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ABSTRACT OF THE DISSERTATION

Algorithmic Stability for Responsible Computing

by

Jessica Sorrell

Doctor of Philosophy in Computer Science

University of California San Diego, 2022

Professor Russell Impagliazzo, Co-Chair
Professor Daniele Micciancio, Co-Chair

Algorithmic stability is a measure of how much the output of an algorithm changes in response to

small changes to its inputs. Various notions of stability give rise to desirable algorithmic properties,

such as generalization in the case of uniform stability for learning algorithms. Another notion of

stability, differential privacy, guarantees that the output of an algorithm will not change too much

when any one element of its input sample is exchanged for another. This notion ensures that the

output of an algorithm cannot “leak” too much information about any given element of its input,

ensuring privacy for individuals who may contribute their data to the input of the algorithm.

This dissertation develops new stable algorithms for promoting reliable and secure computation.

We develop a new framework for generically constructing differentially private learning algorithms

xiii



via boosting. We show how to use a variant of the standard notion of differential privacy to achieve

stronger security guarantees for approximate fully homomorphic encryption. Finally, we develop a

new stability notion for randomized algorithms called reproducibility, which guarantees that the

output of an algorithm remains unchanged with high probability when its input is entirely redrawn

from the same underlying distribution. We design algorithms for fundamental statistical tasks that

achieve this new notion, and explore connections to related notions of stability.
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Introduction

Applications necessitating the collection and analysis of large quantities of data are proliferating,

from training neural networks to assist with medical diagnostics to wastewater surveillance for

tracking the spread of COVID-19. When we deploy algorithms for these applications, we have a

(sometimes legal) obligation to manage collected data responsibly and to guarantee our algorithms

meet all desiderata arising from the context of the application. Such guarantees are especially

critical in high-stakes algorithm-assisted decision-making, or when computing on sensitive personal

data, but they can be challenging to provide given the complexity of the algorithms and models

deployed for these purposes.

This dissertation studies the design of algorithms that enable responsible use of data via provable

guarantees of broadly desirable properties. In particular, we focus on the properties of privacy,

security, and reproducibility. Privacy establishes that an individual will not have their information

shared, in whole or in part, with other parties without the consent of that individual. Security

guarantees that our data is not subject to unauthorized access by potentially malicious parties.

Reproducibility ensures that the output of an algorithm is actually capturing the relevant features of

the data on which it was run, rather than spurious correlations in that data.

These varied properties address different concerns with the responsible use and storage of data,

but the techniques used to obtain them are in fact quite similar. Each of the algorithms presented

in this dissertation achieves its provable guarantees via some notion of stability. An algorithm is

stable if its output does not change too much given small changes to its input. In this dissertation,

we study several notions of stability and their applications in trustworthy computing.
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Differential Privacy.

The notions of privacy adopted throughout this dissertation are all variants of differential privacy.

Differential privacy was first introduced by Dwork et al. [2006] to formalize the requirement that an

algorithm run on a database should not reveal too much information about any individual row of

that database. In other words, the output of a differentially private algorithm should not look too

different when your data is included in its input compared to when it is excluded. These algorithms

are by necessity randomized, and so the informal aim that the output not “look too different” is

made rigorous by requiring that the distributions over outputs of the algorithm should be close in

statistical distance when a single row is replaced with a new one.

Fully-Homomorphic Encryption.

Differential privacy as described above is a valuable notion for capturing privacy concerns

arising from published findings. It guarantees that even if the result of some computation is made

public, whether that result is a language model or the conclusion of a scientific study, that these

results should not reveal whether or not your data was included in the computation. However, there

are other privacy concerns relevant to data sharing that it cannot address.

Consider the case of genome-wide association studies (GWAS), which study large samples of

genomic data to identify correlations between genetic variants and observable traits (e.g., a disease).

Such studies have the potential to significantly improve our understanding of disease genetics,

but they require collection of whole genome data from individuals who may be understandably

reluctant to share this information with another party. Fully-homomorphic encryption (FHE) is a

cryptographic tool tailored to preserving privacy in these settings. FHE schemes satisfy standard

cryptographic notions of security, but are equipped with additional subroutines that allow an

untrusted party to carry out computation on encrypted data. The resulting ciphertexts may then later

be decrypted to obtain the result of the computation, without the untrusted party ever having access

to the plaintext data. In the case of GWAS studies, FHE would enable study participants to encrypt

genomic data and upload it to a cloud database, on which GWAS studies could then be performed

homomorphically.

2



FHE is not itself an algorithmic stability notion, but in this dissertation we show how to use

techniques from differential privacy to secure one class of FHE schemes. For this class of schemes,

we show that making the decryption function more stable (with respect to one feature of its input)

allows the scheme to satisfy a stronger and more useful definition of security.

Reproducibility.

Reproducibility was introduced in Impagliazzo et al. [2022] as a formal property of randomized

algorithms. An algorithm is reproducible if running the algorithm on two different samples from

the same distribution produces the same result with high probability. Informally, this property

guarantees that an algorithm is not sensitive to resampling, and so results obtained using one data

set can be reproduced with high probability on other training sets from the same population. This

ensures, for example, that published results can be verified by other researchers using their own data

sets. In this dissertation, we present our definition of reproducibility and gave the first reproducible

algorithms for fundamental tasks in machine learning.

Organization.

In Chapter 1, we introduce the technical preliminaries that we will use throughout this work.

In Chapter 2, we develop a framework for generically constructing private and noise tolerant

learning algorithms via boosting. Boosting is a commonly-adopted approach in machine learning

for improving the accuracy of a weak learner 1 in order to obtain a classifier with arbitrarily low

error. Our intuition tells us that it should be much easier to construct a weak learner for a given

classification task than a highly accurate one, but boosting algorithms show us that these objectives

are in fact equivalent.

Beyond mere accuracy, what other properties might we want from a boosting algorithm? When

using boosting to train a classifier on sensitive information, we may also want to guarantee that the

output of our boosting algorithm does not reveal too much information about any single data point

in its training set. This specification is formalized by the notion of differential privacy. In addition,

due to the practical challenges of obtaining accurately labeled data, we may also want to guarantee

1A weak learner is only required to output a classifier that is somewhat correlated with the true labels of the data.
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that our classifier will still have low error even if some of its training data has been mislabeled. In

these cases, it is not sufficient to construct a noise-tolerant or differentially private weak learner

and apply a generic boosting algorithm to improve its accuracy. Boosting algorithms will typically

fail to preserve these additional desirable properties of their weak learners, and so new algorithmic

ideas are required to guarantee that classifiers obtained by boosting satisfy their specifications.

Our framework for designing boosting algorithms preserves differential privacy of their weak

learners. We give natural and sufficient conditions under which a boosting algorithm can be made

private, and demonstrate the usefulness of our framework by applying it to the task of privately

learning large-margin halfspaces. Our boosted learner matches the sample complexity of the state

of the art algorithm for the same problem Nguy˜̂en et al. [2019], while also tolerating random

classification noise 2. The material presented in this chapter originally appeared in Bun et al.

[2020a].

In Chapter 3, we show how to use a variant of the standard notion of differential privacy to

achieve stronger security guarantees for approximate fully homomorphic encryption. The primary

barrier to adoption of FHE in practice is its current inefficiency. All known FHE schemes induce a

significant computational overhead that makes them less appealing in practice than they might be

given their numerous applications in secure computing. At a very high level, this overhead follows

from the fact that known constructions of FHE are “noisy,” that is their security relies on adding

noise to the plaintext message during encryption. If this noise is small, then decryption will recover

the correct message with high probability, but homomorphic computations cause this error to grow.

To perform arbitrary homomorphic computations, an additional step must be introduced to reduce

the error of intermediate ciphertexts, otherwise the results of the homomorphic computation will

be incorrect. This additional step is known as bootstrapping and is typically the main source of

inefficiency in FHE schemes.

One approach to improving the efficiency of FHE is to study approximate FHE schemes.

Approximate FHE schemes adopt a weaker notion of correctness that only guarantees the decrypted

2Random classification noise is a model of label noise for binary classification in which every element of the data
domain has the same probability η of having its label flipped.
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result of homomorphic computation is approximately correct. Such a relaxation of correctness may

be sufficient for applications that only require bounded precision, and allowing modest amounts of

noise to accumulate during computation reduces the frequency with which bootstrapping is required.

The first approximate FHE scheme was introduced in Cheon et al. [2017], and has garnered much

interest from FHE researchers. Unfortunately, the FHE scheme introduced in Cheon et al. [2017]

does not satisfy reasonable notions of security that we should expect in FHE applications, and

attacks on this scheme were demonstrated in Li and Micciancio [2021]. In Chapter 3, we show that

techniques from differential privacy can be used to secure general approximate FHE schemes. In

particular, we show how to use the Gaussian mechanism to secure the FHE scheme of Cheon et al.

[2017], alongside a lower bound proving that our parameters for securing their scheme are almost

tight. The material presented in this chapter originally appeared in Li et al. [2022].

In Chapter 4, we develop a new stability notion for randomized algorithms called reproducibility.

Reproducibility guarantees that the output of an algorithm remains unchanged with high probability

when its input is entirely redrawn from the same underlying distribution. We design algorithms for

fundamental statistical tasks that achieve this new notion, and explore connections to related notions

of stability. The material presented in this chapter originally appeared in Impagliazzo et al. [2022].
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Chapter 1

Preliminaries

In this chapter, we introduce definitions and lemmas that will be used throughout this dissertation.

1.1 Probability

We will frequently rely on the following notions of similarity between distributions.

Definition 1.1.1 (Kullback-Leibler Divergence). Let µ1 and µ2 be bounded measures over the same

domain X . The Kullback-Leibler divergence between µ1 and µ2 is defined as:

KL(µ1 ‖ µ2) = ∑
x∈X

µ1(x) log
(

µ1(x)
µ2(x)

)
+µ2(x)−µ1(x)

Definition 1.1.2 (Statistical Distance). The statistical distance between two distributions Y and Z,

denoted ∆(Y,Z), is defined as:

∆(Y,Z) = max
S
|Pr[Y ∈ S]−Pr[Z ∈ S]|

The α-Rényi divergence has a parameter α ∈ (1,∞) which allows it to interpolate between

KL-divergence at α = 1 and max-divergence at α = ∞.

Definition 1.1.3 (Rényi Divergence). Let P and Q be probability distributions on Ω. For α ∈ (1,∞),
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we define the Rényi Divergence of order α between P and Q as:

Dα(P ‖ Q) =
1

α−1
log
(

Ex∼ Q
(

P(x)
Q(x)

)α)

In Chapter 3, we will need the following properties and notation for KL divergence.

Lemma 1.1.4 (Properties of the KL Divergence, Theorem 2.2 of Polyanskiy and Wu [2014]). The

KL divergence satisfies

1. Sub-Additivity for Joint Distributions: If (X0,X1) and (Y0,Y1) are pairs of (possibly

dependent) random variables, then

D((X0,X1)||(Y0,Y1))≤ Ex∼X0[D((X1 | x)||(Y1 | x))]+D(X0||Y0)

≤max
x

D((X1 | x)||(Y1 | x))+D(X0||X1),

2. Data Processing Inequality: For any (potentially randomized) function f , for any two distri-

butions P,Q, D( f (P)|| f (Q))≤ D(P||Q), and

3. Pinsker’s Inequality: ∆(P,Q)≤
√

D(P||Q)/2.

We introduce the following notation to more compactly bound the divergence between vectors

of random variables.

Definition 1.1.5. Let X = (Xi)
n
i=1,Y = (Yi)

n
i=1 be two lists of discrete random variables over

the support ∏
n
i=1 Xi ⊆ Rn, and δ any divergence. We define the vector divergence δ̂ (X ||Y ) to be

the non-negative real vector (v1, . . . ,vn) ∈ Rn
≥0 with coordinates vi = maxa δ ([Xi |X<i = a]||[Yi |

Y<i = a]).

In this notation, sub-additivity of the KL divergence (for example) can be written as D(X ||Y )≤

‖D̂(X ||Y )‖1.

Our lower bound of Section 3.4.3 will require the following bound on statistical distance between

centered Gaussians.
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Lemma 1.1.6 (Theorem 1.3 Devroye et al. [2018]). Let σ0,σ1 > 0. Then

∆(N (0,σ2
0 ),N (0,σ2

1 ))≥
1

200
min

{
1,
|σ2

0 −σ2
1 |

σ2
0

}
. (1.1)

1.2 Learning

We work in the Probably Approximately Correct (PAC) setting [Valiant, 1984b]. Our learning

algorithms probably learn a hypothesis which approximately agrees with an unknown target concept.

We denote by X the domain of examples, and for the remainder of this dissertation consider only

the Boolean classification setting where labels are always ±1.

Definition 1.2.1 (PAC Learning). A hypothesis class H is (α,β )-PAC learnable if there exists a

sample bound nH : (0,1)2→ N and a learning algorithm A such that: for every α,β ∈ (0,1) and

for every distribution D over X ×{±1}, running A on n≥ nH (α,β ) i.i.d. samples from D will

with probability at least (1−β ) return a hypothesis h : X →{±1} such that:

Pr(x,y)∼D [h(x) = y]≥ 1−α.

PAC learners guarantee strong generalization to unseen examples. Several of the algorithms

presented in this dissertation will construct PAC learners by boosting weak learners — which need

only beat random guessing on any distribution over the training set.

Definition 1.2.2 (Weak Learning). Let S ⊂ (X ×{±1})n be a training set of size n. Let D be a

distribution over [n]. A weak learning algorithm with advantage γ takes (S,D) as input and outputs

a function h : X → [−1,1] such that:

1
2

n

∑
j=1

D( j)|h(x j)− y j| ≤
1
2
− γ
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1.3 Privacy

Two datasets S,S′ ∈ Xn are said to be neighboring (denoted S∼ S′) if they differ by at most a

single element. Differential privacy requires that analyses performed on neighboring datasets have

“similar” outcomes. Intuitively, the presence or absence of a single individual in the dataset should

not impact a differentially private analysis “too much.” We formalize this below.

Definition 1.3.1 (Differential Privacy). A randomized algorithm M : Xn→R is (ε,δ )-differentially

private if for all measurable T ⊆R and all neighboring datasets S∼ S′ ∈ Xn, we have

Pr[M (S) ∈ T ]≤ eεPr[M (S′) ∈ T ]+δ .

In our analyses, it will sometimes be more useful to work with the notion of (zero-)concentrated

differential privacy, which bounds higher moments of privacy loss than normal differential privacy.

Definition 1.3.2 (Zero Concentrated Differential Privacy (zCDP)). A randomized algorithm M :

Xn → R satisfies ρ-zCDP if for all neighboring datasets S ∼ S′ ∈ Xn and all α > 1, we have

Dα(M (S) ‖M (S′))≤ ρα , where Dα(· ‖ ·) denotes the Rényi divergence of order α .

This second notion will often be more convenient to work with, because it tightly captures the

privacy guarantee of Gaussian noise addition and of composition:

Lemma 1.3.3 (Tight Composition for zCDP, Bun and Steinke [2016]). If M1 : Xn→R1 satisfies

ρ1-zCDP, and M2 : (Xn×R1)→R2 satisfies ρ2-zCDP, then the composition M : Xn→R2 defined

by M (S) = M2(S,M1(S)) satisfies (ρ1 +ρ2)-zCDP.

zCDP can be converted into a guarantee of (ε,δ )-differential privacy.

Lemma 1.3.4 (zCDP =⇒ DP, Bun and Steinke [2016]). Let M : Xn→R satisfy ρ-zCDP. Then for

every δ > 0, we have that M also satisfies (ε,δ )-differential privacy for ε = ρ +2
√

ρ log(1/δ ).

The following lemma will let us bound Rényi divergence between related Gaussians:
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Lemma 1.3.5 (Rényi Divergence Between Spherical Gaussians; folklore, see Bun and Steinke

[2016]). Let z,z′ ∈ Rd , σ ∈ R, and α ∈ [1,∞). Then

Dα(N (z,σ2Id) ‖N (z′,σ2Id)) =
α‖z− z′‖2

2
2σ2 .

Finally, ρ-zCDP is closed under post-processing, just like standard DP.

Lemma 1.3.6 (Post-processing zCDP, Bun and Steinke [2016]). Let M : Xn→ R1 and f : R1→ R2

be randomized algorithms. Suppose M satisfies ρ-zCDP. Define M ′ : Xn → R2 by M ′(x) =

f (M(x)). Then M ′ satisfies ρ-zCDP.

We now state the generalization properties of differentially private algorithms that select statisti-

cal queries, which count the fraction of examples satisfying a predicate. Let X be an underlying

population, and denote by D a distribution over X .

Definition 1.3.7 (Statistical Queries). A statistical query q asks for the expectation of some function

on random draws from the underlying population. More formally, let q : X → [0,1] and then define

the statistical query based on q (abusing notation) as the following, on a sample S ∈ Xn and the

population, respectively:

q(S) =
1
|S|∑x∈S

q(x) and q(D) = Ex∼ Dq(x)

In the case of statistical queries, dependence of accuracy on the sample size is good enough to

obtain interesting sample complexity bounds from privacy alone. These transfer theorems have

recently been improved, bringing “differential privacy implies generalization” closer to practical

utility by decreasing the very large constants from prior work [Jung et al., 2019]. As our setting is

asymptotic, we employ a very convienent (earlier) transfer lemma of Bassily et al. [2016].

Theorem 1.3.8 (Privacy =⇒ Generalization of Statistical Queries, Bassily et al. [2016]). Let

0 < ε < 1/3, let 0 < δ < ε/4 and let n≥ log(4ε/δ )/ε2. Let M : Xn→ Q be (ε,δ )-differentially
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private, where Q is the set of statistical queries q : X → R. Let D be a distribution over X, let

S←R Dn be an i.i.d. sample of n draws from D, and let q←R M (S). Then:

Prq,S [|q(S)−q(D)| ≥ 18ε]≤ δ/ε.
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Chapter 2

Private Boosting

2.1 Introduction

Boosting is a fundamental technique in both the theory and practice of machine learning for

converting weak learning algorithms into strong ones. Given a sample S of n labeled examples

drawn i.i.d. from an unknown distribution, a weak learner is guaranteed to produce a hypothesis

that can predict the labels of fresh examples with a noticeable advantage over random guessing.

The goal of a boosting algorithm is to convert this weak learner into a strong learner: one which

produces a hypothesis with classification error close to zero.

A typical boosting algorithm — e.g., the AdaBoost algorithm of Freund and Schapire [1997]

— operates as follows. In each of rounds t = 1, . . . ,T , the boosting algorithm selects a distribution

Dt over S and runs the weak learner on S weighted by Dt , producing a hypothesis ht . The history

of hypotheses h1, . . . ,ht is used to select the next distribution Dt+1 according to some update rule

(e.g., the multiplicative weights update rule in AdaBoost). The algorithm terminates either after a

fixed number of rounds T , or when a weighted majority of the hypotheses h1, . . . ,hT is determined

to have sufficiently low error.

In many situations, it is desirable for the distributions Dt to be smooth in the sense that they

do not assign too much weight to any given example, and hence do not deviate too significantly

from the uniform distribution. This property is crucial in applications of boosting to noise-tolerant

learning [Domingo and Watanabe, 2000, Servedio, 2003b], differentially private learning [Dwork
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et al., 2010], and constructions of hard-core sets in complexity theory [Impagliazzo, 1995, Barak

et al., 2009a]. Toward the first of these applications, Servedio [2003b] designed a smooth boosting

algorithm (SmoothBoost) suitable for PAC learning in spite of malicious noise. In this model of

learning, up to an η fraction of the sample S could be corrupted in an adversarial fashion before

being presented to the learner [Valiant, 1985]. Smooth boosting enables a weak noise-tolerant

learner to be converted into a strong noise-tolerant learner. Intuitively, the smoothness property

is necessary to prevent the weight placed on corrupted examples in S from exceeding the noise-

tolerance of the weak learner. The round complexity of smooth boosting was improved by Barak

et al. [2009a] to match that of the AdaBoost algorithm by combining the multiplicative weights

update rule with Bregman projections onto the space of smooth distributions.

Smoothness is also essential in the design of boosting algorithms which guarantee differential

privacy [Dwork et al., 2006], a mathematical definition of privacy for statistical data analysis.

Kasiviswanathan et al. [2011] began the systematic study of PAC learning with differential privacy.

Informally, a (randomized) learning algorithm is differentially private if the distribution on hypothe-

ses it produces does not depend too much on any one of its input samples. Again, it is natural

to design “private boosting” algorithms which transform differentially private weak learners into

differentially private strong learners. In this context, smoothness is important for ensuring that each

weighted input sample does not have too much of an effect on the outcomes of any of the runs of the

weak learner. A private smooth boosting algorithm was constructed by Dwork et al. [2010], who

augmented the AdaBoost algorithm with a private weight-capping scheme which can be viewed as

a Bregman projection.

2.1.1 Contributions

Simple and Modular Private Boosting.

Our main result is a framework for private boosting which simplifies and generalizes the private

boosting algorithm of Dwork et al. [2010]. We obtain these simplifications by sidestepping a

technical issue confronted by Dwork et al. [2010]. Their algorithm maintains two elements of state

from round to round: the history of hypotheses H = h1, . . . ,ht and auxiliary information regarding
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each previous distribution D1, . . . ,Dt , which is used to enforce smoothness. They remark: “[this

algorithm] raises the possibility that adapting an existing or future smooth boosting algorithm to

preserve privacy might yield a simpler algorithm.”

We realize exactly this possibility by observing that most smooth boosting algorithms have

effectively stateless strategies for re-weighting examples at each round. By definition, a boosting

algorithm must maintain some history of hypotheses. Therefore, re-weighting strategies that can be

computed using only the list of hypotheses require no auxiliary information. Happily, most smooth

boosting algorithms define such hypothesis-only re-weighting strategies. Eliminating auxiliary state

greatly simplifies our analysis, and implies natural conditions under which existing smooth boosting

algorithms could be easily privatized.

Our main algorithm is derived from that of Barak et al. [2009a], which we call BregBoost.

Their algorithm alternates between mutiplicative re-weighting and Bregman projection: the multi-

plicative update reflects current performance of the learner, and the Bregman projection ensures that

BregBoost is smooth. Unfortunately, a naı̈ve translation of BregBoost into our framework would

Bregman project more than once per round. This maintains correctness, but ruins privacy. Inspired

by the private optimization algorithms of Hsu et al. [2013, 2014] we give an alternative analysis

of BregBoost that requires only a single Bregman projection at each round. The need for “lazy”

Bregman projections emerges naturally by applying our template for private boosting to BregBoost,

and results in a private boosting algorithm with optimal round complexity: LazyBregBoost. This

method of lazy projection [see Rakhlin, 2009, for an exposition] has appeared in prior works about

differential privacy [Hsu et al., 2013, 2014], but not in the context of designing boosting algorithms.

Application: Privately Learning Large-Margin Halfspaces.

A halfspace is a function f : Rd → {−1,1} of the form f (x) = sign(u · x) for some vector

u ∈ Rd . Given a distribution D over the unit ball in Rd , the margin of f with respect to D is the

infimum of |u · x| over all x in the support of D. Learning large-margin halfspaces is one of the

central problems of learning theory. A classic solution is given by the Perceptron algorithm, which

is able to learn a τ-margin halfspace to classification error α using sample complexity O(1/τ2α)
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independent of the dimension d. Despite the basic nature of this problem, it was only in very recent

work of Nguy˜̂en et al. [2019] that dimension-independent sample complexity bounds were given

for privately learning large-margin halfspaces. In that work, they designed a learning algorithm

achieving sample complexity Õ(1/τ2αε) for τ-margin halfspaces with (ε,0)-differential privacy,

and a computationally efficient learner with this sample complexity for (ε,δ )-differential privacy.

Both of their algorithms use dimensionality reduction (i.e., the Johnson-Lindenstrauss lemma) to

reduce the dimension of the data from d to O(1/τ2). One can then learn a halfspace by privately

minimizing the hinge-loss on this lower dimensional space.

Meanwhile, one of the first applications of smooth boosting was to the study of noise-tolerant

learning of halfspaces. Servedio [2003b] showed that smooth boosting can be used to design a (non-

private) algorithm with sample complexity Õ(1/τ2α2) which, moreover, tolerates an η = O(τα)

rate of malicious noise. Given the close connection between smooth boosting and differential privacy,

it is natural to ask whether private boosting can also be used to design a learner for large-margin

halfspaces. Note that while one could pair the private boosting algorithm of Dwork, Rothblum, and

Vadhan with our differentially private weak learner for this application, the resulting hypothesis

would be a majority of halfspaces, rather than a single halfspace. Like Nguy˜̂en et al. [2019] we

address proper differentially-private learning of large-margin halfspaces where the hypothesis is

itself a halfspace and not some more complex Boolean device.

We use our framework for private boosting to achieve a proper halfspace learner with sample

complexity Õ
(

1
εατ2

)
when (ε,δ )-DP is required. Our learner is simple, efficient, and automatically

tolerates random classification noise [Angluin and Laird, 1987] at a rate of O(ατ). That is, we

recover the sample complexity of Nguy˜̂en et al. [2019] using a different algorithmic approach while

also tolerating noise. Additionally, our efficient algorithm guarantees zero-concentrated differential

privacy [Bun and Steinke, 2016], a stronger notion than (ε,δ )-DP. In this dissertation we phrase all

guarantees as (ε,δ )-DP to facilitate comparison of sample bounds.

Theorem 2.1.1 (Informal, Fat-Shattering Application to Large-Margin Halfspaces). Given

n = Õ
(

1
εατ2

)
samples from a distribution D supported by a τ-margin halfspace u subject to O(ατ)-
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rate random label noise, our learning algorithm is (ε,δ )-DP and outputs with probability (1−β )

a halfspace that α-approximates u over D.

Furthermore, it may be interesting that we can also obtain non-trivial sample bounds for the

same problem using only differential privacy. The analysis of Nguy˜̂en et al. [2019] uses the VC

dimension of halfspaces and the analyses of Servedio [2003b] and Theorem 2.1.1 above both

use the fat-shattering dimension of halfspaces to ensure generalization. We can instead use the

generalization properties of differential privacy to prove the following (in Section 2.7).

Theorem 2.1.2 (Informal, Privacy-Only Application to Large-Margin Halfspaces). Given

n= Õ
(

1
εατ2 +

1
α2τ2 + ε−2 +α−2

)
samples from a distribution D supported by a τ-margin halfspace

u subject to O(ατ)-rate random label noise, our learning algorithm is (ε,δ )-DP and outputs with

probability (1−β ) a halfspace that α-approximates u over D.

Intuitively, the fat-shattering argument has additional “information” about the hypothesis class

and so can prove better bounds. However, the argument based only on differential privacy would

apply to any hypothesis class with a differentially private weak learner. So, we present a template

for generalization of boosting in Sections 2.3.3 and 2.3.4 which relies only on the learner’s privacy

guarantees.

2.2 Private Boosting Preliminaries

In this section, we fix notation and definitions for describing measures and associated operations.

For a finite set X , let U (X) be the uniform distribution over X .

Definition 2.2.1 (Bounded Measures). A bounded measure on domain X is a function µ : X→ [0,1].

Density: d(µ) = Ex∼U (X)µ(x) — the “relative size” of a measure in X .

Absolute Size: |µ|= ∑x∈X µ(x)

Induced Distribution: µ̂(x) = µ(x)/|µ|— the distribution obtained by normaliz-
ing a measure
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A measure is “nice” if it is simple and efficient to sample from the associated distribution. If

a measure has high enough density, then rejection sampling will be efficient. So, the set of high

density measures is important, and will be denoted by:

Γκ = {µ | d(µ)≥ κ}.

To maintain the invariant that we only call weak learners on measures of high density, we use

Bregman projections onto the space of high density measures.

Definition 2.2.2 (Bregman Projection). Let Γ⊆ R|S| be a non-empty closed convex set of measures

over S. The Bregman projection of µ̃ onto Γ is defined as:

ΠΓµ̃ = argmin
µ∈Γ

KL(µ ‖ µ̃)

Bregman projections have the following desirable property:

Theorem 2.2.3 (Bregman, 1967). Let µ̃,µ be measures such that µ ∈ Γ. Then,

KL(µ ‖ΠΓµ̃)+KL(ΠΓµ̃ ‖ µ̃)≤ KL(µ ‖ µ̃). In particular, KL(µ ‖ΠΓµ̃)≤ KL(µ ‖ µ̃).

Barak, Hardt, and Kale gave the following characterization of Bregman projections onto the set

of κ-dense measures, which we will also find useful.

Lemma 2.2.4 (Bregman Projection onto Γκ is Capped Scaling Barak et al. [2009a]). Let Γ denote

the set of κ-dense measures. Let µ̃ be a measure such that |µ̃|< κn, and let c≥ 1 be the smallest

constant such that the measure µ , where µ(i) = min{1,c · µ̃(i)}, has density κ . Then ΠΓµ̃ = µ .

2.3 Abstract Boosting

In Section 2.3.2, we give sufficient conditions for private boosting, using a natural decomposition

that applies to many boosting algorithms. In Sections 2.3.3 and 2.3.4 we use the decomposition
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to give templates of sample complexity bounds and noise-tolerant generalization guarantees for

private boosted classifiers that use only the algorithmic stability imposed by differential privacy. We

instantiate those templates in Section 2.7, to construct a noise-tolerant PAC learner for large-margin

halfspaces.

2.3.1 Boosting Schemas

A boosting algorithm repeatedly calls a weak learning algorithm, aggregating the results to

produce a final hypothesis that has good training error. Each call to the weak learner re-weights

the samples so that samples predicted poorly by the hypothesis collection so far are given more

“attention” (probability mass) by the weak learner in subsequent rounds. Thus boosting naturally

decomposes into two algorithmic parts: the weak learner WkL and the re-weighting strategy NxM.

Below, we describe boosting formally using a “helper function” to iterate weak learning and re-

weighting. Crucially, we avoid iterating over any information regarding the intermediate weights; the

entire state of our schema is a list of hypotheses. This makes it easy to apply a privacy-composition

theorem to any boosting algorithm where NxM and WkL satisfy certain minimal conditions, elaborated

later. Much of the complexity in the analysis of private boosting by Dwork et al. [2010] was due to

carefully privatizing auxiliary information about sample weights; we avoid that issue entirely. So,

many smooth boosting algorithms could be easily adapted to our framework.

We denote by H the hypotheses used by the weak learner, by S an i.i.d. sample from the target

distribution D, by T the number of rounds, by M the set of bounded measures over S, and by D(S)

the set of distributions over S.

Algorithm 1. Boost. In: S ∈ Xn, T ∈ N
H←{}

for t = 1 to T do

H← Iter(S,H)

f̂ (x)← 1
T ∑

T
i=1 hi(x)

return sign( f̂ (x))

Algorithm 2. Iter. In: S ∈ Xn, H ∈H ∗

µ ← NxM(S,H)

h← WkL(S,µ)

return H ∪{h}

// Add h to list of hypotheses
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2.3.2 Ensuring Private Boosting

Under what circumstances will boosting algorithms using this schema guarantee differential

privacy? Since we output (with minimal post-processing) a collection of hypotheses from the weak

learner, it should at least be the case that the weak learning algorithm WkL is itself differentially

private. In fact, we will need that the output distribution on hypotheses of a truly private weak

learner does not vary too much if it is called with both similar samples and similar distributional

targets.

Definition 2.3.1 (Private Weak Learning). A weak learning algorithm WkL : S×D(S)→H satisfies

(ρ,s)-zCDP if for all neighboring samples S ∼ S′ ∈ (X n×{±1}), all α > 1, and any pair of

distributions µ̂, µ̂ ′ on X such that ∆(µ̂, µ̂ ′)< s, we have:

Dα(WkL(S, µ̂) ‖ WkL(S′, µ̂ ′))≤ ρα

This makes it natural to demand that neighboring samples induce similar measures. Formally:

Definition 2.3.2 (ζ -Slick Measure Production). A measure production algorithm NxM : S×H →M

is called ζ -slick if, for all neighboring samples S ∼ S′ ∈ (X n×{±1}) and for all sequences of

hypotheses H ∈H ∗, letting µ̂ and µ̂ ′ be the distributions induced by NxM(S,H) and NxM(S′,H)

respectively, we have:

∆(µ̂, µ̂ ′)≤ ζ

It is immediate that a single run of Iter is private if it uses NxM and WkL procedures that are

appropriately slick and private, respectively. Suppose WkL is (ρW ,ζ )-zCDP and NxM is ζ -slick. By

composition, Iter run using these procedures is ρW -zCDP. Finally, observe that Boost paired with

a private weak learner and slick measure production is T ρW -zCDP, because the algorithm simply

composes T calls to Iter and then post-processes the result.
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2.3.3 Template: Privacy =⇒ Boosting Generalizes

We now outline how to use the generalization properties of differential privacy to obtain a PAC

learner from a private weak learner, via boosting. Recall that the fundamental boosting theorem is a

round bound: after a certain number of rounds, boosting produces a collection of weak hypotheses

that can be aggregated to predict the training data well.

Theorem 2.3.3 (Template for a Boosting Theorem). Fix NxM. For any weak learning algorithm WkL

with advantage γ , running Boost using these concrete subroutines terminates in at most T (γ,α,β )

steps and outputs (with probability at least 1−β ) a hypothesis H such that:

Pr(x,y)∼S[H(x) 6= y]≤ α

We can capture the training error of a learning algorithm using a statistical query. For any

hypothesis H, define:

errH(x,y) 7→


1 if H(x) 6= y

0 otherwise

Denoting by D the target distribution, PAC learning demands a hypothesis such that errH(D)≤α ,

with high probability. If the boosting process is differentially private, the generalization properties

of differential privacy ensure that errH(S) and errH(D) are very close with high probability. Thus,

boosting private weak learners can enforce low test error. We elaborate below.

Theorem 2.3.4 (Abstract Generalization). Let WkL be a (ρ,ζ )-zCDP weak learner with advantage

γ . Suppose NxM is ζ -slick and enjoys round-bound T with error α and failure probability β . Denote

by M ′ the algorithm Boost run using WkL and NxM. Let ε = O(
√

ρT log(1/δ )) and suppose

n≥Ω(log(ε/δ )/ε2). Then, with probability at least 1−β −δ/ε over S∼iid Dn and the internal

randomness of M ′, the hypothesis output by M ′ generalizes to D:

Pr(x,y)∼D[H(x) 6= y]≤ α.
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Proof (sketch). By the round-bound and inspection of Algorithm 1, M ′ simply composes T calls to

Iter and post-processes. So by zCDP composition (Lemma 1.3.3) we know that M ′ is ρT -zCDP.

This can be converted to an (ε,δ )-DP guarantee on M ′ for any δ > 0 (Lemma 1.3.4).

For the sake of analysis, define a new mechanism M that runs M ′(S) to obtain H and then

outputs the statistical query errH . This is just post-processing, so M is also (ε,δ )-DP. Thus, given

enough samples, the conversion of privacy into generalization for statistical queries applies to M :

PrS∼Dn[|errH(S)− errH(D)| ≥ 18ε]≤ δ/ε (Theorem 1.3.8) .

By the guarantee of the round-bound, errH(S)≤ α with probability at least 1−β . Therefore,

PrS∼Dn
[
Pr(x,y)∼D [H(x) 6= y]≤ α +18ε

]
≤ δ/ε +β .

Observe that we require privacy both for privacy’s sake and for the generalization theorem.

Whichever requirement is more stringent will dominate the sample complexity of any algorithm so

constructed.

2.3.4 Template: Privacy =⇒ Noise-Tolerant Generalization

Suppose now that there is some kind of interference between our learning algorithm and the

training examples. For example, this could be modeled by random classification noise with rate η

[Angluin and Laird, 1987]. This altered setting violates the preconditions of the DP to generalization

transfer. A noised sample is not drawn i.i.d. from D and so the differential privacy of M is not

sufficient to guarantee generalization of the “low training error” query errH as defined above.

To get around this issue, we fold a noise model into the generalization-analysis mechanism.

Define an alternative noised mechanism Mη (Algorithm 3) atop any M that outputs a “test error”

query, and apply “DP to Generalization” on Mη instead. Suppose that M is differentially private,

and the underlying learning algorithm A run by M tolerates noise at rate η . Then, if Mη is DP,
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we can generalize the noise-tolerance of A .

Algorithm 3. Mη for RCN. Input: S ∈ Xn,S∼ Dn

∀i ∈ [n] Fi← 1
∀i ∈ [n] Fi←−1 with probability η

ỹi← yiFi
S̃←{(xi, ỹi)}
errH ←M (S̃)
return errH

At least for random classification noise, Mη does indeed maintain privacy. Observe that for

a fixed noise vector N, Mη run on neighboring data sets S and S′ will run M with neighboring

datasets S̃ and S̃′, and therefore the output distributions over queries will have bounded distance.

Since the noise is determined independent of the sample, this means that Mη inherits the differential

privacy of M , and therefore satisfies the conditions of Theorem 1.3.8. So the resulting learner still

generalizes.

This trick could handle much harsher noise models. For instance, each example selected for

noise could be arbitrarily corrupted instead of given a flipped label. But we seem unable to capture

fully malicious noise: an adversary viewing the whole sample could compromise privacy and so

generalization. Thus, the “effective noise model” implicit above seems to distinguish between

adversaries who have a global versus local view of the “clean” sample. This seems a natural division;

we hope that future work will explore the expressiveness of this noise model.

2.4 Concrete Boosting via Lazy Bregman Projection

We instantiate the framework above. This requires a “Next Measure” routine (LB-NxM, Algo-

rithm 4) a Boosting Theorem (Theorem 2.4.1) and a slickness bound (Lemma 2.4.2).

2.4.1 Measure Production Using Lazy Dense Multiplicative Weights

Our re-weighting strategy combines multiplicative weights with Bregman projections. In each

round, we compute the collective margin on each example. Then, we multiplicative-weight the

examples according to error: examples predicted poorly receive more weight. Finally, to ensure that
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no example receives too much weight, we Bregman-project the resulting measure into the space Γ

of κ-dense measures. We call this strategy “lazy” because projection happens only once per round.

Algorithm 4. LB-NxM(κ,λ): Lazy-Bregman Next Measure
Parameters: κ ∈ (0,1), desired density of output measures; λ ∈ (0,1), learning rate
Input: S, the sample; H = {h1, . . . ,ht}, a sequence of hypotheses
Output: A measure over [n], n = |S|

µ1(i)← κ ∀i ∈ [n] /* Initial measure is uniformly κ */

for j ∈ [t] do
` j(xi)← 1− 1

2 |h j(xi)− yi| ∀i ∈ [n] /* Compute error of each hypothesis */
µ̃t+1(i)← e−λ ∑

t
j=1 ` j(xi)µ1(i) ∀i ∈ [n]

µt+1←ΠΓ(µ̃t+1)
return µ̂t+1

LB-NxM is typed correctly for substitution into the Boost algorithm above; the measure is com-

puted using only a sample and current list of hypotheses. Thus, LazyBregBoost = Boost(LB-NxM)

admits a simple privacy analysis as in Section 2.3.2.

2.4.2 Boosting Theorem for Lazy Bregman Projection

Given a weak learner that beats random guessing, running LazyBregBoost yields low training

error after a bounded number of rounds; we prove this in Section 2.8. Our argument adapts the

well-known reduction from boosting to iterated play of zero-sum games [Freund and Schapire,

1996] for hypotheses with real-valued outputs. For completeness, we also give a self-contained

analysis of the iterated-play strategy corresponding to LB-NxM in Section 2.9. Similar strategies

are used by other differentially-private algorithms [Hsu et al., 2013, 2014] and their properties are

known to follow from results in online convex optimization [Shalev-Shwartz, 2012]. However, to

our knowledge an explicit proof for the “lazy” variant above does not appear in the literature; so we

include one in Section 2.9. Overall, we have the follwing:

Theorem 2.4.1 (Lazy Bregman Round-Bound). Suppose we run Boost with LB-NxM(κ,γ/4) on a

sample S ⊂X ×{±1} using any real-valued weak learner with advantage γ for T ≥ 16log(1/κ)
γ2

rounds. Let H : X → [−1,1] denote the final, aggregated hypothesis. The process has:
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Good Margin: H mostly agrees with the labels of S.

Pr(x,y)∼S [yH(x)≤ γ]≤ κ

Smoothness: Every distribution µ̂t supplied to the weak learner has µ̂t(i)≤ 1
κn ∀i

2.4.3 Slickness Bound for Lazy Bregman Projection

LB-NxM is “lazy” in the sense that Bregman projection occurs only once per round, after all the

multiplicative updates. The projection step is not interleaved between multiplicative updates. This

is necessary to enforce slickness, which we require for privacy as outlined in Section 2.3.2.

Lemma 2.4.2 (Lazy Bregman Slickness). The dense measure update rule LB-NxM (Algorithm 4)

is ζ -slick for ζ = 1/κn.

Proof of Lemma 2.4.2. Let µ̃, µ̃ ′ be the unprojected measures produced at the end of the outermost

loop of NxM, when NxM is run with the sequence of hypotheses H = {h1, . . . ,hT}, and on neighboring

datasets S∼ S′. Let i be the index at which S and S′ differ, and note that µ̃( j) = µ̃ ′( j) for all j 6= i.

Let µ̃0 denote the measure with µ̃0( j) = µ̃( j) = µ̃ ′( j) for all j 6= i, and µ̃0(i) = 0. Take Γ to be

the space of κ-dense measures, and let µ0 = Πκ µ̃0 and µ = Πκ µ̃ denote the respective projected

measures. We will show that SD(µ̂0, µ̂)≤ 1/κn, which is enough to prove the claim by the triangle

inequality. (Note that |µ0|= |µ|= κn, which follows from Lemma 2.2.4 and the observation that

|µ̃0| ≤ |µ̃| ≤ κn. Moreover, µ0( j)≥ µ( j) for every j 6= i. )

We calculate

n

∑
j=1
|µ0( j)−µ( j)|= |µ(i)|+∑

j 6=i
|µ0( j)−µ( j)|

≤ 1+∑
j 6=i

µ0( j)−µ( j)

= 1+ |µ0|− (|µ|−µ(i))

≤ 1+ |µ0|− |µ|+1

= 2,
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since µ and µ0 have density κ . Hence,

∆(µ̂, µ̂0) =
1
2

n

∑
i=1

∣∣∣∣µ(i)|µ| − µ0(i)
|µ0|

∣∣∣∣
=

1
2κn

n

∑
i=1
|µ(i)−µ0(i)|

≤ 1
κn

.

2.5 Application: Learning Halfspaces with a Margin

2.5.1 Learning Settings

We first assume realizability by a large-margin halfspace. Let u be an unknown unit vector in

Rd , and let D be a distribution over examples from the `2 unit ball Bd(1)⊂ Rd . Further suppose

that D is τ-good for u, meaning |u · x| ≥ τ for all x in the support of D. A PAC learner is given

access to n i.i.d. labeled samples from D, honestly labeled by u.

A noise-tolerant learner is given access to a label noise example oracle with noise rate η , which

behaves as follows. With probability 1−η , the oracle returns a clean example (x,sign(u · x)) for

x ∼ D. With probability η , the oracle returns an example with the label flipped: (x,−sign(u · x))

for x∼ D. Given access to the noisy example oracle, the goal of a leaner is to output a hypothesis

h : Bd → {−1,1} which α-approximates u under D, i.e., Prx∼D[h(x) 6= sign(u · x)]≤ α [Angluin

and Laird, 1987].

Servedio [2003b] showed that smooth boosting can be used to solve this learning problem under

the (more demanding) malicious noise rate η = O(ατ) using sample complexity n = Õ(1/(τα)2).

We apply the Gaussian mechanism to his weak learner to construct a differentially private weak

learner, and then boost it while preserving privacy. Our (best) sample complexity bounds then

follow by appealing to the fat-shattering dimension of bounded-norm halfspaces in Section 2.5.4.

Slightly worse bounds proved using only differential privacy are derived in Section 2.7.
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2.5.2 Weak Halfspace Learner: Centering with Noise

The noise-tolerant weak learner for halfspaces was WL(S, µ̂) which outputs the hypothesis

h(x) = z · x where

z =
n

∑
i=1

µ̂( j) · yi · xi.

The accuracy of this learner is given by the following theorem:

Theorem 2.5.1 (Servedio [2003b]). Let µ̂ be a distribution over [n] such that L∞(µ̂) ≤ 1/κn.

Suppose that at most ηn examples in S do not satisfy the condition yi · (u · xi) ≥ τ for η ≤ κτ/4.

Then WL(S, µ̂) described above returns a hypothesis h : Bd → [−1,1] with advantage at least τ/4

under µ̂ .

We apply the Gaussian mechanism to Servedio’s weak learner to obtain ŴL(S, µ̂,σ) which

outputs h(x) = ẑ · x for

ẑ =
n

∑
i=1

µ̂( j) · yi · xi +ν ,

with noise ν ∼N (0,σ2Id). We get a similar advantage bound, now trading off with privacy.

Theorem 2.5.2 (Private Weak Halfspace Learner). Let µ̂ be a distribution over [n] such that

L∞(µ̂)≤ 1/κn. Suppose that at most ηn examples in S do not satisfy the condition yi · (u · xi)≥ τ

for η ≤ κτ/4. Then we have:

1. Privacy: ŴL(S, µ̂,σ) satisfies (ρ,s)-zCDP for ρ = 2(1/κn+s)2

σ2 .

2. Advantage: There is a constant c such that for any ξ > 0, ŴL(S, µ̂,σ) returns a hypothesis h :

Bd→ [−1,1] that, with probability at least 1−ξ , has advantage at least τ/4−cσ
√

log(1/ξ )

under µ̂ .

Proof. We begin with the proof of privacy. Let µ̂1, µ̂2 be κ-smooth distributions over [n] with

statistical distance ∆(µ̂1, µ̂2) ≤ s. Let S ∼ S′ be neighboring datasets with {(xi,yi)} = S \ S′ and
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{(x′i,y′i)}= S′ \S. Then we have

‖ẑS,µ̂1− ẑS′,µ̂2‖2 = ‖µ̂1(i)yi · xi− µ̂2(i)y′i · x′i +
n

∑
j=1
j 6=i

(µ̂1( j)− µ̂2( j))y j · x j‖2

≤ ‖µ̂1(i)yi · xi‖2 +‖µ̂2(i)y′i · x′i‖2 +
n

∑
j=1
j 6=i

‖(µ̂1( j)− µ̂2( j))y j · x j‖2

= µ̂1(i)+ µ̂2(i)+
n

∑
j=1
j 6=i

|(µ̂1( j)− µ̂2( j))|

≤ 2µ̂2(i)+
n

∑
j=1
|µ̂1( j)− µ̂2( j)|

≤ 2(1/κn+ s).

Then Lemma 1.3.5 gives us that

Dα

(
ŴL(S, µ̂1,σ)

∥∥∥ ŴL(S′, µ̂2,σ)
)
≤ 2α(1/κn+ s)2

σ2

and therefore ŴL(S, µ̂1,σ) satisfies (ρ,s)-zCDP for ρ = 2(1/κn+s)2

σ2 .

Building on Servedio’s result, we now give the advantage lower bound. Servedio’s argument

shows that the advantage of ŴL(S, µ̂,σ) is at least ẑ ·u/2 = z ·u/2+ν ·u/2. Since ν is a spherical

Gaussian and u is a unit vector, we have that for any ξ > 0,

Pr[|ν ·u| ≥ cσ
√

log(1/ξ )]≤ ξ .

2.5.3 Strong Halfspace Learner: Boosting

Putting all the pieces together, we run Boost using the private weak halfspace learner (Theorem

2.5.2) and lazy-Bregman measures (Theorem 2.4.1). Via the composition theorem for differential

privacy, we get a privacy guarantee for the terminal hypothesis as outlined in Section 2.3.2. Finally,
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we use the fat shattering dimension to ensure that this hypothesis generalizes.

Algorithm 5. Strong Halfspace Learner, via Boosting (HS-StL)
Input: Sample: S; Parameters: (α,β )-PAC, (ε,δ )-DP, τ-margin
Output: A hypothesis H

σ ← τ/8c
√

log
(

3072log(1/κ)
βτ2

)
T ← 1024log(1/κ)/τ2

H← Boost run with LB-NxM(κ := (α/4),λ := (τ/8)) and ŴL(·, ·,σ) for T rounds

2.5.4 Generalization via fat-shattering dimension.

Following the analysis of Servedio [2003b], we can show that with high probability the hypothe-

sis output by our halfspace learner will generalize, even for a sample drawn from a distribution with

random classification noise at rate O(ατ). The proof of generalization goes by way of fat-shattering

dimension. Using an argument nearly identical to that of Servedio [2000], we can bound the fat-

shattering dimension of our hypothesis class. This bound, along with the guarantee of Theorem 2.4.1

that our final hypothesis will have good margin on a large fraction of training examples, allows

us to apply the following generalization theorem of Bartlett and Shawe-Taylor, which bounds the

generalization error of the final hypothesis.

Theorem 2.5.3 (Bartlett and Shawe-Taylor [1998]). Let H be a family of real-valued hypotheses

over some domain X , let D be a distribution over labeled examples X ×{−1,1}. Let S =

{(x1,y1), . . . ,(xn,yn)} be a sequence of labeled examples drawn from D, and let h(x) = sign(H(x))

for some H ∈H . If h has margin less than γ on at most k examples in S, then with probability at

least 1−δ we have that

Pr(x,y)∼D[h(x) 6= y]≤ k
n
+

√
2d
n

ln(34en/d) log(578n)+ ln(4/δ )

where d = f atF(γ/16) is the fat-shattering dimension of H with margin γ/16.

In order to meaningfully apply the above theorem, we will need to bound the fat-shattering

dimension of our hypothesis class H . Our bound (proved in Section 2.6) follows from the analysis

28



of Servedio [2000], but given that our hypothesis class is not exactly that analyzed in Servedio

[2000], the bound holds only when the noise added to the hypotheses at each round of boosting

does not increase the `2 norm of the final hypothesis by too much.

Lemma 2.5.4 (Fuzzy Halfspace Fat Shattering Dimension). With probability 1− β

3 , after T =

1024log(1/κ)
τ2 rounds of boosting, Algorithm 5 outputs a hypothesis in a class with fat-shattering

dimension f atH (γ)≤ 4/γ2.

With the above bound on fat-shattering dimension, we may prove the following properties of

HS-StL.

Theorem 2.5.5 (Private Learning of Halfspaces). The HS-StL procedure, is a (ε,δ )-Differentially

Private (α,β )-strong PAC learner for τ-margin halfspaces, tolerating random classification noise

at rate O(ατ), with sample complexity

n = Ω

(√
log(1/α) log(1/δ ) log(log(1/α)/βτ2)

εατ2︸ ︷︷ ︸
privacy

+
log(1/τα) log(1/α)

α2τ2 +
log(1/β )

κτ︸ ︷︷ ︸
accuracy

)

Proof. We begin by calculating the cumulative zCDP guarantee of HS-StL. First, by the privacy

bound for ŴL (Theorem 2.5.2), we know that a single iteration of Boost is ρ-zCDP for ρ = 8
(κnσ)2 .

Furthermore, by tight composition for zCDP (Lemma 1.3.3) and our setting of T , HS-StL is

ρT -zCDP where:

ρT = O
(

log(1/κ)

(κnστ)2

)
.

Denote by ε and δ the parameters of approximate differential privacy at the final round T of

HS-StL. Now we convert from zero-concentrated to approximate differential privacy, via Lemma

1.3.4: for all δ > 0, if ε > 3
√

ρT log(1/δ ), then HS-StL is (ε,δ )-DP. So, for a given target ε and

δ , taking

n ∈ O

(√
log(1/κ) log(1/δ ) log(log(1/κ)/βτ)

εκτ2

)
will ensure the desired privacy.
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We now turn to bounding the probability of events that could destroy good training error.

Too Many Corrupted Samples. Our proof of ŴL’s advantage required that fewer than κτn/4

examples are corrupted. At noise rate η ≤ κτ/8, we may use a Chernoff bound to argue

that the probability of exceeding this number of corrupted samples is at most β/3, by taking

n > 24log(3/β )
κτ

.

Gaussian Mechanism Destroys Utility. The Gaussian noise injected to ensure privacy could de-

stroy utility for a round of boosting. Our setting of σ simplifies the advantage of ŴL to

γ(τ,σ) = τ/8 with all but probability ξ = βτ2

3072log(1/κ) . Then we have that with probability

(1− ξ )T ≥ 1− β

3 , every hypothesis output by ŴL satisfies the advantage bound γ ≥ τ/8.

Therefore, by Theorem 2.4.1, HS-StL only fails to produce a hypothesis with training error

less than κ with probability β/3.

We now consider events that cause generalization to fail.

Final hypothesis H 6∈H . The Gaussian noise added to ensure privacy could cause the final hy-

pothesis H to fall outside the class H = { f (x) = z · x : ‖z‖2 ≤ 2}, for which we have a

fat-shattering dimension bound. The probability of this event, however, is already accounted

for by the probability that the Gaussian Mechanism destroys the weak learner’s utility, as both

failures follow from the Gaussian noise exceeding some `2 bound. The failures that affect

utility are a superset of those that affect the fat-shattering bound, and so the β/3 probability

of the former subsumes the probability of the latter.

Failure internal to generalization theorem. Theorem 2.5.3 gives a generalization guarantee that

holds only with some probability. We denote the probability of this occurrence by β1.

If none of these failures occur, it remains to show that we can achieve accuracy α . From

Lemma 2.8.5, we have that H will have margin γ = τ/8 on all but a κ fraction of the examples,

some of which may have been corrupted. We assume the worst case – that H is correct on all

corrupted examples. We have already conditioned on the event that fewer than κτn/4 examples
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have been corrupted, and so we may then conclude that H has margin less than γ on at most a 2κ

fraction of the uncorrupted examples. Then if we set κ = α/4 and take

n ∈ O
(

log(1/αγ) log(1/α)

α2τ2

)
,

then so long as e−α2
< β1 < β/3, we can apply Theorem 2.5.3 to conclude that

PrS∼Dn
[
Pr(x,y)∼D[H(x) 6= y]< α

]
≥ 1−β .

2.6 Fuzzy Halfspaces have Bounded Fat-Shattering Dimen-
sion

We recall and prove Lemma 2.5.4.

Lemma 2.5.4 (Fuzzy Halfspace Fat Shattering Dimension). With probability 1− β

3 , after T =

1024log(1/κ)
τ2 rounds of boosting, Algorithm 5 outputs a hypothesis in a class with fat-shattering

dimension f atH (γ)≤ 4/γ2.

This follows from the lemmas below due to Servedio, Bartlett, and Shawe-Taylor.

Lemma 2.6.1 (Servedio [2000]). If the set {x1, . . . ,xn} is γ-shattered by H = { f (x) = z ·x : ‖z‖2 ≤

2}, then every b ∈ {−1,1}n satisfies

∥∥ n

∑
i=1

bixi
∥∥

2 ≥ γn/2.

Lemma 2.6.2 (Bartlett and Shawe-Taylor [1998]). For any set {x1, . . . ,xn} with each xi ∈ Rd and

‖xi‖2 ≤ 1, then there is some b ∈ {−1,1}n such that
∥∥∑

n
i=1 bixi‖2 ≤

√
n.
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Proof. We begin by showing that, with high probability, the hypothesis output by Algorithm 5 is in

the class H = { f (x) = z · x : ‖z‖2 ≤ 2}. To bound the `2 norm of z, we observe that

‖z‖2 =
1
T

∥∥ T

∑
t=1

ẑt
∥∥

2 ≤
1
T

T

∑
t=1

∥∥ n

∑
i=1

µ̂t(i)yixi
∥∥

2 +‖νt‖2 = 1+
1
T

T

∑
t=1
‖νt‖2

where ẑt denotes the weak learner hypothesis at round t of boosting, and νt denotes the Gaussian

vector added to the hypothesis at round t. Letting σ = τ/8c
√

log
(

3072log(1/κ)
βτ2

)
for a constant c, it

follows that with probability at least 1− βτ2

3072log(1/κ) = 1− β

3T , a given νt has ‖νt‖2 ≤ τ/8 < 1, and

therefore with probability (1− β

3T )
T ≥ (1− β

3 ),
1
T ∑

T
t=1 ‖νt‖2 < 1, and so ‖z‖2 ≤ 2. Therefore with

all but probability β/3, the hypothesis output by Algorithm 5 is in the class H .

From Lemma 2.6.1, it cannot be the case that a set {x1, . . . ,xn} is γ-shattered by H if there

exists a b ∈ {−1,1}n such that ∥∥ n

∑
i=1

bixi
∥∥

2 < γn/2.

At the same time, it follows from Lemma 2.6.2 that if n > 4/γ2, such a b ∈ {−1,1}n must exist.

Therefore the fat-shattering dimension of H at margin γ is f atH (γ) ≤ 4/γ2. Since our final

hypothesis is in H with probability 1−β/3, our claim holds.

2.7 Privacy-Only Noise-Tolerant Sample Bound for Large-
Margin Halfspaces

We state and prove the formal version of Theorem 2.1.2.

Theorem 2.7.1 (Learning Halfspaces Under Random Label Noise). The HS-StL procedure is a

(ε,δ )-Differentially Private (α,β )-strong PAC learner for τ-margin halfspaces tolerating random

label noise at rate η = O(ατ) with sample complexity

n = Ω̃

(
1

εατ2︸ ︷︷ ︸
privacy

(Claim 2.7.2)

+
1

α2τ2︸ ︷︷ ︸
accuracy

+
1
ε2 +

1
α2︸ ︷︷ ︸

generalization
(Claim 2.7.5)

)
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Proof. Denote by εT and δT the parameters of approximate differential privacy at the final round T

of HS-StL, and by the H the output hypothesis of HS-StL. We proceed as follows.

1. Given enough samples, HS-StL is differentially private. (Claim 2.7.2)

2. Random Label Noise at rate η = O(ατ) will (w.h.p.) not ruin the sample. (Claim 2.7.3)

3. The Gaussian Mechanism will (w.h.p.) not ruin the weak learner. (Claim 2.7.4)

4. Given enough samples, training error is (w.h.p.) close to test error. (Claim 2.7.5)

5. Given enough samples, HS-StL (w.h.p.) builds a hypothesis with low test error.

For the remainder of this proof, fix the settings of all parameters as depicted in HS-StL (Algo-

rithm 5). We reproduce them here:

κ ← α/4 (2.1)

σ ← τ/8c

√
log
(

3072log(1/κ)

βτ2

)
(2.2)

Claim 2.7.2 (Enough Samples =⇒ HS-StL is Differentially Private). For every δT > 0, we have:

n > Õ
(

1
εT ατ2

)
=⇒ HS-StL is (εT ,δT )-DP

Proof. By the privacy bound for ŴL (Theorem 2.5.2), we know that a single iteration of Boost is

ρ-zCDP for ρ = 8
(κnσ)2 . Then, Boost runs for T = 1024log(1/κ)

τ2 rounds. So, by tight composition

for zCDP (Lemma 1.3.3), HS-StL is ρT -zCDP where:

ρT = O
(

log(1/κ)

(κnστ)2

)

Now we convert from zero-concentrated to approximate differential privacy, via Lemma 1.3.4: if

εT < 3
√

ρT log(1/δT ), then HS-StL is (εT ,δT )-DP for all δT > 0. We re-arrange to bound n.
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ρT < O
(

ε2
T

log(1/δT )

)
Unpacking ρT we get:

log(1/κ)

(κnστ)2 < O
(

ε2
T

log(1/δT )

)
This will hold so long as:

n > Ω

(√
log(1/κ) log(1/δT )

κστεT

)
Substituting the settings of σ and κ from HS-StL, we obtain:

n > Ω

(√
log(1/α) log(1/δT ) log(log(1/α)/βτ2)

εT ατ2

)

We next consider the two events that could destroy good training error.

Too Many Corrupted Samples Noise could corrupt so many samples that the weak learner fails.

Under an approprite noise rate, this is unlikely. We denote this event by BN (for “bad noise”).

Gaussian Mechanism Destroys Utility The Gaussian noise injected to ensure privacy could de-

stroy utility for a round of boosting. We denote this event by BG (for “bad Gaussian”).

Both events are unlikely, under the settings of HS-StL.

Claim 2.7.3 (Hopelessly Corrupted Samples are Unlikely). Let F1, . . . ,Fn indicate the event “label

i was flipped by noise,” and denote by F= ∑
n
i=1Fi the number of such corrupted examples. Under

the settings of HS-StL and noise rate η = ατ/32, we have:

n >
96ln(4/β )

ατ
=⇒ Pr[BN] = Pr[F> κn]≤ β/4
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Proof. At noise rate η , we have E [F] = nη . From the definitions and Theorem 2.5.2,

Pr[BN] = Pr
[
F≥ ατ

16
n
]

We apply the following simple Chernoff bound: ∀δ ≥ 1

Pr [F≥ (1+δ )E [F]]≤ exp(−E [F]δ/3)

Substituting with δ = 1:

Pr [F≥ 2ηn]≤ exp(−(ηn)/3)

Noise rate η = ατ/32 gives the appropriate event above:

Pr [F≥ 2ηn] = Pr
[
F≥ ατ

16
n
]
≤ exp(−(ατn)/96)

Constraining the above probability to less than β/k1 for any constant k1 > 1 we solve to obtain:

n >
96ln(k1/β )

ατ

Claim 2.7.4 (Bad Gaussians are Unlikely). Let BGi indicate the event that the ith call to the weak

learner fails to have advantage at least τ/8. Under the settings of HS-StL:

Pr[BG] = Pr[∃i BGi]≤ β/2

Proof. Our setting of σ simplifies the advantage of ŴL to γ(τ,σ) = τ/8 with all but probability

ξ = βτ2

1024log(1/κ) . Then, by the round bound for LB-NxM (Theorem 2.4.1), Boost will terminate after

T = 8log(1/κ)
γ2 = 512log(1/κ)

τ2 rounds, and so we have that with probability (1− ξ )T ≥ 1− β

2 every

hypothesis output by ŴL satisfies the advantage bound.
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To enforce generalization, we capture both training and test error for any hypothesis H with a

statistical query that indicates misclassification. Evaluated over the sample it is the training error of

H, and evaluated over the population it is the test error of H.

errH(x,y) 7→


1 if yH(x)≤ 0

0 otherwise

Claim 2.7.5 (Enough Samples =⇒ Good Generalization). If 0 < εT < 1/3 and 0 < δT < εT/4

n≥ Ω̃

(
1
ε2

T

)
=⇒ Pr

S∼Dn
[errH(D)≥ errH(S)+18εT ]≤ δT/εT

Proof. Define (for analysis only) a procedure HS-StL-test, which outputs the “error” statis-

tical query. That is, letting H = HS-StL(S) where S ∼ Dn, HS-StL-test prints errH . Thus,

HS-StL-test is a mechanism for selecting a statistical query.

Because HS-StL-test is simple post-processing, it inherits the privacy of HS-StL. Since we

select errH privately, it will (by Theorem 1.3.8) be “similar” on the sample S (training error) and the

population D (test error). Ignoring over-estimates of test error and observing the sample bounds of

Theorem 1.3.8, this gives the claim.

Claim 2.7.6 (Low Training Error is Likely). Given ¬GB and ¬BN, we have errH(S)≤ α/2.

Proof. Let S̃ denote the noised sample, and let SC and SD be the “clean” and “dirty” subsets of

examples, respectively.

Given ¬GB and ¬BN, the weak learning assumption holds on every round. So, by Theorem

2.4.1, the boosting algorithm will attain low training error errH(S̃) = κ . This is not yet enough to

imply low test error, because S̃ 6∼iid D. So we bound errH(S) using errH(S̃). Suppose that the noise

affects training in the worst possible way: H fits every flipped label, so H gets every example in SD

wrong. Decompose and bound errH(S) as follows:
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errH(S) = ∑
(x,y)∈S

errH(x,y)

= ∑
(x,y)∈SC

errH(x,y)+ ∑
(x,y)∈SD

errH(x,y)

≤ κ + |SD| Boosting Theorem, worst case fit

≤ κ +
ατ

16
¬BN

Because the sample is from the unit ball, we have τ ∈ (0,1). Therefore, it is always the case

that ατ

16 < α

4 . So errH(S)≤ κ +α/4≤ α/2, concluding proof of the above claim.

It remains only to select εT and δT so that the claims above may be combined to conclude low

test error with high probability. Recall that our objective is sufficient privacy to simultaneously:

1. Ensure that HS-StL is (ε,δ )-DP

2. Apply DP to generalization transfer (Theorem 1.3.8) for good test error.

Both these objectives impose constraints on εT and δT . The requirement that the algorithm is

desired to be (ε,δ )-DP in particular forces εT to be smaller than ε and δT to be smaller than δ . The

transfer theorem is slightly more subtle; to PAC-learn, we require:

PrS∼Dn[errH(D)≥ α]≤ β

While Claim 2.7.5 gives us that

Pr
S∼Dn

[errH(D)≥ errH(S)+18εT ]≤ δT/εT

So, accounting for both privacy and accuracy, we need εT < φ = min(ε,α/36). We can select

any δT < min(δ , φβ/4) to ensure that δT/εT < β/2. By substituting the different realizations of

these ’min’ operations into Claims 2.7.2 and 2.7.5 we obtain the sample bound.
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Finally, observe that with these settings we can union bound the probability of BN and BG and

the event that generalization fails with β , as required for PAC learning. But it follows from the

claims above that if ¬BN and ¬BG and a good transfer all occur, then the ouput hypothesis H has

test error less than α , concluding the argument.

2.8 Smooth Boosting via Games

Here, we prove our round-bound and final margin guarantee for LazyBregBoost. The proof is

a reduction to approximately solving two-player zero-sum games. We introduce the basic elements

of game theory, then outline and excute the reduction. Overall, we recall and prove Theorem 2.4.1:

Theorem 2.4.1 (Lazy Bregman Round-Bound). Suppose we run Boost with LB-NxM(κ,γ/4) on a

sample S ⊂X ×{±1} using any real-valued weak learner with advantage γ for T ≥ 16log(1/κ)
γ2

rounds. Let H : X → [−1,1] denote the final, aggregated hypothesis. The process has:

Good Margin: H mostly agrees with the labels of S.

Pr(x,y)∼S [yH(x)≤ γ]≤ κ

Smoothness: Every distribution µ̂t supplied to the weak learner has µ̂t(i)≤ 1
κn ∀i

2.8.1 Two-Player Zero-Sum Games

A two player game can be described by a matrix, where the rows are indexed by “row player”

strategies P , the columns are indexed by “column player” strategies Q, and each entry (i, j) of

the matrix is the loss suffered by the row player when row strategy i ∈P is played against column

strategy j ∈Q. Such a game is zero-sum when the colum player is given as a reward the row

player’s loss. Accordingly, the row player should minimize and the column player should maximize.

A single column or row is called a pure strategy. To model Boosting, we imagine players who

can randomize their actions. So the fundamental objects are mixed strategies: distributions P over

the rows and Q over the columns. Playing “according to” a mixed strategy means sampling from
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the distribution over pure strategies and playing the result. When two mixed strategies are played

against each other repeatedly, we can compute the expected loss of P vs. Q playing the game M:

M(P,Q) = ∑
i, j∈P×Q

P(i)M(i, j)Q( j)︸ ︷︷ ︸
(i)

= ∑
j∈Q

M(P, j)Q( j)︸ ︷︷ ︸
(ii)

= ∑
i∈P

P(i)M(i,Q)︸ ︷︷ ︸
(iii)

(2.3)

“Iterated play” pits the row player against an arbitrary environment represented by the column

player. At each round, both the row player and column player choose strategies Pt and Qt respectively.

The expected loss of playing Qt against each pure row strategy is revealed to the row player. Then,

the row player suffers the expected loss of Pt vs. Qt . This set-up is depicted by Algorithm 6. Good

row player strategies have provably bounded regret — they do not suffer much more loss than the

best possible fixed row player strategy in hindsight during iterated play.

Algorithm 6. Iterated Play
[Input: T the number of rounds to play for
Output: Total expected row player cost incurred]

for t = 1 to T do
Pt ← Row player choice of mixed strategies, seeing `1, . . . , `t−1
Qt ← Column player choice of mixed strategies, seeing Pt
`t(i)←M(i,Qt) ∀i /* Reveal loss on each pure row strategy */

C←C+M(Pt ,Qt) /* Accumulate total loss */

Here, we reduce boosting to the “Lazy Dense Multiplicative Updates” row player strategy

(Algorithm 7) which enjoys bounded regret (Lemma 2.8.1, proved in Section 2.9 for completeness)

and two other helpful properties:

Simple State: The only state is all previous loss vectors and step count so far; this enables privacy.

Single Projection: It Bregman-projects just once per round; this enforces slickness.

Lemma 2.8.1 (Lazy Dense Updates Regret Bound). Let Γ be the set of κ-dense measures. Set

µ1(i) = κ for every i. Then for all µ ∈ Γ we have the following regret bound.

1
T

T

∑
t=1

M(µ̂t ,Qt)≤
1
T

T

∑
t=1

M(µ̂,Qt)+λ +
KL(µ ‖ µ1)

λκ|P|T
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Algorithm 7. Lazy Dense Update Strategy (LDU)
Input: P , a set of pure row-player strategies, learning rate λ , losses `1, . . . , `T
Output: A measure over P

for i ∈P do
µ1(i)← κ

for i ∈P do
µ̃T+1(i)← e−λ ∑

T
t=1 `t(i)µ1(i)

µT+1←ΠΓµ̃T

2.8.2 Reducing Boosting to a Game

We present a reduction from boosting real-valued weak learners to approximately solving

iterated games, following Freund and Schapire [1996]. To prove the necessary round-bound

(Theorem 2.4.1), we do the following:

1. Create a Game. The meaning of “advantage” given by a Weak Learning assumption

(Definition 1.2.2) naturally induces a zero-sum game where pure row strategies are points in

the sample S and pure column strategies are hypotheses in H . The Booster will play mixed

row strategies by weighting the sample and the weak learner will play pure column strategies

by returning a single hypothesis at each round.

2. Weak Learning =⇒ Booster Loss Lower-Bound. Weak Learners have some advantage in

predicting with respect to any distribution on the sample. Thus, the particular sequence of

distributions played by any Booster must incur at least some loss.

3. Imagine Pythia, a Prophetic Booster. Given perfect foreknowledge of how the weak learner

will play, what is the best Booster strategy? Create a “prescient” Boosting strategy P? which

concentrates measure on the “worst” examples (x,y) ∈ S for the final hypothesis H at each

round.

4. How Well Does Pythia Play? Upper-bound the total loss suffered by a Booster playing P?

each round.

5. Solve for T : Recall that we want the Booster to lose. That is, we want an accurate ensemble
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of hypotheses. Combining the upper and lower bounds above with the regret bound, we solve

for a number of rounds to “play” (Boost) for such that the size of the set of “worst” examples

shrinks to a tolerable fraction of the sample. This gives the round-bound (Theorem 2.4.1).

Create a Game

Our game is a continuous variant of the Boolean “mistake matrix” [Freund and Schapire, 1996].

Let H ⊆ {B2(1)→ [−1,1]} be a set of bounded R-valued hypothesis functions on the unit ball.

These functions will be the pure column player strategies. Now let S = (x1,y1), . . . ,(xn,yn) be a

set of points where yi ∈ {±1} and xi ∈ B2(1). These points will be the pure row player strategies.

Having chosen the strategies, all that remains is to define the entries of a matrix. To cohere with

the definition of weak learning for real-valued functions, we define the following game of soft

punishments:

MH
S := MH

S (i,h) = 1− 1
2
|h(xi)− yi|

Notice the quantification here: we can define the soft punishment game for any sample and any

set of hypotheses. We will omit H and S when fixed by context. This is a simple generalization of

the game from Freund and Schapire [1996] which assigns positive punishment 1 to correct responses,

and 0 to incorrect responses. Since we work with real-valued instead of Boolean predictors, we

alter the game to scale row player loss by how “confident” the hypothesis is on an input point.

Weak Learning =⇒ Booster Loss Lower-Bound.

Mixed strategies for the booster (row player) are just distributions over the sample. So the

accuracy assumption on the weak learner WkL, which guarantees advantage on every distribution,

induces a lower bound on the total loss suffered by any booster playing against WkL. Recall that

losses are measured with respect to distributions over strategies, not measures. So, below we

normalize any measure to a distribution “just before” calculating expected loss

Lemma 2.8.2 (Utility of Weak Learning). For any sequence of T booster mixed strategies (µ1, . . . ,µT ),

suppose the sequence of column point strategies h1, . . . ,hT is produced by a weak learner that has
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advantage γ . Then:
T

∑
t=1

M(µ̂t ,ht)≥ T/2+T γ

Proof.

T

∑
t=1

M(µ̂t ,ht) =
T

∑
t=1

E i∼ µ̂tM(i,ht) unroll def 2.3 (iii)

=
T

∑
t=1

E i∼ µ̂t1− 1/2|ht(xi)− yi| re-arrange “advantage”

=
T

∑
t=1

1/2+E i∼ µ̂t 1/2− 1/2|ht(xi)− yi| linearity of E

= T/2+
T

∑
t=1

E i∼ µ̂t 1/2ht(xi)yi distributing summations

≥ T/2+T γ by Weak Learning Assumption

Imagine Pythia, a Prophetic Booster.

How should a booster play if she knows the future? Suppose Pythia knows exactly which

hypotheses h1, . . . ,hT the weak learner will play, but is restricted to playing the same fixed κ-dense

strategy for all T rounds. Intuitively, she should assign as much mass as possible to points of S

where the combined hypothesis H = (1/T )∑t∈[T ] ht is incorrect, and then assign remaining mass to

points where H is correct but uncertain. We refer to this collection of points as B, the set of “bad”

points for h1, . . . ,hT . We formalize this strategy as Algorithm 8.

The prophetic booster Pythia plays the uniform measure on a set B of “bad” points selected by

Algorithm 8, normalized to a distribution. That is:

P?(i) =


1/|B| if i ∈ B

0 otherwise

It is important to observe that if i is outside of the “bad set” B, we know H has “good” margin
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Algorithm 8. Pythia
Input: S a sample with |S|= n; H a combined hypothesis; κ a target density
Output: Distribution P? over [n]; Minimum margin θT

B←{i ∈ [1,n] | yiH(xi)< 0} /* Place all mistakes in B */

Sort [1,n]\B by margin of H on each point
θT ← 0
while |B|< κn do

Add minimum margin element i of [1,n]\B to B
Update θT to margin of H on (xi,yi)

P?← the uniform distribution over B
Output P?,θT

on (xi,yi). To quantify this, observe that for all i ∈ B, H has margin at most θT on (xi,yi).

Proposition 2.8.3 (Bad Margin in Bad Set). For every i ∈ B, we know ∑
T
t=1 yih(xi)≤ T θT

Proof.

i ∈ B =⇒ yiH(xi)≤ θT inspection of Pythia, above

yi

T

T

∑
t=1

ht(xi)≤ θT unroll H

T

∑
t=1

yiht(xi)≤ T θT re-arrange

How Well Does Pythia Play?

Here, we calculate the utility of foresight — an upper-bound on the loss of P?. Suppose H is

the terminal hypothesis produced by the boosting algorithm. We substitute P? into the definition

of expected loss for MH
S (soft punishments) and relate the margin on the bad set for H to the

cumulative loss of H, giving the following lemma.

Lemma 2.8.4 (Excellence of Pythia). Let S be a sample, (h1, . . . ,hT ) ∈H T a sequence of hy-

potheses, H = (1/T )∑
T
i=1 hi, and κ ∈ [0,1/2] a density parameter. Let P?,θH = Pythia(S,H,κ).

Then:
T

∑
t=1

M(P?,ht)≤ (T/2)+(T θH)/2
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We require a simple fact about advantages. Since h(x) ∈ [−1,+1] and y ∈ {±1}, we know:

yh(x) = 1−|h(x)− y|

=⇒ (1/2)(yh(x)) = (1/2)− (1/2)|h(x)− y|

The entries of the soft punishments matrix can also be re-written by formatting advantage as

above. For i ∈ [1,n] and h ∈H we have:

M(i,h) = (1/2)+(1/2)(yih(xi)) (2.4)

Proof. We manipulate the total regret of P? towards getting an upper-bound in terms of the minimum

margin of H and number of rounds played.

T

∑
t=1

M(P?,ht) =
T

∑
t=1

n

∑
i=1

P?(i) ·M(i,ht) Part (iii) of Expected Loss (Definition 2.3)

=
T

∑
t=1

∑
i∈B

P?(i) ·M(i,ht) Restrict sum — P?(i) = 0 outside B

=
1
|B|

T

∑
t=1

∑
i∈B

M(i,ht) Factor out P?(i) — constant by definition

=
1
|B|∑i∈B

T

∑
t=1

((1/2)+(1/2)ht(xi)yi) Equation 2.4 about MH
S entries

=
1
|B|

(
(|B|T )/2+(1/2)∑

i∈B

T

∑
t=1

ht(xi)yi

)
Algebra

≤ 1
|B|

(
(|B|T )/2+(1/2)∑

i∈B
T θ

)
Bad margin in B (Proposition 2.8.3)

= (T/2)+(T θ)/2 Evaluate & re-arrange
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Solve for T .

We now have an upper bound on the loss incurred by a prescient booster, and a lower bound

on the loss to any booster under the weak learning assumption. This allows us to “sandwich” the

performance of boosting according to the lazy dense updates (LDU, Algorithm 7) strategy between

these two extremes, because LDU has good performance relative to any fixed strategy (Lemma

2.8.1, proved in Section 2.9). This sandwich gives a relationship between the number of rounds T

and the margin of the final hypothesis, which we now solve for the number of rounds necessary to

boost using LDU to obtain a “good” margin on “many” samples.

Lemma 2.8.5. Let S be a sample of size n, let µt be the measure produced at round t by NxM(S,Ht−1)

playing the Lazy Dense Update Strategy of Algorithm 7, and let ht be the hypothesis output by

ŴkL(S, µ̂t−1,σ) at round t. Then after T ≥ 16log(1/κ)
γ2 rounds of Iter, the hypothesis HT (x) =

1
T ∑

T
t=1 ht(x) has margin at least γ on all but κn many samples.

Proof. Denote by U (B) the uniform measure (all x ∈ B assigned a weight of 1) on the bad set B

discovered by Pythia. Combining the regret bound comparing LDU to fixed Pythia with the lower

bound on loss that comes from the weak learner assumption, we have, overall:

T
2
+T γ ≤︸︷︷︸

Weak Learning
(Lemma 2.8.2)

T

∑
t=1

M(µ̂t ,ht) ≤︸︷︷︸
Regret Bound
(Lemma 2.8.1)

T

∑
t=1

M(P?,ht)+λT +
KL(U (B) ‖ µ1)

κnλ

Apply Lemma 2.8.4, replacing prescient Boosting play with the upper bound on loss we obtained:

T γ ≤
T

∑
t=1

M(µ̂t ,ht)≤
T θH

2
+λT +

KL(U (B) ‖ µ1)

κnλ
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Let’s compute the necessary KL-divergence, recalling that |U (B)|= |µ1|= κn:

KL(U (B) ‖ µ1) = ∑
x∈B

U (B)(x) log
(

U (B)(x)
µ1(x)

)
−|U (B)|+ |µ1|

= ∑
x∈B

log
(

1
κ

)
= κn log

(
1
κ

)

Substituting into the above and dividing through by T , we have:

γ ≤ θH

2
+λ +

log(1/κ)

T λ

Which, setting

T =
16log(1/κ)

γ2 and λ = γ/4

implies

θH ≥ γ.

This is the margin bound we claimed, for every (x,y) 6∈ B.

2.9 Bounded Regret for Lazily Projected Updates

A “lazy” multiplicative weights strategy that, at each round, projects only once into the space of

dense measures is presented below. Here, we prove that this strategy (Algorithm 9) has bounded

regret relative to any fixed dense strategy.

Algorithm 9. Lazy Dense Update Process
Input: P , a set of pure row-player strategies, learning rate λ , losses `1, . . . , `T
Output: A measure over P

for x ∈P do
µ1(x)← κ

for x ∈P do
µ̃T+1(x)← e−λ ∑

T
t=1 `t(x)µ1(x)

µT+1←ΠΓµ̃T
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To analyze the regret of a row player playing the strategy of Algorithm 9, we will need the

following definition.

Definition 2.9.1 (Strong convexity). A differentiable function f : Rn→ R is α-strongly convex on

X ⊂ Rn with respect to the `p norm if for all x,y ∈ X

〈∇ f (x)−∇ f (y),x− y〉 ≥ α‖x− y‖2
p.

If f is twice differentiable, then f is α-strongly convex on X with respect to the `p norm if for all

x ∈ X , y ∈ Rn

yT (∇2 f (x))y≥ α‖y‖2
p.

We now proceed to analyze Algorithm 9 by arguments closely following those found in Chapter

2 of Rakhlin’s notes on online learning [Rakhlin, 2009]. First, we show this update rule minimizes

a sequential regularized loss over all dense measures.

Lemma 2.9.2. Let M(µ̂,Qt) = Ei∼µ̂ [`t(i)]. Let Γ be the set of κ-dense measures, and let µ1 be the

uniform measure over P of density κ (µ1(x) = κ for all x ∈ P). Then for all T ≥ 1, the measure

µT+1 produced by Algorithm 9 satisfies

µT+1 = argmin
µ∈Γ

[
λ |µ|

T

∑
t=1

M(µ̂,Qt)+KL(µ ‖ µ1)

]

Proof. Suppose towards contradiction that there exists µ ∈ Γ such that

λ |µ|
T

∑
t=1

M(µ̂,Qt)+KL(µ ‖ µ1)< λ |µT+1|
T

∑
t=1

M(µ̂T+1,Qt)+KL(µT+1 ‖ µ1).
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Then it must be the case that

KL(µT+1 ‖ µ1)−KL(µ ‖ µ1)> λ

T

∑
t=1
〈µ−µT+1, `t〉

= 〈µ−µT+1,
T

∑
t=1

λ`t〉

= ∑
i
(µ(i)−µT+1(i)) log µ1(i)

µ̃T+1(i)

= ∑
i

µ(i)
(

log µ(i)
µ̃T+1
− log µ(i)

µ1(i)

)
−∑

i
µT+1(i)

(
log µT+1(i)

µ̃T+1(i)
− log µT+1(i)

µ1(i)

)
= KL(µ ‖ µ̃T+1)−KL(µ ‖ µ1)−KL(µT+1 ‖ µ̃T+1)+KL(µT+1 ‖ µ1).

Under our assumption, then, it must be the case that 0 > KL(µ ‖ µ̃T+1)−KL(µT+1 ‖ µ̃T+1), but

µT+1 was defined to be the κ-dense measure that minimized the KL divergence from µ̃T+1, and so

we have a contradiction.

Using Lemma 2.9.2, we can now show the following regret bound for a row player that, at each

round, “knows” the column strategy Qt that it will play against that round.

Lemma 2.9.3. Let Γ be the set of κ-dense measures. Let µ1 be the uniform measure over P of

density κ (µ1(x) = κ for all x ∈P), and let |P|= n. Then for all µ ∈ Γ we have that

T

∑
t=1

M(µ̂t+1,Qt)≤
T

∑
t=1

M(µ̂,Qt)+
KL(µ ‖ µ1)

λκn

Proof. For T = 0, this follows immediately from the definition of µ1.

Assume now that for any µ ∈ Γ that

T−1

∑
t=1

M(µ̂t+1,Qt)≤
T−1

∑
t=1

M(µ̂,Qt)+
KL(µ ‖ µ1)

λκn
,

and in particular
T−1

∑
t=1

M(µ̂t+1,Qt)≤
T−1

∑
t=1

M(µ̂T+1,Qt)+
KL(µ ‖ µ1)

λκn
.
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It follows that

T

∑
t=1

M(µ̂t+1,Qt) =
T−1

∑
t=1

M(µ̂t+1,Qt)+M(µ̂T+1,Qt)

=
T−1

∑
t=1

M(µ̂t+1,Qt)+
T

∑
t=1

M(µ̂T+1,Qt)−
T−1

∑
t=1

M(µ̂T+1,Qt)

≤
T

∑
t=1

M(µ̂T+1,Qt)+
KL(µT+1 ‖ µ1)

λκn

≤
T

∑
t=1

M(µ̂,Qt)+
KL(µ ‖ µ1)

λκn
,

for all µ ∈ Γ, since µT+1 = argminµ∈Γ[λ |µ|∑T
t=1 M(µ̂,Qt)+KL(µ ‖ µ1)].

To show a regret bound for the lazy dense update rule of Algorithm 9, we now need only relate

the lazy-dense row player’s loss to the loss of the row player with foresight. To prove this relation,

we will need the following lemma showing strong convexity of R(µ) = KL(µ ‖ µ1) on the set of

κ-dense measures.

Lemma 2.9.4. The function R(µ) = KL(µ ‖ µ1) is (1/κn)-strongly convex over the set of measures

with density no more than κ , with respect to the `1 norm.

Proof. Let µ be a measure of density d ≤ κ , and let x = ( 1
µ(1) , . . . ,

1
µ(n)). The Hessian of R(µ) is

∇2R(µ) = Inx. Therefore, for all y ∈ Rn,

yT
∇

2R(µ)y = ∑
i

y2
i

µ(i)

=
1
|µ|∑i

µ(i)∑
i

y2
i

µ(i)
multiply by 1

≥ 1
|µ|

(
∑

i

√
µ(i)

yi√
µ(i)

)2

Cauchy-Schwarz

=
1
|µ|
‖y‖2

1

Therefore R(µ) is strongly convex on the given domain, for the given norm.

49



We can now relate the losses M(µ̂T ,Qt) and M(µ̂T+1,Qt).

Lemma 2.9.5. Let R(µ) = KL(µ ‖ µ1), which is 1/κn-strongly convex with respect to the `1 norm

on Γ, the set of κ-dense measures. Then for all T ≥ 1

M(µ̂T ,Qt)−M(µ̂T+1,Qt)≤ λ

Proof. We first note that M(µ̂T ,Qt)−M(µ̂T+1,Qt) =
1

κn〈µT − µT+1, `T 〉. So it suffices to show

that

∑
i
(µT (i)−µT+1(i))`T (i)≤ κnλ

which, because `T (i) ∈ [0,1], is implied by ‖µt(i)−µt+1(i)‖1 ≤ κnλ .

Our strong convexity assumption on R and an application of Bregman’s theorem (Theorem

2.2.3) give us that

1
κn‖µT −µT+1‖2

1 ≤ 〈∇R(µT )−∇R(µT+1),µT −µT+1〉

= KL(µT ‖ µT+1)+KL(µT+1 ‖ µT )

≤ KL(µT ‖ µ̃T+1)−KL(µT+1 ‖ µ̃T+1)+KL(µT+1 ‖ µ̃T )−KL(µT ‖ µ̃T )

= ∑
i

µT (i)
(

log
µT (i)

µ̃T+1(i)
− log

µT (i)
µ̃T (i)

)
−∑

i
µT+1(i)

(
log

µT+1(i)
µ̃T+1(i)

− log
µT+1(i)
µ̃T (i)

)
= ∑

i
µT (i)

(
log

µ̃T (i)
µ̃T+1(i)

)
−∑

i
µT+1(i)

(
log

µ̃T (i)
µ̃T+1(i)

)
= 〈µT −µT+1,λ`T+1〉

≤ ‖µT −µT+1‖1‖λ`T+1‖∞

Therefore

1
κn‖µT −µT+1‖1 ≤ λ‖`T+1‖∞ ≤ λ

and so

‖µT −µT+1‖1 ≤ λκn.
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We are now ready to prove the regret bound for the lazy dense update process of Algorithm 9,

stated earlier in a simplified form as Lemma 2.8.1.

Lemma 2.9.6. Let Γ be the set of κ-dense measures. Let µ1 be the uniform measure over P of

density κ (µ1(x) = κ for all x ∈P), and let |P| = n. Then for all µ ∈ Γ we have the following

regret bound.
1
T

T

∑
t=1

M(µ̂t ,Qt)≤
1
T

T

∑
t=1

M(µ̂,Qt)+λ +
KL(µ ‖ µ1)

λκnT

Proof. From Lemma 2.9.3, we have that

1
T

T

∑
t=1

M(µ̂t+1,Qt)≤
1
T

T

∑
t=1

M(µ̂,Qt)+
KL(µ ‖ µ1)

λκnT

Adding 1
T ∑

T
t=1 M(µ̂t ,Qt) to both sides of the inequality and rearranging gives

1
T

T

∑
t=1

M(µ̂t ,Qt)≤
1
T

T

∑
t=1

M(µ̂,Qt)+
1
T

T

∑
t=1

(M(µ̂t ,Qt)−M(µ̂t+1,Qt))+
KL(µ ‖ µ1)

λκnT
.

We may then apply Lemma 2.9.5 to conclude

1
T

T

∑
t=1

M(µ̂t ,Qt)≤
1
T

T

∑
t=1

M(µ̂,Qt)+λ +
KL(µ ‖ µ1)

λκnT
.

2.10 Previous Work on Algorithmic Stability and Boosting

There are many complementary explanations for generalization of boosting: VC theory, greedy

optimization of exponential loss on the training set [Breiman, 1999], entropy projection [Kivinen

and Warmuth, 1999], and effect of boosting on the distribution of margins in the training set

[Schapire et al., 1997]. Each genre of analysis represents a rich study of some aspect of boosting.
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Groundbreaking work of Bousquet and Elisseeff [2002] showed that “stable” learning algorithms

algorithms generalize well to unseen samples, without appealing to combinatorial (e.g., Rademacher

complexity) bounds on the underlying hypothesis class. Intuitively, a stable learning algorithm does

not change the output hypothesis “too much” when the training set changes by a small amount.

Because so many ideas in learning theory have been successfully applied to boosting, it is natural

to ask if algorithmic stability can be used to analyze boosting as well. Below we list some work

along these lines. Overall, it does not appear to have been nearly as successful as other techniques —

possibly because the work so far has only studied AdaBoost, which is far more sensitive to noise

and outliers than the smooth boosting studied here. That there works were able to obtain any kind

of stability for AdaBoost is surprising.

In this work, we are at least able to use a very strong algorithmic stability condition (differential

privacy) to prove generalization theorems for smooth boosting procedures and obtain sample bounds

that are comparable to those from other theories. This suggests that we could work to relax these

assumptions to approach a stability analysis of real-world boosting “from the top down.”

• Gao and Zhou [2010] is able to show that AdaBoost (as a classifier) satisfies a new notion of

stability. No concrete sample bounds are derived from the analysis.

• Kutin and Niyogi [2001] obtains stability bounds for AdaBoost as a regressor. Stability

bounds from VC-dimension d of the base class are linear in d, their bounds are exponential

in d. However, their bounds still apply when VC-dimension is infinite. No concrete sample

bounds are derived from the analysis.

• Kutin and Niyogi [2002] studies relationships between various notions of algorithmic stability,

and lists obtaining stability results for boosting algorithms as an interesting open question.

• “Stability and Convergence Trade-off of Iterative Optimization Algorithms” asks for such

trade-offs for boosting algorithms. They do not obtain any such trade-offs for boosting-style

iterated optimization.
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• “Bagging Regularizes” notes that bagging can improve the stability of less-stable weak

learners. They ask if the same can be proved for boosting. We are far from this: privacy

degrades in our analysis of boosting. But their analysis uses a sub-sampling trick to improve

stability; if weak learners are on disjoint subsets then only one weak hypothesis can be

changed by a perturbation in the training set, thus the ensemble is more stable than the single

base learner. Can we analyses boosting in terms of KL divergence between intermediate

distributions? IE: the larger the divergence between intermediate distributions, the more

disjoint in the weak learners the impact of a perturbation of the training set is.

This chapter, in full, is a reprint of the material as it appears in Conference on Learning Theory

2022. Bun, Mark; Carmosino, Marco; Sorrell, Jessica. “Efficient, Noise-Tolerant, and Private

Learning via Boosting”. The dissertation author was the primary investigator and author of this

material.
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Chapter 3

Using Privacy to Secure Approximate Fully-
Homomorphic Encryption

3.1 Introduction

Fully homomorphic encryption (FHE) on approximate numbers, proposed by Cheon, Kim, Kim

and Song in Cheon et al. [2017], has attracted much attention in the past few years as a method to

improve the efficiency of computing on encrypted data in a wide range of applications (like privacy

preserving machine learning) where approximate results are acceptable Cheon et al. [2018d,c,b,e,a],

Han et al. [2019], Park et al. [2019]. The CKKS scheme Cheon et al. [2017], just like most other

(homomorphic) encryption schemes based on lattices, can be proved to satisfy the well established

security notion of indistinguishability under chosen plaintext attack (IND-CPA) Goldwasser and

Micali [1984] under widely accepted complexity assumptions, like the average-case hardness of the

Learning With Errors (LWE) problem or the worst-case complexity of computational problems on

(algebraic) point lattices Regev [2009], Lyubashevsky et al. [2013], Peikert et al. [2017], Peikert

[2009].

Recently Li and Micciancio Li and Micciancio [2021] have shown that the traditional formulation

of IND-CPA security is inadequate to capture security of approximate encryption against passive

attacks, and demonstrated that the CKKS scheme is susceptible to a very efficient total key recovery

attack, mounted by a passive adversary. The problem highlighted in Li and Micciancio [2021]

is not with the IND-CPA security definition per se, which remains a good and well accepted
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definition for exact FHE schemes, but with the specifics of approximate decryption, which may

inadvertently leak information about the secret key even when used by honest parties. The work

Li and Micciancio [2021] also proposes a new, enhanced formulation of IND-CPA security (called

IND-CPAD, or IND-CPA with decryption oracles), which properly captures the capabilities of a

passive attacker against an approximate FHE scheme, and is equivalent to the standard notion of

IND-CPA security for encryption schemes with exact decryption. The work Li and Micciancio

[2021] also suggested some practical countermeasures to avoid their attack, and all major open

source libraries implementing CKKS (e.g., SEAL, HElib, PALISADE, Lattigo) included similar

countermeasures shortly after the results in Li and Micciancio [2021] were made public. However,

neither Li and Micciancio [2021] nor any of these libraries present a solution that provably achieves

the IND-CPAD security definition proposed in Li and Micciancio [2021], leaving it as an open

problem.

3.1.1 Contributions

In this chapter we show how to achieve IND-CPAD security in a provable way. More specifically,

we present a general technique to transform any approximate FHE scheme satisfying the (weak)

IND-CPA security notion into one achieving the strong IND-CPAD security definition proposed in

Li and Micciancio [2021]. We then demonstrate how to apply the technique to the specific case of

the CKKS scheme, which is the most prominent example of approximate homomorphic encryption.

Our technique works by combining a given (approximate) FHE scheme with another fundamen-

tal tool from the cryptographers’ toolbox: differential privacy. The construction is very simple and

intuitive: given an approximate FHE scheme (like CKKS), we modify the decryption function by

post-processing its output (the decrypted message) with a properly chosen differentially private

mechanism. Using differential privacy to limit the key leakage of approximate decryption is a fairly

natural idea, and it is essentially the intuition behind the practical countermeasures proposed in Li

and Micciancio [2021] and implemented by the libraries. But formally analyzing the method and

provably achieving IND-CPAD security raises a number of technical challenges:
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• The Hamming metric, commonly used to define and analyze differentially private mechanisms,

is not well suited to the setting of (lattice based) homomorphic encryption.

• Similarly, the Laplace noise commonly used and studied in the standard setting of differential

privacy is not a good match for our target application, as it is both associated with the wrong

norm (`1, rather than `2 or `∞), and has heavier tails than, e.g., the Gaussian distribution, and

so will give worse bounds on the error introduced by post-processing.

• Formally proving the security of our construction requires a careful definition of what it

means for an FHE scheme to be approximate. Previous works Cheon et al. [2017], Li and

Micciancio [2021] simply defined approximate FHE as an encryption scheme which does not

satisfy the correctness requirement

Dec(Eval( f ,Enc(m1), . . . ,Enc(mk))) = f (m1, . . . ,mk) (3.1)

without imposing any specific limitation on how a scheme may deviate from it.

• Perturbing the output of the decryption function with a differentially private mechanism comes

at the cost of lowering the output quality, making the result of the (already approximate)

decryption function even less accurate, highlighting the necessity of carefully tuning the

amount of noise added.

• The minimal security level considered acceptable by applications in practice typically de-

pends on whether the cryptographic primitive is statistically secure (against computationally

unbounded adversaries) or computationally secure (in which case a higher security margin is

advisable to anticipate possible algorithmic or implementation improvements in the attacks.)

Our application of statistical security tools (differential privacy) to encryption seems to require

the instantiation of statistical security with the high security parameters of a computational

encryption scheme.

In order to address the above obstacles, we
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• provide a general definition of differential privacy, parameterized by an arbitrary norm, and

then instantiate it with the Euclidean norm for the case of lattice-based encryption;

• employ a differentially private mechanism (for the Euclidean norm) based on Gaussian noise,

which blends well with the probability distributions used in lattice cryptography;

• give formal definitions of approximate FHE, which provide precise guarantees on the output

quality of the (approximate) decryption function. In fact, we identify two possible definitions,

based on what we call static and dynamic noise estimates, and show that they result in quite

different security properties (more on this below);

• use KL-divergence and other probabilistic tools to carefully calibrate the mechanism noise

to the output quality, showing that Θ(κ) bits of noise are required to formally achieve κ-bit

IND-CPAD security;

• present and use a finer grained definition of bit-security that distinguishes between a compu-

tational security parameter c and a statistical one s, which can be set to a lower value than c

(more on this below).

We first elaborate on our definition of approximate FHE. Previous works Cheon et al. [2017], Li

and Micciancio [2021] did not include a precise definition of what it means for an encryption scheme

(or decryption function) to be approximate, because the quality of the approximation (and more

generally, the definition of the decryption function itself) does not impact the IND-CPA security

of a scheme. This is contrasted with our work, where bounding the approximation quality of the

decryption function plays a critical role in our analysis. Generally speaking, an approximate FHE

scheme provides a guarantee (upper bound) on how much the output of the decryption function

Dec(Eval( f ,Enc(m1), . . . ,Enc(mk))) may deviate from the output of the computation f (m1, . . . ,mk).

We distinguish two types of approximate FHE:

• Approximate FHE with static noise estimates, where this bound can be publicly computed as

a function of the homomorphic computation f performed on the input ciphertexts. This is, for
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example, the type of noise estimates used in the HElib library HElib.

• Approximate FHE with dynamic noise estimates, where this bound is computed by the de-

cryption function Dec using also the input ciphertext and the secret key. An ingenious method

for dynamic noise estimation has been proposed by the PALISADE library PALISADE.

Most of our results, like our general framework based on differential privacy and a provably

IND-CPAD secure variant of the CKKS approximate FHE scheme, are in the setting of static

noise estimates. In this setting, we are able to establish the security of our generic construction

(Theorem 3.3.3), and provide precise security guarantees for the modified approximate FHE scheme,

showing that if the original scheme is κ-bit IND-CPA secure, then combining it with an appropriate

differentially private mechanism achieves κ − 8 bits of security against the stronger IND-CPAD

security definition, losing only 8 bits of security (Theorem 3.3.3). The amount of noise required to

achieve this result is quantified by the notion of ρ-KLDP (Kullback-Leibler Differential Privacy),

for a sufficiently small value of ρ . Our analysis is nearly tight for the CKKS scheme, in the sense

that if one uses a substantially smaller amount of noise, we are able to exhibit an attack that breaks

IND-CPAD security (Theorem 3.4.5).

3.2 FHE Preliminaries

We recall some notions and known results.

3.2.1 Bit Security

We use the notion of bit security from Micciancio and Walter [2018], which we briefly review

below.

Definition 3.2.1 (Indistinguishability Game). Let {D0
θ
}θ , {D1

θ
}θ be two distribution ensembles.

The indistinguishability game is defined as follows: the challenger C chooses b←U ({0,1}). At

any time after that the adversary A may send (adaptively chosen) query strings θi to C, and obtain

samples ci←Db
θi

. The goal of the adversary is to output b′ = b.
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Definition 3.2.2 (Bit Security). For any adversary A playing an indistinguishability game G , we

define its

• output probability as αA = Pr[A 6=⊥], and its

• conditional success probability as β A = Pr[b′ = b|A 6=⊥],

where the probabilities are taken over the randomness of the entire indistinguishability game

(including the internal randomness of A). We also define A’s

• conditional distinguishing advantage as δ A = 2β A−1, and

• the advantage of A as advA = αA(δ A)2.

The bit security of the indistinguishability game is minA log2
T (A)
advA , where T (A) is the running time

of A.

As argued in Micciancio and Walter [2018], this is the correct way to define bit security for

decision problems. Notice quadratic scaling with δ A, rather than the linear scaling used for search

problems. For additional motivation for the quadratic dependency, we note it matches known sample

complexity lower bounds for distinguishing distributions that are close in the total variation distance,

see Section 5.2 of Canonne [2020].

Lemma 3.2.3 (Lemma 2 of Micciancio and Walter [2018]). Let Hi be k distributions and Gi, j

be the indistinguishability game instantiated with Hi and H j. Let C be a fixed constant. Let

εi, j = maxA advA over all adversaries A against Gi, j with T (A)≤C. Then ε1,k ≤ 3k ∑
k−1
i=1 εi,i+1.

The two distributions to be distinguished in a game G sometimes both post-process samples

from some other probability ensamble Pθ . The following theorem bounds the loss of bit security

of G if we replace P with another distribution Q.

Theorem 3.2.4 (Theorem 8 of Micciancio and Walter [2018]). Let G P be an indistinguisha-

bility game with black-box access to a probability ensemble Pθ . If G Pθ is κ-bit secure, and

maxθ D(Pθ ||Qθ )≤ 2−κ+1, then G Qθ is (κ−8)-bit secure.
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The aforementioned theorem is stated more generally in Micciancio and Walter [2018]. Our

specialization of it requires that δ (P||Q) =
√

D(P||Q)/2 is what Micciancio and Walter [2018]

calls a λ -efficient measure, which is implicit in Bai et al. [2018] and Pöppelmann et al. [2014].

We will need a few novel bounds on the quantities previously mentioned in this sub-section.

These bounds are simplest to describe in terms of the following divergence.

Definition 3.2.5 (Bit Security Divergence). Let X ,Y be random variables supported on X . The

bit security divergence between X and Y is the quantity

δBS(X ,Y ) = sup
S⊆X

PrX [S]+PrY [S]
2

∆(X |S,Y |S)2 ,

where X |S,Y |S are the conditional distributions of X ,Y , conditioned on the event S.

It is straightforward to verify that this is indeed a divergence, and moreover it is symmetric

(which is why we write δBS(·, ·) rather than δBS(·||·)). It is not a metric, as the O(k) factor in Lemma

3.2.3 is known to be tight, which is incompatible with δBS(·, ·) satisfying a triangle inequality.

δBS(·, ·) captures the advantage of an optimal (potentially computationally unbounded) adversary

that aborts on the set Sc, and therefore can be seen as an extension of the standard total variation

distance to the framework of Micciancio and Walter [2018]. We will need the following novel

Pinsker-like bound on this quantity.

Lemma 3.2.6. Let X ,Y be random variables supported on X. Then δBS(X ,Y )≤ D(X ||Y )/2.

We can use this to bound the advantage of computationally unbounded adversaries in the

indistinguishability game.

Lemma 3.2.7. Let G be the indistinguishability game instantiated with distribution ensembles

{Xθ}θ ,{Yθ}θ , where θ ∈Θ. Let q ∈ N. Then, for any (potentially computationally unbounded)

adversary A making at most q queries to its oracle, we have that

advA ≤ q
2

max
θ∈Θ

D(Xθ ||Yθ ). (3.2)
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Proof. View an (adaptive) adversary as an arbitrary distribution on query-response pairs X
θ̂

:=

((θ̂1,Xθ̂1
), . . . ,(θ̂q,Xθ̂q

)) (and similarly for Y
θ̂

). We then have that

advA ≤ δBS(Xθ̂
,Y

θ̂
)≤ 1

2
D(X

θ̂
,Y

θ̂
)≤ 1

2

∥∥∥D̂(X
θ̂
,Y

θ̂
)
∥∥∥

1
≤ q

2
max
θ∈Θ

D(Xθ ||Yθ ). (3.3)

3.2.2 Fully Homomorphic Encryption

We briefly review definitions related to FHE. For simplicity, we focus on public-key setting. In

all our definitions, we denote the security parameter using κ .

Definition 3.2.8 (FHE Scheme). A (public-key) homomorphic encryption scheme with plaintext

space M , ciphertext space C , public key space PK , secret-key space S K , and space of

evaluatable circuits L is a tuple of four probabilistic polynomial-time algorithms

KeyGen : 1N→PK ×S K

Enc : PK ×M → C

Dec : S K ×C →M

Eval : PK ×L ×C → C

Typically the public key naturally splits into two components, one used by Enc and one used by

Eval. This separation is used to minimize the storage requirements of encryption (as the evaluation

key is often quite large), and has no impact on security, so for simplicity we model both Enc and

Eval as taking as input the same public key.

Standard FHE schemes are expected to satisfy the following notion of correctness.

Definition 3.2.9 (Correctness). An FHE scheme Π = (KeyGen,Enc,Dec,Eval) is correct for some

class of circuits L if for all m1, . . . ,mk ∈M , for all C ∈L , for all (pk,sk)← KeyGen(1κ), we

have that

Decsk(Evalpk(C,Encpk(m1), . . . ,Encpk(mk))) =C(m1, . . . ,mk). (3.4)
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One can relax the notion of correctness to statistical correctness, where the above identity only

holds with high probability (over the random coins of Enc and Eval). We will not make a distinction

between these two notions.

The work Cheon et al. [2017] introduced an “approximate” FHE scheme (CKKS), for which

Equation (3.4) does not hold. The security implications of this relaxation are investigated in Li and

Micciancio [2021], as discussed below. However, neither Cheon et al. [2017] nor Li and Micciancio

[2021] provide a formal definition of an “approximate” FHE scheme, and instead simply drop the

correctness requirement (3.4) without any further restriction. This is despite the CKKS scheme

satisfying an approximate version of the correctness property of Equation (3.4).

The definition of approximately correct FHE scheme plays a fundamental role in our work.

Informally, an approximately correct FHE scheme allows for meaningful, but inexact, computation

on encrypted messages. To formalize the relaxed correctness requirements of an approximately

correct FHE scheme, we first define the ciphertext error, which specifies the extent to which a

homomorphic computation fails to be exact.

Definition 3.2.10 (Ciphertext Error). Let Π = (KeyGen,Enc,Dec,Eval) be an FHE scheme with

message space M ⊆ M̃ , which is a normed space with norm ‖·‖ : M̃ → R≥0. For any ciphertext

ct, secret key sk, and message m, the ciphertext error of (ct,m,sk) is defined to be

Error(ct,m,sk) = ‖Decsk(ct)−m‖ . (3.5)

Typically, for some circuit C∈L , key pair (pk,sk)←KeyGen(1κ), and input values m1, . . . ,mk ∈

M , one is interested in the quantity Error(ct,m,sk) for

m =C(m1, . . . ,mk), and, ct= Evalpk(C,Encpk(m1), . . . ,Encpk(mk)),

i.e. where m and ct correspond to the same computation done on plaintexts and ciphertexts.

In this work we investigate two distinct correctness properties for approximate homomorphic

encryption. The first is implicit in the literature on CKKS. We call this notion “static” because it
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does not rely on dynamic estimates of ciphertext error.

Definition 3.2.11 (Static Approximate Correctness). Let Π be an FHE scheme with message space

M ⊆ M̃ , which is a normed space with norm ‖·‖ : M̃ → R≥0. Let L be a space of circuits,

Lk ⊆L the subset of parity k circuits, and let Estimate :
⊔

k∈NLk×Rk
≥0→ R≥0 be an efficiently

computable function. We call the tuple Π̃ = (Π,Estimate) a statically approximate FHE scheme if

for all k ∈ N, for all C ∈Lk, for all (pk,sk)← KeyGen(1κ), if ct1, . . . ,ctk and m1, . . . ,mk are such

that Error(cti,mi,sk)≤ ti, then

Error(Evalpk(C,ct1, . . . ,ctk),C(m1, . . . ,mk),sk)≤ Estimate(C, t1, . . . , tk).

Note that the type signature
⊔

k∈NLk×Rk
≥0 → R≥0 encodes that Estimate takes as input a

circuit C, and an error bound ti for each of the k input wires to the circuit C ∈Lk. This correctness

notion is “static” in the sense of static typing. In particular, Estimate only depends on

• the computation C to be done, and

• error bounds ti for the inputs to the homomorphic computation.

All of these quantities are publicly computable given an abstract description of a computation,

and (for non-adaptive computations) can even be precomputed (say by an FHE “compiler”).

Generally Estimate(·) either computes a (provable) worst-case bound on the error, or a (heuristic)

average-case bound. This thesis assumes worst-case bounds. Approximate FHE schemes often

require that all m1, . . . ,mk are of bounded norm — this can be captured in the above definition by

choosing M to be a set of bounded norm.

Security

We use the following security definition, proposed in Li and Micciancio [2021], which properly

captures security of approximate FHE schemes against passive attacks.
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Algorithm 10. Oracles for the IND-CPAD game.

initialization

(pk,sk)← KeyGen(1κ)

global state

S← /0

i← 0

Eb
pk(m0,m1) :=

ct← Encpk(mb)

S[i]← (m0,m1,ct)

i← i+1

return ct

Hb
pk(g,J = ( j1, . . . , jk)) :=

ct← Evalpk(g,S[ j1].ct, . . . ,S[ jk].ct)

gm0← g(S[ j1].m0, . . . ,S[ jk].m0)

gm1← g(S[ j1].m1, . . . ,S[ jk].m1)

S[i]← (gm0,gm1,ct)

i← i+1

return ct

Db
sk(i) :=

if S[i].m0 = S[i].m1

return Decsk(S[i].ct)

else

return ⊥

Definition 3.2.12 (IND-CPAD Security, Li and Micciancio [2021]). Let Π=(KeyGen,Enc,Dec,Eval)

be a FHE scheme. We define the IND-CPAD game to be an indistinguishability game parameterized

by distribution ensembles {(Eb
θ
,Hb

θ
,Db

θ
)}θ for b ∈ {0,1}, where these oracles are the (stateful1)

oracles given in Algorithm 10. The scheme Π is κ-bit IND-CPAD-secure if for any A, we have that

κ ≤ log2
T (A)
advA , where advA is as in Definition 3.2.2.

In Li and Micciancio [2021] it is also shown that for FHE schemes satisfying the standard

correctness requirement (3.4), IND-CPAD security is equivalent to the traditional formulation of

indistinguishability under chosen plaintext attack (IND-CPA), defined as follows.

Definition 3.2.13 (IND-CPA Security). Let Π = (KeyGen,Enc,Dec,Eval) be a FHE scheme. We

define the IND-CPA game to be an indistinguishability game parameterized by distribution ensem-

bles {Eb
θ
}θ for b ∈ {0,1} of Algorithm 10. The scheme Π is κ-bit IND-CPA-secure if for any A,

1As a standard convention, if at any point in a game the adversary makes an invalid query (e.g., a circuit g not
supported by the scheme, or indices out of range), the oracle simply returns an error symbol ⊥.
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we have that κ ≤ log2
T (A)
advA , where advA is as in Definition 3.2.2.

We will additionally use weaker and stronger variants of IND-CPAD, informally defined as

follows:

• q-IND-CPAD security. This is the same as IND-CPAD security, but restricted to adversaries

that make at most q(κ) queries to oracle D.

• KRD security, or security against key recovery attacks. Here we modify the IND-CPAD game

by restricting2 the E oracle to queries of the form E(m,m), and requiring the adversary to

output (at the end of the attack) a secret key sk′, rather than the bit b′. The attack is successful

if sk= sk′.

KRD security is implied by IND-CPAD security, but it is much weaker, and it is not generally

considered a satisfactory notion of security. Here (as in Li and Micciancio [2021]), KRD security is

used exclusively to show that certain schemes are not secure, making the insecurity results stronger.

3.3 A Differentially Private Approach to IND-CPAD Security

In this section we investigate achieving q-IND-CPAD security for statically approximate,

IND-CPA-secure FHE schemes Π̃. Our approach is to post-process decryptions of Π̃ with an

appropriate notion of differential privacy. The noise added by this differentially private mechanism

will suffice to information-theoretically hide the ciphertext error, allowing us to reduce our analysis

to the case of exact FHE, where IND-CPA and q-IND-CPAD security are equivalent.

3.3.1 Our Notion of Differential Privacy

Our notion of differential privacy is a generalization of the notion of Rényi differential privacy

Mironov [2017] to different norms3. As the tightest bounds in our setting occur in the simplest4

2This is without loss of generality, as the only point of general queries E(m,m′) is to get information correlated with
the secret bit b, which the game does not depend on.

3In Differential Privacy, “adjacent” values are typically measured in the Hamming norm, while for our purposes the
`2 and `∞ norms are of primary interest.

4There is an alternative simplification of the Rényi divergence when α = ∞ known as the max-log distance
Micciancio and Walter [2017] with desirable properties, for example it is a metric, similarly to the statistical distance.
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case when α = 1, we present things solely in terms of this Rényi divergence, i.e. the KL divergence.

Definition 3.3.1 (Norm KL Differential Privacy). For t ∈ R≥0, let Mt : B→ C be a family of

randomized algorithms, where B is a normed space with norm ‖·‖ : B→ R≥0. Let ρ ∈ R be a

privacy bound. We say that the family Mt is ρ-KL differentially private (ρ-KLDP) if, for all x,x′ ∈ B

with ‖x− x′‖ ≤ t,

D(Mt(x)||Mt(x′))≤ ρ. (3.6)

Note that our mechanism M depends on a bound on the distance ‖x− x′‖ ≤ t, which it uses

(internally) to set parameters to meet the desired privacy bound. In the most common case of

Gaussian noise, it will use noise of standard deviation σ = Ω(2κ/2t) to achieve κ-bit security

(Corollary 3.3.8).

As ‖x− x′‖= ‖x′− x‖ is itself symmetric, our definition is invariant under replacing D(D0||D1)

with max(D(D0||D1),D(D1||D0)), and is therefore implicitly dependent on this larger (symmetric)

measure, although we do not make this explicit in our work.

Algorithm 11. The FHE Scheme M[Π̃]

Enc′pk(m) :=

c← Encpk(m)

return ct= (c, te)

Eval′pk(C,ct′1, . . . ,ct
′
k) :=

c← Evalpk(C,ct1.c, . . . ,ctk.c)

t← Estimate(C,ct1.t, . . . ,ctk.t)

return ct= (c, t)

Dec′sk(ct) :=

return Mct.t(Decsk(ct.c))

Definition 3.3.2. Let Π = (KeyGen,Enc,Dec,Eval) be an FHE scheme with plaintext space M ⊆

M̃ , where M̃ is a normed space with norm ‖·‖. Let Estimate be such that Π̃ = (Π,Estimate) is

statically approximate, and let te be an upper bound on ciphertext errors of all fresh encryptions

As our bounds degrade linearly in α as α → ∞, this notion is unsuitable for our situation.
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Encpk(m) for all m ∈M . Let Mt be a ρ-KLDP mechanism on M̃ . Define the FHE scheme M[Π̃]

that has an identical KeyGen algorithm to Π, with the modified algorithms Enc′pk,Eval
′
pk, and Dec′sk

of Algorithm 11.

In the above definition of the scheme M[Π̃], we use the “tagged ciphertext” notation ct= (c, t),

where c is an ordinary ciphertext and t is an estimated ciphertext error upper bound. An initial

estimation te is provided by the encryption algorithm, and the evaluation algorithm updates the

error upper bound using Estimate(·) such that the resulting scheme is a statically approximate FHE

scheme.

Algorithm 12. The decryption oracle for the game G1 of Theorem 3.3.3.

D(i) :=

if S[i].m0 = S[i].m1

ti← S[i].ct.t

return Mti(S[i].m0)

else

return ⊥

Theorem 3.3.3. Let Π= (KeyGen,Enc,Dec,Eval) be an FHE scheme with plaintext space M ⊆ M̃ ,

where M̃ is a normed space with norm ‖·‖. Let Estimate be such that Π̃=(Π,Estimate) is statically

approximate. Let κ > 0, let Mt be a ρ-KLDP mechanism on M̃ where ρ ≤ 2−κ−7/q, and let q ∈ N.

If Π is (κ + 8)-bit secure in the IND-CPA game, then M[Π̃] is κ-bit secure in the q-IND-CPAD

game.

Proof. The theorem follows from combining Lemma 3.2.7 and Theorem 3.2.4.

3.3.2 Gaussian Mechanism

In this section, we present and analyze a differentially private mechanism Mt which simply adds

Gaussian noise to its input.
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Definition 3.3.4. Let µ ∈ Z, and σ > 0. The discrete Gaussian of parameters µ,σ (written

NZ(µ,σ
2)) is the probability distribution supported on Z with p.m.f. p(x) ∝ exp(−(x−µ)2/2σ2).

It is known how to (with high probability) exactly sample from this distribution in constant time

Canonne et al. [2020].

Proposition 3.3.5 (Prop. 5 of Canonne et al. [2020]). Let σ ∈ R≥0, and let µ,ν ∈ Z. Then:

D(NZ(µ,σ
2)||NZ(ν ,σ

2)) =
(ν−µ)2

2σ2 . (3.7)

Definition 3.3.6. Let ρ > 0, and n ∈ N. Define the (discrete) Gaussian Mechanism Mt : Zn→ Zn

be the mechanism that, on input x ∈ Zn, outputs a sample from NZn(x, t2

2ρ
In).

Lemma 3.3.7. For any ρ > 0,n ∈ N, the Gaussian mechanism is ρ-KLDP.

Proof. Let X = NZn(x, t2

2ρ
In) and Y = NZn(y, t2

2ρ
In). By sub-additivity of the KL divergence and

Proposition 3.3.5, we have that D(X ||Y )≤ ‖D̂(X ||Y )‖1 =
ρ

t2 ‖x− y‖2
2 ≤ ρ .

Corollary 3.3.8. Let Π = (KeyGen,Enc,Dec,Eval) be an FHE scheme with plaintext space M ⊆

M̃ , where M̃ ⊆ Zn is a normed space with norm ‖·‖. Let Estimate be such that Π̃ = (Π,Estimate)

is a statically approximate FHE scheme. Let Mt be the Gaussian mechanism (with ρ := 2−κ−7/q).

If Π is (κ + 8)-bit secure in the IND-CPA game, then M[Π̃] is κ-bit secure in the q-IND-CPAD

game.

For ρ := 2−κ−7/q, one can check that the Gaussian mechanism adds noise of standard deviation

8
√

q2κct.t to each coordinate, so one loses κ/2+ 3+ log2
√

q+ log2 ct.t bits of precision. As

the ciphertext already contains log2 ct.t bits of noise, the additional precision lost by M[Π̃] is

κ/2+ log2
√

q+3 bits.

Proof. This reduces to combining Lemma 3.3.7 with Theorem 3.3.3. The size of the Gaussian

noise comes from ρ = ct.t2/2σ2 ⇐⇒ σ = 1√
2ρ
ct.t. As we need that ρ ≤ 2−κ−7/q, it follows that

σ ≥ 8
√

q2κ/2ct.t.
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This transformation does not explicitly depend on the underlying parameters of the particular

implementation of approximate encryption (for example, the size of the LWE moduli one is working

over, the dimension of the message space, etc.), and instead only implicitly depends on these

quantities via the computation of the static ciphertext error bound. We caution that to apply this

result to CKKS one needs to be slightly careful about the underlying norm one is working with,

which we do later in Theorem 3.4.3.

3.4 Application to CKKS

Prior work of Li and Micciancio [2021] shows that the approximate FHE scheme of Cheon

et al. [2017] does not satisfy IND-CPAD-security, even though it satisfies IND-CPA-security. We

refer the reader to Li and Micciancio [2021] for additional details, but at a high level they show that

publishing the results of an approximate FHE computation under CKKS leaks information about

the secret key, enabling a full key recovery attack in the case of trivial computation, and an attack

against IND-CPAD-security for more general homomorphic computation. In this section, we apply

Theorem 3.3.3 and Lemma 3.3.7 to give a modification of the CKKS decryption function that allows

us to prove IND-CPAD-security of the modified scheme.

We use the results of Section 3.3 to show that post-processing the results of the CKKS decryption

function with the Gaussian mechanism is sufficient to achieve IND-CPAD-security for the CKKS

scheme, for large enough Gaussian noise (Section 3.4.2). We also prove a nearly matching lower

bound on the Gaussian noise necessary to achieve IND-CPAD-security for the CKKS scheme

(Section 3.4.3).

3.4.1 The CKKS Approximate FHE Scheme

We begin with a few mathematical preliminaries necessary to the CKKS scheme. For any positive

integer N, let ΦN(X) = ∏ j∈Z∗N (X−ω
j

N) be the Nth cyclotomic polynomial, where ωN = e2π i/N ∈C

is the complex Nth principal root of unity, and Z∗N is the group of invertible integers modulo N. We
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recall that ΦN(X)∈Z[X ] is a monic polynomial of degree n= ϕ(N) = |Z∗N |with integer coefficients.

We denote by RN =Z[X ]/(ΦN(X)) the ring of integers of the number field Q[X ]/(ΦN(X)), omitting

the superscript when it is clear from context. We use RN
Q = Z[X ]/(Q,ΦN(X)) to denote the ring of

elements of RN reduced modulo Q.

An element a ∈ R[X ]/(ΦN(X)) may be embedded into Cn under the canonical embedding τ(a)

(typically defined over Q[X ]/(ΦN(X)), but naturally extending to R[X ]/(ΦN(X))). The map τ(a)

takes a to the n = ϕ(N) evaluations of a at the n roots of ΦN(X). Notice that these n values come in

conjugate pairs and can be identified as a vector in Cn/2 via a projection π : (z, z̄) 7→ z. So, complex

vectors in Cn/2 are considered as messages in CKKS, and they are encoded to plaintext polynomials

in R by composing π−1 and τ−1 together with a scaling factor; conversely, plaintexts are decoded

using τ ◦π . We define the canonical embedding norm ‖ · ‖can∞ of an element a ∈ R[X ]/(ΦN(X)) to

be ‖a‖can∞ = ‖τ(a)‖∞. We will use this norm to track the ciphertext error of CKKS ciphertexts.

We now present the relevant subroutines of the CKKS FHE scheme. We omit many details of

the CKKS scheme, and refer the reader to Cheon et al. [2017] for a more complete description.

The CKKS scheme is parameterized by a plaintext dimension n/2 (typically a power-of-two), a

ciphertext modulus Q, and a discrete Gaussian error distribution χ with standard deviation σ .

• CKKS.KeyGen(1κ): Take w = w(κ) and p = p(κ,Q). To generate the secret key sk, sample

s← {s ∈ {−1,0,1}n : |s|0 = w} and take sk = (1,s). To generate the public key pk, sam-

ple a← RQ, e← χ , and take pk = (b = −as+ e,a). To generate the evaluation key ek,

sample a′←RpQ, e′← χ , and take ek= (b′,a′) for b′ =−a′s+ e′+ ps2 mod pQ. Return

(sk,pk,ek).

• CKKS.Encode(x ∈ Cn/2;∆): Return b∆ ·ϕ−1(x)e ∈R.

• CKKS.Encpk(m): Let T denote the distribution over {0,±1}n induced by sampling each

coordinate independently, drawing −1 with probability 1/4, 1 with probability 1/4, and 0 with

probability 1/2. Sample r← T , e0,e1← χ , and return r ·pk+(m+ e0,e1) mod Q.

• CKKS.Add(c0,c1 ∈RQ): Return c0 + c1 mod Q.
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• CKKS.Multek(c0,c1 ∈RQ): For c0 = (b0,a0) and c1 = (b1,a1), let (b2,a2) = (b0b1,a0b1 +

a1b0)+ bp−1 ·a0a1 · eke mod Q. Return (b2,a2).

• CKKS.Decode(a ∈R;∆): Return ϕ(∆−1 ·a) ∈ Cn/2.

• CKKS.Decsk(c): For c = (b,a) ∈R2
Q, return b+as mod Q.

Note that CKKS supports encryption and decryption of floating-point inputs by pre-processing

encryption with CKKS.Encode, and post-processing decryption with CKKS.Decode. All interme-

diate operations are then done with integer arithmetic. To simplify exposition, we focus on these

intermediate operations, and therefore restrict to the case of integer arithmetic.

We will need the following (standard) expressions for how the ciphertext error transforms during

addition and multiplication.

Lemma 3.4.1 (Error Growth Cheon et al. [2017]). Let c0 and c1 denote two CKKS ciphertexts,

with c0 = CKKS.Encpk(m0) and c1 = CKKS.Encpk(m1) with errors e0 and e1 respectively. Then

the ciphertext cMult = CKKS.Mult(c0,c1) has error m0e1 +m1e0 + e0e1 + eMult for a term eMult

that depends on the parameters of the CKKS instance (and the ciphertexts c0,c1). The ciphertext

cAdd = CKKS.Add(c0,c1) has error e0 + e1.

Certain authors have suggested various heuristics for analyzing eMult. We will find the following

one useful for the analysis of the attack of Section 3.4.3.

Heuristic 1 (Appendix A.5 of Gentry et al. [2012]). Let w be the hamming weight of sk. Then

eMult may be modeled as a random variable with mean zero and variance O(wn).

The rest of our work will benefit from the following notation.

Definition 3.4.2. For σ > 0, let S-CKKSσ be the CKKS encryption scheme, where one modifies

decryption to compute S-CKKSσ .Decsk(ct) = CKKS.Decsk(ct.c)+NZn(0,σ2ct.t2In).
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3.4.2 IND-CPAD-Secure CKKS

It is straightforward to apply Corollary 3.3.8 to CKKS to obtain q-IND-CPAD security.

Theorem 3.4.3. For any q ∈ N, if CKKS is (κ +8)-bit IND-CPA-secure, and σ = 8
√

qn2κ/2, then

S-CKKSσ is κ-bit q-IND-CPAD-secure, i.e. κ/2+ Õ(1) additional bits of Gaussian noise suffice to

achieve q-IND-CPAD security.

Proof. This follows immediately from Corollary 3.3.8, (using the aforementioned inequality

‖m‖can
∞
≤
√

n‖m‖2, as our analysis of the Gaussian mechanism uses an `2 norm bound).

3.4.3 Lower Bound for Gaussian Mechanism

Together, Lemma 3.3.7 and Theorem 3.3.3 give an upper bound on the amount of Gaussian noise

required to achieve IND-CPAD-security for an IND-CPA-secure approximate encryption scheme. In

this subsection, we show that this upper bound is essentially tight for CKKS by demonstrating an

attack against IND-CPAD security for noticeably smaller Gaussian noise, i.e. analyzing S-CKKSσs

for sanitization noise σs� 8
√

qn2κ/2. In what follows, recall that n = ϕ(N), and w denotes the

Hamming weight of the key sk.
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Algorithm 13. Adversary A(1κ ,pk,ek)

for i ∈ {0, . . . ,44} do

cti← Epk(m
(0)
i = 0,m(1)

i = B);

for i ∈ {45, . . . ,59} do

cti← Epk(m
(0)
i = 0,m(1)

i =−B);

ct60← Hek(g,{0, . . . ,59}) for g(x0, . . . ,x59) = ∑
29
i=0(xi · x30+i)

m′← Dsk(60)

V0 = 30σ4 +O(wn)+σ2
s Variance of τ(m′)0 if b = 0

V1 = 30σ4 +60B2σ2 +O(wn)+σ2
s Variance of τ(m′)0 if b = 1

if |τ(m′)0|<
√

log(V1/V0)V0V1
V1−V0

then

return 0

else

return 1

At a high level, the adversary A will exploit the message-dependence of the S-CKKS error

growth (Lemma 3.4.1) to design an H query such that the expected magnitude of the ciphertext error

of ct60 is larger when b = 1 than when b = 0. The adversary A will then query D on this ciphertext,

and choose its bit based on the size of the message m′ it receives.

We will next show that the aforementioned adversary will have noticeable advantage unless σs

is larger than σ (the standard deviation of the underlying RLWE error) by a factor super-polynomial

in the security parameter.

Lemma 3.4.4. Let σs > 0. Then there exists an adversary A against S-CKKSσs in the IND-CPAD

such that advA = Ω

(
1

σ4
s n6

)
.

Proof. We first observe that the ciphertext ct60 = Evalek(g,{0, . . . ,59}) is an approximate encryp-

tion of 0 both when b = 0 and b = 1 in the IND-CPAD experiment. Therefore the decryption query

made by A returns a value rather than ⊥.

If b = 0, then because all ciphertexts cti encrypt messages mi = 0, the message-dependent
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terms of the error growth from Lemma 3.4.1 are also 0, and so the ciphertext error of ct60 is

∑
29
i=0 eMult+ eie30+i, where ei denotes the ciphertext error of cti. Recall that if error vectors e and e′

have entries sampled from a discrete Gaussian with parameter σ , then each of the components of

τ(ee′) is distributed with mean 0 and variance σ4. We can then use the Central Limit Theorem to

approximate the distribution of the sum ∑
29
i=0 eMult+ eie30+i as a Gaussian distribution with mean

0 and variance 30σ4 +O(wn). Note that this approximation can be improved by increasing the

number of terms in the sum to a larger constant. For the sake of concreteness we have designed the

adversary such that there are 30 terms, as this is the value at which the Central Limit Theorem is

empirically justified.

If b = 1, then the message-dependent terms of the error growth are significant, and the error of

ct60 is
14

∑
i=0

(eMult+ eie30+i +Bei +Be30+i)+
29

∑
i=15

(eMult+ eie30+i−Bei +Be30+i) .

As in the case where b = 0, we will approximate this distribution as a Gaussian with mean 0.

Though the error terms eie30+i and Bei +Be30+i are not independent, they do have covariance 0, as

do the terms eie30+i and Be30+i−Bei, and so we can approximate the sum of errors as being drawn

from a discrete Gaussian distribution with mean 0 and variance 30σ4 +60B2σ2 +O(wn).

The adversary sees the result of post-processing the error term with the Gaussian mechanism,

run with parameter σs, and then chooses its bit to return based on the absolute value of the first

component τ(m′)0 under the canonical embedding. When b = 0, this means the adversary sees a

sample drawn from a distribution that is well-approximated by a centered Gaussian with variance

V0 = 30σ4 +O(wn)+σ2
s ct.t

2. When b = 1, however, the adversary sees a sample drawn from

a distribution that is well-approximated by a Gaussian with the same mean, but larger variance

V1 = 30σ4 +60B2σ2 +O(wn)+σ2
s ct.t

2. Let

x =

√
log(V1/V0)V0V1

V1−V0
.

A straightforward calculation shows that for |τ(m′)0|< x, m′ is a more likely outcome when b = 0
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than when b = 1, and when |τ(m′)0| ≥ x, m′ is at least as likely when b = 1 as it is when b = 0. Then

we have that the advantage of adversary A is approximately the total variation distance between a

Gaussian with variance V0 and a Gaussian with variance V1. By Lemma 1.1.6, we have that

∆(N (0,V0),N (0,V1))≥
1

200
|V0−V1|

V0
∈Θ

(
B2σ2

σ4 +wn+σ2
s ct.t2

)
.

Recall that w is the hamming weight of the secret key sk, and so we have w < n. For security, we

know that
√

n < σ , and so it follows that the advantage of our (non-aborting) adversary A against

the IND-CPAD security of CKKS is the square of the total variation distance, i.e. Θ

(
B4σ4

(σ4+σ2
s ct.t2)2

)
.

Finally, note that for ‖ei‖can∞
< σn holds with high probability, so ct.t ≤ O(Bσn3/2) (where we

pick up a
√

n factor to convert to the `2 norm), and therefore the advantage of our adversary is

Θ

(
B4σ4

σ8+σ4
s σ4B4n6

)
= Ω

(
1

σ4
s n6

)
.

Theorem 3.4.5. If S-CKKSσs is κ-bit IND-CPAD-secure, then σs = Ω(2κ/4/n3/2), i.e. one must

add at least κ/4− Ω̃(1) bits of additional Gaussian noise.

Proof. We have that κ ≤ log2 O
(

T (A)
advA

)
≤ log2 O(σ4

s n6) =⇒ σs ≥ 2κ/4/n3/2, and therefore κ/4−

log2 Ω(n3/2)≤ log2 σs.

We therefore see that while one can potentially improve on the parameters for post-processing

noise given in Theorem 3.4.3, the main (exponential) term is tight to within constant factors.

This chapter, in full, has been submitted for publication of the material as it may appear in

Advances in Cryptology - CRYPTO 2022. Li, Baiyu; Micciancio, Daniele; Schultz, Mark; Sorrell,

Jessica. “Securing Approximate Homomorphic Encryption Using Differential Privacy”. The

dissertation author was the primary investigator and author of this material.
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Chapter 4

Reproducibility in Learning

4.1 Introduction

Reproducibility is vital to ensuring scientific conclusions are reliable, and researchers have an

obligation to ensure that their results are replicable. In the last twenty years, lack of reproducibility

has been a major issue in nearly all scientific areas of study. For example, a 2012 Nature article by

Begley and Ellis reported that the biotechnology company Amgen was only able to replicate 6 out

of 53 landmark studies in haematology and oncology Begley and Ellis [2012]. In a 2016 Nature

article, Baker published a survey of 1500 researchers, reporting that 70% of scientists had tried and

failed to replicate the findings of another researcher, and that 52% believed there is a significant

crisis in reproducibility Baker [2016].

A key issue underlying the reproducibility crisis (as articulated in many articles, e.g., Ioannidis

[2005]) is the fact that new data/publications are growing at an exponential rate, giving rise to an

explosion of methods for data generation, screening, testing, and analysis, where, crucially, only

the combinations producing the most significant results are reported. Such practices (also known

as P-hacking, data dredging, and researcher degrees of freedom) can lead to erroneous findings

that appear to be significant, but that don’t hold up when other researchers attempt to replicate

them. Identifying and mitigating these problems is quite subtle. First, is not easy to come up with

an agreed-upon set of practices that guarantees reproducibility, and secondly, testing to determine

whether or not a finding is statistically significant is a complex task.
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Within the subfields of machine learning and data science, there are similar concerns about

the reliability of published findings. The performance of models produced by machine learning

algorithms may be affected by the values of random seeds or hyperparameters chosen during

training, and performance may be brittle to deviations from the values disseminated in published

results Henderson et al. [2017], Islam et al. [2017], Lucic et al. [2018]. To begin addressing

concerns about reproducibility, several prominent machine learning conferences have begun hosting

reproducibility workshops and holding reproducibility challenges, to promote best practices and

encourage researchers to share the code used to generate their results Pineau et al. [2020].

In this work, we aim to initiate the study of reproducibility as a property of algorithms themselves,

rather than the process by which their results are collected and reported. We define the following

notion of reproducibility, which informally says that a randomized algorithm is reproducible if two

distinct runs of the algorithm on two sets of samples drawn from the same distribution, with internal

randomness fixed between both runs, produces the same output with high probability.

Definition 4.1.1 (Reproducibility). Let D be a distribution over a universe X , and let A be a

randomized algorithm with sample access to D. A (s) is ρ-reproducible if

Prs1,s2,r [A (s1;r) = A (s2;r)]≥ 1−ρ,

where s1 and s2 denote sequences of samples drawn i.i.d. from D, and r denotes a random binary

string representing the internal randomness used by A .

Our definition of reproducibility is inspired by the literature on pseudodeterministic algorithms,

particularly the work of Grossman and Liu Grossman and Liu [2019] and Goldreich Goldreich

[2019]. In the pseudodeterministic setting, the primary concern is reproducing the output of an

algorithm given the same input, over different choices of the algorithm’s internal randomness. Our

notion (Definition 4.1.1) is more suitable for the setting of machine learning, where it is desirable to

reproduce the exact same output of an algorithm (with high probability) over different sample sets

drawn from a distribution D.
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We observe the following key properties of Definition 4.1.1.

Stability. Reproducibility is a strong stability property that implies independent parties can

replicate previous results with high probability, so long as the randomness used to achieve these

results is made public. For researchers solving machine learning and data analysis tasks, repro-

ducibility allows researchers to verify published results with high probability, as long as the datasets

are drawn from the same distribution.

Generalization. Reproducibility implies generalization. A reproducible learning algorithm,

with high probability, outputs a hypothesis h such that the difference between the risk of h and

the empirical risk of h on the training set is small. Intuitively, reproducibilitiy implies that h is

independent of the training set with high probability. Thus, a Hoeffding bound can be applied to

bound the risk in terms of the empirical risk.

Privacy. Differential privacy (DP) is an important notion that requires small distance between

the two distributions induced by an algorithm, when run on any two datasets that differ in a

single element. Crucially, it asks for the guarantees in the worst case over datasets. Reproducible

algorithms guarantee a different form of privacy: If A is reproducible, then what A learns (for

example, a trained classifier) is almost always the same; thus, A is usually independent of the

chosen training data. In this way, reproducible algorithms are prevented from memorizing anything

that is specific to the training data, similar to differentially private algorithms. Reproducibility

is weaker than differential privacy in the sense that reproducibility only applies to in-distribution

samples, whereas differential privacy applies to any training set. On the other hand, reproducibility

is stronger in the sense that its guarantee for in-distribution samples is global rather than local (for

neighboring samples).

Testability. While differential privacy has become the standard for privacy-preserving computa-

tion, an important issue that is the subject of extensive research is testing and verifying differential

privacy. As discussed in Gaboardi et al. [2020], DP-algorithms and their implementations are

usually analyzed by hand, and proofs of differential privacy are often intricate and prone to errors.

Implementing such an algorithm in practice often gives rise to DP leaks, due to coding errors or
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assumptions made in the proof that do not hold on finite computers (such as the ability to sample

from continuous distributions). Moreover, the complexity of verifying differential privacy is hard.

Verification in the black-box setting (where the auditor has oracle access to the learning algorithm)

was recently shown to be infeasible, as low query complexity implies high values of the the privacy

parameters ε and δ Gilbert and McMillan [2018]. In the white-box setting where A is given to the

tester, Gaboardi et al. [2020] shows that testing for differential privacy is coNP#P-complete. This

has led to an active research area aiming at developing automated as well as interactive testing and

verification methods for differential privacy Narayan et al. [2015], Gaboardi et al. [2013], Reed and

Pierce [2010], Albarghouthi and Hsu [2018], Barthe et al. [2015, 2021], Fredrikson and Jha [2014],

Zhang and Kifer [2017]. In contrast, reproducibility is a form of privacy that can be efficiently tested

in (randomized) polynomial time (in the dimension of the data universe and ρ).

4.1.1 Contributions

Reproducibility: Properties and Alternative Definitions

We discuss alternative definitions of reproducibility and show that they are all essentially

equivalent. Then, we also prove some other nice properties of reproducible algorithms. (All formal

statements and proofs are in Section 4.8.)

1. Alternative Definitions and Amplification. We start by discussing two alternative definitions

of reproducibility and relate them to our definition. First, we can generalize the definition to

include algorithms A that not only have access to internal randomness and to random samples

from an underlying distribution D, but that also have access to extra non-random inputs. This

more general definition captures both the original definition of pseudodeterministic algorithms

as well as our definition of reproducible learning algorithms, and all of our results remain

unchanged. Second, we discuss an alternative two-parameter definition, and show that the

definitions are qualitatively the same. We show how to amplify the reproducibility parameter

by a standard argument where the sample complexity is increased modestly.
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2. Public versus Private Randomness. Recall that we define reproducibility as the probability

that an algorithm returns the same answer when run twice using different random samples

from D but the same internal randomness. In Grossman and Liu [2019], the authors define

a related concept in which the internal randomness is divided into two pieces, public and

private randomness, but the algorithm should return the same answer when just the public

randomness is held fixed. We show that, without loss of generality, it suffices to use only

public randomness.

3. Reproducibility Implies Generalization. Learning algorithms attempt to use finite samples

to generate hypotheses on unknown, possibly complex distributions. The error of a hypothesis

h on the underlying distribution is called the generalization error. A reproducible algorithm

outputs the same hypothesis with high probability, and thus the algorithm seldom draws

distinctions between specific samples and the entire distribution.

4. Connections to Data Reuse. We explore the connection between reproducible algorithms

and the adaptive data analysis model discussed in Dwork et al. [2015b] and Dwork et al.

[2015a]. We show that reproducible algorithms are strongly resilient against adaptive queries.

Informally, with respect to reproducible algorithms, the sample complexity and accuracy

of (reproducibly) answering m adaptively chosen queries behaves similarly to the sample

complexity and accuracy of reproducibly answering m nonadaptively chosen queries.

Upper Bounds

Our main technical results are reproducible algorithms for some well-studied statistical query

and learning problems that are used as building blocks in many other algorithms.

1. Simulating SQ Algorithms. In Section 4.3, we give a generic algorithm that reduces the

problem of ρ-reproducibly estimating a single statistical query with tolerance τ and error δ

to that of nonreproducibly estimating the same query within a smaller tolerance and error.

Theorem 4.1.2 (Theorem 4.3.3, Restated). Let ψ : X →{0,1} be a statistical query. Then

the sample complexity of ρ-reproducibly estimating ψ within tolerance τ and error δ is at

80



most the sample complexity of (nonreproducibly) estimating ψ within tolerance τ ′ = τρ and

error δ ′ = τδ .

The basic idea is to obtain an estimate of the statistical query with a smaller tolerance τ ′ and

then use a randomized rounding scheme where the interval [0,1] is divided into intervals of

size roughly τ/ρ . Then, every value in the interval is rounded to the midpoint of the region

it occurs in. The partition into intervals is chosen with a random offset so that with high

probability nearby points will lie in the same region.

2. Heavy-hitters. Using our simulation of SQ queries, in Section 4.4, we demonstrate the

usefulness of reproducibility by giving a reproducible algorithm rHeavyHitters for iden-

tifying approximate v-heavy-hitters of a distribution, i.e. the elements in the support of the

distribution with probability mass at least v.

Lemma 4.1.3 (Lemma 4.4.3, Restated). For all ε ∈ (0,1/2), v ∈ (ε,1− ε), with probability

at least 1−ρ , rHeavyHittersρ,v,ε is ρ-reproducible, and returns a list of v′-heavy-hitters

for some v′ ∈ [v− ε,v+ ε]. Furthermore, the sample complexity is bounded by Õ(ρ−2).

The high level idea of our algorithm is to first draw sufficiently many samples, s1, Q1 = |s1|,

so that with high probability all heavy-hitters are in s1. In the second stage, we draw a fresh

set s2 of Q2 many samples and use them to empirically estimate the density of each element

in s1, and remove those that aren’t above the cutoff v′, where v′ is chosen randomly from

[v− ε,v+ ε] to avoid boundary issues.

3. Median Finding. In Section 4.5, we design a reproducible algorithm for finding an approxi-

mate median in an arbitrary distribution over a finite domain. Approximate median finding is a

fundamental statistical problem, and is also extensively studied in the privacy literature. Like

in the setting of differential privacy, reproducible median finding is a key building block for

making other algorithms reproducible. For example, using a known reduction from Bun et al.
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[2015], a ρ-reproducible approximate median algorithm implies an algorithm of comparable

sample complexity for reproducibly PAC-learning (one-dimensional) threshold functions.

Theorem 4.1.4 (Theorem 4.5.8, Restated). Let τ,ρ ∈ [0,1] and let δ = 1/3. Let D be a

distribution over X , where |X | = 2d . Then rMedianρ,d,τ,δ is ρ-reproducible, outputs a

τ-approximate median of D with success probability 1−δ , and has sample complexity

Ω̃

((
1

τ2(ρ−δ )2

)
·
(

3
τ2

)log∗ |X |
)

To describe the key ideas in the algorithm, we first show how approximate-median finding is

useful for turning many algorithms into reproducible ones. Consider any problem where the

correct answers form an interval, and assume we start with a (not-necessarily) reproducible

algorithm that is mildly accurate. Then we can run a reproducible approximate-median

finding algorithm on the distribution of outputs of the original algorithm to construct a very

accurate reproducible algorithm.

We will actually use this strategy recursively to reproducibly solve approximate median itself.

Our algorithm recursively composes a mildly accurate reproducible median algorithm with

a generic very accurate non-reproducible median algorithm. This recursive technique is

inspired by, but simpler than, previous algorithms in the privacy literature Bun et al. [2015],

Kaplan et al. [2020], and like these algorithms, the sample complexity of our algorithm has a

non-constant but very slowly growing dependence on the domain size.

4. Learning Halfspaces. In Section 4.6, we obtain a reproducible algorithm rHalfspaceWkL

for weakly learning halfspaces. In Section 4.7, we transform it into a reproducible strong

learner by way of a reproducible boosting algorithm rBoost. We stress that our algorithms

for halfspaces are reproducible in the stronger distribution-free setting.

Theorem 4.1.5 (Corollary 4.7.5, Restated). Let D be a distribution over Rd , and let f : Rd→

{±1} be a halfspace with margin τ in D. For all ρ,ε > 0. Algorithm rBoost run with weak
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learner rHalfspaceWkL ρ-reproducibly returns a hypothesis h such that, with probability

at least 1−ρ , Prx∼D[h(x) = f (x)]≥ 1− ε . Furthermore, the overall sample complexity is

Õ
(

d10/9

τ76/9ρ20/9ε28/9

)
.

Our approximate median algorithm for answering statistical queries can be used to repro-

ducibly learn 1-dimensional halfspaces using a known reduction from Bun et al. [2015]. At

a high level, this algorithm started with an SQ algorithm with tight concentration/tolerance,

and we then applied a randomized rounding scheme in order to argue that the reproducibility

of the resulting algorithm. In order to reproducibly learn higher dimensional thresholds (half-

spaces), we will follow a similar approach. We start with a simple weak learning algorithm

for halfspaces Servedio [2002] that takes examples (xi,yi) ∈X ×{±1}, normalizes them,

and returns the halfspace defined by vector ∑i xi · yi. We show a concentration bound on the

sum of normalized vectors from a distribution, and then argue that all vectors within the

concentration bound are reasonable hypothesis with non-negligible advantage.

Our randomized rounding scheme is a novel application of the randomized rounding technique

developed in the study of foams Kindler et al. [2012]. The concentration bound together

with the foams rounding scheme Kindler et al. [2012] yields a reproducible halfspace weak

learner. We then obtain our reproducible strong learner for halfspaces by combining it with

a (new) reproducible boosting algorithm. Our algorithm is sample efficient but inefficient

with respect to runtime, due to the inefficiency of the foams rounding scheme. We also give

another randomized rounding procedure that gives a polynomial-time strong reproducible

halfspace learner, but with polynomially larger sample complexity.

The Price of Reproducibility.

In Section 4.9 we ask what is the cost of turning a nonreproducible algorithm into a reproducible

one. We first show that a τ-tolerant ρ-reproducible SQ algorithm A for φ implies a ρ-reproducible

algorithm for the τ-coin problem: given samples from a p-biased coin with the promise that either

p≥ 1/2+ τ or p≤ 1/2− τ , determine which is the case. Our main result in this section are nearly
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tight upper and lower bound bounds of Θ(τ−2ρ−2) on the sample complexity of ρ-reproducibly

solving the τ-coin problem (for constant δ ), and thus the same bounds for ρ-reproducibly answering

SQ queries. On the other hand, it is well-known that the nonreproducible sample complexity of the τ-

coin problem is Θ(τ−2 log(1/δ )) (see, e.g. Mousavi). So the cost of guaranteeing ρ-reproducibility

for SQ queries is a factor of ρ−2.

For upper bounds, our generic algorithm in Section 4.3 converts any SQ query into a reproducible

one: if our end goal is a ρ-reproducible algorithm for estimating a statistical query with tolerance

τ and error δ , then the sample complexity is at most the sample complexity of nonreproducibly

answering the query to within tolerance τ ′, and success probability 1−δ ′ where τ ′ = O(τρ) and

δ ′ = O(δτ), which has sample complexity O(τ−2ρ−2 log(1/δ ′)). The main result in this section is

the following lower bound for ρ-reproducibly answering statistical queries.

Theorem 4.1.6 (Theorem 4.9.1, Restated). Let τ > 0 and let δ < 1/16. Any ρ-reproducible

algorithm for solving the τ-coin coin problem with success probability at least 1− δ requires

sample complexity Ω(τ−2ρ−2).

Related Work.

A subset of these results Impagliazzo et al. [2021] was presented at the TPDP 2021 workshop.

Our Definition 4.1.1 is inspired by the literature on pseudodeterministic algorithms Gat and

Goldwasser [2011], Goldreich et al. [2013], Goldwasser and Grossman [2017], Goldwasser et al.

[2018, 2019], Grossman and Liu [2019], Goldreich [2019]. In particular, Grossman and Liu [2019]

and Goldreich [2019] define reproducibility in the context of pseudodeterminism. There, the input

of a reproducible algorithm is a fixed string. In our setting, the input of a reproducible learning

algorithm is a distribution, only accessible by randomly drawing samples.

Independently of our work, Ghazi et al. [2021] define a property equivalent to reproducibility,

called “pseudo-global stability”. Their (α,β )-accurate (η ′,ν ′)-pseudo-global stability definition is

equivalent to the (η ,ν)-reproducibility definition discussed in Section 4.8, except that pseudo-global

stability includes explicit parameters for correctness and sample complexity. In Section 4.8, we

show that these two definitions are equivalent to Definition 4.1.1 up to polynomial factors. Ghazi

84



et al. [2021] gives pseudo-globally stable SQ algorithms, an amplification of the stability parameter,

and an algorithm to find a heavy-hitter of a distribution. The authors use pseudo-global stability

to show that classes with finite Littlestone dimension can be learned user-levelly privately, and

they connect pseudo-global stability to approximate differential privacy. Pseudo-global stability

is a generalization of global stability, introduced in Bun et al. [2020b]. Those authors use global

stability as an intermediate step to show that classes with finite Littlestone dimension can be learned

privately, and they show how global stability implies generalization.

Our work is related to other notions of stability in machine learning which, like our definition,

are properties of learning algorithms. In the supervised learning setting, stability is a measure of

how much the output of a learning algorithm changes when small changes are made to the input

training set. An important body of work establishes strong connections between the stability of

a learning algorithm and generalization Devroye and Wagner [1979a,b], Kearns and Ron [1999],

Bousquet and Elisseeff [2002], Shalev-Schwartz et al. [2010]. Distributional notions of stability

which remain stable under composition and postprocessing, were defined and shown to be closely

connected to differential privacy and adaptive data analysis (e.g., Bassily et al. [2016], Dwork et al.

[2015a]). In fact, the definition of differential privacy itself is a form of stability known as max-KL

stability. Stability-based principles have also been explored in the context of unsupervised learning

where model selection is a difficult problem since there is no ground truth. For example, a stable

algorithm for clustering has the property that when the algorithm is applied to different data sets

from the same distribution, it will yield similar outputs (e.g., von Luxburg [2010]).

In all of these settings, stability depends on how close the outputs are when the inputs are close;

what varies is the particular measure of closeness in input and output space. For example, closeness

in the output can be with respect to function or parameter space; for distributional stability close

means that the output distributions are close with respect to some metric over distributions. Our

definition of reproducibility can be viewed as an extreme form of stability where the output is

required to be identical almost all of the time, and not just similar. Thus reproducibility enjoys

many of the nice properties of stable algorithms (e.g., postprocessing, composition) but has the
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advantage of being far easier to verify.

Open Questions and Future Work

One motivation for examining reproducibility in algorithms is the “reproducibility crisis” in

experimental science. Can we use reproducibility to create statistical methodologies that would

improve reproducibility in published scientific work? A concrete step towards this would be to

design reproducible hypothesis testing algorithms. We can view a null hypothesis as postulating that

data will come from a specific distribution D, and want algorithms that accept with high probability

if the data comes from D (or a “close” distribution) and reject with good probability if the data

distribution is “far” from D. For example, the coin problem is a degenerate case in which the data

are Boolean and the distance is the difference in the expected values. For different types of data and

distance metrics, what is the optimal sample complexity of hypothesis testing, and how much more

is that for reproducible hypothesis testing?

A related problem is that of learning under distributional shifts, or individual-based fair learning

(where we want the learning algorithm to treat similar people similarly with respect to a similarity

metric defining closeness). A key step in making algorithms reproducible is a randomized procedure

to round the output of a standard empirical learner to a single hypothesis in a way that is independent

of the underlying distribution. Can similar ideas be used to design learning algorithms robust to

distributional shifts, or to give more informed performance metrics?

This work establishes that there exist reproducible algorithms for a variety of learning problems.

However, we do not characterize exactly which learning algorithms can be made reproducible, or

how reproducibility affects the required sample complexity. Is it possible to identify an invariant

of concept classes which characterizes the complexity of reproducible learning, analogous to

VC-dimension for PAC learning Vapnik and Chervonenkis [1971], representation dimension and

one-way communication complexity for exact differential privacy Feldman and Xiao [2014], Beimel

et al. [2013], and Littlestone Dimension for approximate differential privacy Bun et al. [2020b]? A

specific problem of interest is that of learning linear functions over finite fields. If the data has full

dimension, the function can be solved for uniquely; so, designing reproducible algorithms when the
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data does not form a basis seems interesting.

Also, we described the first reproducible boosting algorithm. Are there natural conditions under

which a boosting algorithm can always be made reproducible? Are the sample complexity upper

bounds we obtain for our applications tight or close to tight? In particular, is there a reproducible

algorithm for approximate median that has only log∗ |X | dependence on the domain size?

Reproducibility provides a distinctive type of privacy. Except with the small probability ρ ,

a reproducible algorithm’s outputs are a function entirely of the underlying distribution and the

randomness of the algorithm, not the samples. Thus, a reproducible algorithm seldom leaks

information about the specific input data. We borrowed techniques from the study of private data

analysis and differential privacy, and we hope that future work will formalize connections between

reproducibility and private data analysis. We also hope that some applications of differential privacy

will also be achievable through reproducibility.

4.2 Concentration of Sum of Vectors

In this Section, we use Azuma’s inequality to prove a concentration bound on the sum of vectors

from a distribution. We will need this bound for the proof of Theorem 4.6.13.

Let D be a distribution on Rn. Let v = {v1, . . . ,vT} ∈DT be a random sample of T vectors from

D with the following properties:

1. Ev∈ DT [∑T
i=1 vi]−Ev∈ D[v] = 0.

2. ∀v ∈ D, ||v||2 ≤ c.

The following lemma shows that the length of v1 +v2 + . . .+vT is tightly concentrated.

Lemma 4.2.1. Let D,v ∈ DT satisfy properties (1) and (2) above, and let v≤T = ∑
T
i=1 vi. Then for

all ∆ > 0,

Prv[||v≤T||2 ≥
√

T (1+ c/2)+∆]≤ e−∆2/2c2T .

The intuition behind Lemma 4.2.1 is similar to the one-dimensional case, where D is a dis-

tribution over (−1,1), v ∈ DT , and ∑
T
i=1 vi is concentrated around zero, with standard deviation
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√
T . Let v≤i denote ∑

i
i=1 vi. In the one-dimensional case, we can prove concentration of v≤T via a

Chernoff or martingale argument since the expected value of v≤i (the sum of the first i numbers) is

equal to v≤i−1. However for the higher dimensional case, v≤i is now the sum of the first i vectors,

and it is in general not the case that the expected length of v≤i is equal or even not much larger

than the length of v≤i−1. However, if the length of v≤i−1 is sufficiently large (greater than
√

T ),

then E[||v≤i||2 | v≤i−1] can be upper bounded (approximately) by ||v≤i−1||2 +1/
√

T . Therefore, if

we want to bound the probability that the length of v≤T is large (at least
√

T +∆), there must be

some time t such that the vector v≤t is outside of the ball of radius
√

T around the origin, and never

returns. So we can bound the probability that ||v≤T||2 ≥
√

t +∆, by considering the sequence of

random variables x≤t, . . . ,x≤T such that x≤t is equal to the length of v≤t, and for each t ′ ≥ t, x≤t′

is the length of v≤t′ minus a correction term (so that we can upper bound E[x≤t′+1 | x≤t′] by x≤t′ .)

We will show that x≤t, . . . ,x≤T is a supermartingale where |x≤t′+1−x≤t′| is bounded by a constant,

and then the concentration inequality will follow from Azuma’s Lemma.

Definition 4.2.2. Let D be a distribution over Rn satisfying the above two properties.

1. Let v = {v1, . . . ,vT′} ∈ DT ′ be a sequence of T ′ ≤ T random variables, and let v0 ∈ Rn have

length
√

T . For 0≤ i≤ T ′, let v≤i = ∑
T ′
i=1 vi.

2. The stopping time τ ∈ [T ′] (with respect to {v≤i}) is equal to:

min{{i ∈ [T ′] | ||v≤i||2 <
√

T}∪{T ′}}.

That is, τ is the first time i such that the length of v≤i drops below
√

T + i
3
√

T
(and otherwise

τ = T ′).

3. For each i ∈ [T ′], we define the sequence of random variables x≤0,x≤1,x≤2, . . . ,x≤T′ where

x≤0 = ||v0||2 =
√

T , and for all i ≥ 1, x≤i will be the adjusted length of the first i vectors,
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||v≤i|| with stopping condition τ:

x≤i =


||v≤i||2− ci

2
√

T
if τ > i

x≤τ otherwise

Claim 4.2.3. The sequence of random variables x≤1, . . . ,x≤T′ is a supermartingale.

Proof. We need to show that for every i ∈ [T ′], E[x≤i | x≤i−1] ≤ x≤i−1. Fix i ∈ [T ′]; if τ ≤ i− 1

then x≤i = x≤i−1 so the condition holds. Otherwise assume that τ ≥ i. Since

E[x≤i | x≤i−1] = E[x≤i | v≤i−1] = E[||v≤i−1 +vi||2]−
ci

2
√

T

and x≤i−1 = ||v≤i−1||2− c(i−1)
2
√

T
, it suffices to show that E[||v≤i−1 +vi||2 ≤ ||v≤i−1||2 + c

2
√

T
.

To prove this, we can write vi = v‖i +v⊥i where v‖i is the component of vi in the direction of

v≤i−1, and v⊥i is the orthogonal component. Since the expected length of v≤i−1 +v‖i is equal to the

length of v≤i−1 (by property 1), we just have to show that the expected length of v≤i−1 +v⊥i is at

most c
2
√

T
. Since vi has length at most c, so does v⊥i , so we have:

E[||v≤i−1 +v⊥i ||2]≤ (||v≤i−1||22 + c)1/2 ≤ c
2
√

T

where the last inequality holds since τ ≥ i implies ||v≤i−1||2 ≥
√

T .

Claim 4.2.4. For all i, |x≤i−x≤i−1| ≤ c.

Proof. Since vi has length at most c the absolute value of the difference between ||v≤i||2 and

||v≤i−1||2 is at most 2. The claim easily follows since x≤i = ||v≤i||+ ci
2
√

T
.

The above two Claims together with Azuma’s inequality gives:

Pr[|x≤T′−x≤0| ≥ ∆]≤ e−∆2/2c2T .
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Proof. (of Lemma 4.2.1)

In order for v≤T to have length at least
√

T (1+ c/2)+∆, there must be some largest time

t ∈ [T ] such that ||v≤t||2 ∈ (
√

T ,
√

T +1]. That is, at all times t ′ ≥ t the vector v≤t′ is outside the

ball of radius
√

T . Thus by the above argument, the random variables x≤iT
i=t are a supermartingale

where the absolute value of the difference between successive variables is at most c, and by

Azuma, Pr[x≤T ≥
√

T +∆] is at most e−∆2/2c2T . Since x≤T = ||v≤T||2− T c
2
√

T
= ||v≤T||2−

√
T c
2 ,

Pr[||v≤T||2 ≥
√

T (1+ c/2)+∆] is at most e−∆2/2c2T .

This gives the following corollary.

Corollary 4.2.5. Let D be a distribution supported on the unit ball in d dimensions, and let f be a

halfspace. Let S be a sample of T examples (xi,yi) drawn i.i.d. from D, and let z = ∑S xi · yi. Let

a ∈ (0,1/2). Then PrS∼D

[
‖z−Ev∼Dv‖ ≥ 4T 1/2+a

]
≤ e−T 2a/2.

Proof. In order to have D satisfy the properties (1) and (2) above, we must translate D by the

expectation Ev∼D[v]. After this translation, the maximum length of a vector in the support is c = 2.

Plugging in ∆ = 2T 1/2+a and noting 2T 1/2+a ≥ 2T 1/2 yields the conclusion.

4.3 Statistical Queries

We show how to use randomized rounding to reproducibly simulate any SQ oracle and therefore

any SQ algorithm. The statistical query model introduced by Kearns [1998] is a restriction of

the PAC-learning model introduced by Valiant [1984a]. We consider the statistical query oracle

primarily in the context of unsupervised learning (e.g., see Feldman [2016]).

Definition 4.3.1 (Statistical query oracle). Let τ ∈ [0,1] and φ : X → [0,1] be a query. Let D be a

distribution over domain X . A statistical query oracle for D, denoted OD(τ,φ), takes as input a

tolerance parameter τ and a query φ , and outputs a value v such that |v−Ex∼D[φ(x)]| ≤ τ.

Definition 4.3.2 (Simulating a statistical query oracle ). Let δ ∈ [0,1] and τ,φ ,D be as above. Let

OD be a statistical query oracle for D. Let s denote an i.i.d. sample drawn from D. We say that a
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routine STAT simulates OD with failure probability δ if for all τ,δ ,φ , there exists an n0 ∈ N+ such

that if n > n0, v← STAT(τ,φ ,s) satisfies |v−Ex∼D[φ(x)]| ≤ τ except with probability δ .

To denote a routine simulating a statistical query oracle for fixed parameters τ,φ , and (optionally)

ρ , we write these parameters as subscripts.

Algorithm 14. rSTATρ,τ,φ (s)
Parameters: τ - tolerance parameter
ρ - reproducibility parameter
φ : a query X → [0,1]

1: α = 2τ

ρ+1−2δ

2: αoff←r [0,α]

3: Split [0,1] in regions: R = {[0,αoff), [αoff,αoff +α), . . . , [αoff + iα,αoff +(i+1)α), . . . , [αoff +

kα,1)}

4: v← 1
|s| ∑

x∈s
φ(x)

5: Let rv denote the region in R that contains v

6: return the midpoint of region rv

Theorem 4.3.3 upper bounds the sample complexity of rSTATτ,ρ,φ . In Section 4.9, we show this

upper bound is tight as a function of ρ .

Theorem 4.3.3 (rSTAT simulates a statistical query oracle). Let τ,δ ,ρ ∈ [0,1], ρ > 2δ , and let s

be a sample drawn i.i.d. from distribution D. Then if

|s| ∈ Õ
(

1
τ2(ρ−2δ )2

)

rSTATρ,τ,φ (s) ρ-reproducibly simulates an SQ oracle OD,τ,φ with failure rate δ .

In Section 4.9, we will prove a near matching lower bound on the sample complexity of

ρ-reproducibly estimating a statistical query with tolerance τ and success probability 1−δ .
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Proof. We begin by showing that rSTATρ,τ,φ simulates an SQ oracle OD,τ,φ with failure rate δ .

Let τ ′ = τ(ρ−2δ )
ρ+1−2δ

. Recall α
def
= 2τ

ρ+1−2δ
, so 2τ ′

α
= ρ−2δ . A Chernoff bound gives that

∣∣∣∣∣ 1
|s|∑x∈s

φ(x)− E
x∼D

φ(x)

∣∣∣∣∣≤ τ
′ =

τ(ρ−2δ )

ρ +1−2δ

except with failure probability δ , so long as |s| ≥ log(2/δ )/(2τ ′2). Outputting the midpoint of

region rv can further offset this result by at most α/2 = τ

ρ+1−2δ
. Therefore

|v−Ex∼Dφ(x)| ≤ τ(ρ−2δ )

ρ +1−2δ
+

τ

ρ +1−2δ
= τ,

except with probability δ , so long as the sample s satisfies

log(2/δ )/(2τ
′2) =

log(2/δ )(ρ +1−2δ )2

2τ2(ρ−2δ )2 ≤ 4log(2/δ )

2τ2(ρ−2δ )2 ≤ |s|.

We now show that rSTATρ,τ,φ is ρ-reproducible by considering two invocations of rSTATρ,τ,φ

with common randomness r on samples s1,s2 ∼D respectively. The probability that either empirical

estimate of Ex∼D[φ(x)] fails to satisfy tolerance τ is at most 2δ . Denote by v1 and v2 the values

returned by the parallel runs rSTAT(s1;r) and rSTAT(s2;r) at line 4. Conditioning on success,

values v1 and v2 differ by at most 2τ ′. rSTAT outputs different values for the two runs if and only if

v1 and v2 are in different regions of R, determined by the common randomness r. This occurs if

some region’s endpoint is between v1 and v2; since αoff is chosen uniformly in [0,α], the probability

that v1 and v2 land in different regions is at most 2τ ′/α = ρ−2δ . Accounting for the 2δ probability

of failure to estimate Ex∼D[φ(x)] to within tolerance, rSTATρ,τ,φ (s) is ρ-reproducible.

4.4 Heavy-hitters

Next, we present our reproducible approximate heavy-hitters algorithm, analyzing its sample

complexity and reproducibility. We will use this algorithm as a subroutine in later algorithms such

as in the approximate-median algorithm. Also, we will show how to use this algorithm to give a
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generic way to boost reproducibility from constant ρ to arbitrarily small ρ .

Definition 4.4.1 (Heavy-Hitter). Let D be a distribution over X . Then we say x ∈X is a v-heavy-

hitter of D if Prx′∼D[x′ = x]≥ v.

Definition 4.4.2 ((Approximate) Heavy-Hitter Problem). Let Lv be the set of x ∈ supp(D) that are

v-heavy-hitters of D. Given sample access to D, output a set L satisfying Lv+ε ⊆ L⊆ Lv−ε .

Let D be a distribution over X . The following algorithm reproducibly returns a set of v′-heavy-

hitters of D, where v′ is a random value in [v− ε,v+ ε]. Picking v′ randomly allows the algorithm

to, with high probability, avoid a situation where the cutoff for being a heavy-hitter (i.e. v′) is close

to the probability mass of any x ∈ supp(D).

Algorithm 15. rHeavyHittersρ,v,ε
Input: samples Xset, S from distribution D over X plus internal randomness r
Parameters: Target reproducibility ρ , target range [v− ε,v+ ε]
Output: List of v′-heavy-hitters of D, where v′ ∈ [v− ε,v+ ε]

Xset← Q1
def
= ln(6/(ρ(v−ε)))

v−ε
examples from D /* Step 1: Find candidate heavy-hitters */

S← Q2
def
=

26 ln(Q1/ρ)·Q2
1

(ρε)2 fresh examples from D /* Step 2: Estimate probabilities */

for all x ∈Xset do

p̂x← Prx′∼S[x′ = x] /* Estimate px
def
= Prx′∼D[x′ = x] */

v′←r [v− ε,v+ ε] uniformly at random /* Step 3: Remove non-v′-heavy-hitters */

Remove from Xset all x for which p̂x < v′.

return Xset

Algorithm rHeavyHitters returns exactly the list of v′-heavy-hitters so long as the following

hold:

1. In Step 1 of Algorithm 15, all (v− ε)-heavy-hitters of D are included in Xset.

2. In Step 2, the probabilities p̂x for all x∈Xset are correctly estimated to within error ρε/(3Q1).
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3. In Step 3, the randomly sampled v′ does not fall within an interval of width ρε/(3Q1) centered

on the true probability of a (v− ε)-heavy-hitter of D.

We show that these 3 conditions will hold with probability at least 1−ρ/2, and so will hold for two

executions with probability at least 1−ρ .

Lemma 4.4.3. For all ε ∈ (0,1/2), v∈ (ε,1−ε), with probability at least 1−ρ , rHeavyHitters is

reproducible, returns a list of v′-heavy-hitters for some v′ ∈ [v−ε,v+ε], and has sample complexity

Õ
(

1
ρ2ε2(v−ε)2

)
.

Proof. We say Step 1 of Algorithm 15 succeeds if all (v− ε)-heavy-hitters of D are included in

Xset after Step 1. Step 2 succeeds if the probabilities for all x ∈Xset are correctly estimated to

within error ρε/(3Q1). Step 3 succeeds if the returned Xset is exactly the set of v′-heavy-hitters of

D. Quantities Q1 and Q2 are defined in the pseudocode of Algorithm 15.

In Step 1, an individual (v− ε)-heavy-hitter is not included with probabilility at most (1−

v+ ε)Q1; union bounding over all 1/(v− ε) possible (v− ε)-heavy-hitters, Step 1 succeeds with

probability at least 1− (1−v+ε)Q1

v−ε
> 1−ρ/6. Here, for clarity of presentation in the statement of

Lemma 4.4.3, we make use of the inequality v− ε < ln(1/(1− v+ ε)).

By a Chernoff bound, each px is estimated to within error ρε/(3Q1) with all but probability

ρ/(6Q1) in Step 2. Union bounding over all Q1 possible x ∈Xset, Step 2 succeeds except with

probability ρ/6.

Conditioned on the previous steps succeeding, Step 3 succeeds if the randomly chosen v′ is not

within ρε/(3Q1) of the true probability of any x ∈Xset under distribution D. A v′ chosen randomly

from the interval [v− ε,v+ ε] lands in any given subinterval of width ρε/(3Q1) with probability

ρ/(6Q1), and so by a union bound, Step 3 succeeds with probability at least 1−ρ/6.

Therefore, Algorithm 15 outputs exactly the set of v′-heavy-hitters of D with probability at least

1−ρ/2. If we consider two executions of Algorithm 15, both using the same shared randomness

for chooosing v′, output the set of v′-heavy-hitters of D with probability at least 1− ρ , and so

rHeavyHitters is ρ-reproducible.
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The sample complexity is Q1 +Q2 ∈ Ω̃
(
(ρε(v− ε))−2).

Corollary 4.4.4. If v and ε are constants, then rHeavyHittersρ,v,ε has sample complexity

Õ
(
1/ρ2).

Learning Heavy-hitters using Statistical Queries.

Next, we show that any statistical query algorithm for the v-heavy-hitters problem requires

Ω(log |X |/ log(1/τ)) calls to the SQ oracle. Since Algorithm 15 has a sample complexity inde-

pendent of the domain size, this implies a separation between reproducible problems and problems

solvable using only SQ queries.

Consider the ensemble {Dx}x∈X on X , where distribution Dx is supported entirely on a single

x ∈X .

Claim 4.4.5 (Learning Heavy-hitters using Statistical Queries). Any statistical query algorithm for

the v-heavy-hitters problem on ensemble {Dx}x∈X requires Ω(log |X |/ log(1/τ)) calls to the SQ

oracle.

Proof. An SQ algorithm for the v-heavy-hitters problem must, for each distribution Dx, output set

{x} with high probability. An SQ oracle is allowed tolerance τ in its response to statistical query φ .

So, for any φ , there must be some distribution Dx for which the following holds: at least a τ-fraction

of the distributions Dx′ in the ensemble satisfy |φ(x′)− φ(x)| ≤ τ . Thus, in the worst case, any

correct SQ algorithm can rule out at most a (1− τ)-fraction of the distributions in the ensemble

with one query. If X is finite, then an SQ algorithm needs at least log1/τ(|X |) queries.

4.5 Approximate Median

In this section, we design a reproducible algorithm for finding an approximate median in an

arbitrary distribution over a finite domain. In addition to being a significant problem in its own

right, and one studied extensively in the privacy literature, this is a key sub-routine for making

many algorithms reproducible. In particular, for any problem where the correct answers form

an interval, and we have a (not-necessarily) reproducible algorithm that is correct strictly more
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than half the time, we can run the approximate median finding algorithm on the distribution of

outputs of the original to construct a reliably correct and reproducible version. (In fact, we use

this technique recursively within our reproducible median-finding algorithm itself. Our algorithm

rMedianOfMedians composes a mildly accurate reproducible median algorithm with a generic

very accurate non-reproducible median algorithm.) We use a recursive technique inspired by but

simpler than previous algorithms in the privacy literature Bun et al. [2015], Kaplan et al. [2020],

and like for these algorithms, the sample complexity of our algorithm has a non-constant but very

slowly growing dependence on the domain size. We also can use this algorithm to reproducibly

PAC-learn (one-dimensional) threshold functions, using a known reduction from Bun et al. [2015].

Definition 4.5.1 (τ-approximate median). Let D be a distribution over a well-ordered domain X .

x ∈X is a τ-approximate median of D if Prx′∼D[x′ ≤ x]≥ 1/2− τ and Prx′∼D[x′ ≥ x]≥ 1/2− τ .

4.5.1 Reproducible Approximate Median Algorithm

In this section, we present a pseudocode description of our τ-approximate median algorithm

rMedian (Algorithm 16), and prove the following theorem.

Theorem 4.5.2 (Reproducible Median). Let τ,ρ ∈ [0,1] and let δ = ρ/2. Let D be a distribution

over X , where |X | = 2d . Then rMedianρ,d,τ,δ (Algorithm 16) is ρ-reproducible, outputs a

τ-approximate median of D with all but probability δ , and has sample complexity

n ∈ Õ

((
1

τ2(ρ−δ )2

)
·
(

3
τ2

)log∗ |X |
)

As an introduction to the key ideas of Algorithm 16, we consider a weighted binary tree T based

on distribution D. Each internal node has two edges (a 0-edge and a 1-edge). Root-to-leaf paths

represent binary representations of numbers. The weight of each internal node v is the probability

that its associated binary prefix (induced by the root-to-v path) appears in an element drawn from D.

If within this tree we can find a node v with weight in [1/4,3/4], then we can use the associated

prefix to return an approximate median of D with approximation parameter potentially much larger

than τ .
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To achieve a specified approximation parameter τ , rather than using D itself to construct the

binary tree T , we will use a distribution Dm over medians of D. Specifically, we use a non-

reproducible median algorithm to sample from τ-approximate medians of D. Identifying an

approximate median of distribution Dm for even a very large approximation parameter then ensures

we return a τ-approximate median of D.

The question remains of how to efficiently search T to find a node v of weight in [1/4,3/4]

(under Dm). We perform this search recursively by using rMedian to find a prefix length ` such that

the probability of sampling two elements from Dm agreeing on a prefix of length ` is large. We

can then restrict our search for v to nodes near level ` in T (starting from the root). We apply the

reproducible heavy-hitters algorithm rHeavyHitters to find high weight nodes near level ` of T ,

and then exhaustively search the list of heavy-hitters to find an appropriate v.

We use the following non-reproducible approximate median algorithm, that returns the median

of its sample s, as a subroutine of Algorithm 16.

Lemma 4.5.3 (Simple Median Algorithm). Let sample s be drawn from distribution D. Algorithm

Median(s) returns a τ-approximate median on D using |s|= 3(1/2− τ) ln(2/δ )/τ2 samples with

success probability at least 1−δ .

Proof. Algorithm Median(s) fails when more than half of the elements in sample s are either i)

smaller than the (1/2−τ)-percentile element of D or ii) larger than the (1/2+τ)-percentile element

of D. Let event Ei denote the first case and event Eii denote the second case. Since the elements in s

are drawn i.i.d., the first event can be bounded by a Chernoff bound. Let X be a random variable

denoting the number of elements in s that are smaller than the (1/2− τ)-percentile element of D.

Pr[Ei] = Pr[X ≥ (1+ τ/(1/2− τ))E[X ]]

≤ exp(−(τ/(1/2− τ))2E[X ]/3)

≤ exp
(
− τ2

1/2− τ

|s|
3

)
= exp(− ln(2/δ ))

= δ/2
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The same argument can be used to bound the second event Eii. By a union bound, the algorithm

succeeds with probability at least 1−δ .

Before proceeding with the description of Algorithm 16, we fix some useful notation for its

analysis.

• nm - sample complexity of Medianτ,δ0

• nh - sample complexity of rHeavyHittersρ0,v,ε

• nsq - sample complexity of rSTATτ,ρ0,φ

• nd - sample complexity of rMedianρ,d,τ,δ

• Dm - Algorithm 16 takes as input a sample from distribution D over X , where |X | = 2d .

We use Dm to denote the distribution induced by sampling nm examples from D, computing

Medianτ,δ0 on these examples, and returning the ouput

• Ddlogde - We use Ddlogde to denote the distribution induced by sampling 2 examples from

Dm and returning the longest prefix ` on which the two medians agree. Note that this new

distribution is over a new domain X ′ with |X ′|= 2dlogde ∈Θ(d).

• ρ0 ∈ O(ρ/ log∗ |X |)

• δ0 ∈ O
(
( δ

nh+nsq
)2log∗ |X | ·

(
τ2

3

)2(log∗|X |)2)
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Algorithm 16. rMedian(s)
Input: s - a sample of n elements drawn i.i.d. from D
Parameters: ρ - target reproducibility parameter, d - specifies domain size |X | = 2d , τ - target
accuracy of median, δ - target failure probability
Output: a τ-approximate median of D

1: if d = 1 then
2: Let φ0(x) = 1 if x = 0, 0 o/w
3: p0← rSTATρ0,τ/2,φ0(s) /* Base case */
4: If p0 ≥ 1/2− τ/2, return 0. Else, return 1.
5: Break s into |s|/nm subsamples
6: Run Medianτ,δ0 on each subsample to generate a new sample m of τ-approximate medians of

Dd
7: Pair up elements m2i and m2i−1, for i ∈ {1, · · · , |m|/2}
8: For each pair (m2i,m2i−1), let li denote the longest prefix on which they agree
9: Let srm denote the multiset of li’s

10: `← rMedianρ,dlogde,τ,δ (srm)
11: sh0,sh1← nh new examples from m each
12: s`←{x|` : x ∈ sh0} /* s` is the set sh0 projected onto length ` prefixes */
13: V ← rHeavyHittersρ0,v,ε(s`), for v = 5/16+ τ , ε = 1/16
14: if ` < d then
15: s`+1←{x|`+1 : x ∈ sh1}
16: V ← V ∪ rHeavyHittersρ0,v,ε(s`+1) /* Find vertices at level ` and `+ 1 with weight

≥ 1/4 */

17: else
18: return the first element of V
19: for v ∈V do
20: Let φv(x) = 1 if x||v| = v, 0o/w
21: sq← nsq new examples from m
22: pv← rSTATρ0,τ,φv(sq), /* Query Dm for probability x≤ v||1 · · ·1 */

23: if 1/4≤ pv ≤ 3/4 then
24: s← v /* Find length ` prefix of weight in [1/4− τ,3/4+ τ] */
25: s0 = s||0 · · ·0 /* s0 is the prefix s padded with 0’s to length d */

26: s1 = s||1 · · ·1 /* s1 is the prefix s padded with 1’s to length d */

27:
28: Let φs0(x) = 1 if x≤ s0, 0o/w
29: ss0 ← nm new examples from m
30: ps0 ← rSTATρ0,τ,φs0

(ss0)

31: if ps0 ≥ 1/8−2τ then
32: return s0
33: else
34: return s1

Lemma 4.5.4 (Termination). Algorithm 16 terminates after T = log∗ |X | recursive calls.
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Proof. Algorithm 16 reaches its base case when invoked with parameter d = 1. At each successive

recursive call (Line 10), the domain size 2d is reduced to 2dlogde < 2d, and so d = 1 after no more

than T = log∗ |X | recursive calls.

Lemma 4.5.5 (Sample Complexity). Let τ,δ ,ρ ∈ [0,1]. Let D be a distribution over X , with

|X |= 2d . Then rMedianρ,d,τ,δ has sample complexity

n ∈ O

((
1

τ2(ρ−δ )2

)
·
(

3log(2/δ0)

τ2

)log∗ |X |
)

Proof. We begin by arguing that, for d > 1, rMedianρ,d,τ,δ has sample complexity nm(2ndlogde+

nh +4nsq). First, observe that Line 6 of Algorithm 16 is the only line that uses the sample s directly,

and it uses s to generate a sample m of size |s|/nm from Dm. The remaining subroutines use

subsamples from m. Therefore, if the sample complexity of the remaining subroutines is bounded

by some value N, then rMedianρ,d,τ,δ will have sample complexity Nnm. We now consider the

sequence of subroutines and their respective complexities.

1. Line 10: rMedianρ,dlogde,τ,δ requires ndlogde examples from Ddlogde. Line 8 generates an

example from Ddlogde from 2 examples from Dm, and so the call to rMedianρ,dlogde,τ,δ at

Line 10 contributes 2ndlogde to the sample complexity.

2. Line 13 and Line 16: rHeavyHittersρ0,v,ε requires nh examples from Dm

3. Line 19: the at most 3 calls to rSTATρ0,τ,φv require 3nsq examples from Dm

4. Line 30: rSTATρ0,τ,φs0
requires nsq examples from Dm

Therefore rMedianρ,d,τ,δ uses n = nm(2ndlogde+2nh +4nsq) examples from D.

In the base case, the entire contribution to the sample complexity comes from the call to

Medianτ,δ0 , which requires nm examples from D1. Unrolling the recursion, we have
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n ∈ O
(
(2nm)

log∗ |X |(nh +nsq)
)

∈ Õ

((
1

τ2(ρ−δ )2

)
·
(

3log(2/δ0)

τ2

)log∗ |X |
)
.

Lemma 4.5.6 (Accuracy). Let ρ,τ,δ ∈ [0,1] and let n denote the sample complexity proved in

Lemma 4.5.5. Let s be a sample of elements drawn i.i.d. from D such that |s| ∈ Ω(n). Then

rMedian(s) returns a τ-approximate median of D except with probability δ .

Proof. First, we prove that rMedian(s) returns a τ-approximate median of D, conditioned on the

success of all recursive calls and subroutines. We proceed inductively. In the base case we have

that |X |= 2, and therefore at least one of the two elements in X must be a τ-approximate median.

The statistical query performed in line 6 of Algorithm 16 uses sample s to estimate the fraction of

D1 supported on 0, to within tolerance τ/2, so long as |s| ≥ nm. This holds from Lemma 4.5.5, and

so a τ-approximate median for D1 is returned in the base case.

It remains to show that if a τ-approximate median for Ddlogde is returned at Line 10 of Algo-

rithm 16, that a τ-approximate median for D is returned. We first note that, except with probability

δ0 · |s|/nm, all elements of m are τ-approximate medians of D. To generate the sample supplied

to rMedian at Line 13, we pair up the elements of m to obtain the |s|/(2nm) li, which denote the

longest prefix on which a pair of elements from m agree. Then srm constitutes a sample of size

ndlogde drawn i.i.d. from Ddlogde and by inductive assumption the call to rMedian at Line 10 returns

a τ-approximate median of Ddlogde. Therefore we have that Prx1,x2∼Dm[x1|` = x2|`]≥ 1/2− τ and

Prx1,x2∼Dm [x1|`+1 = x2|`+1] < 1/2+ τ . It follows that there must exist a prefix s of length ` such

that Prx∼Dm[x|` = s]≥ 1/4.

If `= d, then x|` = x, and so any prefix s such that Prx∼Dm[x|` = s]≥ 1/4 is a 3/8-median of

Dm and therefore a τ-median of D. In this case s is returned at Line 18.

For the remainder of the proof, we assume ` < d. We argue that there must exist a prefix s of
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length ` or `+1 for which 1/4≤ Prx∼Dm[x||s| = s]≤ 3/4. We already have that there exists a prefix

s of length ` such that Prx∼Dm[x` = s]≥ 1/4. Suppose that Prx∼Dm[x|` = s]> 3/4. Now suppose

that one of s||0 or s||1 had probability greater than 3/4 under Dm. Then it must be the case that

Prx1,x2∼Dm [x1|`+1 = x2|`+1] > 9/16, and so Pr`′∼Ddlogde[`
′ ≤ `] < 1− 9/16 = 7/16, contradicting

that ` is a τ-approximate median of Ddlogde. So both s||0 and s||1 must have probability less than

3/4 under Dm. Because s has probability at least 3/4, it follows that at least one of s||0 and s||1 must

have probability at least 1/4 under Dm, and so we have that there exists a prefix s′ of length `+1

such that 1/4≤ Prx∼Dm [x|`+1 = s′]≤ 3/4.

Now that we have the existence of such a prefix, we will argue that when the loop of Line 19

terminates, s is a prefix satisfying

1/4− τ ≤ Pr
x1∼Dm

[x1|` = s]≤ 3/4+ τ.

Observe that the calls to rHeavyHitters at Line 13 and Line 16 identify a common prefix s such

that Prx1∼Dm [x1|` = s]≥ 1/4. This follows from taking v = 5/16, ε = 1/16, and the fact that the

sample s` and s`+1 constitute i.i.d. samples of size nh drawn from Dm
|` and Dm

|`+1 respectively (where

we use Dm
|` to indicate the distribution induced by sampling from Dm and returning only the first

` bits). Then we have from the proof of Lemma 4.4.3 that all v− ε = 1/4-heavy hitters from

Dm
|` and Dm

|`+1 are contained in the set V . The loop beginning at Line 19 will use reproducible

statistical queries to estimate the probability of each v ∈V under Dm
||v|. If the estimated probability

pv ∈ [1/4,3/4], then v is stored in s, and so the last such string visited by the loop is the value of s

upon termination.

Now we show that if s0 = s||0 · · ·0 is returned at Line 32, then it is a τ-approximate median of

D, otherwise s1 = s||1 · · ·1 is a τ-approximate median. Conceptually, we partition the domain X

into three sets:

1. Cs0 = {x ∈X : x < s0}

2. Cs = {x ∈X : s0 ≤ x≤ s1}
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3. Cs1 = {x ∈X : x > s1}

Because s satisfies 1/4− τ ≤ Prx∼Dm [x||s| = s] ≤ 3/4+ τ , it must be the case that Dm assigns

probability mass at least 1/4− τ to the union Cs0 ∪Cs1 . Then it holds that at least one of Cs0 and

Cs1 is assigned probability mass at least 1/8− τ/2. The statistical query made at Line 30 estimates

the probability mass assigned to Cs0 by Dm to within tolerance τ , so if s0 is returned, it holds that

Prx∼Dm [x < s0]≥ 1/8−3τ . Because we know Prx∼Dm[x ∈Cs]≥ 1/4− τ , we then also have that

Prx∼Dm [x≥ s0]≥ 1/4−τ . Because Dm is a distribution over τ-approximate medians of D, we have

that s0 is a τ-approximate median of D as desired. If s0 is not returned, then it must be the case that

Prx∼Dm [x > s1]≥ 1/8−3τ , and a similar argument shows that s1 must be a τ-approximate median

of D.

Finally, we argue that all recursive calls and subroutines are successful, except with probability

δ . Failures can occur exclusively at the following calls.

• Line 6: the log∗ |X | · |s|/(nm) calls to Medianτ,δ0

• Line 10: the log∗ |X | recursive calls to rMedianρ,dlogde,τ,δ

• Line 13 and Line 16: the 2log∗ |X | calls to rHeavyHittersρ0,v,ε

• Line 19: the (at most) 4 log∗ |X | calls to rSTATρ0,τ,φv

• Line 30: the log∗ |X | calls to rSTATρ0,τ,φs0

Calls to Medianτ,δ0 dominate the total failure probability, and so taking δ0 ∈ O( δ

|s| log∗ |X |) suffices

to achieve failure probability δ .

Lemma 4.5.7 (Reproducibility). Let ρ,τ,δ ∈ [0,1] and let n denote the sample complexity proved

in Lemma 4.5.5. Let s be a sample of O(n) elements drawn i.i.d. from D. Then rMedianρ,d,τ,δ is

ρ-reproducible.

Proof. We prove the lemma by inductive argument. First, we observe that reproducibility of

the value returned in the base case depends only on the value p0← rSTATρ0,τ/2,φ0(s) in Line 3.

Therefore, reproducibility in the base case follows from the ρ0-reproducibility of rSTATρ0,τ/2,φ0 .
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We now argue that if the i+1th recursive call is ρ-reproducible, that the ith recursive call is

(ρ +5ρ0)-reproducible.

Two parallel executions of the ith level of recursion, given samples s1 and s2 drawn i.i.d. from

the same distribution D, will produce the same output so long as the following values are the same:

1. `← rMedianρ,d,τ,δ (srm) at Line 10

2. V ← rHeavyHittersρ0,v,ε(s`) at Line 13

3. V ←V ∪rHeavyHittersρ0,v,ε(s`+1) at Line 16

4. s← rSTATρ0,τ,φs0
(smeds) when the loop at Line 19 terminates

5. ps0 ← rSTATρ0,τ,φs0
(ss0) at Line 30

produce the same value. We have that 1 holds by inductive assumption.

Conditioning on 1, the calls to rHeavyHittersρ0,v,ε are made on samples drawn i.i.d. from the

same distribution, and so the ρ0-reproducibility of rHeavyHittersρ0,v,ε guarantees that V contains

the same list of heavy-hitters in both runs except with probability 2ρ .

Conditioning on both 1 and 2, it follows that the loop at Line 19 iterates over the same strings V ,

and so both runs make the same sequence of statistical queries rSTATτ,ρ0,φv . From conditioning on 2,

and the values of v and ε , we have that |V | ≤ 3, and so the ρ0-reproducibility of rSTATτ,ρ0,φs0
gives

us that sequence of values pv← rSTATρ0,τ,φv(sq) is the same in both runs, except with probability

3ρ0 .

Finally, conditioning on 1, 2, and 3, the values of s0 and s1 are the same across both runs, and so

the same statistical query rSTATρ0,τ,φs0
is made in both runs. Whether s0 or s1 is returned depends

only on the value rs0 ← rSTATτ,ρ0,φs0
(ss0), and so the ρ0-reproducibility of rSTATρ0,τ,φs0

gives us

that the same string is returned by both executions. A union bound over all failures of reproducibility

then gives us that the ith recursive call will be (ρ +6ρ0)-reproducible.

From Lemma 4.5.4, we have that no more than T = log∗ |X | recursive calls are made by the

algorithm. Therefore rMedianρ,d,τ,δ is reproducible with parameter ρ0 +5T ρ0 ≤ 6ρ0 log∗ |X |=
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ρ .

Theorem 4.5.8 then follows as a corollary of Lemma 4.5.5, Lemma 4.5.6, and Lemma 4.5.7.

Theorem 4.5.8 (Reproducible Median). Let τ,ρ ∈ [0,1] and let δ = ρ/2. Let D be a distribution

over X , where |X | = 2d . Then rMedianρ,d,τ,δ (Algorithm 16) is ρ-reproducible, outputs a

τ-approximate median of D with all but probability δ , and has sample complexity

n ∈ Õ

((
1

τ2(ρ−δ )2

)
·
(

3
τ2

)log∗ |X |
)

4.6 Learning Halfspaces

In Section 4.3, we saw how combining a concentration bound with a randomized rounding

technique yielded a reproducible algorithm. Specifically, given a statistical query algorithm with an

accuracy guarantee (with high probability) on the 1-dimensional space [0,1], we can construct a

reproducible statistical query algorithm using randomized rounding. By sacrificing a small amount

of accuracy, our reproducible statistical query algorithm can decide on a canonical return value in

[0,1].

In this section, we extend this argument from R to Rd , by way of an interesting application

of a randomized rounding technique from the study of foams Kindler et al. [2012]. Algorithm 1

in Kindler et al. [2012] probabilistically constructs a tiling of Rd such that every point is rounded

to a nearby integer lattice point. This tiling has an additional property that the probability that

two points are not rounded to the same point by a constructed tiling is at most linear in their l2

distance. In the usual PAC-learning setting, there is a simple weak learning algorithm for halfspaces

that takes examples (xi,yi) ∈X ×{±1}, normalizes them, and returns the halfspace defined by

vector ∑i xi · yi Servedio [2002]. We show a concentration bound on the sum of normalized vectors

from a distribution, and then argue that all vectors within the concentration bound are reasonable

hypotheses with non-negligible advantage. The combination of this concentration bound and the

foam-based rounding scheme yields a reproducible halfspace weak learner rHalfspaceWkL.
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However, constructing this foam-based rounding scheme takes expected time that is exponential

in the dimension d. We give an alternative rounding scheme that randomly translates the integer

lattice and rounds points to their nearest translated integer lattice point. This construction yields

another reproducible halfspace weak learner rHalfspaceWkLbox with roughly an additional factor

of d in the sample complexity, but with polynomial runtime. In Section 4.7, we show how to

combine these reproducible weak learners with a reproducible boosting algorithm, yielding an

polynomial-time reproducible strong learner for halfspaces.

4.6.1 Reproducible Halfspace Weak Learner: An Overview

Let D be a distribution over Rd , and let EX be an example oracle for D and f , where f : Rd →

{±1} is a halfspace that goes through the origin. Let ‖x‖ denote the l2 norm of vector x. We assume

that D satisfies a (worst-case) margin assumption with respect to f .

Definition 4.6.1. [Margin] Let D be a distribution over Rd . We say D has margin τ f with respect

to halfspace f (x) def
= sign(w ·x) if x· f (x)

‖x‖ ·
w
‖w‖ ≥ τ f for all x ∈ supp(D). Additionally, we say D has

(worst-case) margin τ if τ = sup f τ f .

Our reproducible halfspace weak learner rHalfspaceWkL uses its input to compute an empirical

estimation z of the expected vector Ex∼D[x · f (x)]. Then, rHalfspaceWkL uses its randomness to

construct a rounding scheme R via Algorithm ConstructFoams. R is used to round our (rescaled)

empirical estimation z, and the resulting vector defines the returned halfspace. The algorithm

relies on the margin assumption to ensure that the weak learner’s returned hypothesis is positively

correlated with the true halfspace f .1

1The parameter a is a constant, but we leave it in variable form for convenience in the analysis; we choose a = .05 in
this proof for clarity of presentation, but one could optimize the choice of a to yield a slightly better sample complexity.
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Algorithm 17. rHalfspaceWkL(s;r)
Parameters: ρ - desired reproducibility
d - dimension of halfspace
τ - assumed margin
a - a constant, a = .05

Input: A sample s of m =
(

896
√

d
τ2ρ

)1/(1/2−a)
examples (xi,yi) drawn i.i.d. from distribution D

Output: A hypothesis with advantage τ/4 on D against f

k← 1
m

8
√

d
τ2 = 8 ·

(
ρ

896

)1/(1/2−a)
(

τ2
√

d

)(1/2+a)/(1/2−a)
/* Scaling factor */

z← ∑S
xi
‖xi‖ · yi

R←r ConstructFoams(d) (Algorithm 18) /* Rounding scheme R : Rd → Zd */

w← R(k · z)

return Hypothesis h(x) def
= x
‖x‖ ·

w
‖w‖

The subroutine ConstructFoams previously appeared as Algorithm 1 in Kindler et al. [2012].

For completeness, we include a description below (Algorithm 18).

Algorithm 18. ConstructFoams(d)
Input: dimension d
Output: rounding scheme R : Rd → Zd

Let f : [0,1]d → R s.t. f (x1, . . . ,xd)
def
= ∏

d
i=1(2sin2(πxi))

Let all points in Rd be unassigned

for stage t = 1,2, . . . until all points are assigned do

Uniformly at random sample Zt ,Ht from [0,1)d× (0,2d).

Let droplet Di be the set of points {x|x ∈ −Zt +[0,1)d, f (x+Zt)> Ht}.

Let R map all currently unassigned points in Di to (0,0, . . . ,0) and extend this assignment

periodically to all integer lattice points.

return R

The following is the main result of this section.
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Theorem 4.6.2. Let D be a distribution over Rd , and let f : Rd → {±1} be a halfspace with

margin τ in D. Then rHalfspaceWkL(s;r) is a (ρ,τ/4,ρ/4)-weak learner for halfspaces. That is,

Algorithm 17 ρ-reproducibly returns a hypothesis h such that, with probability at least 1−ρ/2,

1
2Ex∼Dh(x) f (x)≥ τ/4, using a sample of size m =

(
896
√

d
τ2ρ

)20/9
.

Proof. Correctness (Advantage): We argue correctness in two parts. First, we show the expected

weighted vector Ex∼D

[
x· f (x)
‖x‖

]
defines a halfspace with good advantage (see Lemma 4.6.8), follow-

ing the arguments presented in Theorem 3 of Servedio [2002]. Then, we argue that rounding the

empirical weighted vector z in Algorithm 17 only slightly rotates the halfspace. By bounding the

possible loss in advantage in terms of the amount of rotation (Lemma 4.6.9), we argue that the

rounded halfspace w/|w| also has sizable advantage.

By Lemma 4.6.8, the expected weighted vector Ex∼D

[
x· f (x)
‖x‖

]
has advantage τ/2 on D and f .

The martingale-based concentration bound in Corollary 4.6.10 implies that the distance between

z and E[z] = m ·Ex∼D

[
x· f (x)
‖x‖

]
is less than 4m1/2+a with probability at least 1− e−m2a/2 for any

a ∈ (0,1/2) (chosen later). Then, the vector is scaled by k and rounded. Any rounding scheme R

randomly generated by ConstructFoams always rounds its input to a point within distance
√

d

(Observation 4.6.4). Combining, the total distance between vectors w
k·‖E[z]‖ and E[z]

‖E[z]‖ is at most

4m1/2+a +
√

d/k
‖E[z]‖

.

As D has margin τ with respect to f , for all x ∈ supp(D), x
‖x‖ · f (x) has length at least τ in the

direction of the expected weighted vector Ex∼D

[
x· f (x)
‖x‖

]
.

Thus, ‖E[z]‖ ≥ τm, and the above quantity is at most 4m1/2+a+
√

d/k
τm . Simplifying, 4m1/2+a

τm =

4
τm1/2−a =

4τ

896
ρ√
d
< τ/8 and

√
d/k

τm =
√

d
τ

τ2

8
√

d
= τ/8. By applying Lemma 4.6.9 with θ = τ/8+τ/8=

τ/4, we can conclude that h has advantage at least τ/2− τ/4 = τ/4, as desired.2

2A dedicated reader may notice that the scaling factor k is subconstant. A possible error may arise if the scaling factor
is so small that the halfspace vector z ·k gets rounded to 0 by the rounding function R (constructed by ConstructFoams).
Fortunately, with our choice of parameters, this turns out to not be an issue. The empirical vector sum z has norm
at least τ ·m, where τ is the margin size and m is the sample complexity. As we have chosen scaling factor k such
that m · k = 8

√
d/τ2, the input given to R has norm at least 8

√
d/τ . Every rounding function R constructed by
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Reproducibility: Let z1 and z2 denote the empirical sums of vectors xiyi from two sepa-

rate runs of rHalfspaceWkL. It suffices to show that the rounding scheme R constructed by

ConstructFoams rounds k · z1 and k · z2 to the same vector w with high probability. The distance

between z1 and z2 is at most 2 ·4m1/2+a with probability at least 1−2e−m2a/2, by Corollary 4.6.10,

the triangle inequality, and a union bound. After scaling by k, this distance is at most 8km1/2+a. By

Lemma 4.6.3, the probability that R does not round k · z1 and k · z2 to same integer lattice point is at

most 7 ·8km1/2+a. Altogether, the reproducibility parameter is at most

2e−m2a/2 +56km1/2+a.

The second term satisfies 56km1/2+a = 448 · ρ

896 ·1 = ρ/2, and the first term 2e−m2a/2 ≤ ρ/2 when

m≥ (2ln(4/ρ))1/(2a). So, as long as a is chosen such that m=
(

896
√

d
τ2ρ

)1/(1/2−a)
≥ (2ln(4/ρ))1/(2a),

the algorithm is ρ-reproducible. This occurs if
(

896
ρ

)2a/(1/2−a)
≥ 2ln(4/ρ), which is true for all

values of ρ ∈ (0,1) when a = .05.3

Failure rate: The algorithm succeeds when the martingale concentration bound holds. So, the

failure probability of rHalfspaceWkL is at most e−m2a/2 ≤ ρ/4.

Sample complexity: Plugging in a = .05 in the expression m =
(

896
√

d
τ2ρ

)1/(1/2−a)
yields the

conclusion.

4.6.2 Reproducible Weak Halfspace Learner – Definitions and Lemmas

Foams-Based Rounding Scheme from Kindler et al. [2012]

For completeness, we restate relevant results from Kindler et al. [2012] for our construction.

Lemma 4.6.3 (Combining Theorem 1 and Theorem 3 of Kindler et al. [2012]). Let R : Rd → Zd be

the randomized rounding scheme constructed by Algorithm 18 (Algorithm 1 in Kindler et al. [2012]).

Let x,y ∈Rd , and let ε
def
= dl2(x,y). Then Pr[R(x) = R(y)]≥ 1−O(ε), where the probability is over

the randomness used in the algorithm.

ConstructFoams rounds its input to a point at distance at most
√

d away (Observation 4.6.4), so we can be sure that R
never rounds our vector to the zero vector.

3The constant a can be improved slightly if a is chosen as a function of ρ .
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Proof. Theorem 3 of Kindler et al. [2012] states that f (x) = Πd
i=1(2sin2(πxi)) is a proper density

function and
∫
[0,1)d |〈∇ f ,u〉| ≤ 2π for all unit vectors u. Theorem 1 of Kindler et al. [2012] states

the following. Let f be a proper density function, and points x,y ∈ Rd such that y = x+ ε ·u, where

ε > 0 and u is a unit vector. Let N denote the number of times the line segment xy crosses the

boundary between different droplets (potentially mapping to the same integer lattice point) in an

execution of ConstructFoams. Then E[N] ≈ ε ·
∫
[0,1)d ] |〈∇ f ,u〉|, where the ≈ notation is hiding

a Wε2 term, where W > 0 is a universal constant depending only on f . The authors refine this

statement (Kindler et al. [2012], page 24) to show that the Wε2 term can be made arbitrarily small.

Combining, E[N]≤ 2πε +Wε2 < 6.3ε . By Markov’s inequality, Pr[N = 0]< 1−6.3ε .

Observation 4.6.4. ConstructFoams always outputs a rounding scheme R with the following

property: the (l2) distance between any vector v ∈ Rd and R(v) is at most
√

d.

This follows from noticing that R maps each coordinate of v to its floor or ceiling.

Theorem 4.6.5 (Runtime of ConstructFoams; Kindler et al. [2012], page 25). There are universal

constants 1 < c <C such that Algorithm 18, when run with f (x) = Πd
i=1(2sin2(πxi)), takes between

cd and Cd stages except with probability at most c−d .

Weak Learning Definitions

Definition 4.6.6 (Weak Learning Algorithm (in the Filtering Model)). Let C be a concept class of

functions from domain X to {±1}, and let f ∈ C . Let D be a distribution over X . Let WkL be an

algorithm that takes as input a labeled sample S = {(xi, f (xi))}m drawn i.i.d. from D, and outputs a

hypothesis h : X → [−1,1]. Then WkL is a (γ,δ )-weak learner for C with sample complexity m if,

for all f ,D, with probability at least 1−δ , WkL(S) outputs a hypothesis h : X → [−1,1] such that

Ex∼D f (x)h(x)≥ 2γ , where S is a sample of size |S|= m drawn i.i.d. from D.

We say a (γ,δ )-weak learner has advantage γ . Equivalently, if a hypothesis h satisfies

1
2Ex∼D f (x)h(x)≥ γ , then we say h has advantage γ (on D and f ).

Definition 4.6.7 (Reproducible Weak Learning Algorithm). Algorithm rWkL is a (ρ,γ,δ )-weak

learner if rWkL is ρ-reproducible and a (γ,δ )-weak learner.
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Halfspaces and Their Advantage

Definition 4.6.1. [Margin] Let D be a distribution over Rd . We say D has margin τ f with respect

to halfspace f (x) def
= sign(w ·x) if x· f (x)

‖x‖ ·
w
‖w‖ ≥ τ f for all x ∈ supp(D). Additionally, we say D has

(worst-case) margin τ if τ = sup f τ f .

Lemma 4.6.8 (Advantage of Expected Weighted Vector Hypothesis Servedio [2002]). Let f (x) def
=

sign(w ·x) be a halfspace, and let D be a distribution over Rd with margin τ with respect to f . Let

z = Ev∼D

[
v
‖v‖ f (v)

]
. Then the hypothesis hz(x) = x

‖x‖ ·
z
‖z‖ has advantage at least τ/2.

Proof. The advantage of hz is 1
2Ex∼D[hz(x) f (x)] = 1

2Ex∼D

[
x
‖x‖ ·

z
‖z‖ · f (x)

]
= z·z

2‖z‖ =
‖z‖
2 ≥

z·w
2‖w‖ ,

by the Cauchy-Schwarz inequality. Vector z is a convex combination of x· f (x)
‖x‖ terms, for x∈ supp(D).

By the margin assumption, x· f (x)
‖x‖ ·

w
‖w‖ ≥ τ for all x ∈ supp(D). Thus, z·w

2‖w‖ ≥
τ

2 .

Lemma 4.6.9 (Advantage of Perturbed Halfspaces). Consider a halfspace defined by unit vector

w, and let h(x) = x
‖x‖ ·w. Assume h has advantage γ , i.e. 1

2Ex∼D f (x)h(x)≥ γ . Let u be any vector

such that ‖u‖ ≤ θ , where θ ∈ [0,
√

3/2). Let perturbed vector w′ = w+u
‖w+u‖ , and let h′(x) = x

‖x‖ ·w
′.

Then h′ has advantage at least γ−θ .

Proof. First, we bound the maximum distance between w and w′. Then, we apply Cauchy-Schwarz

to bound the advantage loss. w′ is constructed by perturbing w by a vector u, and then normalizing

to norm 1. w′ is furthest away from w when the vector w′ is tangent to the ball of radius ‖u‖

around w. In this case, ‖w′−w‖2 = (1−
√

1−θ 2)2 + θ 2 = 2− 2
√

1−θ 2. Since θ <
√

3/2,

2−2
√

1−θ 2 < 4θ 2. So, ‖w′−w‖2 < 4θ 2. The advantage of h′ is

1
2
Ex∼D

[
x
‖x‖
·w′ · f (x)

]
=

1
2
Ex∼D

[
x
‖x‖
· (w+(w′−w)) · f (x)

]
= γ +

1
2
(w′−w) ·Ex∼D

[
x
‖x‖
· f (x)

]

By Cauchy-Schwarz, the second term of the right-hand side has magnitude at most
√

4θ 2 ·1/2,

so the advantage of h′ is at least γ−θ .
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Concentration Bound on Sum of Normalized Vectors

Let D be a distribution on Rn. Let v = {v1, . . . ,vT} ∈DT be a random sample of T vectors from

D with the following properties:

1. Ev∈DT [∑T
i=1 vi]−Ev∈D[v] = 0.

2. ∀v ∈ D, ||v||2 ≤ c.

Lemma 4.2.1. Let D,v ∈ DT satisfy properties (1) and (2) above, and let v≤T = ∑
T
i=1 vi. Then for

all ∆ > 0,

Prv[||v≤T||2 ≥
√

T (1+ c/2)+∆]≤ e−∆2/2c2T .

For a proof, see Section 4.2.

Corollary 4.6.10. Let D be a distribution supported on the unit ball in d dimensions, and let f be a

halfspace. Let S be a sample of T examples (xi,yi) drawn i.i.d. from D, and let z = ∑S xi · yi. Let

a ∈ (0,1/2). Then PrS∼D

[
‖z−Ev∼Dv‖ ≥ 4T 1/2+a

]
≤ e−T 2a/2.

Proof. In order to have D satisfy the properties (1) and (2) above, we must translate D by the

expectation Ev∼D[v]. After this translation, the maximum length of a vector in the support is c = 2.

Plugging in ∆ = 2T 1/2+a and noting 2T 1/2+a ≥ 2T 1/2 yields the conclusion.

4.6.3 Coordinate-Based Rounding Scheme

Algorithm rHalfspaceStL uses polynomial sample complexity and runs in polynomial time

except for subroutine ConstructFoams, which runs in expected exponential time in the dimension

d (Theorem 4.6.5). Next, we consider a simpler rounding scheme that rounds points coordinate-by-

coordinate to a randomly shifted integer lattice. This rounding scheme requires tighter concentration

bounds, resulting in approximately another factor of d in the sample complexity. In return, it

can be constructed by ConstructBoxes and executed in linear time in sample complexity m and

dimension d.
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Algorithm 19. ConstructBoxes(d)
Input: dimension d
Output: rounding scheme R : Rd → Rd

Uniformly at random draw Z from [0,1)d .

Let box B be the set of points {x|∀i ∈ [d],xi ∈ [−1/2+ zi,1/2+ zi)}

Let R map all points in B to point Z and extend this assignment periodically by integer lattice

points

return R

Lemma 4.6.11. Let R :Rd→Rd be the randomized rounding scheme constructed by ConstructBoxes.

Let x,y ∈ Rd , and let ε
def
= dl2(x,y). Then Pr[R(x) = R(y)]≥ 1−dε .

Proof. We bound this probability by a crude l2 to l1 distance conversion. If x and y have l2

distance ε , then the distance between xi and yi is at most ε for all coordinates i ∈ [d]. The i’th

coordinate of x and y are not rounded to the same point with probability |xi− yi|. By a union bound,

Pr[R(x) = R(y)]≥ 1−dε .

Observation 4.6.12. ConstructBoxes always outputs a rounding scheme R with the following

property: the (l2) distance between any vector v ∈ Rd and R(v) is at most
√

d/2.

This follows from noticing that R maps each coordinate of v to value within distance 1/2.
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Reproducible Halfspace Weak Learner using Boxes

Algorithm 20. rHalfspaceWkLbox(s;r)
Parameters: desired reproducibility ρ , dimension d, assumed margin τ , constant a = .1

Input: A sample S of m =
(

64d3/2

τ2ρ

)1/(1/2−a)
examples (xi,yi) drawn i.i.d. from distribution D

Output: A hypothesis with advantage γ/4 on D against f

k← 1
m

4
√

d
τ2 = 4 ·

(
ρ·τ1+2a

64·d5/4+a/2

)1/(1/2−a)
/* Scaling factor */

z← ∑S
xi
‖xi‖ · yi

R←r ConstructBoxes(d) (Algorithm 19) /* Rounding scheme R : Rd → Rd */

w← R(k · z)

return Hypothesis h(x) def
= x
‖x‖ ·

w
‖w‖

Theorem 4.6.13. Let D be a distribution over Rd , and let f : Rd → {±1} be a halfspace with

margin τ in D. Then rHalfspaceWkL(s;r) is a (ρ,τ/4,ρ/4)-weak learner for halfspaces. That is,

Algorithm 17 ρ-reproducibly returns a hypothesis h such that, with probability at least 1−ρ/2,

Prx∼Dh(x) f (x)≥ τ/4, using a sample of size m =
(

64d3/2

τ2ρ

)5/2
.

Proof. Correctness (Advantage): The proof proceeds almost identically to the proof of Theo-

rem 4.6.2. By Lemma 4.6.8, the expected weighted vector Ex∼D

[
x· f (x)
‖x‖

]
has advantage τ/2 on D

and f . Any rounding scheme R randomly generated by ConstructBoxes always rounds its input

to a point within distance
√

d/2, so the distance between vectors w
k·‖E[z]‖ and E[z]

‖E[z]‖ is at most

4m1/2+a +
√

d/2k
τm

.

Simplifying, 4m1/2+a

τm = 4
τm1/2−a = 4τ

64
ρ

d3/2 < τ/8 and
√

d/2k
τm =

√
d

2τ

τ2

4
√

d
= τ/8. By applying

Lemma 4.6.9 with θ = τ/8+τ/8, we can conclude that h has advantage at least τ/2−(τ/8+τ/8)=

τ/4, as desired.

Reproducibility: Let z1 and z2 denote the empirical sums of vectors xiyi from two sepa-
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rate runs of rHalfspaceWkL. It suffices to show that the rounding scheme R constructed by

ConstructBoxes rounds k · z1 and k · z2 to the same vector w with high probability. The distance

between z1 and z2 is at most 2 ·4m1/2+a with probability at least 1−2e−m2a/2, by Corollary 4.6.10,

the triangle inequality, and a union bound. After scaling by k, this distance is at most 8km1/2+a. By

Lemma 4.6.11, the probability that R does not round k · z1 and k · z2 to same integer lattice point is

at most d ·8km1/2+a. Altogether, the reproducibility parameter is at most

2e−m2a/2 +8dkm1/2+a.

The second term satisfies 8dkm1/2+a = 8d(km/m1/2−a) = ρ/2, and the first term 2e−m2a/2 ≤

ρ/2 when m ≥ (2ln(4/ρ))1/(2a). So, as long as a is chosen such that m =
(

64d3/2

τ2ρ

)1/(1/2−a)
≥

(2ln(4/ρ))1/(2a), the algorithm is ρ-reproducible. This occurs if
(

64
ρ

)2a/(1/2−a)
≥ 2ln(4/ρ), which

is true for all values of ρ ∈ (0,1) when a = .07. For simpler constants, we use a = .1.

Failure rate: The algorithm succeeds when the martingale concentration bound holds. So, the

failure probability of rHalfspaceWkL is at most e−m2a/2 ≤ ρ/4.

Sample complexity: Plugging in a = .1 in the expression m =
(

64d3/2

τ2ρ

)1/(1/2−a)
yields the

conclusion.

4.7 Reproducible Boosting

In this section, we argue that a small modification of the boosting algorithm in Servedio [2003a]

is a reproducible boosting algorithm. Given access to a reproducible weak learner, this boosting

algorithm ρ-reproducibly outputs a hypothesis. Boosting algorithms are a natural candidate for

constructing reproducible algorithms — many boosting algorithms in the standard PAC-setting

are deterministic, and the final classifier returned is often a simple function of the weak learner

hypotheses (e.g. a majority vote). Combining this reproducible boosting algorithm with our

reproducible halfspace weak learner from Section 4.6 yields a reproducible strong learner for

halfspaces.
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Specifically, we modify the smooth boosting algorithm described in Servedio [2003a] in the

batch setting, presenting it in the filtering setting Bradley and Schapire [2007]. This boosting

algorithm has three main components, all of which can be made reproducible: (i) checking for

termination (via a statistical query), (ii) running the weak learner (reproducible by assumption), and

(iii) updating the weighting function (deterministic). The final classifier is a sum of returned weak

learner hypotheses. With high probability over two runs, our boosting algorithm rBoost collects

the exact same hypotheses h1, . . . ,hT from its reproducible weak learner.

4.7.1 Reproducible Boosting Algorithm: An Overview

In smooth boosting algorithms, a “measure” function µ : X → [0,1] determines a reweighting

of distribution D. The induced reweighted distribution, denoted Dµ , is defined by the probability

density function Dµ(x) = µ(x) ·D(x)/d(µ), where d(µ) is a normalizing factor Ex∼Dµ(x). We

refer to d(µ) as the density of measure µ . A sample s is drawn from Dµ and passed to the weak

learner rWkL. Sampling from Dµ using example oracle EX is done by rejection sampling — draw a

sample (x,y) from EX and a random b ∈r [0,1]; if r≤ µ(x), keep (x,y); otherwise, reject x and loop

until we keep (x,y). On expectation, we require m/d(µ) examples from D to sample m examples

from Dµ .

At the beginning of the algorithm, µ(x) = 1 for all x ∈ supp(D). Weak learner hypotheses ht are

used to modify update µ (and thus Dµ ) for future weak learner queries. The algorithm terminates

when the density d(µ) drops below the desired accuracy parameter ε — at this point, the majority

vote hypothesis h = sign(∑t ht) has accuracy at least 1− ε over D.

More specifically, we define µt+1(x) = M(gt(x)) using a base measure function M : R→

[0,1] and score function g : X → R. As in Servedio [2003a], we use a capped exponential

function as our base measure function M(a) =


1 a≤ 0

(1− γ)a/2 a > 0
. The score function is gt(x) =

∑
t
i=1(hi(x) f (x)−θ), where θ < γ is chosen as a function of γ .
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Algorithm 21. rBoostrWkL(s;r)

Parameters: desired reproducibility ρ , accuracy ε , constant θ
def
= γ/(2+ γ), round complexity

T = O(1/εγ2)
Input: Sample s of m examples (xi,yi) drawn i.i.d. from distribution D.
Weak learner rWkL with advantage γ and sample complexity mrWkL.
Output: h = sign

(
∑

T
t=1 ht

)
.

g0(x)
def
= 0

µ1(x)
def
= M(g0) = 1 /* “Measure” function for reweighting */

t← 0

while 1 do

t← t +1

Dµt (x)
def
= µt(x) ·D(x)/d(µt) /* Reweighted distribution */

s1← Õ(mrWkL/ε) fresh examples from s

srWkL← RejectionSampler(s1,mrWkL,µt ;r1) /* Rejection sampling for rWkL */

Hypothesis ht ← rWkL(srWkL;r2)

gt(x)
def
= gt−1(x)+ht(x) f (x)−θ /* Reweight distribution using ht */

µt+1(x)
def
= M(gt(x))

s2← Õ
(

1
ρ2ε3γ2

)
fresh examples from s /* Run rSTAT to check if d(µt+1)≤ ε */

if rSTATτ,ρ0,φ (s2;r3)≤ 2ε/3 then /* tolerance τ = ε/3, reproducibility ρ0 = ρ/(3T ) */

Exit while loop /* failure rate ρ/(12T ), query φ(x,y) = µ(x) */

return h← sign(∑t ht)
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Algorithm 22. RejectionSampler(sall,mtarget,µ;r)
Input: sample sall drawn i.i.d. from distribution D, target size of output sample mtarget ∈ [|sall|], and
description of measure function µ : X → [0,1].
Output: ⊥ or a sample skept of size |skept|= mtarget

skept← /0

for i = 1 to i = |sall| do

Use randomness r to randomly pick a b ∈ [0,1]

if µ(xi)≥ b then /* Reject (xi,yi) w. p. 1−µ(x) */

skept← skept||(xi,yi) /* Add example (xi,yi) to skept */

if |skept|= mtarget then

return skept

return ⊥ /* Ran out of fresh samples in sall */

A subtle note is that this boosting algorithm must precisely manage its sample s and random

string r when invoking subroutines. In order to utilize the reproducibility of subroutines (e.g. rWkL),

the boosting algorithm needs to ensure that it uses random bits from the same position in r. A first-

come first-serve approach to managing r (i.e. each subroutine uses only the amount of randomness

it needs) fails immediately for rBoost — the amount of randomness RejectionSampler needs

is dependent on the sample, so the next subroutine (in this case, rWkL) may not be using the same

randomness across two (same-randomness r) runs of rBoost.

If one can precisely upper bound the amount of randomness needed for each of L subroutines,

then r can be split into chunks r1||r2|| . . . ||rL, avoiding any desynchronization issues. Alternatively,

one can split r into L equally long random strings by only using bits in positions equivalent to l

mod L for subroutine l ∈ [L].

4.7.2 Analysis of rBoost (Algorithm 21)

As before, function f in concept class C is a function from domain X to {±1}. D is a

distribution over X .

118



Theorem 4.7.1 (Reproducible Boosting). Let ε > 0,ρ > 0. Let rWkL be a (ρr,γ,δrWkL)-weak

learner. Then rBoostrWkL(s;r) is ρ-reproducible and with probability at least 1−ρ , outputs a

hypothesis h such that Prx∼D[h(x) = f (x)] ≥ 1− ε . rBoost runs for T = O(1/(εγ2
rWkL)) rounds

and uses Õ
(

mrWkL(ρ/(6T ))

ε2γ2 + 1
ρ2ε3γ2

)
samples, where the Õ notation hides log(1/(ρεγ2)) factors and

mrWkL(ρ/(6T )) denotes the sample complexity of rWkL with reproducibility parameter ρ/(6T ).

For readability, we break the proof into components for round complexity, correctness, repro-

ducibility, sample complexity, and failure probability.

Proof. Round Complexity: Theorem 3 in Servedio [2003a] gives a T = O(1/(εγ2
rWkL)) round

complexity bound for this boosting algorithm in the batch setting. Analogous arguments hold in the

filtering setting, so we defer to Servedio [2003a] for brevity.

Correctness: Similarly, since reproducible weak learner rWkL satisfies the definitions of

a weak learner, the correctness arguments in Servedio [2003a] also hold. A small difference

is the termination condition — rather than terminate when the measure satisfies d(µ) < ε , our

algorithm terminates when the density estimated by rSTAT is less than 2ε/3. We run rSTAT on

query φ(x) = µ(x) with tolerance parameter ε/3. Thus, when the rBoost terminates, d(µt)< ε .

Reproducibility: We show this boosting algorithm not only reproducibly outputs the same

hypothesis h, but that each returned weak learner hypothesis ht is identical across two runs of

the boosting algorithms (using the same randomness r) with high probability. The reweighted

distribution Dµt depends only on the previous weak learner hypotheses h1, . . . ,ht−1, so the only

possibilities for loss of reproducibility are: (i) returning ⊥ while rejection sampling from Dµ ; (ii)

running the reproducible weak learner; and (iii) using a statistical query to decide to exit the while

loop. We note that our choice of parameters adds non-reproducibilty at most ρ/(3T ) for each and

apply a union bound over at most T rounds of boosting.

1. By Lemma 4.7.2, O(mrWkL
ε
· log(T/ρ)) examples suffice to guarantee RejectionSampler

outputs ⊥ with probability at most ρ/(6T ). Union bounding over two runs, this is at most

ρ/(3T ).
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2. By Lemma 4.7.4, running rWkL with reproducibility parameter ρ/(6T ) will add a ρ/(3T )

contribution to the non-reproducibility.

3. We run rSTAT with reproducibility parameter ρ/(3T ).

Sample Complexity: There are two contributions to the sample complexity: samples used for

the weak learner rWkL, and samples used by rSTAT to estimate the density of measure µt . Fresh

samples are used for each of T rounds of boosting. Together, by Theorem 4.3.3 and the definition

of s1 (in Algorithm 21), the sample complexity is

O
(

T ·
(

mrWkL(ρ/(6T ))

ε
· log(T/ρ)+

log(T/ρ)

(ε2)(ρ)2

))
= Õ

(
mrWkL(ρ/(6T ))

ε2γ2 +
1

ρ2ε3γ2

)

where the Õ notation hides log(1/(ρεγ2)) factors and mrWkL(ρ/(6T )) denotes the sample complexity

of rWkL with reproducibility parameter ρεγ2.

Failure Probability: Assuming the weak learner returns correct hypotheses when it is repro-

ducible, the boosting algorithm rBoost is correct when it is reproducible, so the failure probability

is bounded above by ρ .4

4.7.3 Rejection Sampling Lemmas

Next, we show that reproducibility composes well with rejection sampling throughout the

execution of rBoost.

Lemma 4.7.2 (Failure Rate of RejectionSampler). Let measure µ have density d(µ)≥ ε/3. Let

sall be a sample drawn i.i.d. from distribution D. If |sall| ≥
24mtarget

ε
·log(1/δ ), then RejectionSampler(sall,mtarget,µ;r)

outputs ⊥ with probability at most δ .

Proof. The probability RejectionSampler outputs ⊥ is precisely the probability a binomial

random variable X ∼ B(|sall|,d(µ)) is at most mtarget. By a Chernoff bound, Pr[X ≤ (1− .5)|sall| ·

d(µ)]≤ exp(−|sall| ·d(µ)/8)≤ exp(−|sall| · ε/24). Thus, Pr[X ≤ mtarget]≤ δ .
4A more precise sample complexity statement in terms of the failure probability δ can be obtained by unboxing the

error probabilities. The algorithm can fail if RejectionSampler outputs⊥, if rWkL fails, and if rSTAT fails. Bounding
each of these quantities by δ/(3T ) ensures that the rBoost has failure rate δ .
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Remark 4.7.3. The following is a justification of why we may assume d(µ)≥ ε/3 in the previous

lemma.

When RejectionSampler is first called in round 1 of rBoost, µ(x) = 1 for all x, so d(µ) = 1.

In subsequent rounds t ≥ 2, RejectionSampler is only called if, in previous round t−1, rSTAT

estimated d(µ) to be at least 2ε/3. rSTAT is run with tolerance ε/3, so d(µ) ≥ ε/3 whenever

rSTAT succeeds. Whenever we apply the above lemma, we are assuming the success of previous

subroutines (by keeping track of and union bounding over their error).

The following lemma shows that rejection sampling before running a reproducible algorithm

only increases the non-reproducibility ρ by a factor of 2. To be precise, we let p denote the

probability the rejection sampler returns ⊥. However, when we apply this Lemma in the proof of

Theorem 4.7.1, we will have already accounted for this probability.

Lemma 4.7.4 (Composing Reproducible Algorithms with Rejection Sampling). Let A (s,r) be a

ρ-reproducible algorithm with sample complexity m Let µ : X → [0,1]. Consider B, the algorithm

defined by composing RejectionSampler(s′,m,µ;r′) with A (s;r). Let q be the probability that

RejectionSampler returns ⊥. Then B is a 2q+2ρ-reproducible algorithm.

Proof. Since A is ρ-reproducible, Prs1,s2,r [A (s1;r) = A (s2;r)]≥ 1−ρ . However, the rejection

sampling is done with correlated randomness, so s1 and s2 are not independent. Consider an

imaginary third run of algorithm A (s3;r), where s3 is drawn from Dµ using separate randomness.

We will use a triangle-inequality-style argument (and a union bound) to derive the conclusion.

Conditioned on RejectionSampler not returning ⊥, algorithm B(s′1;r′||r) returns the same result

as A (s3,r) (when both algorithms use randomness r for the execution of A ) with probability at

least 1−ρ . The same statement holds for the second run B(s′1;r′||r). Thus,

Prs′1,s
′
2,r
′||r
[
B(s′1;r′||r) = B(s′2;r′||r)| neither run outputs ⊥

]
≥ 1−2ρ.

Finally, B may fail to be reproducible if either RejectionSampler call returns ⊥, so we union

bound over this additional 2q probability.
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4.7.4 Reproducible Strong Halfspace Learner

We give two reproducible strong learners for halfspaces by combining boosting algorithm

rBoost with reproducible weak halfspace learners rHalfspaceWkL and rHalfspaceWkLbox.

Corollary 4.7.5. Let D be a distribution over Rd , and let f : Rd → {±1} be a halfspace with

margin τ in D. Let ε > 0. Then

• Algorithm rBoost run with weak learner rHalfspaceWkL ρ-reproducibly returns a hypothe-

sis h such that, with probability at least 1−ρ , Prx∼D[h(x) = f (x)]≥ 1− ε , using a sample

of size Õ
(

d10/9

τ76/9ρ20/9ε28/9

)
.

• Algorithm rBoost run with weak learner rHalfspaceWkLbox ρ-reproducibly returns a hy-

pothesis h such that, with probability at least 1−ρ , Prx∼D[h(x) = f (x)] ≥ 1− ε , using a

sample of size Õ
(

d15/4

τ10ρ5/2ε9/2

)
.

Proof. For the first strong learner, we compose Theorem 4.7.1 with Theorem 4.6.2. rHalfspaceWkL

has advantage γ = τ/4, so rBoost has round complexity T = O(1/(εγ2)) = O(1/(ετ2)). rBoost

runs rHalfspaceWkL with parameter ρrWkL = ρ/6T , so the sample complexity mrHalfspaceWkL is

O
(

d10/9

τ58/9ρ20/9ε10/9

)
. Thus, the sample complexity for the boosting algorithm is

Õ

(
d10/9

τ76/9ρ20/9ε28/9

)
For the second strong learner, we compose Theorem 4.7.1 with Theorem 4.6.13. As be-

fore, rBoost has round complexity T = O(1/(ετ2)) and runs rHalfspaceWkLbox with parameter

ρrWkL = ρ/6T . The sample complexity mrHalfspaceWkLbox is O
((

d3/2

τ2ρrWkL

)5/2
)

=

((
d3/2

τ4ρε

)5/2
)

.

Thus, the sample complexity for the boosting algorithm is Õ
(

mrWkL(ρ/(6T ))

ε2γ2 + 1
ρ2ε3γ2

)
= Õ

(
1

ε2γ2

(
d3/2

τ2ρrWkL

)5/2
)
=

Õ
(

d15/4

τ10ρ5/2ε9/2

)
.

Remark 4.7.6. rHalfspaceWkLbox can be run in time polynomial in the input parameters, so the

strong learner obtained by running rBoost with weak learner rHalfspaceWkLbox is a poly(1/ε,1/ρ,1/τ,d)-
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time algorithm. However, the other weak learner rHalfspaceWkL uses a foams construction sub-

routine from Kindler et al. [2012] that takes expected exponential in d runtime. The corresponding

strong learner runs in time polynomial in 1/ε,1/ρ, and 1/τ , but exponential in d.

4.7.5 Discussion

Algorithm 21 follows the smooth boosting framework of Servedio Servedio [2003a], which also

shows how to boost a weak halfspace learner under a margin assumption on the data. They show that

their boosted halfspace learner obtains a hypothesis with good margin on the training data, and then

apply a fat-shattering dimension argument to show generalization to the underlying distribution with

sample complexity Õ(1/(τε)2). Notably, this gives sample complexity independent of d. Moreover,

their smooth boosting algorithm is tolerant to malicious noise perturbing an η ∈ O(τε) fraction of

its sample.

A generic framework for differentially private boosting was given in Bun et al. [2020a], with

an application to boosting halfspaces. Their boosting algorithm also follows the smooth boosting

framework, but uses a variant of the round-optimal boosting algorithm given in Barak et al. [2009b].

Their halfspace learner similarly requires a margin assumption on the data and tolerates random

classification noise at a rate η ∈ O(τε). They give two generalization arguments for their halfspace

learner, both of which are dimension-independent. The first follows from prior work showing

that differential privacy implies generalization Bassily et al. [2016] and gives sample complexity

Õ( 1
εατ2 +

1
ε2τ2 +α−2 + ε−2) for approximate differential privacy parameters (α,β ). The second

follows from a fat-shattering dimension argument and gives a tighter bound of Õ
(

1
εατ2

)
.

Boosting algorithms have been thoroughly studied over the past few decades, and there are many

types of boosting algorithms (e.g. distribution-reweighting, branching-program, gradient boosting)

with different properties (e.g. noise-tolerance, parallelizability, smoothness, batch vs. filtering). It

would be interesting to see which of these techniques can be made reproducible, and at what cost.
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4.8 Reproducibility: Alternative Definitions and Properties

In this section, we consider a few alternative criteria for reproducibility and show how they

relate to our definition of reproducibility. We also demonstrate other robustness properties of

reproducibility such as amplifying the parameters, as well as data/randomness reuse.

Alternative Definitions and Amplification. Throughout most of this chapter, we choose to define

A as have two sources of random inputs: samples s drawn from distribution D and internal

randomness r. A has no additional inputs. However, we could more generally define A to have

additional, nonrandom inputs. In this more general definition, we define A (x;s;r) where s and r are

as defined previously, and x is an auxiliary input (or tuple of inputs). A (x;s;r) is ρ-reproducible

with respect to distribution D if for every input x, A (x;s;r) is ρ-reproducible. This definition

generalizes both pseudodeterministic algorithms (in which there is no underlying distribution, so

s is empty) as well as our definition of reproducible learning algorithms (in which there are no

additional inputs, so x is empty).

Rather than parameterize reproducibility by a single parameter ρ , one could use two variables

(η ,ν).

Definition 4.8.1 ((η ,ν)-reproducibility). Let A (x;s;r) be an algorithm, where s are samples from

D, and r is the internal randomness. We say that a particular random string r is η-good for A on x

with respect to D if there is a single “canonical” output Zr such that Pr[A (x;s;r) = Zr] ≥ 1−η .

Then A is (η ,ν)-reproducible with respect to D if, for each x, the probability that a random r is

η-good for A (on x and D) is at least 1−ν .

(η ,ν)-reproducibility is qualitatively the same as ρ-reproducibility, but might differ by poly-

nomial factors. If A is (η ,ν)-reproducible, then A is ρ-reproducible on D, where ρ ≤ 2η +ν .

The probability that two runs of A , using the same internal randomness r, output different results

is at most Pr[r not η-good] plus the probability that at least one run is not the special output Zr

(conditioned on r being η-good). In the other direction, if A is ρ-reproducible, then A is (ρ/ν ,ν)-
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reproducible for any ρ ≤ ν < 1. Say there is a ν probability that r is not η-good. Conditioned

on picking a not η-good r, there is a conditional (at least) η probability of the second run of A

returning something different than the first run.5 Thus, ρ ≥ ην .

A similar definition called “pseudo-global stability”, developed independently to our work,

appears in Ghazi et al. [2021]. That definintion parametrizes by the sample complexity m and

does not explicitly parametrize by auxiliary input x. Additionally, their definition includes an

(α,β )-accuracy guarantee on Zr, the very likely output. To keep both definitions consistent with

their original conventions, we write η ′
def
= 1−η and ν ′

def
= 1−ν .

Definition 4.8.2 (Pseudo-global stability, Definition 15 in Ghazi et al. [2021]). A learning algorithm

A with sample complexity m is said to be (α,β )-accurate, (η ′,ν ′)-pseudo-globally stable if there

exists a hypothesis hr for every r∈ supp(R) (depending on D) such that Prr∼R[errD(hr)≤α]≥ 1−β

and

Prr∼R
[
Prs∼Dm[A (s;r) = hr]≥ η

′]≥ ν
′

where s is a sample of m (labeled) examples (xi,yi) drawn from distribution D.

The final condition of Definition 4.8.2 is equivalent to saying that i) a randomly chosen r is η ′-

good with probability at least ν ′, and ii) for every r, hr is the output that witnesses the η-goodness.

Carrying the accuracy guarantee through the previous argument, an (α,β )-accurate (η ′,ν ′)-pseudo-

globally-stable algorithm A implies a (2(1−η ′)+(1−ν ′)) = (2η +ν)-reproducible algorithm

A also with (α,β )-accuracy.

If we are willing to increase the sample complexity of A , we can make the connection stronger:

Theorem 4.8.3 (Amplification of Reproducibility). Let 0 < η ,ν ,β < 1/2 and m > 0. Let A be an

(η ,ν)-reproducible algorithm for distribution D with sample complexity m and failure rate β . If

ρ > 0 and ν +ρ < 3/4, then there is a ρ-reproducible algorithm A ′ for D with sample complexity

5If 1−η ≥ 1/2, then the probability that two runs of A using the same randomness returns the same result is at
most (1−η)2 +η2, i.e., when A has only two possible outputs. This is less than 1−η , assuming 1−η ≥ 1/2. If
1−η < 1/2, then there must be more than two outputs, and the probability of nonreproducibility is again larger than η .
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m′ = Õ(m(log1/β )3/(ρ2(1/2−η)2) and failure rate at most O(β +ρ). The construction of A ′

does not depend on D.

Proof. Set k = 3log1/β . For each random string r, let Dr be the distribution on outputs of A (x;s;r)

(over random s). Algorithm A ′ randomly picks k-many strings r1, . . . ,rk, runs the reproducible

heavy-hitters algorithm (Algorithm 15) on the distributions Dr1, . . . ,Drk , and outputs the first

returned heavy-hitter (or ⊥ if each subroutine returns the empty list). We say there are k rounds of

A ′, one per random string r.

The reproducibility of rHeavyHitters implies the reproducibility of A ′. We show that a heavy-

hitter in Dr for randomly chosen r is often a correct answer, except with probability comparable to

β .

By definition, r is η-good iff Dr has a 1−η heavy-hitter. Since η < 1/2, this heavy-hitter

will be unique, and there will be no other 1− η > 1/2 heavy-hitters. Given any r, we can

draw from distribution Dr by running algorithm A with fresh samples s. Consider running

the reproducible heavy-hitters algorithm with parameters v = (3/2−η)/2, ε = (1/2−η)/2, and

reproducibility ρ ′ = ρ/k. These are chosen so that v+ ε = 1−η and v− ε = 1/2. If r is η-good,

then rHeavyHitters will return the (unique) majority element for Dr with probability at least

1−ρ/k. If r is not 1/2-good6, the reproducible heavy-hitters algorithm with the same parameters

will return the empty list with probability at least 1−ρ/k.

Next, we compute the conditional probability that the first element returned by rHeavyHitters

is correct. The probability that rHeavyHitters produces an empty list in one round is at most

ν (when the randomly chosen r is not η-good) plus ρ/k (when r is η-good but the heavy-hitters

algorithm fails). At most a (2β )-fraction of random strings r satisfy both of the following two

conditions: i) Dr has a majority element Zr and ii) Zr is an incorrect output. Thus, the conditional

probability of outputting an incorrect answer, given rHeavyHitters produces a non-empty output,

is at most (2β +ρ/k)/(1−ν−ρ/k). By assumption, ν +ρ/k < 3/4, so this is O(β +ρ).

So far, we have bounded the probability that A ′ returns an incorrect answer. A ′ could also fail

6Since η < 1/2 by assumption, r being not 1/2-good implies r is not η-good.
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if rHeavyHitters returns the empty list in each of k rounds. Since ν +ρ/k < 3/4, this happens

with probability at most (3/4)k ≤ β . So, the overall probability of error is at most O(β +ρ).

If two runs of A ′ use the same ri’s and same randomness for each heavy-hitters call, they only

produce different answers if a pair of rHeavyHitters calls produces different answers in the same

round. By the reproducibility of rHeavyHitters, this only happens with probability ρ/k each

round, for a total non-reproducibility probability at most ρ .

A ′ calls rHeavyHitters k = O(log1/β ) times. Each example used by rHeavyHitters is

created by running A , which has sample complexity m. By Lemma 4.4.3, rHeavyHittersρ ′,v,ε has

sample complexity Õ
(

1
ρ ′2ε2(v−ε)2

)
. Substituting in ρ ′ = ρ/k,ε = (1/2−η)/2, and v− ε = 1/2,

A has sample complexity km · Õ
(

k2

ρ2(1/2−η)2

)
= Õ

(
m log3(1/β )
ρ2(1/2−η)2

)
.

Corollary 4.8.4. Let α > 0 and ρ < 1/4−α . Let A be a ρ-reproducible algorithm using m

samples is correct except with error at most β . Then for arbitrary ρ ′ satisfying ρ > ρ ′ > 0, there is

a ρ ′-reproducible algorithm A ′ with sample complexity m′ = Õ
(

m log3(1/β )
ρ ′2α2

)
that is correct except

with error at most O(β +ρ ′).

Proof. By the arguments immediately after Definition 4.8.1, a ρ-reproducible algorithm implies a

(ρ/x,x)-reproducible algorithm. Choosing x = 1/2−α allows us to apply Theorem 4.8.3 for any

ρ < 1/4. The (1/2−η) term in Theorem 4.8.3 simplifies to α/(1−2α) in this context. When α

can be chosen as a constant, the sample complexity simplifies to m′ = Õ(m log3(1/β )/ρ ′2).

Public versus Private Randomness. We define reproducibility as the probability that when

run twice using the same (public) randomness, but with independently chosen data samples, the

algorithm returns the same answer. In Grossman and Liu [2019], the authors define a related concept,

but divide up the randomness into two parts, where only the first randomness part gets reused in

the second run of the algorithm. In their applications, there are no data samples, so re-running the

algorithm using identical randomness would always give identical results; rather, they were trying to

minimize the amount of information about the random choices that would guarantee reproducibility,

i.e., minimize the length of the first part.
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Similarly, we could define a model of reproducibility that involved two kinds of random choices.

Define A (x;s;rpub,rpriv), s = (s1, . . . ,sm) to be ρ-reproducible with respect to rpub and D if for

every x, random s1 and s2 drawn from Dm, and random rpub,rpriv,r′priv,

Pr[A (x;s1;rpub,rpriv) = A (x;s2;rpub,r′priv)]≥ 1−ρ.

If we want to minimize the amount of information we need to store to guarantee reproducibility,

keeping rpriv and rpub distinct may be important. However, if all we want is to have a maximally

reproducible algorithm, the following observation shows that it is always better to make the entire

randomness public.

Lemma 4.8.5. If A (x;s;rpub,rpriv) is ρ-reproducible with respect to rpub over D, then A (x;s;rpub,rpriv)

is ρ-reproducible with respect to (rpub,rpriv) over D.

Proof. We show for each value of x and rpub,

Pr[A (x;s1;rpub,rpriv) = A (x;s2;rpub,r′priv)]≤ Pr[A (x;s1;rpub,rpriv) = A (x;s2;rpub,rpriv)].

Fix x and rpub. For each possible value R of rpriv and each possible output Z, let qR,Z =Pr[A [(x;s1;rpub,R)]=

Z, and let qR be the vector indexed by Z whose Zth coordinate is qR,Z . Then

Pr[A [(x;s1;rpub,R) = A (x;s2;rpub,R)] = ∑
Z
(qR,Z)

2 = ||qR||22,

and

Pr[A (x;s1;rpub,R) = A (x;s2;rpub,R′)] = ∑
Z
(qR,ZqR′,Z) = 〈qR,qR′〉.
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Thus,

Pr[A (x;s1;rpub,rpriv) = A (x;s2;rpub,r′priv)] = ER,R′[〈qR,qR′〉]

≤ ER,R′[||qR||2||qR′||2]

= (ER[||qR||2])2

≤ ER[||qR||22]

= Pr[A (x;s1;rpub,rpriv) = A (x;s2;rpub,rpriv)].

We will implicitly use this observation in the boosting algorithm section, since it will be conve-

nient to think of the two runs of the boosting algorithm as picking samples each step independently,

when using the same random string would create some correlation.

Reproducibility Implies Generalization. We show that a hypothesis generated by a reproducible

algorithm has a high probability of having generalization error close to the empirical error. Let

h be a hypothesis, c be a target concept, and D be a distribution. The risk (generalization error)

of R(h) def
= Prx∼D[h(x) 6= c(x)]. If s is a sample drawn i.i.d. from D, then the empirical risk

R̂s(h)
def
= Prx∈s[h(x) 6= c(x)].

Lemma 4.8.6 (Reproducibility Implies Generalization). Let sample s∼ Dn, and let δ > 0. Let h be

a hypothesis output by ρ-reproducible learning algorithm A (s;r), where r is a random string. Then,

with probability at least 1−ρ−δ over the choice of s and r, R(h)≤ R̂s(h)+
√

ln(1/δ )/(2n).

Proof. Consider running A (s2;r), where s2 is an independent sample of size m drawn from D,

but r is the same as before. Let h2 denote the returned hypothesis. Since h2 is independent

of s, Prs∼Dn[R̂s(h2)− R(h2) ≥ ε] ≤ exp(−2nε2) for ε > 0 by Hoeffding’s inequality. By the

reproducibility of A , h2 = h with probability at least 1−ρ . By a union bound, R(h) ≥ R̂s(h)+√
ln(1/δ )/2n with probability at least 1−ρ−δ .

129



In the above argument, we use the definition of reproducibility to create independence between

s and h, allowing us to use Hoeffding’s inequality.

Connections to Data Reuse. We consider the adaptive data analysis model discussed in Dwork

et al. [2015b] and Dwork et al. [2015a], and we prove that reproducible algorithms are resiliant

against adaptive queries (Lemma 4.8.7). The proof is via a hybrid argument.

Lemma 4.8.7 (Reproducibility =⇒ Data Reusability). Let D be a distribution over domain X .

Let M be a mechanism that answers queries of the form q : X → {0,1} by drawing a sample

S of n i.i.d. examples from D and returning answer a. Let A denote an algorithm making m

adaptive queries, chosen from a set of queries Q, so that the choice of qi may depend on q j,a j for

all j < i. Denote by [A ,M ] the distribution over transcripts {q1,a1, . . .qm,am} of queries and

answers induced by A making queries of M . Let M ′ be a mechanism that behaves identically to

M , except it draws a single sample S′ of n i.i.d. examples from D and answers all queries with S′.

If M answers all queries q∈Q with ρ-reproducible procedures, then SD∆([A ,M ], [A ,M ′])≤

(m−1)ρ , where SD∆(D1,D2) denotes the statistical distance between distribtuions D1 and D2.

Proof. For i ∈ [m], let [A ,Mi] denote the distribution on transcripts output by algorithm A ’s

interaction with Mi, where Mi is the analogous mechanism that draws new samples S1, . . . ,Si for

the first i queries, and reuses sample Si for the remaining m− i queries. Note that M ′ = M1 and

M = Mm.

For i ∈ [m−1], consider distributions [A ,Mi] and [A ,Mi+1]. We will bound the statistical dis-

tance by a coupling argument. Let S1, . . . ,Si+1 denote random variables describing the samples used,

and let r denote the randomness used over the entire procedure. [A ,Mi] can be described as running

the entire procedure (with randomness R) on S1, . . . ,Si−1,Si+1,Si+1, . . . ,Si+1, and [A ,Mi+1] can be

described as running the entire procedure (with randomness R) on S1, . . . ,Si−1,Si,Si+1,Si+1, . . . ,Si+1.

These distributions are identical for the first i−1 queries and answers, so the i’th query qi is

identical, conditioned on using the same randomness. Both Si and Si+1 are chosen by i.i.d. sampling

from D, so PrSi,Si+1,r [A (qi,Si+1;r) = A(qi,Si;r)] ≥ 1− ρ by reproducibility. Conditioned on
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both transcripts including the same (i+ 1)’th answer ai+1 (and continuing to couple Si+1 and r

for both runs), the remaining queries and answers qi+1,ai+1, . . . ,qm,am is identical. Therefore,

SD∆([A ,Mi], [A ,Mi+1]) ≤ ρ for all i ∈ [m− 1]. Unraveling, SD∆([A ,M ], [A ,M ′]) ≤ (m−

1)ρ.

Remark 4.8.8. This connection may be helpful for showing that reproducibility cannot be achieved

efficiently in contexts where data reuse is not efficiently achievable.

4.9 SQ–Reproducibility Lower Bound

How much does it cost to make a nonreproducible algorithm into a reproducible one? In this

section, we show a lower bound for reproducible statistical queries via a reduction from the coin

problem.

Theorem 4.9.1 (SQ–Reproducibility Lower Bound). Let τ > 0 and let δ ≤ 1/16. Let query

φ : X → [0,1] be a statistical query. Let A be a ρ-reproducible SQ algorithm for φ with tolerance

less than τ and success probability at least 1− δ . Then A has sample complexity at least m ∈

Ω(1/(τ2ρ2)).

Note that this nearly matches the reproducible statistical query upper bound in Theorem 4.3.3,

in the case that δ ∈Θ(ρ).

Recall the coin problem: promised that a 0-1 coin has bias either 1/2− τ or 1/2+ τ for some

fixed τ > 0, how many flips are required to identify the coin’s bias with high probability?

Proof of Theorem 4.9.1. A τ-tolerant ρ-reproducible SQ algorithm A for φ naturally induces a

ρ-reproducible algorithm B for the τ-coin problem — B runs A (the results of the coin flips

are the φ(x)’s), and B accepts (outputs 1) if A ’s output is ≥ 1/2, otherwise rejects. The success

probability of B is at least that of A . As A is reproducible for all distributions, B also satisfies

the assumption in Lemma 4.9.2 that B is ρ-reproducible for coins with bias in (1/2− τ,1/2+ τ).

By Lemma 4.9.2, any reproducible algorithm solving the coin problem with these parameter has

sample complexity m ∈Ω(1/(τ2ρ2)), implying the lower bound.
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Lemma 4.9.2 (Sample Lower Bound for the Coin Problem). Let τ < 1/4 and ρ < 1/16. Let B be

a ρ-reproducible algorithm that decides the coin problem with success probability at least 1−δ

for δ = 1/16. Furthermore, assume B is ρ-reproducible, even if its samples are drawn from a

coin C with bias in (1/2− τ,1/2+ τ). Then B requires sample complexity m ∈Ω(1/(τ2ρ2)), i.e.

ρ ∈Ω(1/τ
√

m).

Proof. Assume we have an algorithm B(b1..bm;r) of sample complexity m so that (i) if the bi’s are

chosen i.i.d. in {0,1} with bias 1/2− τ , B accepts with at most δ probability (over both random

r and the bi’s), and (ii) if the bi’s are drawn i.i.d. with bias 1/2+ τ , B accepts with at least 1−δ

probability.

Let p ∈ [0,1] denote the bias of a coin. Since B is ρ-reproducible, B is ρ-reproducible for

any distribution on p. In particular, pick p ∈U [1/2− τ,1/2+ τ]. Let C−τ denote a coin with bias

1/2−τ , and let C+τ denote a coin with bias 1/2+τ . By Markov’s inequality, each of the following

is true with probability at least 1−1/4 over choice of r:

• Prb1..bm∼i.i.d.C−τ
[B(b1..bm;r) accepts]≤ 4δ

• Prb1..bm∼i.i.d.C+τ
[B(b1..bm;r) accepts]≥ 1−4δ

• When p is chosen between 1/2−τ and 1/2+τ uniformly, and then b1..bm,b′1..b
′
m are sampled

i.i.d. with expectation p, Pr[B(b1..bm;r) = A(b′1..b
′
m;r)]≥ 1−4ρ .

By a union bound, there exists an r∗ so that every above statement is true. Note that for any p,

given ∑bi = j, the samples b1..bm are uniformly distributed among all Boolean vectors of Hamming

weight j. Let a j
def
= Pr[B(b1..bm;r∗) accepts |∑bi = j]. Then the probability B accepts using

r∗ on bits with bias p is Acc(p) = ∑ j a j
(m

j

)
p j(1− p)m− j. In particular, this is a continuous and

differentiable function.

Since Acc(1/2−τ)< 4δ < 1/4 and Acc(1/2+τ)> 1−4δ > 3/4, there is a q∈ (1/2−τ,1/2+

τ) with Acc(q) = 1/2. We show that Acc(p) is close to 1/2 for all p close to q by bounding the

derivative Acc′(p) within the interval [1/4,3/4], which contains [1/2− τ,1/2+ τ].
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By the standard calculus formulas for derivatives,

Acc′(p) = ∑
j

a j

(
m
j

)
( jp j−1(1− p)m− j− (m− j)p j(1− p)m− j−1)

= ∑
j

a j

(
m
j

)
p j(1− p)m− j( j/p− (m− j)/(1− p))

= ∑
j

a j

(
m
j

)
p j(1− p)m− j( j−mp)/(p(1− p)).

Since 1/4 < p < 3/4, p(1− p)> 3/16 > 1/6, and 0≤ a j ≤ 1. So this sum is at most

∑
j

(
m
j

)
p j(1− p)m− j6| j−mp|= 6E j[| j−mp|]

where the last expectation is over j chosen as the sum of m random Boolean variables of expectation

p. This expectation is O(m1/2) because the expectation of the absolute value of the difference

between any variable and its expectation is at most the standard deviation for the variable.

Since the derivative is at most O(
√

m), there is an interval I of length Ω(1/
√

m) around q

so that 1/3 < Acc(p) < 2/3 for all p in this interval. Since Acc(p) 6∈ (1/3,2/3) at p = 1/2− τ

and p = 1/2+ τ , interval I is entirely contained in (1/2− τ,1/2+ τ). So, there is an Ω(1/τ
√

m)

chance that a random p ∈U [1/2− τ,1/2+ τ] falls in interval I. For p ∈ I, there is a 2Acc(p)(1−

Acc(p))> 4/9 conditional probability of non-reproducibility for B. Therefore, ρ ≥Ω(1/τ
√

m)

and m ∈Ω(1/τ2ρ2).

This chapter, in full, is based on the material as it appears in Symposium on Theory of Computing.

Impagliazzo, Russell; Lei, Rex; Pitassi, Toniann; Sorrell, Jessica. “Reproducibility in Learning”.

The dissertation author was the primary investigator and author of this material.
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Improved security proofs in lattice-based cryptography: Using the Rényi divergence rather than
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