition. When a partition is being processed using one thread and new

edges are generated, each edge will be added to the worklist it belongs to. Assume there

are 4 partitions and partition 1 is being processed. There would be 4 worklists in partition

1 for each partition. When a new edge is generated, based on its source and destination,

it would be added to one partition if both vertices belong to one partition or it would be

added to two partitions if the vertices belong to different partitions. As a result, the new

edges will be pushed into the worklists of their partitions.

To prevent adding redundant edges, it still uses a hashset. Each vertex has one

hashset for incoming edges and one hashset for outgoing edges. But to prevent conflicts,

partitions do not have access to the hashsets of each other. In this way, if a partition gener-

ates a new edge which that belongs to other partitions (none of the source and destination

are in the partition), it is not possible to check if it is already in the graph, but it will be

checked later by its own partitions. If the source or the destination of a new edge belongs
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to the current partition, the redundancy check can happen immediately. Thus, there are

two types of new edges: (i) the ones that we know are not redundant and have to be added

to the graph and (ii) the ones that may be redundant and have to be ignored. Therefore,

we use two 3D-worklists to keep track of the new edges.

Another important consideration in the parallel edge-centric model is the choice of

synchronous versus asynchronous processing. As mentioned earlier, synchronous processing

does not allow the new edges found in the current iteration to be used for finding new edges.

This simplified our discussion in the earlier section, but may not be necessary in practice.

However, in the context of parallel processing, asynchronous processing may require to lock

the new edge list as different threads may read/write it. In this case, we consider a hybrid

design: the local processing within one partition (using one thread) is asynchronous while

globally, different partitions are processed synchronously, which aligns well with the above

two-phase design.

The following algorithm summarizes the major ideas of parallel lock-free edge-

centric processing.

• Preprocessing

◦ Break the node IDs into P ranges for each partition

◦ Make each partition by putting together all the incoming and outgoing edges of

each partition ID range

◦ Define two 3D-worklists: nextEdges and possibleNextEdges

◦ For each partition p: Push all the edges of p into nextEdges[p][p]

• Phase 1 - Do in parallel for each partition p:
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◦ For each edge e = (i, j, A) in nextEdges[p][p]

⋄ newEdges = {}

⋄ PartI = the partition of i

⋄ PartJ = the partition of j

⋄ Add new edges to newEdge based on rules of type B ::= A

⋄ If partI == p: Add new edges to newEdges based on rules of type C ::= BA

⋄ If partJ == p: Add new edges to newEdges based on rules of type C ::= AB

⋄ For each edge en = (u, v,X) in newEdges

∗ PartU = the partition of u

∗ PartV = the partition of V

∗ If (PartU ̸= p and PartV ̸= p):

• If PartU == PartV :

◦ Add en to possibleNextEdges[PartU ][p]

• Else:

◦ Add en to possibleNextEdges[PartU ][p]

◦ Add en to possibleNextEdges[PartV ][p]

∗ Else If PartU == PartV :

• Add en to nextEdges[PartU ][p] if it is not redundant

∗ Else:

• Add en to nextEdges[PartU ][p] if it is not redundant

• Add en to nextEdges[PartV ][p] if it is not redundant
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• Synchronization

• Phase 2 - Do in parallel for each partition p:

◦ For each partition i in [1 : P ] except p:

⋄ Add nextEdges[p][i] to nextEdges[p][p]

⋄ Add possibleNextEdges[p][i] to nextEdges[p][p] if they are not redundant

• If Union of nextEdges[i][i] for i in [1 : P ] is not empty, go to Phase 1

So far, we have introduced the parallel design of the edge-centric model. Next, we

will present a new optimization specific to symbol-matching-based graph problems.

4.5.3 Grammar-Driven Processing Scheme

The number of possible edge labels in CFL graph reachability problem is limited

and usually a very low number. This gives us an opportunity for an indexing optimization.

As it is mentioned before, the graph representation used in this system is adjacency

list. To apply the indexing optimization, it needs to be modified. For each vertex, instead

of keeping all the neighbors in a single list, there is a separate list for each label. This is

referred to as labeled adjacency list. This indexing optimization can be used in both vertex-

centric and edge-centric models. Instead of looking into the grammar rules to check if an

edge or a pair of edges can generate a new edge, for each rule, we look for edges or pair of

edges which can generate new edges. In this way, the possible new edges can be found in

constant time using the indexing optimization. We refer to the above processing scheme as

the grammar-driven processing scheme.
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With this new scheme, the time complexity for searching in the neighbor edges of

a vertex to find edges with a specific label decreases from the order of the vertex degree to

constant time. Later, our evaluation will demonstrate the effectiveness of this optimization.

4.5.4 Supporting Out-of-Core

In graph reachability problem, the graph grows fast. New edges are added to the

graph and the number of new edges are not predictable. It can easily grow up and become

larger than the main memory, which raises the need for out-of-core processing.

In fact, the parallel data driven algorithm we proposed in the earlier section fits

well into the out-of-core scenario thanks to its partition-based two-phase design. In Phase

1, processing one partition is independent of processing other partitions and in Phase 2,

each partition can gather its new edges independent from other partitions.

First, the graph is partitioned and all the partitions are stored in the external

memory. Then, in each iteration, partitions are loaded and processed one at a time. The

3-D worklist is kept in the main memory, but if the number of new edges for a partition in

the worklist exceeds a threshold, to avoid running out of memory, the queue corresponding

to that partition will be stored in the external memory and will be loaded back into the

main memory when that partition is being processed.

Note With the above design,
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4.6 Evaluation

4.6.1 Implementation

We implemented both the vertex-centric and edge-centric models, along with the

indexing optimizations, for both in-memory and out-of-core processing in C++ language.

The parallelization is achieved with the Cilk library.

More specifically, we used the unordered set<ull> for implementing the hashmap

for edge duplication checking. For vertex-centric model, the graph is stored as a 3-level

vector: vector<vector<vector<OutEdge>>>, where the first level is for vertices, the second

level is for separating the new edges (generated from the last iteration) from the old ones,

and the third level is for the outgoing edges (i.e., target vertices). For the edge-centric model,

the graph is stored in two 2D vectors: vector<uint> **outEdgeVecs and vector<uint>

**inEdgeVecs, where the first dimension is for the grammar labels (i.e., label indexing),

and the second dimension is for the outgoing/incoming edges of each vertex, respectively.

To represent the grammar, we first separate the grammar rules into three sets based on the

number of symbols on the right-hand side (RHS), then define each set of rules as a vector of

vectors: vector<vector<uint>>, where the first level is the rule ID and the second level is

the actual rule in the format of (LHS, RHS-1, RHS-2). For each rule set, we build indices

for faster access. The index is established as a direct mapping from RHS to the LHS.

For example, given the RHS BC, we can directly access all the possible LHS of rules like

X ::= BC. The index is also stored in a vector of vectors: vector<vector<uint>>, where

the first level is an encoded value of RHS (e.g., BC is encoded as B × Nsym + C), and

the second level is for the corresponding list of possible LHS symbols. Note that, beside
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indexing the RHS, we can also index other combinations of symbols in the rule, such as AB

or AC in a rule like A ::= BC, which can be used based on the configurations.

4.6.2 Methodology

In this evaluation, we compare four representative configurations of our solution

with the state-of-the-art CFL reachability analysis system—Graspan[135]. These include:

• Vertex-Centric Model (VCM). This configuration implements the vertex-centric model

and uses the hashmap for edge duplication checking;

• Edge-Centric Model (ECM). This configuration implements the edge-centric model

and uses the hashmap for edge duplication checking;

• Vertex-Centric Model with Grammar Label Indexing (VCM-idx). This configuration

implements the vertex-centric model along with the indexing optimization based on

grammar labels, and uses the hashmap for edge duplication checking.

• Edge-Centric Model with Grammar Label Indexing (ECM-idx). This configuration

implements the edge-centric model along with the indexing optimization based on

grammar labels, and uses the hashmap for edge duplication checking.

For in-memory processing, all the above four configurations are evaluated; for

out-of-core processing, we mainly focus on the ECM-idx configuration, for its best overall

performance.

The input grammars and graphs are mainly collected from Graspan [135]. One

additional grammar and graph pair is added from another recent work [162]. Table 4.1
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Table 4.1: Graphs in Evaluation

V Ebefore Eafter

Data-flow analysis (DFA)
Linux 42.4M 44.0M 99.2M
PSQL 29.8M 34.7M 56.0M
httpd 5.7M 10.0M 19.2M

Field-insensitive pointer-analysis (PA)
Linux 11.2M 18.9M 186.5M
PSQL 5.2M 9.3M 862.1M
httpd 1.7M 3.0M 904.3M

Field-sensitive pointer analysis (FPA) hdfs 5.3M 10.1M 1.8B
Hadoop/MapReduce 21.8M 41.8M 99.1M

lists the graphs used for three program analysis grammars. The graphs are pre-generated

from real-world large system software, including Linux 4.4.0-rc5, PostgreSQL 8.3.9, Apache

httpd 2.2.18, and Hadoop-MR 2.7.5.

4.6.3 In-Memory Processing Performance

Table 4.2 reports the execution time of different methods on the benchmark graphs.

First, we found all the four versions of our proposed solution run faster than Graspan across

all the benchmarks evaluated. Among the four versions, VCM is the version closest to the

design of Graspan, as Graspan is also vertex-centric. The major difference between the two

is that Graspan uses sorting-based mechanism for edge duplication checking, while VCM

uses hashmap for the same purpose. The results confirm that optimizing edge duplication

checking itself can bring significant speedups, ranging from 4× to 25×.

Comparing the performance between VCM and ECM, we can find that each has

its own winning cases. For example, VCM performs worse on the three DFA benchmarks,

but better on the four PA/FPA benchmarks. As discussed earlier, there are some trade-offs

between the two computation models. VCM needs more accesses to the graph structure,
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Table 4.2: Execution Time Comparison

Graspan VCM ECM VCM-idx ECM-idx

DFA
Linux 4h, 28m 6m, 30s 53s 9m, 25s 46.53s
PSQL 3h, 12m 4m, 28s 22s 6m, 11s 20.1s
httpd 9m, 34s 17s 8s 20s 6.79s

PA
Linux 13m, 41s 1m, 51s 2m, 27s 4m, 12s 1m, 29s
PSQL 2h, 54m 29m, 38s 5h, 39m, 37s 5m, 20s 4m, 55s
httpd 3h, 38m 50m, 51s 9h, 31m, 20s 4m, 6s 4m, 48s

FPA Hadoop 29m, 8s 4m, 10s 1h, 6m, 33s 1m, 37s 39.75s

Table 4.3: Execution Time of Parallel Edge-Centric Model

1t 2t 4t 8t 16t

DFA
Linux 1m, 26s 1m 48.5s 21.05s 20.4s
PSQL 27.7s 26.1s 19.9s 10.5s 10.8s
httpd 10.7s 7.8s 6.6s 3.7s 3.1s

PA
Linux 2m, 40s 2m, 21s 1m, 34s 48.4s 37.5s
PSQL 13m, 40s 4m, 4s 7m, 6s 4m, 6s 3m, 42s
httpd 15m, 38s 10m, 35s 7m, 30s 4m, 10s 3m, 24s

meanwhile, it exposes more synchronization-free parallelism. In addition, VCM only needs

to maintain one copy of the graph (based on outgoing edges), while ECM needs to maintain

two copies of the graph (based on both incoming and outgoing edges). As the grammars

for PA/FPA are much more complex than that of DFA, the benefits brought by the extra

parallelism of VCM exceed the overhead of extra graph accesses. Therefore, VCM performs

better in these cases.

Finally, comparing the two models with and without the grammar-based indexing

optimization, we found the mixing results. For DFA benchmarks, the indexing brings

slowdown to vertex-centric model (i.e., VCM-idx), and marginal benefits to edge-centric

model (i.e., ECM-idx). By contrast, for PA/FPA benchmarks, the benefits of indexing

optimization are significant, ranging from 1.8× to 119×.
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Table 4.4: Performance Comparison

Graspan ECM-idx

PA
PSQL 6h, 1m 53m, 26s
httpd 6h, 7m 49m, 58s

FPA hdfs > 24h 1h, 42m

Table 4.3 reports the execution time of the parallel edge-centric model using dif-

ferent number of threads, which can scale well up to around 8 threads (the machine has 16

physical cores). The sub-linear speedups are mainly due to the memory-intensive nature

of the computations – a large amount of new edges are generated which produces frequent

writes to the memory. Also note that the single-thread version of parallel edge-centric

model is slower than the sequential edge-centric model, which indicates the overhead of

parallelization (such as the synchronization among threads).

4.6.4 Out-of-Core Processing Performance

Table 4.4 reports the execution for out-of-core processing on a machine with much

less memory capacity (8GB). As ECM-idx performs the best for in-memory processing,

we extended it for supporting out-of-core scenarios. The results show that ECM-idx runs

over 6× faster than Graspan. The gap between the two methods are mainly due to two

reasons. First, Graspan requires to load every pair of partitions to the memory until no

new edges are generated. In comparison, our solution only needs to every partition once

in each round. Second, after the partitions are brought into the memory, our solution runs

more efficiently than Graspan, as demonstrated in the in-memory processing evaluation.
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4.7 Related Work

Context Free Language (CFL)-reachability problem was introduced by Yannakakis

[146] and then has been used for program analysis in several works [105, 48, 49, 107, 104]. A

cubic solution for CFL reachability is explained here [80] and for a long time it was accepted

that there is an “O(n3) bottleneck”, but a subcubic algorithm has been found later [22].

CFL-reachability has been used extensively for static analyses in sequential set-

tings [118, 123, 125, 144, 157, 141, 72, 117] . Su et al. [126] proposed the first parallel

implementation of CFL-reachability-based pointer analysis on multi-core CPUs by using

a data sharing scheme for concurrent query-processing and a query scheduling scheme to

eliminate redundancies. Graspan [135] uses edge-pair centric computation model to solve

the CFL reachability problem and supports both in-memory and out-of-core computation

and implements pointer and dataflow analyses. BigSpa [162] proposes a distributed inter-

procedural static analysis engine running on the cloud.

4.8 Summary

Program analysis is fundamental to many important domains of applications.

Modeling program analysis as CFL-reachability problems and solving them using a graph

system can make program analysis much more scalable. However, the existing design of

such a graph system often performs sub-optimal due to its ad-hoc design. In this work, we

explore the design space of such a program analysis graph system, and examines alternative

options in several major design dimensions, including computation models, traversal orders,

indexing strategies, and the mechanisms for edge duplication checking. By analytically and
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experimentally comparing different configurations, we reveal the several findings in the sys-

tem design. Finally, our evaluation shows that our proposed graph system design based

on such systematic exploration yields significant better efficiency than the state-of-the-art

graph system for program analysis.
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Chapter 5

Conclusions

In conclusion, this dissertation explores multiple critical design aspects to improve

the efficiency of graph processing systems on modern computer architectures, including

both multi-core CPUs and GPUs.

For GPU-based platforms, it first proposes a graph transformation technique to

address the negative impacts of graph irregularity on the performance of GPU-based graph

processing. The results of this study lead to the development of an in-GPU-memory graph

processing system – Tigr. Comparing to prior GPU-based graph processing systems, Tigr

demonstrates significant speedups on multiple graph benchmarks and real-world graphs.

Then, this dissertation further studies the expensive data movements between CPU and

GPU during the out-of-GPU-memory graph processing, and introduces a fast subgraph

extraction technique to minimize the data movements. As a result, an out-of-GPU-memory

graph system – Subway, is developed. A comprehensive evaluation shows that Subway can
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substantially reduce the amount of the data movements, thanks to its ability to only load

the active fraction of the graph into the GPU memory in each processing iteration.

For CPU-based platforms, this dissertation focuses on an emerging graph analytics

– CFL-reachability analysis, which is fundamental to large-scale inter-procedural program

analysis, but has not yet been systematically studied from the perspective of graph sys-

tem design. In one of its major chapters, this dissertation examines multiple key design

factors of a dedicated graph processing system for CFL-reachability analysis, including the

degree of parallelism, data locality, computation redundancy, as well as the efficiency of

the out-of-core processing scenario. The examination, along with a systematic evaluation,

reveals several new opportunities in optimizing the performance of such a graph system,

demonstrating substantial performance improvements in both in-memory and out-of-core

processing scenarios.
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