
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
High Definition Map as An Infrastructure for Urban Autonomous Driving

Permalink
https://escholarship.org/uc/item/5rp1r3vp

Author
Zhou, Yiyang

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5rp1r3vp
https://escholarship.org
http://www.cdlib.org/

High Definition Map as An Infrastructure for Urban Autonomous Driving

by

Yiyang Zhou

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Masayoshi Tomizuka, Chair
Professor Jonathan R. Shewchuk

Professor Mark W. Mueller

Spring 2022

High Definition Map as An Infrastructure for Urban Autonomous Driving

Copyright 2022
by

Yiyang Zhou

1

Abstract

High Definition Map as An Infrastructure for Urban Autonomous Driving

by

Yiyang Zhou

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

Technologies related to autonomous driving have been advancing rapidly for the past few
years, and the community has already seen promising applications of self-driving vehicles in
certain scenarios. However, urban driving environments, with their less structured roads,
complicated traffic rules, and numerous visual occlusions, remain to be challenging. To assist
the autonomous agents in such scenes, High Definition maps (HD maps) are proposed as an
infrastructure for urban autonomous driving. A typical HD map usually has multiple layers of
semantics including lane boundaries, drivable areas, and traffic rules. This prior knowledge
of the scene is of great importance for downstream modules like perception, localization,
prediction, and planning. Both in academia and in industry, nowadays, the HD map has
become a fundamental module for autonomous driving.

With their loaded information, the HD maps, however, are not usually easy to obtain.
Indeed, each module in the life cycle of an HD map imposes some challenges to researchers.
The development of an HD map starts with the sensor setup on mobile mapping platforms
and the collection of the mapping data. Typically, the mapping platform needs to be man-
ually calibrated for the correct spatial-temporal relationship among sensors, and careful
planning is required to prepare a mapping dataset. Then, the valuable data from these
sensors are processed through HD map generation pipelines for future usage. Currently, the
map construction requires intensive human labeling and post-processing, and few algorithms
are robust enough to automatically map an arbitrary urban environment. Lastly, how to
utilize a collection of HD maps is still a challenge for the mapping community. Due to limited
onboard storage and computing capacity, loading a complete map would be infeasible, and
end-users need an efficient submap query strategy in real-time.

Acknowledging the essential role of the HD map in urban autonomous driving and the
difficulties in development, this dissertation discusses multiple perspectives in the complete
life cycle of an HD map.

To begin with, this dissertation first discusses the mapping platform and the dataset
for mapping applications in Part I. Chapter 2 focuses on the geometrical calibration and
synchronization of the sensor suite on a mobile mapping platform. In this section, the com-

2

plementary LIDAR-camera configuration is discussed, and a semantic-based optimization
algorithm is proposed to estimate both the geometric and the temporal relationship between
these two sensor modalities. In Chapter 3, an exemplar mapping platform and an urban
dataset are introduced. The design of the mapping vehicle considers complicated urban
scenarios, and the dataset includes some of the most challenging city driving scenes. The
dataset is open to the public to encourage research in the mapping field. With the mapping
platform configured, the next question in the life cycle of an HD map is the routing problem.
With more than one mapping vehicle, how to efficiently route a mapping fleet is discussed in
Chapter 4. Here, a Model Predictive Control-based algorithm is proposed to accommodate
traffic conditions and map updating problems.

Part II focuses on the algorithms related to the automatic generation of the HD map.
Chapter 5 introduces a particle filter-based algorithm to efficiently explore the lanes in
complicated urban situations. The algorithm specifically solves the merging, forking, and
irregular lane cases on city roads. Chapter 6 moves more towards the intersections and
discusses potential solutions with a multi-sensor setup. Here, the mapping problem is treated
as the semantic segmentation in the Bird’s Eye View frame. Network design comparisons
are also provided to demonstrate a preferred strategy in cross-domain fusion tasks. Chapter
7 studies the potential of multitask learning for both static and dynamic objects on the road
to exploit information in limited data. Built upon a single backbone, the proposed method
compresses six tasks into one neural network, and the evaluation shows that the performance
is comparable with single-task models.

In Part III, the management and the deployment of the HD map are discussed. Chapter
8 introduces a tile-based map management system to query and combine smaller HD maps
for real-time application. The proposed framework leverages an RB tree data structure and
uses a submap queue during vehicle operation to store only useful maps onboard.

This dissertation concludes with a summary of breakthroughs in the life cycle of the
HD map development process and comments on the future directions of HD map-related
research.

i

To my family,

in particular, my grandfather, a true engineer.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Autonomous Driving and the HD Map . 1
1.2 The Life Cycle of an HD Map and Challenges Thereof 3
1.3 The Dissertation Outline . 5

I Mapping Platform and Data 9

2 Joint Spatial-Temporal Calibration 10
2.1 Introduction . 11
2.2 Full Calibration of LIDAR-Camera Sensor Suite 14
2.3 Implementation and Experiment . 18
2.4 Chapter Summary . 21

3 Urbanloco: the Urban Mapping Dataset 23
3.1 Introduction . 24
3.2 The Urbanization Measure . 27
3.3 The UrbanLoco Dataset . 29
3.4 Dataset Benchmark . 31
3.5 Chapter Summary . 32

4 Routing for A Mapping Fleet 35
4.1 Introduction . 35
4.2 An MPC Formulation of the Routing Problem 37
4.3 Experiments and Discussions . 41
4.4 Chapter Summary . 43

iii

II HD Map Construction 44

5 Road Module Exploration 45
5.1 Introduction . 46
5.2 Road Network Abstraction . 49
5.3 Particle Filter Exploration . 51
5.4 Experiments . 59
5.5 Chapter Summary . 60

6 Multi-sensor Intersection and Road Inference 61
6.1 Introduction . 61
6.2 Representation of the Map . 64
6.3 Study of Fusion Strategies . 65
6.4 Experiments . 68
6.5 Chapter Summary . 74

7 Multi-task Learning, Mapping with Perception 75
7.1 Introduction . 75
7.2 Multi-task Formulation . 79
7.3 Experiments . 81
7.4 Chapter Summary . 91

IIIHD Map Management 93

8 Submap Query and Stitching 94
8.1 Introduction . 94
8.2 Tile-based Query . 95
8.3 Map Stitching . 96
8.4 Experiments . 97
8.5 Chapter Summary . 99

9 Conclusion and Future Work 100
9.1 Summary . 100
9.2 Future Work . 101

Bibliography 103

iv

List of Figures

1.1 Urban driving scene illustrations . 2
1.2 HD map hierarchy in autonomous driving . 3
1.3 Dissertation outline . 5

2.1 An example of the mapping sensor suite . 10
2.2 Workflow of the proposed calibration method 15
2.3 Bi-directional projection demonstration . 17
2.4 Calibration results on the asynchronized KITTI odometry dataset 20

3.1 An overview of the UrbanLoco dataset . 24
3.2 Skymask illustration . 28
3.3 Data collection platforms . 30
3.4 Map evaluation results . 34

4.1 Map hierarchy as a directed cyclic graph . 37
4.2 Bi-directional projection demonstration . 41
4.3 Simulation process on the Berkeley map . 42

5.1 Roads in an urban environment . 46
5.2 Map hierarchy as a directed cyclic graph . 50
5.3 Particle filter exploration framework . 51
5.4 Example results of semantic understanding module 52
5.5 BEV projection comparison with LIDAR . 53
5.6 Particle exploration illustration . 54
5.7 Lane inference at an intersection . 56

6.1 Mapping a scene between multiple cameras’ frames to a BEV frame 62
6.2 Diagrams of network variant designs . 66
6.3 Diagram of the image feature BEV aggregation module 67
6.4 Network architecture of the BEV refinement network 68
6.5 Prediction results on the CARLA dataset. 71
6.6 Prediction results on the Argoverse dataset . 72
6.7 Loss function domain’s impact on performance 73
6.8 Road structure learned in the BEV domain . 73

v

7.1 The proposed multi-task network, LidarMTL 76
7.2 The LidarMTL network architecture . 78
7.3 A comparison of model size and inference speed 87
7.4 The performance of the target task when trained with increasing number of aux-

iliary tasks . 89
7.5 The performance of point-wise predictions with increasingly sparse LIDAR points 91

8.1 Inconsistent fused maps with simple overlapping 96
8.2 Experiment map coverage in Downtown Berkeley 97
8.3 Experiment stitching result in Downtown Berkeley 98
8.4 Algorithm performance in transnational error along the trajectory 99

vi

List of Tables

2.1 Joint spatial-temporal calibration results . 20
2.2 Static spatial calibration results . 21
2.3 Impact of the time delay magnitude . 21
2.4 Comparison between single- and bi-direction loss, an ablation study 21

3.1 Datasets comparison . 26
3.2 Quantified urbanization rate . 29
3.3 Map evaluation results . 33

4.1 Static solution result . 42
4.2 Dynamic solution result . 43
4.3 Linearization effect on MPC solver time (s) . 43

5.1 Atomic road mapping evaluation . 57
5.2 Intersection inference evaluation . 58

6.1 Evaluation result for CARLA and Argoverse 69
6.2 Impact of noisy calibration . 74

7.1 A comparison of Object Detection (OD) performance, the number of trainable
parameters and inference speed . 83

7.2 Foreground (FG). 86
7.3 Ground heights (GH) (all LIDAR points). 86
7.4 Ground areas (GC). 86
7.5 Ground heights (GH) (only foreground points). 86
7.6 Drivable areas (DA). 86
7.7 Intra-object part locations (IP). 86
7.8 A comparison among the LidarMTL networks trained with different loss weights. 90
7.9 Online localization results. 92

8.1 Translation error with ATLAS and GPS baseline 98

vii

Acknowledgments

“If you’re going to San Francisco, You’re gonna meet some gentle people there.” This song
from Scott McKenzie was played when I traversed the continent to UC Berkeley with my
father in the summer of 2018. Indeed, I met lots of amazing people here on this lovely little
hill, and they made my Ph.D. experience in Berkeley a truly amazing 4-year journey.

In the first place, I would like to express my greatest appreciation and deepest gratitude
to Dr. Masayoshi Tomizuka, whose knowledge, enthusiasm, and patience have guided me
through my Ph.D. journey. He led me into the research world and taught me valuable life
lessons beyond academia. We just celebrated his 76th birthday in the lab, and he is so ener-
getic, revving just like his racing car. During the 4-month preparation of this dissertation,
he offered me invaluable advice through numerous in-person meetings and correspondences.
This work could not be completed without his generous support and patient guidance.

Special thanks to Dr. Jonathan Shewchuk and Dr. Mark Mueller, who also provided me
with great insights into this world. Dr. Shewchuk opened the door of Machine Learning for
me in the Spring of 2019 when I was a student in his CS289 class. The final project on sensor
fusion inspired my following projects on perception and calibration. Dr. Mueller’s ME233
lecture notes helped me to get a deeper understanding of the state estimation problem in
controls, inspiring my work on the road module exploration.

I would also like to give a special acknowledgment to Dr. Wei Zhan. Wei’s enthusiasm for
autonomous driving has inspired so many lab members in the past few years. In particular,
he guided me through different modules in autonomous driving and encouraged me to explore
my potential in the field of my interest. His insights and leadership will bring more students
and engineers towards a better future for autonomous driving.

Through Dr. Tomizuka and Wei’s arrangement, I got the honor to work with some of
the best researchers in this world! I enjoyed working with Mr. Yuichi Takeda from Nissan,
Dr. Di Feng from Bosch, Dr. Weisong Wen from Hong Kong PolyU, and Dr. Di Wang from
XJTU.

Furthermore, I would like to thank the members of the MSC lab for their invaluable
friendship and camaraderie. I want to express my appreciation for Dr. Liting Sun, Dr. Zining
Wang, Dr. Kiwoo Shin, Dr. Yujiao Cheng, Dr. Chen Tang, Dr. Saman Fahandezhsaadi, Dr.
Jiachen Li, Dr. Yeping Hu, Dr. Zhuo Xu, Dr. Hengbo Ma, and “Big Sis” Dr. Jessica Leu for
the inspiring discussions. I would also like to thank Changhao Wang, Lingfeng Sun, Huidong
Mona Gao, Xinghao Zhu, and Ting Xu for supportive homework parties and encouraging
conversations. Lastly, I would like to thank Akio Kodaira, Catherine Weaver, Chenran Li,
Xiang Zhang, and other lab members who supported me over the past few years. When
we were not doing research, the fishing trip with Zining, the ski trips with “Big Sis” and
Catherine, and the lab retreat at Crater Lake are some of my best memories at Berkeley!

I would also like to mention Jiaming Zha and Haoyun Xu for the adventurous travels
and late-night conversations during our time in California. Another thank goes to He Ren,
with whom I passed my qualification exam and am expecting to receive my PhD degree! Her
companionship has always been my source of happiness.

viii

Last but not the least, I would like to express my love to my parents and family, whose
endless support and encouragement have helped me to become who I am today. My grand-
father, a true railroad engineer, has inspired me in numerous ways throughout the years.
He always tells me that, as long as I try, there are always more solutions than problems. I
would also like to thank my cousin Anqi, who takes care of the family when I am away from
home.

1

Chapter 1

Introduction

1.1 Autonomous Driving and the HD Map

This is 2022. The tale of autonomous vehicles has been told for more than a decade, but
most of the full autonomy promises are yet to be delivered. With technology breakthroughs
in sensors, computations, and algorithms, the world has witnessed tremendous growth in the
autonomous driving industry, and there are indeed some applications of autonomous cars
deployed in certain scenarios. However, no one has successfully reached full autonomy in an
arbitrary urban environment.

Different from more regulated scenarios like highways or parking lots, urban driving is
hard. To begin with, traffic participants are more diversified in cities: walking pedestrians,
runners, cyclists, and various sizes of vehicles are together sharing the road. More detrimental
to the perception algorithms, these dynamic objects in the scene might occlude each other,
creating some unavoidable detection misses. On the other hand, the static road structure
in an urban scenario is more complicated as well. Figure 1.1 illustrates some typical roads
in the San Francisco Bay Area with satellite images from [41]. Forking or merging lanes
are common in cities. Other roads might not have any clear markings on their surfaces.
Sometimes urban scenes even have complicated 6-way intersections or roundabouts. To
handle these complexities and to alleviate the onboard sensing burden, some prior knowledge
about the scene is needed.

To represent this prior knowledge, maps were utilized in the early days of autonomous
driving. In the first DARPA urban challenge in 2007, various participating teams were
generating their own versions of the route map to facilitate the driving process [101, 148].
These maps were created with LIDARs or cameras to generate an accurate 3D representation
of the obstacles and the route itself. These maps showed rudimentary forms of the High
Definition Maps (HD Maps) nowadays.

The concept of the HD map was more specifically defined in Mercedes-Benz’s Bertha
Drive Project in 2013 [82, 173]. More than a map with detailed 3D geometrical information,
the map used in Bertha included semantics like lane topology and traffic rules. These

CHAPTER 1. INTRODUCTION 2

(a) Forking lanes (b) Lanes without markings (c) Complicated roundabout

Figure 1.1: Urban driving scene illustrations

semantics are particularly useful for urban driving tasks because the semantics pre-define
how the vehicle should behave in a complicated environment. For example, by specifying the
right-turning lanes in the map, the vehicle understands to only use that specific lane when
planning a possible right turn.

Nowadays, HD maps carry even more information that is not directly visible to human
eyes. Some companies have proposed to include prior information like the usual traffic
patterns into the map, and other teams are adding real-time road conditions to assist real-
time path planning [12].

As a summary, Figure 1.2 illustrates a commonly acknowledged definition of the HD map
hierarchy. Starting with a base layer road network for human-level navigation, the HD map
then incorporates accurate measurements of the surrounding environment in the geometric
layer. The third layer contains semantic information like lane topology and traffic rules, and
more advanced blocks carry prior traffic information or real-time condition updates.

The popularity of HD maps comes from their wide application in driver-less cars. In-
deed, researchers in this field have demonstrated their significant roles in different modules
in autonomous driving. In perception, for example, maps help the algorithms to identify
potential drivable areas as semantic priors [162]. In localization modules, the map provides
a globally accurate reference for point clouds or camera images to match with [86, 146].
Furthermore, in behavior prediction modules, traffic rules and lane semantics within the HD
map give algorithms a strong hint of the target’s future trajectory [33]. Today, even more
applications with these HD maps are being developed.

Acknowledging the essential role of the HD map in autonomous driving, the next section
dives deep into the development process.

CHAPTER 1. INTRODUCTION 3

Figure 1.2: HD map hierarchy in autonomous driving

1.2 The Life Cycle of an HD Map and Challenges

Thereof

The life of a paper map usually starts with a group of survey engineers in the field. The
survey team is equipped with levelers, locators, tripods, etc. to accurately measure the
geographical features in the environment. With raw data, specially trained cartographers
decode the information and draw one copy of the map. Lastly, publishers or local libraries
organize the maps and make them available to the public.

As an analogy of the traditional map-making process, an HD map also requires three
parts: hardware and data, map generation algorithms, and map management. Modern HD
map makers, just like their predecessors in ancient times, are facing challenges in these tasks.
This section explains each mapping module in detail and further introduces the challenges
faced by HD map researchers.

The Survey Team

The data source of the HD map comes from mobile mapping platforms (MMP) with various
sensors. Here, the mobile platform could be a satellite, an aircraft, a car, or simply a
pedestrian [142]. Nowadays, car-mounted mapping platforms are the most popular choices
because the sensors are traveling on the same route as future autonomous vehicles. More
importantly, the data collected during these travels could also be utilized for detection or
prediction tasks.

Some typical sensor choices on an MMP include LIDARs, cameras, Inertial Measurement
Units (IMU), Global Positioning Systems (GPS), On-board Diagnostic (OBD) sensors, etc.
One of the most important steps in jointly utilizing these sensors is to calibrate them carefully.

CHAPTER 1. INTRODUCTION 4

Here, one needs to know both the spatial and the temporal relationship among these sensors,
and such calibration is not trivial. Currently, researchers are calibrating the sensor suite with
carefully prepared artificial rigs and meticulously designed synchronization algorithms [165].
More detrimentally is the irreproducible nature of such one-time calibration. If the sensor
suite experiences vibration or deformation in an accident, the geometry calibration result is
instantly voided. Thus, automatic calibration is critical for any onboard sensor suite [66].

With a fully functioning mapping platform, the next step is to collect a dataset for
downstream tasks. Here, the mapper needs to configure a data logging protocol for the
MMP and a database for storage. Furthermore, a mapping team also needs to consider
the routing problem for its mapping fleet. In dynamic urban scenarios, the road condition
changes every second, and it is important to consider various traffic patterns when routing
these mapping vehicles.

When all the data are collected in an accurate and efficient manner, the next step for
HD map development lies in the hand of the cartographic algorithm.

The Cartographic Algorithm

To make an HD map, one needs to first define the structure/model of the map. Take
OpenStreetMap (OSM) as an example. OSM is an open-source online map database with
course road-level information [109]. It constructs a map with a graph, where nodes are
waypoints, and edges show the connection relationship. Accommodating the huge amount
of information within an HD map, new map structures need to be proposed.

With an established map model, the next step is to encode each part of the model with
useful information. Within the map, one needs to fill in semantics like reference waypoints,
lane geometry, etc. Furthermore, it is also critical to include how lanes are connected at
the intersection. Here, the aforementioned third layer of the HD map is fully explored.
However, extracting the semantic information out of the raw sensor data is still largely
menial, requiring a significant amount of human labeling [115]. A few commercial products
have demonstrated the potential of automatic HD map-making in highway scenes [107], but
fully automatic map generation in cities is still challenging.

After the map generation process, these valuable maps are stored on the mapping team’s
server. Now, how to make them available to each individual autonomous vehicle will be the
next question.

The Atlas

A collection of maps is called an atlas. How to make the atlas available to all autonomous
vehicles is the question to be answered at the distribution time. Considering the limited
storage spaces and computing powers on autonomous vehicles, loading the whole atlas of
a city directly onto the vehicle’s hardware is often impossible. While some engineers are
trying to compress the map to a smaller scale [155], a new methodology to query the map
is needed. Instead of loading the complete map, a divide-and-conquer philosophy should be

CHAPTER 1. INTRODUCTION 5

Figure 1.3: Dissertation outline

applied to map management. Here, one potential solution is to store all the HD maps on
the cloud, and the onboard system only downloads the current and future segments when
necessary [164]. However, more research into the atlas structure and the delivering strategy
is needed for a fast query during real-time implementation.

Facing these challenges in each step of the HD map development process, researchers in
the mapping domain needs a complete revisit of the HD map infrastructure.

1.3 The Dissertation Outline

Acknowledging the HD map’s role as a critical infrastructure for urban autonomous driving,
this dissertation is a revisit of each step in the complete HD map life cycle. As shown in
Figure 1.3, this work sequentially visits each module mentioned in Section 1.2 and introduces
related academic endeavors.

Part I Mapping Platforms and Data

As the first step of the mapping process, this dissertation starts with the sensors on the
MMP and the data acquisition process. Here a joint spatial-temporal calibration method
for LIDARs and cameras is first introduced as a demonstration of the hardware setup on a
mapping vehicle. Then, a sample mapping dataset preparation process is demonstrated as
a showcase. Lastly, a Model Predictive Control-based map routing solution is proposed for
mapping fleet management.

CHAPTER 1. INTRODUCTION 6

Chapter 2 Joint Spatial-Temporal Calibration

Different sensor modalities describe a scene with different types of physical information, and
multiple sensors together contribute to a more comprehensive representation of the environ-
ment. Camera and LIDAR, with complementary semantic and depth information, are the
typical choices for detection tasks in complicated driving environments. For most LIDAR-
camera fusion algorithms, however, the calibration of the sensor suite will greatly impact the
performance. More specifically, these algorithms usually require an accurate geometric rela-
tionship among multiple sensors as the input, and they often assume that the contents from
these sensors are captured at the same time. Preparing such sensor suites typically involves
carefully designed calibration rigs and accurate synchronization mechanisms, which are rel-
atively time-consuming. More critically, the offline calibration result would be voided if the
sensor suite experiences any damages during deployment. In this chapter, a segmentation-
based framework is proposed to jointly estimate the geometric and the temporal parameters
in the calibration of a LIDAR-camera suite. A semantic segmentation mask is first applied
to both sensor modalities, and the calibration parameters are optimized through pixel-wise
bidirectional loss. Temporal parameters are estimated from visual odometry prediction be-
tween two consecutive frames. Since supervision is only performed at the segmentation level,
no calibration label is needed within the framework. The proposed algorithm is tested on
the KITTI dataset, and the result shows an accurate real-time calibration of both geometric
and temporal parameters.

Chapter 3 UrbanLoco: the Urban Mapping Dataset

As introduced in previous sections, mapping and localization are critical modules of au-
tonomous driving, and significant achievements have been reached in related fields. Beyond
Global Navigation Satellite System (GNSS), research in point cloud registration, visual fea-
ture matching, and inertia navigation has greatly enhanced the accuracy and robustness of
mapping and localization in different scenarios. However, highly urbanized scenes are still
challenging: LIDAR- and camera-based methods perform poorly with numerous dynamic
objects; the GNSS-based solutions experience signal loss and multipath problems; IMUs
suffer from drifting. Unfortunately, current public datasets either do not adequately ad-
dress this urban challenge or do not provide enough sensor information related to mapping
and localization. Here we present UrbanLoco: a mapping/localization dataset collected in
highly-urbanized environments with a full sensor-suite. The dataset includes 13 MMP trips
collected in San Francisco and Hong Kong, covering a total length of over 40 kilometers.
The UrbanLoco dataset includes a wide variety of urban terrains: urban canyons, bridges,
tunnels, sharp turns, etc. More importantly, this dataset includes the complete informa-
tion from LIDAR, cameras, IMU, and GNSS receivers. UrbanLoco is publicly available at
https://advdataset2019.wixsite.com/urbanloco.

CHAPTER 1. INTRODUCTION 7

Chapter 4 Routing for A Mapping Fleet

To build large HD maps covering an entire city, a mapping team usually commands a fleet of
vehicles to traverse different parts of the town to acquire accurate, comprehensive, and up-to-
date mapping information of the urban environment. However, how to efficiently route each
vehicle in the fleet remains to be a problem. This chapter specifically targets the mapping
fleet routing problem in dynamic urban scenes. Here, a Model Predictive Control-based map
routing solution MR.MPC is proposed. The method first abstracts a directed cyclic graph
representation of the city from public mapping datasets and then constructs a linear model
for the exploration task. The model is further extended to solve map updating problems.
The proposed method is tested with both simulated and real-world environments, and the
results demonstrate an efficient and robust exploration strategy.

Part II HD Map Construction

After the data is collected with calibrated sensors on mapping vehicles, the next step is to
extract the mapping information. In Chapter 5, an urban map structure is firstly defined, and
a road module exploration strategy is introduced. Chapter 6 extends the map exploration
into intersections and proposes to use Bird’s Eye View (BEV) segmented images as local
representations. Chapter 7 combines static mapping tasks with dynamic object detection
for multi-task learning.

Chapter 5 Road Module Exploration

As a crucial layer of the HD map, lane-level maps are particularly useful: they contain
geometrical and topological information for both lanes and intersections. However, large-
scale construction of HD maps is limited by tedious human labeling and high maintenance
costs, especially for urban scenarios with complicated road structures and irregular markings.
This chapter proposes an approach based on semantic particle filter to tackle the automatic
lane-level mapping problem in urban scenes. The map skeleton is firstly structured as a
directed cyclic graph from the online mapping database OpenStreetMap. The proposed
method then performs semantic segmentation on 2D front-view images from ego vehicles and
explores the lane semantics on a birds-eye-view domain with true topographical projection.
Exploiting OpenStreetMap, we further infer the lane topology and the reference trajectory
at intersections with the aforementioned lane semantics. The proposed algorithm has been
tested in densely urbanized areas, demonstrating an accurate and robust reconstruction of
the lane-level HD map.

Chapter 6 Multi-sensor Intersection and Road Inference

Either for an HD map construction or for an online perception of the static scene, it requires
more than a simple semantic segmentation or lane tracing in the camera domain. Instead,
it is essential to form a BEV representation of the 3D world with information gathered from

CHAPTER 1. INTRODUCTION 8

multiple sensors. In this chapter, we focus on intersection/lane geometry and topology in the
BEV domain when the inputs are from multiple cameras. A local lane map representation
is firstly proposed. Then, based on different sensor fusion methodologies, we design multiple
variants of the BEV segmentation network to infer the local lane map. With experimental
outcomes, a network with pre-fused BEV image input supervised in the BEV domain is
concluded to be the preferred strategy for lane-level information extraction. The proposed
method is tested in both simulated and real-world environments, showing the effectiveness
of the chosen strategy in BEV sensor fusion tasks.

Chapter 7 Multi-task Learning, Mapping with Perception

Detecting dynamic objects and predicting static road information such as drivable areas
and ground heights are crucial for safe autonomous driving. Previous works studied each
perception task separately and lacked a collective quantitative analysis. In this chapter,
we show that it is possible to perform all perception tasks via a simple and efficient multi-
task network. The proposed network, LidarMTL, takes raw LIDAR point cloud as input and
predicts six perception outputs for 3D object detection and road understanding. The network
is based on an encoder-decoder architecture with 3D sparse convolution and deconvolution
operations. Extensive experiments verify the proposed method with competitive accuracy
compared to state-of-the-art object detectors and other task-specific networks.

Part III HD Map Management

With maps constructed, the next step in the HD map life cycle is for autonomous vehicles
to efficiently use these maps for downstream tasks. In Chapter 8, an efficient submap query-
stitching strategy is proposed for the real-time deployment of the HD map.

Chapter 8 Submap Query and Stitching

As demonstrated in previous sections, HD maps are extremely useful for downstream tasks
in autonomous driving. However, for individual vehicles, how to efficiently get access to these
pre-made maps is not trivial. Directly loading the complete map onto the onboard storage
device is infeasible, because the HD maps could occupy a large amount of the memory space.
In this chapter, the concept of a submap is introduced to dissect a large urban map into
smaller tiles, and a stitching algorithm is proposed to fuse neighboring maps to guarantee
local consistency. The patching algorithm is evaluated with Simultaneous Localization and
Mapping tasks, showing an effective querying and matching operation in real-time.

9

Part I

Mapping Platform and Data

10

Chapter 2

Joint Spatial-Temporal Calibration

Sensors are essential tools for robotic systems to perceive the physical world. Naturally, the
first step in the development of an HD map is to prepare a sensor suite that is suitable for
the environment. Figure 2.1 shows a typical mapping vehicle that is used by the Mechanical
Systems Control Lab at UC Berkeley [157]. On the top of the vehicle is a sensor suite that
contains a LIDAR, six cameras, an Inertial Measurement Unit, and several GPS antennas.
The sensor suite is designed to fully explore the complementary nature of these sensors. For
example, LIDAR point clouds provide accurate yet sparse 3D measurements, and camera
images yield dense semantics with no sense of depth. As a result, researchers would like to
jointly use these sensors for a complete representation of the scene.

For most sensor fusion algorithms, however, additional information about the spatial-
temporal relationships among these sensor modalities is needed. More specifically, algo-
rithms usually require an accurate geometric relationship among multiple sensors to perform

Figure 2.1: An example of the mapping sensor suite

CHAPTER 2. JOINT SPATIAL-TEMPORAL CALIBRATION 11

coordinate transformations, and it is often assumed that the contents from these sensors are
captured at the same time. Thus, a complete calibration of the sensor suite is needed.

Promoted by such demand, this chapter focuses on the joint spatial-temporal calibration
of a LIDAR-camera sensor suite. Here, a semantic segmentation-based method is proposed
to minimize the newly designed bi-directional loss in the image domain. Temporal parame-
ters are estimated from visual odometry prediction between two consecutive frames. Since
supervision is only performed at the segmentation level, no calibration label is needed within
the framework. The method is implemented on the KITTI [38] dataset, and the results show
a robust and accurate calibration of the LIDAR-camera sensor suite1.

2.1 Introduction

Robots nowadays are usually equipped with multiple types of sensors to ensure a compre-
hensive perception of the scene. Different sensors on a robot provide observations with their
unique physical characteristics. For mobile robots in particular, cameras and LIDARs are
among the most popular choices in perception tasks. In outdoor scenes, camera images
provide semantically rich representation in dense 2D formats without any depth data, and
LIDARs offer accurate yet sparse 3D measurements as point clouds.

The complementary nature of these two types of sensors inspires the designs of fusion
algorithms for detection tasks. In practice, the fusion algorithms are proved to out-perform
single-modal methods with a significant margin [165]. More importantly, since multiple
sensors are located differently on the mapping vehicle, a complete sensor suite can often
overcome potential occlusion problems in a single sensor setup.

One of the fundamental elements in sensor fusion algorithms is calibration [165]. To
begin with, the accurate geometric relationship between two sensor modalities is required
for most fusion algorithms [171, 139, 152, 135, 117]. More specifically, three translation
and three rotation parameters (six degrees of freedom or 6-DOF) need to be provided as
inputs. However, acquiring such geometrical relationships is challenging. Human labeling,
artificial rigs, and manual measurements are often involved in some earlier attempts, and such
processes are usually time-consuming. More detrimentally is the irreproducible nature of the
one-time calibration: whenever the vehicle experiences vibration or collision, the geometric
data from manual calibration is voided. Thus, automatically calibrating the geometry is
critical for any onboard sensor suite. In recent years, a series of learning-based methods
start to predict the extrinsic parameters of the sensor suite. These methods are usually
data hunger, requiring pre-labeled data as supervision to predict the parameters in the
target sensor setting [128, 55, 85]. However, the ground truth calibration data is still hard
to obtain and none of these works reported the generalization capacity on other datasets.
Some other methods leverage the semantic outcome of each sensor modality and directly
regress the extrinsic matrices without supervision. This work follows on SemAlign [83] for
finer geometric calibration.

1This chapter includes materials from the author’s previous work [66]

CHAPTER 2. JOINT SPATIAL-TEMPORAL CALIBRATION 12

Beyond the geometric parameter estimation, the temporal relationship among sensors also
requires researchers’ attention. More specifically, how to synchronize each sensor remains
to be a long-neglected problem in the autonomous driving research domain. Algorithms
usually assume naively that the content in each sensor frame is acquired at precisely the
same time, but this assumption rarely holds. For example, in the Argoverse dataset [14], the
synchronization is performed by simply associating the closest timestamp between LIDARs
and cameras. Some other works [157] perform synchronization at the data acquisition level,
but the static nature of a one-time delay compensation could not address the changes in
the real-world deployment. Thus, dynamically calibrating the time delay among sensors is
critical, yet almost unexplored.

This chapter proposes a joint spatial-temporal calibration framework between LIDARs
and cameras on an autonomous driving platform. The input of the proposed framework are
sequences of camera and LIDAR frames. Here, each sensor modality is processed through
an arbitrary semantic segmentation network, which one can choose based on the available
training data. Secondly, the segmented LIDAR point cloud is projected onto the semantic
image, where a newly designed bi-directional alignment loss is calculated for geometrical
parameter regression. Not limited to point-to-pixel loss, we downsample the semantic pixel
for pixel-to-point loss as well. To estimate the time delay between sensor modalities, we
estimate the visual odometry from two consecutive images and predict a shifted point cloud
for matching.

The joint spatial-temporal calibration framework is tested on the KITTI dataset for 150
frames, and the proposed method can robustly regress geometrical and temporal relation-
ships among LIDARs and cameras. Ablation studies are also included in this chapter to
demonstrate the bi-directional loss superiority and the strong temporal estimation capacity.

The major contributions of the work included in this chapter are:

• A joint spatial-temporal calibration algorithm is proposed for LIDAR-camera sensor
suite;

• A bi-directional loss is designed for more robust performance in geometrical parameter
regression;

• A time parameter is coupled with visual odometry to estimate the temporal delay
among sensors.

Geometric Calibration

Rig-based Calibration

The earliest attempts in geometric sensor calibration start with artificial targets, also known
as rigs. Such objects are often of regular shapes or specific patterns, making them easy for
simple detection algorithms.

CHAPTER 2. JOINT SPATIAL-TEMPORAL CALIBRATION 13

In Single-Shot Calibration, Geiger et al. propose to use checkerboards as targets for the
calibration task between cameras and range sensors [39]. The patterns on the checkerboard
are easy to identify for cameras, and the board themselves are easily detectable planes for
range sensors. A downstream optimization process is then carried out for the alignment.
Following a similar pipeline, other methods use different rigs or features for such calibration
tasks [65, 69, 71]. However, constructing an artificial rig could consume a significant amount
of time, and such a one-time calibration result is often not repeatable. For example, if the
sensor suite is changed geometrically in accidents, a new round of rig calibration is required.

Feature-based Calibration

Departing from the calibration board, some other methods explore the possibilities of finding
various features in the real world for calibration.

Exploring the geometric features in the environment inspires the authors of [59] and [100]
to use edges and lines in indoor scenes to estimate the 6-DOF of a sensor suite. Tamas et
al., on the other hand, use the plane feature in outdoor environments [140]. However, these
features are not universally available in all scenes, and advanced detection/correspondence
algorithms are often needed. Another school of thought is to utilize the color channels
in images and the intensity channels in LIDARs to maximize the mutual information for
calibration purposes [111]. However, depending on the viewing angle, the intensity return
from the LIDAR could be drastically different from the image outcomes [145].

End-to-end Calibration

More recently, some learning-based methods predict the extrinsic parameters of the sensor
suite with raw sensor inputs [128, 55, 85]. To train these prediction models, researchers
usually need to acquire a large dataset with ground-truth calibration data. More importantly,
none of the aforementioned works evaluate the models’ generalization capacity on other
datasets.

Last year, SemAlign was proposed as a semantic segmentation-based extrinsic calibration
method [83]. The model utilizes off-the-shelf segmentation networks for LIDARs and cam-
eras, and it optimizes the geometric calibration parameters for minimum Semantic Alignment
loss. Such a method is favorable because the generalization capacity lies within the semantic
segmentation modules, which are well explored-domains in computer vision. However, the
single-direction loss function in this work is not robust enough for complicated scenes.

Temporal Calibration

Sensor synchronization is often overlooked in driving-related tasks [165], and most algo-
rithms often naively assume that the data provided is already synchronized. However, such
assumptions rarely hold. To synchronize the sensors, researchers designed both offline and

CHAPTER 2. JOINT SPATIAL-TEMPORAL CALIBRATION 14

online mechanisms for synchronization. Here we introduce a few existing attempts related
to temporal calibration.

Offline Synchronization

In offline designs, the synchronization is performed before the data acquisition. Similar to
the triggering mechanism in multi-cameras setups in the early days of photography, a naive
attempt in sensor synchronization is to use hardware triggers [15] like a fix-frequency impulse
signal. Some other datasets prepare software triggers with compensated triggering time [157],
but the manual calibration of the time delay is usually time-consuming. More recently,
the IEEE1588 Precision Time Protocol is also introduced in system-wide synchronization
applications.

Online Synchronization

Online synchronization happens during or after the data acquisition process. A typical exam-
ple is the Argoverse dataset[14], where each camera image is matched to the closest LIDAR
scan, while the physical sensor themselves are not exactly synchronized. Most research work
in this domain estimates the time delay between sensors while they capture real-world data.
VINS calibrates the time delay between the high-frequency Inertia Measurement Unit (IMU)
and a camera by optimizing the trajectory consistency between these two sensors [122].

Joint Calibration

Calibration through Simultaneously Localization and Mapping (SLAM) is a popular method
for the joint calibration task. Through SLAM algorithms, each sensor modality provides a
unique odometry that is both spatial and temporal dependent. In [112] and [143], the authors
utilize such odometry estimation to find the best spatial-temporal match between the two
generated trajectories. However, the aforementioned methods leverage the performance of
the SLAM algorithms over the whole traveling trajectory, and SLAM’s drifting effect could
easily deteriorate the performance of the downstream calibration task. In our proposed work,
we optimize the extrinsic and the temporal parameter iteratively, avoiding error accumulation
along the traveling path. Furthermore, Persic et al. propose to use tracking results from
both sensor modalities to solve for geometric and temporal calibration parameters [116].
Similarly, the calibration performance is also limited by the accumulated error in tracked
objects.

2.2 Full Calibration of LIDAR-Camera Sensor Suite

The workflow of the proposed calibration method is shown in Figure 2.2. The calibration
process consists of the static spatial parameter calibration module for the spatial initial guess
and the joint spatial-temporal parameter calibration module for duo-parameter estimation.

CHAPTER 2. JOINT SPATIAL-TEMPORAL CALIBRATION 15

Bi-directional

Nearest

Neighbor

Semantic Segmentation

SqueezeSeV3

SDCNet

LIDAR

Camera

Camera

Pk

Visual

Odometry

Ik+δ

Ik+δ−1

Static spatial
parameter calibration

Joint spatial-temporal
parameter calibration

Pm,k

Im,k+δ

vk

Einit = {Rinit , tinit}

Bi-directional

Nearest

Neighbor

Bi-directional

loss Estatic

Pm,k

Im,k+δ

Bi-directional loss
+

l2 regularization

Eiteration

E, δ

Eiteration

Figure 2.2: Workflow of the proposed calibration method

The inputs of the proposed algorithm are one point cloud scan Pk, and two sequential
RGB images {Ik+δ, Ik+δ−1}. The goal of the algorithm is to estimate a 6-DOF E = {R, t}
of the geometric relationship and the time delay δ between Pk and Ik+δ.

To do this, we first process Pk and Ik+δ through arbitrary semantic segmentation al-
gorithm to obtain semantic mask Pm,k, Im,k+δ. Then with initial extrinsic guess Einit =
{Rinit, t init} from either rough measurement or sampling and the known intrinsic matrix
K, we project the LIDAR point cloud onto the camera image plane. By finding the nearest
neighbor both from point to pixel and from pixel to point, we calculate the euclidean distance
between them to form the bi-directional loss function of the optimization algorithm.

The first optimization iteration (the static spatial parameter calibration module) will
be carried out at the frame when the ego vehicle’s velocity is almost 0. The static spatial
parameter calibration gives the initial estimation of the rotation and translation Êstatic =
{R̂static, t̂static}. This estimation will be used as the initial guess and the regularization
reference for the joint spatial-temporal parameter calibration. We include the static iteration
to avoid local minimum during the joint calibration processes.

Secondly, for dynamic scenes, we estimate the temporal information between Ik+δ and
Ik+δ−1 from the visual odometry which will predict the velocity v̂ k between two camera
frames. Here, the translation shift between Pk and Ik+δ can be represented as t δ,k = v̂ k ·δ. We

use this v̂ k as part of the optimization and estimate both the time delay δ̂, and Ê = {R̂, t̂}.

Semantic Segmentation

With off-the-shelf semantic segmentation modules, the proposed method would generalize
to any dataset with semantic labels. In this chapter, we use SqueezeSegV3[158] and SDC-
net[123] trained on KITTI dataset for point cloud and image semantic segmentation, respec-
tively. Considering the frequent presence of vehicles in the urban environment, in this work
we only use the car class for semantic segmentation. Applying these semantic segmentation
modules to the input, we get semantic masks Pm,k, Im,k+δ.

CHAPTER 2. JOINT SPATIAL-TEMPORAL CALIBRATION 16

Point Cloud Projection

In order to compute the semantic loss, we first project the semantic mask of a point pi,m,k ∈
Pm,k onto the 2D image plane. Based on the classic camera model [87], we can achieve the
projection as pxi,m,k

pyi,m,k

pzi,m,k

 = K[Rp i,m,k + t], (2.1)

p̄ i,m,k =

pui,m,k

pvi,m,k

 =
1

pzi,m,k

pxi,m,k

pyi,m,k

 , (2.2)

where pui,m,k and pvi,m,k are the image coordinates of the projected point.

Bi-directional loss

Let p̄1,m,k...p̄np,m,k be a set of projected LIDAR points that are within the camera’s field
of view. Now for the projected point p̄ i,m,k, let q j,m,k+δ ∈ Im,k+δ be the nearest neighbour
pixel of the same class. Then, the single-direction point-to-pixel (point-to-image) semantic
alignment loss on frame k can be computed as

Lp2i,k =
∑
i

||p̄ i,m,k(R, t,p i,m,k)− q j,m,k+δ||22. (2.3)

Here, the loss is computed per projected point. Figure 2.3a illustrates the point-to-
pixel calculation process. As shown in [83], by minimizing this loss function, we can make
the projected point cloud well overlapped with the pixels that have same semantic label.
Thus, minimizing this loss function could lead us to the correct estimation for Êstatic =
{R̂static, t̂static}.

However, when the initial guess for the extrinsic matrix is significantly different from the
ground truth, the nearest neighbor matching does not necessarily give us the appropriately
matching result for most of the pairs, and the information of some important pixels will be
abandoned. Thus, minimizing the single-directional loss would fall into the inappropriate
local minimum.

To avoid such loss of information, we propose a bi-directional loss that utilizes the pixel-
to-point (image-to-point) nearest neighbor matching as well (Figure 2.3b).

Considering the fact that one image has too many pixels to match in real time, we
downsample the pixels for the pixel-to-point matching. Let {q̄1,m,k+δ...q̄ni,m,k+δ} ⊂ Im,k+δ

be a set of the downsampled pixels. Now for the pixel q̄ i,m,k+δ, p̄j,m,k ∈ Pm,k is the nearest
neighbor projected point. Then, the pixel-to-point semantic alignment loss on frame k can
be computed as

CHAPTER 2. JOINT SPATIAL-TEMPORAL CALIBRATION 17

(a) Point-cloud to Pixels

(b) Pixels to Point-cloud

Figure 2.3: Bi-directional projection demonstration

Li2p,k =
∑
i

||q̄ i,m,k+δ − p̄j,m,k(R, t)||22. (2.4)

Here, the loss is computed per sampled pixel. Then, the bi-directional semantic alignment
loss at the l-th iteration can be represented as

Lbi,k,l = Lp2i,k,l + wl ·
np

ni

· Li2p,k,l, (2.5)

where np

ni
is the normalization term and wl is the weight at the optimization iteration number

l. With smaller wl, the optimizer tends to align the projected points within the image
mask to minimize Lp2i,k,l. With larger wl for minimizing Li2p,k,l., the optimizer tends to
have the image mask well included in the projected point cluster. Thus, shifting the value
of wl during optimization iterations can avoid getting stuck in local minimum, and the
optimization solution would lead us to a better nearest neighbor matching for the next
iteration. Thus, optimizing the bi-directional loss function would yield a more refined guess
Êstatic = {R̂static, t̂static} for the joint calibration.

CHAPTER 2. JOINT SPATIAL-TEMPORAL CALIBRATION 18

Joint Spatial-Temporal calibration

To estimate the temporal parameter, we extract the velocity v̂ k between two sequential RGB
images {Ik+δ, Ik+δ−1} using visual odometry. The visual odometry used in this chapter is
based on the sparse optical flow for FAST feature tracking [84], and Nister’s 5-point algorithm
with RANSAC [106] for essential matrix estimation.

With a moving ego vehicle and an asynchronized sensor suite, the projected point cloud
obtained from Equation 2.1 will never match with the corresponding pixels, even with the
ground truth geometric calibration parameters. To compensate for this time delay, we need
to modify the projection equation aspxi,m,k,δ

pyi,m,k,δ

pzi,m,k,δ

 = K[R̂staticp i,m,k + t̂static + v̂ k · δ̂], (2.6)

p̄ i,m,k,δ̂ =

pui,m,k,δ̂

pvi,m,k,δ̂

 =
1

pzi,m,k,δ̂

pxi,m,k,δ̂

pyi,m,k,δ̂

 . (2.7)

Here, pui,m,k,δ̂ and pvi,m,k,δ̂ are the image coordinate of the projected point compensated

with δ̂ and v̂ k. Therefore, we can estimate both spatial and temporal parameters by mini-
mizing the modified bi-directional loss at iteration l:

Lbi,k,δ̂,l = Lp2i,k,δ̂,l + wl ·
np

ni

· Li2p,k,δ̂,l + β, (2.8)

β = λ1||t̂− t̂static||22 + λ2||R̂R̂−1
static||22. (2.9)

Here, β is the regularization term bringing the estimation closer to initial guesses. λ1

and λ2 are the regularization coefficients for translation and rotation respectively.

2.3 Implementation and Experiment

In this section, we report our experiment with the proposed algorithm and related works.
After introducing the implementation details, we report our algorithm performance on the
joint LIDAR-camera calibration. Furthermore, we show the experiment result of each cal-
ibration module under various noise levels in both geometrical and temporal sense. In the
end, we include an ablation study on the loss formulation.

Implementation Details

Each driving sequence in KITTI [38] includes RGB images, LIDAR point clouds, and accu-
rate extrinsic/intrinsic calibration parameters. We treat intrinsic calibration parameters as

CHAPTER 2. JOINT SPATIAL-TEMPORAL CALIBRATION 19

given and assume the provided extrinsic parameters as the ground truth. We use Sequence
00 (4541 frames) for evaluation on both static and dynamic calibration.

For static calibration, we use wl = 20 for the first 20 optimization iterations, wl = 1 for
the next 30 iterations, and wl = 0.02 for the last 10 iterations. The iterative optimization
has 60 iterations in total. For the joint calibration part, we use constant weight ratio w = 5
for 20 iterations in total. The regularization coefficient we use are λ1 = 106 and λ2 = 109.
The downsampling rate of pixels for the pixel-to-point matching is 2%.

We use quaternion angle difference (QAD) and the average euler angle difference (AEAD)
[83] to evaluate the rotational error between estimated rotations and the ground truth rota-
tion. Both angle differences are computed as

QAD = 2arccos (|p · q|), (2.10)

AEAD = (Rerror + Perror + Yerror)/3, (2.11)

where p and q are ground truth rotation and estimated rotation respectively. Rerror, Perror,
Yerror, denote the absolute Euler angle difference of roll, pitch, and yaw.

ATD (Average Translation Difference) is used to evaluate the absolute translation error.
The ATD is calculated as

ATD = (xerror + yerror + zerror)/3, (2.12)

where xerror, yerror, and zerror, represent the absolute translation error along the x, y, and
z-axis.

Joint Spatial-Temporal Calibration

In this experiment, it is assumed that the LIDAR and the camera are not synchronized,
meaning that there is a certain amount of time delay for each sensor’s data acquisition trigger.
To exacerbate this delay using the KITTI odometry dataset, we intentionally use RGB image
data acquired one frame ahead of the LIDAR point cloud. In the KITTI odometry dataset,
both the RGB image and the point cloud are captured every 100 ms, meaning that the data
acquisition frequency of both the camera and the LIDAR is 10 Hz. Therefore, the ground
truth of the time delay in this simulation is around 100 ms. The initial guesses of translation
for each x, y, z-axis are sampled from the uniform distribution [-10 cm, 10 cm] away from
the ground truth. The rotation guesses for roll, pitch, yaw are sampled from a uniform
distribution [-10 deg., 10 deg.] away from the ground truth.

First, we use Frame 547 to 552 where the car is not moving for the static calibration
part. The estimated spatial calibration result is then fed to the joint calibration algorithm
to estimate the temporal parameter.

We sample 50 frames for joint calibration evaluation. A visualization of the experimental
results could be seen in Figure 2.4. The blue points are the segmented LIDAR point clouds

CHAPTER 2. JOINT SPATIAL-TEMPORAL CALIBRATION 20

(a) Initial guess (b) After SST-Calib (c) Ground truth

Figure 2.4: Calibration results on the asynchronized KITTI odometry dataset

Table 2.1: Joint spatial-temporal calibration results

Delay Average ATD [cm] QAD [deg.] AEAD [deg.]
δ [ms] delay error [ms] Mean Median Mean Median Mean Median

Taylor et al.[143] 100 10.0 5.27 - - - 0.34 -
Park et al.[112] 10 3.5 20.00 - - - 0.88 -
SSTCalib (ours) 100 3.4 7.45 5.53 0.67 0.66 0.32 0.32

projected with the corresponding extrinsic matrix. The yellow masks are the segmentation
result for vehicles in the image. The quantitative results are shown in Table 2.1. Our
proposed method estimates the time delay as 96.6 ms, only 3.4 ms different from the ground
truth. While appropriately estimating the temporal parameters, the spatial parameters
estimation also achieves the same level of performance compared with the state-of-the-art
spatial calibration methods.

Robustness Study: Calibration under Noises

The robustness of our proposed method using the bi-directional loss is demonstrated in this
section. We sample 150 frames from sequence 00 with random translation and rotation initial
guesses. The initial guess noise for the translation is uniformly distributed within [-10 cm,
10 cm], and the initial guess noise for the rotation is uniformly distributed within [-10 deg.,
10 deg.] and [-20 deg., 20 deg.]. In Table 2.2, we observe that our proposed method has the
similar level of spatial parameters estimation capability without any costly pre-process. For
both rotational noise distribution, our method reports better AEAD results compared to
the SemAlign, which samples 5000 random transformations that may lead to better initial
guesses. More importantly, when the noise level doubles, our proposed algorithm maintains
a similar level of performance.

We also test the algorithm performance under different time delay intervals. Table 2.3

CHAPTER 2. JOINT SPATIAL-TEMPORAL CALIBRATION 21

Table 2.2: Static spatial calibration results

Pre-process
Initial
rotation

ATD [cm] QAD [deg.] AEAD [deg.]
Mean Median Mean Median Mean Median

SemAlign[83]
Sampling 5000

Einit for
initialization

[-10, 10]
[-20, 20]

-
-

-
-

1.14
2.59

0.46
0.49

0.62
1.49

0.23
0.24

SSTCalib (Ours) None
[-10, 10]
[-20, 20]

18.9
20.2

12.8
20.0

1.28
1.53

0.81
1.19

0.60
0.69

0.38
0.59

Table 2.3: Impact of the time delay magnitude

Time delay [ms]
Time delay ATD [cm] QAD [deg.] AEAD [deg.]

average error [ms] Mean Median Mean Median Mean Median

100 3.4 7.4 5.5 0.67 0.66 0.32 0.32
200 13.5 6.5 6.8 0.68 0.69 0.34 0.34
300 23.3 4.6 4.9 0.7 0.67 0.34 0.33

Table 2.4: Comparison between single- and bi-direction loss, an ablation study

Initial
rotation

ATD [cm] QAD [deg.] AEAD [deg.] Failure
rate [%]Mean Median Mean Median Mean Median

Single-direction [-10, 10] 42.7 22.4 3.67 1.62 1.63 0.79 16.2
Bi-direction [-10, 10] 18.9 12.8 1.28 0.81 0.60 0.38 8.8

shows a result of our experiments with time interval of 100, 200, and 300 milliseconds. The
proposed algorithm shows a successful estimation of both geometric and temporal parame-
ters.

Ablation Study: Bi-directional Loss

As a contribution of the proposed algorithm, we argue that the bi-directional semantic loss
is superior to the single-directional loss. The semantic calibration algorithm using single-
direction loss is similar to SemAlign [83], omitting the random pre-sampling process. We
report the calibration result of these two loss functions in Table 2.4. Here, all error metrics
of the single-directional loss are approximately twice as large as the ones of the bi-direction
loss. More importantly, the single-directional loss formulation fails more frequently at the
optimization phase, meaning that the point-to-pixel loss alone is not robust for complicated
scenes.

2.4 Chapter Summary

This chapter starts the HD Map development journey at its very first step: the sensor
suite calibration. More specifically, the complementary LIDAR-camera suite is studied for
complete spatial-temporal calibration.

CHAPTER 2. JOINT SPATIAL-TEMPORAL CALIBRATION 22

The proposed calibration method aims to optimize both geometric and temporal pa-
rameters with an accentuation on the generalization capacity. Here, the data from both
sensor modalities are firstly fed through arbitrary semantic segmentation networks, and a
bi-directional loss is calculated on the projected semantic image. To incorporate the tem-
poral elements, visual odometry is estimated to compensate for the asynchronized trigger
between sensor modalities. The proposed method is evaluated on the KITTI dataset, the ex-
periment result and related ablation studies demonstrate an accurate and robust calibration
of the sensor suite.

With well-calibrated sensors, the next step in the HD map development is to prepare a
full sensor-suite dataset for urban autonomous driving.

23

Chapter 3

Urbanloco: the Urban Mapping
Dataset

Data is the foundation for most artificial intelligence systems nowadays. For mapping and
localization applications, in particular, collecting data is one of the first few steps in the
development process.

However, constructing a dataset is not usually easy. First, a complete sensor suite is
usually needed for mapping purposes. Beyond Global Navigation Satellite System (GNSS),
researchers in the mapping field also work on point cloud registration, visual feature match-
ing, and inertia navigation. Thus, sensors like LIDARs, cameras and Inertial Measurement
Units (IMU) are needed on the mapping platform. Furthermore, to push the limit of the
mapping algorithms, it is important for the dataset to include some of the most challenging
scenes. Highly urbanized areas fall well within this challenging zone: LIDAR- and camera-
based methods perform poorly with numerous dynamic objects; the GNSS-based solutions
experience signal loss and multipath problems; the IMUs suffer from drifting. Researchers
in both academia and industry are eager to see challenging public datasets with complete
sensor suites.

In this chapter, a sample mapping dataset UrbanLoco is presented. With Simultaneously
Localization and Mapping (SLAM) applications in mind, this dataset is constructed with
multiple sensor modalities including cameras, LIDARs, IMUs, and the GPS. The data is
collected in densely urbanized areas like San Francisco and Hong Kong to showcase the
challenging city environments. A few state-of-the-art algorithms are benchmarked on the
dataset, and the result shows that urban SLAM is still an unsolved problem for the research
community. Currently, UrbanLoco is open to the public for research and education purposes
1,2.

1https://advdataset2019.wixsite.com/urbanloco
2This chapter includes materials from the author’s previously published work [157]

CHAPTER 3. URBANLOCO: THE URBAN MAPPING DATASET 24

Figure 3.1: An overview of the UrbanLoco dataset

3.1 Introduction

Publicly available datasets have been hugely influential in autonomous driving research,
both in academia and in industries. In the past few years, numerous datasets were published
to advance different aspects of autonomous driving. One of the pioneers in academia is
the KITTI dataset [37], which covers most topics in current research and launches various
benchmarks for evaluation. Recently, a few companies, including Lyft [51], nuTonomy [9],
Waymo [154], and Argo AI [14], publish their datasets for detection and prediction. However,
few of these public datasets address the urban mapping and localization problem, which is
yet to be solved with a cost-effective sensor combination.

The need for urban datasets comes from the challenging nature of the urban scenes.
Due to high-rise structures and numerous dynamic objects, mapping and localization in a
densely populated area are hard, and simultaneous localization and mapping (SLAM)[43]
in a city is even harder. Figure 3.1 shows an overview of the city landscape in our dataset.
The traditional Global Navigation Satellite System (GNSS) based solution fails in urban
canyons due to limited satellite visibility and multipath problems. For more recent LIDAR-
or vision-based approaches, the dynamic objects (vehicles, pedestrians, cyclists) may cause
inaccurate point registration. While the Inertial Measurement Units are less affected by
urban environments, they suffer significantly from the drifting effect over time.

With the aforementioned challenges, however, most of the current public datasets are not
specifically targeted at the mapping and localization tasks in city applications. As densely
populated scenes are unavoidable for autonomous driving, it is urgent to provide the public
with a corresponding dataset. Here we present the UrbanLoco: a full sensor suite dataset for
mapping and localization in densely populated landscapes. The dataset includes information
from 4 essential sensor modalities: LIDAR, camera, IMU, and GNSS. The data is collected
in the populous districts in Hong Kong and San Francisco.

The major contributions of the work included in this chapter are:

CHAPTER 3. URBANLOCO: THE URBAN MAPPING DATASET 25

• We are releasing the first large scale full sensor suite dataset focusing on urban mapping
and localization challenges;

• The dataset includes over 40 kilometers of travel, covering various driving scenarios
including urban canyons, bridges, hills, tunnels, etc. There are also numerous dynamic
objects in the scene;

• The dataset provides information from a full sensor-suite: one LIDAR, six cameras
with 360 degrees views (one camera in Hong Kong), one IMU, and one GNSS. The
sensor-suite is carefully calibrated with calibration logs available online;

• We define the urbanization measure for localization in city landscapes and evaluate
the urbanization rate on current mapping/localization datasets;

• The dataset is publicly available through the project website, and related APIs are
also available for users’ convenience.

Autonomous Driving Datasets Review

Autonomous Driving Datasets for Mapping and Localization

Mapping/localization-focused datasets and benchmarks have been heavily used by current
researchers. KITTI [37] odometry is a popular benchmark collected in the German town of
Karlsruhe. Most of the trajectories are long enough (≥ 500 m) to test outdoor localization
algorithms. A total of 20 trips have been the popular test field for the latest algorithms. In-
deed, the KITTI odometry benchmark lead board is still updated nowadays. Unfortunately,
the KITTI dataset does not pose enough challenges for mapping and localization: the data
is collected in rural areas with light traffic and relatively low-lying structures. Furthermore,
KITTI only provides front-view cameras and LIDAR information, lacking the critical GNSS
and IMU outputs. Oxford RobotCar [88] is another popular dataset that specializes in
mapping and localization. Unlike KITTI, the Oxford RobotCar dataset offers extra infor-
mation from IMU and GPS measurements, which provides more possibilities for testings
of various algorithm designs. However, the data is collected in the less-urbanized Oxford,
not adequately addressing the urban mapping and localization problems. Table 3.1 shows a
comparison of the aforementioned two datasets with our dataset. We would further quantify
the urbanization rate specifically for localization in the next section.

Autonomous Driving Datasets for Urban Scenes

Until recently, it is rare to see autonomous driving datasets in highly-urbanized scenarios. In
early 2019, the Boston/Singapore-based NuScenes dataset [9] was published. Similar to our
dataset, the NuScenes data is collected among dense traffics and high-rise structures. More
importantly, the NuScenes dataset also incorporates visual information and IMU. However,
since the NuScenes dataset is majorly designed for perception and tracking, the data is

CHAPTER 3. URBANLOCO: THE URBAN MAPPING DATASET 26

segmented into scenes of 20 seconds in length. Thus, it is hard to acquire a sufficiently long
trajectory for mapping and localization purposes. Later in 2019, Lyft [51], Waymo [154], and
Argo AI [14] published their datasets that were targeted at detection and prediction tasks as
well. Thus, they are similarly segmented into discrete pieces. Furthermore, these datasets
do not include IMU and GPS information. Table 3.1 shows a comparison of different public
datasets for autonomous driving.

Table 3.1: Datasets comparison

Dataset Location
Urbanization Distance

LIDAR Camera IMU GNSS
rate (Max path)

KITTI[37] Karslruhe Low 1km ✔ front ✔ ✘
RobotCar[88] Oxford Low 1km ✔ front ✔ ✘
KAIST [56] Seoul High 11.42km Tilted front ✔ ✔
NuScenes[9] Singapore, Boston High 20s ✔ 360 ✔ ✔
Waymo[154] SF Bay Area High 20s ✔ 360 ✘ ✘
Lyft[51] San Francisco High 20s ✔ 360 ✘ ✘

Argoverse[14] Miami, Pittsburgh Mid 30s ✔ 360 ✘ ✘

Ours
San Francisco

High 13.8 km ✔ 360 ✔ ✔
Hong Kong

Geometric Mapping and Localization Algorithms

GNSS Based Localization

GNSS is widely used as a convenient tool for localization tasks. Equipped with a GNSS
receiver, the ego vehicle could easily navigate in regions where GNSS receptions and satellite
visibility are satisfactory. However, such requirements are rarely fulfilled in urban scenarios.
Indeed, GNSS manufacturers are incorporating IMU with GNSS receivers to continuously
navigate when the satellites are lost insight. However, such equipment is usually expensive,
and could not be used commercially for mass application.

Vision-based Mapping and Localization

Stereo cameras are used to extract spatial information about a scene [105, 90], but it is
hard for a monocular camera to solve the general motion. To complement the lack of depth
information for monocular cameras, RGB-D cameras are utilized successfully for SLAMs in
different scenes [54, 49, 64]. However, the depth perception span is very limited compared
to LIDARs. Another sensor fusion method for monocular navigation is the Visual Inertial
Navigation System (VINS-MONO) [121], which tightly couples a monocular camera along
with an IMU for localization. A nonlinear optimization algorithm is applied to incorporate
the loss in IMU measurement as well as the loss in visual feature matching. This specific
algorithm is evaluated in Section 3.4.

CHAPTER 3. URBANLOCO: THE URBAN MAPPING DATASET 27

Laser-based Mapping and Localization

Laser odometry is another significant branch of SLAM research. Point cloud registration
algorithms are the cornerstones for laser-based methods: ICP and its multiple variations
[7, 168, 129] are among the earlier attempts in odometry estimation. Other algorithms like
the Normal Distribution Transformation (NDT) [89] and the Mix-Norm Matching (MiNoM)
[151] also improve the quality of pure laser odometry estimation. The LIDAR Odometry
and Mapping method (LOAM) [167] extracts surface and corner features in the scan to
determine distances in a grid-based voxel map. In this chapter, we present the evaluation of
the performances of LOAM and NDT on our dataset.

3.2 The Urbanization Measure

In this section, we introduce an urbanization measure for localization challenges in different
scenes. This metric is further used to quantitatively compare our dataset with other publicly
available ones.

While GNSS is an intuitive and cost-effective solution for localization challenges, its
performance deteriorates in dense urban areas. One major reason for the poor performance
is the high-rise structures in the urban landscapes: skyscrapers in a city could block satellite
signals, resulting in a limited number of visible satellites for positioning. Moreover, the
GNSS signal can be reflected by building surfaces in urban canyons, introducing an extra
traveling path for the GNSS time measurement. The reflected GNSS signal would induce
the multipath effect and non-line-of-sight (NLOS) reception. More importantly, high-rise
structures are often associated with dense population and heavy traffics in a city. Thus, it
is intuitive to quantify the urbanization rate for localization problems based on the building
structures near the ego vehicle.

To define the urbanization rate of a specific location, a straightforward approach is to use
Skymask, a polar plot of the structures’ silhouette. Built upon a Skyplot [93], the Skymask
includes the building structures as a mask for satellites. As shown in Figure 3.2a, the gray
section denotes the sky-view blocked by the structures, and the white section denotes the
clear overhead sky. One way to generate a Skymask is to employ the 3D building models
which are widely used in the GNSS field [52, 53, 44]. Another method is to utilize the fisheye
camera on the top of the vehicle (shown in Figure 3.3a) and algorithms like normalized cut
[131] for image segmentation.

To quantitatively analyze a Skymask, we further define two parameters: the mean mask
elevation angle µMEA, and the mask elevation angle standard deviation σ2

MEA. The defini-
tions are:

µMEA =

∑N
α=1 θα
N

, (3.1)

CHAPTER 3. URBANLOCO: THE URBAN MAPPING DATASET 28

(a) Urbanization Measure Definition

KITTI

KITTI

Oxford

Oxford

Sunnyvale

Sunnyvale Hong Kong

Hong Kong

(b) Skymask Comparison

Figure 3.2: Skymask illustration

σ2
MEA =

√∑
(θα − µMEA)2

N − 1
, (3.2)

where θα represents the elevation angle at a given azimuth angle α. θα here is highly corre-
lated to the building heights. N denotes the number of equally spaced azimuth angles from
the Skymask. We usually use N=360, meaning that the azimuth angle has a resolution of 1
degree.

When the ego vehicle is in a dense urban area, the Skymask is usually dominated by
high-rise structures, resulting in a large µMEA, and a relatively small σ2

MEA. In rural areas,
on the other hand, both µMEA and σ2

MEA would be relatively small. In places with mixed
high-rise and low-lying buildings, σ2

MEA would be of a relatively large value.
With the aforementioned urbanization measure, we evaluated the urbanization rate for

current mapping/localization dataset, and the result is shown in Table 3.2 and Figure 3.2b.

CHAPTER 3. URBANLOCO: THE URBAN MAPPING DATASET 29

The Skymask is generated by 3D building models in these areas, and we developed Figure
3.2b through post-processing. Readers may notice that none of the three datasets match the
level of urbanization in Hong Kong.

Table 3.2: Quantified urbanization rate

Dataset Urbanization Rate
name µMEA (degree) σ2

MEA

KITTI [37] 32.8 21.42

Oxford RoboCar [88] 42.3 16.32

Waymo (Sunnyvale) [154] 15.2 7.92

Ours 60.9 15.92

3.3 The UrbanLoco Dataset

Compared with the current public datasets for autonomous driving, our presented dataset
covers more challenging urban trajectories with a full-sensor suite. The data is collected in
densely populated areas in Hong Kong and San Francisco. These two cities have drastically
different landscapes, driving behaviors (directions), architectures, and infrastructures. The
trajectories cover urban canyons, tunnels, bridges, hills, sharp maneuvers, and other chal-
lenging scenes for the aforementioned mapping and localization solutions. More importantly,
the scenes are filled with pedestrians, vehicles, trolleys, and cyclists. The sensors used are
one LIDAR, six cameras (San Francisco), one fisheye camera (Hong Kong), one IMU, and
one GNSS receiver. The ground truth for both cities is given by the Novatel SPAN-CPT,
a navigation system that incorporates Real-time Kinematic (RTK) corrected GNSS signals
and IMU measurements. In this section, we will explain our data collection platform and
calibration in detail.

The platform for data collection in Hong Kong is a Honda Fit. The corresponding
illustration and calibration coordinates are shown in Figure 3.3a. All the localization-related
sensors are equipped in a compact sensor kit on the top of the vehicle:

• LIDAR Velodyne HDL 32E, 360 Horizontal Field of View (FOV), -30 +10 vertical
FOV, 80 meters in range, 10 Hz;

• CameraGrasshopper3 5.0 MP (GS3-U3-51S5C-C), fisheye lens Fujinon FE185C057HA-
1, 185 HFOV, 185 V-FOV, 10 Hz;

• IMU Xsens Mti 10, 100 Hz;

• GNSS Ublox M8T, GPS/BeiDou, 1Hz;

We use Ublox M8T to collect raw GNSS signals for future research on GNSS positioning:
e.g., correcting the NLOS measurements [156]. A sky-pointing fisheye camera is also applied

CHAPTER 3. URBANLOCO: THE URBAN MAPPING DATASET 30

(a) Hong Kong data collection vehicle

(b) San Francisco data collection vehicle

Figure 3.3: Data collection platforms

to capture the sky view. With the camera, it is possible to quantify satellite visibility based
on the sky view image to monitor and improve the quality of GNSS positioning [63, 2]. The
3D LIDAR is employed to scan the environment for HD Map generation and SLAM [43]
purposes. Lastly, the Xsens IMU is employed to collect raw acceleration and orientation
measurements at high frequency.

The platform for data collection in California is a Toyota Prius as illustrated in Figure
3.3b. Slightly different from the Hong Kong platform, the following sensors are used:

• LIDAR RS-LIDAR-32, 360 Horizontal Field of View (FOV), -25 +15 vertical FOV,
80 meters in range, 10 Hz;

• Camera Six FLIR Blackfly S USB3, 2048*1536, 10 degree overlap on each side, 10Hz;

• IMU Xsens Mti 10, 100 Hz;

• GNSS Ublox M8T, GPS/GLONASS, 1Hz

CHAPTER 3. URBANLOCO: THE URBAN MAPPING DATASET 31

The additional six 360-degree view cameras are synchronized and calibrated with the
LIDAR. These two kinds of sensors are synchronized via triggering the front camera when
the rotating LIDAR beam passes the front centerline (software trigger). Following cameras
are triggered sequentially at a fraction of the running LIDAR frequency. To compensate for
the possible delay in the triggering signal, the triggering time is adjusted to align LIDAR
and cameras. Thus the specific section of the LIDAR scan and the corresponding camera
image contain information at the same clock time. The intrinsic matrices of the cameras are
calibrated through the kalibr toolbox [32], and the extrinsic calibration matrices are solved
through Autoware [61].

The ground truth used in this dataset is provided by Novatel SPAN-CPT, a GNSS-IMU
navigation system. The device is widely used for accurate localization assignments on mobile
platforms. For the GNSS receiver, the received signal is corrected from the RTK signal sent
from local public base stations. When the satellite visibility is satisfactory, the ground truth
error is within 2 cm. In cases of a complete loss of the GNSS signal, the device is still able
to output a continuous trajectory based on IMU measurements. The calibration certificate
dictates that the error after 10s of GNSS blackout is within 12 cm.

3.4 Dataset Benchmark

A few state-of-the-art SLAM algorithms are evaluated with our dataset. For the tested
open-source LIDAR and camera-based methods, the results are less satisfactory in the highly
urbanized scenarios. A quantitative evaluation is given in Table 3.3, and a collection of 2D
trajectory plots are shown in Figure 3.4. The dynamic objects in the moving scene largely
contribute to the failures of SLAM algorithms, as most of these algorithms use static feature
points to estimate the pose of the vehicle. Map CA 20190928173350, collected during the
rush hour on one of the busiest streets in San Francisco, is the most distorted map produced
with current SLAM algorithms.

Laser-based Methods

The tested LIDAR-based methods are LOAM [167] (ranking No.2 on KITTI [37] at the time
of the publication), and NDT [89] (a similar algorithm ranked No.24 on KITTI [37] at the
time of the publication). For LOAM, the reported average translation error on KITTI is
less than 5.7m/km, and the rotation error is 0.0013 degree/m. However, when retesting the
algorithm with the open-source LOAM algorithm by Leonid Laboshin [72], the translation
performance deteriorates significantly. For cases filled with dynamic objects (Figure 3.4e
and 3.4f), the performance drops to above 10m/km in the horizontal directions. In cases of
drastic altitude changes (Figure 3.4b, 3.4c and 3.4d), the translation performance further
decreases to over 20m/km. As for rotation, the rotation performance decreases when the
vehicle experiences sharp maneuvers (Figure 3.4c and 3.4d).

CHAPTER 3. URBANLOCO: THE URBAN MAPPING DATASET 32

For NDT [89] family solutions, the best algorithm on KITTI reaches 8.9m/km in transla-
tion error and 0.003 degree/m in rotation. In our evaluation, we apply the package prepared
by Kenji Koide [67] and fine-tune the parameters three times for the best performance. Fur-
thermore, a half real-time playback rate is used to guarantee solution convergence. However,
the result is less satisfactory: in the longest testing route (5.9km, Figure 3.4a), the transla-
tion error is more than 100 meters overall. It is also observed that the algorithm performed
poorly on altitude estimation.

Vision-based Methods

As for visual odometer estimation, we use the open-source VINS-MONO [121] algorithm
developed by Qin et al. VINS-MONO tightly couples visual odometry with IMU estimation
to output an optimized localization result. As pointed out in VINS-MONO, the algorithm
out-performs most existing visual odometry methods. During the experiment, we notice
that the visual odometry is very sensitive to changes in light conditions: the algorithm fails
when entering-exiting a tunnel. After using a half-real time playback rate, we generate the
continuous trajectory successfully. For performance, while the algorithm slightly outperforms
the LIDAR-based method in translation, the error in roll/pitch/yaw angle estimation is
worse. The performance further deteriorates when the path is filled with sharp maneuvers
(Figure 3.4d). Since VINS-MONO takes time for initialization, a rigid body transformation
[136] is applied to the constructed map before evaluation.

From the aforementioned evaluation and analysis, it is safe to say that our dataset in
Hong Kong and San Francisco addresses urban driving challenges adequately. Indeed, the
dataset is a valuable test field for future urban-focused localization solutions.

3.5 Chapter Summary

In this chapter, a challenging full sensor suite dataset for autonomous vehicle mapping
and localization is presented. Our data collection platform contains various sensors for
mapping and localization purposes: LIDAR, cameras, IMU, and GNSS receivers. Compared
with current datasets, the UrbanLoco dataset contains trajectories from more challenging
scenes, and the exemplar state-of-the-art algorithms performed poorly on the dataset. An
urbanization measure is also proposed to further quantify the challenges in different scenarios.

For the UrbanLoco dataset, the data is collected with one single mobile mapping platform.
However, in industrial applications, a mapping team is usually equipped with a fleet of
mapping vehicles. How to efficiently route each vehicle for more better data collection will
be the topic of the next chapter.

CHAPTER 3. URBANLOCO: THE URBAN MAPPING DATASET 33

T
ab

le
3.
3:

M
ap

ev
al
u
at
io
n
re
su
lt
s

D
at
a

D
es
cr
ip
ti
on

L
en
g
th

M
et
h
o
d

M
ea
n
T
ra
n
sl
a
ti
o
n
E
rr
o
r
(m

)
M
ea
n
R
o
ta
ti
o
n
E
rr
o
r
(d
eg
)

R
os
b
ag

(k
m
)

X
Y

Z
Z

Y
X

L
O
A
M

3
6
.9
1

9
5
.0
6

1
4
9
.9
7

1
0
.1
5

0
.9
7

0
.5
0

C
A

20
19
08
28
15
58
28

T
ra
ffi
c,

S
tr
u
ct
u
re
s

5
.9

V
IN

S
4
2
.6
8

4
2
.6
8

2
3
.2
4

6
.0
4

0
.6
9

2
.0
5

N
D
T

1
8
4
.0
5

9
4
.0
1

3
3
7
.9
1

3
.6
8

4
.4
3

5
.8
9

L
O
A
M

8
1
.7
4

8
5
.6
9

8
0
.9
1

2
0
.1
4
9

6
.1
1

2
.6
5

C
A

20
19
08
28
17
33
50

T
ra
ffi
c,

H
il
ls

3
.2

V
IN

S
2
6
.7
4
5

3
4
.7
5
6

1
4
.8
3

8
.1
2

0
.8
1

2
.4
7

N
D
T

1
2
9
.2
7

7
1
.1
3

2
5
3
.7
6

1
0
.1
0

0
.7
6

1
1
.0
7

L
O
A
M

3
2
.9
0

2
5
.0
1

1
9
.8
3

0
.4
2

0
.9
7

0
.4
3

C
A

20
19
08
28
18
47
06

H
il
ls

1
.8

V
IN

S
3
2
.5
2

3
1
.4
7

2
6
.8
9

2
.6
5

0
.8
9

1
.2
8

N
D
T

4
0
.3
5

2
4
.8
2

7
7
.7
4

0
.3
1

3
.4
6

5
.0
2

L
O
A
M

2
9
.5
3

2
1
.9
7

1
5
.5
0

1
2
.2
9

1
.5
8

2
.8
5

C
A

20
19
08
28
19
04
11

H
il
ls
,
M
an

eu
ve
rs

1
.0

V
IN

S
2
2
.2
7

1
7
.5
7

2
3
.8
4

1
1
.3
2

4
.1
2

4
.3
1

N
D
T

2
9
.5
1

1
6
.7
8

1
4
.6
2

9
.0
4

2
.0
8

0
.4
2

H
K

20
19
04
26
10
16
00

S
tr
u
ct
u
re
s,

T
ra
ffi
c

0
.8

L
O
A
M

1
0
.5
6

9
.7
3

0
.3
6

1
.2
3

0
.0
5

0
.0
3

N
D
T

6
.1
4

7
.7
7

2
.0
1

7
.2
3

0
.4
3

0
.1
9

H
K

20
19
04
26
10
02
00

S
tr
u
ct
u
re
s,

T
ra
ffi
c

0
.7

L
O
A
M

1
9
.6
5

1
6
.1
5

0
.8
8

1
.6
4

0
.0
3

0
.6
8

N
D
T

6
.6
3

8
.2
8

2
.1
0

7
.8
0

0
.3
2

0
.9
0

CHAPTER 3. URBANLOCO: THE URBAN MAPPING DATASET 34

(a) CA 20190828155828 (b) CA 20190828173350

(c) CA 20190828184706 (d) CA 20190828190411

(e) HK 20190426100200 (f) HK 20190426101600

Figure 3.4: Map evaluation results

35

Chapter 4

Routing for A Mapping Fleet

In Chapters 2 and 3, sensor calibration and data acquisition processes are studied for single-
vehicle setups. However, most mapping teams are equipped with multiple mapping vehicles
for more efficient data collection and map updates. Typically, each vehicle explores a specific
section of a city to avoid repeated visits. Here, the natural question is: how to route these
vehicles in an ever-changing urban environment?

A classical mathematical problem, routing has been studied by researchers for centuries.
Just like instructing knights to travel through the Seven Bridges of Königsberg, here we are
directing vehicles to traverse a city. However, the dynamic nature of the urban environments
makes it hard to solve the problem in a classical graph theory way. First, the urban traffic
conditions are changing during the mapping process, making it a dynamic problem. Secondly,
maps expire the moment they are created, requiring frequent revisits to the same location.

Observing the characteristics of the urban routing problem, a Model Predictive Control
(MPC)-based solution is discussed as a potential strategy for the map routing problem. In
the problem formulation, the urban map is first treated as a Directed Cyclic Graph. We then
construct a linear model for the exploration task. The model is further extended to solve
real-time routing and map updating problems. We have experimented with the MPC-based
solution on simulated and real-world maps, and the proposed framework demonstrates an
efficient exploration of cities1.

4.1 Introduction

As the autonomous driving industry gradually shifts its interest to urban driving tasks, it is
critical for driver-less vehicles to be equipped with accurate, comprehensive, and up-to-date
maps of various city scenes. HD maps, with their detailed and vectorized representation of
the environment, have already demonstrated their quintessential role in urban driving [3, 33,
146, 162].

1This chapter includes materials from the author’s previous project [170]

CHAPTER 4. ROUTING FOR A MAPPING FLEET 36

The great demand for maps has boosted the growth of numerous mapping companies and
their mapping fleets. However, how to route the mapping vehicles in a complicated urban
scene is still a challenge. Firstly, the urban environment is ever-changing: constructions,
accidents, traffic congestion, etc. could easily make an easy drive extremely time-consuming.
Secondly, an HD map is outdated immediately after its creation. How to keep the entire map
relatively up to date remains to be another challenge. Traditional solutions to the traveling
salesman problem (TSP) and the vehicle routing problem (VRP) largely assume a static
environment, which is not suitable for the mapping vehicle routing problem nowadays.

In this chapter, we propose a Model Predictive Control (MPC)-based algorithm to solve
the mapping vehicle routing problem. In our proposed algorithm Map Routing with MPC
(MR.MPC), we first extracted the urban road network from the open-source map platform
OpenStreetMap [109]. Following [171], we represent the map as a Directed Cyclic Graph
(DCG) stored as a two-dimensional matrix. The MPC problem is defined by vehicle state,
map state, vehicle control, and corresponding linear dynamics. We further design a ro-
bust cost function with time decay to encourage vehicle exploration. With the proposed
formulation, the map routing problem could be efficiently solved by a Mixed Integer Linear
Programming (MILP) solver. Lastly, we propose to extend this formulation to map updating
problems as well.

The designed algorithm is tested in simulated environments with simple road structures
and complicated real-world scenes in Downtown Berkeley. The proposed algorithm demon-
strates an efficient exploration strategy within the dynamic environment.

In this work, our major contributions are:

• An MPC-based routing solution is proposed for mapping fleets in a highly dynamic
urban environment;

• The routing problem is formulated as a linear system for an efficient solution with
MILP solvers.

• A potential alternative solution is provided for TSP and VRP from the control point
of view.

The Vehicle Routing Problem

The identified routing challenge in the urban mapping problem resembles those seen in the
TSP and the VRP. For the TSP, one agent is seeking an optimized route in a graph, while
in the VRP there are multiple agents for optimization. Both of these problems are proved
to be NP-hard [34].

Two schools of thought dominate the VRP solution: the optimization-based method, and
the learning-based method. To start with, the optimization-based method is seeking better
algorithmic solutions for the NP problem, often with better representations [22] or extensions
[48]. Such methods are usually exhaustive and optimal, but they take a significant amount
of time for execution.

CHAPTER 4. ROUTING FOR A MAPPING FLEET 37

More recently, the rise of neural networks has encouraged researchers to solve the VRP
in a learning fashion. To start with, the VRP problem could be modeled with reinforcement
learning techniques, treating each vehicle as an agent and proposing policies at the graph
node. Typical works utilize Value Iteration Networks for Q value predictions [74, 137]. Some
other methods, observing the graphic nature of the VRP problem setup, utilize Graph Neural
Networks to explore the edge/node relationships [75]. With improved computational time,
the learning-based method, however, could not always provide an optimal solution. More
importantly, the learning-based methods require a large amount of data or simulation to
work with.

Observing the elegant representation of traditional optimization-based methods and the
iterative nature of the learning-based methods, we propose to model the mapping vehicle
routing problem with MPC. In general, we formulate the long-horizon problem with iterative
steps from the solution of MPC, and each state has a value estimation from the cost function.
For each time step, however, we are still solving an optimization problem with agents in
graphs. Furthermore, an MPC formulation of the VRP problem makes it possible for us to
handle dynamic environments and map updates.

4.2 An MPC Formulation of the Routing Problem

Map Preliminaries

Following the formulation in [171], we represent a city road network with a DCG. As shown
in the Figure 4.1, the city road map M is consisted of vertices {Vi} and edges {Eij}. Each
vertex Vi represents an intersection, and the edge Eij represents a directional road from
vertex Vi to vertex Vj. Here, we specifically use a directional representation for the existence
of one-way roads in the urban environment.

Figure 4.1: Map hierarchy as a directed cyclic graph

A graph, in data structure languages, could be represented in various ways. In this
problem formulation, considering the linearity of the solution, we chose to use a 2-dimensional

CHAPTER 4. ROUTING FOR A MAPPING FLEET 38

matrix M with float number entries to represent the DCG. For a map with N vertices,
the matrix M will be an N by N matrix, with each Mij representing the cost to go from
intersection Vi to intersection Vj. The cost could be defined according to the mapping teams’
interests. A typical choice would be the length of the road. In this work, we firstly use the
length of the road extracted from OSM as the cost. We then add a traffic congestion factor
for certain edges to simulate the real-world condition of urban driving. M is a sparse matrix
with all the non-connected roads represented by infinity cost.

We also design a binary matrix Mbool to represent the connection logic of the map for
easier MPC formulation. An entry with 1 at edge Eij means that the road from Vi to Vj is
connected.

MPC parameter and discretization

To start with, we define the following parameters of the problem. The mapping fleet has a
total of K exploration agents, each of which represents a mapping vehicle Ck. Following the
aforementioned map definition, we have a N vertices map. Lastly, the horizon of the MPC
exploration is T .

Different from the real world traversing with physical locations and time-flow in seconds
or minutes, in the Map Routing task we are only seeking specific actions at the vertex of the
map M . That is to say, the algorithm only needs to make a decision when the vehicle is or
will be at an intersection, ignoring the deterministic traveling along the current edge. Thus,
we design the MPC model with a different timeline as compared with the physical world
time-flow. In the MPC problem, the timeline tmpc is defined by discrete steps. Between tmpc

and tmpc + 1, an arbitrary agent Ck is able to travel one whole edge Eij as long as the edge
has a bounded cost.

States

The first part of the state is the fleet location state [Xfleet(tmpc)] of a dimension of N by
K at each times step tmpc. The column k of the [Xfleet(tmpc)] matrix is a one-hot encoded
vector representing vehicle Ck’s location at tmpc. An entry of 1 at [Xfleet]nk means that the
vehicle Ck is currently at the vertex Vn. At the beginning of the exploration, assuming that
all vehicles depart from the depot at the zeroth vertex, the matrix [Xfleet] will have a row
of ones at the top and zeros for other entries.

The second part of the state is the map exploration state [Xexp(tmpc)], an N by N binary
matrix at each timestamp tmpc. Entry [Xexp(tmpc)]ij is a binary indicator of the exploration
status from vertex Vi to vertex Vj, where 1 means the edge is not explored, and 0 means that
the edge has been explored or not connected. At the beginning of the exploration, [Xexp(0)]
would be the same as Mbool.

CHAPTER 4. ROUTING FOR A MAPPING FLEET 39

Controls

To linearize the system for faster solution time, we expand the controls to a 3-dimensional
matrix [U(tmpc)] at each time step tmpc. [U(tmpc)] is of shape N by N byK, where the ijk−th
entry represents that the vehicle Ck choose to travel from vertex Vi to Vj. Intuitively, the
matrix [U(tmpc)] is a sparse matrix.

As a side note for the choice of a 3-dimensional representation of the control, we also
implement a 2-dimensional control version with the same size as the [Xfleet(tmpc)]. However,
such a formulation would lead to a nonlinear dynamic system. We execute the two formu-
lations with GLPK [91] and Bonmin [6], and conclude that the nonlinearized formulation
would take 10× more time to solve.

Dynamics

The first dynamic rule in Equation 4.1 reflects the change in the [Xfleet(tmpc)] with given
[U(tmpc)].

Xfleet(tmpc + 1)[j, k] = Xfleet(tmpc)[j, k] +
N∑
i=1

U(tmpc)[i, j, k, t]− U(tmpc)[j, i, k, t] (4.1)

As expressed above, the interchanged indexes and signs in the summation term handle
the arrival and departure conditions at the vertex. When no actions are taken, which is
highly unlikely, the state indicator will also stay.

The second dynamic rule in Equation 4.2 demonstrates the change in [Xexp(tmpc)] with
respect to [U(tmpc)].

Xexp(tmpc + 1)[i, j] >= Xexp(tmpc)[i, j]−
K∑
k=1

U(tmpc)[i, j, k, t] (4.2)

The summation term collects the trajectories from all vehicles corresponding to the edge
of interest. Since multiple vehicles could traverse on the same edge when control options
are limited, the right-hand side of the equation could be negative. As a result, we chose to
use inequality during implementation. The cost function mentioned in the following sections
would enforce the [Xexp(tmpc)] to take the value of zero when there is indeed an action
involved on the specific edge.

Constraints

Other than the dynamics in the previous section constraining the MPC problem, there are
also static constraints at each time step.

The first two constraints are related to the initial conditions of Xfleet and Xexp. All
vehicle locations are assumed to be at the depot, encoded by the term X0[i, k]. The initial
exploration record Xexp will be the same as the binary map Mbool[i, j].

CHAPTER 4. ROUTING FOR A MAPPING FLEET 40

Xfleet(0)[i, k] = X0[i, k] (4.3)

Xexp(0)[i, j] = Mbool[i, j] (4.4)

The third constraint is to ensure that each action taken by the controller is feasible,
meaning the next target node is reachable.

U(tmpc)[i, j, k] <= Mbool[i, j] (4.5)

The fourth constraint is to guarantee that at each time step, each vehicle only takes
one or no action when the next target is feasible. The agent will never choose an infeasible
action. Considering the binary nature of the U(tmpc), we could formulate this rule as an
inequality.

N∑
i=0

N∑
j=0

U(tmpc)[i, j, k] <= 1 (4.6)

The fifth constraint is to enforce that at each time step, each vehicle departs from where
it is located.

U(tmpc)[i, j, k] <= Xfleet(tmpc)[i, k] (4.7)

Cost Function

As mentioned in the introduction, the cost function involves an exponential decay parameter
γ. Here we follow a similar discount design in the Markov Decision Process to encourage
earlier exploration. The cost function is trying to minimize the sum of exploration matrix
cost at every time step.

min
T∑
t=0

N∑
i=0

N∑
j=0

γ(tmpc)Xexp(tmpc)[i, j]M [i, j] (4.8)

With changing road conditions like traffic congestion or construction, theM matrix would
be updated with a higher cost at each different MPC step. For the map updating case, one
could redefine the map cost as a dynamically changing matrix at each real-world time step.
The cost will reduce abruptly after the exploration, but it will increase exponentially to an
upper bound as time elapses.

CHAPTER 4. ROUTING FOR A MAPPING FLEET 41

(a) Downtown Berkeley map for simulation

(b) Pixels to Point-cloud

Figure 4.2: Bi-directional projection demonstration

4.3 Experiments and Discussions

Simulator Setup and Data

For simulation purposes, we design a continuous world environment to test our MR.MPC
algorithm. In contrast to the discrete MPC model, the real-world model is based on the
clock time, in seconds. Without the limitation of the linearized system, states Xfleet,sim(t)
and Xexp,sim(t) are more expressive. In the simulation, Xfleet,sim(t) is a list of length K,
filled with dictionary data structure storing the vehicle Ck’s information. For each vehicle
Ck, we are interested in the current edge location (from Vi to Vj), the remaining edge cost
on the road, and a discrete control queue. Assuming that the cost in M is the traveling
distance between two nodes, the remaining cost is reduced at a rate of 10 meters per second
as the continuous system dynamic. Such a rate equals a vehicle traveling at around 22 miles
per hour. The first-in-first-out (FIFO) control queue is the output command from MPC,
which will give a control command once the vehicle’s remaining edge cost is smaller than a
threshold.

We implement the simulator environment in Python, and the MPC solver is built with
Pyomo [8] and GLPK [91]. We also implement the MPC solver with Casadi and Bonmin
[6] as a comparison. We test the MR.MPC algorithm with simulated toy case and the real
world map in Downtown Berkeley.

CHAPTER 4. ROUTING FOR A MAPPING FLEET 42

Figure 4.3: Simulation process on the Berkeley map

Results

Restricted by the project scope, this experimental section focuses on the static and dynamic
map only, ignoring the map updating problem. We first design a toy case consisting of five
nodes in an A shape with two single-directional roads radiating out from the center node.
The optimal solution in three time steps should yield a cost of zero at the terminal state.
We use this case as a sanity check for the proposed algorithm.

From the Berkely OSM map shown in Figure 4.2a, we extract a DCG map model for
evaluation (Figure 4.2b) in real world. The simulation result is shown in Figure 4.3, where
the blue and green dots are fleet vehicles in the scene. Another factory map is also acquired
and processed for the experiment purpose.

Table 4.1 shows the solution cost in the static setting. We choose a random explorer as
a baseline for comparison. It could be seen that the MR.MPC algorithm could efficiently
explore the map in a limited amount of time, while the random agent wastes the effort.

Table 4.1: Static solution result

Maps Linear model Baseline

Toy case 0 1094
Downtown Berkeley 7931 11594

Factory 15950 39855

We further deploy the algorithm with a dynamic map update. We randomly change a
number of edges to infeasible during the running process to simulate road blockages and
compared the cost with the static method in Table 4.2. If the vehicles choose the original
exploration route, the exploration cost associated with the congestion will be much higher

CHAPTER 4. ROUTING FOR A MAPPING FLEET 43

than the dynamically re-planned strategy. we only carry these experiments on larger Berkeley
maps, because the toy case does not have enough vertices for an update.

Table 4.2: Dynamic solution result

Maps Dynamic update Static exploration

Downtown Berkeley 437 11594
Factory 8501 39855

Discussion

As previously mentioned in the experiment setup section, we compare the proposed linear
case with the Casadi implemented nonlinear case. The solution time could be seen in Table
4.3. It is clear that the Pyomo model and GLPK could be solved in a shorter time. However,
it is worth noticing that the linear model has a O(N2) complexity associated with the control,
which could suffer from the Curse of Dimensionality [5] when a larger map is given.

Table 4.3: Linearization effect on MPC solver time (s)

Maps
Linear model Nonlinear model

(Pyomo+GLPK) (Casadi+Bonmin)

Toy case 0.02 0.09
Downtown Berkeley 0.7 6.5

Factory 0.45 41.32

4.4 Chapter Summary

In this chapter, an MPC-based map routing framework MR.MPC for urban map routing
problem is proposed. The introduced framework can dynamically explore the complicated
urban road network, taking both traffic conditions and road structure into consideration.
Experimented with both simulated and real-world data, MR.MPC demonstrated efficient
routing solutions in dynamic urban scenes.

Chapter 4 here concludes the discussion on mapping platforms and data. As a review
for Part I, we start with sensor setups on mobile mapping platforms in Chapter 2, where
a joint spatial-temporal calibration method is proposed. Built upon well-prepared sensor
suites, Chapter 3 showcases UrbanLoco, an urban mapping dataset. In Chapter 4, we try to
solve the mapping fleet routing problem with an MPC formulation.

In the life cycle of an HD map, finishing the aforementioned steps leaves us with datasets
containing accurate raw sensor measurements of the urban environment. The next step in
the HD map development will be to draw the map with the hard-won data.

44

Part II

HD Map Construction

45

Chapter 5

Road Module Exploration

In traditional paper maps development, after raw measurements are collected by the survey
team, cartographers will take these data and draw a representation of the world onto a piece
of paper. These cartographers are specially trained to decode the numbers to meaningful
semantic representations. For example, a series of elevation readings will be transformed
into contour lines on the map.

For HD maps development, one also needs these specially trained “cartographers”. Nowa-
days human labelers are employed to mark out the semantic components in an HD map.
For example, lane boundaries, curbs, and stop lines are marked out by human beings. How-
ever, considering the exhaustive details in an HD map and the massive scale of the urban
environment, manual labeling is not a feasible solution as the autonomous driving market
grows. Indeed, HD map researchers are working towards replacing human cartographers
with cartographic algorithms to automatically construct an HD map.

This chapter discusses an automatic HD map construction algorithm designed specifically
for the road modules: the algorithm studies the lanes between two intersections. In urban
scenes, lanes are more complicated with forking, merging, and irregular shapes. The work
included in this chapter proposes an approach based on the semantic particle filter to tackle
these scenes. The map skeleton is first structured as a directed cyclic graph from the online
mapping database OpenStreetMap [109]. Our proposed method then performs semantic
segmentation on 2D front-view images from ego vehicles and explores the lane semantics on
a birds-eye-view domain with true topographical projection. Exploiting OpenStreetMap, we
further infer lane topology and reference trajectory at intersections to verify outcomes of the
lane inference. The proposed algorithm has been tested in densely urbanized areas, and the
results demonstrate an accurate and robust reconstruction of the lane-level HD map1.

1This chapter includes materials from the author’s previously published work [171]

CHAPTER 5. ROAD MODULE EXPLORATION 46

Figure 5.1: Roads in an urban environment

5.1 Introduction

High definition (HD) maps have become a crucial component for full autonomy in a variety of
complex scenarios. Encoded with accurate and comprehensive information about the static
environment, HD maps can significantly facilitate perception, localization, prediction, and
planning [130]. HD maps contain multiple layers of information abstractions, and lane-level
information plays the quintessential role in many applications. Embedded with lane geome-
tries, road semantics, and connection topology, the lane layer can be utilized for defining a
potential region of interest (ROI) for some key modules in autonomous driving, including
but not limited to object detection [162], regulating the lateral location of the ego vehicle
[86, 146], and predicting the behavior of other vehicles [33].

With numerous alluring applications, these lane-level HD maps, however, do not scale
easily. Many of these HD maps are restricted to small-scale environments due to the high
costs of manual labeling and maintenance [115]. Recently, a few commercial products have
been launched to automatically map highways [107], where lanes are structured and markings
are clear. In urban scenes, however, the roads are much more complicated. As shown in
Figure 5.1, urban roads may have complicated forking, potholes, broken markings, or even
no markings at all. Furthermore, a city road also carries irregularities such as parking zones,
bus curbs, and bike lanes. As a result, automatic lane-level mapping in urban areas remains
an open and challenging problem.

It is worth noticing that the lane-level HD map construction problem is different from
geometry tasks like lane detection or trajectory inference. HD map requires a semantic and
topological understanding beyond the instance level, meaning that the map should contain

CHAPTER 5. ROAD MODULE EXPLORATION 47

logic connections with geometric information. As compared with simple lane boundary re-
gression, HD map constructors further infer the merging/forking relationship between lanes;
as compared with trajectory inference, HD maps further address the lane topological rela-
tionship.

Previous works have regarded lane detection and intersection trajectory generation as
separate problems, and most of these works only target the geometric understanding of the
scenes. In this work, we start with lanes and try to understand intersections jointly, providing
topological understanding beyond simple geometric representations.

In this chapter, we firstly define the HD map representation as a directed cyclic graph
(DCG) for easy data storage and query. We then propose the semantic particle filter to
automatically generate an urban lane-level HD map with a front view camera and an op-
tional LIDAR sensor. The proposed method contains two major components: a semantic
segmentation network for scene understanding, and a sequential Monte Carlo lane tracing
module over bird’s-eye-view (BEV). We further utilize lane exploration with OpenStreetMap
(OSM) [109] to showcase the potential in intersection inference. The whole pipeline only re-
quires one single execution per road direction for a complete reconstruction of the lane-level
details including the lane boundaries, reference trajectories, lane splitting information, and
road topology. Lastly, we represent our generated lane map in a differentiable format for
downstream modules. We test the proposed method in densely urbanized areas such as San
Francisco and Downtown Berkeley from the UrbanLoco dataset [157], and some exemplar
mapping results can be seen in Figure 5.1. The experiment covers areas with lane merg-
ing/splitting, missing/broken lane markings, complicated intersections, and irregular road
shapes such as bus curbs and parking areas. The results demonstrate an accurate and robust
construction of the lane-level HD maps.

The major contributions of the work included in this chapter are:

• We propose to combine semantic scene understanding with Monte-Carlo sequential
exploration for accurate and robust HD map construction in urban scenes.

• Geometrical representation and topological relationships are inferred for urban lanes.

• OSM is exploited as a coarse prior map to construct a directed cyclic graph represen-
tation of the urban road structure.

• The proposed algorithm is tested with a public dataset collected from densely urbanized
areas and validated the robustness and accuracy.

Extracting mapping semantics from raw sensor data has been a popular topic in the HD
map research community. We will start with a brief introduction of a few prior works in this
field.

CHAPTER 5. ROAD MODULE EXPLORATION 48

Lane detection: markings

Since the lanes are defined by markings painted on the road surface, a natural way for lane-
level map construction is initiated from the lane marking detection perspective. Nieto et
al. use a step-row filter [103] for lane marking detection and apply the Rao-Blackwellized
Particle Filter for lane tracing [104]. In [76], Li et al. use Convolutional Neural Network and
Recurrent Neural Network for lane marking detection on highways. More recently, Garnett
et al. [35] and Guo et al. [46] further use the 3D-LaneNet framework not only to classify
the lane in an image but also to predict its location in 3D.

These approaches achieve high-quality marking detection on highway or suburban roads
where the shape of the roads is simple and can be approximated by a polynomial-like func-
tion. However, it is hard to implement the aforementioned methods in urban scenarios with
complicated road structures, broken/missing lane markings, and frequent road splits. Fur-
thermore, the methods mentioned in [35] and [46] only work for scenarios with mild changes
in 3D slope, disregarding the abrupt changes in road topography.

Lane detection: drivable areas

Some other methods focus on drivable areas for lane detection. Meyer et al. designed a neural
network for ego and neighboring lane detection [95]. Kunze et al. create a scene graph from
semantic segmentation to generate a detailed scene representation of the drivable areas and
all road signage [70]. On the other hand, Roddick et al. use a pyramid projection network to
extract the drivable area as well as other vehicles [124]. Neither of these methods is extended
to the HD mapping domain, allowing a third vehicle to make full use of the detection results.

Intersection lane inference

Understanding the intersection structure is an indispensable technique for autonomous driv-
ing and HD Map generation. Thus a number of studies have been conducted to extract
invisible lanes and connecting topology at intersections.

Trajectories of other vehicles have been commonly used for intersection exploration. For
example, in [36] [58], the authors use vehicle trajectories acquired from on-board sensors
such as stereo cameras or LIDARs. Later, Meyer et al. use simulated vehicle trajectories
and employed a Markov chain Monte Carlo sampling to reconstruct the lane topology and
geometry at both real and simulated intersections [97, 96]. In [125, 20], the authors leverage
collected GPS data loaded on fleet vehicles. These methods have the potential to estimate the
lane-level structure of intersection, but they are data-hungry, and the performance heavily
relies on the quality of vehicle trajectories, which themselves are non-trivial to acquire.

More recently, directly predicting road connections at intersections from camera images
became another popular direction for lane inference. The work from Nvidia formulates the
inference problem as classification and chose the best trajectories from a real trajectory pool
with cross-entropy loss [117]. And Paz et al. predict the trajectory from a Gated Recurrent

CHAPTER 5. ROAD MODULE EXPLORATION 49

Unit on a BEV semantic map [114]. However, both methods focus on the ego vehicle lane
and only predict one trajectory as a reference for the ego vehicle, not considering all visible
lanes at an intersection.

HD map generation

Large-scale map generation has long been considered a Simultaneous Localization and Map-
ping (SLAM) problem [164]. However, instead of semantics, common SLAM algorithms
focus more on odometry estimation. Recently, in [115] and [25], the authors use semantics
in the image domain and fuse semantic results with LIDARs to generate a semantic rep-
resentation of the scene, not exactly an HD map. In terms of lane-level map generation,
a common approach is to accumulate extracted road environments along with localization
results. Authors of [45] and [57] utilize LIDAR to extract road environments, and leverage
the OSM as a map prior. In [57], fork and merge of the lanes are recognized by particle
filter-based lane marking tracking. Homayoundar et al. on the other hand, use a directed
acyclic graph (DAG) and treat each detected lane marking as a node to decide future ac-
tions for connection, initiation, or termination [50]. However, these methods focus on road
segments ignoring intersections, and they do not define the start and endpoint of the lanes.
Thus, connections between lanes are not studied in these works. With the help of aerial
images, authors of [94] study both road sections and intersections. However, the method is
limited by the availability and resolution of aerial images.

While the aforementioned efforts in lane detection and map generation have significant
contributions to the community, they are limited to either simple road structures or sin-
gle road segments. Our work targets specifically the complicated urban driving scenes and
considers both lane segments and intersection inference. Furthermore, we consider the to-
pographical deformation of the road surface for more robust and accurate lane detection.

5.2 Road Network Abstraction

We depart from a topological point of view for this cartography task. A city road network
consists of individual road segments and connecting intersections. As shown in Figure 5.2a,
an urban lane-level HD Map M could be abstracted into a directional cyclic graph repre-
sentation with each edge Eij representing a directional road from an intersection node Ii to
another intersection node Ij . We deliberately choose to have an edge for each direction due
to the ubiquity of one-way roads and physically separated two-way roads in urban scenes
(as shown in Figure 5.1). Previous works focused on either the edge Eij or the node Ii for
geometrical information extraction, but we study the HD map M containing both roads and
intersections

M := {Ei·, Ii}. (5.1)

CHAPTER 5. ROAD MODULE EXPLORATION 50

(a) DCG representation of the map M

(b) Intersection ROI

Figure 5.2: Map hierarchy as a directed cyclic graph

To acquire such a high-level map skeleton, we extract the coarse road-level topological
information from OSM [109]. Disregarding the direction of travel for most roads, the OSM
defines a road as a series of nodes connected together under a road instance. For special
two-way roads with solid barriers as the median, OSM would have one road instance for
each direction. Furthermore, the OSM defines an intersection as a connection node of two
or more road instances. Although represented by a single node, the actual intersection is
a geometrical region where multiple roads/lanes intersect. Utilizing such a definition, we
predict the intersection ROI (shown in Fig 5.2b) with a polygon formed by the closest road
node to the intersection node, leaving the rest of the road nodes as part of the atomic road.

With the atomic road E0
ij and intersection patch I0i defined as the skeleton M0 of our

map, we can match the moving data collection vehicle to an atomic road or an intersection in
the road network. Different from the goal variables M , Eij and Ii, M

0, E0
ij and I0i contains

neither geometric nor topological information of the lanes. Now we proceed to the proposed
methodology for automatic map generation.

CHAPTER 5. ROAD MODULE EXPLORATION 51

Figure 5.3: Particle filter exploration framework

5.3 Particle Filter Exploration

Problem formulation

To automatically generate the lane-level map from the aforementioned map skeleton M0, our
proposed approach utilizes an onboard front-view camera Ct and an optional (represented
by ∗) LIDAR L∗

t at time t. We also require the synchronized global vehicle poses RTt, which
come either from external sensors or SLAM algorithms. Representing our framework as a
function F (·), the goal map shown in Equation 5.1 could be further described by

M := {Ei·, Ii} = F (Ct, L
∗
t , RTt,M

0). (5.2)

The goal for atomic roads Eij estimation is to infer lane k’s centerline {Lk}K and its left-
right boundaries {Bk,left, Bk,right}K , where K is the number of lanes in this atomic road. We
deliberately go beyond a lane width as an asymmetrical representation of lane boundary due
to irregularities in the drivable areas of a lane (examples are in Figure 5.1). Here, Lk could be
represented either as a continuous trajectory function or as a collection of waypoints, while
discrete points Bk,left, Bk,right would form an enclosed drivable area of the lane. As shown
in Figure 5.3, we would start with semantic segmentation (S(Ct)) of the camera image, and
then use particles to explore the lane over the BEV domain, which is accumulated from
S(Ct), L

∗
t , RTt, and M0. To be more specific, we are looking for:

Eij = {Lk, Bk,left, Bk,right}K = G1(S(Ct), L
∗
t , RTt,M

0). (5.3)

The goal for intersection Ii estimation is to infer the topological relationship and geo-
metrical reference trajectory between E·i and Ei· as a Bezier curve B(Ek

·i, E
l
i·), where k and l

denotes specific lanes in atomic roads. When two lanes are not topologically connected, the

CHAPTER 5. ROAD MODULE EXPLORATION 52

Figure 5.4: Example results of semantic understanding module

function output is set to be null. Here, we are utilizing the result in the previously defined
Eij and the skeleton map M0 for lane tracing at the intersection. Again, we study:

Ii = {B(Ek
·i, E

l
i·)}K×L = G2(Ei·,M

0) (5.4)

In corresponding maps shown at the bottom of Figure 5.3, we start with a coarse map
skeleton M0, go through the road semantics Eij and reference trajectory Ii generation, and
end with a lane-level HD map M .

Semantic understanding of the scene

Drivable areas and lanes are defined by the road markings painted on road surfaces, but lane
markings in urban areas are more complicated: there are numerous lane splitting, frequent
stop lines, and broken/missing markings.

Therefore, instead of only extracting lane markings from camera images, we consider this
problem as semantic segmentation and infer both drivable areas and lane markings from
camera images. Built upon a DeepLab-v3+ [16] structure, we are particularly interested
in ego lanes, 2 neighboring lanes on each side of the ego lane, dashed lines, solid lines,
crosswalks, road curbs, and stop lines. As shown in Figure 5.4, the input of the network is
an image Ct, and we predict the aforementioned 10 classes. These semantic instances form
the foundation of our understanding of the current scene. Considering both lanes and lane
markings is especially efficient for urban scenes as the lane markings might be missing, and
some drivable areas may be confused with parking zones.

BEV accumulation and atomic road structure estimation

After the road semantics are extracted from the camera images, the segmented images
(S(Ct)) are projected onto the ground plane in map coordinates. These projected BEV
images are then accumulated together for a semantic representation of the atomic road. For
the scope of this semantic mapping problem, we assume that the pose of the ego vehicle RTt

is given from auxiliary sensors like inertia-GPS navigation systems or SLAM algorithms like
[164].

For the BEV projection, most previous works assume a flat ground as the road model.
However, such estimation is over-simplified in city scenes. For urban areas, undulating

CHAPTER 5. ROAD MODULE EXPLORATION 53

(a) Without LIDAR correction (b) With LIDAR correction

Figure 5.5: BEV projection comparison with LIDAR

road surfaces, either purposefully designed for drainage or accidentally caused by lack of
maintenance, are common. Figure 5.5a shows that by simply assuming a flat surface of the
road, the BEV projection could be distorted. We propose to optionally use a synchronized
LIDAR scan L∗

t as the ground topography, and then project the image onto a topography
mesh. To generate the ground mesh from sparse point clouds, we process the synchronized
LIDAR point cloud through a Delaunay Triangulation with each point as a vertex on the
mesh. After LIDAR correction, the BEV projection could be seen in Figure 5.5b, where the
distorted cross-walk markings are rectified. To further demonstrate the improvement of using
the true ground topography, we include an ablation study of the map quality with/without
the LIDAR correction in the experiment section.

With a semantic atomic road map shown as the background of 5.6a, we now study the
possible vehicle trajectories in such scenarios. To tackle the complicated, mostly irregular,
driving scenes, we propose to use a Monte Carlo exploration strategy: the particle filter. Each
particle represents a moving vehicle of an average sedan size with three state parameters: the
BEV location and the yaw angle: χn,t = [x, y, ϕ]Tn,t. The details of this exploration strategy
are shown in Algorithm 1. With the ego vehicle starting at one end of the atomic road with
RT0, we generate a strip of N particles {χn,t=0}N perpendicular to the driving direction in
RT0. Each particle χn,t then proceeds along the driving direction in the atomic lane map
shown in Figure 5.6a. Here, we are simulating the actual driving of the car with speed vm
and yaw-rate ωm uniformly sampled from noisy linear and angular velocity distribution Vm,
Ωm. The dynamic update function is

χn,t+1 = χn,t +

cos (ϕn,t + ωm) ∗ vm
sin (ϕn,t + ωm) ∗ vm

ωm

∆t (5.5)

Each predicted particle χn,t+1 will be re-weighted for it’s overlapping ratio with the lane
boundaries (Figure 5.6b), and the weight is saved as wn,t+1. Particles will be terminated at
Ij. Through the sequential Monte Carlo process, we could simulate vehicle behaviors at lane
splitting scenes. For unstructured roads too narrow to fit two lanes, the particle filter also

CHAPTER 5. ROAD MODULE EXPLORATION 54

(a) Particle history plotted next to the satellite
map

(b) Prediction and evaluation step of particle fil-
ter

Figure 5.6: Particle exploration illustration

demonstrated a preferred driving trajectory of the vehicle (Figure 5.1).
For particles traveled to the end of the atomic road {χn,T}, we first cluster these particles

with the geometrical clustering algorithm DBSCAN [26] to determine the resulting number
of lanes. Then we perform numerical regression to find the best representation of these
lanes. After experimenting with different regression models, we conclude that the best fit
would be an optimized piece-wise linear regression smoothed with a natural spline. By
minimizing the sum-of-squared regression loss shown in Equation 5.6, we first determine
the optimal breakpoints bi for the piece-wise regression function f(xn, bi), and then use the
natural spline to smooth the connection for a differentiable curve representation. Such a
differentiable form of reference trajectory is particularly valuable for further path-planning
and prediction tasks [33].

Lk = f(xn, argmin
bi

(
T∑
t=0

N∑
n=1

(yn − f(xn, bi))
2)) (5.6)

Sampling waypoints for each regressed lane Lk, we estimate the lane width by probing
towards the latitudinal direction of the lane. As a result, we would get accurate lane width
Bk,left, Bk,right at each specific sampled location. Together we form the atomic road map
Eij introduced in Equation 5.3 with reference trajectories Lk and their lane boundaries
Bk,left, Bk,right. It is worth noticing that such representation could be easily transferred to a
LaneLet2 [118] format for further tasks.

Intersection lane tracing

As previously introduced in Equation 5.4, the road connection topology and reference tra-
jectories inferences inside an intersection Ii come from the OSM skeleton M0 and the lanes
generated on neighboring atomic roads E·i and Ei·. Since the OSM defines the road con-
necting topology, we transfer this relationship to the lane level with general traffic rules: i.e.

CHAPTER 5. ROAD MODULE EXPLORATION 55

Algorithm 1: Lane Exploration Particle Filter

Result: Returns the regressed lane on atomic roads on Eij

initialize N particles {χn,t=0}N with RT0 and size;
while χn,t not at Ij do
{χn,t+1}N , {wn}N = ∅;
for n in 1 to N do

sample χn,t+1 from Equation 5.5 with Vn and Ωn;
wn = evaluate χn,t+1;
{χn,t+1}N ← χn,t+1; {wn}N ← wn;

end
for n in 1:N do

draw i from {wn};
{χt+1} ← χi,t+1;
save particle history;

end

end
cluster {χn,T} in C with DBSCAN;
for ck in C do

Lk = f(xk, bk|xk ∈ ck)
Bk,left, Bk,right ← Longitude explore Lk

end

left lanes in E·i would connect to left lanes in Ei·; and the algorithm is demonstrated in
Algorithm 2. Without explicit supervision, the topological inference would reach over 90%
precision in urban areas. Based on the topology, reference trajectories are then regressed
with an optimized second-order Bezier curve shown in Equation 5.7. We optimize Equation
5.7 for smoothness over the variable α ∈ [0, 1]. The Bezier curve’s head and tail correspond
to the lane’s location Lk1,−1 and Lk2,0 as shown in Figure 5.7, and we used intersecting point
of lines extending along the direction from the head and tail nodes as control point P for
the curve.

Here we only use this intuitive intersection exploration strategy to demonstrate the ef-
fectiveness of the road exploration module. More discussion on the intersection prediction
will be carried out in Chapter 6.

B(Ek1
ji , E

k2
il , α) = (1− α)2Lk1,−1 + 2α(1− α)P+ α2Lk2,0 (5.7)

CHAPTER 5. ROAD MODULE EXPLORATION 56

Algorithm 2: Lane inference at an intersection

Data: Eji, Eil: set of incoming and outgoing atomic roads to intersection I0i
Result: returns set of lanes Ii for intersection I0i
connections = ϕ
for Ein in Eji do

for Eout in E0
il do

Nin = num lanes(Ein)
Nout = num lanes(Eout)
for k in 1 to min(Nin, Nout) do

connections = connections
⋃
{(Ek

in, E
k
out)}

end

end

end
Ii = ϕ
for {(Ek

in, E
k
out)} in connections do

Bk = Bezier curve from Equation 5.7
Ii = Ii

⋃
Bk

end
return Ii

Figure 5.7: Lane inference at an intersection

CHAPTER 5. ROAD MODULE EXPLORATION 57

A
p
p
ro
ac
h
es

L
o
ca
ti
on

U
rb
an

iz
a
ti
o
n

L
a
n
e
d
en
si
ty

S
en
so
r

R
ep

o
rt
ed

R
es
u
lt
s

n
am

e
ra
te

(1
/k

m
2
)

in
p
u
t

R
M
S
E
rr
o
r
(m

)
m
IO

U
P
re
ci
si
o
n

R
ec
a
ll

M
at
ty
u
s
et

al
.
[9
4]

K
ar
ls
ru
h
e

L
ow

1
0
3
.5

A
er
ia
l+

C
a
m

0.
5
7

0.
5
5

0
.8
6

0.
6
0

M
ey
er

et
al
.
[9
5]

F
ra
n
k
fu
rt

H
ig
h

−
−

S
te
re
o

−
−

0.
5
8

−
−

−
−

P
az

et
al
.
[1
15
]

U
C
S
D

M
ed
iu
m

9
5
.1

L
ID

A
R
+
C
a
m

−
−

0.
7
1

0
.7
8

−
−

J
os
h
i
et

al
.
[5
7]

K
in
g,

M
I

L
ow

2
9
.2

L
ID

A
R

0.
0
6

−
−

−
−

−
−

E
lh
ou

sn
i
et

al
.
[2
5]

N
ot

K
n
ow

n
M
ed
iu
m

−
−

L
ID

A
R
+
C
a
m

0.
3
0

−
−

−
−

−
−

O
u
rs

B
er
ke
le
y

D
en
se

3
6
0
.9

L
ID

A
R
+
C
a
m

0.
2
4

0.
7
9

0
.8
4

0.
7
3

C
a
m

0.
2
5

0.
7
3

0
.6
4

0.
5
6

S
an

F
ra
n
ci
sc
o

D
en
se

2
5
9
.8

L
ID

A
R
+
C
a
m

0.
3
3

0.
7
6

0
.6
3

0.
6
3

T
ab

le
5.
1:

A
to
m
ic

ro
ad

m
ap

p
in
g
ev
al
u
at
io
n

CHAPTER 5. ROAD MODULE EXPLORATION 58

A
p
p
ro
ac
h
es

L
o
ca
ti
on

U
rb
a
n
iz
a
ti
o
n

L
a
n
e
d
en
si
ty

S
en
so
r

E
va
lu
a
ti
o
n
M
et
ri
cs

N
am

e
R
a
te

(1
/k

m
2
)

In
p
u
t

R
M
S
E
rr
o
r
(m

)
P
re
ci
si
o
n

R
ec
a
ll

G
ei
ge
r
et

al
[3
6]

K
ar
ls
ru
h
e

M
ed
iu
m

1
0
3
.5

S
te
re
o

3
.0
0

−
−

0.
9
2

J
os
h
i
et

al
[5
8]

K
in
g,

M
I

L
ow

2
9
.2

L
ID

A
R

0.
5

−
−

0.
9
6

M
ey
er

et
al

[9
7]

K
ar
ls
ru
h
e

1
0
3
.5

L
ow

S
im

u
la
ti
o
n

0
.2
7

−
−

0.
8
5

R
o
et
h
et

al
[1
25
]

N
ot

K
n
ow

n
M
d
ei
u
m

−
−

F
le
et

D
G
P
S

5.
2

−
−

−
−

O
u
rs

B
er
ke
le
y

D
en
se

3
6
0
.9

L
ID

A
R
+
C
a
m

0
.2
4

0.
9
1

0.
8
0

D
en
se

C
a
m

0
.3
0

0.
9
0

0.
8
1

S
an

F
ra
n
ci
sc
o

D
en
se

2
5
9
.8

L
ID

A
R
+
C
a
m

0
.4
6

0.
9
3

0.
9
0

T
ab

le
5.
2:

In
te
rs
ec
ti
on

in
fe
re
n
ce

ev
al
u
at
io
n

CHAPTER 5. ROAD MODULE EXPLORATION 59

5.4 Experiments

Experimental Setup

To validate the proposed method, we have created lane-level HD maps for 3.5 KM routes
in 47 blocks of the San Francisco Bay Area. The data is from a public mapping dataset
[157] with a front-view camera, LIDAR, and ground-truth ego-vehicle pose. To evaluate the
atomic road and intersection reconstruction IOU, we manually label the drivable areas on
Bing [98], and we perform a global rectification [136] for alignment as the map and the ground
truth are generated in different coordinate systems. To quantify the trajectory deviation, we
use the trajectory from another driver passing through the same scenes on a different day.

For the semantic understanding module, We adopt DeepLab-v3+ [16]. We pre-train the
module with the Cityscapes dataset [23] and fine-tune with the BDD100K dataset [166].
Since the BDD100K dataset only defines ego-lane and neighboring lanes for drivable areas,
we extend this label to ego-lane, left lane, second left lane, right lane, and second right lane.
We use SDG as an optimizer with a learning rate of 0.01, momentum 0.9, and batch size
4. Fine-tuning is done for 250,000 steps. Images are resized to 512 × 512 on the semantic
segmentation process and restored to their original size on BEV projection.

For BEV accumulation, we use the ground-truth localization provided in [157]. In the
particle filter exploration, we deploy 500 particles, each with a length of 3m and a width of
1.5m. The velocity (m/s) is drawn uniformly from U(0.9, 1.1), and the yaw angle (radians)
is uniformly drawn from U(−0.2, 0.2). The maximum cluster distance for DBSCAN is set
to be 1m, which is around half of a typical lane in urban scenes.

Lane-level map in Berkeley and San Francisco

A qualitative atomic road module mapping result is shown in Figure 5.1: the proposed
method could successfully map lane-splitting (A), un-structured roads (B), and complicated
intersections (C). For quantitative studies on lane-level HD maps, we do not find a consensus
in academia for map quality evaluation. However, we use all popular metrics in previous
works to demonstrate the effectiveness of our algorithm: the root-mean-square (RMS) error
between the reference trajectory and ground truth, the mean intersection of union (mIOU)
index of the proposed lane boundary, and the precision-recall values. All the evaluations are
performed on a per-lane basis. To study the detection rate of the proposed approach, we
define a successful detection as one having over 0.7 mean IOU or less than 0.2m of RMS. A
quantitative study of the proposed methods could be seen in Table 5.1.

Gauged at 0.7 mIOU or 0.2m RMS, our proposed method has a mean RMS of 24cm for
lane center trajectory estimation, and an average IOU of 0.79 for lane boundary estimation
in Downtown Berkeley. With the same threshold, we are able to achieve 0.84 in precision
and 0.73 in recall. In North Beach, San Francisco, our approach has an RMS of 0.33m and
mIOU of 0.76 when gauged at 0.7 IOU with 0.63 precision and 0.63 recall.

CHAPTER 5. ROAD MODULE EXPLORATION 60

To the best of our knowledge, most previous endeavors in related fields use private data
for evaluation, and we could not test our proposed approach on their dataset. More critically,
most mapping-related algorithms and parameters are close-sourced, making it impossible to
re-evaluate on our dataset. Thus, Table 5.1 lists the performance of other proposed methods
[57, 25, 115, 94, 95] in similar matrices. We also list the urbanization rate at each location for
a qualitative review of the difficulties of mapping these areas. To support the urbanization
ratings, we further calculated the lane density index defined as #oflanes/km2. Higher
density means that more lanes are compacted in a unit area, making the lane structure more
complicated.

For the invisible topology and trajectory inference in intersections, we evaluate our perfor-
mance by the topological relationship precision-recall index as well as the inference trajectory
RMS error. Quantitative results for the intersection could be seen in Table 5.2. The previ-
sion and recall are gauged at 0.1m RMSE with correct topology prediction. Compared with
a series of other methods in less urbanized areas, our algorithm is still able to discover the
potential topological relationship at intersections with a lower RMS error.

Ablation study: true road topography

To study the effect of the road topography on our mapping system, we compare the map
generated with true road topography and the map generated with a plane assumption of the
ground. A quantitative comparison is shown in Table 5.1 and 5.2. It is clear that with the
LIDAR corrected topography, we have a significant improvement in atomic road detection
precision and recall score. Also, the estimated drivable area is closer to our labeled ground
truth.

5.5 Chapter Summary

Chapter 5 discusses the road exploration problem in the urban HD map construction process.
To begin with, an OSM-based city map skeleton is introduced, and a DCG is constructed
to represent the urban road network. Next, the semantic particle filter-inspired method is
proposed to explore each lane in the urban road setting. The proposed method is tested
on busy roads in San Francisco and Berkeley, and the result shows a robust and accurate
reconstruction of the urban road map.

The work included in this chapter majorly focuses on the road module exploration, only
studying the intersection topology and geometry with a naive approach. In the next chapter,
we will look closely at the intersection, and see how the HD map is constructed with multiple
sensors.

61

Chapter 6

Multi-sensor Intersection and Road
Inference

According to the Federal Highway Administration, more than 50 percent of fatal and injury
crashes occur at or near intersections [13]. The danger at the intersections comes from
drivers’ misjudgments, occlusions, etc. Naturally, intersections become the center of HD
map research.

Furthermore, to acquire a comprehensive understanding of complicated scenes like inter-
sections, autonomous agents need multiple sensors. Thus, how to leverage a multi-sensor
setup efficiently for mapping purposes is another problem faced by mapping researchers.

Acknowledging the challenges at intersections and the demand for multi-sensor setups,
here we design a novel sensor fusion mapping framework with the intersection in mind.

For an HD map construction at the intersection, it requires more than a simple semantic
segmentation or lane tracing in the camera domain to accomplish these tasks. Instead, it is
essential to form a Bird’s Eye View (BEV) representation of the 3D world with information
gathered from multiple sensors. In this chapter, we focus on lane geometry and topology in
the BEV domain when the inputs are from multiple cameras. We firstly proposed to use a
local lane map as a representation for the static scene. Then, based on different sensor fusion
methodologies, we design multiple variants of the BEV segmentation network to infer the
local lane map. With experimental data, we conclude that a network with pre-fused BEV
image input supervised in the BEV domain is the preferred strategy for lane-level information
extraction. The proposed method is tested in both simulated and real-world environments,
and the results show an accurate and robust segmentation in the BEV domain1.

6.1 Introduction

To achieve fully autonomous driving, it is critical for the perception module to understand
roads and lanes. These static features serve as a foundation for scene understanding, and

1This chapter includes materials from the author’s previous work [139]

CHAPTER 6. MULTI-SENSOR INTERSECTION AND ROAD INFERENCE 62

Figure 6.1: Mapping a scene between multiple cameras’ frames to a BEV frame

they are also important for downstream tasks. For the past few years, researchers have
demonstrated the key role of lane structures in perception [162], localization [3], and path
planning [33]. In particular, researchers are looking for geometrical and topological attributes
of the lanes. For example, the lane geometry contains instances like the drivable areas or
centerlines, and the lane topology contains information on connection logic.

For either online lane perception or offline High Definition (HD) map generation, there
exist two challenges in the camera-based lane exploration task: scene representation and
coordinate transformation.

Firstly, what kind of information would suffice the aforementioned needs in scene under-
standing remains an open question. In the past, researchers on this topic have given various
answers: derivable areas [92] [124], lane graphs [70], reference paths [117], etc. Considering
the demand for downstream tasks, in this chapter, we propose a more informational repre-
sentation of the scene with both geometric and topological information: a local lane map in
the Bird’s Eye View (BEV) as shown in Figure 6.1.

With the representation debate going on for detection tasks, the word “BEV” here trig-
gers a harder challenge: coordinate transformation. Typical perception works generate labels
in either a coordinate-agnostic frame (pixel) or a camera’s ego frame [117]. However, in the
static perception problem for automated vehicles, perception outputs should always be done
in the BEV frame (Fig. 6.1) for the information to be useful in downstream tasks [117, 92,
124]. More critically, perception modules sometimes need multiple cameras to cover a larger
field of view (FOV), thus involving the problem of sensor fusion. To tackle these challenges,
we propose to use a pre-fused BEV image as direct supervision for a convolutional neural
network to predict our desired class labels in the BEV domain. We also design different
variations of the proposed network to further study the optimal time and input combination
in the sensor fusion frameworks. Furthermore, we compare our proposed method with other
state-of-the-art networks on both synthetic and real-world datasets, and the experiments
show that the proposed method would accomplish an accurate and robust construction of
the static scene.

In this work, we study what is the desired output for the mapping problem, when is the

CHAPTER 6. MULTI-SENSOR INTERSECTION AND ROAD INFERENCE 63

prime time to fuse sensor inputs, and how to design a network for such a task. Our major
contributions are:

• We propose a representation in local lane map of the static scene around ego vehicle
and a method to predict the map from images captured by multiple cameras;

• Multiple variants of the proposed network are designed to study the performance of
different sensor fusion strategies;

• The proposed network is tested against other related works on both synthetic and real-
world datasets, and the results show a robust and accurate construction of the BEV
lane map.

Static Scene Representation

To formulate the static scene understanding problem, it is necessary to first define the desired
output. In general, such output should contain both geometric and topological information
for downstream tasks.

Some works treat the road network as a graphical model for investigation. Kunze et al
propose to use a lane graph to represent a road network [70], where lanes and signage are fit
into a graph for logical understanding. However, such a method does not analyze the lane
geometry. More recently, Wang et al model an intersection explicitly with 38 parameters
and try to learn these parameters from one camera image [153]. As demonstrated in their
paper, however, this method only handles simple road structures. Some other works are
trying to employ a model-free method for the road network. Roddick et al [124] and Mani et
al [92] use a drivable area segmentation result as a local map without topological connection.
Disregarding a dense representation, Lift Splat and Shoot from Nvidia [117] as well as Paz’s
TridentNet [114] choose to use sampled reference trajectory as the representation. Such
networks usually generate only one trajectory for the ego vehicle rather than a map for the
entire environment. Lastly, Li et al [77] and Tesla [60] propose to detect only lane markings
and curbs on the road surface, but it is unclear how to incorporate this information into
downstream modules.

Observing the limited capacity of the model-based method and the ambiguity in the
current model-free methods, we propose to use a road model consisting of directional lanes
and their individual segmentation to represent the static environment.

Cross coordinate image segmentation

Different from traditional perception problems like classification [127] and semantic segmen-
tation [23] where all predictions are made in the image or the camera frame, a useful scene
understanding for the autonomous vehicle should be in the BEV frame [60]. Moreover,
due to the limited FOV of a single camera, information from multiple cameras needs to be
merged at wider scenes such as intersections. Mathematically, the pin-hole camera model

CHAPTER 6. MULTI-SENSOR INTERSECTION AND ROAD INFERENCE 64

and epipolar constraints define such sensor fusion and coordinate transformation: one could
re-project the semantic image onto the road surface through each camera’s intrinsic and ex-
trinsic matrices. Intuitive as it may seem, however, such a method assumes 1. an accurately
calibrated camera rig and 2. a flat road surface. As a result, simple re-projection is rarely
seen in real-world applications.

Many studies are tackling the transformation problem with multiple sensors. BevSeg
[102] proposes to use both depth and semantic networks as bootstrap before the sensor
fusion. A following encoder-decoder network predicts a BEV segmentation map from the
fused images. A similar work from Pan et al [110] uses depth image as an additional input
with similar semantic bootstrap. However, in most cases, methods with bootstrap layers in
between could not be trained end-to-end. Nvidia’s Lift Splat Shoot [117] embeds a depth
estimation module inside the network and merges each image into the BEV frame for a
comprehensive semantic segmentation. More recently, Tesla demonstrates using a variation
of the transformer network [150] to query labels in the BEV domain for better segmentation
[60].

Some other methods focus more on the coordinate transformation. Roddick et al [124]
uses a pyramid occupancy network (PON) to dissect different parts of the image for BEV pro-
jection, and an extrinsic matrix transformation is then applied to the segmentation results.
MonoLayout [92] encodes information to latent variable and predicts road layout utilizing
the power of the General Adversarial Network [40]. Van Gool’s team takes temporal images
from a single camera and transfers its coordinate to the BEV frame inside the network [11].
However, as shown in our experiment section, such methods usually lack the accuracy on
the output BEV layer. In this work, we propose to use direct supervision of pre-fused BEV
maps in a semantic segmentation backbone to complete the sensor fusion and coordinate
transformation task.

6.2 Representation of the Map

Observing the limitations of the aforementioned representations, we propose to use a local
lane map YB as a mapping output to estimate the geometry and topology of lanes surrounding
the ego-vehicle.

YB = {yB,l|l ∈ L} (6.1)

The local lane map YBEV is a rasterized image per lane class l (Equation 6.1) in the BEV
frame as shown in Fig. 6.1. Here, we focus on 20 classes, which could be broken down as
follows. In the road model, there are 4 general traveling directions from the ego vehicle’s
perspective: the ego direction, the opposite direction, and two perpendicular directions.
For each of these directions, we further assume another set of 5 possible lane structures:
3 straight lanes and 2 turning lanes (left and right). In Figure 6.1, different color pixels
refers to the different segmentation result for these classes. Since there can be overlapping

CHAPTER 6. MULTI-SENSOR INTERSECTION AND ROAD INFERENCE 65

semantics on roads, the local lane map is not one-hot encoded, and two or more classes are
allowed to be assigned to a single pixel.

With the local lane map representation, we solve the global mapping problem in [117,
114] and the ambiguous interpretation problem in [60, 77].

6.3 Study of Fusion Strategies

Given the local lane map representation, the mapping problem can thus be regarded as a
semantic segmentation task. However, segmentation between multiple coordinate systems
remains as to be a challenge. In this section, we start with our proposed methods and
then introduce other variations. Along with the experiment results, we later clarify how
the performance varies depending on when to project to BEV, which domain to use for
supervision, and how to integrate multiple camera information. Diagrams of these variants
are shown in Fig 6.2.

(a) Proposed Method-BEV Input: The proposed method first projects all camera im-
ages to the BEV frame. Then, this BEV image is fed to the semantic segmentation
network as shown in Fig. 6.2a and outputs a local lane map in the BEV frame. Al-
though the input image quality is reduced by BEV projection, the network is expected
to acquire knowledge of the final BEV domain, because the input and the output are
sharing the same coordinate system.

The local lane map estimation discussed in this chapter ignores occlusion and treats
it as if it were transparent. Thus, we assume that a road surface is a plane that is
uniformly spread out under the vehicle, relying on the network for geometrical correc-
tion. With this assumption, a pixel (wc, hc) in the camera frame corresponds to a point
(xB, yB, 0) in the BEV frame, and can be obtained using the pinhole camera geometry
in Equation 6.2, where Kc and Pc denote intrinsic and extrinsic matrix respectively. d
is the depth from the camera.

d [wc, hc, 1]
T = KcPc [xB, yB, 0, 1]

T (6.2)

For semantic segmentation, we utilize DeepLabv3+ [16] with a modified EfficientNet-
B6 [141] backbone in order to align with other network variants. For the loss function
selection in this network, we choose to use channel-wise binary loss shown in Equation
6.3, where yl is the ground truth, and ŷl is a prediction from the network. Compared
with our selection, a cross-entropy loss is more common in segmentation tasks, and
it assumes each pixel is assigned only to one class. However, such a setting is not
appropriate for the local lane map since a single pixel may be assigned to multiple
classes.

CHAPTER 6. MULTI-SENSOR INTERSECTION AND ROAD INFERENCE 66

Fr
on

t
Le

ft

Fr
on

t

Fr
on

t
R

ig
ht

BE
V

Pr
oj

ec
tio

n
BE

V
Im

ag
e

Se
m

an
tic

Se
gm

en
ta

tio
n

Lo
ca

l L
an

e
M

ap
 (B

EV
)

G
ro

un
d

Tr
ut

h
(B

EV
)lo

ss

(a
)
B
E
V

In
p
u
t

Fr
on

t
Le

ft

Fr
on

t

Fr
on

t
R

ig
ht

Ba
ck

bo
ne

Ba
ck

bo
ne

Ba
ck

bo
ne

Im
ag

e
Fe

at
ur

e
BE

V
Ag

gr
eg

at
io

n

H
ig

h
Le

ve
l

BE
V

Fe
at

ur
e

M
id

 L
ev

el
BE

V
Fe

at
ur

e

Lo
w

 L
ev

el
BE

V
Fe

at
ur

e

C
on

v

C
on

v

C
on

v

Pr
ed

ic
tio

n
H

ea
d

up

co
nc

at
up

Lo
ca

l L
an

e
M

ap
 (B

EV
)

G
ro

un
d

Tr
ut

h
(B

EV
)lo

ss

(b
)
In
te
rm

ed
ia
te

B
E
V

Fr
on

t
Le

ft

Fr
on

t

Fr
on

t
R

ig
ht

Pa
no

ra
m

a
St

itc
h

Pa
no

ra
m

a
Im

ag
e

Se
m

an
tic

Se
gm

en
ta

tio
n

Lo
ca

l L
an

e
M

ap
 (P

an
o)

G
ro

un
d

Tr
ut

h
(P

an
o)lo

ss

BE
V

Pr
oj

ec
tio

n
Lo

ca
l L

an
e

M
ap

 (B
EV

)

(c
)
P
an

or
am

a
S
eg
m
en
ta
ti
on

Fr
on

t
Le

ft

Fr
on

t

Fr
on

t
R

ig
ht

Pa
no

ra
m

a
St

itc
h

Pa
no

ra
m

a
Im

ag
e

Se
m

an
tic

Se
gm

en
ta

tio
n

Lo
ca

l L
an

e
M

ap
 (P

an
o)

G
ro

un
d

Tr
ut

h
(P

an
o)lo

ss

R
ef

in
e

N
et

w
or

k
Lo

ca
l L

an
e

M
ap

 (B
EV

)

G
ro

un
d

Tr
ut

h
(B

EV
)lo

ss

BE
V

Pr
oj

ec
tio

n

(d
)
P
an

or
am

a
S
eg
m
en
ta
ti
on

W
it
h
B
E
V

R
efi
n
e

Fr
on

t
Le

ft
Se

m
an

tic
Se

gm
en

ta
tio

n
Lo

ca
l L

an
e

M
ap

(F
ro

nt
 L

ef
t)

lo
ss

Fr
on

t
Se

m
an

tic
Se

gm
en

ta
tio

n
Lo

ca
l L

an
e

M
ap

(F
ro

nt
)

BE
V

Pr
oj

ec
tio

n
Lo

ca
l L

an
e

M
ap

 (B
EV

)

Fr
on

t
R

ig
ht

Se
m

an
tic

Se
gm

en
ta

tio
n

Lo
ca

l L
an

e
M

ap
(F

ro
nt

 R
ig

ht
)

G
ro

un
d

Tr
ut

h
(F

ro
nt

)

G
ro

un
d

Tr
ut

h
(F

ro
nt

 L
ef

t)

G
ro

un
d

Tr
ut

h
(F

ro
nt

 R
ig

ht
)

lo
ss

lo
ss

(e
)
In
d
iv
id
u
al

Im
ag
e
In
p
u
t

Fr
on

t
Se

m
an

tic
Se

gm
en

ta
tio

n
Lo

ca
l L

an
e

M
ap

 (F
ro

nt
)

G
ro

un
d

Tr
ut

h
(F

ro
nt

)lo
ss

BE
V

Pr
oj

ec
tio

n
Lo

ca
l L

an
e

M
ap

 (B
EV

)

Im
ag

e
Fe

at
ur

e

co
nc

at

R
ef

in
e

N
et

w
or

k

G
ro

un
d

Tr
ut

h
(B

EV
)lo

ss

(f
)
S
in
gl
e
C
am

er
a
In
p
u
t
w
it
h
B
E
V

R
efi
n
e

F
ig
u
re

6.
2:

D
ia
gr
am

s
of

n
et
w
or
k
va
ri
an

t
d
es
ig
n
s

CHAPTER 6. MULTI-SENSOR INTERSECTION AND ROAD INFERENCE 67

L =
1

|L|
∑
l∈L

yl · log (ŷl)) + (1− yl) · log (1− ŷl) (6.3)

In the following variants, unless otherwise noted, the BEV projection, network con-
struction, and loss function follow the same manner as mentioned here.

(b) Intermediate BEV: This model takes in individual camera images and outputs a local
lane map in the BEV frame. Camera images are first fed into the shared backbone,
and the network extracts image features at multiple resolutions. Then, each feature is
projected from the camera domain to the BEV domain and is aggregated by the Image
Feature Aggregation Module (Figure 6.3). The BEV features are then up-sampled by
applying a convolution block with skipped connections. Then, the prediction head
estimates the local lane map in the BEV frame. We adopt EfficientNet-B6 as the
backbone, and the convolution block consists of 3 convolutional layers (3 × 3) with
batch normalization.

BEV
Projection

BEV
Projection

BEV
Projection

Low Level
Mid Level
High Level

BEV Feature
Per Camera

Image Feature
Per Camera

Low Level
Mid Level
High Level

Low Level
Mid Level
High Level

Low Level
Mid Level
High Level

High Level
BEV Feature

Mid Level
BEV Feature

Low Level
BEV Feature

sum

Low Level
Mid Level
High Level

Low Level
Mid Level
High Level

Aggregated
BEV Feature

Fr
on

t
Le

ft
Fr

on
t

Fr
on

t
R

ig
ht

Figure 6.3: Diagram of the image feature BEV aggregation module

(c) Panorama Input: Another early fusion strategy is to use a panorama image to cover
a larger FOV. This variant first stitches images into a panorama image, which is then
fed into the semantic segmentation network. The output of the network is a local lane
map in the panorama domain YP , and we acquire the BEV domain local lane map YB

through Eq. 6.2. For panorama stitching, a method described in [138] is used with a
spherical coordinate.

(d) Panorama With BEV Refine: This variant is based on (c) with an extra refinement
network (Fig. 6.4) in the BEV domain. The refinement network is designed to com-
pensate for the distortions caused by the BEV projection. Since the lane region in the
local lane map has few high-frequency signals, the refinement network consists of an
Encoder-Decoder instead of a skip-connection architecture. Our motivation is that the
final BEV projection in (c) may reduce the accuracy of YB, which can be compensated

CHAPTER 6. MULTI-SENSOR INTERSECTION AND ROAD INFERENCE 68

by the refinement layer in this modified design. This variant supervises in both the
panorama and the BEV domain, and the total loss is a weighted sum of the loss of
each domain.

(H
/2

, W
/2

, 6
4)

(H
/4

, W
/4

, 1
28

)

(H
/2

, W
/2

, 6
4)

(H
, W

, C
)

(H
, W

, C
)

5x
5

C
on

v

M
ax

Po
ol

5x
5

C
on

v

5x
5

C
on

v

5x
5

C
on

v

M
ax

Po
ol

5x
5

C
on

v

5x
5

C
on

v

5x
5

C
on

v

U
ps

am
pl

e

5x
5

C
on

v

5x
5

C
on

v

5x
5

C
on

v

U
ps

am
pl

e

5x
5

C
on

v

5x
5

C
on

v

Encoder Encoder Decoder Decoder

Figure 6.4: Network architecture of the BEV refinement network

(e) Individual Image Input: In addition to the multi-camera input, we also design a
network with individual images as a baseline for comparison. Each camera image is
fed into the semantic segmentation network individually for a prediction in the camera
domain. The outputs are then transferred to the BEV domain through Equation 6.2.
This variant shares the same network structure with (c).

(f) Single Camera Input with BEV Refinement: In this variant, we add the afore-
mentioned refinement network to the single image network (e). This design can be
regarded as a simplified version of Van Gool’s method [11] with a new backbone de-
sign. Here, vehicles prediction and temporal accumulation in the original method are
ignored for a fair comparison. We follow [11] to add concatenated camera features at
BEV projection.

6.4 Experiments

For the experiments of the proposed variants and related works, we use both a synthetic
dataset generated from the CARLA simulator and a real-world dataset Argoverse.

CARLA [24] is a popular open-sourced simulator for autonomous driving. In this chapter,
we adopt CARLA to simulate an ideal environment with no vehicles or pedestrians. Three
cameras with 60 degrees horizontal FOV are mounted 2 meters above the center of the vehicle
at a 60-degree interval (as shown in Figure 6.5). From all possible intersections in each world
(Town01 to Town05) in CARLA, the data is generated around the intersection at 2-meter
intervals. Ground truth labels are generated from the HD Map and ego vehicle localization.
For labeling consistency, the data of roundabout and highway interchanges are excluded.

Argoverse dataset [14] is a pubic dataset that contains HD Map and perception data.
We follow the original train/validation splits of the dataset, and the ground truth label is
generated by projecting lane information from the HD Map. Input and output image size is
set to 568× 568 to fit the backbone network. The resolution of the local lane map is set at
0.1m.

CHAPTER 6. MULTI-SENSOR INTERSECTION AND ROAD INFERENCE 69

M
et
h
o
d
s

F
u
si
o
n
T
im

in
g

C
A
R
L
A

A
rg
ov
er
se

S
tr
a
ig
h
t

In
te
rs
ec
ti
o
n

A
ve
ra
g
e

S
tr
a
ig
h
t

In
te
rs
ec
ti
o
n

A
ve
ra
g
e

M
on

oL
ay
ou

t
[9
2]

N
A

0
.1
9
0

0
.4
2
3

0
.4
1
2

0
.1
8
0

0
.3
0
2

0
.2
9
4

P
O
N

[1
24
]

N
A

0
.7
1
1

0
.5
2
0

0
.6
3
4

0
.6
5
9

0
.4
5
0

0
.5
7
5

L
if
t
S
p
la
t
S
h
o
ot

[1
17
]

m
id

0
.4
0
4

0
.3
9
1

0
.3
9
9

0
.3
0
7

0
.2
4
8

0
.2
5
5

(a
)
B
E
V

In
p
u
t

ea
rl
y

0
.8
4
8

0
.7
1
0

0
.7
9
3

0
.6
6
5

0
.5
2
5

0
.6
0
9

(b
)
In
te
rm

ed
ia
te

B
E
V

m
id

0
.7
6
6

0
.6
2
5

0
.7
0
9

0
.6
6
8

0
.5
1
4

0
.6
0
7

(c
)
P
an

or
am

a
In
p
u
t

ea
rl
y

0
.7
7
2

0
.5
5
1

0
.6
8
3

0
.6
0
5

0
.4
4
8

0
.5
4
1

(d
)
P
an

or
am

a
w
it
h
B
E
V

R
efi
n
e

ea
rl
y

0
.7
9
4

0
.5
8
6

0
.7
1
1

0
.6
5
1

0
.5
1
4

0
.5
8
0

(e
)
In
d
iv
id
u
al

Im
ag
e
In
p
u
t

L
a
te

0
.6
8
7

0
.4
5
9

0
.5
9
6

0
.5
3
4

0
.3
6
6

0
.4
6
7

(f
)
S
in
gl
e
C
am

er
a
In
p
u
t
w
it
h
B
E
V

R
efi
n
e

N
A

0
.7
2
1

0
.5
0
1

0
.6
3
3

0
.6
3
3

0
.4
5
9

0
.5
6
3

T
ab

le
6.
1:

E
va
lu
at
io
n
re
su
lt
fo
r
C
A
R
L
A

an
d
A
rg
ov
er
se

CHAPTER 6. MULTI-SENSOR INTERSECTION AND ROAD INFERENCE 70

For evaluation metric, we adopt Intersection over Union (IOU) following prior works [124,
171, 92]. Since the output of each class is a probability, the IOU is calculated using 0.5 as the
threshold. We evaluate the performance with the average IOU of the straight lane classes,
the average IOU of intersection turn classes, and the overall mean IOU.

We train all networks on NVIDIA TITAN X with PyTorch [113]. All training parame-
ters are kept the same across the networks: we train for 50 epochs with a batch size of 2
and a learning rate of 0.001. The loss weight ratio between the BEV refine layer and the
panoramic/single image layer is 40:1. Scores are smoothed using an exponential moving
average with a window size of 4 among the last 10 epochs, and the best epoch is chosen for
evaluation.

We also evaluate the performance of other state of the art networks: Lift Splat Shoot
[117], PON [124], and MonoLayout [92]. Quantitative evaluation results are shown in Table
6.1, and visualization results of the inference are shown in Figure 6.5, and 6.6.

As a discussion, we first study the impact of the input format. Compared with methods
using panoramic images (c) or vanilla RGB images (variant (b), (e), Monolayout, PON, LSS),
BEV image (a) input has the best performance in terms of the IOU metric. Furthermore,
when adding BEV as a refinement step in the network, as shown in the comparisons of (d)
to (c) and (f) to (e) in Table 6.1, BEV can boost the performance of the original network.
Such improvement in performance comes from juxtaposing input and prediction in the same
coordinate system. As illustrated in Figure 6.8, even though the input BEV image of method
(a) is distorted due to imperfect calibration, the network learns implicit knowledge of the
road structure: e.g. roads are drawn straight, and intersections are perpendicular. The
bonus performance of training under the same coordinate could also be observed in camera
domains: the variants without inference in the BEV domain (variant (c) and (f)) show a
high IOU score in their own output domains. The average IOU for the Argoverse dataset of
variant (c) is 0.638 in the panorama domain, which is higher than the highest BEV domain
score of variant (a). An inference result is shown in Figure 6.7.

To study the effect of the fusion timing, we have classified the timing of sensor fusion
into three categories: early, mid and late. Early fusion represents methods where the input
of the network is a fused-up image, regardless of the fusion domain. Direct BEV input and
panorama images are typical early fusion methods. Mid-network fusions refer to methods
that combine sensor information in the middle of the network ([117] and (b)). Lastly, there
are late fusions where sensor fusion is outside the network after a prediction is made on
images. As shown in Table 6.1, it is clear that an early fusion strategy will greatly enhance
the network performance. Such improvement is likely caused by the errors in the intrin-
sic/extrinsic matrix, where the network could absorb and learn noisy input images for a
more regularized output.

Lastly, we study the effect of bootstrapping in network design. In the past few years, a
typical method of constructing cross-coordinate networks is through bootstrapping, meaning
that there would be an intermediate layer of output with physical meanings. For example,
Lift Splat Shoot [117] bootstraps on a depth image, and monolayout [92] bootstraps on static
and dynamic detection. However, as compared with bootstrap-free methods (variants (a)-(f))

CHAPTER 6. MULTI-SENSOR INTERSECTION AND ROAD INFERENCE 71

C
am

er
a
Im

ag
e

G
ro
u
n
d
T
ru
th

L
ab

el
(a
)
B
E
V

In
p
u
t

(b
)
In
te
rm

ed
ia
te

B
E
V

(c
)
P
a
n
o
ra
m
a
S
eg
m
en
ta
ti
on

(d
)

P
an

or
am

a
S
eg
m
en
ta
ti
on

w
it
h
B
E
V

R
efi

n
e

(e
)
In
d
iv
id
u
al

Im
ag

e
In
p
u
t

(f
)
S
in
gl
e
C
am

er
a
In
p
u
t
w
it
h

B
E
V

R
efi

n
e

M
on

oL
ay
ou

t
[9
2]

P
O
N

[1
24

]
L
if
t
S
p
la
t
S
h
o
ot

[1
17

]

F
ig
u
re

6.
5:

P
re
d
ic
ti
on

re
su
lt
s
on

th
e
C
A
R
L
A

d
at
as
et
.

CHAPTER 6. MULTI-SENSOR INTERSECTION AND ROAD INFERENCE 72

C
am

er
a
Im

ag
e

G
ro
u
n
d
T
ru
th

L
ab

el
(a
)
B
E
V

In
p
u
t

(b
)
In
te
rm

ed
ia
te

B
E
V

(c
)
P
a
n
o
ra
m
a
S
eg
m
en
ta
ti
on

(d
)

P
an

or
am

a
S
eg
m
en
ta
ti
on

w
it
h
B
E
V

R
efi

n
e

(e
)
In
d
iv
id
u
al

Im
ag

e
In
p
u
t

(f
)
S
in
gl
e
C
am

er
a
In
p
u
t
w
it
h

B
E
V

R
efi

n
e

M
on

oL
ay
ou

t
[9
2]

P
O
N

[1
24

]
L
if
t
S
p
la
t
S
h
o
ot

[1
17

]

F
ig
u
re

6.
6:

P
re
d
ic
ti
on

re
su
lt
s
on

th
e
A
rg
ov
er
se

d
at
as
et

CHAPTER 6. MULTI-SENSOR INTERSECTION AND ROAD INFERENCE 73

Ground Truth Inference

Figure 6.7: Loss function domain’s impact on performance

Ground Truth Inference

Figure 6.8: Road structure learned in the BEV domain

CHAPTER 6. MULTI-SENSOR INTERSECTION AND ROAD INFERENCE 74

and PON, bootstrapping decreases the performance on static road elements. In particular,
Lift Splat Shoot and (b) Intermediate BEV resembles in network structure without specific
depth supervision, but (b) out-performs LSS in the IOU metric.

Since the noisy extrinsic matrix will greatly change the result of the cross-view prediction,
we extend our experiment with an ablation study with noises added to the extrinsic at testing
time. We add uniform translation noise within 5 cm and a uniform rotational noise within
1 degree and the impact on performance could be seen in Table 6.2. By adding the BEV
supervision, the performance of (d) is more resistant to noises, even surpassing the single
image benchmark in (e).

Methods orig. mIOU Impact

Lift Splat Shoot [117] 0.399 -3.2%
(a) BEV Input 0.793 -10.19%

(b) Intermediate BEV 0.709 -7.53 %
(c) Panorama Input 0.683 -21.95 %

(d) Panorama with BEV Refine 0.711 -4.99%
(e) Individual Image Baseline 0.543 -6.15%

Table 6.2: Impact of noisy calibration

6.5 Chapter Summary

This chapter focuses on the representation and strategies for the BEV lane structure per-
ception. To answer the what, when, and how question raised in the Introduction section,
we propose to use a local lane map to convert the perception problem into semantic
segmentation. Furthermore, we design and verify that a early fusion with direct BEV
supervision is the optimal strategy among other variants. These proposed variants and the
state-of-the-art methods are compared to consolidate our findings.

Chapter 5 and Chapter 6 mainly study the static elements on the road. However, raw
data contains both dynamic and static entities, and it would be wasteful if we only utilize
the static entities on the road. Indeed, moving objects on the road are particularly useful for
detection teams. To exploit the full potential of the raw data, we will move on to multi-task
learning in the next chapter.

75

Chapter 7

Multi-task Learning, Mapping with
Perception

Data is valuable. When a mapping team gathers data from raw sensors, it is natural to
exploit the limited data for more tasks. In urban scenes, beyond static road elements,
dynamic objects are of interest for perception teams as well. Furthermore, understanding
the movement of moving cars, cyclists, and pedestrians may provide insights into higher
layers of the HD map hierarchy.

The materials covered in this chapter show that it is possible to perform all perception
tasks and some mapping tasks via a simple and efficient multi-task network. The proposed
network, LidarMTL, takes raw LIDAR point clouds as inputs and predicts six perception
outputs for 3D object detection and road understanding. The network is based on an encoder-
decoder architecture with 3D sparse convolution and deconvolution operations. Extensive
experiments verify the proposed method with competitive accuracies compared to state-of-
the-art object detectors and other task-specific networks. LidarMTL is also leveraged for
online localization1.

7.1 Introduction

Reliable traffic object detection and road understanding near the ego-vehicle are fundamen-
tal perception problems in autonomous driving. Movable objects are often perceived at the
instance level with class labels and bounding boxes, or at the 2D image pixel or 3D point
level depending on sensing modalities. A comprehensive road understanding requires the
perception algorithm to identify drivable areas, lane markings, and road shapes, to name a
few. Furthermore, all these perception tasks need to run accurately and quickly for online de-
ployment. However, most existing methods, especially those using deep learning approaches,
focus on improving each task separately, with task-specific network architectures and eval-
uation metrics. This task-specific solution is inefficient when dealing with multiple tasks.

1This chapter includes materials from the author’s previously published work [30]

CHAPTER 7. MULTI-TASK LEARNING, MAPPING WITH PERCEPTION 76

Object detection (OD) Foreground (FG) Intra-object part

location (IP)

Drivable area (DA) Ground (GC) Ground heights (GH)

Raw LiDAR scan

Figure 7.1: The proposed multi-task network, LidarMTL

While high inference speed might maintain via parallel computing, the memory footprints
and computation costs scale linearly with the number of networks, which quickly become
infeasible with limited hardware resources.

Multi-Task Learning (MTL) provides a strategy to largely reduce memory footprints and
computation costs by performing all tasks via a unified model in one forward pass [149]. In
deep learning, MTL means learning the shared representation of multiple tasks, typically via
an encoder-decoder network architecture.

MTL is applied to 2D object detection and road understanding using RGB camera im-
ages [144, 120, 17] and has been recently introduced to 3D perception using LIDAR point
clouds [162, 80, 160].

In this chapter, we propose a LIDAR-based multi-task learning network called LidarMTL
to jointly perform six perception tasks for 3D object detection and road understanding, as
shown in Figure 7.1. Objects are detected with class labels and 3D bounding boxes (task
OD). Furthermore, their associated LIDAR points are segmented as foreground (task FG),
and their relative locations to object centroids are regressed (task IP). Road perception
includes point-wise drivable area and ground area classification (tasks DA and GC) as well
as ground height estimation (task GH).

CHAPTER 7. MULTI-TASK LEARNING, MAPPING WITH PERCEPTION 77

The benefits of those perception tasks have been studied in previous works. For example,
FG and IP are leveraged to refine bounding boxes in the second stage of a two-stage object
detector [134], as they provide useful point-level semantic and geometrical information about
objects. GC and GH are used to remove ground [78] or normalize the heights of LIDAR
points [80], especially when the ground is not flat. DA provides strong road priors to re-
duce false-positive predictions in object detection [162] and motion forecasting [14]. Unlike
previous works which explore each perception task separately, we show that it is possible
to perform all perception tasks efficiently and accurately via a unified network. Besides,
previous works such as [134, 80] focus on how to employ one or several perception tasks
as auxiliary tasks to support the target task, without analyzing the performance of those
auxiliary tasks. In this work, we consider each perception task of equal importance and con-
duct comprehensive experiments to analyze their performance in single-task and multi-task
settings.

In principle, the LidarMTL network works by adding task-specific heads to a 3D UNet
architecture and training the full network with a multi-task loss in an end-to-end manner.
UNet is a well-performed encoder-decoder network widely applied to 2D image segmentation.
Following [134], we extend UNet to efficiently process 3D LIDAR points represented as voxels
with 3D sparse convolution and deconvolution operations. The resulting network has only
6.5M trainable parameters and runs at an inference speed of 30FPS on a Titan RTX GPU,
which is 2× smaller and 6× faster than performing all tasks sequentially using task-specific
networks. Extensive experiments on the Argoverse Dataset [14] show that the LidarMTL
network achieves competitive accuracies compared to state-of-the-art object detectors and
other task-specific networks. The network is also employed to substantially improve online
localization.

LIDAR-based Object Detection

LIDAR point clouds are usually represented by 2D projected images [163, 19], raw LIDAR
points [133, 159], and voxels [169]. Compared to the other methods, voxel representation can
not only be processed efficiently using 3D sparse convolution [161] but also preserve approxi-
mately similar information to raw point cloud with a small voxel size. Therefore, voxel-based
backbone networks have been widely applied to learn LIDAR features in conjunction with
a 2D CNN detection head [161, 134, 132, 47]. A special case is PointPillars [73], which
efficiently processes LIDAR points by vertical 3D columns called pillars. Our proposed Li-
darMTL network follows this “voxel-based backbone + 2D CNN detection head” pipeline to
perform object detection.

Road Understanding

Understanding the 3D road information online is crucial for safe autonomous driving, es-
pecially when HD maps are not available. A variety of methods have been proposed for
online mapping, such as road area classification [10, 28], lane/boundary detection [1, 79],

CHAPTER 7. MULTI-TASK LEARNING, MAPPING WITH PERCEPTION 78

Object score
3D to BEV
projection

Object bbox.

Raw LiDAR input

BEV features

SparseConv

Stride 1

Kernel 3

SparseConv

Stride 2

Kernel 3

SparseConv

Upsampling

Block

StandardConv

Block

Point-wise

output layer

Pixel-wise

output layer

16

64
Detection head

UNet3D Backbone

OD

32

64
64

32

16

16

FC

DA

GC

GH

IP

Skip connection

Figure 7.2: The LidarMTL network architecture

ground plane estimation [18], road topology recognition [4, 108, 171], and road scene se-
mantic segmentation [99, 158, 124, 139]. In [160], a multi-task network is designed for
multiple object-free road perception tasks, including drivable area classification, road height
estimation, and road topology classification.

Joint Object Detection and Road Understanding

Existing methods usually follow the hard parameter sharing scheme [149], where networks
consist of a shared encoder and several task-specific decoders. MultiNet [144] jointly performs
object detection, street recognition, and road area classification. It is built by a large 2D
CNN encoder based on the VGG16 or ResNet backbones, followed by task-specific branches
with several convolution layers. DLT-Net [120] follows a similar architecture for object
detection, road area classification, and lane detection. Besides, HDNet [162] and MMF [80]
propose to use drivable road maps or ground heights as auxiliary inputs for LIDAR-based
object detectors to improve the detection accuracy by adding road priors. Our proposed
LidarMTL also uses hard parameter sharing: a detection head and a decoder with sparse
deconvolutions are added to the encoder for object detection and point-wise predictions,
respectively.

CHAPTER 7. MULTI-TASK LEARNING, MAPPING WITH PERCEPTION 79

7.2 Multi-task Formulation

Task Definition

The proposed LIDAR-based multi-task learning network, LidarMTL, jointly performs six
perception tasks via a single feed-forward pass, namely, 3D object detection (OD), foreground
classification (FG), intra-object part location regression (IP), drivable area classification
(DA), ground area classification (GC), and ground height regression (GH). The method is
developed based on the Argoverse dataset [14], because to our knowledge it is the only public
dataset that provides both dynamic object labels and static map information with ground
heights and drivable areas.

More specifically for these tasks, LIDAR points within the bounding boxes of the dynamic
objects are regarded as foreground. Intra-part object locations are defined as the positions
of foreground points relative to their corresponding object’s centroids. Driveable areas are
object-free regions that could be driven by vehicles. Ground height estimation is performed
both for ground areas and non-ground areas (such as foreground and buildings).

Overview

We aim to design a simple and efficient multi-task network for joint 3D object detection
and road understanding. In this regard, the LidarMTL is based on the voxelized LIDAR
point cloud representation and the UNet backbone with 3D sparse convolution and decon-
volutions (we name the model “UNet3D”). Figure 7.2 shows the network architecture. The
3D space is voxelized into regular voxels, with no-empty voxels being encoded with LIDAR
features. The voxelized LIDAR point cloud is processed by the UNet backbone network with
the encoder-decoder architecture [126]. The encoder consists of several 3D sparse convolu-
tions and downsamples the input spatial resolution by 8 times to extract high-level LIDAR
features. The decoder gradually upsamples the LIDAR features to the original spatial reso-
lution via 3D sparse deconvolutions. We choose the UNet backbone network and voxelized
LIDAR representation following the idea from [134]. The network well-preserves the geomet-
ric information of LIDAR points by setting a proper voxel size and has been shown in [134]
to achieve higher efficiency than the raw point-based methods (such as PointRCNN [133]).

Point-wise predictions are made by adding output layers directly to the decoder network,
including tasks FG, IP, DA, GC, and GH. To perform object detection (OD), the 3D LIDAR
features from the encoder are projected onto the Bird’s Eye View (BEV) and then processed
by a detection head with several standard 2D convolution layers for classification score
prediction and bounding box regression. Note that employing 2D CNN on LIDAR BEV
features is a common way to do object detection [161, 73, 132]. Besides, it is found more
effective than performing object detection from the decoder network.

CHAPTER 7. MULTI-TASK LEARNING, MAPPING WITH PERCEPTION 80

Input and Output Representation

Given an LIDAR scan, let y be the target output. The input features of each voxel are
encoded as the mean values of the LIDAR point positions in the LIDAR coordinate system.
The perception tasks FC, DA, and GC are formulated as the point-wise binary classification
problems, with their labels yFG, yDA, yGC = 1 indicating positive samples, and 0 negative
samples. The tasks IP and GH are formulated as the point-wise regression problems, with
yIP = [x′, y′, z′] a continuous vector indicating 3D LIDAR point locations relative to their cor-
responding object centroids, and yGH the ground heights. As for OD, the label yOD consists of
object classes ycls, and bounding box regression variables ybbox, i.e. yOD = [ycls, ybbox]. Bound-
ing boxes are parameterized by ybbox = [∆x,∆y,∆z,∆l,∆w,∆h,∆θ], with ∆x,∆y,∆z be-
ing the residual centroid 3D positions, ∆l,∆w,∆h the residual length, width, and height,
and ∆θ the residual orientation relative to pre-defined anchors. The network makes pre-
dictions for yFG, yDA, yGC, ycls via the softmax function, and directly regresses the bounding
box parameters. Following [134], yIP are normalized to be within [0, 1]3 and are predicted
by the softmax function as well, as this encoding strategy is found more stable than direct
regression.

UNet3D Backbone

As shown in Figure 7.2, the encoder in the backbone processes the voxelized LIDAR point
cloud by four stages of 3D sparse convolutions with increasing feature dimensions 16, 32, 64, 64.
The network downsamples the spatial resolution by 8 times through three sparse convolution
layers [161] with stride 2, each followed by two submanifold sparse convolution layers [42]
with stride 1. The decoder consists of four upsampling blocks with decreasing feature dimen-
sions 64, 32, 16, 16 and strides 2, 2, 2, 1. In each block, the features from the previous block
are combined with the skip-connected features from the encoder via concatenation and are
further processed by a submanifold sparse convolution layer and a sparse inverse convolu-
tion layer, in order to upsample the spatial resolution. All convolution and deconvolution
layers in the backbone have a kernel size of 3× 3× 3. Finally, task-specific 1× 1× 1 sparse
convolution layers are added to the last upsampling block for point-wise predictions.

Detection Head

The detection head projects the 3D LIDAR features from the UNet3D encoder to the Bird’s
Eye View (BEV) and processes the BEV features through three 2D convolution blocks. The
first block consists of six standard convolution layers with feature dimension 128 and stride
1. The second block increases the feature dimension to 256. It downsamples the spatial
resolution by a convolution layer with stride 2, stacked with five 2D convolution layers
with stride 1. The last block is an upsampling layer with dimension 256 and stride 2. All
convolution layers in the detection head have a kernel size of 3× 3. The classification scores
and bounding boxes are predicted by the output layers with 1× 1 convolution.

CHAPTER 7. MULTI-TASK LEARNING, MAPPING WITH PERCEPTION 81

Similar to [161], the object detector regresses residual bounding box parameters relative
to the pre-defined 3D anchors with fixed sizes, because objects from the same category are of
approximately similar sizes. For each pixel and object category, we place two anchors with
rotations of 0 and 90 degrees, with their sizes being the mean values from all ground truths
in the Argoverse dataset.

Joint Training

The full network is trained end-to-end via a multi-task loss function. Denote L as a loss
function. For an input data frame, the multi-task loss function, LMTL, is formulated as a
weighted sum of the task-specific losses:

LMTL =
∑

i∈{OD,FG,IP,
DA,FC,GH}

wiLi, (7.1)

where wi and Li represent the task-specific loss weights and loss functions, respectively.
To learn yDA, yGC, yIP, we use the standard cross entropy loss. As for yFG and ycls, we use
the focal loss [81] due to the large positive-negative sample imbalance problem. Finally, yGH

and ybbox are learnt by the standard L1 loss.
The loss weight wi controls the influence of a task. It can be pre-defined through grid

search or be optimized by task balancing approaches [149]. In this work, we employ the
uncertainty weighting strategy proposed by Kendall et al. [21]. It uses the task-dependent
uncertainty, parameterized by the noise parameter σ, to balance the single-task losses. Such
noise parameters are jointly optimized during training, resulting in an adaptive multi-task
loss function Ladaptive

MTL written as:

Ladaptive
MTL =

∑
i∈{OD,FG,IP,

DA,FC,GH}

1

2σ2
i

Li +
1

2
log σ2

i (7.2)

7.3 Experiments

The experimental results are structured as follows. First, we evaluate the performance of each
perception task separately. We compare the proposed multi-task network with single-task
networks and show its benefits in achieving on-par performance with task-specific networks
but with substantially lower memory footprints and higher inference speed. Afterward, we
conduct ablation studies regarding the number of tasks and the loss weights, and we further
test the network’s robustness with downsampled LIDAR points. Finally, we demonstrate
that our proposed multi-task network provides useful semantics that could largely improve
online localization.

CHAPTER 7. MULTI-TASK LEARNING, MAPPING WITH PERCEPTION 82

Experimental Setup

Dataset

All experiments are conducted on the Argoverse 3D Tracking Dataset [14], which is recorded
in Miami and Pittsburgh in the USA under various weather conditions and times of the day.
The dataset provides 3D bounding boxes and tracks annotations, with RGB images from
seven cameras, LIDAR point clouds from two 32-beam Velodyne LIDAR sensors, as well as
HD maps annotating drivable areas, ground heights, ground areas, and centerlines.

For the object detection task, we focus on the “VEHICLE” and “PEDESTRIAN” classes.
For the point-wise perception tasks, we prepare the ground truth labels for each LIDAR
point. The data is recorded in sequence with lengths varying from 15 to 30 seconds (10
Hz). To reduce the sequential dependency between frames, we down-sample the dataset by
a factor of 5.

The resulting dataset we use contains 2609 training frames and 996 evaluation frames,
with over 20K VEHICLE and 6.7K PEDESTRIAN objects.

Implementation Details

All networks are trained with the same optimization settings from scratch up to 80 epochs.
The ADAM optimizer is used with an initial learning rate of 0.01, a step decay of 0.1, and
a batch size of 4.

For a fair comparison with state-of-the-art object detectors (such as PV-RCNN [132] and
PointPillars [73]), which only process LIDAR point clouds on the camera front-view, we ex-
tract LIDAR point clouds corresponding to synchronized front-view images from the original
Argoverse dataset, and train the front-view networks for most experiments. In this regard, we
use the LIDAR point cloud within the range length × width × height = [0, 70.4] ×[−40, 40]
×[−1.5, 4, 0]in meters, and do discretization at 0.1 meter voxel resolution. Besides, to em-
ploy our proposed LidarMTL network in online localization, we train a full-range network
that processes LIDAR point cloud within the range [−70.4, 70.4] ×[−70.4, 70.4] ×[−1.5, 4, 0]
in meters. All experiments are conducted using a Titan RTX GPU. The inference time for
the front-view LidarMTL reaches 30FPS and for the full-range LidarMTL 7.7FPS.

Performance Evaluation

Object Detection (OD)

We evaluate the object detection performance using the standard Average Precision for
3D detection (AP3D) and on the Bird’s Eye View (BEV) (APBEV). Both parameters are
measured at the Intersection Over Union IOU=0.7 threshold for “VEHICLE” objects and
IOU=0.5 for “PEDESTRIAN” objects, respectively, as suggested by [38]. The IOU scores
in object detection are geometric overlap ratios between bounding boxes, and they measure
the localization accuracy. We report the AP scores as a triplet with respect to increasing

CHAPTER 7. MULTI-TASK LEARNING, MAPPING WITH PERCEPTION 83

T
ab

le
7.
1:

A
co
m
p
ar
is
on

of
O
b
je
ct

D
et
ec
ti
on

(O
D
)
p
er
fo
rm

an
ce
,
th
e
n
u
m
b
er

of
tr
ai
n
ab

le
p
ar
am

et
er
s
an

d
in
fe
re
n
ce

sp
ee
d

M
et
h
o
d
s

V
E
H
IC

L
E

P
E
D
E
S
T
R
IA

N
m
A
P
B
E
V
(%

)
m
A
P
3
D
(%

)
T
ra
in
a
b
le

In
fe
re
n
ce

A
P
B
E
V

A
P
3
D

A
P
B
E
V

A
P
3
D

p
a
ra
m
.

sp
ee
d

@
0.
7(
%
)

@
0.
7(
%
)

@
0.
5
(%

)
@
0.
5
(%

)
(M

)
(F

P
S
)

P
V
-R

C
N
N

[1
32
]

77
.5
,6
2
.0
,2
1.
1

63
.2
,3
8
.0
,3
.8

5
1
.8
,2
6.
6,
4.
5

4
5.
7
,2
2
.2
,3
.0

5
6
.1

4
3
.2

1
3
.1
0

1
4.
6

P
oi
n
tP

il
la
rs

[7
3]

75
.3
,5
7
.2
,1
6.
6

53
.5
,2
7
.8
,2
.7

3
7
.4
,2
2.
3,
4.
0

3
0.
3
,1
6
.8
,2
.3

5
1
.5

3
5
.3

4.
8
2

7
1.
5

S
ec
on

d
[1
61
]

72
.0
,5
3
.9
,1
4.
1

50
.9
,2
5
.0
,1
.9

4
1
.1
,2
2.
8,
5.
0

3
3.
6
,1
7
.5
,2
.6

4
9
.7

3
5
.1

5.
3
1

5
4.
2

U
N
et
3D

73
.0
,3
5
.9
,4
.4

50
.9
,1
3
.7
,0
.5

5
6
.7
,2
5.
1,
2.
9

4
4.
4
,1
7
.4
,1
.5

4
6
.4

3
2
.4

1.
9
0

3
3.
2

L
id
ar
B
E
V

71
.8
,5
6
.1
,1
4.
0

50
.3
,2
3
.8
,1
.7

4
2
.0
,2
2.
9,
4.
4

3
6.
6
,1
6
.3
,2
.1

4
9
.9

3
4
.6

5.
3
1

5
9.
6

L
id
ar
M
T
L

72
.9
,5
6
.9
,1
4.
1

53
.4
,2
4
.3
,1
.8

4
0
.6
,2
2.
9,
6.
1

3
3.
3
,1
7
.0
,4
.2

4
9
.8

3
5
.0

6.
5
2

3
0.
0

CHAPTER 7. MULTI-TASK LEARNING, MAPPING WITH PERCEPTION 84

LIDAR ranges (0 − 30m, 30 − 50m, and 50 − 70m), as well as the mean AP scores, mAP,
by averaging over all distances and object classes (similar to [27]). Besides, we report the
number of trainable parameters and the inference speed for each object detector. Table 7.1
summarizes the results.

The proposed multi-task network (LidarMTL) is compared against several LIDAR-based
object detectors. The LidarBEV network follows the same detection architecture as Li-
darMTL (Encoder with sparse 3D convolution + BEV detection head with 2D convolution).
It serves as the baseline to study the object detection performance when introducing mul-
tiple tasks. The UNet3D network directly employs the encoder-decoder architecture from
LidarMTL to predict object classes and bounding boxes on each LIDAR point (without BEV
detection head and pre-defined anchors), and is used to verify the network architecture de-
sign. Furthermore, we re-train state-of-the-art detectors, PV-RCNN [132], PointPillars [73],
and Second [161], using our experimental setup. Note that PV-RCNN is a two-stage object
detector, whereas all other detectors are one-stage. UNet3D directly regresses bounding box
parameters, whereas the others are based on pre-defined anchors and BEV detection heads.

As Table 7.1 illustrates, the proposed LidarMTL network achieves similar detection ac-
curacy to LidarBEV, SECOND, and PointPillars, with comparable number of parameters
(6.52M) and reasonable inference speed (30FPS). PV-RCNN has the highest AP scores
compromised by over 2× more parameters and computation cost compared to LidarMTL.
Though UNet3D has only 1.9M parameters, it has the worst detection accuracy with 2−3%
smaller mAP scores compared to LidarMTL, indicating the importance of adding anchor
priors and BEV detection heads for precise object detection. In conclusion, the proposed Li-
darMTL shows competitive detection performance to other detectors in prediction accuracy,
model size, and inference speed.

Foreground (FG), Drivable Area (DA), and Ground Classification (GC)

We evaluate the foreground, drivable area, and ground classification tasks using the Average
Precision (AP), Intersection Over Union (IOU), and classification accuracy scores at a prob-
ability threshold of 0.5. Those evaluation metrics measure the classification performance at
each LIDAR point and have been used as the standard metrics for road detection [31] or
semantic segmentation [27]. Note that unlike the IOU metric for object detection in the pre-
vious section, here an IOU score is measured by IOU = 100 ∗ TP/(TP+FP+FN) according
to [27], with TP, FP, FN being the number of points categorized as true positive, false pos-
itive, and false negative samples. For each task, a task-specific UNet3D network is trained
to compare with the LidarMTL network. Furthermore, since these point-wise perception
tasks can be regarded as semantic segmentation, we additionally train two state-of-the-art
semantic segmentation networks, namely, RangeNet++ [99] and SqueezeSegv3 [158], to per-
form foreground and ground classification. We do not conduct experiments for drivable area
classification, because it is not mutually exclusive with the other two tasks.

Experimental results are shown in Table 7.2, Table 7.6, and Table 7.4. The proposed
multi-task network achieves on-par performance with the single-task network, with less than

CHAPTER 7. MULTI-TASK LEARNING, MAPPING WITH PERCEPTION 85

1% difference in all evaluation criterion. The network also shows competitive results with
RangeNet++ and SqueezeSegv3, verifying the effectiveness of the network architecture de-
sign.

Ground Height Estimation (GH)

We evaluate the ground height estimation performance using the Root Mean Squared Errors
(RMSE) and Mean Average Errors (MAE) metrics, which are widely used in the depth
prediction task for RGB camera images [147]. Table 7.3 reports the performance for all
LIDAR points, grouped with respect to the LIDAR ranges (0− 30m, 30− 50m, 50− 70m).
The LidarMTL network is compared with the task-specific UNet3D network, as well as a
simple heuristic that assumes a ground plane given the ego vehicle’s pose information. Note
that the ground plane assumption has been widely used to remove ground LIDAR points for
object detection [68, 18].

Table 7.3 shows that the ground plane method results in larger errors at longer distances,
indicating that the ground is not flat. The errors produced from the UNet3D and LidarMTL
networks are much smaller than the ground plane method (over 40% RMSE reduction for
all points), showing the benefits of the point-wise ground height estimation. The LidarMTL
network produces slightly larger errors than the UNet3D network (< 2cm), showing small
negative transfer phenomena often seen in multi-task learning [149].

A more interesting experiment is to evaluate the ground height estimation for LIDAR
points that belong to objects. Such information could be used to normalize objects’ heights
and has the potential to improve detection performance, as shown in [80]. Table 7.5 shows
that both networks predict ground heights accurately, with RMSE errors smaller than 20cm
even at 50− 70m range.

Intra-object part locations (IP)

Finally, we evaluate the performance for intra-object part location predictions, with the same
evaluation metrics (RMSE and MAE) used in the previous sections. Both LidarMTL and
UNet3D networks perform similarly, with the LidarMTL network producing slightly smaller
errors (< 1) at long distances (50− 70m) than the UNet3D network.

Model Size and Inference Speed

We quantitatively show the benefits of lower memory footprints and higher inference speed
brought by the proposed multi-task network, compared to the “Single-task models” that
perform all tasks separately by a chain of task-specific networks. In this regard, we employ
the LidarBEV network introduced in 7.3 for object detection, and train UNet3D networks
for other tasks. Starting from object detection, we gradually increase the number of percep-
tion tasks and calculate the required memory footprints and the inference speed averaged
overall predictions on the evaluation data. Figure 7.3a and Figure 7.3b show the model
size (in MegaByte) and the inference speed (in FPS), respectively. The LidarMTL network

CHAPTER 7. MULTI-TASK LEARNING, MAPPING WITH PERCEPTION 86

T
ab

le
7.
2:

F
or
eg
ro
u
n
d
(F
G
).

M
et
h
o
d
s

A
P
(%

)
IO

U
(%

)
A
cc
u
.
(%

)

R
an

ge
N
et
+
+

[9
9]

-
82

.4
-

S
q
u
ee
ze
S
eg
v
3
[1
58
]

-
84

.2
-

U
N
et
3D

96
.2

85
.4

98
.7

L
id
ar
M
T
L

97
.0

85
.6

98
.7

T
ab

le
7.
3:

G
ro
u
n
d
h
ei
gh

ts
(G

H
)
(a
ll
L
ID

A
R

p
oi
n
ts
).

M
et
h
o
d
s

R
M
S
E

(c
m
)

M
A
E

(c
m
)

A
ll

0
-3
0
m

3
0
-5
0
m

5
0
-7
0
m

A
ll

0
-3
0
m

3
0
-5
0
m

5
0
-7
0
m

P
la
n
e

3
1.
2

2
1
.0

3
8.
0

5
3.
5

2
1
.6

1
6
.3

2
8.
2

3
5.
5

U
N
et
3
D

1
7.
8

7
.9

2
1.
0

4
0.
0

7.
8

4
.9

9.
8

2
0.
1

L
id
a
rM

T
L

1
8.
6

8
.8

2
2.
2

4
0.
4

8.
8

5
.7

1
1.
0

2
1.
4

T
ab

le
7.
4:

G
ro
u
n
d
ar
ea
s
(G

C
).

M
et
h
o
d
s

A
P
(%

)
IO

U
(%

)
A
cc
u
.
(%

)

R
an

ge
N
et
+
+

[9
9]

-
95

.2
-

S
q
u
ee
ze
S
eg
v
3
[1
58
]

-
95

.9
-

U
N
et
3D

99
.6

94
.5

98
.2

L
id
ar
M
T
L

99
.6

94
.0

98
.0

T
ab

le
7.
5:

G
ro
u
n
d
h
ei
gh

ts
(G

H
)
(o
n
ly

fo
re
gr
ou

n
d
p
oi
n
ts
).

M
et
h
o
d
s

R
M
S
E

(c
m
)

M
A
E

(c
m
)

A
ll

0
-3
0
m

3
0
-5
0
m

5
0
-7
0
m

A
ll

0
-3
0
m

3
0
-5
0
m

5
0
-7
0
m

P
la
n
e

2
0.
8

1
7
.8

2
7.
3

3
5.
4

1
5
.3

1
2
.9

2
2.
4

2
8.
7

U
N
et
3
D

8
.6

6
.5

1
1.
7

1
9.
1

5.
5

4
.4

8.
0

1
3.
9

L
id
a
rM

T
L

9
.8

8
.2

1
2.
2

1
9.
6

6.
7

5
.8

8.
9

1
4.
7

T
ab

le
7.
6:

D
ri
va
b
le

ar
ea
s
(D

A
).

M
et
h
o
d
s

A
P
(%

)
IO

U
(%

)
A
cc
u
.
(%

)

U
N
et
3D

97
.9

86
.5

94
.2

L
id
ar
M
T
L

97
.4

84
.5

93
.4

T
ab

le
7.
7:

In
tr
a-
ob

je
ct

p
ar
t
lo
ca
ti
on

s
(I
P
).

M
et
h
o
d
s

R
M
S
E

M
A
E

A
ll

0
-3
0
m

3
0
-5
0
m

5
0
-7
0
m

A
ll

0
-3
0
m

3
0
-5
0
m

5
0
-7
0
m

U
N
et
3
D

1
0
.0

8
.1

1
3.
5

1
8.
8

5.
6

4
.6

8.
0

1
3.
8

L
id
a
rM

T
L

9.
9

8
.2

1
3.
3

1
8.
1

5.
7

4
.7

8.
0

1
3.
2

CHAPTER 7. MULTI-TASK LEARNING, MAPPING WITH PERCEPTION 87

OD
OD,FG

OD,FG,IP

OD,FG,IP,DA

OD,FG,IP,DA,GC

OD,FG,IP,DA,GC,GH

100

150

M
od

el
 si

ze
 (M

B) Single-task models
LidarMTL

(a) Point-cloud to Pixels

OD
OD,FG

OD,FG,IP

OD,FG,IP,DA

OD,FG,IP,DA,GC

OD,FG,IP,DA,GC,GH

20

40

60

In
fe

re
nc

e
sp

ee
d

(F
PS

)

Single-task models
LidarMTL

(b) Pixels to Point-cloud

Figure 7.3: A comparison of model size and inference speed

outperforms the single-task models when considering more than one perception task. While
the LidarMTL network remains constant in model size and inference speed regardless of
the number of tasks, the single-task model approaches require linearly-increasing memory
and much lower inference speed. When performing all six perception tasks, the multi-task
network is more than 2× smaller and 6× faster, showing its high efficiency, which is critical
for online deployment.

Ablation Study

Number of Tasks

This section studies the performance of the single task which we focus on (“target task”),
with an increasing number of multiple tasks (“auxiliary tasks”) in the LidarMTL network.
Figure 7.4a, Figure 7.4b, and Figure 7.4c select object detection, foreground classification,
and ground height estimation as target task, respectively. We report the perception perfor-
mance from the multi-task network relative to the singe-task network, with an increasing
number of auxiliary tasks from left to right on the x-axis. No clear tendency is observed
between the object detection performance and the number of tasks. The mAP scores fluctu-

CHAPTER 7. MULTI-TASK LEARNING, MAPPING WITH PERCEPTION 88

ate between −1.5% and 1%. Introducing more auxiliary tasks increases AP for foreground
classification, as well as regression errors for ground height estimation. However, the differ-
ence is small (less than 1% AP and 1.5cm errors). In conclusion, we could achieve on-par
single-task perception performance, regardless of the combination of multiple tasks.

Impact of Loss Weights

It is known that a proper selection of the loss weight for every single task is crucial for multi-
task learning [149]. In this ablation study, we train the LidarMTL network with different
combinations of loss weights and compare their multi-task performances. “Fixed (equal
weights)” assumes that each loss weight is equal. “Fixed (balanced)” balances the losses to
similar scales. “Fixed (grid search)” finds a set of loss weights by grid search on the training
dataset. Note that the loss weights from those three methods are fixed, and do not change
during training (Equation 7.1). Instead, “Adaptive” employs the uncertainty weighting
strategy shown by Equation 7.2 to balance single-task losses adaptively. “Adaptive + grid
search” first puts a set of pre-defined loss weights from the grid search, and then balances
the learning with uncertainty weighting.

We report the perception performance for every single task as well as the averaged net-
work’s ranking in Table 7.8. Surprisingly, “Fixed (balanced)” shows inferior performance
even slightly worse than “Fixed (equal weights) on the averaged ranking, indicating that
simply balancing losses might not be the optimal choice in multi-task learning, as different
single tasks may have different learning paces. “Adaptive” ranks last, with 4 − 6cm larger
ground height errors compared to the best results, showing the challenge to learn a proper set
of loss weights from scratch. The networks trained with loss weights from grid search depict
visible improvements (e.g. comparing “Fixed (grid search)” with “Fixed (equal weights)”.
When combining uncertainty weighting and grid search, the network slightly outperforms the
“Fixed (grid search)” strategy and achieves the best multi-task performance. We conclude
the necessity of using loss weights with grid search.

Robustness Testing

Finally, we study the robustness of point-wise prediction tasks (tasks FG, IP, DA, GC, GH)
with increasingly sparse LIDAR points. Evaluating this robustness is crucial for autonomous
driving, because the sparsity of point cloud varies significantly among LIDAR sensors and
vehicle setup, and largely affects the perception performance [29]. In this regard, we use the
LidarMTL network trained with full LIDAR points (8000 voxels) to make inferences on the
evaluation data with downsampled LIDAR points by factors 2, 4, 8, 16, 32. Results are shown
in Figure 7.5. The performance of DA, GC, and IP drops slightly with downsample factors
smaller than 8. FG remains high AP scores above 90% even with 32 as the downsample factor
(i.e. 250 non-empty voxels). The performance of GH drops quickly with a downsample factor
of 4. The experiment shows that different tasks have different robustness against LIDAR
point cloud sparsity.

CHAPTER 7. MULTI-TASK LEARNING, MAPPING WITH PERCEPTION 89

OD +F
G

+I
P

+D
A

+G
C

+G
H

+G
H,
IP

+F
G,
IP
,D
A

+F
G,
IP
,G
C

+F
G,
IP
,G
C,
GH

+F
G,
IP
,D
A,
GC

+F
G,
IP
,D
A,
GH

+F
G,
IP
,D
A,
GC

,G
H

−1

0

1

m
AP

(%
)

BEV
3D

(a) Point-cloud to Pixels

FG+OD

+OD
,IP,D

A

+OD
,IP,G

C

+OD
,IP,G

C,G
H

+OD
,IP,D

A,G
C

+OD
,IP,D

A,G
H

+OD
,IP,D

A,G
C,G

H
0.0

0.2

0.4

0.6

0.8

AP
(%

)

(b) Pixels to Point-cloud

GH +OD
+OD,IP

+OD,FG,IP,GC

+OD,FG,IP,DA

+OD,FG,IP,DA,GC
0.0

0.5

1.0

Er
ro

r (
cm

)

RMSE (all)
RMSE (object)
MAE (all)
MAE (object)

(c) Pixels to Point-cloud

Figure 7.4: The performance of the target task when trained with increasing number of
auxiliary tasks

CHAPTER 7. MULTI-TASK LEARNING, MAPPING WITH PERCEPTION 90

T
ab

le
7.
8:

A
co
m
p
ar
is
on

am
on

g
th
e
L
id
ar
M
T
L
n
et
w
or
k
s
tr
ai
n
ed

w
it
h
d
iff
er
en
t
lo
ss

w
ei
gh

ts
.

L
os
s
w
ei
gh

ts
O
D

F
G

D
A

G
C

G
H

IP
A
v
g
.

m
A
P
B
E
V

m
A
P
3
D

A
P

A
P

A
P

R
M
S
E

M
A
E

R
M
S
E

M
A
E

R
a
n
k

(%
)

(%
)

(%
)

(%
)

(%
)

(c
m
)

(c
m
)

F
ix
ed

(e
q
u
al

w
ei
gh

ts
)

49
.6

3
4
.5

9
6.
7

9
7.
7

9
9.
6

2
0.
5

1
0
.7

1
0
.7

6
.4

2.
7

F
ix
ed

(b
al
an

ce
d
)

48
.4

3
2
.9

9
7.
0

9
7.
8

9
9.
6

1
9.
2

9
.2

1
2
.7

8
.1

3.
0

F
ix
ed

(g
ri
d
se
ar
ch
)

49
.2

3
4
.7

9
7.
2

9
7.
5

9
9.
6

1
8.
6

8
.7

1
0
.0

5
.7

1.
8

A
d
ap

ti
ve

[2
1]

49
.2

3
4
.7

9
7.
0

9
7.
2

9
9.
6

2
4.
0

1
4
.1

1
0
.8

6
.5

3.
3

A
d
ap

ti
ve

[2
1]

+
gr
id

se
ar
ch

49
.8

3
5
.0

9
7.
0

9
7.
4

9
9.
6

1
8.
6

8
.8

9.
9

5
.6

1.
5

CHAPTER 7. MULTI-TASK LEARNING, MAPPING WITH PERCEPTION 91

12 4 8 16 32
Lidar downsample factor

0

50

100

AP
 (%

)
FG
DA
GC

12 4 8 16 32
Lidar downsample factor

10

20

30

RM
SE

IP
GH

Figure 7.5: The performance of point-wise predictions with increasingly sparse LIDAR points

Application to Online Localization

Localization in urban environments requires point cloud maps and point registration al-
gorithms. However, LIDAR-based localization typically suffered from dynamic objects and
undulating road surfaces[157]. By semantically segmenting the scene, LidarMTL provides an
ideal pre-processing for such localization modules. To study LidarMTL’s impact on localiza-
tion, we used the outputs from DA and FG to help localize the vehicle. As a comparison, we
have 4 types of inputs for the localization algorithm: the raw scan, the point cloud without
DA, the point cloud without FG, and the point cloud without both DA and FG.

We perform localization experiments on 24 trajectories spanning 2.69KM, and the vanilla
NDT registration algorithm in Autoware [62] is chosen as the real-time localization module.
In our experiment, the NDT voxel resolution is 1 meter. The map is created with the
ground-truth scan without DA and FG downsampled to 0.2 meters.

Table 7.9 shows the performance of the localization algorithm with various point cloud
inputs. We also include the result from ground-truth DA and FG tasks for comparison. The
performance is evaluated with Root Mean Squared Error along three axes and the yaw angle.
Furthermore, we list the success rate for these tests: one is considered a failure if the trans-
lation RMSE is larger than 3m or if the rotation RMSE is larger than 4◦. Compared with
the raw input, the LidarMTL-processed inputs yield more accurate localization. Further-
more, since dynamic objects are removed from the scan, the algorithm performed robustly
in complicated environments. As compared with the ground truth point cloud inputs, the
LidarMTL pre-processing reaches a similar level of localization accuracy and success rate.
Given the stochastic nature of the NDT algorithm, the LidarMTL even out-performs ground
truth segmentation in certain evaluation matrices.

7.4 Chapter Summary

The discussion in Chapter 7 provides an insight into the more efficient utilization of the
limited data resources. We present the multi-task network to jointly perform six percep-
tion tasks for 3D object detection and road understanding. Comprehensive experiments
demonstrate that the proposed network can complete all six tasks with a similar level of

CHAPTER 7. MULTI-TASK LEARNING, MAPPING WITH PERCEPTION 92

Table 7.9: Online localization results.

Point Cloud Translation RMSE (m) Rotation RMSE (◦) Success
Type X Y Z Yaw Rate (%)

Raw 1.80 1.27 1.13 1.16 83.3
no DA 1.13 0.67 0.34 1.00 95.8

GT no FG 1.46 0.56 0.46 0.71 95.8
no DA, FG 1.51 0.87 0.34 1.25 95.8
no DA 1.83 0.59 0.21 0.84 95.8

LidarMTL no FG 1.62 0.58 0.43 0.82 95.8
no DA, FG 1.73 0.65 0.06 1.13 100

performance from single-model designs. The LidarMTL network is small, fast, accurate, and
useful for localization, making it highly desirable for online deployment in autonomous cars.

With the conclusion of Chapter 7, we finish the discussion on cartographic algorithms.
In summary, Part II starts with a road module-focused algorithm for the robust exploration
of the scene. Then, shifting the concentration to intersections, we discuss sensor fusion
strategies in the BEV domain. Lastly, we propose a multi-task learning scheme to fully
utilize the limited data resource.

The next step in the life cycle of the HD map development lies in the hands of the
customer: how to efficiently query and use the map will be the main topic of Part III.

93

Part III

HD Map Management

94

Chapter 8

Submap Query and Stitching

The final step in the map development process, for either paper maps or HD maps, is the
distribution. In traditional paper map businesses, the final step for the publisher is to bind
individual maps together as an atlas, and then the distributor sends out the collection to
individual customers. Typically, contents within an atlas are divided into smaller maps on
each printed page, and these pages are indexed on the borders for readers’ queries. Such
map collection and indexing system has been in production for hundreds of years [119].

In the modern HD map distribution process, efficient map management and query mech-
anism are also needed. Even though HD maps are stored in digital formats on hardware
that is significantly smaller than paper map books, it is still not ideal to load a complete HD
map onto the onboard system. For each autonomous agent on the road, both the storage
and the computation capacities are extremely limited. Thus, a divide-and-conquer method
is preferred in the HD map distribution process.

A common practice is to divide a large city map into smaller tiles for a faster query. In this
chapter, an efficient submap query and alignment mechanism ATLAS is discussed. To begin
with, the urban map is firstly divided into square-shaped tiles to form a spatial occupancy
tree. Here, a Red-Black tree representation is introduced and the computational complexity
is analyzed to demonstrate the fast query capacity. To utilize these submaps in real-time,
a stitching algorithm based on point cloud registration is proposed. To demonstrate the
effectiveness of the map management system, the localization function in the autonomous
driving stack is tested with real-world data. The result demonstrates an efficient query
operation of the ATLAS framework1.

8.1 Introduction

As demonstrated in previous chapters, the HD map plays a significant role in urban au-
tonomous driving. These maps are loaded with detailed urban driving information such as
lane semantics, traffic rules, and road conditions. With the constructed maps stored in the

1This chapter includes materials from the author’s previous work [172]

CHAPTER 8. SUBMAP QUERY AND STITCHING 95

server, however, autonomous agents still have to gain access to these maps at the time of
deployment.

Map researchers are facing two questions. First, how to store the HD map, and second,
how to use the map efficiently in real-time. A naive approach is to load the entire map
onto the onboard storage system, and the agent could directly query the map information
from the hardware. However, a direct loading operation is usually infeasible as the onboard
storage devices are often of limited capacity. Furthermore, querying an entire city map might
exceed the computing power of the onboard computer.

When facing a hard-to-solve problem, computer scientists turn to the divide-and-conquer
strategy. In the mapping application, the map is firstly divided into smaller parts, namely
submaps [164]. Only a few submaps will be loaded onto the onboard device at a time, and
they will be replaced by new submaps once the related information is utilized.

The material covered in this chapter leverages the concept of submap in HD map manage-
ment. Under the proposed framework ATLAS, the urban landscape is divided into smaller
rectangular tiles as submaps. These tiles are organized into a Red-Black tree data structure
for fast queries. For inter-map transitions in real-time, we further design a submap stitching
algorithm to match two neighboring submaps. With pre-built geometric HD map layers,
the proposed framework is constructed and tested on localization tasks in urbanized ar-
eas. The ATLAS management-query-stitching framework demonstrates efficient operations
in real-time.

8.2 Tile-based Query

Submaps are pre-built map patches representing only a fraction of the complete urban en-
vironment {S}. In the scope of this chapter, each submap will be a 3D point cloud of
the corresponding area. Here, we assume that all the submaps are under the Universal
Transverse Mercator (UTM) coordinate system.

Each submap is an r × r grid Gi on the xy-plane. We denote

Gi(u, v) = {(x, y) ∈ R2 : x ∈ [ur, (u+ 1)r), y ∈ [vr, (v + 1)r)}. (8.1)

Here, r, x, and y are measured by meters, consistent with the UTM coordinates. For
each tile Gi(u, v), Gi(u, v) ∈ S if and only if Gi(u, v) has been visited by mapping vehicles
and contains geometrical information. Considering the shape of each submap is a square,
we will use the name square or tile interchangeably with submap.

An intuitive data structure to represent a collection of submaps is a list. Assuming
the maximal map distance in the interior of the map is L, both the storage and the query
complexity will be O(L2r−2).

Alternatively, we propose to use a Red-Black tree (RB tree) representation, which de-
creases the query time complexity to O(log(L2r−2)). Since most routing tasks are linear
between two points in a map, the query operations along the trajectory have a complexity of
O(log(L2r−2)). Here, the space complexity will still be O(L2r−2), because every map needs

CHAPTER 8. SUBMAP QUERY AND STITCHING 96

Figure 8.1: Inconsistent fused maps with simple overlapping

to be stored. However, since the storage device is located off-board, the onboard systems
bear no burden.

8.3 Map Stitching

When an autonomous agent is planning to go from point A to point B within a master
map {S}, a series of submaps will be queried sequentially following the aforementioned data
structure. However, the list of queried submaps will not be loaded directly onto the onboard
system due to the storage space limitation. Thus we propose to use a first-in-first-out (FIFO)
queue for the onboard map management processing, using at most three submaps at a time.

Within the FIFO queue, one submap will be the ego map where the vehicle is traveling
in, and the other two will be forecasting maps on the horizon of the vehicle’s path planning.
These submaps have some overlapping areas on the border as buffer zones.

However, due to the noises and errors in each submap creation process, naively overlap-
ping two submaps according to their UTM tags would result in inconsistent buffer zones as
shown in Figure 8.1. Thus, we further calibrate each map on the buffer zones with point
registration algorithms. With the UTM tags as initial guesses, we apply the Normal Distri-
bution Transformation [89] point matching between the two LIDAR point clouds to optimize
the relative translation and rotation. Once the vehicle passes through the buffer zones, we
will update the global coordinate reference with the ego map’s UTM tag. Thus, the relative
localization solution of the vehicle is always stable.

CHAPTER 8. SUBMAP QUERY AND STITCHING 97

Figure 8.2: Experiment map coverage in Downtown Berkeley

8.4 Experiments

Dataset and Preparation

The data used for our experiment is collected in downtown Berkeley with a similar sensor
setup in the UrbanLoco dataset [157]. Figure 8.2 is a demonstration of the submaps projected
onto the Google Map [41]. Here, each submap is constructed with the SLAM algorithm
provided by Koide et al. [67], and a global UTM tag is added to each map for initial
alignment.

Considering the geometrical nature of the proposed framework, the geographical local-
ization task is chosen for evaluation purposes. The ground truth localization is from an
RTK-IMU combined localization solution as introduced in [157], and we use a single-point
GPS as the baseline. We evaluate the absolute transnational error for both methods. For
ATLAS, the error is calculated in each corresponding submap frame, and for the GPS, the
error is calculated in the global frame.

Experiment Result

To begin with, the experiment is performed in real-time on a laptop with Intel 8750H CPU
and 16GB memory, and the proposed framework could query and stitch up the submaps
without impacting other sensing processes.

A visualization of the completely stitched map could be seen in Figure 8.3, but during

CHAPTER 8. SUBMAP QUERY AND STITCHING 98

Figure 8.3: Experiment stitching result in Downtown Berkeley

Mean Absolute Translation Error(m) Translation RMSE

ATLAS 0.79 0.92
GPS baseline 2.33 3.19

Table 8.1: Translation error with ATLAS and GPS baseline

implementation, we only use three maps in the FIFO queue. The translation error of the
localization experiment with the ATLAS map system is shown in Figure 8.4a. Compared with
the GPS baseline in Figure 8.4b, the mean absolute error of the ATLAS-backed localization
is significantly lower than that of the baseline. The periodic increases in absolute errors
with the ATLAS systems correspond to the map transition phase. It is worth noticing that
the maximum deviation of 2.15m of the ATLAS framework is still lower than the average
deviation of the baseline. Quantitatively (Table 8.1, both absolute errors and the RMS are
significantly smaller than those of the baseline GPS localization. The low RMS of ATLAS
shows a smooth trajectory prediction. Thus, the ATLAS-backed localization is efficient and
reliable in urban settings.

CHAPTER 8. SUBMAP QUERY AND STITCHING 99

(a) ATLAS (b) GPS

Figure 8.4: Algorithm performance in transnational error along the trajectory

8.5 Chapter Summary

As the last step in the complete life cycle of the HD map development process, this chapter
discusses a submap management framework ATLAS in the urban driving scenario. The
ATLAS framework stores submaps within an RB tree data structure for fast query and
efficient storage. A following map stitching mechanism is further designed to smooth the
transition between submaps during online deployment. The proposed framework is tested
with real-world localization tasks, and the result shows an efficient and robust localization
in urban settings.

100

Chapter 9

Conclusion and Future Work

9.1 Summary

Recognizing the HD map as critical infrastructure for urban autonomous driving, this dis-
sertation reviews the complete life cycle of the HD map development process. To make the
HD map development suitable for large-scale urban applications, the materials included in
this work contribute to a salable HD map solution from multiple perspectives. We start
the discussion from the initial sensor setups and data collections for mapping purposes and
then extend to the automatic HD map construction algorithms. Lastly, we review the map
management system for real-time deployment of the HD map.

Mapping Platform and Data

Sensors and data are fundamental elements for any mapping tasks. To begin with, we first
discuss the mapping platform and the dataset for mapping applications in Part I. Chapter 2
focuses on the joint calibration and synchronization of the sensor suite on a mobile mapping
platform. In this section, the complementary LIDAR-camera configuration is discussed, and
a semantic-based optimization algorithm is proposed to estimate both the geometric and
the temporal relationship between these two sensor modalities. In Chapter 3, an exemplar
mapping platform and an urban dataset are introduced. The design of the mapping vehicle
considers complicated urban scenarios, and the dataset includes some of the most challenging
city driving scenes. The dataset is open to the public to encourage research in the mapping
field. With the mapping platform configured, the next question in the life cycle of an HD
map is the routing problem. With more than one mapping vehicle, how to efficiently route a
mapping fleet is discussed in Chapter 4. Here, a Model Predictive Control-based algorithm
is proposed to accommodate traffic conditions and map updating problems.

CHAPTER 9. CONCLUSION AND FUTURE WORK 101

HD Map Construction

With the sensor calibrated and the data collected, Part II focuses on the algorithms related
to the automatic generation of the HD map. Chapter 5 introduces a particle filter-based
algorithm to efficiently explore the lanes in complicated urban situations. The algorithm
specifically solves the merging, forking, and irregular lane cases on city roads, and the
proposed method was tested in densely urbanized areas to demonstrate its robustness in
complicated scenes. Chapter 6 moves more towards the intersections and potential solutions
with a multi-sensor setup. Here, we treat the mapping problem as semantic segmentation in
the Bird’s Eye View frame. Network design comparisons are also provided to demonstrate
a preferred strategy in cross-domain fusion tasks. Chapter 7 studies the potential of multi-
task learning for both static and dynamic objects on the road to exploit the information in
limited data. Built upon a single backbone, the proposed method compresses six tasks into
one neural network, and the evaluation shows that the performance was comparable with
single-task models.

HD Map Management

In Part III, the management and deployment of the HD map are discussed. Chapter 8
introduces a tile-based map management system to query and combine smaller HD maps
for real-time application. The proposed framework leverages an RB tree data structure and
uses a submap queue during vehicle operation to store only useful maps.

9.2 Future Work

With the HD map applications infiltrating into more perspectives of urban autonomous
driving, more mapping-related topics come into the view of researchers recently. Within the
scope of this dissertation, some of these topics are not entirely covered, but more research is
needed in the following domains.

Data Efficiency

Methods mentioned in Part II leverage public datasets to parse the driving scene. Looking
back at the datasets, one might find that the scene labels are still created by human beings.
In the past few years, self-supervised learning has been advancing quickly to help humans
label scenes. More recently, the raise of MLOps research pushes data efficiency to another
level. Map researchers also need to consider the data source and efficiency in the coming
years for more economic map construction.

CHAPTER 9. CONCLUSION AND FUTURE WORK 102

Map Update Problem

“A map expires the moment it is created.” Such a statement, though cruel to map re-
searchers, is true. More research is needed to see how maps could be updated accurately
at a reasonable cost. First, recognizing and localizing similar objects in the scene under
different lighting/traffic conditions are yet to be solved. Secondly, how to modify the old
map without replacing it completely is another potential research direction in the future.

103

Bibliography

[1] Min Bai, Gellert Mattyus, Namdar Homayounfar, Shenlong Wang, Shrinidhi Kow-
shika Lakshmikanth, and Raquel Urtasun. “Deep multi-sensor lane detection”. In:
Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE. 2018, pp. 3102–3109.

[2] Xiwei Bai, Weisong Wen, Guohao Zhang, and Li-Ta Hsu. “Real-time GNSS NLOS
Detection and Correction Aided by Sky-Pointing Camera and 3D LiDAR”. In: (2019).
ION GNSS+ 2019 Pacific PNT Meeting.

[3] Sven Bauer, Yasamin Alkhorshid, and Gerd Wanielik. “Using High-Definition maps
for precise urban vehicle localization”. In: Proceedings of 2016 IEEE International
Conference on Intelligent Transportation Systems (ITSC). Rio de Janeiro, Brazil,
Nov. 2016, pp. 492–497.

[4] Ulrich Baumann, Yuan-Yao Huang, Claudius Gläser, Michael Herman, Holger Banzhaf,
and J Marius Zöllner. “Classifying road intersections using transfer-learning on a deep
neural network”. In: Proceedings of 2018 IEEE International Conference Intelligent
Transportation System (ITSC). IEEE. 2018, pp. 683–690.

[5] Richard Bellman. “Dynamic programming”. In: Science 153.3731 (1966), pp. 34–37.

[6] Pietro Belotti, Pierre Bonami, John J. Forrest, Lazlo Ladanyi, Carl Laird, Jon Lee,
Francois Margot, and Andreas Waechter. Boomin.
Available at https://www.coin-or.org/Bonmin/.

[7] Paul J. Besl and Neil D. McKay. “A method for registration of 3-D shapes”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 14.2 (Feb. 1992),
pp. 239–256.

[8] Michael L. Bynum, Gabriel A. Hackebeil, William E. Hart, Carl D. Laird, Bethany
L. Nicholson, John D. Siirola, Jean-Paul Watson, and David L. Woodruff. Pyomo-
optimization modeling in python. Third. Vol. 67. Springer Science & Business Media,
2021.

[9] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang
Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuScenes: A
multimodal dataset for autonomous driving. https://www.nuscenes.org/. 2019.

BIBLIOGRAPHY 104

[10] Luca Caltagirone, Samuel Scheidegger, Lennart Svensson, and Mattias Wahde. “Fast
LIDAR-based road detection using fully convolutional neural networks”. In: Proceed-
ings of 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE. 2017, pp. 1019–1024.

[11] Yigit Baran Can, Alexander Liniger, Ozan Unal, Danda Pani Paudel, and Luc Van
Gool. “Understanding Bird’s-Eye View Semantic HD-Maps Using an Onboard Monoc-
ular Camera”. In: Computing Research Repository (CoRR) abs/2012.03040 (2020).

[12] Carmera. CARMERA Launches Inventory Map, Provides Live Look at Road Changes
for Autonomous Driving and More. https : / / medium . com / field - of - view /

carmera-launches-inventory-map-provides-live-look-at-road-changes-

for-autonomous-driving-and-more-f4c284d4c77b. Accessed: 2022-03-10. 2021.

[13] Turner-Fairbank Highway Research Center. Intersection Safety. https://highways.
dot.gov/research/research-programs/safety/intersection-safety. Accessed:
2022-03-10. 2021.

[14] Ming-Fang Chang, John W Lambert, Patsorn Sangkloy, Jagjeet Singh, Slawomir Bak,
Andrew Hartnett, De Wang, Peter Carr, Simon Lucey, Deva Ramanan, and James
Hays. “Argoverse: 3D Tracking and Forecasting with Rich Maps”. In: Proceedings of
2019Conference on Computer Vision and Pattern Recognition (CVPR). 2019.

[15] Hongyu Chen, Zhijie Yang, Xiting Zhao, Guangyuan Weng, Haochuan Wan, Jianwen
Luo, Xiaoya Ye, Zehao Zhao, Zhenpeng He, Yongxia Shen, and Sören Schwertfeger.
“Advanced Mapping Robot and High-Resolution Dataset”. In: ArXiv abs/2007.12497
(2020).

[16] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig
Adam. “Encoder-Decoder with Atrous Separable Convolution for Semantic Image
Segmentation”. In: Proceedings of 2018 European Conference on Computer Vision
(ECCV). Ed. by Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair
Weiss. Cham: Springer International Publishing, 2018, pp. 833–851. isbn: 978-3-030-
01234-2.

[17] Liangfu Chen, Zeng Yang, Jianjun Ma, and Zheng Luo. “Driving scene perception
network: Real-time joint detection, depth estimation and semantic segmentation”. In:
Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision
(WACV). IEEE. 2018, pp. 1283–1291.

[18] Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Andrew G Berneshawi, Huimin Ma, Sanja
Fidler, and Raquel Urtasun. “3d object proposals for accurate object class detection”.
In: Proceedings of 2015 Advances in Neural Information Processing Systems (NIPS).
Citeseer. 2015, pp. 424–432.

[19] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. “Multi-view 3D Object De-
tection Network for Autonomous Driving”. In: Proceedings of 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2017, pp. 6526–6534.

BIBLIOGRAPHY 105

[20] Yihua Chen and John Krumm. “Probabilistic modeling of traffic lanes from GPS
traces”. In: GIS: Proceedings of the ACM International Symposium on Advances in
Geographic Information Systems. New York, New York, USA: ACM Press, 2010,
pp. 81–88. isbn: 9781450304283. doi: 10 . 1145 / 1869790 . 1869805. url: http :

//portal.acm.org/citation.cfm?doid=1869790.1869805.

[21] Roberto Cipolla, Yarin Gal, and Alex Kendall. “Multi-task Learning Using Un-
certainty to Weigh Losses for Scene Geometry and Semantics”. In: Proceedings of
2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018,
pp. 7482–7491.

[22] William Cook. Concorde VLP Solver. url: https://www.math.uwaterloo.ca/tsp/
concorde/downloads/downloads.htm.

[23] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-
zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. “The Cityscapes
Dataset for Semantic Urban Scene Understanding”. In: Proceedings of 2016 the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

[24] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.
“CARLA: An Open Urban Driving Simulator”. In: Proceedings of 2017 The Annual
Conference on Robot Learning (CoRL). Mountain View, U.S.A., Nov. 2017, pp. 1–16.

[25] Mahdi Elhousni, Yecheng Lyu, Ziming Zhang, and Xinming Huang. “Automatic
Building and Labeling of HD Maps with Deep Learning”. In: Proceedings of 2020
AAAI Conference on Artificial Intelligence. 2020.

[26] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with Noise”. In: KDD’96.
Portland, Oregon: AAAI Press, 1996, pp. 226–231.

[27] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. “The PASCAL Visual Object Classes (VOC) Challenge”. In: International
Journal of Computer Vision 88.2 (2010), pp. 303–338.

[28] Rui Fan, Hengli Wang, Peide Cai, and Ming Liu. “Sne-roadseg: Incorporating surface
normal information into semantic segmentation for accurate freespace detection”. In:
Proceedings of 2020 European Conference on Computer Vision (ECCV). Springer.
2020, pp. 340–356.

[29] Di Feng, Zining Wang, Yiyang Zhou, Lars Rosenbaum, Fabian Timm, Klaus Diet-
mayer, Masayoshi Tomizuka, andWei Zhan. “Labels Are Not Perfect: Inferring Spatial
Uncertainty in Object Detection”. In: arXiv preprint arXiv:2012.12195 (2020).

[30] Di Feng, Yiyang Zhou, Chenfeng Xu, Masayoshi Tomizuka, and Wei Zhan. “A Simple
and Efficient Multi-task Network for 3D Object Detection and Road Understanding”.
In: Proceedings of 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2021, pp. 7067–7074. doi: 10.1109/IROS51168.2021.9635858.

BIBLIOGRAPHY 106

[31] Jannik Fritsch, Tobias Kuehnl, and Andreas Geiger. “A New Performance Measure
and Evaluation Benchmark for Road Detection Algorithms”. In: Proceedings of 2013
IEEE International Conference Intelligent Transportation System (ITSC). 2013.

[32] Paul Furgale, Joern Rehder, and Roland Siegwart. “Unified Temporal and Spatial
Calibration for Multi-Sensor Systems”. In: Proceedings of 2013 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). 2013.

[33] Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir Anguelov, Congcong Li, and
Cordelia Schmid. “VectorNet: Encoding HD Maps and Agent Dynamics from Vector-
ized Representation”. In: Proceedings of 2020 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2020.

[34] Michael Garey and David Johnson. Computers and intractability: A guide to the
theory of npcompleteness. Computers and Intractability, 1979.

[35] Noa Garnett, Rafi Cohen, Tomer Pe’er, Roee Lahav, and Dan Levi. “3D-LaneNet:
End-to-End 3D Multiple Lane Detection”. In: Proceedings of 2019 International Con-
ference on Computer Vision (CVPR). 2019.

[36] Andreas Geiger, Martin Lauer, Christian Wojek, Christoph Stiller, and Raquel Ur-
tasun. “3D traffic scene understanding from movable platforms”. In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 36.5 (2014), pp. 1012–1025. issn:
01628828. doi: 10.1109/TPAMI.2013.185.

[37] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. “Vision meets
robotics: The KITTI dataset”. In: International Journal of Robotics Research (2013),
pp. 1229–1235.

[38] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for autonomous
driving? the kitti vision benchmark suite”. In: Proceedings of 2012 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE. 2012, pp. 3354–3361.

[39] Andreas Geiger, Frank Moosmann, Ömer Car, and Bernhard Schuster. “Automatic
camera and range sensor calibration using a single shot”. In: Proceedings of 2012
IEEE International Conference on Robotics and Automation. 2012, pp. 3936–3943.
doi: 10.1109/ICRA.2012.6224570.

[40] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative adversarial nets”. In:
Advances in neural information processing systems 27 (2014).

[41] Google Earth. Satellite Images of the San Francisco Bay Area. Accessed: 2022-03-10.
2021.

[42] Benjamin Graham and Laurens van der Maaten. “Submanifold sparse convolutional
networks”. In: arXiv preprint arXiv:1706.01307 (2017).

BIBLIOGRAPHY 107

[43] Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss, and Wolfram Burgard. “A Tuto-
rial on Graph-Based SLAM”. In: IEEE Intelligent Transportation Systems Magazine
2.4 (2010), pp. 31–43. issn: 1941-1197. doi: 10.1109/MITS.2010.939925.

[44] Paul D. Groves and Mounir Adjrad. “Performance assessment of 3D-mapping–aided
GNSS part 1: Algorithms, user equipment, and review”. In: Navigation 66.2 (2019),
pp. 341–362. doi: 10.1002/navi.288. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1002/navi.288. url: https://onlinelibrary.wiley.com/doi/abs/
10.1002/navi.288.

[45] Chunzhao Guo, Kiyosumi Kidono, Junichi Meguro, Yoshiko Kojima, Masaru Ogawa,
and Takashi Naito. “A low-cost solution for automatic lane-level map generation using
conventional in-car sensors”. In: IEEE Transactions on Intelligent Transportation
Systems 17.8 (Aug. 2016), pp. 2355–2366. issn: 15249050. doi: 10.1109/TITS.2016.
2521819.

[46] Yuliang Guo, Guang Chen, Peitao Zhao, Weide Zhang, Jinghao Miao, Jingao Wang,
and Tae Eun Choe. “Gen-LaneNet: A Generalized and Scalable Approach for 3D
Lane Detection”. In: Proceedings of 2020 European Conference on Computer Vision
(ECCV). 2020.

[47] Chenhang He, Hui Zeng, Jianqiang Huang, Xian-Sheng Hua, and Lei Zhang. “Struc-
ture Aware Single-stage 3D Object Detection from Point Cloud”. In: Proceedings of
2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2020,
pp. 11873–11882.

[48] Keld Helsgaun. An Extension of the Lin-Kernighan-Helsgaun TSP Solver for Con-
strained Traveling Salesman and Vehicle Routing Problems. 2017.

[49] Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren, and Dieter Fox. “Using
kinect-style depth cameras for dense 3D modeling of indoor environments”. In: The
International Journal of Robotics Research 31.5 (2012), pp. 647–663.

[50] Namdar Homayounfar, Justin Liang, Wei-Chiu Ma, Jack Fan, Xinyu Wu, and Raquel
Urtasun. “DAGMapper: Learning to Map by Discovering Lane Topology”. In: 2019
IEEE/CVF International Conference on Computer Vision (ICCV) (2019), pp. 2911–
2920.

[51] John Houston, Guido Zuidhof, Luca Bergamini, Yawei Ye, Long Chen, Ashesh Jain,
Sammy Omari, Vladimir Iglovikov, and Peter Ondruska. One Thousand and One
Hours: Self-driving Motion Prediction Dataset. 2020. doi: 10.48550/ARXIV.2006.
14480. url: https://arxiv.org/abs/2006.14480.

[52] Li-Ta Hsu, Feiyu Chen, and Shunsuke Kamijo. “Evaluation of multi-GNSSs and GPS
with 3D map methods for pedestrian positioning in an urban canyon environment”. In:
IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences 98.1 (2015), pp. 284–293.

BIBLIOGRAPHY 108

[53] Li-Ta Hsu, Yanlei Gu, and Shunsuke Kamijo. “3D building model-based pedestrian
positioning method using GPS/GLONASS/QZSS and its reliability calculation”. In:
GPS Solutions 3 (2016), pp. 413–428.

[54] Albert Huang, Abraham Bachrach, Peter Henry, Michael Krainin, Daniel Matu-
rana, Dieter Fox, and Nicholas Roy. “Visual odometry and mapping for autonomous
flight using an RGB-D camera”. In: Proceedings of 2011 International Symposium on
Robotics Research (ISRR). 2011.

[55] Ganesh Iyer, R. Karnik Ram, J. Krishna Murthy, and K. Madhava Krishna. “Cal-
ibNet: Geometrically Supervised Extrinsic Calibration using 3D Spatial Transformer
Networks”. In: Proceedings of 2018 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). 2018, pp. 1110–1117. doi: 10.1109/IROS.2018.
8593693.

[56] Jinyong Jeong, Younggun Cho, Young-Sik Shin, Hyunchul Roh, and Ayoung Kim.
“Complex urban dataset with multi-level sensors from highly diverse urban environ-
ments”. In: The International Journal of Robotics Research 38.6 (2019), pp. 642–657.
doi: 10.1177/0278364919843996.

[57] Avdhut Joshi and Michael R. James. “Generation of Accurate Lane-Level Maps from
Coarse Prior Maps and Lidar”. In: IEEE Intelligent Transportation Systems Magazine
7.1 (2015), 19‘–29.

[58] Avdhut Joshi and Michael R. James. “Joint probabilistic modeling and inference
of intersection structure”. In: Proceedings of 2014 IEEE International Conference
on Intelligent Transportation Systems (ITSC). Institute of Electrical and Electronics
Engineers Inc., Nov. 2014, pp. 1072–1078. isbn: 9781479960781. doi: 10.1109/ITSC.
2014.6957830.

[59] Jaehyeon Kang and Nakju Doh. “Automatic targetless camera–LIDAR calibration by
aligning edge with Gaussian mixture model”. In: Journal of Field Robotics 37 (Aug.
2019). doi: 10.1002/rob.21893.

[60] Andrej Karpathy. Tesla Vision Presentation on Tesla AI Day. 2021. url: https:
//youtu.be/j0z4FweCy4M?t=2928.

[61] Shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, Yoshiki Ninomiya, Kazuya Takeda,
and Tsuyoshi Hamada. “An Open Approach to Autonomous Vehicles”. In: IEEE
Micro 35.6 (2015), pp. 60–69.

[62] Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya Maeda, Manato Hirabayashi,
Yuki Kitsukawa, AbrahamMonrroy, Tomohito Ando, Yusuke Fujii, and Takuya Azumi.
“Autoware on Board: Enabling Autonomous Vehicles with Embedded Systems”. In:
Proceedings of 2018 ACM/IEEE International Conference on Cyber-Physical Systems.
ICCPS ’18. Porto, Portugal: IEEE Press, 2018, pp. 287–296. isbn: 9781538653012.
doi: 10.1109/ICCPS.2018.00035. url: https://doi.org/10.1109/ICCPS.2018.
00035.

BIBLIOGRAPHY 109

[63] Shodai Kato, Mitsunori Kitamura, Taro Suzuki, and Yoshiharu Amano. “Nlos satellite
detection using a fish-eye camera for improving gnss positioning accuracy in urban
area”. In: Journal of robotics and mechatronics 28.1 (2016), pp. 31–39.

[64] Christian Kerl, Jürgen Sturm, and Daniel Cremers. “Robust odometry estimation for
RGB-D cameras”. In: Proceedings of 2013 IEEE International Conference on Robotics
and Automation (ICRA). 2013.

[65] Eung-su Kim and Soon-Yong Park. “Extrinsic Calibration between Camera and Li-
DAR Sensors by Matching Multiple 3D Planes”. In: Sensors 20.1 (). issn: 1424-8220.
doi: 10.3390/s20010052.

[66] Akio Kodaira, Yiyang Zhou, Pengwei Zang, Wei Zhan, and Masayoshi Tomizuka.
“SST-Calib: Simultaneous Spatial-Temporal Parameter Calibration between LIDAR
and Camera”. In: 2022 IEEE Conference on Intelligent Transportation Systems (ITSC),
under review. 2022.

[67] Kenji Koide, Jun Miura, and Emanuele Menegatti. “A Portable 3D LIDAR-based
System for Long-term and Wide-area People Behavior Measurement”. In: (2019).
Advanced Robotic Systems.

[68] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh, and Steven Waslander.
“Joint 3D Proposal Generation and Object Detection from View Aggregation”. In:
Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2018, pp. 1–8.

[69] Julius Kümmerle, Tilman Kühner, and Martin Lauer. “Automatic Calibration of
Multiple Cameras and Depth Sensors with a Spherical Target”. In: Proceedings of
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
2018, pp. 1–8. doi: 10.1109/IROS.2018.8593955.

[70] Lars Kunze, Tom Bruls, Tarlan Suleymanov, and Paul Newman. “Reading between
the Lanes: Road Layout Reconstruction from Partially Segmented Scenes”. In: Pro-
ceedings of 2018 IEEE Conference on Intelligent Transportation Systems, Proceedings,
ITSC. Vol. 2018-November. Institute of Electrical and Electronics Engineers Inc., Dec.
2018, pp. 401–408. isbn: 9781728103235. doi: 10.1109/ITSC.2018.8569270.

[71] Kiho Kwak, Daniel F. Huber, Hernan Badino, and Takeo Kanade. “Extrinsic calibra-
tion of a single line scanning lidar and a camera”. In: Proceedings of 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems. 2011, pp. 3283–3289.
doi: 10.1109/IROS.2011.6094490.

[72] Leonid Laboshin. loam velodyne. https://github.com/laboshinl/loam_velodyne.
2016.

[73] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar
Beijbom. “PointPillars: Fast Encoders for Object Detection from Point Clouds”. In:
Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2018.

BIBLIOGRAPHY 110

[74] Lisa Lee, Emilio Parisotto, Devendra Singh Chaplot, Eric Xing, and Ruslan Salakhut-
dinov. “Gated Path Planning Networks”. In: Proceedings of 2018 International Con-
ference on Machine Learning (ICML). 2018.

[75] Kun Lei, Peng Guo, Yi Wang, Xiao Wu, and Wenchao Zhao. Solve routing prob-
lems with a residual edge-graph attention neural network. 2021. arXiv: 2105.02730
[cs.LG].

[76] Jun Li, Xue Mei, Danil Prokhorov, and Dacheng Tao. “Deep Neural Network for
Structural Prediction and Lane Detection in Traffic Scene”. In: IEEE Transactions on
Neural Networks and Learning Systems 28.3 (Mar. 2017), pp. 690–703. issn: 21622388.
doi: 10.1109/TNNLS.2016.2522428.

[77] Qi Li, Yue Wang, Yilun Wang, and Hang Zhao. “HDMapNet: An Online HD Map
Construction and Evaluation Framework”. In: Proceedings of 2021 Mapping workshop
of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Virtual, June 2021.

[78] Xuyou Li, Shitong Du, Guangchun Li, and Haoyu Li. “Integrate point-cloud segmen-
tation with 3D lidar scan-matching for mobile robot localization and mapping”. In:
Sensors 20.1 (2020), p. 237.

[79] Justin Liang, Namdar Homayounfar, Wei-Chiu Ma, Shenlong Wang, and Raquel Ur-
tasun. “Convolutional recurrent network for road boundary extraction”. In: Proceed-
ings of 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2019, pp. 9512–9521.

[80] Ming Liang, Bin Yang, Yun Chen, Rui Hu, and Raquel Urtasun. “Multi-Task Multi-
Sensor Fusion for 3D Object Detection”. In: Proceedings of 2019 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2019, pp. 7345–7353.

[81] Tsung-Yi Lin, Priyal Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. “Focal Loss
for Dense Object Detection”. In: Proceedings of 2017 IEEE International Conference
on Computer Vision (ICCV). 2017, pp. 2980–2988.

[82] Rong Liu, Jinling Wang, and Bingqi Zhang. “High Definition Map for Automated
Driving: Overview and Analysis”. In: Journal of Navigation 73.2 (2020), pp. 324–
341. doi: 10.1017/S0373463319000638.

[83] Zhijian Liu, Haotian Tang, Sibo Zhu, and Song Han. “SemAlign: Annotation-Free
Camera-LiDAR Calibration with Semantic Alignment Loss”. In: Proceedings of 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2021.

[84] Bruce D Lucas and Takeo Kanade. “An iterative image registration technique with
an application to stereo vision”. In: Proceedings of 1981 International Conference on
Arrtificial Intelligence (IJCAI). 1981, pp. 674–679.

BIBLIOGRAPHY 111

[85] Xudong Lv, Boya Wang, Ziwen Dou, Dong Ye, and Shuo Wang. “LCCNet: LiDAR
and Camera Self-Calibration using Cost Volume Network”. In: Proceedings of 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPR). 2021, pp. 2888–2895. doi: 10.1109/CVPRW53098.2021.00324.

[86] Wei-Chiu Ma, Ignacio Tartavull, Ioan Andrei Bârsan, Shenlong Wang, Min Bai,
Gellert Mattyus, Namdar Homayounfar, Shrinidhi Kowshika Lakshmikanth, Andrei
Pokrovsky, and Raquel Urtasun. Exploiting Sparse Semantic HD Maps for Self-
Driving Vehicle Localization. 2019. arXiv: 1908.03274 [cs.CV].

[87] Yi Ma, Stefano Soatto, Jana Kosecka, and S. Shankar Sastry. An Invitation to 3-D
Vision: From Images to Geometric Models. SpringerVerlag, 2003. isbn: 0387008934.

[88] Will Maddern, Geoff Pascoe, Chris Linegar, and Paul Newman. “1 Year, 1000km:
The Oxford RobotCar Dataset”. In: The International Journal of Robotics Research
(IJRR) 36.1 (2017), pp. 3–15. doi: 10.1177/0278364916679498. eprint: http://ijr.
sagepub.com/content/early/2016/11/28/0278364916679498.full.pdf+html.
url: http://dx.doi.org/10.1177/0278364916679498.

[89] Martin Magnusson, Achim Lilienthal, and Tom Duckett. “Scan registration for au-
tonomous mining vehicles using 3D-NDT”. In: Journal of Field Robotics 24.10 (Oct.
2007), pp. 803–827.

[90] Mark Maimone, Yang Cheng, and Larry Matthies. “Two years of visual odometry on
the mars exploration rovers”. In: Journal of Field Robotics 24.2 (2007), pp. 169–186.

[91] Andrew Makhorin. GLPK (GNU Linear Programming Kit).
Available at http://www.gnu.org/software/glpk/glpk.html.

[92] Kaustubh Mani, Swapnil Daga, Shubhika Garg, Sai Shankar Narasimhan, Madhava
Krishna, and Krishna Murthy Jatavallabhula. “MonoLayout: Amodal scene layout
from a single image”. In: Proceedings of 2020 IEEE Winter Conference on Applica-
tions of Computer Vision (WACV). Snowmass, U.S.A, Mar. 2020, pp. 1689–1697.

[93] John Marshall. “Creating and viewing skyplots”. In:GPS Solutions 6.1 (2002), pp. 118–
120.

[94] Gellert Mattyus, Shenlong Wang, Sanja Fidler, and Raquel Urtasun. “HDMaps: Fine-
Grained Road Segmentation by Parsing Ground and Aerial Images”. In: Proceedings
of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
June 2016.

[95] Annika Meyer, N. Ole Salscheider, Piotr F. Orzechowski, and Christoph Stiller. “Deep
Semantic Lane Segmentation for Mapless Driving”. In: Proceedings of 2018 IEEE
International Conference on Intelligent Robots and Systems. Institute of Electrical
and Electronics Engineers Inc., Dec. 2018, pp. 869–875. isbn: 9781538680940. doi:
10.1109/IROS.2018.8594450.

BIBLIOGRAPHY 112

[96] Annika Meyer, Jonas Walter, and Martin Lauer. “Fast Lane-Level Intersection Es-
timation using Markov Chain Monte Carlo Sampling and B-Spline Refinement”. In:
Proceedings of 2020 IEEE Intelligent Vehicles Symposium (IV). 2020.

[97] Annika Meyer, Jonas Walter, Martin Lauer, and Christoph Stiller. “Anytime Lane-
Level Intersection Estimation Based on Trajectories of Other Traffic Participants”.
In: Proceedings of 2019 IEEE Intelligent Transportation Systems Conference (ITSC).
2019, pp. 3122–3129.

[98] Microsoft. Microsoft Bing Map. 2020.

[99] Andres Milioto, Ignacio Vizzo, Jens Behley, and Cyrill Stachniss. “Rangenet++: Fast
and accurate lidar semantic segmentation”. In: Proceedings of 2019 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE. 2019, pp. 4213–
4220.

[100] Peyman Moghadam, Michael Bosse, and Robert Zlot. “Line-based extrinsic calibra-
tion of range and image sensors”. In: Proceedings of 2013 IEEE International Con-
ference on Robotics and Automation (ICRA). 2013, pp. 3685–3691. doi: 10.1109/
ICRA.2013.6631095.

[101] Michael Montemerlo, Jan Becker, Suhrid Bhat, Hendrik Dahlkamp, Dmitri Dolgov,
Scott Ettinger, Dirk Haehnel, Tim Hilden, Gabe Hoffmann, Burkhard Huhnke, Doug
Johnston, Stefan Klumpp, Dirk Langer, Anthony Levandowski, Jesse Levinson, Julien
Marcil, David Orenstein, Johannes Paefgen, Isaac Penny, Anna Petrovskaya, Mike
Pflueger, Ganymed Stanek, David Stavens, Antone Vogt, and Sebastian Thrun. “Ju-
nior: The Stanford Entry in the Urban Challenge”. In: The DARPA Urban Chal-
lenge: Autonomous Vehicles in City Traffic. Ed. by Martin Buehler, Karl Iagnemma,
and Sanjiv Singh. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 91–123.
isbn: 978-3-642-03991-1. doi: 10 . 1007 / 978 - 3 - 642 - 03991 - 1 _ 3. url: https :
//doi.org/10.1007/978-3-642-03991-1_3.

[102] Mong H. Ng, Kaahan Radia, Jianfei Chen, Dequan Wang, Ionel Gog, and Joseph
E. Gonzalez. “BEV-Seg: Bird’s Eye View Semantic Segmentation Using Geometry
and Semantic Point Cloud”. In: Proceedings of Scalability in Autonomous Driving
Workshop of IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). Virtual, June 2020, pp. 11138–11147.

[103] Marcos Nieto, Jon Arróspide, and Luis Salgado. “Road environment modeling using
robust perspective analysis and recursive Bayesian segmentation”. In: Mach. Vis.
Appl. 22 (Nov. 2011), pp. 927–945. doi: 10.1007/s00138-010-0287-7.

[104] Marcos Nieto, Andoni Cortés, Oihana Otaegui, Jon Arróspide, and Luis Salgado.
“Real-Time Lane Tracking Using Rao-Blackwellized Particle Filter”. In: J. Real-Time
Image Process. 11.1 (Jan. 2016), pp. 179–191. issn: 1861-8200. doi: 10.1007/s11554-
012-0315-0. url: https://doi.org/10.1007/s11554-012-0315-0.

BIBLIOGRAPHY 113

[105] David Nister, Oleg Naroditsky, and James Bergen. “Visual Odometry for Ground
Vehicle Applications”. In: Journal of Field Robotics 23.1 (2006), pp. 3–20.

[106] David Nistér. “An efficient solution to the five-point relative pose problem”. In: IEEE
transactions on pattern analysis and machine intelligence 26.6 (2004), pp. 756–770.

[107] Nvidia. NVIDIA DRIVE Mapping. 2020. url: https://developer.nvidia.com/
drive/drive-mapping.

[108] Malte Oeljeklaus, Frank Hoffmann, and Torsten Bertram. “A combined recogni-
tion and segmentation model for urban traffic scene understanding”. In: Proceedings
of 2017 IEEE International Conference Intelligent Transportation System (ITSC).
IEEE. 2017, pp. 1–6.

[109] OpenStreetMap contributors. OpenStreetMap. 2022.

[110] Bowen Pan, Jiankai Sun, Ho Yin Tiga Leung, Alex Andonian, and Bolei Zhou. “Cross-
View Semantic Segmentation for Sensing Surroundings”. In: IEEE Robotics and Au-
tomation Letters 5.3 (2020), pp. 4867–4873.

[111] Gaurav Pandey, James R. McBride, Silvio Savarese, and Ryan M. Eustice. “Auto-
matic Extrinsic Calibration of Vision and Lidar by Maximizing Mutual Information”.
In: J. Field Robotics 32 (2015), pp. 696–722.

[112] Chanoh Park, Peyman Moghadam, Soohwan Kim, Sridha Sridharan, and Clinton
Fookes. “Spatiotemporal Camera-LiDAR Calibration: A Targetless and Structureless
Approach”. In: IEEE Robotics and Automation Letters 5 (2020), pp. 1556–1563.

[113] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”.
In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Curran Asso-
ciates, Inc., 2019, pp. 8024–8035. url: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

[114] David Paz, Hengyuan Zhang, and Henrik I. Christensen. TridentNet: A Conditional
Generative Model for Dynamic Trajectory Generation. 2021. arXiv: 2101 . 06374

[cs.RO].

[115] David Paz, Hengyuan Zhang, Qinru Li, Hao Xiang, and Henrik Christensen. “Proba-
bilistic Semantic Mapping for Urban Autonomous Driving Applications”. In: Proceed-
ings of 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2020.

BIBLIOGRAPHY 114

[116] Juraj Peršić, Luka Petrović, Ivan Marković, and Ivan Petrović. “Spatiotemporal Mul-
tisensor Calibration via Gaussian Processes Moving Target Tracking”. In: IEEE Trans-
actions on Robotics 37.5 (2021), pp. 1401–1415. doi: 10.1109/TRO.2021.3061364.

[117] Jonah Philion and Sanja Fidler. “Lift, Splat, Shoot: Encoding Images From Arbitrary
Camera Rigs by Implicitly Unprojecting to 3D”. In: Proceedings of 2020 European
Conference on Computer Vision. 2020.

[118] Fabian Poggenhans, Jan-Hendrik Pauls, Johannes Janosovits, Stefan Orf, Maximilian
Naumann, Florian Kuhnt, and Matthias Mayr. “Lanelet2: A High-Definition Map
Framework for the Future of Automated Driving”. In: Proceedings of 2018 IEEE
Intelligent Transportation System Conference (ITSC). Hawaii, USA, Nov. 2018. url:
http://www.mrt.kit.edu/z/publ/download/2018/Poggenhans2018Lanelet2.

pdf.

[119] Ptolemy. Ptolemy’s Map. http://artscimedia.case.edu/wp-content/uploads/
sites/190/2016/07/14223557/769.G.2.jpg. Accessed: 2022-03-31. 2021.

[120] Yeqiang Qian, John M Dolan, and Ming Yang. “DLT-Net: Joint detection of drivable
areas, lane lines, and traffic objects”. In: IEEE Transactions on Intelligent Trans-
portation Systems (T-ITS) 21.11 (2019), pp. 4670–4679.

[121] Tong Qin, Peiliang Li, and Shaojie Shen. “VINS-Mono: A Robust and Versatile
Monocular Visual-Inertial State Estimator”. In: IEEE Transactions on Robotics 34.4
(2018), pp. 1004–1020.

[122] Tong Qin and Shaojie Shen. “Online Temporal Calibration for Monocular Visual-
Inertial Systems”. In: Proceedings of 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 3662–3669.

[123] Fitsum A Reda, Guilin Liu, Kevin J Shih, Robert Kirby, Jon Barker, David Tar-
jan, Andrew Tao, and Bryan Catanzaro. “Sdc-net: Video prediction using spatially-
displaced convolution”. In: Proceedings of 2018 European Conference on Computer
Vision (ECCV). 2018, pp. 718–733.

[124] Thomas Roddick and Roberto Cipolla. “Predicting Semantic Map Representations
from Images using Pyramid Occupancy Networks”. In: Proceedings of 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). Virtual, June
2020, pp. 11138–11147.

[125] Oliver Roeth, Daniel Zaum, and Claus Brenner. “Road network reconstruction us-
ing reversible jump MCMC simulated annealing based on vehicle trajectories from
fleet measurements”. In: Proceedings of 2016 IEEE Intelligent Vehicles Symposium,
Proceedings. Vol. 2016-August. Institute of Electrical and Electronics Engineers Inc.,
Aug. 2016, pp. 194–201. isbn: 9781509018215. doi: 10.1109/IVS.2016.7535385.

BIBLIOGRAPHY 115

[126] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional net-
works for biomedical image segmentation”. In: Proceedings of 2015 International Con-
ference on Medical image computing and computer-assisted intervention. Springer.
2015, pp. 234–241.

[127] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. “ImageNet Large Scale Visual Recognition Challenge”.
In: International Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252. doi:
10.1007/s11263-015-0816-y.

[128] Nick Schneider, Florian Piewak, Christoph Stiller, and Uwe Franke. “RegNet: Multi-
modal sensor registration using deep neural networks”. In: Proceedings of 2017 IEEE
Intelligent Vehicles Symposium (IV). 2017, pp. 1803–1810.

[129] Aleksandr Segal, Dirk Hähnel, and Sebastian Thrun. “Generalized-ICP”. In: June
2009. doi: 10.15607/RSS.2009.V.021.

[130] Heiko G. Seif and Xiaolong Hu. “Autonomous Driving in the iCity—HD Maps as a
Key Challenge of the Automotive Industry”. In: Engineering 2.2 (2016), pp. 159–162.
issn: 2095-8099. doi: https://doi.org/10.1016/J.ENG.2016.02.010. url:
http://www.sciencedirect.com/science/article/pii/S2095809916309432.

[131] Jianbo Shi and Jitendra Malik. “Normalized Cuts and Image Segmentation”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 22.8 (2000), pp. 888–905.

[132] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, and
Hongsheng Li. “PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object De-
tection”. In: Proceedings of 2020 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2020, pp. 10529–10538.

[133] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. “Point-RCNN: 3D Object Pro-
posal Generation and Detection from Point Cloud”. In: Proceedings of 2019 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2019, pp. 770–
779.

[134] Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li. “From
Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-
aggregation Network”. In: IEEE Transactions on Pattern Analysis and Machine In-
telligence (PAMI) (2020).

[135] Kiwoo Shin, Youngwook Paul Kwon, and Masayoshi Tomizuka. “RoarNet: A Robust
3D Object Detection based on RegiOn Approximation Refinement”. In: Proceedings
of 2019 IEEE Intelligent Vehicles Symposium (IV). 2019, pp. 2510–2515.

[136] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cre-
mers. “A Benchmark for the Evaluation of RGB-D SLAM Systems”. In: (2012).
IEEE/RSJ International Conference on Intelligent Robots and Systems.

BIBLIOGRAPHY 116

[137] Quinlan Sykora, Mengye Ren, and Raquel Urtasun. “Multi-Agent Routing Value Iter-
ation Network”. In: Proceedings of 2020 International Conference on Machine Learn-
ing (ICML). 2020.

[138] Richard Szeliski. Computer Vision: Algorithms and Applications. 1st. Berlin, Heidel-
berg: Springer-Verlag, 2010. isbn: 1848829345.

[139] Yuichi Takeda, Yiyang Zhou, Masayoshi Tomizuka, and Wei Zhan. “Sensor Fusions
Strategy for Bird’s Eye View Mapping Tasks in Autonomous Driving: A Matter of
What, When and How”. In: 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), under review. 2022.

[140] Levente Tamas and Zoltan Kato. “Targetless Calibration of a Lidar - Perspective
Camera Pair”. In: Proceedings of 2013 IEEE International Conference on Computer
Vision Workshops (ICCV). 2013, pp. 668–675. doi: 10.1109/ICCVW.2013.92.

[141] Mingxing Tan and Quoc Le. “Efficientnet: Rethinking model scaling for convolu-
tional neural networks”. In: Proceedings of 2019 International Conference on Machine
Learning (ICML). Long Beach, U.S.A., May 2019, pp. 6105–6114.

[142] C. Vincent Tao and Jonathan Li. Advances in Mobile Mapping Technology. ISPRS
Book Series v. 4. CRC Press, 2007. isbn: 9781134090686. url: https://books.
google.com/books?id=uXmmDwAAQBAJ.

[143] Zachary Taylor and Juan Nieto. “Motion-Based Calibration of Multimodal Sensor
Extrinsics and Timing Offset Estimation”. In: IEEE Transactions on Robotics 32.5
(2016), pp. 1215–1229. doi: 10.1109/TRO.2016.2596771.

[144] Marvin Teichmann, Michael Weber, Marius Zoellner, Roberto Cipolla, and Raquel
Urtasun. “Multinet: Real-time joint semantic reasoning for autonomous driving”. In:
Proceedings of 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE. 2018, pp. 1013–
1020.

[145] Haileleol Tibebu, Jamie Roche, Varuna De Silva, and Ahmet Kondoz. “LiDAR-Based
Glass Detection for Improved Occupancy Grid Mapping”. In: 21.7 (2021). issn: 1424-
8220. url: https://www.mdpi.com/1424-8220/21/7/2263.

[146] Chikao Tsuchiya, Yuichi Takeda, and Abdelaziz Khiat. “A Self-Localization Method
for Urban Environments using Vehicle-Body-Embedded Off-the-Shelf Sensors”. In:
Proceedings of 2019 IEEE Intelligent Vehicles Symposium (IV). 2019, pp. 1159–1165.
doi: 10.1109/IVS.2019.8813785.

[147] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke, Thomas Brox, and An-
dreas Geiger. “Sparsity Invariant CNNs”. In: Proceedings of 2017 International Con-
ference on 3D Vision (3DV). 2017.

BIBLIOGRAPHY 117

[148] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner,
M. N. Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris Geyer, Michele Git-
tleman, Sam Harbaugh, Martial Hebert, Thomas M. Howard, Sascha Kolski, Alonzo
Kelly, Maxim Likhachev, Matt McNaughton, Nick Miller, Kevin Peterson, Brian Pil-
nick, Raj Rajkumar, Paul Rybski, Bryan Salesky, Young-Woo Seo, Sanjiv Singh, Jar-
rod Snider, Anthony Stentz, William “Red” Whittaker, Ziv Wolkowicki, Jason Ziglar,
Hong Bae, Thomas Brown, Daniel Demitrish, Bakhtiar Litkouhi, Jim Nickolaou, Var-
sha Sadekar, Wende Zhang, Joshua Struble, Michael Taylor, Michael Darms, and Dave
Ferguson. “Autonomous Driving in Urban Environments: Boss and the Urban Chal-
lenge”. In: The DARPA Urban Challenge: Autonomous Vehicles in City Traffic. Ed.
by Martin Buehler, Karl Iagnemma, and Sanjiv Singh. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 1–59. isbn: 978-3-642-03991-1. doi: 10.1007/978-3-
642-03991-1_1. url: https://doi.org/10.1007/978-3-642-03991-1_1.

[149] Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans,
Dengxin Dai, and Luc Van Gool. “Multi-Task Learning for Dense Prediction Tasks:
A Survey”. In: arXiv preprint arXiv:2004.13379 (2020).

[150] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan
N. Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention Is All You Need”. In:
Proceedings of 2020 Annual Conference on Neural Information Processing Systems
(NIPS). Long Beach, U.S.A., Dec. 2017, pp. 6000–6010.

[151] Di Wang, Jianru Xue, Zhongxing Tao, Yang Zhong, Dixiao Cui, Shaoyi Du, and
Nanning Zheng. “Accurate Mix-Norm-Based Scan Matching”. In: Proceedings of 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018.

[152] Zining Wang, Wei Zhan, and Masayoshi Tomizuka. “Fusing Bird’s Eye View LIDAR
Point Cloud and Front View Camera Image for 3D Object Detection”. In: Proceedings
of 2018 IEEE Intelligent Vehicles Symposium (IV). 2018, pp. 1–6. doi: 10.1109/IVS.
2018.8500387.

[153] Ziyan Wang, Buyu Liu, Samuel Schulter, and Manmohan Chandraker. “A Para-
metric Top-View Representation of Complex Road Scenes”. In: Proceedings of 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long
Beach, U.S.A., June 2019, pp. 10317–10325.

[154] Waymo Open Dataset: An autonomous driving dataset. 2019.

[155] Xinkai Wei, Ioan Andrei Barsan, Shenlong Wang, Julieta Martinez, and Raquel Urta-
sun. “Learning to Localize through Compressed Binary Maps”. English (US). In: Pro-
ceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. IEEE Computer Society, June 2019, pp. 10308–10316. doi:
10.1109/CVPR.2019.01056.

BIBLIOGRAPHY 118

[156] Weisong Wen, Guohao Zhang, and Li-Ta Hsu. “Correcting GNSS NLOS by 3D LiDAR
and Building Height”. In: (2019). ION GNSS+ 2019.

[157] Weisong Wen, Yiyang Zhou, Guohao Zhang, Saman Fahandezh-Saadi, Xiwei Bai,
Wei Zhan, Masayoshi Tomizuka, and Li-Ta Hsu. “UrbanLoco: A Full Sensor Suite
Dataset for Mapping and Localization in Urban Scenes”. In: Proceedings of 2020 IEEE
International Conference on Robotics and Automation (ICRA). 2020, pp. 2310–2316.
doi: 10.1109/ICRA40945.2020.9196526.

[158] Chenfeng Xu, Bichen Wu, Zining Wang, Wei Zhan, Peter Vajda, Kurt Keutzer,
and Masayoshi Tomizuka. “Squeezesegv3: Spatially-adaptive convolution for efficient
point-cloud segmentation”. In: Proceedings of 2020 European Conference on Com-
puter Vision (ECCV). Springer. 2020, pp. 1–19.

[159] Danfei Xu, Dragomir Anguelov, and Ashesh Jain. “PointFusion: Deep Sensor Fusion
For 3D Bounding Box Estimation”. In: Proceedings of 2018 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2018.

[160] Fuwu Yan, Kewei Wang, Bin Zou, Luqi Tang, Wenbo Li, and Chen Lv. “LiDAR-
based multi-task road perception network for autonomous vehicles”. In: IEEE Access
8 (2020), pp. 86753–86764.

[161] Yan Yan, Yuxing Mao, and Bo Li. “Second: Sparsely Embedded Convolutional De-
tection”. In: Sensors 18.10 (2018), p. 3337.

[162] Bin Yang, Ming Liang, and Raquel Urtasun. “HDNET: Exploiting HD Maps for 3D
Object Detection”. In: Proceedings of 2018 Annual Conference on Robot Learning
(CoRL). 2018, pp. 146–155.

[163] Bin Yang, Wenjie Luo, and Raquel Urtasun. “PIXOR: Real-Time 3D Object Detec-
tion From Point Clouds”. In: Proceedings of 2018 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2018, pp. 7652–7660.

[164] Sheng Yang, Xiaoling Zhu, Xing Nian, Lu Feng, Xiaozhi Qu, and Teng Ma. “A ro-
bust pose graph approach for city scale LiDAR mapping”. In: Proceedings of 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018,
pp. 1175–1182. doi: 10.1109/IROS.2018.8593754.

[165] De Jong Yeong, Gustavo Velasco-Hernandez, John Barry, and Joseph Walsh. “Sensor
and Sensor Fusion Technology in Autonomous Vehicles: A Review”. In: Sensors 21.6
(2021). issn: 1424-8220. doi: 10.3390/s21062140. url: https://www.mdpi.com/
1424-8220/21/6/2140.

[166] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu,
Vashisht Madhavan, and Trevor Darrell. “BDD100K: A Diverse Driving Dataset for
Heterogeneous Multitask Learning”. In: Proceedings of 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). June 2020.

[167] Ji Zhang and Sanjiv Singh. “LOAM: Lidar Odometry and Mapping in Real-time”.
In: (2014). Robotics: Science and Systems (RSS).

BIBLIOGRAPHY 119

[168] Zhengyou Zhang. “Iterative Point Matching for Registration of Free-Form Curves”.
In: IRA Rapports de Recherche, Programme 4: Robotique, Image et Vision 4.1658
(1992).

[169] Yin Zhou and Oncel Tuzel. “VoxelNet: End-to-End Learning for Point Cloud Based
3D Object Detection”. In: Proceedings of 2018 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2018.

[170] Yiyang Zhou, Sixu Li, Tao Shu, and Pengwei Zang. MR.MPC: An MPC-based Frame-
work for Mapping Fleet Routing in Dynamic Urban Scenes. 2021.

[171] Yiyang Zhou, Yuichi Takeda, Masayoshi Tomizuka, and Wei Zhan. “Automatic Con-
struction of Lane-level HDMaps for Urban Scenes”. In: Proceedings of 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2021, pp. 6649–
6656. doi: 10.1109/IROS51168.2021.9636205.

[172] Yiyang Zhou and Zishuo Zhao. Atlas: Realtime large-scale localization with organized
submaps. Feb. 2020.

[173] Julius Ziegler, Philipp Bender, Markus Schreiber, Henning Lategahn, Tobias Strauß,
Christoph Stiller, Thao Dang, Uwe Franke, Nils Appenrodt, Christoph Gustav Keller,
Eberhard Kaus, Ralf G. Herrtwich, Clemens Rabe, David Pfeiffer, Frank Lindner,
Fridtjof Stein, Friedrich Erbs, Markus Enzweiler, Carsten Knöppel, Jochen Hipp, Mar-
tin Haueis, Maximilian Trepte, Carsten Brenk, Andreas Tamke, Mohammad Ghanaat,
Markus Braun, Armin Joos, Hans Fritz, Horst Mock, Martin Hein, and Eberhard
Zeeb. “Making Bertha Drive—An Autonomous Journey on a Historic Route”. In:
IEEE Intelligent Transportation Systems Magazine 6 (2014), pp. 8–20.

