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MARKOV PROCESSES CONDITIONED ON THEIR LOCATION AT
LARGE EXPONENTIAL TIMES

STEVEN N. EVANS AND ALEXANDRU HENING

Abstract. Suppose that (Xt)t≥0 is a one-dimensional Brownian motion with negative
drift −µ. It is possible to make sense of conditioning this process to be in the state 0
at an independent exponential random time and if we kill the conditioned process at the
exponential time the resulting process is Markov. If we let the rate parameter of the random
time go to 0, then the limit of the killed Markov process evolves like X conditioned to hit
0, after which time it behaves as X killed at the last time X visits 0. Equivalently, the
limit process has the dynamics of the killed “bang–bang” Brownian motion that evolves
like Brownian motion with positive drift +µ when it is negative, like Brownian motion with
negative drift −µ when it is positive, and is killed according to the local time spent at 0.

An extension of this result holds in great generality for a Borel right process conditioned
to be in some state a at an exponential random time, at which time it is killed. Our proofs
involve understanding the Campbell measures associated with local times, the use of excur-
sion theory, and the development of a suitable analogue of the “bang–bang” construction
for a general Markov process.

As examples, we consider the special case when the transient Borel right process is a
one-dimensional diffusion. Characterizing the limiting conditioned and killed process via
its infinitesimal generator leads to an investigation of the h-transforms of transient one-
dimensional diffusion processes that goes beyond what is known and is of independent
interest.
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1. Introduction

A basic phenomenon that lies at the core of the theory of continuous time Markov processes
is the fact that sometimes goes by the name of “competing exponentials”: if ζ and ξ are
independent random exponential random variables with respective rate parameters λ and µ,
then P{ζ < ξ} = λ

λ+µ
and conditional on the event {ζ < ξ} the random variables ζ and ξ− ζ

are independent with exponential distributions that have rate parameters λ+ µ and µ.
Letting λ ↓ 0, we see that asymptotically the conditional distribution of (ζ, ξ − ζ) given
{ζ < ξ} is that of a pair of independent exponential random variables with the same rate
parameter µ.

More generally, if ζ and ξ are independent with ζ having an exponential distribution with
rate parameter λ and ξ is now an arbitrary nonnegative random variable with a finite nonzero
expectation, then

lim
λ↓0

P{ξ ∈ dx | ζ < ξ} =
xP{ξ ∈ dx}

P[ξ]

and

lim
λ↓0

P{ζ ∈ dz | ζ < ξ, ξ = x} =
1{z < x} dz

x
.

In particular,

lim
λ↓0

P{ζ ∈ dz | ζ < ξ} =
P{ξ > z} dz

P[ξ]
.

If we let M be the random measure that is the restriction of Lebesgue measure to the interval
[0, ξ), then one way of expressing the last set of results is that

lim
λ↓0

P{ξ ∈ dx, ζ ∈ dz | ζ < ξ} =
P[1{ξ ∈ dx}M(dz)]

P[M(R+)]
.

The probability measure on Ω× R+ that assigns mass

P[1AM(B)]

P[M(R+)]

to the set A × B is called the Campbell measure associated with the random measure M .
In this paper we will be interested in Campbell measures in the case where M is the local
time at some state a for a transient Markov process. As one might expect from the above
calculations, the Campbell measure may be interpreted as describing the limit as λ ↓ 0 of
the joint distribution of the Markov process and the independent exponential ζ conditional
on the event that the Markov process is in the state a at time ζ.

We next present a simple example that motivates our work and doesn’t require any so-
phistication in describing what we mean by conditioning a Markov process to be in a given
state at an independent exponential time because in this example the event on which we are
conditioning has positive probability.

Example 1.1. Suppose that (Xt)t≥0 is the continuous-time simple random walk on the
integers that jumps to the states x− 1 and x+ 1 with respective rates α and β when it is in
state x ∈ Z. Suppose further that ζ is an independent nonnegative random variable that has
the exponential distribution with rate λ > 0. Let (Xλ

t )t≥0 be the process that is obtained by
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conditioning on the event {Xζ = 0} and killing the resulting process at the time ζ. Then,
(Xλ

t )t≥0 is a Markov process with

Px{Xλ
t = y} =

Px{Xt = y, ζ > t, Xζ = 0}
Px{Xζ = 0}

=
Px[1{Xt = y}e−λtλrλ(y, 0)]

λrλ(x, 0)
,

where rλ(u, v) :=
∫∞

0
e−λtPu{Xt = v} dt.

Assume that α < β. Note that limλ↓0 rλ(u, v) = r0(u, v), where r0(u, v) :=
∫∞

0
Pu{Xt =

v} dt satisfies

r0(u, v) =

r0(v, v) = r0(0, 0), if u ≤ v,(
α
β

)u−v
r0(v, v) =

(
α
β

)u−v
r0(0, 0), if u > v.

Therefore, as λ ↓ 0 the Markov process (Xλ
t )t≥0 converges to a Markov process (X0

t )t≥0 with

Px{X0
t = y} = lim

λ↓0
Px{Xλ

t = y} =
Px{Xt = y}

(
α
β

)y+(
α
β

)x+ ,

where x+ := max(x, 0). Let G be the infinitesimal generator of (X0
t )t≥0. For a function

f : Z→ R we have

Gf(x) =
αf(x− 1)

(
α
β

)(x−1)+
+ βf(x+ 1)

(
α
β

)(x+1)+
− (α + β)f(x)

(
α
β

)x+(
α
β

)x+
=


βf(x− 1) + αf(x+ 1)− (α + β)f(x), if x > 0,

αf(x− 1) + αf(x+ 1)− (α + β)f(x), if x = 0,

αf(x− 1) + βf(x+ 1)− (α + β)f(x), if x < 0.

In other words, (X0
t )t≥0 is obtained by taking the Markov process (Yt)t≥0 with the following

jump rates

• x→ x− 1 at rate α when x < 0,
• x→ x+ 1 at rate β when x < 0,
• x→ x− 1 at rate α when x = 0,
• x→ x+ 1 at rate α when x = 0,
• x→ x− 1 at rate β when x > 0,
• x→ x+ 1 at rate α when x > 0,

and killing this process at rate β − α when it is in state 0. The process (Yt)t≥0 is pushed
upwards when it is negative and downwards when it is positive and is analogous to the “bang–
bang Brownian motion” or “Brownian motion with alternating drift” of [GS00, BS02, RY09]
that, for some µ > 0, evolves like Brownian motion with drift +µ when it is negative and
like Brownian motion with drift −µ when it is positive.

Note that (Xt)t≥0 started at X0 = +1 hits the state 0 with probability α
β

and wanders

off to +∞ without hitting the state 0 with probability β−α
β

, and that (Xt)t≥0 started at

X0 = +1, conditioned to hit the state 0 and killed when it does so evolves like the process
(Yt)t≥0 started at Y0 = +1 and killed when it hits the state 0.
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Let (W n,−)n∈N (respectively, (W n,+)n∈N) be an i.i.d. sequence of killed paths with common
distribution that of the Markov process that starts in the state 0, jumps at rate α to the state
−1 (respectively, +1), and then evolves like the process (Yt)t≥0 started at −1 (respectively,
+1) and killed when it hits the state 0. Define (W n,∞)n∈N to be an i.i.d. sequence of paths
with common distribution that of the Markov process that starts in the state 0, jumps to
the state +1 at rate β−α, and thereafter evolves like the process (Xt)t≥0 started at +1 and
conditioned never to hit 0. Suppose further that these three sequences are independent. Put
T−n := inf{t ≥ 0 : W n,−

t 6= 0} and define T+
n and T∞n similarly. Set

W n :=


W n,−, if T−n = T−n ∧ T+

n ∧ T∞n ,
W n,+, if T+

n = T−n ∧ T+
n ∧ T∞n ,

W n,∞, if T∞n = T−n ∧ T+
n ∧ T∞n ,

and

W̃ n :=

{
W n,−, if T−n = T−n ∧ T+

n ,

W n,+, if T+
n = T−n ∧ T+

n .

We see that (Xt)t≥0 starting at X0 = 0 is obtained by concatenating the excursion paths
W 1,W 2, . . . ,WN , where N := inf{n : T∞n = T−n ∧T+

n ∧T∞n }, and (Yt)t≥0 starting at Y0 = 0 is

obtained by concatenating the excursion paths W̃ 1, W̃ 2, . . . Observe that N takes the value

n with probability
(

2α
α+β

)n−1
β−α
α+β

.

Let (W n,±)n∈N be i.i.d. with W n,± distributed as W n conditional on W n being either W n,−

or W n,+ (that is, conditional on T∞n > T−n ∧T+
n ∧T∞n ). Note that W n,± starts in the state 0,

jumps at rate α+ β, jumps to state −1 (respectively, +1) with probability 1
2
, and thereafter

evolves like (Yt)t≥0 killed when it first hits the state 0. On the other hand, W̃ n starts in
the state 0, jumps at rate 2α, jumps to state −1 (respectively, +1) with probability 1

2
, and

thereafter evolves like (Yt)t≥0 killed when it first hits the state 0.
It follows that if we kill the process (Yt)t≥0 at rate β − α when it is in the state 0,

then the resulting process has the same distribution as the concatenation of the paths
W 1,±, . . . ,WN ′−1,±, where N ′ is an independent random variable that takes the value n

with probability
(

2α
α+β

)n−1
β−α
α+β

, concatenated with a final independent path that is constant

at 0 and is killed at rate α + β.
Let ρn := T−n ∧ T+

n ∧ T∞n be the amount of time that W n spends in the state 0 (so that
ρn has an exponential distribution with rate α + β), σn be the amount of time that W n

spends in states other than 0, and (τn)n∈N be a sequence of i.i.d. random variables with
a common distribution that is exponential with rate λ. We see that (Xt)0≤t<ζ is obtained

by concatenating the paths Ŵ 1, . . . ŴM , where Ŵ n is W n killed at τn ∧ (ρn + σn) and
M := inf{n : τn < ρn + σn} ≤ N .

Write ρ±n for the amount of time that W n,± spends in the state 0 (so that ρ±n has an
exponential distribution with rate α + β) and σ±n for the amount of time that W n,± spends



CONDITIONED MARKOV PROCESSES 5

in the states other than 0. Then,

P{W 1 ∈ dw1, . . . ,Wm−1 ∈ dwm−1, τm < ρm, τm ∈ dt,M = m}

=

(
2α

α + β

)m−1 m−1∏
k=1

P
[
e−λ(ρ±k +σ±k )1{W k,± ∈ dwk}

] λ

λ+ α + β

(α + β + λ) e−(α+β+λ)t dt.

Therefore

lim
λ↓0

P{W 1 ∈ dw1, . . . ,Wm−1 ∈ dwm−1, τm < ρm, τm ∈ dt,M = m | τM < ρM}

=

(
2α

α + β

)m−1
β − α
α + β

m−1∏
k=1

P
[
1{W k,± ∈ dwk}

]
e−(α+β)t dt

so that (Xt)0≤t<ζ started at X0 = 0 and conditioned on {Xζ = 0} converges in distribution
as λ ↓ 0 to a process that is distributed as the concatenation of W 1,±, . . . ,WN∗−1,±, where
N∗ is an independent random variable with the same distribution as N , concatenated with
a final independent path that is constant at 0 and killed at rate α + β.

Hence (Xt)0≤t<ζ started at X0 = 0 and conditioned on {Xζ = 0} has the same distribution
in the limit λ ↓ 0 as (Xt)t≥0 killed at the time the process leaves the state 0 for the last time
and, moreover, this distribution is the same as that of (Yt)t≥0 started at Y0 = 0 and killed
at rate β − α in state 0.

Our aim in this paper is to show that results analogous to those obtained for the
continuous–time simple random walk in Example 1.1 hold in great generality; specifically, if
we condition a transient Borel right process to be in a fixed regular state a at some inde-
pendent exponential time ζ, kill the process at ζ, and let the rate parameter of ζ go to 0,
then the Borel right process looks like a certain recurrent Borel right process process that is
killed according to an appropriate mechanism when it is in the state a. Moreover, the limit
of the killed Borel right process evolves like the original process conditioned to hit the point
a after which it behaves as the original process until it is killed at the last time the original
process leaves the state a.

We will, of course, require certain conditions. The transient Borel right process must have
positive probability of hitting the state a from any starting point and we will also need the
existence of a suitable local time at a in order to make sense of the idea of conditioning the
Borel right process on being in state a at time ζ when the Lebesgue measure of the set of
times that the process spends in a is almost surely zero (and so the event on which we are
conditioning has probability zero).

The paper is organized as follows.
The Campbell measure associated with a random measureM such that 0 < P[M(R+)] <∞

is the probability measure P̄ on Ω× R+ given by

P̄(A×B) :=
P[1AM(B)]

P[M(R+)]
.

In Section 2 we establish the connection between Campbell measures and the limit as λ ↓ 0
of conditioning a random set to contain an independent exponential random variable with
rate parameter λ.
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We start discussing Borel right processes in Section 3. For such a process X and a ∈ E let
Ta := inf{t > 0 : Xt = a} and Ka := sup{t ≥ 0 : Xt = a} be the first and last hitting times
of a, where we adopt the usual conventions that inf ∅ = +∞ and sup ∅ = 0. Our starting
point is the following result which we prove in Section 3. Here ξ : Ω×R+ → R+ is given by
ξ(ω, t) = t.

Theorem 1.2. Let X be a Borel right process with Lusin state space E. Suppose that a ∈ E
is such that

• Pa{Ka <∞} = 1,
• Pa{Ta = 0} = 1,
• Px{Ta <∞} > 0 for all x ∈ E.

If Z is a nonnegative Ft-measurable random variable for some t ≥ 0, then

P̄x[Z1{ξ > t}] =
1

Px{Ta <∞}
Px
[
ZPXt{Ta <∞}

]
,

where P̄x is the Campbell measure associated with the local time of X at a. Moreover, the
distribution of (Xt)0≤t<ξ under the Campbell measure P̄x is the same as the distribution of
(Xt)0≤t<Ka under Px conditional on {Ta <∞}.

This theorem says heuristically that if κ is an independent random variable that has an
exponential distribution with rate parameter λ, then the distribution of (Xt)0≤t<κ under Px
conditional on the event {Xκ = a} converges as λ ↓ 0 to the distribution of (Xt)0≤t<Ka under
Px conditional on the event {Ta <∞}.

We discuss excessive functions and general Doob h-transforms for Borel right processes in
Section 4.

In Section 5 we construct a generalization of the bang-bang Brownian motion or Brownian
motion with alternating drift [GS00, BS02, RY09] in which Brownian motion is replaced by
a general Borel right process X with a regular state a. We use the notion of resurrected
Markov processes (see [Mey75, Fit91] and Example 5.14 from [FG06]). The general bang-
bang process is a Markov process that behaves like X conditioned to hit a until it hits a
and then looks like a process started at a that can be built from the same Poisson point
process of excursions from a as X except that only excursions of finite length are used (so
the process keeps returning to a).

As a consequence of these constructions we get the following result for general Borel right
processes which we prove in Section 5.3.

Theorem 1.3. Let X be a Borel right process with a Lusin state space E and let a ∈ E.
Suppose that a ∈ E is such that

• Pa{Ka <∞} = 1,
• Pa{Ta = 0} = 1,
• Px{Ta <∞} > 0 for all x ∈ E.

Suppose, moreover, that the resolvent (Rλ)λ>0 of X has densities with respect to some refer-
ence measure m.

Then for any x ∈ E the distribution of (Xt)0≤t<ξ under the Campbell measure P̄x associated
with the local time at a is that of the recurrent Borel right process Xb constructed in Section
5.3 killed when the local time of Xb at a exceeds an independent exponential random variable
with rate parameter equal to the Itô excursion measure mass of the infinite excursions of X
from a.
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Sections 6 and 7 contain a study of h-transforms for general transient one-dimensional
diffusions. After recalling the characteristics of a one-dimensional diffusion – the scale func-
tion, speed measure, and killing measure – we show in Theorem 6.2 how these characteristics
change under an h-transform. This fact is well-known in the folklore, but we present a proof
because we were not able to find one in the literature that treats the general case we need.
We then characterize the generator of the h-transformed diffusion.

Section 8 considers the bang-bang construction for the special case of one-dimensional
diffusions and Section 9 investigates the generator of the h-transformed process of Theorem
1.2 when the process X is a one-dimensional diffusion.

2. Campbell measures

Suppose that on some probability space (Ω,F ,P) we have a random set S ⊂ R+ such that
0 < P[|S|] <∞, where | · | is Lebesgue measure. Let νλ be the exponential distribution on R+

with rate λ. Define ξ to be the canonical random variable on (R+,B(R+), νλ). With the usual
abuse of notation, we can think of S and ξ as being defined on (Ω×R+,F ⊗B(R+),P⊗ νλ).
Define the probability measure P̄λ on (Ω× R+,F ⊗ B(R+)) by

P̄λ(A×B) :=
P⊗ νλ{(ω, t) : ω ∈ A, t ∈ B ∩ S(ω)}

P⊗ νλ{(ω, t) : t ∈ S(ω)}
;

that is, P̄λ is P⊗ νλ conditioned on the event {ξ ∈ S}. Note that

P̄λ(A×B) =
P
[
1A
∫
B∩S λe

−λt dt
]

P
[∫
S
λe−λt dt

] .

Letting λ ↓ 0 we get the probability measure

P̄(A×B) :=
P[1A|B ∩ S|]

P[|S|]
=

P[1AM(B)]

P[M(R+)]
,

where M is the random measure given by M(C) := |C ∩S|. We can think of the probability
measure P̄ as describing what happens asymptotically when we condition on S containing a
large exponential time.

More generally, if M is an arbitrary random measure with 0 < P[M(R+)] < ∞, then
simply define P̄ by

(2.1) P̄(A×B) :=
P[1AM(B)]

P[M(R+)]
.

The probability measure P̄ is usually called the Campbell measure associated with M . If M
is in some sense spread out evenly on its support S, then we can still think of P̄ as describing
what happens when we condition on S containing a large exponential time.

Example 2.1. Consider the random measure M := | · ∩[0, κ)|, where κ has an exponential
distribution with rate parameter η. By definition,

P̄{ξ > x} =
P[M((x,∞))]

P[M(R+)]
=
e−ηx 1

η

1
η

= e−ηx,

and so the distribution of ξ under the Campbell measure P̄ is the same as the distribution
of κ under P. According to our interpretation of the Campbell measure, this result indicates
that if ζ is a random variable that is independent of κ and has an exponential distribution
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with rate parameter λ, then the distribution of ζ conditional on the event {ζ < κ} should
converge to the distribution of κ as λ ↓ 0. Indeed, by classical observations about “competing
exponentials” recalled in the Introduction, the random variable ζ ∧ κ is independent of the
event {ζ < κ} and has an exponential distribution with rate λ + η, so the conditional
distribution of ζ given the event {ζ < ξ} is exponential with rate λ+ η and this conditional
distribution converges to the distribution of κ as λ ↓ 0.

3. Markov processes and Campbell measures

In this section we introduce the assumptions used throughout the paper. Let
(Xt,Ω,F ,Px, θt,Ft) be a right process (we sometimes denote the whole sextuple by X),
see Chapter II:20 from [Sha88], with state space E∂ := E ∪{∂}, where E is a Lusin topolog-
ical space with Borel field E and ∂ is an adjoined cemetery state. Let (Pt)t≥0 and (Rλ)λ>0

denote the semigroup and the resolvent of X.
If Ptf is E-measurable whenever f is a positive E-measurable function and t ≥ 0, then we

say that X is a Borel right process.
Assume that we are in the canonical setting where Ω is the space of functions ω : R+ → E∂

which are right continuous, and if ζ(ω) := inf{t ≥ 0 : ω(t) = ∂}, then ω(t) = ∂ for t ≥ ζ(ω).
Furthermore, Xt(ω) := ω(t) and (θtω)(s) := ω(s + t). Note that ζ is a terminal time; that
is,

ζ = s+ ζ ◦ θs,

on the event {ζ > s} for all s ≥ 0. Let F0
t be the natural filtration on Ω: F0

t := σ{Xs : 0 ≤
s ≤ t}. Set F0 =

⋃
tF0

t and for an initial law µ let Fµ denote the completion of F0 relative
to Pµ and let N µ denote the Pµ-null sets in Fµ.

Set

• F :=
⋂
{Fµ : µ is an initial law on E}.

• N :=
⋂
{N µ : µ is an initial law on E}.

• Fµt := F0
t ∨N µ.

• Ft :=
⋂
{Fµt : µ is an initial law on E}.

The process X is described by the probability family (Px)x∈E which satisfies

Px{X0 = x} = 1

for all x ∈ E.

Proposition 3.1. Consider a Borel right process X with state space E. Suppose that the
random measure M on R+ satisfies the following conditions:

• M({0}) = 0,
• M((0, t]) is Ft-measurable for all t > 0,
• 0 < Px[M(R+)] <∞ for all x ∈ E,
• M = 0, P∂-a.s.
• for all s, t > 0 and x ∈ E, M((0, s+ t]) = M((0, s]) + (M ◦ θs)((0, t]) , Px-a.s.

Then, for any t ≥ 0 and nonnegative Ft-measurable random variable Z,

P̄x[Z1{ξ > t}] =
1

Px[M(R+)]
Px
[
ZPXt [M(R+)]

]
.



CONDITIONED MARKOV PROCESSES 9

Proof. By the definition of Campbell measure, the hypotheses on M and the Markov prop-
erty,

P̄x[Z1{ξ > t}] =
Px[ZM((t,∞))]

Px[[M(R+)]
=

Px[ZM ◦ θt(R+)]

Px[M(R+)]

=
1

Px[M(R+)]
Px
[
ZPXt [M(R+)]

]
.

�

Proof of Theorem 1.2. The local time at a is a random measure that satisfies the hy-
potheses of Proposition 3.1. By the hypotheses of the theorem, Px[M(R+)] = Px{Ta <
∞}Pa[M(R+)] and so

P̄x[Z1{ξ > t}] =
1

Px{Ta <∞}
Px
[
ZPXt{Ta <∞}

]
for Z a nonnegative Ft-measurable random variable.

Observe that Px{Ta <∞} = Px{0 < Ka <∞}. The random time Ka is co-optional and it
follows from the remark after equation (62.24) of [Sha88] that the distribution of (Xt)0≤t<ξ
under the Campbell measure P̄x is the same as the distribution of (Xt)0≤t<Ka under Px
conditional on {Ta <∞}. �

4. Excessive functions and Doob h-transforms

Recall that a function h : E → R+∪{+∞} is excessive if the following two conditions are
satisfied:

(1)
Px[h(Xt)] ≤ h(x)

for all t ≥ 0 and x ∈ E.
(2)

lim
t↓0

Px[h(Xt)] = h(x)

for all x ∈ E.

Remark 4.1. Suppose that M satisfies hypotheses of Proposition 3.1. Set h(x) = Px[M(R+)].
Observe that Px[h(Xt)] = Px[M ◦ θt(R+)] = Px[M((t,∞))] and it is clear that h is excessive.

Example 4.2. The function
x 7→ Px{Ta <∞}

is excessive.

The following result is well-known at various levels of generality.

Theorem 4.3. Let X = (Xt,Ω,F ,Px, θt,Ft) be a Borel right process on a Lusin space E
and let (Pt)t≥0 be its Borel semigroup. Suppose h : E → R+ is a positive Borel excessive
function. The operators (P h

t )t≥0 defined by

P h
t g(x) =

1

h(x)
Ptgh(x), x ∈ Eh := {x ∈ E : 0 < h(x) <∞}

comprise a submarkovian semigroup that corresponds to a Borel right process with state space
E∂ := Eh ∪ {∂}.
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Proof. By Theorem 62.19 from [Sha88] (see also (62.23) in [Sha88]) we know that (P h
t )t≥0

defines the semigroup of a right process on E∂ := Eh ∪ {∂}. It is clear that this semigroup
is Borel. �

Remark 4.4. The Markov process with the semigroup (P h
t )t≥0 of Theorem 4.3 is called the

Doob h-transform of the original Markov process (with respect to the excessive function h).
If a ∈ E is such that for all x ∈ E, Px{Ta < ∞} > 0 and Pa{Ta = 0} = 1 where κ is an
independent exponential random variable with rate parameter λ, then we see from Theorem
1.2 that the distribution under Px of (Xt)0≤t<κ conditional on the event {Xκ = a} converges
as λ ↓ 0 to the distribution under Qx of (Xt)0≤t<ζ , where Qx is now the Doob h-transform
distribution corresponding to the excessive function x 7→ Px[M(R+)], where M is the local
time at a or, equivalently, to the excessive function x 7→ Px{Ta <∞}.

5. Bang-bang processes and excursions

5.1. Brownian motion with negative drift. Suppose that X is a Brownian motion with
negative drift −µ, µ > 0, and a = 0 in the context of Theorem 1.2. Let Xh be the Doob
h-transform process corresponding to the excessive function x 7→ Px{T0 <∞}. Recall from
Theorem 1.2 that the behavior of the process Xh started at 0 is what we see if we start
the process X at 0 and then kill it at the start of the first infinite excursion away from
0. We would like to show that this is the same as taking the bang-bang Brownian motion
that evolves as Brownian motion with drift −µ when it is positive and as Brownian motion
with drift +µ when it is negative, and killing that bang-bang Brownian motion when the
local time at 0 exceeds an independent exponential random variable with rate parameter µ.
(More formally, bang-bang Brownian motion or Brownian motion with alternating drift is
the stochastic process (Yt)t≥0 that is the solution of the SDE

dYt = dWt − µ sgn (Yt) dt

for µ ∈ R and Wt a standard Brownian motion – see [GS00] and Appendix 1.15 in [BS02].)
Consider excursions from the point 0. Formula (50.3) in Section VI.50 of [RW00] gives

that

(5.1)

∫ ∞
0

e−λtnt(x) dt =
rλ(0, x)

P0
[∫∞

0
e−λs dL0

s

] ,
where nt(x) dx is the entrance “law” for the Itô excursion measure and rλ(x, y) is the density
with respect to Lebesgue measure of the λ-resolvent of X. Note that

(5.2) P0

[∫ ∞
0

e−λs dL0
s

]
= rλ(0, 0) =

∫ ∞
0

e−λsps(0, 0) ds,

where pt(x, y) is the transition density of X with respect to Lebesgue measure. If τ is an
independent exponential random variable with rate λ, then

(5.3) λrλ(x, z) dz = Px{Xτ ∈ dz} =
λ√

2λ+ µ2
exp(−µ(z − x)− |z − x|

√
2λ+ µ2) dz

(see formula 1.0.5 in [BS02, Section II.2]). Combining (5.3) with (5.1) and (5.2) gives

(5.4)

∫ ∞
0

e−λtnt(x) dt = exp(−µx− |x|
√

2λ+ µ2).
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The positive excursions of X are all of finite length because Px{T0 <∞} = 1 for x > 0. The
probability that a Brownian motion with drift −µ ever hits 0 started from x < 0 is

(5.5) Px{T0 <∞} = exp(2µx),

(see formula 1.2.4(1) in [BS02, Section II.2]) and so the restriction of the Itô excursion

measure to negative excursions of finite length is determined by the entrance law nft (x) dx,
where ∫ ∞

0

e−λtnft (x) dt = exp(−µx− |x|
√

2λ+ µ2) exp(2µx)

= exp(µx− |x|
√

2λ+ µ2).

Note that ∫ ∞
0

e−λtnft (x) dt =

∫ ∞
0

e−λtmt(x) dt,

where mt(x) dx is the entrance law for the restriction to negative excursions of the Itô

excursion measure for Brownian motion with drift +µ, and so nft = mt for all t > 0.
The rate at which infinite negative excursions of X come along in local time can be found

by seeing that ∫ 0

−∞
e−µx−|x|

√
2λ+µ2 − eµx−|x|

√
2λ+µ2 dx

=
[√

2λ+ µ2 − µ
]−1

−
[√

2λ+ µ2 + µ
]−1

= µ/λ,

and so the rate is µ.
Now for x < 0 and z < 0,

(5.6) Px{T0 ≤ τ, Xτ ∈ dz} =
λ√

2λ+ µ2
exp(−µ(x− z) + (z + x)

√
2λ+ µ2)

(see formula 1.2.6 in [BS02, Section II.2]). Combining (5.3), (5.5), and (5.6) gives

Px{T0 > τ, Xτ ∈ dz |T0 <∞}

=
λ√

2λ+ µ2

[
exp(−µ(z − x)− |z − x|

√
2λ+ µ2)− exp(−µ(x− z) + (z + x)

√
2λ+ µ2)

]
× exp(2µz)/ exp(2µx) dz

=
λ√

2λ+ µ2

[
exp(µ(z − x)− |z − x|

√
2λ+ µ2)− exp(µ(x− z) + (z + x)

√
2λ+ µ2)

]
dz.

That is, if we have Brownian motion with drift −µ, we start it below zero and we condition
it to hit zero, then up to the time it hits zero we see a Brownian motion with drift +µ.
In particular, if we combine this observation with the observation above that nft = mt for
all t > 0, then we see that the Itô excursion measure for Brownian motion with drift −µ
restricted to negative excursions of finite length coincides with the restriction to negative
excursions of the Itô excursion measure for Brownian motion with drift +µ.

Putting the above observations together, it appears that Xh started at 0 is a bang-bang
Brownian motion killed at 0 according to local time with rate µ. There is, however, a missing
ingredient in this identification. We have not identified the process obtained by concatenating
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together in the usual way the points in a Poisson process of positive and finite length negative
excursions of Brownian motion with drift −µ with a bang-bang Brownian motion. We will
take a slightly different route to establish that Xh is indeed bang-bang Brownian motion
suitably killed at 0 (see Example 8.2 for the culmination of the development leading to this
result).

5.2. Excursions of a Markov process from a regular point. We briefly review some
of the concepts from Itô excursion theory that we need. We follow [RW00] VI 42-50 and
remark that the results there hold in our setting (see also [Sal86b, Sal86a, Itô71]).

Suppose X is a Borel right process with Lusin state space E. We assume the point a ∈ E
is a regular point, that is

Pa{Ta = 0} = 1

where

M = {t ≥ 0 : Xt = a}
Ta = inf{t > 0 : t ∈M}.

One can then show that the function ψ(x) := Px
[
e−Ta

]
is the 1-potential of some PCHAF

(perfect, continuous, homogeneous, additive functional) L

ψ(x) = Px
[∫ ∞

0

e−s dLs

]
for every x ∈ E. The additive functional L is the local time of X at a and the set of points
of increase of L is exactly the closed random set M.

Remark 5.1. Any PCHAF which grows only on M must be a multiple of L.

The process γt := inf{u : Lu > t}, where inf ∅ = +∞, is a killed subordinator under Pa
that is sent to +∞ at its death time. An excursion is a right continuous function f : R+ → E.
such that if

Ta(f) = inf{t > 0 : f(t) = a},
then f(t) = a for t > Ta(f). Let U denote the set of all excursions.

Definition 5.2. The point process of excursions from a is

Π := {(t, et) : γt 6= γt−}
where et ∈ U , the excursion at local time t, is

et(s) =

{
Xγt−+s, if 0 ≤ s < γt − γt−,
a, otherwise.

We can also think of Π as a Z+∪{∞}-valued random measure. For any Borel set A ⊂ R++×U
N(A) := #(A ∩ Π).

Denote by U∞ := {f ∈ U : Ta(f) = ∞} the infinite excursions and by U0 := U \ U∞ the
finite excursions.

The main result of excursion theory says that there exists a σ-finite measure n on U such
that n(U∞) <∞, if N ′ is a Poisson random measure on R++×U with expectation measure
Leb⊗ n,

ζ := inf{t > 0 : N((0, t]× U∞) > 0},
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and

ζ ′ := inf{t > 0 : N ′((0, t]× U∞) > 0},
then the random measure N = N(· ∩ (0, ζ] × U) under Pa and the random measure N ′(· ∩
(0, ζ ′]× U) have the same distribution.

5.3. Construction of the bang-bang process. In this section we construct a general
version of the bang-bang process and, as a result, prove Theorem 1.3. Assume throughout
that the process X satisfies the conditions of Theorem 1.3.

Let the process Xh be the h-transform of X using

(5.7) h(x) := Px{Ta <∞} =
r(x, a)

r(a, a)
,

where r is the density for the 0-resolvent of X. By Theorem 4.3, Xh is a Borel right process.
We construct a new process from Xh as follows. We run Xh until it dies, then we start

another copy of Xh from a, wait until it dies, and so on. Call this process Xb. This is a
special case of the construction of a resurrected process in [Fit91, Mey75]. By [Mey75] we
get that Xb is a Borel right process. Let

(5.8) Rh
λg(x) = h(x)−1Rλ(gh)(x)

be the resolvent of the h-transform of X. Note that (Rh
λ)λ>0 satisfies the resolvent equation

(5.9) Rh
λ −Rh

χ + (λ− χ)Rh
λR

h
χ = 0, λ, χ > 0.

The density rhλ(x, a) of Rh
λ may be treated informally as

(5.10) Rh
λδa(x),

where δa is the “Dirac delta function at a”, and such manipulations can be made rigorous
using suitable approximations.

If T is an independent exponential time with rate λ and ζ is the time that Xh dies, then

Px[f(Xb
T )] = Px[f(Xh

T ), T < ζ] + Px[f(Xb
T ), ζ ≤ T ]

= Px[f(Xh
T ), T < ζ] + Px[exp(−λζ)]Pa[f(Xb

T )].

Now,

Px
[∫ ζ

0

exp(−λt) dt
]

=
1

λ
(1− Px[exp(−λζ)])

and

Px
[∫ ζ

0

exp(−λt) dt
]

= Rh
λ1(x),

so,

Rb
λf(x) = Rh

λf(x) + (1− λRh
λ1(x))Rb

λf(a)

for all x. In particular, we can put in x = a and solve to find that

Rb
λf(a) = Rh

λf(a)/(λRh
λ1(a))

and hence

(5.11) Rb
λf(x) = Rh

λf(x) + (1− λRh
λ1(x))Rh

λf(a)/(λRh
λ1(a)).
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Use h(x) = R0δa(x)
r0(a,a)

and the resolvent equation to get

λRλh(a) =
λRλR0δa(a)

r0(a, a)

=
(R0 −Rλ)δa(a)

r0(a, a)

=
r0(a, a)− rλ(a, a)

r0(a, a)

= 1− rλ(a, a)

r0(a, a)
.

This transforms (5.11) into

(5.12) Rb
λf(x) = Rh

λf(x) + (1− λRh
λ1(x))Rh

λf(a)
r0(a, a)

r0(a, a)− rλ(a, a)
.

Remark 5.3. If X is continuous, then Xb is also continuous.

Remark 5.4. Note that Xb has resolvent densities with respect to the measure m.

Proof of Theorem 1.3. From Theorem 1.2 (Xh
t )0≤t<ζ under Px is distributed as (Xt)0≤t<Ka

under Px conditioned on {Ta < ∞}. The process (Xb
t )t≥0 under Px comes from pasting

together (Xh
t )0≤t<ζ under Px with independent identically distributed copies of (Xh

t )0≤t<ζ
under Pa. As a result, the process (Xb

t )t≥0 under Px can be equivalently constructed by
pasting together (Xt)0≤t<Ka under Px conditioned on {Ta <∞} with independent identically
distributed copies of (Xt)0≤t<Ka under Pa.

Let L be the local time of X at a, M the local time of Xb at a and K be the time that
the first copy of (Xt)0≤t<Ka is killed. We see by the above that MK under Px has the same
distribution as LKa under Pa. The proof of Theorem 1.3 is concluded by noting that LKa is
an exponential with rate n(U∞). �

6. Doob h-transforms for one-dimensional diffusions: characteristics

We follow [BS02] and [IM74] in defining a general one-dimensional diffusion and its char-
acteristics.

Let I = (`, r) with −∞ ≤ ` < r ≤ ∞ and suppose that (Xt,Ω,F ,Px, θt,Ft) is a Borel
right process, see Section 3, taking values in I ∪{∂}. Such a process X is called a linear (or
one-dimensional) diffusion if for all x ∈ I,

Px{ω : t 7→ Xt(ω) is continuous on [0, ζ)} = 1,

where ζ is the lifetime of X.
We only consider regular diffusions ; that is, diffusions such that for all x, y ∈ I

Px{Ty <∞} > 0,

where Ty := inf{t : Xt = y} – any state y can be reached in finite time with positive
probability from any state x.

The diffusion X determines three basic Borel measures on the state space I: a scale
measure s, a speed measure m, and a killing measure k (see [IM74]). It turns out to be
convenient not to specify these objects absolutely but only up to a constant. If (s∗,m∗, k∗)
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and (s∗∗,m∗∗, k∗∗) are two triples of these objects, then s∗∗ = cs∗ for some strictly positive
constant c, in which case m∗∗ = c−1m∗ and k∗∗ = c−1k∗. The scale measure s is diffuse.
Both the scale measure and the speed measure have full support and assign finite mass to
intervals of the form (y, z), where ` < y < z < r. If (Pt)t≥0 is the transition semigroup of X,
then there exists a density p that is strictly positive, jointly continuous in all variables, and
symmetric such that

Pt(x,A) =

∫
A

p(t;x, y)m(dy), x ∈ I, t > 0, and A ∈ B(I),

where B(I) is the σ-field of Borel subsets of I. The killing measure k assigns finite mass to
intervals of the form (y, z), where ` < y < z < r and

Px{Xζ− ∈ A, ζ < t} =

∫ t

0

∫
A

p(s;x, y) k(dy) ds, A ∈ B(I).

We outline the recipes from [IM74] for defining measures sab,mab, kab on an interval (a, b),
` < a < b < r, such that if s,m, k are the scale, speed and killing measures for X,
then there is a strictly positive constant cab depending on a, b such that s(B) = cabsab(B),
m(B) = c−1

ab mab(B), and k(B) = c−1
ab kab(B) for B ⊆ (a, b). For x ∈ (a, b), define the hitting

probabilities
pab(x) := Px{Ta < Tb},

and
pba(x) := Px{Tb < Ta},

and the mean exit time
eab(x) := Px[Ta ∧ Tb ∧ ζ].

For ease of notation, we drop the subscripts for the moment and write s,m, k instead of
sab,mab, kab. Then

(6.1) s(dx) := pab(x)pba(dx)− pba(x)pab(dx)

(6.2) k(dx) :=
D+
s pab(dx)

pab(x)
=
D+
s pba(dx)

pba(x)

(6.3) m(dx) := −[D+
s eab(dx)− eab(x)kab(dx)]

for x ∈ (a, b), where

D+
s f(x) = lim

η↓x

f(η)− f(x)

s(η)− s(x)
,

and

D−s f(x) = lim
η↑x

f(η)− f(x)

s(η)− s(x)

for a function f : (a, b) → R and, with a standard abuse of notation, as well as using s to
denote the scale measure we write s for any scale function such that

s(z)− s(y) =

∫ z

y

s(dx).

For α > 0 the Green function rα(x, y) is given by

rα(x, y) :=

∫ ∞
0

e−αtp(t;x, y) dt,
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where, as above, p(t;x, y) is the transition density with respect to the speed measure m. Put

r0(x, y) := lim
α↓0

rα(x, y).

The diffusion X is said to be recurrent if

Px{Ty <∞} = 1

for all x, y ∈ I. A diffusion that is not recurrent is said to be transient. The diffusion X is
transient if and only if for all x, y ∈ I

r0(x, y) <∞.

Remark 6.1. If the killing measure is null (k ≡ 0), then

r0(x, y) =

∫ ∞
0

p(t;x, y) dt = lim
a↓`,b↑r

(s(x)− s(a))(s(b)− s(y))

s(b)− s(a)
, x ≤ y.

For a regular diffusion X there exists (see [IM74]) a family of random variables {L(t, x) :
x ∈ I, t ≥ 0} (sometimes also denoted by Lxt ) called the local time of X, such that

I. ∫ t

0

1A(Xs) ds =

∫
A

L(t, x)m(dx), Py − a.s., y ∈ I, A ∈ B(I),

II.

(6.4) L(t, x) = lim
ε↓0

∫ t
0

1(x−ε,x+ε)(Xs) ds

m((x− ε, x+ ε))
, Py − a.s. y ∈ I.

,
III. For any s < t,

L(t, x, ω) = L(s, x, ω) + L(t− s, x, θs(ω)), Py − a.s., y ∈ I.
One has

Px
[∫ ∞

0

e−λt dL(t, y)

]
= rλ(x, y).

For a fixed x the process Lx := (L(t, x))t≥0 is called the local time process of X at the
point x.

Suppose that X is a regular, transient diffusion with null killing measure and h : I → R+

is a strictly positive excessive function. Since two strictly positive excessive functions that
are multiples of each other lead to the same Doob h-transform, we may assume for some
x0 ∈ I that h(x0) = 1. For λ > 0 and for some fixed reference point a ∈ I define the
functions ψλ and φλ by

(6.5) ψλ(x) =

{
Px[exp(−λTa)], x ≤ a, x ∈ I,
1/Pa[exp(−λTx)], x ≥ a, x ∈ I,

and

(6.6) φλ(x) =

{
Px[exp(−λTa)], x ≥ a, x ∈ I,
1/Pa[exp(−λTx)], x ≤ a, x ∈ I.

Note that

lim
λ↓0

Px
[
e−λTa

]
= Px{Ta <∞}.
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As a result the functions ψ0 := limλ↓0 ψλ and φ0 := limλ↓0 φλ satisfy

(6.7) ψ0(x) =

{
Px{Ta <∞}, x ≤ a, x ∈ I,
1/Pa{Tx <∞}, x ≥ a, x ∈ I,

and

(6.8) φ0(x) =

{
Px{Ta <∞}, x ≥ a, x ∈ I,
1/Pa{Tx <∞}, x ≤ a, x ∈ I.

There is also the following relationship between the resolvent densities rλ(x, y) and the
functions ψλ, φλ

(6.9) rλ(x, y) =

{
w−1
λ ψλ(x)φλ(y), x ≤ y,

w−1
λ ψλ(y)φλ(x), x ≥ y,

where the Wronskian
wλ := D+

s ψλ(x)φλ(x)− ψλ(x)D+
s φλ(x)

is independent of x.
By [BS02, II.5.30], there is a probability measure ν called the representing measure of h

such that

(6.10) h(x) =

∫
(`,r)

r0(x, y)

r0(x0, y)
ν(dy) +

φ0(x)

φ0(x0)
ν({`}) +

ψ0(x)

ψ0(x0)
ν({r}).

Note that

lim
y→`

Px{Ty <∞} = lim
y→`

r0(x, y)

r0(y, y)
= lim

y→`

ψ0(y)φ0(x)

ψ0(y)φ0(y)
=

φ0(x)

φ0(`+)
.

Similarly,

lim
y→r

Px{Ty <∞} =
ψ0(x)

ψ0(r−)
.

Thus,

h(x) := Px
[∫

(`,r)

Ly∞/r0(x0, y) ν(dy)

+ 1
{

lim
t→∞

Xt = `
} φ0(`+)

φ0(x0)
ν({`})

+ 1
{

lim
t→∞

Xt = r
} ψ0(r−)

ψ0(x0)
ν({r})

]
.

(6.11)

Theorem 6.2. Let X be a regular, transient diffusion with null killing measure, speed mea-
sure m and scale function s. Suppose that h is a strictly positive excessive function such that
h(x0) = 1 and h has representing measure ν. The Doob h-transform is a regular diffusion
with the following characteristics:

• Scale measure

(6.12) sh(dy) = h−2(y) s(dy).

• Speed measure

(6.13) mh(dy) = h2(y)m(dy).
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• Killing measure

(6.14) kh(dy) =
h(x0)h(y)

r0(x0, y)
ν(dy).

Proof. Define the random measure M̄ on R+ ∪ {+∞} by

M̄(B) :=

∫
(`,r)

∫
B

dLyt /r0(x0, y) ν(dy), B ⊆ R+,

and

M̄({+∞}) := 1
{

lim
t→∞

Xt = `
} φ0(`+)

φ0(x0)
ν({`})

+ 1
{

lim
t→∞

Xt = r
} ψ0(r−)

ψ0(x0)
ν({r}).

With a small change in the meaning of the notation used previously for a Campbell
measure, define the probability measure P̄x on Ω× (R+ ∪ {+∞}) by

P̄x{A×B} =
1

h(x)
Px
[
1AM̄(B)

]
.

for B ⊆ R+ ∪ {+∞}.
Writing P̃x for the distributions of the h-transformed process, we have for any finite stop-

ping time R and nonnegative FR-measurable random variable Z that

P̃x[Z1{ζ > R}] = P̄x[Z1{ξ > R}] =
1

h(x)
Px[Zh(XR)].

In particular, the distribution of ζ under P̃x is that of ξ under P̄x.
Recall that pab(x) := Px{Ta < Tb} and pba(x) := Px{Tb < Ta}. Put phab(x) := P̃x{Ta < Tb}

and phba(x) := P̃x{Tb < Ta}. Setting T := Ta ∧ Tb, we have

phab(x) =

∫
Ω×(R+∪{+∞})

1{Ta(ω) < Tb(ω), Ta(ω) < u} P̄x(dω, du)

=

∫
Ω×(R+∪{+∞})

1{XT (ω) = a, T (ω) < u} P̄x(dω, du)

=
1

h(x)
Px [1{XT = a}h(XT )]

= h(a)Px{Ta < Tb}/h(x).

(6.15)

Thus,

phab(x) = h(a)pab(x)/h(x)

and, by a similar argument,

phba(x) = h(b)pba(x)/h(x).

Put ehab(x) := P̃x[Ta ∧ Tb ∧ ζ]. Then

ehab(x) = P̄x[ξ 1{ξ ≤ Ta ∧ Tb}] + P̄x[Ta ∧ Tb 1{Ta ∧ Tb < ξ}]

=
1

h(x)
Px
[∫ Ta∧Tb

0

t M̄(dt)

]
+

1

h(x)
Px[Ta ∧ Tb h(XTa∧Tb)].
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Now,

Px
[∫ Ta∧Tb

0

t M̄(dt)

]
= Px

[∫ ∞
0

M([t,+∞] ∩ [0, Ta ∧ Tb))] dt
]

= Px
[∫ ∞

0

1{t < Ta ∧ Tb}PXt [M̄([0, Ta ∧ Tb))]] dt
]

= Px
[∫ ∞

0

1{t < Ta ∧ Tb}PXt
[∫

LyTa∧Tb/r0(x0, y) ν(dy)

]
dt

]
=

∫ b

a

Gab(x, z)

∫ b

a

Gab(z, y)/r0(x0, y) ν(dy)m(dz),

where

(6.16) Ga,b(x, y) = Ga,b(y, x) :=
(s(x)− s(a))(s(b)− s(y))

s(b)− s(a)
, a < x ≤ y < b.

Also, by [Jac74, Equation 4.1],

Px[Ta ∧ Tb h(XTa∧Tb)] = Px[Ta 1{Ta < Tb}h(a)]

+ Px[Tb 1{Tb < Ta}h(b)]

=

∫ b

a

Ga,b(x, y)
s(b)− s(y)

s(b)− s(a)
m(dy)

+

∫ b

a

Ga,b(x, y)
s(y)− s(a)

s(b)− s(a)
m(dy).

Thus

ehab(x) =
1

h(x)

∫ b

a

Gab(x, z)

∫ b

a

Gab(z, y)

r0(x0, y)
ν(dy)m(dz)

+
1

h(x)

[
h(a)

∫ b

a

Ga,b(x, y)
s(b)− s(y)

s(b)− s(a)
m(dy)

+ h(b)

∫ b

a

Ga,b(x, y)
s(y)− s(a)

s(b)− s(a)
m(dy)

]
.

(6.17)

From (6.1), shab (which we write as sh for ease of notation), is given by

sh(dx) = phab(x)phba(dx)− phba(x)phab(dx)

= h(a)
pab(x)

h(x)
h(b)

(
pba(dx)

h(x)
− pba(x)h(dx)

h2(x)

)
− h(b)

pba(x)

h(x)
h(a)

(
pab(dx)

h(x)
− pab(x)h(dx)

h2(x)

)
= h(a)h(b)h−2(x) s(dx).

(6.18)

Note that this agrees with (6.12) apart from the constant multiple h(a)h(b).
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We next turn to (6.2) to determine khab, which write as kh. By the quotient rule,

D+
sh
phab(x) = h(a)

h2(x)

h(a)h(b)

[
−−pab(x)D+

s h(x)

h2(x)
+
D+
s pab(x)

h(x)

]
=

1

h(b)

[
−pab(x)D+

s h(x) +D+
s pab(x)h(x)

]
,

where we stress that the derivatives are with respect to the original scale measure s = sab
rather than sh = shab.

We now have to determine the measure

D+
sh
phab(dx).

Because the original process X doesn’t have any killing,

pab(x) =
s(x)− s(a)

s(b)− s(a)

and D+
s pab(x) is constant. As a result,

D+
sh
phab(dx) =

1

h(b)
[−pab(dx)D+

s h(x)− pab(x)D+
s h(dx) +D+

s pab(dx)h(x)

+D+
s pab(x)h(dx)]

=
1

h(b)

[
−pab(dx)Dsh(x)− pab(x)Dsh(dx) +D+

s pab(x)h(dx)
]

= −pab(x)D+
s h(dx)

1

h(b)
+

1

h(b)

[
−pab(dx)D+

s h(x) +D+
s pab(x)h(dx)

]
= −pab(x)D+

s h(dx)
1

h(b)

+
1

h(b)
[−D+

s pab(x)D+
s h(x)s(dx) +D+

s pab(x)D+
s h(x)s(dx)]

= −pab(x)D+
s h(dx)

1

h(b)
.

Thus,

kh(dx) =
D+
sh
phab(dx)

phab(x)
= − h(x)

h(a)h(b)
D+
s h(dx).

The function h restricted to the interval (a, b) is excessive for the process X killed when
it exits (a, b). The α = 0 Green function for the latter process is the function Gab defined in
(6.16), and h restricted to (a, b) has a representation analogous to (6.10) of the form

(6.19) h(x) = h(a)
s(b)− s(x)

s(b)− s(a)
+ h(b)

s(x)− s(a)

s(b)− s(a)
+

∫ b

a

Gab(x, y)G(x0, y)−1 ν(dy).
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Hence,

D+
s h(x) =

h(b)− h(a)

s(b)− s(a)

−
∫
a<y≤x

r0(x0, y)−1 s(y)− s(a)

s(b)− s(a)
ν(dy)

+

∫
x≤y<b

r0(x0, y)−1 s(b)− s(y)

s(b)− s(a)
ν(dy)

and

D+
s h(dx) = −r0(x0, x)−1 s(x)− s(a)

s(b)− s(a)
ν(dx)

− r0(x0, x)−1 s(b)− s(x)

s(b)− s(a)
ν(dx)

= −r0(x0, x)−1ν(dx).

Thus,

kh(dx) = −
D+
sh
phab(dx)

phab(x)

= −h(x)D+
s h(dx)

h(a)h(b)

=
1

h(a)h(b)
h(x)r0(x0, x)−1 ν(dx)

Note that this agrees with (6.14) apart from the constant multiple 1
h(a)h(b)

.

Next, we turn to (6.3) to determine mh
ab, which we write as mh. Recall from (6.17) that

ehab(x) = E1(x) + E2(x), x ∈ (a, b), where

E1(x) :=
1

h(x)

∫ b

a

Gab(x, z)

∫ b

a

Gab(z, y)

r0(x0, y)
ν(dy)m(dz)

and

E2(x) :=
1

h(x)

[
h(a)

∫ b

a

Ga,b(x, y)
s(b)− s(y)

s(b)− s(a)
m(dy)

+ h(b)

∫ b

a

Ga,b(x, y)
s(y)− s(a)

s(b)− s(a)
m(dy)

]
.

We first need to compute

D+
sh
ehab(x) := lim

η↓x

ehab(η)− ehab(x)

sh(η)− sh(x)
.

If a < x < y < b, then

D+
sh
Ga,b(x, y) =

h2(x)

h(a)h(b)

s(b)− s(y)

s(b)− s(a)
,
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while if a < y < x < b, then

D+
sh
Ga,b(x, y) = − h2(x)

h(a)h(b)

s(y)− s(a)

s(b)− s(a)
.

Thus,

D+
sh

(
Ga,b(x, y)

h(x)

)
=
D+
sh
Ga,b(x, y)

h(x)
−
Ga,b(x, y)D+

sh
h(x)

h2(x)

=
D+
sh
Ga,b(x, y)

h(x)
− Ga,b(x, y)D+

s h(x)

h(a)h(b)
.

Now,

D+
sh
E1(x) =

∫ b

a

D+
sh

(
Gab(x, z)

h(x)

)∫ b

a

Gab(z, y)

r0(x0, y)
ν(dy)m(dz)

=

∫ b

a

(
D+
sh
Ga,b(x, y)

h(x)

− Ga,b(x, y)D+
s h(x)

h(a)h(b)

)∫ b

a

Gab(z, y)

r0(x0, y)
ν(dy)m(dz).

(6.20)
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Also,

D+
sh
E2(x) = h(a)

∫ b

a

(
D+
sh
Ga,b(x, y)

h(x)

− Ga,b(x, y)D+
s h(x)

h(a)h(b)

)
s(b)− s(y)

s(b)− s(a)
m(dy)

+ h(b)

∫ b

a

(
D+
sh
Ga,b(x, y)

h(x)

− Ga,b(x, y)D+
s h(x)

h(a)h(b)

)
s(y)− s(b)
s(b)− s(a)

m(dy)

=

∫ x

a

(
−h(x)

h(b)

s(y)− s(a)

s(b)− s(a)

−
(s(y)−s(a))(s(b)−s(x))

s(b)−s(a)
D+
s h(x)

h(b)

)
s(b)− s(y)

s(b)− s(a)
m(dy)

+

∫ b

x

(
h(x)

h(b)

s(b)− s(y)

s(b)− s(a)

−
(s(x)−s(a))(s(b)−s(y))

s(b)−s(a)
D+
s h(x)

h(b)

)
s(b)− s(y)

s(b)− s(a)
m(dy)

+

∫ x

a

(
−h(x)

h(a)

s(y)− s(a)

s(b)− s(a)

−
(s(y)−s(a))(s(b)−s(x))

s(b)−s(a)
D+
s h(x)

h(a)

)
s(y)− s(a)

s(b)− s(a)
m(dy)

+

∫ b

x

(
h(x)

h(a)

s(b)− s(y)

s(b)− s(a)

−
(s(x)−s(a))(s(b)−s(y))

s(b)−s(a)
D+
s h(x)

h(a)

)
s(y)− s(a)

s(b)− s(a)
m(dy).

Next we need to identify the measure D+
sh
eh(dx). We have

D+
sh
E2(dx) =

∫ x

a

(
−D+

s h(x)s(dx)

h(b)

s(y)− s(a)

s(b)− s(a)

−
−s(dx)(s(y)−s(a))

s(b)−s(a)
D+
s h(x)

h(b)
−

(s(y)−s(a))(s(b)−s(x))
s(b)−s(a)

D+
s h(dx)

h(b)

)

× s(b)− s(y)

s(b)− s(a)
m(dy)

+

∫ b

x

(
D+
s h(x)s(dx)

h(b)

s(b)− s(y)

s(b)− s(a)
−

(s(x)−s(a))(s(dx))
s(b)−s(a)

D+
s h(x)

h(b)
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−
(s(x)−s(a))(s(b)−s(y))

s(b)−s(a)
D+
s h(dx)

h(b)

)

× s(b)− s(y)

s(b)− s(a)
m(dy)

+

∫ x

a

(
−D+

s h(x)s(dx)

h(a)

s(y)− s(a)

s(b)− s(a)

−
−s(dx)(s(y)−s(a))

s(b)−s(a)
D+
s h(x)

h(a)
−

(s(y)−s(a))(s(b)−s(x))
s(b)−s(a)

D+
s h(dx)

h(a)

)

× s(y)− s(a)

s(b)− s(a)
m(dy)

+

∫ b

x

(
D+
s h(x)s(dx)

h(a)

s(b)− s(y)

s(b)− s(a)

−
(s(b)−s(y))(s(dx))

s(b)−s(a)
D+
s h(x)

h(a)
−

(s(x)−s(a))(s(b)−s(y))
s(b)−s(a)

D+
s h(dx)

h(a)

)

× s(y)− s(a)

s(b)− s(a)
m(dy)

+

(
−h(x)

h(b)

s(x)− s(a)

s(b)− s(a)
−

(s(x)−s(a))(s(b)−s(x))
s(b)−s(a)

D+
s h(x)

h(b)

)
s(b)− s(x)

s(b)− s(a)
m(dx)

−

(
h(x)

h(b)

s(b)− s(x)

s(b)− s(a)
−

(s(x)−s(a))(s(b)−s(x))
s(b)−s(a)

D+
s h(x)

h(b)

)
s(b)− s(x)

s(b)− s(a)
m(dx)

+

(
−h(x)

h(a)

s(x)− s(a)

s(b)− s(a)
−

(s(x)−s(a))(s(b)−s(x))
s(b)−s(a)

D+
s h(x)

h(a)

)
s(x)− s(a)

s(b)− s(a)
m(dx)

−

(
h(x)

h(a)

s(b)− s(x)

s(b)− s(a)
−

(s(x)−s(a))(s(b)−s(x))
s(b)−s(a)

D+
s h(x)

h(a)

)
s(x)− s(a)

s(b)− s(a)
m(dx).

Doing the necessary cancellations results in

D+
sh
E2(dx) =

∫ x

a

(
−

(s(y)−s(a))(s(b)−s(x))
s(b)−s(a)

D+
s h(dx)

h(b)

)
s(b)− s(y)

s(b)− s(a)
m(dy)

+

∫ b

x

(
−

(s(x)−s(a))(s(b)−s(y))
s(b)−s(a)

D+
s h(dx)

h(b)

)
s(b)− s(y)

s(b)− s(a)
m(dy)

+

∫ x

a

(
−

(s(y)−s(a))(s(b)−s(x))
s(b)−s(a)

D+
s h(dx)

h(a)

)
s(y)− s(a)

s(b)− s(a)
m(dy)
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+

∫ b

x

(
−

(s(x)−s(a))(s(b)−s(y))
s(b)−s(a)

D+
s h(dx)

h(a)

)
s(y)− s(a)

s(b)− s(a)
m(dy)

+

(
−h(x)

h(b)

s(x)− s(a)

s(b)− s(a)

)
s(b)− s(x)

s(b)− s(a)
m(dx)

−
(
h(x)

h(b)

s(b)− s(x)

s(b)− s(a)

)
s(b)− s(x)

s(b)− s(a)
m(dx)

+

(
−h(x)

h(a)

s(x)− s(a)

s(b)− s(a)

)
s(x)− s(a)

s(b)− s(a)
m(dx)

−
(
h(x)

h(a)

s(b)− s(x)

s(b)− s(a)

)
s(x)− s(a)

s(b)− s(a)
m(dx)

= −D+
s h(dx)h(x)E2(x)

1

h(a)h(b)
−
(
h(x)

h(b)

s(b)− s(x)

s(b)− s(a)

+
h(x)

h(a)

s(x)− s(a)

s(b)− s(a)

)
m(dx)

= −D+
s h(dx)h(x)E2(x)

1

h(a)h(b)

−
(
h(x)

h(b)

s(b)− s(x)

s(b)− s(a)
+
h(x)

h(a)

s(x)− s(a)

s(b)− s(a)

)
m(dx).

Similar computations for E1 give

D+
sh
E1(dx) =

(
− h(x)

h(a)h(b)

s(x)− s(a)

s(b)− s(a)

)∫ b

a

Gab(x, y)

r0(x0, y)
ν(dy)m(dx)

−
(

h(x)

h(a)h(b)

s(b)− s(x)

s(b)− s(a)

)∫ b

a

Gab(x, y)

r0(x0, y)
ν(dy)m(dx)

− 1

h(a)h(b)
h(x)D+

s h(dx)E1(x)

= − h(x)

h(a)h(b)

∫ b

a

Gab(x, y)

r0(x0, y)
ν(dy)m(dx)− 1

h(a)h(b)
h(x)D+

s h(dx)I1(x).
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Thus,

D+
sh
eh(dx) = −D+

s h(dx)h(x)E2(x)
1

h(a)h(b)

−
(
h(x)

h(b)

s(b)− s(x)

s(b)− s(a)
+
h(x)

h(a)

s(x)− s(a)

s(b)− s(a)

)
m(dx)

− h(x)

h(a)h(b)

∫ b

a

Gab(x, y)

r0(x0, y)
ν(dy)m(dx)− 1

h(a)h(b)
h(x)D+

s h(dx)E1(x)

= −D+
s h(dx)h(x)eh(x)

1

h(a)h(b)

− h(x)

h(a)h(b)

(
h(a)

s(b)− s(x)

s(b)− s(a)
+ h(b)

s(x)− s(a)

s(b)− s(a)

+

∫ b

a

Gab(x, y)

r0(x0, y)
ν(dy)

)
m(dx)

= eh(x)kh(dx)− h(x)

h(a)h(b)

(
h(a)

s(b)− s(x)

s(b)− s(a)
+ h(b)

s(x)− s(a)

s(b)− s(a)

+

∫ b

a

Gab(x, y)

r0(x0, y)
ν(dy)

)
m(dx).

Substituting the above computations into (6.3) produces

mh(dx) = −[D+
sh
eh(dx)− eh(x)kha,b(dx)]

=
h(x)

h(a)h(b)

(∫ b

a

Gab(x, y)

r0(x0, y)
ν(dy)

+ h(a)
s(b)− s(x)

s(b)− s(a)
+ h(b)

s(x)− s(a)

s(b)− s(a)

)
m(dx).

(6.21)

Combining, (6.21) and (6.19) gives

mh(dx) =
1

h(a)h(b)
h2(x)m(dx).

Note that this agrees with (6.13) apart from the constant multiple 1
h(a)h(b)

.

Lastly, note that for a nonnegative function f : I → R, we have∫
I

rh0 (x, y)f(y)mh(dy) =

∫ ∞
0

∫
I

f(y)P h
t (x, dy) dt

=

∫ ∞
0

∫
I

f(y)
1

h(x)
h(y)Pt(x, dy) dt

=

∫
I

f(y)
1

h(x)
h(y)r0(x, y)m(dy)

=

∫
I

f(y)
1

h(x)
h(y)r0(x, y)h(y)−2mh(dy)

=

∫
I

f(y)
1

h(x)h(y)
r0(x, y)m(dy),
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and so

rh0 (x, y) =
1

h(x)h(y)
r0(x, y),

as required.
This completes the proof of Theorem 6.2. �

Remark 6.3. The characteristics sh, kh,mh of the h-transformed process seem to be known
in some degree of generality in the folklore. We presented a proof because we were not
able to find a sufficiently general result in the literature. We assumed that the original,
unconditioned process X does not have killing, k ≡ 0, because this is the case that is
of interest to us and including killing would complicate the computations. See [LS90] for
results along the lines of ours under certain assumptions.

7. Generators

The diffusion X determines and in turn is determined by its infinitesimal generator. The
infinitesimal generator is specified by the scale, speed and killing measures and by boundary
conditions on functions in the domain.

Let G be the generator of a diffusion X on I := (`, r) where ` and r are inaccessible.
Suppose u is a continuous solution to the ODE

(7.1) Gu = αu

that is,

(7.2) α

∫
[a,b)

u(x)m(dx) = D−s u(b)−D−s u(a)−
∫

[a,b)

u(x) k(dx)

for all (a, b) ⊂ I. For α > 0 the functions ψα and φα from (6.5) and (6.6) can be characterized
as the unique (up to a multiplicative constant) solutions of (7.2) by firstly demanding that
ψα is increasing and φα decreasing, and then imposing the boundary conditions

ψα(`+) = φα(r−) = 0,

and

ψα(r−) = φα(`+) = +∞.

Remark 7.1. Consider the special case where the diffusion X has null killing measure and
scale and speed measures that are absolutely continuous with respect to Lebesgue measure

• m(dx) = m′(x) dx.
• s(dx) = s′(x) dx.
• k ≡ 0.

If s′ ∈ C1(I) then the infinitesimal generator G : D(G) → Cb(I) of X is a second order
differential operator

Gf(x) =
1

2
σ2(x)∂xxf(x) + b(x)∂xf(x)

where

(7.3) m′(x) = 2σ−2(x)eB(x), s′(x) = e−B(x)

with B(x) :=
∫ x

2σ−2(y)b(y) dy. The domain D(G) consists of all functions in Cb(I) such
that Gf ∈ Cb(I) together with the appropriate boundary conditions.



28 S.N. EVANS AND A. HENING

Remark 7.2. If m is absolutely continuous with respect to Lebesgue measure, m(dx) =
m′(x)dx then

(7.4) p(t;x, y) = q(t;x, y)/m′(y)

where q(t;x, y) is the transition density with respect to Lebesgue measure.

We follow [BS02] and [IM74] in order to characterize the generator of the h-transformed
diffusion.

We showed that if we have a transient diffusion X on I = (`, r) with natural boundary
points ` and r, that is characterized by a scale measure s(dx) and a speed measure m(dx)
and no killing, then, if h is excessive with representation

(7.5) h(x) =

∫
(`,r)

r0(x, y)

r0(x0, y)
ν(dy) +

φ0(x)

φ0(x0)
ν({`}) +

ψ0(x)

ψ0(x0)
ν({r})

the h-transform Xh is a diffusion on I that is characterized by

• Speed measure

mh(dy) = h2(y)m(dy).

• Scale function

sh(dy) = h−2(y)s(dy).

• Killing measure

kh(dy) = (Gh(x0, y))−1ν(dy), y ∈ I,Gh :=
r0(x, y)

h(x)h(y)
.

The (weak) infinitesimal generator of Xh is the operator Gh defined by

Gh := lim
t↓0

P h
t f − f
t

applied to f ∈ Cb(I) for which the limit exists pointwise, is in Cb(I), and

sup
t>0

∥∥∥∥P h
t f − f
t

∥∥∥∥ <∞.
Consider the special case when the diffusion X has

• Speed measure m(dx) = m′(x) dx.
• Scale function s(x) =

∫ x
s′(y) dy.

• No killing k ≡ 0.

Then mh, sh, kh are given by (6.13), (6.12) and (6.14). Following [IM74] the domain D(Gh)
satisfies: f ∈ Cb(I) belongs to D(Gh) if D−s f and D+

s f exist and there exists a function
g ∈ Cb(I) such that for all ` < a < b < r

(7.6)

∫
[a,b)

g(x)h2(x)m′(x) dx =
h2(b)

s′(b)
f−(b)− h2(a)

s′(a)
f−(a)−

∫
[a,b)

f(x)kh(dx).

(7.7)

∫
(a,b]

g(x)h2(x)m′(x) dx =
h2(b)

s′(b)
f+(b)− h2(a)

s′(a)
f+(a)−

∫
(a,b]

f(x)kh(dx).

By definition

Ghf := g.
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for f ∈ D(G). In order to find the representation of h(x) from (7.5) note that

r0(x, y) =

{
c0ψ0(x)φ0(y), x ≤ y;
c0ψ0(y)φ0(x), x ≥ y,

where ψ0, φ0 are the functions from (6.7), (6.8) and

c−1
0 = φ0(x)D+

s ψ0(x)− ψ0(x)D+
s φ0(x).

Suppose that the original process wanders off to `. Then

Px{Ta < Tb} = (s(b)− s(x))/(s(b)− s(a)).

Note that

Px{Tz <∞} =

{
ψ0(x)/ψ0(z), x ≤ z,
φ0(x)/φ0(z), x ≥ z.

Now for x ≤ z,

Px{Tz <∞} = lim
a↓`

Px{Tz < Ta} = lim
a↓`

(s(x)− s(a))/(s(z)− s(a)),

while for x ≥ z
Px{Tz <∞} = 1.

This shows that we should take

ψ0(x) = lim
a→`

(s(x)− s(a))

and
φ0(x) = 1.

We can assume that
lim
a→`

s(a) = 0.

With that assumption,

r0(x, y) =

{
c0s(x), x ≤ y,
c0s(y), x ≥ y.

We have
c−1

0 = φ0(x)D+
s ψ0(x)− ψ0(x)D+

s φ0(x) = 1× 1− s(x)× 0

and so c0 = 1. Therefore,

(7.8) r0(x, y) =

{
s(x), x ≤ y,
s(y), x ≥ y.

8. Bang-bang process of a one-dimensional diffusion

Assume that X is a one-dimensional diffusion with state space I. Using the formula for
the resolvent of Xb, namely equation (5.12), we get that with respect to the speed measure
m of X the resolvent of Xb has densities

rbλ(x, y) = Rb
λδy(x)

= aR
b
λδy(x) + ψbλ(x)Rb

λδy(a)

= Rh
λδy(x)− Rh

λδa(x)

Rh
λδa(a)

Rh
λδy(a) + h(x)−1 rλ(x, a)

rλ(a, a)

Rh
λδy(a)

λRh
λ(1)(a)

= rhλ(x, y)− rhλ(x, a)

rhλ(a, a)
rhλ(a, y) +

r0(a, a)

r0(x, a)

rλ(x, a)

rλ(a, a)

rhλ(a, y)r0(a, a)

r0(a, a)− rλ(a, a)

(8.1)
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Note that with respect to the measure m the h-transform looks like

(8.2) rhλ(x, y) =
rλ(x, y)

h(x)h(y)
h2(y) = rλ(x, y)

h(y)

h(x)
= rλ(x, y)

r0(y, a)

r0(x, a)
.

As a result of (8.1) and (8.2)

rbλ(x, y) = rλ(x, y)
r0(y, a)

r0(x, a)
−
rλ(x, a) r0(a,a)

r0(x,a)

rλ(a, a)
rλ(a, y)

r0(y, a)

r0(a, a)

+
r0(a, a)

r0(x, a)

rλ(x, a)

rλ(a, a)

rλ(a, y) r0(y,a)
r0(a,a)

r0(a, a)

r0(a, a)− rλ(a, a)

= rλ(x, y)
r0(y, a)

r0(x, a)
− rλ(x, a)

rλ(a, a)
rλ(a, y)

r0(y, a)

r0(x, a)

+
r0(a, a)

r0(x, a)

rλ(x, a)

rλ(a, a)

rλ(a, y)r0(y, a)

r0(a, a)− rλ(a, a)

= rλ(x, y)
r0(y, a)

r0(x, a)
+
rλ(x, a)

rλ(a, a)
rλ(a, y)

r0(y, a)

r0(x, a)

(
rλ(a, a)

r0(a, a)− rλ(a, a)

)
and therefore

(8.3) rbλ(x, y) =
r0(y, a)

r0(x, a)

[
rλ(x, y) +

rλ(x, a)rλ(a, y)

r0(a, a)− rλ(a, a)

]
Remark 8.1. The resolvent of Xb has symmetric densities

r2
0(a, a)

r0(x, a)r0(y, a)

[
rλ(x, y) +

rλ(x, a)rλ(a, y)

r0(a, a)− rλ(a, a)

]
with respect to the measure

(
r0(y,a)
r0(a,a)

)2

m(dy) = h2(y)m(dy) = mh(dy). It follows that mh is

a multiple of the speed measure of Xb.

Example 8.2. Suppose that X is Brownian motion with drift −µ, µ > 0, and a = 0. For
a suitable normalization of the scale measure, the speed measure of X is 2 exp(2µx) dx and
the corresponding resolvent densities are r0(x, y) = 2µ exp(−2µ(x ∨ y)) (see, for example,
Appendix 1.14 in [BS02]). We can use Remark 8.1 in a simple but somewhat tedious calcu-
lation to compute the resolvent densities of Xb against the measure mh(dy) = 2 exp(−2µ|y|)
and see that they agree with the resolvent densities of bang-bang Brownian motion given in
Appendix 1.15 of [BS02], so that Xb is indeed bang-bang Brownian motion.

Example 8.3. Let X be the Ornstein-Uhlenbeck process

(8.4) dXt = −γXt dt+ dWt.

The speed measure of this process is

(8.5) mγ(dx) = 2 exp(−γx2) dx.

When γ > 0 the process is positive recurrent while when γ < 0 the process is transient.
Suppose from now on that γ < 0 so that we are in the transient case. We want to see what
the process Xb is in this setting.
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From [BS02] Appendix 1.24 we have that the resolvent density of X with respect to mγ is

rλ(x, y)

:=
Γ(λ/|γ|+ 1)

2
√
|γ|π

exp

(
−|γ|x

2

2

)
D−λ/|γ|−1(−x

√
2|γ|)

× exp

(
−|γ|y

2

2

)
D−λ/|γ|−1(y

√
2|γ|), x ≥ y

(8.6)

where Γ(x) is the Gamma function and

D−ν(x) := e−x
2/42−ν/2

√
π

{
1

Γ((ν + 1)/2)

(
1 +

∞∑
k=1

ν(ν + 2) · · · (ν + 2k − 2)

(2k)!
x2k

)

− x
√

2

Γ(ν/2)

(
1 +

∞∑
k=1

(ν + 1)(ν + 3) · · · (ν + 2k − 1)

(2k + 1)!
x2k

)}
is the parabolic cylinder function.

A natural conjecture would be that Xb is a recurrent OU process. We show that this is
not the case. Set a = 0 and y = 0. Then, for x ≥ 0, equation (8.6) becomes

r0(x, 0) =
Γ(1)

2
√
|γ|π

exp

(
−|γ|x

2

2

)
D−1(| − x

√
2|γ||)D−1(0)

=
Γ(1)

2
√
|γ|π

exp

(
−|γ|x

2

2

)
e(−x
√

2|γ|)2/4
√
π

2
erfc

(
|x|
√

2|γ|√
2

)√
π

2
erfc (0)

=
1

4

√
π

|γ|
erfc(|x|

√
|γ|).

(8.7)

where we used the identity

D−1(x) = ex
2/4

√
π

2
erfc

(
|x|√

2

)
.

and the error function erf and the complementary error function erfc are defined via

erf(x) =
2√
π

∫ x

0

e−t
2

dt

and
erfc(x) = 1− erf(x).

As a result of (8.7)

(8.8) h(x) =
r0(x, 0)

r0(0, 0)
= erfc(|x|

√
|γ|).

From Remark 8.1, the speed measure of Xb is a multiple of

mh
γ(dx) = h2(x)mγ(dx)

=
(

erfc(|x|
√
|γ|)
)2

2 exp(−γx2) dx.

Such a measure does not look like mγ∗ from (8.5) for any γ∗ and hence Xb is not an OU
process.



32 S.N. EVANS AND A. HENING

9. Generator of the conditioned diffusion

Theorem 9.1. Let X be a one-dimensional transient diffusion on I = (`, r) with `, r inac-
cessible boundary points and such that

lim
t→∞

Xt = `

Px almost surely for all x ∈ (`, r). Assume that

• X has an absolutely continuous speed measure m(dx) = m′(x) dx and scale function
s(dx) = s′(x) dx.
• The densities s′ and m′ are strictly positive on (`, r).
• The densities are smooth enough, namely s′ ∈ C1((`, r)) and m′ ∈ C((`, r)).

Set

h(x) = Px{Ta <∞}, x ∈ I.
The generator Gh of Xh is given by

Ghf(x) =

 1
h2(y)m′(y)

(
h2(y)
s′(y)

f ′(y)
)′
, y 6= a;

−s′′(a)
m′(a)(s′(a))2

f+(a) + 1
m′(a)s′(a)

(f+)+(a), y = a;

and the domain of the generator is

D(Gh)

=

{
f ∈ C2(`, a) ∩ C2(a, r) : f+(a)− f+(a−) = f−(a+)− f−(a) =

s′(a)

s(a)
f(a),

2s(a)(s′(a))2 − s2(a)s′′(a)

(s′(a))2
f−(a) +

s2(a)

s′(a)
(f−)−(a) =

−s2(a)s′′(a)

(s′(a))2
f+(a)

+
s2(a)

s′(a)
(f+)+(a)

}
.

Proof. Take

h(x) = r0(x, a) = Px{Ta <∞}r0(a, a).

So, by (7.8)

(9.1) h(x) =

{
s(x), x ≤ a,
s(a), x ≥ a.

Thus,

(9.2) h′(x) =

{
s′(x), x < a,
0, x > a.

At x = a one has

h−(a) = s′(a)

together with

h+(a) = 0.

It is clear from (7.5) and the definition of h that

kh(dx) = r0(a, a)δa(x) = s(a)δa(dx)
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For ` < u < v < r and a /∈ [u, v] equations (7.6) and (7.7) become∫
[u,v)

g(x)h2(x)m′(x) dx =
h2(u)

s′(u)
f−(u)− h2(v)

s′(v)
f−(v)

and ∫
(u,v]

g(x)h2(x)m′(x) dx =
h2(u)

s′(u)
f+(u)− h2(v)

s′(v)
f+(v)

which imply by arguments similar to the above that f ∈ C2(u, v) and

g(x)h2(x)m′(x) =

(
h2(x)

s′(x)
f ′(x)

)′
for all x ∈ (u, v).

Now use (7.6) for the interval [a, a+ ε) to get∫
[a,a+ε)

g(x)h2(x)m′(x) dx =
h2(a+ ε)

s′(a+ ε)
f−(a+ ε)− h2(a)

s′(a)
f−(a)

−
∫

[a,a+ε)

f(x)s(a)δa(dx)

=
h2(a+ ε)

s′(a+ ε)
f−(a+ ε)− h2(a)

s′(a)
f−(a)− f(a)s(a)

(9.3)

which implies

(9.4)

(
lim
ε↓0

f−(a+ ε)− f−(a)

)
=
s′(a)

h2(a)
f(a)s(a) =

s′(a)

s(a)
f(a)

Similarly if we use (7.6) for the interval [a− ε, a)∫
[a−ε,a)

g(x)h2(x)m′(x) dx =
h2(a)

s′(a)
f−(a)− h2(a− ε)

s′(a− ε)
f−(a− ε)

−
∫

[a−ε,a)

f(x)s(a)δa(dx)

=
h2(a)

s′(a)
f−(a)− h2(a− ε)

s′(a− ε)
f−(a− ε)

(9.5)

which forces

g(a)h2(a)m′(a) = lim
ε↓0

h2(a)
s′(a)

f−(a)− h2(a−ε)
s′(a−ε) f

−(a− ε)
ε

=
2h(a)h−(a)s′(a)− h2(a)s′′(a)

(s′(a))2
f−(a) +

h2(a)

s′(a)
(f−)−(a)

=
2s(a)(s′(a))2 − s2(a)s′′(a)

(s′(a))2
f−(a) +

s2(a)

s′(a)
(f−)−(a)

(9.6)



34 S.N. EVANS AND A. HENING

Next use (7.7) for the interval (a− ε, a] to get

∫
(a−ε,a]

g(x)h2(x)m′(x) dx =
h2(a)

s′(a)
f+(a)− h2(a− ε)

s′(a− ε)
f+(a− ε)−

∫
(a−ε,a]

s(a)δa(dx)

=
h2(a)

s′(a)
f+(a)− h2(a− ε)

s′(a− ε)
f+(a− ε)− s(a)f(a)

(9.7)

which implies

(9.8)

(
f+(a)− lim

ε↓0
f+(a− ε)

)
=
s′(a)

h2(a)
f(a)s(a) =

s′(a)

s(a)
f(a).

Next use (7.7) for the interval (a, a+ ε] to get

∫
(a,a+ε]

g(x)h2(x)m′(x) dx =
h2(a+ ε)

s′(a+ ε)
f+(a+ ε)− h2(a)

s′(a)
f+(a)−

∫
(a,a+ε]

s(a)δa(dx)

=
h2(a+ ε)

s′(a+ ε)
f+(a+ ε)− h2(a)

s′(a)
f+(a)

(9.9)

which forces

g(a)h2(a)m′(a) = lim
ε↓0

h2(a+ε)
s′(a+ε)

f+(a+ ε)− h2(a)
s′(a)

f+(a)

ε

=
2h(a)h+(a)s′(a)− h2(a)s′′(a)

(s′(a))2
f+(a) +

h2(a)

s′(a)
(f+)+(a)

=
−s2(a)s′′(a)

(s′(a))2
f+(a) +

s2(a)

s′(a)
(f+)+(a).

(9.10)

Suppose next that we have g = Ghf for f ∈ D(Gh). If a /∈ (u, v) we have

∫
[u,v)

g(x)h2(x)m′(x)dx =

∫
(u,v]

g(x)h2(x)m′(x)dx

=

∫
[u,v)

(
h2(x)

s′(x)
f ′(x)

)′
dx =

h2(v)

s′(v)
f ′(v)− h2(u)

s′(u)
f ′(u).
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Apply this, the fact that h, g, s′ are continuous, and (9.4) to get

∫
[a,b)

g(x)h2(x)m′(x)dx = lim
ε↓0

∫
[a,a+ε)

g(x)h2(x)m′(x)dx+ lim
ε↓0

∫
[a+ε,b)

g(x)h2(x)m′(x)dx

= lim
ε↓0

∫
[a,a+ε)

g(x)h2(x)m′(x)dx+ lim
ε↓0

h2(b)

s′(b)
f ′(b)

− lim
ε↓0

h2(a+ ε)

s′(a+ ε)
f ′(a+ ε)

= lim
ε↓0

∫
[a,a+ε)

g(x)h2(x)m′(x)dx+
h2(b)

s′(b)
f−(b)

− lim
ε↓0

h2(a+ ε)

s′(a+ ε)
f−(a+ ε)

= 0 +
h2(b)

s′(b)
f−(b)− h2(a)

s′(a)

(
f−(a) +

s′(a)

s(a)
f(a)

)
=
h2(b)

s′(b)
f−(b)− h2(a)

s′(a)
f−(a)− s(a)f(a)

=
h2(b)

s′(b)
f−(b)− h2(a)

s′(a)
f−(a)−

∫
[a,b)

f(x)s(a)δa(dx).

(9.11)

Using the left continuity of f− one can also see that∫
[c,a)

g(x)h2(x)m′(x)dx = lim
ε↓0

∫
[c,a−ε)

g(x)h2(x)m′(x)dx

+ lim
ε↓0

∫
[a−ε,a)

g(x)h2(x)m′(x)dx

= lim
ε↓0

h2(a− ε)
s′(a− ε)

f−(a− ε)− h2(c)

s′(c)
f ′(c)

=
h2(a)

s′(a)
f−(a)− h2(c)

s′(c)
f ′(c).

(9.12)

Analogous arguments using (9.8) show that for c < a∫
(c,a]

g(x)h2(x)m′(x)dx = lim
ε↓0

∫
(c,a−ε]

g(x)h2(x)m′(x)dx

+ lim
ε↓0

∫
(a−ε,a]

g(x)h2(x)m′(x)dx

= lim
ε↓0

h2(a− ε)
s′(a− ε)

f+(a− ε)− h2(c)

s′(c)
f+(c)

=
h2(a)

s′(a)
f+(a)− h2(c)

s′(c)
f+(c)− s(a)f(a)

=
h2(a)

s′(a)
f+(a)− h2(c)

s′(c)
f+(c)−

∫
(c,a]

f(x)s(a)δa(dx)

(9.13)
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and using the right continuity of f+∫
(a,b]

g(x)h2(x)m′(x)dx = lim
ε↓0

∫
(a,a+ε]

g(x)h2(x)m′(x)dx

+ lim
ε↓0

∫
(a+ε,b]

g(x)h2(x)m′(x)dx

=
h2(b)

s′(b)
f+(b)− lim

ε↓0

h2(a+ ε)

s′(a+ ε)
f+(a+ ε)

=
h2(b)

s′(b)
f+(b)− h2(a)

s′(a)
f+(a).

(9.14)

�

Example 9.2. Consider conditioning Brownian motion with drift −µ, µ > 0, to be at 0 at
a large exponential time. From Theorem 9.1 we get that (Xh

t )t≥0 has generator

Ghf(y) =

{
1
2
f ′′(y)− µ sgn (y)f ′(y), y 6= 0,
−s′′(0)

m′(0)(s′(0))2
f+(0) + 1

m′(0)s′(0)
(f+)+(0), y = 0,

with domain

D(Gh)

=

{
f ∈ C2(−∞, 0) ∩ C2(0,∞) : f+(0)− f+(0−) = f−(0+)− f−(0) =

s′(0)

s(0)
f(0),

2s(0)(s′(0))2 − s2(0)s′′(0)

(s′(0))2
f−(0) +

s2(0)

s′(0)
(f−)−(0) =

−s2(0)s′′(0)

(s′(0))2
f+(0)

+
s2(0)

s′(0)
(f+)+(0)

}
.

Noting that m′(x) = 2e−2µx and s′(x) = e2µx and s(0) = 1
2µ

, straightforward computations

yield

Ghf(y) =

{
1
2
f ′′(y)− µ sgn (y)f ′(y), y 6= 0,
−µf+(0) + 1

2
(f+)+(0), y = 0,

with

D(Gh) =

{
f ∈ C2(−∞, 0) ∩ C2(0,∞) : f+(0)− f+(0−) = f−(0+)− f−(0) = 2µf(0),

µf−(0) +
1

2
(f−)−(0) = −µf+(0) +

1

2
(f+)+(0)

}
.

Example 9.3. The solution to the SDE

(9.15) dXt = Xt(µ− κXt) dt+ σXt dWt, t ≥ 0.

models a population living in one patch in which the individuals compete for resources.
assume that µ − σ2

2
< 0 so that (Xt)t≥0 is transient and Xt ↓ 0 as t → ∞ Px-almost surely

for all x ∈ (0,∞). Note that if we start (Xt)t≥0 at x ∈ (0,∞), the process is almost surely
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positive for all t ≥ 0. See [EHS15] for more details. We study what happens when we
condition this diffusion for a point a ∈ (0,∞). Let L be the generator of X

L = (µx− κx2)
d

dx
+

1

2
σ2x2 d

2

dx2
.

The generator of Xh is

Lh =

(
µx− κx2 +

∂xh(x)

h(x)

)
d

dx
+

1

2
σ2x2 d

2

dx2

with a suitable domain.
Making using of (7.8) and (7.3) we get

h(x) =

{∫ x
0
z−

2µ

σ2 e
2κz
σ2 dz, if x ≤ a,

1, if x ≥ a,

so the new drift is given by

x 7→

µx− κx2 + x
− 2µ

σ2 e
2κx
σ2∫ x

0 z
− 2µ

σ2 e
2κz
σ2 dz

, if x ≤ a

µx− κx2, if x ≥ a.

For x small the new drift looks like

x 7→ µx− κx2 +

(
1− 2µ

σ2

)
1

x
.
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