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ABSTRACT OF THE DISSERTATION

Common Variance Fractional Factorial Designs for Model Comparisons

by

Shrabanti Chowdhury

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, June 2016

Dr. Subir Ghosh, Chairperson

In designing a fractional factorial experiment, a class of models with some

common parameters is considered for describing the data to be obtained from the

experiment. The uncommon parameters of these models are to be estimated with

the same variance as best as possible. Fractional factorial designs are obtained

with the various variance structures in terms of their equalities. A special variance

structure having the equal variances of the estimators of all uncommon parameters

is the main theme of this thesis. In particular the 2−factor interaction effect is

considered as the uncommon parameter in each model. Such plans with the ability

of estimating the uncommon parameter with equal precision are called Common

Variance (CV) designs. From the class of all CV designs for particular values of

the number of factors m and the number of runs n designs giving smallest value of

CV are obtained. Such designs are called Optimum CV designs. Both symmetric

and asymmetric factorial experiments are considered with factors at two and three

levels.

Two series of CV designs are obtained for general 3m factorial experiment

vii



with different number of runs. The common variance property is characterized

for general fractional factorial designs. Several sufficient conditions are obtained

using projection matrix and runs of the designs. The projection matrices of the

series of CV designs for general m are investigated and a special structure of

the projection matrix is presented for the CV designs including the optimum CV

designs. Optimum CV designs are also presented for these two series for different

m. CV designs are obtained with replicated runs. It is shown that a 32 CV

design which is optimum in the class of all CV designs for n = 6 remains CV

after replicating any of its six runs any number of times. Several other 32 CV

designs for n = 6 are presented which satisfy this general replication property.

Condition is derived for obtaining hierarchical CV designs for a general fractional

factorial experiment. The determination of CV designs was also extended to a

mixed level factorial experiment with factors at two and three levels. For a 2× 3

factorial experiment CV designs exist only under a constraint of replications, for

2m×3 and 2m×33 factorial experiments designs are presented which give common

variance within groups of similar structured interactions.
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Chapter 1

Introduction

1.1 Factorial Experiment

Many scientific investigations are carried out to study the effects of two or more

factors simultaneously on the response variable. In such investigation factorial

experiments are widely used as they provide a systematic and statistically valid

strategy to find the best result. Factorial designs are used in these experiments

which consider all the level combinations of the diferent factors and thus can study

the factors simultaneously.

In factorial experiments the treatments are formed by the different level com-

binations of the factors. A general factorial experiment is of the form sm1
1 × sm2

2 ×

. . . × smt
t , where si’s (si ≥ 2) are all distinct and there are mi number of factors

each with level si, i = 1(1)t. In factorial experiments we want to express the

factorial effects as a linear combination of the treatment effects. In particular

we consider levels 2 and 3, i.e. we take s1 = 2, s2 = 3 and all other si’s to

1



be zero. We denote the number of factors with two levels by ma and that with

three levels by mb, i.e. we consider factorial experiments of the form 2ma × 3mb .

We denote the factors with 2 levels by A1, A2, . . . , Ama and those with 3 levels

by B1, B2, . . . , Bmb
. Also we denote the levels of the factors of a 2ma factorial

experiment by (x1, x2, . . . , xma) and the levels of the factors of a 3mb experi-

ment by (y1, y2, . . . , ymb
) and thus a treatment of a 2ma × 3mb experiment is

of the form (x1, x2, . . . , xma , y1, y2, . . . , ymb
) , xi ∈ {0, 1} , yj ∈ {0, 1, 2} , i =

1 (1)ma, j = 1(1)mb. Any treatment and its effect for a 2ma factorial exper-

iment is expressed as (x1, . . . , xu, . . . , xma) where xu is the level of the factor

Au, xu = 0, 1, u = 1, . . . ,ma. Similarly, for a 3mb experiment, any treatment

and its effect is expressed as (y1, . . . , yv, . . . , ymb
) where yv is the level of factor

Bv, yv = 0, 1, 2, v = 1, . . . ,mb. For a 2ma factorial experiment out of the 2ma

factorial effects, there are
(
ma

1

)
= p1A main effects and

(
ma

u

)
= puA u-factor inter-

action effects, u = 2, . . . ,ma. Similarly, for a 3mb factorial experiment out of the

3mb factorial effects, there are 2
(
mb

1

)
= p1B main effects and 2v

(
mb

v

)
= pvB v-factor

interaction effects, v = 2, . . . ,mb. For the 2ma factorial experiment all p1A main

effects are linear but for the 3mb factorial experiment each of the p1B main effects

has a linear and a quadratic component. Now any factorial effect of a 2ma × 3mb

factorial experiment can be represented as Aα1
1 A

α2
2 . . . A

αma
ma B

β1

1 B
β2

2 . . . B
βmb
mb , αi ∈

{0, 1} , βj ∈ {0, 1, 2} , i = 1 (1)ma, j = 1(1)mb. The factorial effects of the 2ma

and 3mb factorial experiments are of the form Aα1
1 A

α2
2 . . . A

αma
ma and Bβ1

1 B
β2

2 . . . B
βmb
mb

respectively, αi ∈ {0, 1} , βj ∈ {0, 1, 2} , i = 1 (1)ma, j = 1(1)mb. When α1 =

. . . = αma = β1 = . . . = βmb
= 0, the effect becomes the general mean. For

2



a 2ma factorial experiment the effect becomes the linear effect for the uth factor

when αu = 1 and αk = 0, k = 1, . . . , u − 1, u + 1, . . . ,ma. For a 3mb factorial

experiment the effect becomes the linear effect for the vth factor when βv = 1

and βk = 0, k = 1, . . . , v − 1, v + 1, . . . ,mb, it becomes the quadratic effect

for the vth factor when βv = 2 and βk = 0, k = 1, . . . , v − 1, v + 1, . . . ,mb.

For αk = 0, k = 1, . . . , u1 − 1, u1 + 1, . . . , u2 − 1, u2 + 1, . . . ,ma, it becomes

the two-factor interaction effect between the factors Au1 and Au2 . Similarly for

βk = 0, k = 1, . . . , v1 − 1, v1 + 1, . . . , v2 − 1, v2 + 1, . . . ,mb, it becomes the two-

factor interaction effect between the factors Bv1 and Bv2 : (i) linear x linear when

βv1 = βv2 = 1, (ii) linear x quadratic when βv1 = 1, βv2 = 2, (iii) quadratic x

linear when βv1 = 2, βv2 = 1 and (iv) quadratic x quadratic when βv1 = βv2 = 2.

Define {xu1 + xu2 = ca} , ca ∈ {0, 1} , u1 < u2 = 1, . . . ,ma as the sum of all

the treatment effects for (xu1 , xu2) satisfying the equation xu1 + xu2 = ca over

the finite field GF (2) for a 2ma factorial experiment. Similarly for a 3mb facto-

rial experiment define {yv1 + b∗yv2 = cb} , b∗ ∈ {1, 2} , cb ∈ {0, 1, 2} , v1 < v2 =

1, . . . ,mb as the sum of all the treatment effects for (yv1, yv2) satisfying the equa-

tion yv1 + b∗yv2 = cb over the finite field GF (3) . For example in a 32 factorial

experiment the set {x1 + x2 = 0} corresponds to the sum of the treatment ef-

fects for (x1, x2) = (0, 0) , (2, 1) , (1, 2), satisfying the equation x1 + x2 = 0 over

GF (3). Now for the 2ma factorial experiment the general mean, main effects and

two-factor interaction effects can be expressed in terms of the treatment effects

3



as:

2maµ = {x1 = 0}+ {x1 = 1}

2ma−1Au = {xu = 1} − {xu = 0}

2ma−1Au1Au2 = {xu1 + xu2 = 1} − {xu1 + xu2 = 0} ,

where u1 < u2 = 1, . . . ,ma. Similarly for the 3mb factorial experiment the corre-

sponding factorial effects are expressed as:

3mbµ = {y1 = 0}+ {y1 = 1}+ {y1 = 2}

3mb−1Bv = {yv = 2} − {yv = 0}

3mb−1B2
v = {yv = 2} − 2 {yv = 1}+ {yv = 0}

3mb−1Bv1Bv2 = {yv1 + yv2 = 2} − {yv1 + yv2 = 0}

3mb−1B2
v1
B2
v2

= {yv1 + yv2 = 2} − 2 {yv1 + yv2 = 1}+ {yv1 + yv2 = 0}

3mb−1Bv1B
2
v2

= {yv1 + 2yv2 = 2} − {yv1 + 2yv2 = 0}

3mb−1B2
v1
Bv2 = {yv1 + 2yv2 = 2} − 2 {yv1 + 2yv2 = 1}+ {yv1 + 2yv2 = 0} ,

where v1 < v2 = 1, . . . ,mb. The higher order interaction effects can be expressed in

the similar manner. The expressions of the factorial effects for 2ma × 3mb factorial

experiment are given in detail in chapter 7. In matrix notation the factorial effects

can be expressed in terms of the treatment effects as:

F = Rt, (1.1)

where t corresponds to the set of treatment effects and F corresponds to the

set of factorial effects. From (1.1) we have t = R−1F . The rows of the matrix

R are orthogonal to each other and therefore RR′ is a diagonal matrix with
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non-zero diagonal elements. It can be seen that (RR′) (RR′)
−1

= I and hence

R′ (RR′)
−1

= R−1. Define F ∗ = (RR′)
−1
F . Then

t = R′F ∗. (1.2)

Example. We present one example for 3mb factorial experiment for mb = 2.

We have F, R and t as follows:

F =



3µ

A1

3A2
1

A2

A2
2

A1A2

A2
1A

2
2

A1A
2
2

A2
1A2



, R =
1

3



1 1 1 1 1 1 1 1 1

−1 −1 −1 0 0 0 1 1 1

1 1 1 −2 −2 −2 1 1 1

−1 0 1 −1 0 1 −1 0 1

1 −2 1 1 −2 1 1 −2 1

−1 0 1 0 1 −1 1 −1 0

1 −2 1 −2 1 1 1 1 −2

−1 1 0 0 −1 1 1 0 −1

1 1 −2 −2 1 1 1 −2 1


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and

t =



(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)



.

Here (RR′) = diag (9, 6, 18, 6, 18, 6, 18, 6, 18) and hence from (1.2) we have

R′ =
1

3



1 −1 1 −1 1 −1 1 −1 1

1 −1 1 0 −2 0 −2 1 1

1 −1 1 1 1 1 1 0 −2

1 0 −2 −1 1 0 −2 0 −2

1 0 −2 0 −2 1 1 −1 1

1 0 −2 1 1 −1 1 1 1

1 1 1 −1 1 1 1 1 1

1 1 1 0 −2 −1 1 0 −2

1 1 1 1 1 0 −2 −1 1



, F ∗ =



µ

A1

6

A2
1

18

A2

6

A2
2

18

A1A2

6

A2
1A

2
2

18

A1A2
2

6

A2
1A2

18



.
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1.2 Model for a Fractional Factorial Experiment

Using CRD

From this section onwards we denote the number of main effects by p1 and the

number of two factor interaction effects by p2 for any factorial experiment. Under

a completely randomized design (CRD) we assume the general model as

E (y (t)) = t∗, V ar (y (t)) = σ2I, (1.3)

where the vector t represents the set of treatments and t∗ represents their effects.

The y (t) is the vector of responses for treatments in t. We now consider a fraction

nf of the treatments denoted by tf . Then (1.3) becomes

E (y (tf )) = t∗f , V ar (y (tf )) = σ2I, (1.4)

From (1.2)we write

E (y (tf )) = t∗f = R′fF
∗ = jµ+X1β1 +X2β2, (1.5)

where j is the vector of unity, β1 and β2 corresponds to the main effects and

two-factor interaction effects respectively and X1 (nf × p1)and X2 (nf × p2) are

the design matrices corresponding to β1 and β2 respectively.

Example (Contd.). In 32 factorial experiment we consider the fraction as

tf = ((0, 0) , (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1) , (2, 2))′ .
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In 1.5 we have the following:

R′f =
1

3



1 −1 1 −1 1 −1 1 −1 1

1 −1 1 0 −2 0 −2 1 1

1 −1 1 1 1 1 1 0 −2

1 0 −2 −1 1 0 −2 0 −2

1 0 −2 0 −2 1 1 −1 1

1 0 −2 1 1 −1 1 1 1



,

X1 =



−1 1 −1 1

−1 1 0 −2

−1 1 1 1

0 −2 −1 1

0 −2 0 −2

0 −2 1 1



,
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X2 =



−1 1 −1 1

0 −2 1 1

1 1 0 −2

0 −2 0 −2

1 1 −1 1

−1 1 1 1



, j =



1

1

1

1

1

1



,

β1 =



A1

2

A2
1

6

A2

2

A2
2

6


, β2 =



A1A2

2

A2
1A

2
2

6

A1A2
2

2

A2
1A2

6


.

1.3 Class of Models

Consider the linear model

E (y) = jµ+X1β1 +X2β2, V ar (y) = σ2I,

where y (n× 1) is a vector of responses, β0 is the general mean, β1 (p1 × 1) is

the vector of parameters corresponding to the main effects, β2 (p2 × 1) is the

vector of parameters corresponding to the interaction effects, X1 (nf × p1)and

X2 (nf × p2) are the design matrices corresponding to β1 and β2 respectively and

σ2 is a constant which may or may not be known. The general mean (β0) and all p1

main effects in β1 are important and they are estimated under the model anyway.

But we are not sure about the importance of all the parameters in β2 except that

only k (≥ 1) out of its p2 parameters are non-negligible, k is not known. In this
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situation the number of possible models with k interaction effects is
(
p2

k

)
. These

models, each with general mean , main effects in β1 and k parameters from β2 are

compared to identify k non-negligible parameters and then inferences are drawn

on them. Following the hierarchical principle we consider the case where β2 is the

vector of the two-factor interaction effects and all three factor and higher order

interaction effects are assumed to be negligible. Thus each of the
(
p2

k

)
models

contain the general mean β0, all p1 main effects and k two factor interaction

effects. We write the uth linear model as:

Mu : E (y) = jµ+X1β1 +X2uβ2u, V ar (y) = σ2I, u = 1, 2, . . .

(
p2

k

)
, (1.6)

where β1 is a (p1 × 1) vector, β2 is a (p2 × 1) vector and β2u is the uth (k × 1)

vector obtained from β2, X1 (n× p1)and X2u (n× k) are the design matrices

corresponding to β1 and β2u respectively. Define the following

X(u) =

[
jn

...X1
...X2u

]′
, β(u) =

[
jn

...β1

...β2u

]′
,

X∗1 =

[
jn

...X1

]
.

(1.7)

Then

X(u) =

[
X∗1

...X2u

]
and X(u)′X(u) =

 X∗′1X
∗
1 X∗′1X2u

X ′2uX
∗
1 X ′2uX2u

 . (1.8)

Thus the model in (5.1) becomes

E(y) = X(u)β(u),

We assume |X(u)′X(u)| > 0 holds for the design and hence all the parameters

in the models can be unbiasedly estimated. For the uthmodel, the least square
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estimator of β(u) is ˆβ(u) =
(
X(u)′X(u)

)−1

X(u)′y and its variance is given as

V ar
(
β̂

(u)
)

= σ2
(
X(u)′X(u)

)−1

. (1.9)

From Rao (1973) we have

V ar
(
β̂2u

)
σ2

=
(
X ′2uX2u −X ′2uX∗1 (X∗′1X

∗
1)
−1
X∗′1X2u

)−1

.

For example if we consider a fraction of a 33 factorial experiment with k = 1 and

n < 27, where β1 consists of 6 main effects and β2 of 12 two-factor interactions,

there will be 12 possible models, each with the general mean, 6 main effects and

1 2-factor interaction effect. Similarly, if we consider a 23 factorial experiment

with k = 1 and n < 8, the β1 consists of 3 main effects and β2 of 3 two-factor

interactions and the possible number of models would be 3. Here we give the uth

model for the 33 factorial experiment:

Mu : E (y) = jµ+X1β1 +X2uβ2u, V ar (y) = σ2I, u = 1, 2, . . . 12, (1.10)

The columns of X1 (n× 6) correspond to the main effects and the column of

X2u (n× 1) corresponds to the 2-factor interaction effect for the uth model. For

these 12 models the common parameters are β0 and elements of β1 while the

uncommon parameters in uth and u′th models are β2u and β2u′ , u 6= u′ . The

variance of the estimator of 2-factor interaction effect in the uth model is the last

diagonal element of V ar
(
β̂

(u)
)

which can be expressed as:

V ar
(
β̂2u

)
σ2

=
(
c−X ′2uX∗1 (X∗′1X

∗
1)
−1
X∗′1X2u

)−1

, u = 1, 2, . . . 12. (1.11)

where c is the last diagonal element in
(
X(u)′X(u)

)
as presented in Ghosh and

Flores (2013).

11



1.4 Contributions of the Thesis

1.4.1 3m Factorial Experiment

1. The orthogonal design (d.1) is compared with the CV design (d.2) for n =

9. These two designs are very similar with respect to their runs and the

orthogonality property but d.2 is a resolution III plus one plan as it can

estimate the general mean and all main effects in presence of any two factor

interaction effect and at the same time gives equal precision to all the two

factor interaction estimators. On the contrary d.1 is a resolution III plan

since it can not even estimate all the main effects in presence of any two

factor interaction from the set of two factor interactions that are aliased

with the main effects.

2. CV designs are obtained for 3m factorial experiment for m = 3 and n = 8, 9,

10 and 11 from complete computer search and then the search is extended to

obtain CV designs for higher values of m. Also five 33 CV designs for n = 10

are compared with respect to the different CV values and other optimality

criteria like AD, AT, AE, GD, GT and GE.

3. The two series of CV designs d
(1)
m and d

(2)
m are obtained for general 3m factorial

experiment. The design d
(1)
m for n = 2m+2, m ≥ 2 gives optimum CV design

for m = 2 and the design d
(2)
m for n = 3m, m ≥ 3 gives optimum CV design

for m = 3.

4. The projection matrices of the 3m CV designs are completely analyzed and
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are found to possess a particular structure in which the elements of the m

rows and m columns are zeros corresponding to a particular set of m runs of

the CV designs. Most of the CV as well as the optimal CV designs possess

this particular structure of the projection matrix.

5. CV designs with (n± r) runs are obtained from CV designs with n runs by

deleting runs from or adding runs to the latter. The complete tree struc-

ture of the hierarchical CV designs for 33 factorial experiment is presented.

Starting from n = 8 hierarchically CV designs are obtained for n = 9, 10

and 11 by adding one run at a time from the remaining runs at each step

and then narrowing down the search from all possible designs to full rank de-

signs some of which satisfy the CV property. Similarly starting from n = 11

CV designs are obtained for n = 10, 9 and 8 hierarchically by deleting the

existing runs one at a time. Also the complete tree structure of the optimal

CV designs is presented. The condition of obtaining a CV design for (n± 1)

from a CV design for n is derived in terms of the design matrix and the runs

of the design.

6. A class of fractional factorial designs with n runs possessing the common

variance property are characterized for general m. Several sufficient condi-

tions are obtained by using pairs of interaction effects (null space and per-

mutation matrix), independent columns of the projection matrix and runs of

the designs. As the number of factors for a factorial experiment gets large it

is not possible by computer check to search for CV designs from millions of
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possible designs for different n which involves the tedious calculation of the

inverse of the variance covariance matrix for each model in the class. The

CV designs for factorial experiment with small m can be extended to designs

for factorial experiment with higher m and the conditions can be checked for

the CV property of the latter. These checkings can be done through simple

calculations as the projection matrix needs to be calculated only once and

the dimension of its independent columns is low for small n.

7. We derive the condition of obtaining a 33 CV design from a 32 CV design

where every pair of columns of the 33 CV design consists of the same runs

as that of the 32 CV design and the runs are replicated in the same way in

both.

8. We prove that the optimal CV design d
(1)
m for m = 2 always remains CV

after replicating any of its six runs any number of times. We also obtain

many more 32 designs for n = 6 which satisfy the CV property for any

number of replication of the six runs. Some of these designs are balanced

and isomorphic to each other w.r.t the runs. Replicated designs are also

obtained for 33 factorial experiment for different number of runs.

1.4.2 2ma × 3mb Factorial Experiment

1. We also extend our search of CV designs to the mixed level factorial ex-

periment. For the simplest 2 × 3 factorial experiment no CV design exists

with distinct runs and hence we considered a very structured replication of
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the six runs and under a particular condition of replications CV designs are

obtained for different runs.

2. For higher values of ma and mb it is computationally challenging to obtain

CV designs. We obtain designs that give common variance within each of the

groups: (1) the pure interaction estimators between the factors with same

levels, (2) the mixed interactions linear in both factors and (3) the mixed

interactions quadratic in the factor with 3 levels.

3. The general replications of the runs for the 2×3 designs are presented giving

the variances of the 2-factor interaction estimators almost identical to each

other.
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Chapter 2

Common Variance

2.1 Chapter Summary

In this chapter we discuss the common variance (CV) property of the designs

and obtain CV designs for 33 factorial experiment by thorough computer check.

Also we compare a 33 CV design with an orthogonal 33 design. Here is what we

present in each section:

• (Section 2.2): In this secion we discuss the concept of common variance that

was first introduced in the paper by Ghosh and Flores (2013). We present

a 33 design with 10 runs which gives constant value to all the two-factor

interaction variance and hence a CV design.

• (Section 2.3): In this section we present the CV designs for 33 factorial

experiment for n = 8, 9, 10 and 11. Also we present one optimum CV design

giving minimum value of CV for each of these values of n.
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• (Section 2.4): In this section we compare a 33 CV design for n = 9 with an

orthogonal one-third fraction of 33 factorial experiment. The CV design has

the ability to identify a class models each with general mean, main effects

and one two-factor interaction effect along with giving equal precision to all

the two-factor interaction estimators while the one-third fraction can not

even estimate the all main effects in presence any two-factor interactions

aliased with the main effects.

2.2 Common Variance

The concept of common variance of the uncommon parameter in the models

was first introduced in Ghosh and Flores (2013).

Definition 1. A design is a common variance (CV ) design if the variance of the

uncommon parameter estimator is constant, i.e., V ar
(
β̂2u

)
= constant, ∀u.

The statistical meaning of this notion is that in all the models the uncommon

parameter is estimated with equal precision (precision is defined as the reciprocal

of the variance of the parameter estimator). This is a desirable statistical property

of the design about the estimation of the uncommon parameter. If instead one

two factor interaction is estimated with greater precision than the other and it

turns out that the latter is the true one then certainly this kind of a situation is

not wanted. Since we do not have any apriori information about the true non-

negligible two factor interaction and hence the true model is not known, so all the

uncommon parameters in the models should be estimated with equal precision
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Table 2.1: CV Design D1
3 for n = 10

t1 0 0 2 0 2 2 1 2 2 2
t2 0 2 0 2 0 2 2 1 2 2
t3 2 0 0 2 2 0 2 2 1 2

or equivalently should have a common variance. No model should be preferred

over the other while estimating the two factor interactions. This makes all the

models stand on the same level of comparison to identify the true non-negligible

component of β2. We give one example of a CV design with number of runs

n = 10 and number of factors m = 3 each at three levels in Table 2.1. We

consider the class of models Mu, u = 1, . . . , 12 for 33 factorial experiment as

presented in (1.3.5) in Chapter 1. For the design in Table 2.1 Mu satisfies the

design condition |X(u)′X(u)| > 0, ∀u, i.e, this design can estimate the general

mean, all main effects and one two factor interaction effect in each model. We find

that
V ar(β̂2u)

σ2 = 0.2963, ∀u. Thus all the models are estimating their uncommon

parameter with equal precision and hence the design D1
3 is a CV design.

2.3 Common Variance Designs for m = 3

The number of all possible designs that could be formed with n = 10 and

m = 3, all treatments being replicated only once, is
(

27
10

)
= 84, 36, 285. All of these

designs are checked for CV property. It is found that 2, 792, 387 (about 33%)

designs can estimate all the 8 parameters in each model. Out of 27, 92, 387 designs

only 16, 640 designs are common variance designs that can estimate the 2-factor
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Table 2.2: CV Designs for Different n

n Possible designs=
(27
n

)
DC # of Non CV designs # of CV designs

Groups

# CV

11 13,037,895 6,926,868 6,924,772 2,096
32 0.2151

2,064 0.2222

10 8,436,285 2,792,387 2,775,747 16,640

0.2564 48

0.2667 48

0.2837 16

0.2963 16,512

0.4 16

9 4,686,825 636,348 588,348 48,000

0.3333 8,256

0.381 32

0.4167 13,056

0.4444 26,640

0.5 16

8 2,220,075 49,628 23,340 26,288
0.6667 9600

0.8889 16,688

interaction effect with equal precision in all the 12 models. Similar results are

obtained for n = 11, 10, and 8. Table 2.2 shows the findings. From Table 2.2 we

see that there are 5 different groups of CV value for n = 9 and n = 10 and there are

two different groups for n = 8 and n = 11. We present the examples of CV designs

with minimum CV value for n = 8, 9, 10 and 11 in Table 2.3. These designs are

optimum CV designs for the 33 factorial experiment for the respective n. The five

designs presented in Table 2.4 are selected from CV designs for n = 10, one from

each category of common variance to study their treatment contents thoroughly

and also to compare them with respect to some criterion functions. In chapter

9 we will compare these five CV designs with respect to the AD, AT , AE, GD,

GT and GE optimality criteria.
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Table 2.3: CV Designs with Minimum CV Value for Different n

n CV designs CV

8
0 0 0 0 1 1 2 2

0.66670 0 1 2 1 2 1 2
0 1 2 0 2 1 1 2

9
0 0 2 2 2 0 2 2 1

0.33330 2 0 2 0 2 2 1 2
2 0 0 0 2 2 1 2 2

10
0 0 0 0 1 1 1 2 2 2

0.25640 1 2 2 1 1 2 0 0 2
1 1 0 1 1 2 1 0 1 2

11
0 0 0 0 1 1 2 2 1 1 0

0.21510 0 1 2 1 2 1 2 1 2 2
0 1 2 0 2 1 1 2 1 2 1

2.4 Comparison of Two 33 Designs for n = 9

In this section we compare a 33 CV design d.1 for n = 9 with a standard one

third fraction of 33 factorial design d.2. Both of these designs are resolution III

plans and we will show that although the CV design is non orthogonal unlike the

one-third fraction, the correlations among the estimates of the general mean and

main effects are very week and also its variance-covariance matrix satisfies one

important property of the diagonal matrix. So both the designs are very similar

considering the main effects estimation only. But the CV design has the ability to

estimate the additional 2−factor interaction in each model with equal precision

whereas the orthogonal one third fraction can not even estimate all the main effects

in presence of any 2−factor interaction effect from the alias set in the model.

Consider the one-third fraction with the defining relation as: ABC = I. We

consider the design in Table 2.5 corresponding to the fraction: x1 + x2 + x3 = 1

20



Table 2.4: 5 Designs Selected from CV Designs for n = 10

CV = 0.2564 CV = 0.2667 CV = 0.2837 CV = 0.2963 CV = 0.4
0 0 1 0 0 1 0 0 2 2 0 0 0 0 2
0 1 1 0 2 0 0 1 1 0 2 0 0 1 2
0 2 0 0 2 1 0 2 0 0 0 2 1 0 1
0 2 1 1 1 1 0 2 1 2 2 0 1 0 2
1 1 1 1 1 2 1 1 1 2 0 2 2 0 0
1 1 2 1 2 2 1 2 1 0 2 2 2 0 1
1 2 1 2 0 0 2 0 0 2 2 1 2 0 2
2 0 0 2 0 1 2 0 1 2 1 2 2 1 2
2 0 1 2 1 2 2 2 0 1 2 2 2 2 0
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Table 2.5: Design d.1

0 0 1 1 1 2 0 2 2
0 1 0 1 2 1 2 0 2
1 0 0 2 1 1 2 2 0

under mod (3) . This design d.1 is a resolution III plan which has the ability

to estimate the general mean and main effects under the assumption that the

two factor and higher order interactions are negligible. Also d.1 can estimate the

general mean and all main effects orthogonally and hence its variance – covariance

matrix is a diagonal matrix. We consider another 33 design for n = 9 in Table

2.6. This design d.2 also has the ability to estimate the general mean and all main

effects but it is not an orthogonal design and hence its variance-covariance matrix

is not a diagonal one. Table 2.7 gives the variances and the covariances of the main

effects estimators for the two designs d.1 and d.2. From Table 2.7 we see that both

d.1 and d.2 estimate all the linear main effects with equal precision as well as all the

quadratic main effects with equal precision, i.e., we have
V ar(β̂2u)

σ2 =constant, u =
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Table 2.6: Design d.2

0 0 1 1 1 2 1 2 2
0 1 0 1 2 1 1 2 2
1 0 0 2 1 1 1 2 1

Table 2.7: Variance-Covariance of the Main Effects Estimators

Main Effects A A2 B B2 C C2

d.1

A 0.1667 0 0 0 0 0
A2 0 0.0556 0 0 0 0
B 0 0 0.1667 0 0 0
B2 0 0 0 0.0556 0 0
C 0 0 0 0 0.1667 0
C2 0 0 0 0 0 0.0556

d.2

A 0.3437 -0.0104 -0.1562 -0.0104 -0.0938 0.0104
A2 -0.0104 0.0521 -0.0104 -0.0035 0.0104 0.0035
B -0.1562 -0.0104 0.3437 -0.0104 -0.0938 0.0104
B2 -0.0104 -0.0035 -0.0104 0.0521 0.0104 0.0035
C -0.0938 0.0104 -0.0938 0.0104 0.3437 -0.0104
C2 0.0104 0.0035 0.0104 0.0035 -0.0104 0.0521

A,B,C and
V ar(β̂2u)

σ2 =constant, u = A2, B2, C2 for both the designs. Comparing

the variance-covariance structures of d.1 and d.2 we see that d.1 estimates the

linear main effects with almost double precision as compared to d.2. But both

the designs estimate the quadratic main effects with similar precision. Also since

d.1 estimates the main effects orthogonally, we have
Cov(β̂2u,β̂2u′)

σ2 = 0, u 6= u′. But

for d.2,
Cov(β̂2u,β̂2u′)

σ2 6= 0, u 6= u′ since d.2 is not an orthogonal design. If X2 is

the design matrix for d.2, the difference between | (X ′2X2)
−1 | and the product of

the diagonal elements of (X ′2X2)
−1

is 5.418699 × 10−7. So we see that although

the variance - covariance matrix of d.2 is not diagonal, it has one property of the

diagonal matrix, its determinant being almost equal to the product of its diagonals.

Moreover, d.2 has the ability to estimate one two-factor interaction effect along
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Table 2.8: Aliased Two Factor Interactions with Main Effects for d.1

Main effect Aliased 2− Factor Interaction Effects
A B2C2

A2 BC
B A2C2

B2 AC
C A2B2

C2 AB

with the general mean and all main effects in the class of models. But the one-

third fraction d.1 can not even estimate all main effects in the presence of some

two-factor interaction effects. This is because the main effects for a resolution III

plan are aliased with some of the two-factor interaction effects which are shown

in Table 2.8. From Table 2.8 we see that the main effects are aliased with six

two-factor interactions and hence d.1 can not estimate the general mean and all

main effects in presence of any one of these six interaction effects in the model.

However, the general mean and all main effects with one of the interactions from

the set {AB2, A2B,AC2, A2C,BC2, B2C} can be estimated by d.1. The design

d.2 can estimate all the two-factor interactions with equal variance, i.e., we have

V ar(β̂2u)
σ2 = 0.4444, constant ∀u and hence d.2 is a Common Variance (CV) design.

But we can not compare the variances of the interaction estimators for the design

d.1 since it does not even have the ability to estimate all the two-factor interaction

effects. So we see that although the design d.2 is not an orthogonal design like

d.1 but it has the advantage over d.1 in the sense of estimating the uncommon

parameter in each model with equal precision.

Next consider a design d.3 for n = 8 by deleting one run 221 from d.2 which
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Table 2.9: Design d.3

0 0 1 1 1 2 1 2
0 1 0 1 2 1 1 2
1 0 0 2 1 1 1 2

Table 2.10: Design d.4

1 1 2 0 2 0 0 0
1 2 1 0 2 0 1 2
2 1 1 0 2 1 2 0

is presented in Table 2.9. This design d.3 has the ability to estimate the general

mean, all main effects and one two-factor interaction in each model. Moreover

d.3 can estimate all the two-factor interactions with equal precision. Hence it is

a CV design with
V ar(β̂2u)

σ2 = 0.8889, ∀u. However d.3 is not a CV design with

minimum value of CV. So in Table 2.10 we present one CV design d.4 for n = 8

with CV = 0.6667 which is the minimum value of CV in the class of all 33 CV

designs for n = 8. The design d.4 is one of the many optimum CV designs for

n = 8. Adding the run 111 or 122 to the runs of d.4 produces a CV design for

n = 9 with CV = 0.3810 which is the second best in the class of all 33 CV designs

for n = 9. No optimum CV design (CV = 0.3333) for n = 9 can be obtained from

d.4.
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Chapter 3

Hierarchical CV Designs

3.1 Chapter Summary

In this chapter we present hierarchical CV designs for 33 factorial experiment

starting from n = 8 to n = 11 and vice versa and derive condition for obtaining

hierarchical CV designs. Here is what we present in each section:

• (Section 3.2): In this section we present our complete search of 33 CV designs

that are obtained from CV designs for n runs by deleting runs from or adding

runs to the latter. Also we present the condition derived for obtaining CV

design with (n± 1) runs from a CV design with n runs. So given a CV

design for n this condition can be checked to determine the CV property

of the design for (n± 1) without calculating the variance of the two-factor

interaction estimators for the latter.

• (Section 3.3): In this section we present the complete hierarchical structure

of CV designs starting from n = 8 to n = 11 and the other way. Also we
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present the hierarchical optimum CV designs from n = 8 to n = 11 and vice

versa.

In the following we describe the notations that are used in Table 3.4 in Section

3.2 and Tables 3.7 and 3.8 in Section 3.3:

• CVn: # of CV designs for n,

• CV (n−1)
n : Subset of CVn generating CV designs for (n− 1),

• CVn(n−1): # of CV designs for (n− 1) generated from CV designs for n,

• CV (n+1)
n : Subset of CVn generating CV designs for (n+ 1),

• CVn(n+1): # of CV designs for (n+ 1) generated from CV designs for n.

• CV n−r
n : # of CV designs for (n− r) obtained in the hierarchical order from

CV designs for n.

• CV n+r
n : # of CV designs for (n+ r) obtained in the hierarchical order from

CV designs for n.

• Opt CV n−r
n : # of optimum CV designs for (n− r) obtained in the hierar-

chical order from optimum CV designs for n.

• Opt CV n+r
n : # of optimum CV designs for (n+ r) obtained in the hierar-

chical order from optimum CV designs for n.
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Table 3.1: Design D1
3

0 0 2 0 2 2 1 2 2 2
0 2 0 2 0 2 2 1 2 2
2 0 0 2 2 0 2 2 1 2

Table 3.2: CV Designs for n = 9 from D1
3

Delete CV value Designs
0

0.4444
0 0 2 2 2 1 2 2 2

2 0 2 0 0 2 2 1 2 2
2 2 0 0 2 0 2 2 1 2
2

0.4444
0 0 2 0 2 1 2 2 2

0 0 2 0 2 2 2 1 2 2
2 2 0 0 2 0 2 2 1 2
2

0.4444
0 0 2 0 2 1 2 2 2

2 0 2 0 2 0 2 1 2 2
0 2 0 0 2 2 2 2 1 2
2

0.3333
0 0 2 0 2 2 1 2 2

2 0 2 0 2 0 2 2 1 2
2 2 0 0 2 2 0 2 2 1

3.2 CV Designs from n to n± 1

To check if CV designs could be obtained for n = 9 or n = 11 we deleted one

run from and added one run to a CV design for n = 10 respectively. Consider the

CV design D1
3 in Table 3.1 for n = 10. The four CV designs presented in Table

3.2 for n = 9 are obtained from the design D1
3 by deleting one run from it at a

time. Naturally if we add the deleted runs one at a time to these four CV designs

for n = 9 we get back D1
3. The CV design for n = 11 in Table 3.3 is obtained by

adding the run (0, 0, 0) to D1
3. Again deleting the run (0, 0, 0) will give us back

the design D1
3. It follows from the above two tables how CV designs for n± 1 can
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Table 3.3: CV Design for n = 11 from D1
3

0 0 2 0 2 2 1 2 2 2 0
0 2 0 2 0 2 2 1 2 2 0
2 0 0 2 2 0 2 2 1 2 0

Table 3.4: CV Designs from n to (n± 1)

n CVn CV
(n−1)
n CVn(n−1) CV

(n+1)
n CVn(n+1)

8 26, 288 - - 26, 112 37, 856
9 48, 000 37, 856 26, 112 33, 320 16, 640
10 16, 640 16, 640 33, 320 16, 560 2, 096
11 2, 096 2, 096 16, 560 - -

be obtained from that of n. In chapter 2 Table 2.8 presents the number of 33 CV

designs for n = 8, 9, 10 and 11. To the CV designs with n runs we add one run

at a time from the remaining (27− n) runs to obtain designs with (n+ 1) runs.

Similarly we delete one run at a time from the CV designs with n runs to obtain

designs with(n− 1) runs . The designs obtained for (n± 1) are not all distinct and

hence we ignore the repeated designs and only consider the distinct ones to check

for their CV property. Out of all the distinct designs with (n± 1) runs satisfying

the design condition we determine the designs satisfying the condition of common

variance. The CV designs with (n± 1) runs obtained from the CV designs with

n runs are infact a subset of the set of all CV designs for (n± 1). Also all the CV

designs for n do not generate the complete set of CV designs for (n± 1). Only a

subset of all CV designs for n generates CV designs for (n± 1). Table 3.4 gives

the result of the complete search for CV designs from n to (n± 1).

In the following we derive the condition for obtaining a CV design for (n+ 1)

number of runs from a CV design for n runs by adding one run to the latter.
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The condition is also true for obtaining a CV design for n from a CV design for

(n+ 1). For a design with n runs we write the design matrix with the uth two

factor interaction as:

X(1)
u =

[
X1

...X2u

]
, (3.1)

where X1corresponds to the general mean and main effects and X2u corresponds

to the two factor interaction effect in the uth model. For a design with (n+ 1)

runs obtained by adding one run to the former design we write the design matrix

as:

X(2)
u =

 X1
... X2u

x′2
... x22u

 , (3.2)

where x′2 and x22u correspond to the new run added for the main effects and the

two factor interaction effect respectively. Assuming that the design for n runs is

a CV design the following condition holds true:

V ar
(
β̂2u

)
σ2

=
1(

X ′2uX2u −X ′2uX1 (X ′1X1)
−1
X ′1X2u

) = constant, ∀u.

Let v
(1)
u =

(
X ′2uX2u −X ′2uX1 (X ′1X1)

−1
X ′1X2u

)
. A design with n runs is CV

iff v
(1)
u is constant,∀u. From (3.2) we get

X(2)′
u X(2)

u =

 X ′1X1 + x2x
′
2

... X ′1X2u + x22ux2

X ′2uX1 + x22ux
′
2

... X ′2uX2u + x2
22u

 . (3.3)

Define v
(2)
u = X ′2uX2u+x

2
22u−(X ′2uX1 + x22ux

′
2) (X ′1X1 + x2x

′
2)
−1

(X ′1X2u + x22ux2).

The variance of the uth two-factor interaction for the design with (n+ 1) runs is

proportional to the last diagonal element of
(
X(2)′

u X(2)
u

)−1

which is 1

v
(2)
u

. Hence

the (n+ 1) run design will be CV iff

v(2)
u = constant, ∀u.
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Table 3.5: CV Design (a) D9 for n = 9 and (b) D10 for n = 10

(a)

D9

0 0 2 0 2 2 1 2 2
0 2 0 2 0 2 2 1 2
2 0 0 2 2 0 2 2 1

(b)

D10

0 0 2 0 2 2 1 2 2 2
0 2 0 2 0 2 2 1 2 2
2 0 0 2 2 0 2 2 1 2

After simplification of the expression of v
(2)
u the following condition is obtained.

The complete derivation is shown in the Appendix (Section 3.4).

v(2)
u = v(1)

u +
(au − bu)2

(1 + k)
, ∀u, (3.4)

where au = x22u, bu = X ′2uX1 (X ′1X1)
−1
x2, k = x′2 (X ′1X1) −1x2. The k does

not depend on u and hence v
(2)
u will be constant iff (au − bu)2 or equivalently

|au − bu| is constant given that v
(1)
u is constant. Again if we have v

(2)
u constant

then v
(1)
u will be constant iff |au − bu| is constant independent of u. Thus given a

CV design for n (or n + 1) the design for n + 1 (or n) will be CV iff |au − bu| is

constant, ∀u. The (3.4) gives the condition to obtain a CV design for (n± 1) from

a CV design for n. We present one example of a CV design D10 with (n+ 1) = 10

runs obtained by adding one run to a CV design D9 with n = 9 runs. Both D9 and

D10 are presented in Table 3.5. The design D10 is in fact the design D1
3 in Table

3.1 which is already known to be CV. We demonstrate the CV property of D10 by

30



Table 3.6: Values of |au − bu|

Interaction(u) au bu au − bu (au − bu)2 = |au − bu|
AB 0 1 −1 1
A2B2 −2 −1 −1 1
AB2 −1 0 −1 1
A2B 1 0 1 1
AC 0 1 −1 1
A2C2 −2 −1 −1 1
AC2 −1 0 −1 1
A2C 1 0 1 1
BC 0 1 −1 1
B2C2 −2 −1 −1 1
BC2 −1 0 −1 1
B2C 1 0 1 1

using the condition in (3.4). The design D9 is a CV design with CV = 0.2963 and

hence v
(1)
u is constant, ∀u . We add the run (2, 2, 2) to the design D9 to obtain

design D10. From (3.4) if we can show that |au − bu| is constant ∀u, then v
(2)
u will

be constant ∀u, and hence the design D10 will be a CV design. In Table 3.6 we

present the values of |au − bu|. From Table 3.6 wee see that |au − bu| is constant,

∀u and this explains the CV property of the design D10.

3.3 CV Designs from n to (n± r)

In this section we present some hierarchical CV designs starting from n = 11

going down to n = 8 and vice versa. Starting from the CV designs for n = 11 we

delete one run at a time from the existing runs and construct designs for n = 10.

Since all these designs are not distinct so we delete the repeated designs and work

with the distinct ones only. A subset of these distinct designs are full rank and a

31



Table 3.7: CV Designs from n to n± r

n, r n− r ∗CV n−r
n n, r n+ r ∗ ∗ CV n+r

n

11, 1 10 16, 650 8, 1 9 37, 856
11, 2 9 33, 128 8, 2 10 16, 592
11, 3 8 16, 552 8, 3 11 2, 072

Figure 3.1: Hierarchical CV Designs for m = 3

subset of these full rank designs satisfy the CV property. This is how we obtain

CV designs for n = 10 from n = 11. From theseCV designs for n = 10 we obtain

CV designs for n = 9 and finally from these CV designs for n = 9 we obtain CV

designs for n = 8. Again we start from CV designs for n = 8 and add one run

from the remaining runs to them and obtain CV designs for n = 9 and continue

this way up to n = 11. Table 3.7 presents the number of hierarchical CV designs

that could be obtained from n = 11 in hierarchical order through n = 8 and also

the other way. This hierarchical setting is also displayed in Figure 3.1.

Table 3.8 presents the number of optimum CV designs (designs with smallest

CV) in hierarchical order. We see that only 32 designs for n = 11 have minimum
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Table 3.8: Optimum CV Designs from n to n± r

n, r n− r Opt CV n−r
n Opt CV n, r n+ r Opt CV n+r

n Opt CV
11, 0 11 32 0.2151 8, 0 8 2, 096 0.6667
11, 1 10 32 0.2667 8, 1 9 32 0.3810
11, 2 9 16 0.3810 8, 2 10 16 0.2667
11, 3 8 40 0.6667 8, 3 11 8 0.2151

Table 3.9: One Optimum CV Design for n = 11

0 0 0 0 1 1 2 2 1 1 0
0 0 1 2 1 2 1 2 1 2 2
0 1 2 0 2 1 1 2 1 2 1

CV value and each of these 32 designs generates one optimum CV design for

n = 10. Thus we have 32 optimum CV designs for n = 10 obtained from optimum

CV designs for n = 11. From these 32 designs, only 8 designs generate 16 optimum

CV designs for n = 9. And these 8 designs generate 40 optimum CV designs for

n = 8. Similarly if we start from n = 8 there are 2, 096 optimum CV designs which

give 32 optimum CV designs for n = 9 and 16 optimum CV designs for n = 10 and

only 8 for n = 11. Thus, although there are 32 optimum CV designs for n = 11,

only 8 of them are optimum in the hierarchical set up which give optimum CV

designs for n = 10, 9 and 8 in the hierarchical order. Also for n = 8 and 11 the

optimum CV values are the smallest in their class of all CV designs. But for n = 9

and 10 the optimum designs are only optimum in this hierarchical setting, these

are the second best in their class of all CV designs. We present one example of the

hierarchical CV design in Table 3.9. This is one of the 8 optimum CV designs for

n = 11. Deleting (0, 2, 1) gives optimum CV design for n = 10 in the hierarchical

setting. Deleting both (0, 2, 1) and (1, 1, 1) gives optimum CV design for n = 9 in
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the hierarchical setting and deleting (0, 2, 1), (1, 1, 1) and (1, 2, 2) gives optimum

CV design for n = 8.

3.4 Appendix

3.4.1 Proof of Equation (3.4)

The variance of the uth two-factor interaction for the design with n runs is

v(1)
u = X ′2uX2u −X ′2uX1 (X ′1X1)

−1
X ′1X2u.

The variance of the uth two-factor interaction for the design with (n+ 1) runs is

v(2)
u = X ′2uX2u+x2

22u−(X ′2uX1 + x22ux
′
2) (X ′1X1 + x2x

′
2)
−1

(X ′1X2u + x22ux2) .

From Rao (1973) we have

(X ′1X1 + x2x
′
2)
−1

= (X ′1X1)
−1 − (X ′1X1)

−1
x2x

′
2 (X ′1X1)

−1

1 + x′2 (X ′1X1)
−1
x2

.

Hence

(X ′2uX1 + x22ux
′
2) (X ′1X1 + x2x

′
2)
−1

(X ′1X2u + x22ux2)

= (X ′2uX1 + x22ux
′
2)

[
(X ′1X1)

−1 − (X ′1X1)
−1
x2x

′
2 (X ′1X1)

−1

1 + x′2 (X ′1X1)
−1
x2

]
(X ′1X2u + x22ux2)

=X ′2uX1 (X ′1X1)
−1
X ′1X2u −

X ′2uX1 (X ′1X1)
−1
x2x

′
2 (X ′1X1)

−1
X ′1X2u

1 + x′2 (X ′1X1)
−1
x2

+

+x2
22ux

′
2 (X ′1X1)

−1
x2 −

x2
22ux

′
2 (X ′1X1)

−1
x2x

2
22ux

′
2 (X ′1X1)

−1
x2

1 + x2
22ux

′
2 (X ′1X1)

−1
x2

+2x22uX
′
2uX1 (X ′1X1)

−1
x2 −

2x22uX
′
2uX1 (X ′1X1)

−1
x2x

′
2 (X ′1X1)

−1
x2

1 + x′2 (X ′1X1)
−1
x2

.
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Putting au = x22u, bu = X ′2uX1 (X ′1X1)
−1
x2 and k = x′2 (X ′1X1)

−1
x2, we have

(X ′2uX1 + x22ux
′
2) (X ′1X1 + x2x

′
2)
−1

(X ′1X2u + x22ux2)

=X ′2uX1 (X ′1X1)
−1
X ′1X2u −

b2
u

1 + k
+ a2

uk −
a2
uk

2

1 + k

+2aubu −
2aubuk

1 + k

=X ′2uX1 (X ′1X1)
−1
X ′1X2u −

b2
u

1 + k
+

a2
uk

1 + k
+

2aubu
1 + k

.

Hence

v(2)
u = X ′2uX2u + x2

22u −X ′2uX1 (X ′1X1)
−1
X ′1X2u +

b2
u

1 + k
− a2

uk

1 + k
− 2aubu

1 + k

= v(1)
u + a2

u −
a2
uk

1 + k
+

b2
u

1 + k
− 2aubu

1 + k

= v(1)
u +

(au − bu)2

1 + k
.
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Chapter 4

Characterization of Common

Variance Property

4.1 Chapter Summary

In this chapter we characterize a class of designs possessing the common vari-

ance property for general n andm. The characterizations lead to several conditions

for a design to be CV. The characterizations are mostly obtained in terms of the

projection matrix and are true for the general fractional factorial designs with n

runs. Here is what we present in each section:

• (Section 4.2): In this section we present the form of the general factorial

experiment with different factors at different levels which is already presented

in Chapter 1. Fractional factorial designs with n runs is considered which

can estimate general mean, main effects and one two-factor interaction in

each model Mu presented in Chapter 1 and at the same time give constant

36



variance to all two-factor interaction estimators.

• (Section 4.3): This section presents several theorems stating conditions for

a design to be CV. Several sufficient conditions are obtained by using pairs

of interaction effects, independent columns of the projection matrix and

runs of the designs. The conditions on the runs are true for 3m factorial

designs only but similar conditions can be obtained for general factorial

designs. Computationally checking the conditions on the runs provide much

faster ways to check for CV. Finally we illustrate these characterizations

with examples. The conditions presented in Theorem 3 and Theorem 5 are

checked using two 33 CV designs respectively.

4.2 Introduction

Consider a factorial experiment sm1
1 ×sm2

2 × . . .×smt
t , where each of m1 factors

is at level s1, each of m2 factors at s2 and so on. The total number of factors is

m1 + m2 + . . . + mt = m . The total number of main effects is
∑t

u=1 (su − 1)mu

, the total number of k-factor interaction effects is
∑t

u=1 (su − 1)kmu . The total

number of runs required to estimate all the factorial effects is at least sm1
1 × sm2

2 ×

. . . × smt
t = d. We consider the fractional factorial designs with n (< d) runs. In

Chapter 1 the class of models Mu, ∀u with general mean (β0) , p1 main effects in

β1 and k 2−factor interactions in β2u are given. In particular we consider the case

for k = 1. The 3−factor and higher order interaction effects are assumed to be

negligible. We already know that a fractional factorial design with m factors and
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n runs is a common variance (CV) design if V ar
(
β̂2u

)
= constant, ∀u, where

β̂2u is the least square estimator of β2u. We obtain conditions that would make

V ar
(
β̂2u

)
= constant, ∀u.

4.3 Characterization of CV Designs

In this section we characterize the CV designs in terms of the projection ma-

trix and also the runs of the design. Section 4.3.1 presents five theorems on the

conditions of finding CV designs. Section 4.3.2 illustrates the two conditions given

in theorem 3 and the four conditions given in theorem 5 with examples. The de-

signs satisfying these conditions given in the respective theorems possess the CV

property.

4.3.1 Finding CV Designs

Consider the class of models Mu ∀u for k = 1 in (1.3.1), the equations (1.3.2)

and (1.3.3) in Chapter 1 and refer to the definition of CV design given in Chapter

2. Define the projection matrix P as P = In−X∗1 (X∗′1X
∗
1)
−1
X∗′1 . The matrix

P satisfies the properties 1− 4 below:

1. P is symmetric, i.e, P = P ′.

2. P is idempotent, i.e, P = P 2.

3. P is orthogonal to X∗1, i.e, PX∗1 = 0.

4. Null (P ) = {x ∈ Rn : Px = 0} .
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The V ar
(
β̂2u

)
is the last diagonal element of V ar

(
β̂

(u)
)

which is expressed as

V ar
(
β̂2u

)
= σ2 |X

∗′
1X

∗
1|

|X(u)′X(u)|
. (4.1)

From Rao (1973) we have

|X(u)′X(u)| = |X∗′1X∗1|
(
X ′2uX2u −X ′2uX∗1 (X∗′1X

∗
1)
−1
X∗′1X2u

)
= |X∗′1X∗1|

[
X ′2u

(
I−X∗1 (X∗′1X

∗
1)
−1
X∗′1

)
X2u

]
= |X∗′1X∗1| (X ′2uPX2u) .

Hence

|X∗′1X∗1|
|X(u)′X(u)|

=
|X∗′1X∗1|

|X∗′1X∗1| (X ′2uPX2u)
=

1

X ′2uPX2u

. (4.2)

Now we state the following theorem.

Theorem 1. A design is CV iff X ′2uPX2u = constant, ∀u.

Proof. From (4.1) and (4.2) we get

V ar
(
β̂2u

)
= constant⇔ |X(u)′X(u)| = constant⇔X ′2uPX2u = constant,∀u.

This proves the theorem.

The X ′2uPX2u can be expressed as

X ′2uPX2u = X ′2uPPX2u = X ′2uPP
′X2u = (P ′X2u)

′
(P ′X2u) . (4.3)

Definition 2. For a vector g = (gi), where gi is the ith element of g, we define

the absolute g, |g|, as

|g| = (|gi|) , (4.4)

where |gi| is the absolute value of gi.
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For two (n× 1) vectors g1 and g2 such that g1 = Pm (g2) where Pm (n× n)

is a permutation matrix, it can be seen that

g′1g1 = g′2g2. (4.5)

Using (4.3) we have the following theorem.

Theorem 2. A design is CV if |P ′X2u| is constant independent of u, except for

the permutation of its elements.

Proof. Suppose that g = P ′X2u. We write

X ′2uPX2u = g′g =
∑
i

g2
i =

∑
i

|gi|2.

Let g1 = P ′X2u1 and g2 = P ′X2u2 for u1 6= u2 such that g1 = Pm (g2). The

theorem is proved from (4.5).

Now we want to characterize the CV property further using pairs of 2−factor

interactions. For every pair (u, v), except for the permutation of the elements

X ′2uPX2u = X ′2vPX2v ⇒X ′2u∗PX2u∗ = constant, ∀u∗.

From Theorem 1 we already know that X ′2u∗PX2u∗ = constant, ∀u∗ is an NSC

for a design to be CV. The pairs of interactions may come from within a group

like G1 :
(
AjAk, A

2
jA

2
k, AjA

2
k, A

2
jAk
)
, j < k, or from between the groups like G2 :(

AαjA
β
k , A

α
l A

β
r

)
, α, β ∈ (1, 2) . We find conditions that would make X ′2uPX2u =

X ′2vPX2v for any (u, v) belonging to G1 or G2. For any pair (u, v), X2u and X2v

can be expressed as a linear combination of the columns of X∗1 (n× p1 + 1) and
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the columns of P (n× n) in the following way:

X2u = X∗1w1u + Pw2u

X2v = X∗1w1v + Pw2v. (4.6)

where w1u (p1 + 1× 1) , w2u (n× 1) , w1v (p1 + 1× 1) and w2v (n× 1) are vec-

tors of linear combinations. From (4.6) we have

X2u ±X2v = X∗1 (w1u ±w1v) + P (w2u ±w2v)

⇒ P (X2u ±X2v) = P (w2u ±w2v) . (4.7)

So for any pair (u, v), if (X2u ±X2v) can be expressed as linear combination of

the columns of X∗1 only, then from (4.7) we have

P (w2u ±w2v) = 0.

Again from (4.7) we have

P (w2u ±w2v) = 0⇔ P (X2u ±X2v) = 0⇒X ′2uPX2u = X ′2vPX2v. (4.8)

From the definition of Null (P ) ,

P (X2u ±X2v) = 0⇔ (X2u ±X2v) ∈ Null (P ) . (4.9)

Below we state the properties of any Permutation matrix Q obtained from the

Identity matrix by interchanging its rows or columns:

1. Q = Q′

2. Q2 = I

3. QQ′ = Q′Q = I
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If Q′PQ = P , we have

X2u = QX2v ⇒X ′2uPX2u = X ′2vQ
′PQX2v = X ′2vPX2v. (4.10)

Theorem 3. For any pair (u, v), X ′2uPX2u = X ′2vPX2v holds if at least one of

the following two conditions hold:

1. X2u ±X2v ∈ Null (P ).

2. X2u = QX2v, where Q is a permutation matrix such that Q′PQ = P

holds.

Proof. (1) is proved from (4.8) and (4.9) and (2) is proved from (4.10).

Corollary 3.1. A design is CV iff X ′2uPX2u = X ′2vPX2v holds for all pair

(u, v).

We already obtained conditions on P for a design to be CV. Now we want to

see if instead of working with the whole P matrix we can work with only the

independent columns of P . Let the matrix P s consist of the independent columns

of P . Working with P s makes the calculation even faster because the dimension

of P s is small as compared to that of P for designs with small n. In the following

we obtain the CV conditions on P s. Without any loss of generality we partition

the projection matrix P (n× n) as P =

[
P s

...P s̄

]
, where Rank (P s (n× r)) =

Rank (P ) = r. We have

P ′X2u =

 P ′s

P ′s̄

X2u =

 P ′sX2u

P ′s̄X2u

 . (4.11)
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Let g1 = P ′X2u1 and g2 = P ′X2u2 for u1 6= u2 such that the elements of g1

are permutations of the elements of g2, i.e, g1 = Pm (g2). So the elements of

P ′sX2u may not appear in the same order in g1 and g2. However by permuting

the elements of g2 by Pm we can make the elements of P ′sX2u appear in the same

order in both g1 and g2. Hence from (4.11) we have

|P ′sX2u| = constant and |P ′s̄X2u| = constant⇒ |P ′X2u| = constant,∀u.

(4.12)

The matrix P s̄ consists of the columns of P that are dependent on the columns

of P s and hence the columns in P s̄ can be expressed as the linear combinations

of the columns of P s as:

P s̄ = P sW , (4.13)

where W is an (r × n− r) matrix of linear combinations. Hence from (4.13) we

get

P ′s̄ = W ′P ′s ⇒ P ′s̄X2u = W ′P ′sX2u. (4.14)

Hence from (4.14) we have

|P ′sX2u| = constant⇒ |P ′s̄X2u| = constant,∀u. (4.15)

We state the following theorem.

Theorem 4. A design is CV if |P ′sX2u| = constant independent of u, except for

the permutation of its elements.

Proof. From (4.12)and (4.15) we have

|P ′sX2u| = constant⇒ |P ′X2u| = constant,∀u.
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Table 4.1: 2−Factor Interaction Vector X2u

u Expression

AjAk

(
x

(jk)
1 , x

(jk)
2 , . . . , x

(jk)
n

)′
A2
jA

2
k

(
3x

2(jk)
1 − 2, 3x

2(jk)
2 − 2, . . . , 3x

2(jk)
n − 2

)′
AjA

2
k

(
z

(jk)
1 , z

(jk)
2 , . . . , z

(jk)
n

)′
A2
jAk

(
3z

2(jk)
1 − 2, 3z

2(jk)
2 − 2, . . . , 3z

2(jk)
n − 2

)′
AlAr

(
x

(lr)
1 , x

(lr)
2 , . . . , x

(lr)
n

)′

This completes the proof.

From the previous theorem we know that |P ′sX2u| = constant, ∀u, except for

the permutation of its elements, will make a design CV. Now instead of calculating

|P ′sX2u|, ∀u we find faster ways to check for the CV property. We find conditions

on the design runs that will make |P ′sX2u| constant ∀u except for the permutation

of its elements. Given a design, its P matrix and hence the P s matrix can be

easily calculated. We present the conditions in terms of the runs and the matrix

P s. For a design with m factors and n runs denote the levels corresponding to the

m factors by s1i, s2i, . . . smi, i = 1(1)n respectively, sji ∈ {0, 1, 2} , j = 1(1)m.

For i = 1(1)n, j < k = 1(1)m and l < r = 1(1)m define the following

x
(jk)
i = (sji + ski)mod(3) − 1

z
(jk)
i = (sji + 2ski)mod(3) − 1

x
(lr)
i = (sli + sri)mod(3) − 1

In Table 4.1 we give the expression of X2u corresponding to all the 2−factor

interactions involving the factors Aj and Ak and the linear×linear interaction

between Al and Ar. Except for the permutation of the elements, for u, u′ ∈
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{
AjAk, A

2
jA

2
k, AjA

2
k, A

2
jAk
}

, j < k = 1(1)m and for any l < r = 1(1)m and

δ = ±1

P ′sX2u = δP ′sX2u′ and P ′sX2AjAk
= δP ′sX2AlAr ⇔ |P ′sX2u| = constant, ∀u.

(4.16) P ′s

P ′s̄

X1 =

 0

0

 ⇒
 P ′s

P ′s̄

 j =

 0

0

 ⇒ P ′sj = 0, where j is the

first column of X∗1. Hence

P ′sX2A2
jA

2
k

= 3P ′s



x2(jk)

1

x
2(jk)
2

...

x
2(jk)
n


− 2P ′sj

= 3P ′s



x2(jk)

1

x
2(jk)
2

...

x
2(jk)
n


.

Similarly

P ′sX2A2
jAk

= 3P ′s



z2(jk)

1

z
2(jk)
2

...

z
2(jk)
n


.

In Table 4.2 we give the necessary and sufficient conditions for P ′sX2u = δP ′sX2u′ , u, u
′ ∈{

AjAk, A
2
jA

2
k, AjA

2
k, A

2
jAk
}

and P ′sX2AjAk
= δP ′sX2AlAr to hold in terms of

runs of the designs.
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Table 4.2: NSC for P ′sX2u = δP ′sX2u′

(u, u′) NSC

(
AjAk, A

2
jA

2
k

)
P ′s


3x2(jk)

1 − δx(jk)
1

3x
2(jk)
2 − δx(jk)

2
...

3x
2(jk)
n − δx(jk)

n

 = 0

(AjAk, AjA
2
k) P ′s


z

(jk)
1 − δx(jk)

1

z
(jk)
2 − δx(jk)

2
...

z
(jk)
n − δx(jk)

n

 = 0

(
AjAk, A

2
jAk
)
P ′s


3z

2(jk)
1 − δz(jk)

1

3z
2(jk)
2 − δz(jk)

2
...

3z
2(jk)
n − δz(jk)

n

 = 0

(AjAk, AlAr) P ′s


x

(jk)
1 − δx(lr)

1

x
(jk)
2 − δx(lr)

2
...

x
(jk)
n − δx(lr)

n

 = 0

Theorem 5. |P ′sX2u| is constant ∀u iff the following conditions hold:

(1) P ′s



3x2(jk)

1 − δx(jk)
1

3x
2(jk)
2 − δx(jk)

2

...

3x
2(jk)
n − δx(jk)

n


= 0

(2) P ′s



z
(jk)
1 − δx(jk)

1

z
(jk)
2 − δx(jk)

2

...

z
(jk)
n − δx(jk)

n


= 0
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(3) P ′s



3z
2(jk)
1 − δz(jk)

1

3z
2(jk)
2 − δz(jk)

2

...

3z
2(jk)
n − δz(jk)

n


= 0

(4) P ′s



x
(jk)
1 − δx(lr)

1

x
(jk)
2 − δx(lr)

2

...

x
(jk)
n − δx(lr)

n


= 0, where x

(jk)
i and z

(jk)
i are the ith components of

X2AjAk
and X2AjA2

k
respectively, x

(lr)
i is the ith component of X2AlAr , j < k =

1(1)m, l < r = 1(1)m, i = 1(1)n, δ = ±1.

Proof. The proof of this theorem follows from Table 4.2 and (4.16).

4.3.2 Illustration with Examples

4.3.2.1 Illustration of the Conditions of Theorem 3

To illustrate the conditions given in Theorem 3, we consider 6 structured frac-

tional factorial designs for m1 = 3, s1 = 3, mt = 0, t > 1 and n = 10. In all of

these 6 designs seven runs are in common which are (0, 0, 2) , (0, 2, 0) , (2, 0, 0) ,

(0, 2, 2) , (2, 0, 2) , (2, 2, 0) , (2, 2, 2) and the remaining set of three runs is from

one of the six sets presented in Table 4.3. For 33 factorial experiment we have

β1 = (A,A2, B,B2, C, C2) and β2 =(AB, A2B2, AB2, A2B, AC, A2C2, AC2,

A2C, BC, B2C2, BC2, B2C). The number of pairs of 2-factor interaction effects

is
(

12
2

)
= 66. The P matrices are identical for all the 6 designs although X(u),∀u
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Table 4.3: 6 Sets of 3 Runs

I II III IV V V I
(0, 0, 1) (0, 1, 1) (1, 1, 2) (1, 2, 2) (0, 1, 2) (0, 2, 1)
(0, 1, 0) (1, 0, 1) (1, 2, 1) (2, 1, 2) (1, 2, 0) (2, 1, 0)
(1, 0, 0) (1, 1, 0) (2, 1, 1) (2, 2, 1) (2, 0, 1) (1, 0, 2)

are not identical for them. The common P matrix is given below.

P =



3a −a −a −2a −2a 2a 0 0 0 a

−a 3a −a −2a 2a −2a 0 0 0 a

−a −a 3a 2a −2a −2a 0 0 0 a

−2a −2a 2a 4a 0 0 0 0 0 −2a

−2a 2a −2a 0 4a 0 0 0 0 −2a

2a −2a −2a 0 0 4a 0 0 0 −2a

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

a a a −2a −2a −2a 0 0 0 3a



, a = 0.125.

To verify the two conditions of Theorem 3 on design II we observe the following

results:

1. The 18 pairs of 2−factor interactions satisfy the condition P (X2u ±X2v) =

0. Out of these 18 pairs 6 are from the group containing the factors A and

B where the pairs are formed by taking all possible 2 out of 4 interaction

effects (AB,A2B2, AB2, A2B). Similarly the remaining 12 pairs are 6 from

the group containing the factors B and C and 6 from the group containing A

and C respectively. We present Table 4.4 which shows that the coefficients
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Table 4.4: (X2u ±X2v) Expressed as Linear Combinations of Cols of X∗1 and P

for Group AB.

(X2u ±X2v) Coefficients of linear combinations of X∗
1 Coefficients of linear combinations of P(

X2AB −X
2A2B2

)
(1, 1, 0, 1, 0, 0,−1) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)(

X2AB −X
2AB2

)
(0.5, 0,−0.5, 0.5, 0, 0, 0.5) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)(

X2AB + X
2A2B

)
(0.5, 1,−0.5, 0.5,−1, 0, 0.5) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)(

X
2A2B2 −X

2AB2

)
(−0.5,−1,−0.5,−0.5, 0, 0, 1.5) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)(

X
2A2B2 + X

2A2B

)
(−0.5, 0, 0.5,−1.5,−1, 0, 1.5) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)(

X
2AB2 + X

2A2B

)
(0, 1, 1,−1,−1, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

of the linear combinations corresponding to the columns of P are zero for

all 6 pairs of interactions in the group of A and B. . The findings of Table

4.4 implies that (X2u ±X2v) can be expressed by the columns of X∗1 only.

Hence (X2u ±X2v) ∈ Null (P ) . Similar tables can be obtained for the pairs

of interactions in the group of A and C and the group of B and C as well.

We note that the condition (1) of Theorem 3 holds for all pairs of interaction

effects belonging to G1.

2. We find that pairs formed by similar interaction effects from 2 groups (e.g.

AαBβ, AαCβ, α, β ∈ {1, 2}) satisfy the conditionsX2u = QX2v andQ′PQ =

P . Here is the result for the pair (AB, AC). We present the interaction

vectors X2u, for u = AB and AC and the permutation matrix Q below.

X2AB = (−1, 1, 1, 1, 1, 0, 0, 0, 1, 0)′ , X2AC = (1,−1, 1, 1, 0, 1, 0, 1, 0, 0)′ ,
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Q =



0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1



.

Here PQ = QP holds and this implies Q′PQ = P . Similar permutation

matrix exists for other pairs like (A2B2, A2C2) , (AB2, AC2) , (A2B,A2C)

etc. and Q′PQ = P holds for these pairs. However, this condition holds for

2-factor interaction effects belonging to G2 because no permutation matrix

exists for any pair belonging to G1.

In Table 4.5 we present the connections among the variances of the 2- factor

interaction estimators for design II. Similar results are also obtained for the

remaining 5 structured designs.

4.3.2.2 Illustration of the Conditions of Theorem 5

We consider the design D(3) for m = 3 and n = 8 in Table 4.6. Here we have

X2AB = (−1,−1, 0,−1,−1, 1, 1, 0)′,X2A2B2 = (1, 1,−2, 1, 1, 1, 1,−2)′,X2AB2 =

50



Table 4.5: Equality of the Variances by the Two Conditions

Equality of Variances Conditions
V ar (AB) = V ar (A2B2) = V ar (AB2) = V ar (A2B) 1
V ar (AC) = V ar (A2C2) = V ar (AC2) = V ar (A2C) 1
V ar (BC) = V ar (B2C2) = V ar (BC2) = V ar (B2C) 1

V ar (AB) = V ar (AC) = V ar (BC) 2
V ar (A2B2) = V ar (A2C2) = V ar (B2C2) 2

V ar (AB2) = V ar (AC2) 2
V ar (A2B) = V ar (A2C) 2

Table 4.6: Design D(3)

1 2 2 0 0 0 2 2
2 1 2 0 0 2 0 2
2 2 1 0 2 0 0 2

(1, 0,−1,−1,−1, 0, 1,−1)′, X2A2B = (1,−2, 1, 1, 1,−2, 1, 1)′ and X2AC =
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(−1, 0,−1,−1, 1,−1, 1, 0)′ . Also we have

P =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 .5 −.25 −.25 −.25 .25

0 0 0 −.25 .125 .125 .125 −.125

0 0 0 −.25 .125 .125 .125 −.125

0 0 0 −.25 .125 .125 .125 −.125

0 0 0 .25 −.125 −.125 −.125 .125



,

X∗1 =



1 0 −2 1 1 1 1

1 1 1 0 −2 1 1

1 1 1 1 1 0 −2

1 −1 1 −1 1 −1 1

1 −1 1 −1 1 1 1

1 −1 1 1 1 −1 1

1 1 1 −1 1 −1 1

1 1 1 1 1 1 1



.
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Here rank (P ) = r = 1. Any column of P from 4 to 8 is independent, so we can

take the 4th column of P as P s:

P s =



0

0

0

.5

−.25

−.25

−.25

.25



= 0.25



0

0

0

2

−1

−1

−1

1



.

Consider the pair (X2AB,X2A2B2). For δ = 1 from condition (1) of Theorem 5 we

have

P ′s



3x
2(AB)
1 − x(AB)

1

3x
2(AB)
2 − x(AB)

2

...

3x
2(AB)
8 − x(AB)

8


= .25

(
0 0 0 2 −1 −1 −1 1

)



4

4

0

4

4

2

2

0



= 0.
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Hence we have P ′sX2AB = P ′sX2A2B2 . From condition (2) of Theorem 5, for

δ = 1, we have

P ′s



z
(AB)
1 − x(AB)

1

z
(AB)
2 − x(AB)

2

...

z
(AB)
8 − x(AB)

8


= .25

(
0 0 0 2 −1 −1 −1 1

)



2

1

−1

0

0

−1

0

−1



= 0

and hence P ′sX2AB = P ′sX2AB2 is confirmed. Next considering the pair (X2AB,X2AB2),

from condition (3) of Theorem 5 we have

P ′s



3z
2(AB)
1 + z

(AB)
1

3z
2(AB)
2 + z

(AB)
2

...

3z
2(AB)
8 + z

(AB)
8


= .25

(
0 0 0 2 −1 −1 −1 1

)



4

0

2

2

2

0

4

2



= 0,
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δ = −1 and hence P ′sX2AB2 = −P ′sX2A2B. Finally consider the pair (X2AB,X2AC) .

From the condition (4) of Theorem 5, for δ = 1, we have

P ′s



x
(AB)
1 − x(AC)

1

x
(AB)
2 − x(AC)

2

...

x
(AB)
8 − x(AC)

8



= .25

(
0 0 0 2 −1 −1 −1 1

)



0

−1

1

0

−2

2

0

0



= 0,

which shows P ′sX2AB = P ′sX2AC . Similarly it can be shown that P ′sX2AC =

P ′sX2A2C2 = P ′sX2AC2 = P ′sX2A2C and P ′sX2BC = P ′sX2B2C2 = P ′sX2BC2 =

P ′sX2B2C by using conditions (1)-(3) of Theorem 5. Again by using condition (4)

it can be shown that P ′sX2AC = P ′sX2BC . So all four conditions of Theorem 5

hold for the design D(3) and hence it is a CV design.
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Chapter 5

Two General and Other Special

CV Designs and Their

Characterization Using the P

Matrix

5.1 Chapter Summary

In this chapter we present two designs for 3m factorial experiment for general

m which possess CV property. Also we analyze the structure of the projection

matrix for these CV designs. Here is what we present in each section:

• (Section 5.2): In this section we present the design d
(1)
m for n = 2m+ 2 runs,

m ≥ 2 and demonstrate the condition of CV in terms of the design runs and

the projection matrix of the design.
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• (Section 5.3): In this section we present another 3m CV design d
(2)
m for

n = 3m runs, m ≥ 3. Like d
(1)
m the CV property of d

(2)
m is also demonstrated

in terms of the design runs and projection matrix.

• (Section 5.4): In this section we present the optimum CV designs. The

design d
(1)
m is optimum for m = 2 and the design d

(2)
m is optimum for m = 3.

This section also presents some more CV designs for different m that satisfy

a particular structure of P .

• (Section 5.5): In this section we analyze a particular structure of the pro-

jection matrix P which is satisfied by both the designs d
(1)
m and d

(2)
m as well

as all the other CV designs presented in section 4.4.

5.2 Design d
(1)
m and Its P

In this section we present the 3m fractional factorial design d
(1)
m for n = 2m+2,

m ≥ 2 runs and obtain its variance covariance matrix and the projection matrix

as a function of m. Using the necessary and sufficient condition for CV in terms

of the projection matrix presented in Theorem 1 of Chapter 4 we demonstrate the

CV property of this design. Below we present d
(1)
m :

d(1)
m =



2Im

2Jm − Im

0′m

2j ′m


,
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where Im is the identity matrix of order m, Jm is the matrix of unity, 0′m is the

(m× 1) vector of 0’s and j ′m is the (m× 1) vector of 1’s. Consider the uth model

Mu in (5.1)

Mu : E (y) = jµ+X1β1 +X2uβ2u, V ar (y) = σ2I, (5.1)

Define X∗1 =

[
jn

...X1

]
. The matrices X∗1 and (X∗1

′X∗1) are given below:

X∗1 =



jm 2Jm − Im Jm

jm Jm − Im −3Im + Jm

1 −j ′m j ′m

1 j ′m j ′m


,

X∗1
′X∗1 =


2m+ 2 j ′m (2m− 1) j ′m

jm 5Im + (2m− 4)Jm 3Im − 2Jm

(2m− 1) jm 3Im − 2Jm 9Im + (2m− 4)Jm

 .

From Theorem 1 of Chapter 4 we know that a design is CV iff X ′2uPX2u =

constant,∀u. And X ′2uPX2u = constant ⇔sum of square of the elements of

PX2u is constant ,∀u. Using this condition we want to demonstrate that the

design d
(1)
m is a CV design for all m. We find the P matrix which is given as

In−X∗1 (X∗′1X
∗
1)
−1
X∗′1 . We first calculate the matrix P . A general representation

of the matrix (X∗′1X
∗
1)
−1

is

(X∗′1X
∗
1)
−1

=


a1 a2j

′
m a3j

′
m

a2jm a4Im + a5Jm a6Im + a7Jm

a3jm a6Im + a7Jm a8Im + a9Jm

 ,
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where a1, . . . , a9 are unknown quantities which are determined from

(X∗′1X
∗
1) (X∗′1X

∗
1)
−1

= I. (5.2)

Equating the first column of both sides of (5.2) we get

(2m+ 2) a1 +ma2 +m (2−m) a3 = 1.

a1 + (5 +m (2m− 4)) a2 + (3− 2m) a3 = 0.

a1 + (3− 2m) a2 + (9 +m (2m− 4)) a2 = 0. (5.3)

The (5.3) gives

ca1 = 4
(
9− 11m+ 10m2 − 4m3 +m4

)
.

ca2 = −6
(
2− 2m+m2

)
.

ca3 = 2
(
4− 8m+ 5m2 − 2m3

)
.

where c = 36 (2−m+m2). Now equating the second column of both sides of

(5.2) we get

a4 =
1

4
.

ca5 = 9 (2−m) .

a6 = − 1

12
.

ca7 = 3 (3− 2m) .

Again equating the third column of both sides of (5.2) we get

a8 =
5

36
.

ca9 =
(
6− 9m+ 4m2

)
.
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The matrices X∗1 (X∗′1X
∗
1)
−1
X∗′1 and P are

X∗1 (X∗′1X
∗
1)
−1
X∗′1 =



b1Im + b2Jm b3Im + b4Jm b5jm b6jm

b3Im + b4Jm b7Im + b8Jm −b9j
′
m −b10j

′
m

b5j
′
m b9j

′
m b11 b12

b6j
′
m b10j

′
m b12 b13


,

P =



(1− b1) Im − b2Jm − (b3Im + b4Jm) −b5jm −b6jm

− (b3Im + b4Jm) (1− b7) Im − b8Jm −b9jm −b10jm

−b5j
′
m −b9jm (1− b11) −b!2

−b6j
′
m −b10jm −b12 (1− b13)


,

where b1 = 1, cb2 = −36, b3 = b4 = 0, cb5 = 36 (m− 1), cb6 = 36, b7 = 1,

b8 = b9 = b10 = 0, cb11 = 36 (m+ 1), cb12 = −36 (m− 1), cb13 = 36 (1−m+m2).

Thus wee see that b1− 1 = 0, b3 = b4 = 0, b5 = − (m− 1) b2, b6 = −b2, b7− 1 = 0,

b8 = b9 = b10 = 0, 1− b11 = (m− 1)2 b2, b12 = (m− 1) b2, 1− b13 = −b2. Hence P

can be expressed as
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P = −b2



1 . . . 1 0 . . . 0 − (m− 1) −1

1 . . . 1 0 . . . 0 − (m− 1) −1

...
...

...
...

...
...

...
...

1 . . . 1 0 . . . 0 − (m− 1) −1

0 . . . 0 0 . . . 0 0 0

0 . . . 0 0 . . . 0 0 0

...
...

...
...

...
...

...
...

0 . . . 0 0 . . . 0 0 0

− (m− 1) . . . − (m− 1) 0 . . . 0 (m− 1)2 0

−1 . . . −1 0 . . . 0 (m− 1) 1



.

For real vector X2u = (x1,u, x2,u, . . . , x2m+1,u, x2m+2,u)
′ corresponding to the uth

interaction we get

PX2u = −b2



x1,u + x2,u + . . .+ xm,u − (m− 1)x2m+1,u − x2m+2,u

...

x1,u + x2,u + . . .+ xm,u − (m− 1)x2m+1,u − x2m+2,u

0

...

0

− (m− 1) (x1,u + x2,u + . . .+ xm,u − (m− 1)x2m+1,u − x2m+2,u)

− (x1,u + x2,u + . . .+ xm,u − (m− 1)x2m+1,u − x2m+2,u)



.

(5.4)
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Table 5.1: 2−Factor Interaction Vectors

Levels of B1 Levels of B2 B1B2 B2
1B

2
2 B1B

2
2 B2

1B2

2 0 1 1 1 1
0 2 1 1 0 -2
0 0 -1 1 -1 1
...

...
...

...
...

...
0 0 -1 1 -1 1
0 0 -1 1 -1 1
2 2 0 -2 -1 1

Table 5.2: (x1 + x2 + . . .+ xm − (m− 1)x2m+1 − x2m+2) for the 4 Interactions

B1B2 B2
1B

2
2 B1B

2
2 B2

1B2

(x1 + x2 + . . .+ xm) −m+ 4 m −m+ 3 m− 3

(− (m− 1)x2m+1 − x2m+2) m− 1 −m+ 3 m −m
(x1 + x2 + . . .+ xm − (m− 1)x2m+1 − x2m+2) 3 3 3 −3

Hence

X ′2uPX2u =
(x1,u + x2,u + . . .+ xm,u + x2m+1,u + x2m+2,u)

2

(2−m+m2)
. (5.5)

The X ′2uPX2u will be constant independent of u iff [x1,u + x2,u + . . .+ xm,u

− (m− 1)x2m+1,u − x2m+2,u]
2 or equivalently |x1,u+x2,u+. . .+xm,u−(m− 1)x2m+1,u

−x2m+2,u| is constant for all 2−factor interaction vectors from (5.5). We present

the 2−factor interaction vector corresponding to the factors B1 & B2 in Table 5.1.

Because of the symmetric structure of d
(1)
m the interaction vectors corresponding

to any two factors Bi & Bj, i < j = 1, . . . ,m are of similar form. Now for each

interaction vector corresponding to B1 & B2 we calculate [x1,u + x2,u + . . .+ xm,u

− (m− 1)x2m+1,u − x2m+2,u]
2 in Table 5.2. From Table 5.2 we see that |x1,u +

x2,u + . . . + xm,u − (m− 1)x2m+1,u − x2m+2,u| = 3,∀u corresponding to B1 and

B2. Identical result holds for any Bi & Bj, i < j = 1, . . . ,m. Thus X ′2uPX2u
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is constant independent of u and hence d
(1)
m is CV from Theorem 1 of Chapter 4.

The expression of CV becomes
(2−m+m2)

9
.

5.3 Design d
(2)
m and Its P

In this section we present another 3m design d
(2)
m for n = 3m , m ≥ 3 and like

d
(1)
m the CV property of d

(2)
m is also demonstrated using Theorem 1 of Chapter 4.

Below we present d
(2)
m :

d(2)
m =


2Im

2Jm − 2Im

2Jm − Im

 ,

where Im is the identity matrix of order m, Jm is the matrix of unity, 0′m is the

(m× 1) vector of 0’s and j ′m is the (m× 1) vector of 1’s. The CV property is now

characterized by the projection matrix P . Below we present the matrices X∗1 and

P :

X∗1 =


2Im − Jm

Jm − 2Im

Jm − Im

 ,
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P =



1
2 −

1
2m − 1

2m . . . − 1
2m

1
2 −

1
2m − 1

2m . . . − 1
2m 0 0 . . . 0

− 1
2m

1
2 −

1
2m . . . − 1

2m − 1
2m

1
2 −

1
2m . . . − 1

2m 0 0 . . . 0

...
...

...
...

...
...

...
...

...
...

...
...

− 1
2m − 1

2m . . . 1
2 −

1
2m − 1

2m − 1
2m . . . 1

2 −
1

2m 0 0 . . . 0

1
2 −

1
2m − 1

2m . . . − 1
2m

1
2 −

1
2m − 1

2m . . . − 1
2m 0 0 . . . 0

− 1
2m

1
2 −

1
2m . . . − 1

2m − 1
2m

1
2 −

1
2m . . . − 1

2m 0 0 . . . 0

...
...

...
...

...
...

...
...

...
...

...
...

− 1
2m − 1

2m . . . 1
2 −

1
2m − 1

2m − 1
2m . . . 1

2 −
1

2m 0 0 . . . 0

0 0
... 0 0 0

... 0 0 0
... 0

0 0
... 0 0 0

... 0 0 0
... 0

...
...

...
...

...
...

...
...

...
...

...
...

0 0
... 0 0 0

... 0 0 0
... 0



.
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Table 5.3: (xi + xm+i) , i = 1(1)m and
∑2m

i=1 xi for the 4 Interactions

B1B2 B2
1B

2
2 B1B

2
2 B2

1B2∑2m
i=1 xi (−m+ 6) (−m+ 6) −2 (m− 3) 2 (m− 3)

x1 + xm 2 2 1 -1
x2 + xm+1 2 2 1 -1
x3 + xm+3 -1 -1 -2 2
x4 + xm+4 -1 -1 -2 2

...
...

...
...

...
xm + xm+m -1 -1 -2 2

For real vector X2u = (x1,u, . . . , xm,u, xm+1,u, . . . , x2m,u, x2m+1,u, . . . , x3m,u)
′ corre-

sponding to the uth 2− factor interaction we get

PX2u =



1
2

(x1,u + xm+1,u)− 1
2m

(x1,u + . . .+ x2m,u)

1
2

(x2,u + xm+2,u)− 1
2m

(x1,u + . . .+ x2m,u)

...

1
2

(xm,u + x2m,u)− 1
2m

(x1,u + . . .+ x2m,u)

1
2

(x1,u + xm+1,u)− 1
2m

(x1,u + . . .+ x2m,u)

1
2

(x2,u + xm+2,u)− 1
2m

(x1,u + . . .+ x2m,u)

...

1
2

(xm,u + x2m,u)− 1
2m

(x1,u + . . .+ x2m,u)

0

0

...

0



.

We present (xi,u + xm+i,u) , i = 1(1)m and
∑2m

i=1 xi for the 4 interaction vectors

corresponding to the factors B1and B2 in Table 5.3. Because of the symmetric
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Table 5.4: 32 Design: d
(1)
2

2 0 1 2 0 2
0 2 2 1 0 2

structure of d
(2)
m the interaction vectors corresponding to any two factors Bi & Bj

and hence the vector PX2u, u = BiBj, B
2
iB

2
j , BiB

2
j , B

2
iBj, i < j = 1, . . . ,m are

the same except for a permutation. From Table 5.3 we compute the vector PX2u

which is found to be identical ∀u corresponding to B1 and B2. The PX2u is given

below

PX2u =



(3m−6)
2m

j ′2

− 3
m
j ′m−2

(3m−6)
2m

j ′2

− 3
m
j ′m−2

0j ′m


, u = B1B2, B

2
1B

2
2 , B1B

2
2 , B

2
1B2. (5.6)

Identical result is obtained for any Bi & Bj, i < j = 1, . . . ,m. From (5.6) we get

X ′2uPX2u = 9
(
m−2
m

)
which is constant independent of u and hence from Theorem

1 of chapter 4 d
(2)
m is CV. The expression of CV becomes m

9(m−2)
.

5.4 Optimal CV Designs

The design d
(1)
m for n = 2m+2 is an optimal CV design for m = 2 with the CV

value 0.4444 as this is the minimum value of CV in the class of all CV designs for

m = 2 and n = 6. Similarly the design d
(2)
m for n = 3m is an optimal CV design

for m = 3 with the CV value of 0.3333. We present the two optimum CV designs
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Table 5.5: 33 Design

d
(2)
3

2 0 0 0 2 2 1 2 2
0 2 0 2 0 2 2 1 2
0 0 2 2 2 0 2 2 1

d
(1)
m for m = 2 and d

(2)
m for m = 3 in Table 5.4 and Table 5.5 respectively.

Now we present some more CV designs for 3m, 4 ≤ m ≤ 7 with n = 2m + 2

in Table 5.6. Some of these designs are optimum CV designs. These designs have

a clear pattern in them, the first 2m − 1 runs are identical. All of these designs

have the similar structure of P as discussed in the next section.

5.5 The structure of P

In this section we analyze the projection matrix of the CV designs presented

in the earlier two sections. Both the designs are found to possess a particular

structure of P . The design matrix for the uth model is X(u) =

[
X∗1

...X2u

]
. The

projection matrix P is defined as P = In −X∗1 (X∗′1X
∗
1)
−1
X∗′1 = In −Q . After

rearranging the runs it can be seen that both the designs d
(1)
m and d

(2)
m have the

following structure forP :

P =

 0 0

0 A∗

 , Q =

 Im 0

0 A

 , A = In−m −A∗.

Partition the matrix X∗1 as X∗1 =

 X11

X12

 , where X11 corresponds to the m

runs giving 0′s in P and X12 corresponds to the remaining (n−m) runs. Again
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Table 5.6: Some CV Designs: for (a) m = 4, (b) m = 5, (c) m = 6 and (d) m = 7

(a)

1 1 1 2 0 2 0 0 0 2
1 1 2 1 0 2 0 1 1 1
1 2 1 1 0 2 1 2 0 0
2 1 1 1 0 2 1 2 1 2

(b)

1 1 1 1 2 0 2 0 0 0 2 1
1 1 1 2 1 0 2 0 1 1 1 1
1 1 2 1 1 0 2 1 2 0 0 2
1 2 1 1 1 0 2 1 2 1 2 2
2 1 1 1 1 0 2 1 2 0 1 2

(c)

1 1 1 1 1 2 0 2 0 0 0 2 1 1
1 1 1 1 2 1 0 2 0 1 1 1 1 1
1 1 1 2 1 1 0 2 1 2 0 0 2 1
1 1 2 1 1 1 0 2 1 2 1 2 2 1
1 2 1 1 1 1 0 2 1 2 0 1 2 1
2 1 1 1 1 1 0 2 1 2 0 1 0 1

(d)

1 1 1 1 1 1 2 0 2 0 0 0 2 1 1 0
1 1 1 1 1 2 1 0 2 0 1 1 1 1 1 2
1 1 1 1 2 1 1 0 2 1 2 0 0 2 1 1
1 1 1 2 1 1 1 0 2 1 2 1 2 2 1 0
1 1 2 1 1 1 1 0 2 1 2 0 1 2 1 1
1 2 1 1 1 1 1 0 2 1 2 0 1 0 1 0
2 1 1 1 1 1 1 0 2 1 2 0 1 0 1 2

partition X12 as X12 =

 X
(1)
12

X
(2)
12

 , where X
(1)
12 corresponds to the independent
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runs of X12. Therefore

P = In −Q

⇒ Q = X∗1 (X∗′1X
∗
1)
−1
X∗′1

=

 X11

X12

 (X∗′1X
∗
1)
−1

[
X ′11 X ′12

]

=

 Im 0

0 A

 . (5.7)

Define V = X ′11X11 +X
′(1)
12 X

(1)
12 .

Theorem 6. The following characterizations hold true:

1. (X∗′1X
∗
1)
−1

is a generalized inverse of X ′11X11.

2. (X∗′1X
∗
1)
−1

is a generalized inverse of X ′12X12.

3. X11 (X∗′1X
∗
1)
−1
X ′12 = 0⇔X11V

−1X ′12 = 0.

Proof. The proof follows from the structure of the projection matrix presented in

(5.7).

1. It follows from (5.7) by equating the first diagonal component of Q with Im:

X11 (X∗′1X
∗
1)
−1
X ′11 = Im

⇒X ′11X11 (X∗′1X
∗
1)
−1
X ′11X11 = X ′11X11.

2. It follows from (5.7) by equating the last diagonal component of Q with A:

X12 (X∗′1X
∗
1)
−1
X ′12 = A

⇒X ′12X12 (X∗′1X
∗
1)
−1
X ′12X12 = X ′12AX12,
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where A satisfies AX12 = X12 and A2 = A.

3. Assume

X11V
−1X ′12 = 0

which is equivalent to

X11V
−1X

′(1)
12 = 0 and X11V

−1X
′(2)
12 = 0. (5.8)

From Rao (1973) we have

X11 (X∗′1X
∗
1)
−1
X ′12 = X11

(
V +X

′(2)
12 X

(2)
12

)−1

X ′12

= X11

(
V −1 − V

−1X
′(2)
12 X

(2)
12 V

−1

1 +X
(2)
12 V

−1X
′(2)
12

)−1

X ′12

= X11V
−1X ′12 −

X11V
−1X

′(2)
12 X

(2)
12 V

−1X ′12

1 +X
(2)
12 V

−1X
′(2)
12

= 0 from (5.8).

Again assume

X11 (X∗′1X
∗
1)
−1
X ′12 = 0

which is equivalent to

X11 (X∗′1X
∗
1)
−1
X
′(1)
12 = 0 and X11 (X∗′1X

∗
1)
−1
X
′(2)
12 = 0 (5.9)
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From Rao (1973) we have

X11V
−1X ′12 = X11

(
X ′1X1 −X ′(2)

12 X
(2)
12

)−1

X ′12

= X11

[
(X∗′1X

∗
1)
−1

+
(X∗′1X

∗
1)
−1
X
′(2)
12 X

(2)
12 (X∗′1X

∗
1)
−1

1 +X
(2)
12 (X∗′1X

∗
1)
−1
X
′(2)
12

]−1

X ′12

= X11 (X∗′1X
∗
1)
−1
X ′12

+
X11 (X∗′1X

∗
1)
−1
X
′(2)
12 X

(2)
12 (X∗′1X

∗
1)
−1
X ′12

1 +X
(2)
12 (X∗′1X

∗
1)
−1
X
′(2)
12

= 0 from (5.9).
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Chapter 6

Special Properties of the Design

d
(1)
m when m = 2

6.1 Chapter summary

In this chapter we present some properties of the optimal CV design with six

runs for a factorial experiment with two factors each at three levels we presented in

Chapter 5 when all the runs are replicated a number of times. We characterize the

CV property in terms of the determinant of the inverse of the variance-covariance

matrix of the parameter estimators for each model. Also we obtain the condition

of CV for a design with three factors from a CV design with two factors. Here is

the summary of what we present in each section:

• (Section 6.2): Upto and including Chapter 5 we presented and obtained CV

conditions for the designs with distinct runs. In this section we consider

designs for factorial experiment with two factors each at three levels with
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replicated runs. We prove that for any number of replications of the six runs

of the optimal design, the replicated design satisfies the CV property.

• (Section 6.3): In this section we present some more CV designs with six

runs for factorial experiment with two factors each at three levels which also

satisfy the CV property w.r.t the general replication presented in section 6.2.

Among these CV designs some are balanced and isomorphic to the optimal

CV design discussed in the previous section. We also characterize the CV

designs in terms of the determinant of their variance-covariance matrices.

The constant determinant of the inverse of the variance-covariance matrix

of the parameter estimators for each model gives NSC for a design to be CV.

• (Section 6.4): In this section we demonstrate how the CV property can be

extended from a design for factorial experiment with two factors to a design

for factorial experiment with three factors. We obtain the condition of the

CV for a design with three factors whose every pair of columns contains

the runs of the CV design with two factors. The runs for both the designs

are replicated in the same way. So for a CV design with two factors these

conditions can be checked to see if it can be extended to a CV design with

three factors.

6.2 Replications of the Runs of d
(1)
2

In Chapter 5 we presented the design d
(1)
m for n = 2m+ 2 which is an optimal

CV design for m = 2. In this section we consider the general replication of the
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Table 6.1: Replicated Design d
(1)
2R

Runs Replications
(2, 0) r1

(0, 2) r2

(2, 1) r3

(1, 2) r4

(0, 0) r5

(2, 2) r6

Table 6.2: Design Matrices

Design With uth interaction Without uth interaction

d
(1)
2 Xu(1)(6× 6) X

∗(1)
1 (6× 5)

d
(1)
2R Xu(2)

(∑6
i=1 ri × 6

)
X
∗(2)
1

(∑6
i=1 ri × 5

)

design d
(1)
m for m = 2 and show mathematically that it remains CV irrespective of

the number of replications of any of its runs. Also from the CV expression we will

see that it does not depend on the replications of the 2 runs which give columns

of zeroes in the projection matrix as presented in Chapter 5.

We present the different replications of the 6 runs of the design d
(1)
2 in Table

6.1 and the replicated design is denoted by d
(1)
2R. The replications r1, r2, . . . , r6 can

take positive integer values. When ri = 1,∀i then d
(1)
2R becomes d

(1)
2 . The total

number of runs for the replicated design d
(1)
2R is

∑6
i=1 ri (≥ 6). We present the the

notation of the design matrices for the two designs d
(1)
2 and d

(1)
2R in Table 6.2. The

rows of X
∗(2)
1 are formed by replicating the rows of X

∗(1)
1 . For example if the

ith row of X
∗(1)
1 is replicated ri times it gives ri rows of X

∗(2)
1 , i = 1(1)6. So

X
∗(2)
1 can be obtained from X

∗(1)
1 by pre-multiplying the latter by the matrix R
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of order
(∑6

i=1 ri × 6
)

obtained from an identity matrix of order 6. So we have

the following:

X
∗(2)
1 = RX

∗(1)
1 ,

where

R =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



→ replicated r1 times

→ replicated r2 times

→ replicated r3 times

→ replicated r4 times

→ replicated r5 times

→ replicated r6 times

,

and

X
∗(1)
1 =



1 1 1 −1 1

1 −1 1 1 1

1 0 −2 1 1

1 1 1 0 −2

1 −1 1 −1 1

1 1 1 1 1



.

This implies

X
∗(2)′
1 X

∗(2)
1 = X

∗(1)′
1 R′RX

∗(1)
1 , (6.1)
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where

R′R =



r1 0 0 0 0 0

0 r2 0 0 0 0

0 0 r3 0 0 0

0 0 0 r4 0 0

0 0 0 0 r5 0

0 0 0 0 0 r6



.

Now we find the sufficient condition of CV for the replicated design d
(1)
2R in terms

of its projection matrix and the interaction vectors. Let the projection matrix

corresponding to d
(1)
2R be PR. We write PR in terms of X

∗(2)
1 . The condition of

CV for the replicated design turns out to be same as that of the unreplicated

design d
(1)
2 which is known to be CV. Hence the CV property of the replicated

design follows. The PR is given as

PR = In −X∗(2)
1

(
X
∗(2)′
1 X

∗(2)
1

)−1

X
∗(2)′
1 .

We express PR in terms of the design matrix X
∗(1)
1 of d

(1)
2 because we want to

obtain the condition of CV for d
(1)
2R in terms of the CV design d

(1)
2 . From (6.1) PR

can be expressed in terms of X
∗(1)
1 as

PR = In −RX∗(1)
1

(
X
∗(1)′
1 R′RX

∗(1)
1

)−1

X
∗(1)′
1 R′.

Defining W = X
∗(1)
1

(
X
∗(1)′
1 R′RX

∗(1)
1

)−1

X
∗(1)′
1 , PR can be simplified as PR =

In−RWR′, where all the elements of PR are in terms of the replications r1, . . . , r6

and the elements of the design matrix of d
(1)
2 . Given the replications and the design

matrix of d
(1)
2 , PR can be easily obtained. The matrices W and RWR′ are given
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below:

W =



w1 w2 0 0 w3 w4

w2 w5 0 0 w6 w7

0 0 w8 0 0 0

0 0 0 w9 0 0

w3 w6 0 0 w10 w11

w4 w7 0 0 w11 w12



,

RWR′ =



w1J r1 w2J r1r2 0r1r3 0r1r4 w3J r1r5 w4J r1r6

w2J r2r1 w5J r2 0r2r3 0r2r4 w6J r2r5 w7J r2r6

0r3r1 0r3r2 w8J r3 0r3r4 0r3r5 0r3r6

0r4r1 0r4r2 0r4r3 w9J r4 0r4r5 0r4r6

w3J r5r1 w6J r5r2 0r5r3 0r5r4 w10J r5 w11J r5r6

w4J r6r1 w7J r6r2 0r6r3 0r6r4 w11J r6r5 w12J r6



,

where w′is are functions of r1, . . . , r6 given at the end of this section. Hence the

matrix PR becomes

PR =



Ir1 − w1Jr1 −w2Jr1r2 0r1r3 0r1r4 −w3Jr1r5 −w4Jr1r6

−w2Jr2r1 Ir2 − w5Jr2 0r2r3 0r2r4 −w6Jr2r5 −w7Jr2r6

0r3r1 0r3r2 Ir3 − w8Jr3 0r3r4 0r3r5 0r3r6

0r4r1 0r4r2 0r4r3 Ir4 − w9Jr4 0r4r5 0r4r6

−w3Jr5r1 −w6Jr5r2 0r5r3 0r5r4 Ir5 − w10Jr5 −w11Jr5r6

−w4Jr6r1 −w7Jr6r2 0r6r3 0r6r4 −w11Jr6r5 Ir6 − w12Jr6



.

Now we express the uth interaction vector of Xu(2) in terms of the uth interaction

vector of Xu(1) and obtain the sufficient condition of CV for d
(1)
2R in terms of

its projection matrix and the interaction vector of d
(1)
2 . For real valued vector

X2u = (x1,u, x2,u, . . . , x6,u)
′ corresponding to the column of interaction vector of
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Xu(1) the interaction vector of Xu(2) will be X∗2u = RX2u since the rows of X∗2u

are formed by replicating the rows of X2u. Thus X∗2u can be expressed as

X∗2u =



x1,ujr1

x2,ujr2

x3,ujr3

x4,ujr4

x5,ujr5

x6,ujr6



.

From Theorem 2 of Chapter 4 we know that the sufficient condition for a design

to be CV is |PX2u| =constant,∀u, X2u being the uth interaction vector. Below

we find the sufficient condition of CV for d
(1)
2R:

PRX
∗
2u = (x1,u + x2,u − x5,u − x6,u)



r2r5r6
k
jr1

r1r5r6
k
jr2

0jr3

0jr4

− r1r2r6
k
jr5

− r1r2r5
k
jr6



, k =
1

r2r5r6 + r1 (r5r6 + r2 (r5 + r6))
.

(6.2)

So from the above expression we see that PRX
∗
2u will be constant iff

|x1,u + x2,u − x5,u − x6,u| = constant,∀u. (6.3)

So (6.3) is a sufficient condition for the replicated design d
(1)
2R to be CV. In Chapter

5 we found the sufficient condition for the 3m design d
(1)
m to be CV as

|x1,u + x2,u + . . .+ xm,u − (m− 1)x2m+1,u − x2m+2,u| = constant,∀u (6.4)
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Table 6.3: Interaction Columns of d
(1)
2 and the Condition

t1 t2 X2B1B2 X2B2
1B

2
2
X2B1B2

2
X2B2

1B2

0 2 1 1 0 -2
2 0 1 1 1 1
1 2 -1 1 1 1
2 1 -1 1 0 -2
0 0 -1 1 -1 1
2 2 0 -2 -1 1
Condition 3 3 3 3

where X2u = (x1,u, x2,u, . . . , xm,u, x2m+1,u, x2m+2,u)
′ is the uth interaction vector.

For m = 2 condition (6.4) becomes identical to (6.3). So the condition of CV

for both the designs d
(1)
2 and d

(1)
2R are identical. In Table 6.3 we give the four

interaction vectors corresponding to the four interaction effects along with the

value of |x1,u + x2,u − x5,u − x6,u|,∀u for the design d
(1)
2 . So from Table 6.3 we see

that for all the 2-factor interaction vectors of d
(1)
2 we have

|x1u + x2u − x5u − x6u| = 3,∀u (6.5)

which is constant independent of u. Hence given this 32 CV design we have

shown mathematically that if any of its run is replicated any number of times,

the replicated design also satisfies the CV property. The CV expression for the

replicated design is given as

V ar
(
β̂2u

)
σ2

=
1

X∗2uPRX
∗
2u

=
r1r2r5 + r1r2r6 + r1r5r6 + r2r5r6

9r1r2r5r6

. (6.6)

From the variance expression in (6.6) we see that it does not depend on the

replication of the runs (1, 2) and (2, 1) which gives the columns of zeroes in the

projection matrix of d
(1)
2 . Here are the expressions of w′is in terms of the r′is, i =
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1(1)6:

w1 =
r5r6 + r2 (r5 + r6)

r2r5r6 + r1 (r5r6 + r2 (r5 + r6))

w2 = − r5r6

r2r5r6 + r1 (r5r6 + r2 (r5 + r6))

w3 =
r2r6

r2r5r6 + r1 (r5r6 + r2 (r5 + r6))

w4 =
r2r5

r2r5r6 + r1 (r5r6 + r2 (r5 + r6))

w5 =
r5r6 + r1 (r5 + r6)

r2r5r6 + r1 (r5r6 + r2 (r5 + r6))

w6 =
r1r6

r2r5r6 + r1 (r5r6 + r2 (r5 + r6))

w7 =
r1r5

r2r5r6 + r1 (r5r6 + r2 (r5 + r6))

w8 =
1

r3

w9 =
1

r4

w10 =
r2r6 + r1 (r2 + r6)

r2r5r6 + r1 (r5r6 + r2 (r5 + r6))

w11 = − r1r2

r2r5r6 + r1 (r5r6 + r2 (r5 + r6))

w12 =
r2r5 + r1 (r2 + r5)

r2r5r6 + r1 (r5r6 + r2 (r5 + r6))
.

Theorem 7. The design d
(1)
2 remains CV after replicating any of its runs any

number of times with the CV value r1r2r5+r1r2r6+r1r5r6+r2r5r6
9r1r2r5r6

.

Proof. The Theorem follows from (6.2), (6.5) and (6.6).
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6.3 Some More Balanced Designs Connected to

d
(1)
2

In this section we present some more designs which have similar CV property

as that of the design d
(1)
2 w.r.t the general replications of the runs presented in the

previous section. Some of these designs are balanced and are isomorphic to d
(1)
2

w.r.t the runs. Also we characterize the CV property of these designs in terms

of the determinant of the inverse of the respective variance-covariance matrices of

the parameter estimators. So instead of calculating the variance of the 2−factor

interaction estimators only the determinant condition can be checked to identify

the CV design. We consider the balanced 32 designs for n = 6 and find out how

many of them satisfy the CV property by checking the determinant condition.

In Table 6.4 we present 30 more 32 designs all of which remain CV after

replicating any of their runs any number of times. So all of these 30 designs have

identical property as d
(1)
2 w.r.t the replication of the runs. From Table 6.4 we see

that the design # 30 can be obtained from the design d
(1)
2 by renaming ”0” as ”1”

and ”1” as ”0”. The design # 2 can be obtained from d
(1)
2 by renaming ”0” as

”2” and ”2” as ”0”. The 27th design in the set is obtained from the design # 30

by renaming ”2” as ”1” and ”1” as ”2”. So all these four balanced designs are

isomorphic to one another w.r.t the replications and the runs as well. In 32 factorial

experiment the three pairs of balanced runs are {(0, 2) , (2, 0)}, {(0, 1) , (1, 0)} and

{(1, 2) , (2, 1)} . From computer check we found that 32 designs with distinct runs

are CV only for n = 6. We find out the balanced designs which are CV for n = 6.
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Table 6.4: 32 CV Designs Which Remain CV for Any Replication

0 0
0 1
0 2
1 0
2 0
2 1

0 0
0 1
0 2
1 0
2 0
2 2

0 0
0 1
0 2
1 1
1 2
2 0

0 0
0 1
0 2
1 1
1 2
2 1

0 0
0 1
0 2
1 1
1 2
2 2

0 0
0 1
0 2
1 1
2 0
2 1

0 0
0 1
0 2
1 1
2 0
2 2

0 0
0 1
0 2
1 2
2 0
2 1

0 0
0 1
0 2
1 2
2 0
2 2

0 0
0 1
1 0
2 0
2 1
2 2

0 0
0 1
1 1
1 2
2 0
2 1

0 0
0 1
1 1
1 2
2 1
2 1

0 0
0 1
1 1
2 0
2 1
2 2

0 0
0 1
1 2
2 0
2 1
2 2

0 0
0 2
1 0
1 1
2 0
2 2

0 0
0 2
1 0
2 0
2 1
2 2

0 0
0 2
1 1
1 2
2 0
2 2

0 0
0 2
1 1
1 2
2 1
2 2

0 0
0 2
1 1
2 0
2 1
2 2

0 0
1 0
1 1
1 2
2 1
2 2

0 0
1 1
1 2
2 0
2 1
2 2

0 1
0 2
1 0
1 1
1 2
2 0

0 1
0 2
1 0
1 1
1 2
2 1

0 1
0 2
1 0
1 1
1 2
2 2

0 1
0 2
1 1
1 2
2 0
2 1

0 1
0 2
1 1
1 2
2 0
2 2

0 1
1 0
1 1
1 2
2 1
2 2

0 1
1 1
1 2
2 0
2 1
2 2

0 2
1 0
1 1
1 2
2 1
2 2

0 2
1 1
1 2
2 0
2 1
2 2
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Table 6.5: Balanced 32 CV Designs

I
0 2
2 0
1 2
2 1
2 2
x x

II
0 2
2 0
1 0
0 1
2 2
x x

III
0 1
1 0
1 2
2 1
2 2
x x

We fix the run(2, 2) and choose any two pairs from the three balanced pairs and

add one run from the remaining set {(0, 0) , (1, 1)}. In Table 6.5 we present the

balanced designs with fixed (2, 2) and the added run (x, x), x ∈ {0, 1} . We have

V ar
(
β̂2u

)
σ2

=
|X∗′1X∗1|
|X(u)′X(u)|

, (6.7)

where X∗1 is the design matrix corresponding to the general mean and main effects

and the design matrix X(u) corresponds to the general mean, main effects and the

uth 2−factor interaction effect, u = 1(1)4. From (6.7) we see that a design is CV

iff

|X(u)′X(u)| = constant,∀u.

We present the |X(u)′X(u)|,∀u in terms of x for the three balanced designs in

Table 6.6. In Table 6.7 we present the determinant value of X(u)′X(u),∀u for both

x = 0 and x = 1. From Table 6.7 we see that for design I all the determinants

are equal to 11664. So both (1, 1) and (0, 0) gives CV design. For design II for

both x = 0 and x = 1 all the determinants are equal to 11664. So both (1, 1) and

(0, 0) gives CV design. For the design II for x = 0 all determinants are equal to

11664 and hence (0, 0) gives a CV design. But for x = 1, |X(B1B2
2)′X(B1B2

2)| =
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Table 6.6: |X(u)′X(u)| for the Balanced Designs

I
|X ′B1B2

XB1B2| 11664− 69984x+ 128304x2 − 69984x3 + 11664x4

|X ′B2
1B

2
2
XB2

1B
2
2
| 11664 + 116640x+ 174960x2 − 583200x3 + 291600x4

|X ′B1B2
2
XB1B2

2
| 11664 + 11664x− 8748x2 − 5832x3 + 2916x4

|X ′B2
1B2
XB2

1B2
| 11664 + 11664x− 8748x2 − 5832x3 + 2916x4

II
|X ′B1B2

XB1B2 | 11664− 69984x+ 128304x2 − 69984x3 + 11664x4

|X ′B2
1B

2
2
XB2

1B
2
2
| 11664− 69984x+ 81648x2 + 69984x3 + 11664x4

|X ′B1B2
2
XB1B2

2
| 11664− 34992x+ 37908x2 − 17496x3 + 2916x4

|X ′B2
1B2
XB2

1B2
| 11664− 34992x+ 37908x2 − 17496x3 + 2916x4

III
|X ′B1B2

XB1B2 | 11664− 69984x+ 128304x2 − 69984x3 + 11664x4

|X ′B2
1B

2
2
XB2

1B
2
2
| 104976− 769824x+ 1901232x2 − 1796256x3 + 571536x4

|X ′B1B2
2
XB1B2

2
| 46656x2 − 46656x2 + 11664x4

|X ′B2
1B2
XB2

1B2
| 46656x2 − 46656x2 + 11664x4

Table 6.7: Value of |X(u)′X(u)|,∀u for x = 0 and x = 1

Design I
u x = 0 x = 1

B1B2 11664 11664
B2

1B
2
2 11664 11664

B1B
2
2 11664 11664

B2
1B2 11664 11664

Design II
u x = 0 x = 1

B1B2 11664 11664
B2

1B
2
2 11664 104976

B1B
2
2 11664 0

B2
1B2 11664 0

Design III
u x = 0 x = 1

B1B2 11664 11664
B2

1B
2
2 104976 11664

B1B
2
2 0 11664

B2
1B2 0 11664
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|X(B2
1B2)′X(B2

1B2)| = 0 and hence the design II with (1, 1) does not satisfy the

design condition. Hence (1, 1) does not give a CV design. For design III for

x = 0, |X(B1B2
2)′X(B1B2

2)| = |X(B2
1B2)′X(B2

1B2)| = 0 and hence (0, 0) does not

work. But x = 1 gives all the determinants equal to 11664 and hence this design

with (1, 1) is a CV design. Thus we get four balanced designs which are CV

and these four designs are the ones isomorphic to one another already discussed.

The design I with x = 0 is the design d
(1)
2 , design I with x = 1 is the design

# 30 in Table 6.4, design II with x = 0 is design # 2 in Table 6.4 and the

design III with x = 1 is the design # 27 in Table 6.4. From Table 6.6 we

see that |X(B1B2
2)′X(B1B2

2)| = |X(B2
1B2)′X(B2

1B2)| for all the three designs. This

can be seen from the fact that the columns of X(B2
1B2) are linear combinations

of the columns of X(B1B2
2) or vice versa and determinant does not change for

elementary operations on the columns of a matrix. For example the 6th column of

X(B2
1B2) can be obtained by

(
2nd − 3rd − 4th + 5th − 6th

)
columns of X(B1B2

2) and

this representation is unique since these matrices are full rank matrices. For any

u1 6= u2 and n× n design matrices X(u1) and X(u2)

X(u2) = DX(u1) ⇒ |X(u2)′X(u2)| = |X(u1)′D′DX(u1)| = |X(u1)′||D′D||X(u1)|,

where D (n× n) is the matrix of elementary operations. Hence |D′D| = 1 ⇒

V ar(β̂2u1) = V ar(β̂2u2). Thus for every pair (u1, u2) if there exists a D such that

X(u2) = DX(u1), both X(u1) and X(u2) being square matrices, then the design is

CV.
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Table 6.8: 32 Design Extended to 33 Design

D1

B1 B2

2 0
0 2
2 1
1 2
0 0
0 0
2 2
2 2

D2

B1 B2 B3

2 0 0
0 2 0
2 1 2
1 2 2
0 0 2
0 0 0
2 2 1
2 2 2

6.4 32 → 33 Common Variance Design

In this section we present the conditions of obtaining a 33 CV design whose

every pair of columns is formed of the runs of a 32 CV design. So without even

calculating the variance of the 2−factor interaction estimators of the 33 design,

we can check its CV property by verifying these conditions obtained from the 32

CV design. Conditions are obtained by taking the example of the design d
(1)
2 as

the 32 CV design and the design d
(1)
m for m = 3 as the 33 design.

In a 33 factorial experiment denote the 3 factors by B1, B2 and B3. There are

one general mean, 6 main effects and 12 2−factor interaction effects. Consider

the model Mu ∀u in (1.3.1) for k = 1 in Chapter 1 for 33 experiment. In each

model there are 8 parameters and hence we need designs with at least 8 runs in

order to estimate all of them. Consider the 32 design D1 with n = 8 runs by

replicating the runs (0, 0) and (2, 2) twice which is extended to the 33 design D2

with n = 8 runs as presented in Table 6.8. From Table 6.8 we see that all the runs

of the 32 design are present in every pair of columns of the 33 design and also the
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runs are replicated in the same way in both the designs. We already know that

both of these designs are CV since D1 is the replicated design obtained from d
(1)
2

and D2 is the CV design d
(1)
m for m = 3 presented in Chapter 5. Consider the

columns corresponding to the factors B1 and B2 of the 33 design D2. The runs

corresponding to B1 and B2 are identical to the runs of the 32 design. For the uth

model let the design matrix of D1 be X
(u)
2 whose columns correspond to µ, B1,

B2
1 , B2, B2

2 and u = Bα
1B

β
2 , α, β ∈ {1, 2} and the design matrix of D2 be X

(u)
3

whose columns correspond to µ, B1, B
2
1 , B2, B2

2 , B3, B2
3 and u for the interactions

corresponding to B1 and B2. Now we make some re-arrangements in the columns

of X
(u)
3 and write them in the order: µ, B1, B

2
1 , B2, B2

2 , u, B3, B2
3 . Then X

(u)
3

can be written as

X
(u)
3 =

(
X

(u)
2

...X1

)
,

where X1 consists of the columns corresponding to B3 and B2
3 . So we have

X
(u)′
3 X

(u)
3 =

 X
(u)′
2 X

(u)
2 X

(u)′
2 X1

X ′1X
(u)
2 X ′1X1



⇒
(
X

(u)′
3 X

(u)
3

)−1
=

 Au Bu

Cu Du

 ,

where

Au =
(
X

(u)′
2 X

(u)
2

)−1
+
(
X

(u)′
2 X

(u)
2

)−1
X

(u)′
2 X1

[
X ′1X1

−X ′1X
(u)
2

(
X

(u)′
2 X

(u)
2

)−1
X

(u)′
2 X1

]−1

X ′1X
(u)
2

(
X

(u)′
2 X

(u)
2

)−1
. (6.8)

Writing W u = X
(u)
2

(
X

(u)′
2 X

(u)
2

)−1

X
(u)′
2 , Mu = [X ′1X1 −X ′1W uX1]

−1
and

Zu =
(
X

(u)′
2 X

(u)
2

)−1

X
(u)′
2 X1, (6.8) becomes

Au =
(
X

(u)′
2 X

(u)
2

)−1

+ZuMuZ
′
u. (6.9)
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We are only interested in the last diagonal element of the matrix Au which is

proportional to V ar
(
β̂2u

)
. The last diagonal element of

(
X

(u)′
2 X

(u)
2

)−1

is inde-

pendent of u since the design D1 is CV. So we need to show that the last diagonal

element of the matrix ZuMuZ
′
u in (6.8) is constant independent of u. The ma-

trix X1 and hence (X ′1X1) are independent of u since X1 does not contain any

interaction vector. For D1 we have

W u = same,∀u.

From the expression of Mu we have

W u = same⇒Mu = same,∀u. (6.10)

Now the last diagonal element of ZuMuZ
′
u is the last row of Zu multiplied by

Mu multiplied by the last column of Z ′u which is same as the last row of Zu.

Hence

Last row of Zu is same, ∀u

⇒ Last diagonal element of ZuMuZ
′
u = constant,∀u. (6.11)

For D1 we observe that the last row of Zu is same in magnitude of its elements,

∀u. Hence we have

Last row of Zu = same,∀u in absolute value of the elements and

W u = same,∀u

⇒ V ar
(
β̂2u

)
= constant,∀u. (6.12)

This result can be shown by taking any pair of columns of the design D2 and

rearranging the runs according to that of the design D1 and forming the matrices
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X
(u)
2 and X1 appropriately. In the following we present the matrix W u which is

same for all u:

W u =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0.5 0.5 0 0

0 0 0 0 0.5 0.5 0 0

0 0 0 0 0 0 0.5 0.5

0 0 0 0 0 0 0.5 0.5



, ∀u.

We present the matrix Mu and the vector Zu whose last row is constant in

magnitude of its elements in Table 6.9.

Theorem 8. A 33 design whose every pair of columns contains a 32 CV design, the

runs being replicated in the same way, is CV if W u = X
(u)
2

(
X

(u)′
2 X

(u)
2

)−1

X
(u)′
2

is same, ∀u and the last row of Zu =
(
X

(u)′
2 X

(u)
2

)−1

X
(u)′
2 X1 is same in absolute

value of its elements, ∀u, where X2u corresponds to the uth interaction of the 32

design and X1 corresponds to the main effects of the factor not present in the 32

design.

Proof. The Theorem follows from (6.9), (6.10), (6.11) and (6.12).
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Table 6.9: Mu and Zu

Interaction Mu Zu

B1B2

(
0.5 −1.667

−1.667 2.778

)

−0.1667 1.5

0.3333 −0.5
0 −0.5

0.3333 −0.5
0 −0.5

−0.8333 0.5



B2
1B

2
2

(
0.5 −1.667

−1.667 2.778

)


1.5 0.5
−0.5 0
−0.8333 0
−0.5 0
−0.8333 0
−0.8333 0.5



B1B
2
2

(
0.5 −1.667

−1.667 2.778

)


0.6667 1
0.3333 −0.5
−0.8333 0
−0.8333 −0.25
−0.4167 −0.25
−0.8333 0.5



B2
1B2

(
0.5 −1.667

−1.667 2.778

)


0.6667 1
−0.5 0

0 −0.5
0.75 −0.75
−1.25 0.25
0.8333 −0.5


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Chapter 7

2ma × 3mb Factorial Experiment

7.1 Chapter Summary

In this chapter we consider mixed level factorial experiments where different

factors are at different levels. In the first two sections we express the treatment

effects in terms of the factorial effects for such factorial experiments. In the latter

sections we check for the CV property of the mixed level designs and obtain

conditions of CV on the replications of the design runs when unreplicated design

does not possess CV property. Also we obtain designs which satisfy the CV

property within groups of similar interactions. Here is the summary of what

we present in each section:

• (Section 7.2): Up to and including Chapter 6 we only presented designs

for factorial experiment with factors each at three levels. In many scientific

experiments it is necessary to consider designs with combinations of different

factors at different levels. A more general setting is an asymmetrical factorial
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experiment where some factors are each at two levels, some are each at three

levels and so on. In particular we consider a factorial experiment where some

factors are each at two levels and some are each at three levels only. In this

section we present the factorial effects of the mixed experiment and express

them in terms of the treatment effects.

• (Section 7.3): In this section we illustrate the relations between the factorial

effects and the treatment effects with different examples. In particular we

present examples for factorial experiments with one and two factors each at

two or three levels.

• (Section 7.4): The unreplicated full factorial design for factorial experiment

with one factor at two levels and the other factor at three levels gives differ-

ent values to the variance of its two-factor interaction estimators. Therefore

to obtain CV designs we consider different replications of the six runs of this

design. In this section we present some structured replications of this full

factorial design and for one particular type of replication we found condition

on the replications for the replicated design to be CV. If this condition is

satisfied by the replicated full factorial designs then variance calculation is

not needed to check for the CV property. For all other types of structured

replications it is found that the variances of the 2−factor interaction estima-

tors can never be equal. Also for each type of replications we compare the

variance of the 2−factor interaction estimators obtained from the separate

models with the ones obtained from the full model.
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• (Section 7.5): In this section we obtain the variances of the two-factor in-

teraction estimators expressesd in terms of the general replication of the six

runs of the full factorial simplest mixed design. But finding condition of CV

on the general replications is computationally very tedious. Hence we con-

sider different replications within a range and replicated designs are obtained

which are not CV but the variances of the interaction estimators are close to

one another with very small differences. For the general replication also we

compare the variances of the 2−factor interaction estimators obtained from

the separate models with the ones obtained from the full model.

• (Section 7.6): In this section we consider mixed designs for factorial exper-

iment with some factors at two levels each and some at three levels each

which are not CV but they give equal variance within the different groups

of 2−factor interaction estimators. The search of CV designs for different

number of runs for the mixed level experiment is computationally challenging

as the number of factors becomes large. So instead of finding designs giv-

ing equal variance to all 2−factor interaction estimators, we present designs

which give equal variance within groups of similar interaction effects.

7.2 Factorial Effects in Terms of Treatment Ef-

fects

Consider mixed level factorial experiment of the form sm1
1 × sm2

2 × . . . × smt
t ,

where si (si ≥ 2) is the level of the ith factor mi, i = 1(1)t and si’s are all dis-
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tinct. In particular we take s1 = 2 and s2 = 3 and all si = 0, i = 3(1)t,

i.e, some factors are at 2 levels and some at 3 levels only. Denote the ma

factors each with 2 levels by A1, A2, . . . , Ama and mb factors each with 3 lev-

els by B1, B2, . . . Bmb
. Denote the levels of the factors of the 2ma factorial ex-

periment by (x1, x2, . . . , xma) and the levels of the factors of the 3mb experi-

ment by (y1, y2, . . . , ymb
) and thus a treatment of 2ma × 3mb experiment is of

the form (x1, x2, . . . , xma , y1, y2, . . . , ymb
) , xi ∈ {0, 1} , yj ∈ {0, 1, 2} , i =

1 (1)ma, j = 1(1)mb. Any factorial effect of 2ma × 3mb factorial design can be

represented by Aα1
1 A

α2
2 . . . A

αma
ma B

β1

1 B
β2

2 . . . B
βmb
mb , αi ∈ {0, 1} , βj ∈ {0, 1, 2} , i =

1 (1)ma, j = 1(1)mb. When mb = 0 we have 2ma factorial experiment and the

factorial effects are represented as Aα1
1 A

α2
2 . . . A

αma
ma , αi ∈ {0, 1} , i = 1 (1)ma. In

the following we define the factorial effects in terms of the treatment effects for a

2ma factorial experiment:

2ma−δaAα1
1 A

α2
2 . . . Aαma

ma
= {a1x1 + . . .+ amaxma = 1}

+ (−1)δa {a1x1 + . . .+ amaxma = 0} ,

where

δa =


0, α1 + α2 + . . .+ αma = 0

1, 1 ≤ α1 + α2 + . . .+ αma ≤ ma

, (7.1)

(a1, a2, . . . , ama) =


(α1, α2, . . . , αma) , δa = 1

(1− α1, 1− α2, . . . , 1− αma) , δa = 0

.

The expression {a1x1 + . . .+ amaxma = ca} , ca ∈ {0, 1} in (7.1) represents the

number of treatments satisfying the condition a1x1 + . . . + amaxma = ca under
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mod (2). If all αi’s are zero then the factorial effect becomes the general mean

denoted by µ. Similarly, when ma = 0 we have 3mb factorial experiment and

the factorial effects are represented as Bβ1

1 B
β2

2 . . . B
βmb
mb , βj ∈ {0, 1, 2} ,. In the

following we define the linear and the quadratic factorial effects for a 3mb factorial

experiment respectively in terms of the treatment effects:

Linear: 3mb−δbBβ1

1 B
β2

2 . . . B
βmb
mb = {b1y1 + . . .+ bmb

ymb
= 2}

+ (1− δb) {b1y1 + . . .+ bmb
ymb

= 1}

+ (−1)δb {b1y1 + . . .+ bmb
ymb

= 0} , (7.2)

Quadratic: 3mb−δbBβ1

1 B
β2

2 . . . B
βmb
mb = {b1y1 + . . .+ bmb

ymb
= 2}

+ (−2)δb {b1y1 + . . .+ bmb
ymb

= 1}

+ {b1y1 + . . .+ bmb
ymb

= 0} , (7.3)

where

δb =


0, β1 + β2 + . . .+ βmb

= 0

1, 1 ≤ β1 + β2 + . . .+ βmb
≤ 2mb

,

(b1, b2, . . . , bmb
) =


(β1, β2, . . . , βmb

) , δb = 1

(1− β1, 1− β2, . . . , 1− βmb
) , δb = 0

.

The expression {b1y1 + . . .+ bmb
ymb

= cb} , cb ∈ {0, 1, 2} in (7.2) and (7.3) repre-

sents the number of treatments satisfying the condition b1y1 + . . . + bmb
ymb

= cb

under mod (3). For the linear effect the first non zero βu is 1, i.e, β1 = β2 =

. . . = βu−1 = 0, βu = 1 . For the quadratic effect the first non zero βu is 2, i.e,
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β1 = β2 = . . . = βu−1 = 0, βu = 2. If all βj’s are zero then both the linear and

the quadratic factorial effects become the general mean denoted by µ. We define

the factorial effects of 2ma × 3mb factorial experiment as follows:

Linear in B :

2ma−δa3mb−δbAα1
1 A

α2
2 . . . A

αma
ma B

β1

1 B
β2

2 . . . B
βmb
mb

= [{a1x1 + . . .+ amaxma = 1}

+ (−1)δa {a1x1 + . . .+ amaxma = 0}
]

⊗ [{b1y1 + . . .+ bmb
ymb

= 2}

+ (1− δb) {b1y1 + . . .+ bmb
ymb

= 1}

+ (−1)δb {b1y1 + . . .+ bmb
ymb

= 0}
]
,

Quadratic in B :

2ma−δa3mb−δbAα1
1 A

α2
2 , . . . , A

αma
ma B

β1

1 B
β2

2 . . . B
βmb
mb

= [{a1x1 + . . .+ amaxma = 1}

+ (−1)δa {a1x1 + . . .+ amaxma = 0}
]

⊗ [{b1y1 + . . .+ bmb
ymb

= 2}

+ (−2) {b1y1 + . . .+ bmb
ymb

= 1}

+ {b1y1 + . . .+ bmb
ymb

= 0}] ,

where {a1x1 + . . .+ amaxma = ca}⊗{b1y1 + . . .+ bmb
ymb

= cb} represents the num-

ber of treatments of the form (x1, x2, . . . , xma , y1, y2, . . . , ymb
) , xi ∈ {0, 1} , yj ∈
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{0, 1, 2} , i = 1 (1)ma, j = 1(1)mb for a 2ma × 3mb factorial design satisfy-

ing the conditions a1x1 + . . . + amaxma = ca, ca ∈ {0, 1} under mod(2) and

b1y1 + . . .+ bmb
ymb

= cb, cb ∈ {0, 1, 2} under mod (3) simultaneously.

7.3 Illustration

For the illustration of the expression of factorial effects in terms of the treat-

ment effects we consider four choices of (ma,mb) : (1, 1) , (1, 2) , (2, 1) , (2, 2) .

Table 7.1 considers the case ma = 1 and mb = 1.

Table 7.1: Treatment Effects and Factorial Effects for 2× 3 Factorial Experiment

2 Factors: A1 at 2 levels and B1 at 3 levels

Treatment/Treatment Effects (0, 0) , (0, 1) , (0, 2) , (1, 0) , (1, 1) , (1, 2)

Factorial Effects µ, A1, B1, B2
1 , A1B1, A1B

2
1

The factorial effects for 2× 3 experiment are represented in terms of the treat-

ment effects in the following:

6µ = [{x1 = 1}+ {x1 = 0}]⊗ [{y1 = 2}+ {y1 = 1}+ {y1 = 0}] ,

3A1 = [{x1 = 1} − {x1 = 0}]⊗ [{y1 = 2}+ {y1 = 1}+ {y1 = 0}] ,

2B1 = [{x1 = 1}+ {x1 = 0}]⊗ [{y1 = 2} − {y1 = 0}] ,

2B2
1 = [{x1 = 1}+ {x1 = 0}]⊗ [{y1 = 2} − 2 {y1 = 1}+ {y1 = 0}] ,

A1B1 = [{x1 = 1} − {x1 = 0}]⊗ [{y1 = 2} − {y1 = 0}] ,

A1B
2
1 = [{x1 = 1} − {x1 = 0}]⊗ [{y1 = 2} − 2 {y1 = 1}+ {y1 = 0}] .

In matrix notation the above expressions can be written as:
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

6µ

3A1

2B1

2B2
1

A1B1

A1B
2
1



=



1 1 1 1 1 1

−1 −1 −1 1 1 1

−1 0 1 −1 0 1

1 −2 1 1 −2 1

1 0 −1 −1 0 1

−1 2 −1 1 −2 1





(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)



.

Table 7.2 considers the case ma = 1 and mb = 2.

Table 7.2: Treatment Effects and Factorial Effects for 2×32 Factorial Experiment

3 Factors: A1at 2 levels, B1 and B2 at 3 levels

Treatment Effects

(0, 0, 0) , (0, 0, 1) , (0, 0, 2) , (0, 1, 0) , (0, 1, 1) , (0, 1, 2) ,

(0, 2, 0) , (0, 2, 1) , (0, 2, 2) ,(1, 0, 0) , (1, 0, 1) , (1, 0, 2) ,

(0, 1, 0) , (0, 1, 1) , (0, 1, 2) , (1, 2, 0) , (1, 2, 1) , (1, 2, 2)

Factorial Effects
µ, A1, B1, B2

1 , B2, B2
2 , B1B2, B

2
1B

2
2 , B1B

2
2 , B

2
1B2, A1B1,

A1B
2
1 , A1B2, A1B

2
2 , A1B1B2, A1B

2
1B

2
2 , A1B1B

2
2 , A1B

2
1B2

The factorial effects are represented in terms of the treatment effects in the
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following:

18µ = [{x1 = 1}+ {x1 = 0}]⊗ [{y1 + y2 = 2}+ {y1 + y2 = 1}+ {y1 + y2 = 0}] ,

9A1 = [{x1 = 1} − {x1 = 0}]⊗ [{y1 + y2 = 2}+ {y1 + y2 = 1}+ {y1 + y2 = 0}] ,

6B1 = [{x1 = 1}+ {x1 = 0}]⊗ [{y1 = 2} − {y1 = 0}] ,

6B2
1 = [{x1 = 1}+ {x1 = 0}]⊗ [{y1 = 2} − 2 {y1 = 1}+ {y1 = 0}] ,

6B2 = [{x1 = 1}+ {x1 = 0}]⊗ [{y2 = 2} − {y2 = 0}] ,

6B2
2 = [{x1 = 1}+ {x1 = 0}]⊗ [{y2 = 2} − 2 {y2 = 1}+ {y2 = 0}] ,

3A1B1 = [{x1 = 1} − {x1 = 0}]⊗ [{y1 = 2} − {y1 = 0}] ,

3A1B
2
1 = [{x1 = 1} − {x1 = 0}]⊗ [{y1 = 2} − 2 {y1 = 1}+ {y1 = 0}] ,

3A1B2 = [{x1 = 1} − {x1 = 0}]⊗ [{y2 = 2} − {y2 = 0}] ,

3A1B
2
2 = [{x1 = 1} − {x1 = 0}]⊗ [{y2 = 2} − 2 {y2 = 1}+ {y2 = 0}] ,

6B1B2 = [{x1 = 1}+ {x1 = 0}]⊗ [{y1 + y2 = 2} − {y1 + y2 = 0}] ,

6B2
1B

2
2 = [{x1 = 1}+ {x1 = 0}]⊗ [{y1 + y2 = 2} − 2 {y1 + y2 = 1}

+ {y1 + y2 = 0}] ,

6B1B
2
2 = [{x1 = 1}+ {x1 = 0}]⊗ [{y1 + 2y2 = 2} − {y1 + 2y2 = 0}] ,

6B2
1B2 = [{x1 = 1}+ {x1 = 0}]⊗ [{y1 + 2y2 = 2} − 2 {y1 + 2y2 = 1}] ,

3A1B1B2 = [{x1 = 1} − {x1 = 0}]⊗ [{y1 + y2 = 2} − {y1 + y2 = 0}] ,

3A1B
2
1B

2
2 = [{x1 = 1} − {x1 = 0}]⊗ [{y1 + y2 = 2} − 2 {y1 + y2 = 1}+ {y1 + y2 = 0}] ,

3A1B1B
2
2 = [{x1 = 1} − {x1 = 0}]⊗ [{y1 + 2y2 = 2} − {y1 + 2y2 = 0}] ,

3A1B
2
1B2 = [{x1 = 1} − {x1 = 0}]⊗ [{y1 + 2y2 = 2} − 2 {y1 + 2y2 = 1}

+ {y1 + 2y2 = 0}] .
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In matrix notation the above expressions can be written as:



18µ

9A1

6B1

6B2
1

6B2

6B2
2

3A1B1

3A1B2
1

3A1B2

3A1B2
2

6B1B2

6B2
1B

2
2

6B1B2
2

6B2
1B2

3A1B1B2

3A1B2
1B

2
2

3A1B1B2
2

3A1B2
1B2



=



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 1

−1 −1 −1 0 0 0 1 1 1 −1 −1 −1 0 0 0 1 1 1

1 1 1 −2 −2 −2 1 1 1 1 1 1 −2 −2 −2 1 1 1

−1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1

1 −2 1 1 −2 1 1 −2 1 1 −2 1 1 −2 1 1 −2 1

1 1 1 0 0 0 −1 −1 −1 −1 −1 −1 0 0 0 1 1 1

−1 −1 −1 2 2 2 −1 −1 −1 1 1 1 −2 −2 −2 1 1 1

1 0 −1 1 0 −1 1 0 −1 −1 0 1 −1 0 1 −1 0 1

−1 2 −1 −1 2 −1 −1 2 −1 1 −2 1 1 −2 1 1 −2 1

−1 0 1 0 1 −1 1 −1 0 −1 0 1 0 1 −1 1 −1 0

1 −2 1 −2 1 1 1 1 −2 1 −2 1 −2 1 1 1 1 −2

−1 1 0 0 −1 1 1 0 −1 −1 1 0 0 −1 1 1 0 −1

1 1 −2 −2 1 1 1 −2 1 1 1 −2 −2 1 1 1 −2 1

1 0 −1 0 −1 1 −1 1 0 −1 0 1 0 1 −1 1 −1 0

−1 2 −1 2 −1 −1 −1 −1 2 1 −2 1 −2 1 1 1 1 −2

1 −1 0 0 1 −1 −1 0 1 −1 1 0 0 −1 1 1 0 −1

−1 −1 2 2 −1 −1 −1 2 −1 1 1 −2 −2 1 1 1 −2 1





(0, 0, 0)

(0, 0, 1)

(0, 0, 2)

(0, 1, 0)

(0, 1, 1)

(0, 1, 2)

(0, 2, 0)

(0, 2, 1)

(0, 2, 2)

(1, 0, 0)

(1, 0, 1)

(1, 0, 2)

(1, 1, 0)

(1, 1, 1)

(1, 1, 2)

(1, 2, 0)

(1, 2, 1)

(1, 2, 2)



.

Table 7.3 considers the case ma = 2 and mb = 1.
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Table 7.3: Treatment Effects and Factorial Effects for 22×3 Factorial Experiment

3 Factors: A1 and A2 at 2 levels, B1at 3 levels

Treatment/Treatment Effects

(0, 0, 0) , (0, 1, 0) , (1, 0, 0) , (1, 1, 0) , (0, 0, 1) , (0, 1, 1) ,

(1, 0, 1) , (1, 1, 1) , (0, 0, 2) , (0, 1, 2) , (1, 0, 2) , (1, 1, 2)

Factorial Effects

µ, A1, A2, A1A2, B1, B2
1 , A1B1, A1B

2
1 ,

A2B1, A2B
2
1 , A1A2B1, A1A2B

2
1

The factorial effects are represented in terms of the treatment effects in the

following:

12µ = [{x1 + x2 = 1}+ {x1 + x2 = 0}]⊗ [{y1 = 2}+ {y1 = 1}+ {y1 = 0}] ,

6A1 = [{x1 = 1} − {x1 = 0}]⊗ [{y1 = 2}+ {y1 = 1}+ {y1 = 0}] ,

6A2 = [{x2 = 1} − {x2 = 0}]⊗ [{y1 = 2}+ {y1 = 1}+ {y1 = 0}] ,

6A1A2 = [{x1 + x2 = 1} − {x1 + x2 = 0}]⊗ [{y1 = 2}+ {y1 = 1}+ {y1 = 0}] ,

4B1 = [{x1 + x2 = 1}+ {x1 + x2 = 0}]⊗ [{y1 = 2} − {y1 = 0}] ,

4B2
1 = [{x1 + x2 = 1}+ {x1 + x2 = 0}]⊗ [{y1 = 2} − 2 {y1 = 1}+ {y1 = 0}] ,

2A1B1 = [{x1 = 1} − {x1 = 0}]⊗ [{y1 = 2} − {y1 = 0}] ,

2A1B
2
1 = [{x1 = 1} − {x1 = 0}]⊗ [{y1 = 2} − 2 {y1 = 1}+ {y1 = 0}] ,

2A2B1 = [{x2 = 1} − {x2 = 0}]⊗ [{y1 = 2} − {y1 = 0}] ,

2A2B
2
1 = [{x2 = 1} − {x2 = 0}]⊗ [{y1 = 2} − 2 {y1 = 1}+ {y1 = 0}] ,

2A1A2B1 = [{x1 + x2 = 1} − {x1 + x2 = 0}]⊗ [{y1 = 2} − {y1 = 0}] ,

2A1A2B
2
1 = [{x1 + x2 = 1} − {x1 + x2 = 0}]⊗ [{y1 = 2} − 2 {y1 = 1}+ {y1 = 0}] .
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In matrix notation the above expressions can be written as:

12µ

6A1

6A2

6A1A2

4B1

4B2
1

2A1B1

2A1B
2
1

2A2B1

2A2B
2
1

2A1A2B1

2A1A2B
2
1



=



1 1 1 1 1 1 1 1 1 1 1 1

−1 −1 1 1 −1 −1 1 1 −1 −1 1 1

−1 1 −1 1 −1 1 −1 1 −1 1 −1 1

1 −1 −1 1 1 −1 −1 1 1 −1 −1 1

−1 −1 −1 −1 0 0 0 0 1 1 1 1

1 1 1 1 −2 −2 −2 −2 1 1 1 1

1 1 −1 −1 0 0 0 0 −1 −1 1 1

−1 −1 1 1 2 2 −2 −2 −1 −1 1 1

1 −1 1 −1 0 0 0 0 −1 1 −1 1

−1 1 −1 1 2 −2 2 −2 −1 1 −1 1

−1 1 1 −1 0 0 0 0 1 −1 −1 1

1 −1 −1 1 −2 2 2 −2 1 −1 −1 1





(0, 0, 0)

(0, 1, 0)

(1, 0, 0)

(1, 1, 0)

(0, 0, 1)

(0, 1, 1)

(1, 0, 1)

(1, 1, 1)

(0, 0, 2)

(0, 1, 2)

(1, 0, 2)

(1, 1, 2)


Table 7.4 considers the case ma = 2 and mb = 2.
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Table 7.4: Treatment Effects and Factorial Effects for 22×32 Factorial Experiment

4 Factors: A1 and A2 at 2 levels, B1 and B2 at 3 levels

Treatment Effects

(0, 0, 0, 0) , (0, 1, 0, 0) , (1, 0, 0, 0) , (1, 1, 0, 0) , (0, 0, 1, 0) , (0, 1, 1, 0) ,

(1, 0, 1, 0) , (1, 1, 1, 0) , (0, 0, 2, 0) , (0, 1, 2, 0) , (1, 0, 2, 0) , (1, 1, 2, 0),

(0, 0, 0, 1) , (0, 1, 0, 1) , (1, 0, 0, 1) , (1, 1, 0, 1) , (0, 0, 1, 1) , (0, 1, 1, 1) ,

(1, 0, 1, 1) , (1, 1, 1, 1) , (0, 0, 2, 1) , (0, 1, 2, 1) , (1, 0, 2, 1) , (1, 1, 2, 1),

(0, 0, 0, 2) , (0, 1, 0, 2) , (1, 0, 0, 2) , (1, 1, 0, 2) , (0, 0, 1, 2) , (0, 1, 1, 2) ,

(1, 0, 1, 2) , (1, 1, 1, 2) , (0, 0, 2, 2) , (0, 1, 2, 2) , (1, 0, 2, 2) , (1, 1, 2, 2)

Factorial Effects

µ, A1, A2, A1A2, B1, B2
1 , B2, B2

2 , B1B2, B2
1B

2
2 , B1B2

2 , B
2
1B2, A1B1,

A1B2
1 , A2B1, A2B2

1 , A1B2, A1B2
2 , A2B2, A2B2

2 , A1A2B1, A1A2B2
1

A1A2B2, A1A2B2
2 , A1B1B2, A1B2

1B
2
2 , A1B1B2

2 , A1B2
1B2, A2B1B2,

A2B2
1B

2
2 , A2B1B2

2 , A2B2
1B2, A1A2B1B2, A1A2B2

1B
2
2 , A1A2B1B2

2 , A1A2B2
1B2

The factorial effects are represented in terms of the treatment effects in the

following:

36µ = [{x1 + x2 = 1}+ {x1 + x2 = 0}]⊗ [{y1 + y2 = 2}+ {y1 + y2 = 1}+ {y1 + y2 = 0}] ,

18A1 = [{x1 = 1} − {x1 = 0}]⊗ [{y1 + y2 = 2}+ {y1 + y2 = 1}+ {y1 + y2 = 0}] ,

18A2 = [{x2 = 1} − {x2 = 0}]⊗ [{y1 + y2 = 2}+ {y1 + y2 = 1}+ {y1 + y2 = 0}] ,

18A1A2 = [{x1 + x2 = 1} − {x1 + x2 = 0}]⊗ [{y1 + y2 = 2}+ {y1 + y2 = 1}+ {y1 + y2 = 0}] ,

12B1 = [{x1 + x2 = 1}+ {x1 + x2 = 0}]⊗ [{y1 = 2} − {y1 = 0}] ,

12B2
1 = [{x1 + x2 = 1}+ {x1 + x2 = 0}]⊗ [{y1 = 2} − 2 {y1 = 1}+ {y1 = 0}] ,

12B2 = [{x1 + x2 = 1}+ {x1 + x2 = 0}]⊗ [{y2 = 2} − {y2 = 0}] ,

12B2
2 = [{x1 + x2 = 1}+ {x1 + x2 = 0}]⊗ [{y2 = 2} − 2 {y2 = 1}+ {y2 = 0}] ,

6A1B1 = [{x1 = 1} − {x1 = 0}]⊗ [{y1 = 2} − {y1 = 0}] ,

6A1B
2
1 = [{x1 = 1} − {x1 = 0}]⊗ [{y1 = 2} − 2 {y1 = 1}+ {y1 = 0}] ,

6A2B1 = [{x2 = 1} − {x2 = 0}]⊗ [{y1 = 2} − {y1 = 0}] ,

6A2B
2
1 = [{x2 = 1} − {x2 = 0}]⊗ [{y1 = 2} − 2 {y1 = 1}+ {y1 = 0}] ,
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6A1B2 = [{x1 = 1} − {x1 = 0}]⊗ [{y2 = 2} − {y2 = 0}] ,

6A1B
2
2 = [{x1 = 1} − {x1 = 0}]⊗ [{y2 = 2} − 2 {y2 = 1}+ {y2 = 0}] ,

6A2B2 = [{x2 = 1} − {x2 = 0}]⊗ [{y2 = 2} − {y2 = 0}] ,

6A2B
2
2 = [{x2 = 1} − {x2 = 0}]⊗ [{y2 = 2} − 2 {y2 = 1}+ {y2 = 0}] ,

6A1A2B1 = [{x1 + x2 = 1} − {x1 + x2 = 0}]⊗ [{y1 = 2} − {y1 = 0}] ,

6A1A2B
2
1 = [{x1 + x2 = 1} − {x1 + x2 = 0}]⊗ [{y1 = 2} − 2 {y1 = 1}+ {y1 = 0}] ,

6A1A2B2 = [{x1 + x2 = 1} − {x1 + x2 = 0}]⊗ [{y2 = 2} − {y2 = 0}] ,

6A1A2B
2
2 = [{x1 + x2 = 1} − {x1 + x2 = 0}]⊗ [{y2 = 2} − 2 {y2 = 1}+ {y2 = 0}] ,

12B1B2 = [{x1 + x2 = 1}+ {x1 + x2 = 0}]⊗ [{y1 + y2 = 2} − {y1 + y2 = 0}] ,

12B2
1B

2
2 = [{x1 + x2 = 1}+ {x1 + x2 = 0}]⊗ [{y1 + y2 = 2} − 2 {y1 + y2 = 1}

+ {y1 + y2 = 0}] ,

12B1B
2
2 = [{x1 + x2 = 1}+ {x1 + x2 = 0}]⊗ [{y1 + 2y2 = 2} − {y1 + 2y2 = 0}] ,

12B2
1B2 = [{x1 + x2 = 1}+ {x1 + x2 = 0}]⊗ [{y1 + 2y2 = 2} − 2 {y1 + 2y2 = 1}

+ {y1 + 2y2 = 0}] ,

6A1B1B2 = [{x1 = 1} − {x1 = 0}]⊗ [{y1 + y2 = 2} − {y1 + y2 = 0}] ,

6A1B
2
1B

2
2 = [{x1 = 1} − {x1 = 0}]⊗ [{y1 + y2 = 2} − 2 {y1 + y2 = 1}+ {y1 + y2 = 0}] ,

6A1B1B
2
2 = [{x1 = 1} − {x1 = 0}]⊗ [{y1 + 2y2 = 2} − {y1 + 2y2 = 0}] ,

6A1B
2
1B2 = [{x1 = 1} − {x1 = 0}]⊗ [{y1 + 2y2 = 2} − 2 {y1 + 2y2 = 1}+ {y1 + 2y2 = 0}] ,

6A2B1B2 = [{x2 = 1} − {x2 = 0}]⊗ [{y1 + y2 = 2} − {y1 + y2 = 0}] ,

6A2B
2
1B

2
2 = [{x2 = 1} − {x2 = 0}]⊗ [{y1 + y2 = 2} − 2 {y1 + y2 = 1}+ {y1 + y2 = 0}] ,

6A2B1B
2
2 = [{x2 = 1} − {x2 = 0}]⊗ [{y1 + 2y2 = 2} − {y1 + 2y2 = 0}] ,

6A2B
2
1B2 = [{x2 = 1} − {x2 = 0}]⊗ [{y1 + 2y2 = 2} − 2 {y1 + 2y2 = 1}+ {y1 + 2y2 = 0}] ,
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6A1A2B1B2 = [{x1 + x2 = 1} − {x1 + x2 = 0}]⊗ [{y1 + y2 = 2} − {y1 + y2 = 0}] ,

6A1A2B
2
1B

2
2 = [{x1 + x2 = 1} − {x1 + x2 = 0}]⊗ [{y1 + y2 = 2} − 2 {y1 + y2 = 1}

+ {y1 + y2 = 0}] ,

6A1A2B1B
2
2 = [{x1 + x2 = 1} − {x1 + x2 = 0}]⊗ [{y1 + y2 = 2} − {y1 + y2 = 0}] ,

6A1A2B
2
1B2 = [{x1 + x2 = 1} − {x1 + x2 = 0}]⊗ [{y1 + y2 = 2} − 2 {y1 + y2 = 1}

+ {y1 + y2 = 0}] .

The above expressions can be written in matrix notation like the previous cases.

7.4 2 × 3 Factorial Experiment with Structured

Replication

We consider mixed factorial experiment with one factor A1 at two levels and

another factor B1 at three levels. All possible treatments of this experiment are

given in Table 7.5.

Table 7.5: 2× 3 Full Factorial Design

0 0 0 1 1 1
0 1 2 0 1 2

In this section we consider various structured replications of the runs of the 2×3

design. Without replication we find
V ar(β̂2A1B1)

σ2 = 0.25 and
V ar(β̂2A1B1)

σ2 = 0.0833.

Thus we see that the 2 × 3 full factorial design is not CV. We are interested in

finding replicated 2× 3 designs that would satisfy the CV property in this mixed

factorial set up. For 2 × 3 factorial experiment there are one general mean (µ),
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three main effects (A1, B1, B
2
1) and two 2-factor interaction effects (A1B1, A1B

2
1).

Here we consider two models each with the general mean, main effects and one

2-factor interaction effect. Our objective is to construct designs for which the

variances of the two 2-factor interaction estimators are equal. The uth model is

given below:

Mu : E (y) = jµ+X1β1 +X2uβ2u, V ar (y) = σ2I, u = A1B1, A1B
2
1 , (7.4)

whereβ1 is the vector corresponding to the main effects and β2u corresponds to

the uth 2−factor interaction effect. We construct the design by replicating all six

treatments as presented in Table 7.6.

Table 7.6: One Kind of Stuctured Replication

A/B 0 1 2
0 r1 r2 r3

1 r1 r2 r3

The replications r1, r2 and r3 in Table 7.6 are positive integers and we see

that those runs where B1 is fixed are replicated equal number of times. The total

number of runs in the design is n = 2 (r1 + r2 + r3). The design matrix of the uth

model can be expressed as X(u) =

[
jn

...X1
...X2u

]
′. The order of X(u) is (n× 5).
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The two design matrices are as follows:

X(A1B1) =



1 −1 −1 1 1

1 1 −1 1 −1

1 −1 0 −2 0

1 1 0 −2 0

1 −1 1 1 −1

1 1 1 1 1



→ replicated r1 times

→ replicated r1 times

→ replicated r2 times

→ replicated r2 times

→ replicated r3 times

→ replicated r3 times

,

X(A1B2
1) =



1 −1 −1 1 −1

1 1 −1 1 1

1 −1 0 −2 2

1 1 0 −2 −2

1 −1 1 1 −1

1 1 1 1 1



→ replicated r1 times

→ replicated r1 times

→ replicated r2 times

→ replicated r2 times

→ replicated r3 times

→ replicated r3 times

,

where the first two rows of the matrices are replicated r1 times each, the third and

fourth rows are replicated r2 times each and the fifth and sixth rows are replicated

r3 times each. To obtain the variance of the two-factor interaction estimators

we need to obtain
(
X ′(u)′X(u)

)−1

, u = A1B1, A1B
2
1 . To present the matrices
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(
X(A1B1)′X(A1B1)

)
and

(
X(A1B2

1)′X(A1B2
1)
)

define the following:

p = 2 (r1 + r2 + r3) ,

q = 2 (r3 − r1) ,

r = 2 (r1 + r3)− 4r2,

s = 2 (r1 + r3) + 8r2,

u = 2 (r1 + r3) .

Hence we have

X(A1B1)′X(A1B1) =



p 0 q r 0

0 p 0 0 q

q 0 u q 0

r 0 q s 0

0 q 0 0 u


,

X(A1B2
1)′X(A1B2

1) =



p 0 q r 0

0 p 0 0 r

q 0 u q 0

r 0 q s 0

0 q 0 0 s


.

Now, the variance of the uth 2−factor interaction estimator is proportional to

the last diagonal element of the variance-covariance matrix
(
X(u)′X(u)

)−1

,u =

A1B1, A1B
2
1 . We have

V ar
(
β̂2A1B1

)
σ2

=
(r1 + r2 + r3)

2 (r1r2 + r2r3 + 4r1r3)
,

V ar
(
β̂2A1B2

1

)
σ2

=
(r1 + r2 + r3)

18r2 (r1 + r3)
. (7.5)

108



We want to find condition on r1, r2 and r3 that will give CV designs. The two

variances presented in (7.5) will be equal iff the following condition holds:

(r1 + r2 + r3)

2 (r1r2 + r2r3 + 4r1r3)
=

(r1 + r2 + r3)

18r2 (r1 + r3)

⇔ 2r2 =
r1r3

(r1 + r3)
. (7.6)

Any r1, r2 and r3 satisfying (7.6) gives CV design. We obtain solutions of (7.6).

The r2 is a positive integer equal to k (say), which implies r1r3
(r1+r3)

= 2k from (7.6).

However taking r3 = αr1, where α (> 0) is any number satisfying α = r3
r1

, we get

r1r3

(r1 + r3)
=

r1α

(1 + α)
= 2k

⇒ r1 = 2k
(1 + α)

α
.

Since r1 is a positive integer, 2k (1+α)
α

should also be a positive integer. The Table

7.7 shows some possible solutions of (7.6) along with the values of α and the

number of runs in each case.

Table 7.7: Possible Replications to have Equal Variance

α r1 r2 r3 n = 2 (r1 + r2 + r3)
1 4 1 4 18
1 8 2 8 36
1 12 3 12 54
1 16 4 16 72
1 20 5 20 90
2 3 1 6 20
2 6 2 12 40
2 9 3 18 60
4 5 2 20 54

1/4 20 2 5 54
1/2 6 1 3 20
1/2 12 2 6 40
1/2 18 3 9 60
2/3 15 3 10 56
3/2 10 3 15 56
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Now if we consider equal replication of all the runs, i.e, r1 = r2 = r3 = r, then

V ar
(
β̂2A1B1

)
σ2

=
1

4r
, (7.7)

V ar
(
β̂2A1B2

1

)
σ2

=
1

12r
.

(7.7) implies that equal replications cannot make the two variances equal. The

equal replication case is presented later in detail. The design with smallest number

of runs satisfying (7.6) has r1 = 4, r2 = 1 and r3 = 4 and is presented in Table

7.8.

Table 7.8: Replicated CV Design with n = 18

0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 2 2 2 2 2 2 2 2

The total number of runs in this design is n = 18 and we get
V ar(β̂2A1B1)

σ2 =

V ar

(
β̂

2A1B
2
1

)
σ2 = 0.0625. Next we compare the variances of the interaction estimators

already obtained from the separate models with the ones obtained from full model

and check if the condition of CV on the replications remain same in both the cases.

We consider the full model of the 2× 3 experiment as follows:

M : E (y) = jnµ+X1β1 +X2β2, V ar (y) = σ2I, (7.8)

where β1 is the vector corresponding to the three main effects and β2 is the vector

corresponding to the two 2−factor interaction effects. From the model in (7.8) we

write X =

[
jn

...X1
...X2

]
. Using the replications given in the Table 7.6 we want

to obtain (X ′X)
−1

to get the variances of the interaction estimators. We present
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the matrix (X ′X) in the following:

X′X =



2 (r1 + r2 + r3) 0 2 (r3 − r1) 2 (r1 + r3)− 4r2 0 0

0 2 (r1 + r2 + r3) 0 0 2 (r3 − r1) 2 (r1 + r3)− 4r2

2 (r3 − r1) 0 2 (r1 + r3) 2 (r3 − r1) 0 0

2 (r1 + r3)− 4r2 0 2 (r3 − r1) 2 (r1 + r3) + 8r2 0 0

0 2 (r3 − r1) 0 0 2 (r1 + r3) 2 (r3 − r1)

0 2 (r1 + r3)− 4r2 0 0 2 (r3 − r1) 2 (r1 + r3) + 8r2



.

The variance-covariance matrix of the estimators of the two interaction effects is

the last 2×2 block diagonal matrix of (X ′X)
−1

which is

 r1r2+r2r3
8r1r2r3

0

0 r1r2+r2r3+4r1r3
24r1r2r3

.

Thus we have

V arFull
(
β̂2A1B1

)
σ2

=
r1r2 + r2r3

8r1r2r3

,

V arFull
(
β̂2A1B2

1

)
σ2

=
r1r2 + r2r3 + 4r1r3

24r1r2r3

. (7.9)

From (7.5) and (7.9) we see that the variances of the interaction effects estimators

obtained from the full model are different from those obtained from the separate

models. But if we equate the two full model variances we end up getting the same

relation among the r′is which is 2r2 = r1r3
(r1+r3)

that makes the replicated design

CV. So the CV condition remains same in both the cases. Next we consider the

structured replication presented in Table 7.9.

Table 7.9: Another Kind of Structured Replication

A/B 0 1 2
0 r1 r1 r1

1 r2 r2 r2

From this table we see that the replications for the runs are same where level

of A1 is fixed. The total number of runs is n = 3 (r1 + r2) . Again our objective
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is to obtain condition of CV for this particular replication considering both the

separate models and the full model. From the separate models in (7.4) we get the

following matrices:

X(A1B1)′X(A1B1) =



3 (r1 + r2) 0 0 0 0

0 3 (r1 + r2) 0 0 0

0 0 2 (r1 + r2) 0 2 (r2 − r1)

0 0 0 6 (r1 + r2) 0

0 0 2 (r2 − r1) 0 2 (r1 + r2)


,

X(A1B
2
1)′X(A1B

2
1) =



3 (r1 + r2) 0 0 0 0

0 3 (r1 + r2) 0 0 0

0 0 2 (r1 + r2) 0 0

0 0 0 6 (r1 + r2) 6 (r2 − r1)

0 0 0 6 (r2 − r1) 6 (r1 + r2)


.

The variances of the interaction estimators are proportional to the last diagonal

element of the inverse of the matrices presented above. These are given below:

V ar
(
β̂2A1B1

)
σ2

=
(r1 + r2)

8r1r2

,

V ar
(
β̂2A1B2

1

)
σ2

=
(r1 + r2)

24r1r2

. (7.10)

From the variance expressions in (7.10) we see that they can never be equal for any

values of r1 (> 0) and r2 (> 0). We want to compare these CV expressions with

the ones from the full model. Considering the full model M for the replications
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given in Table 7.9 we get the following matrix:

X ′X =



3 (r1 + r2) 0 0 0 0 0

0 3 (r1 + r2) 0 0 0 0

0 0 2 (r1 + r2) 0 2 (r2 − r1) 0

0 0 0 6 (r1 + r2) 0 6 (r2 − r1)

0 0 2 (r2 − r1) 0 2 (r1 + r2) 0

0 0 0 6 (r2 − r1) 0 6 (r1 + r2)



.

The variance-covariance matrix of the estimators of the two interaction effects is

proportional to the last 2×2 block diagonal matrix of (X ′X)
−1

which is

 r1+r2
8r1r2

0

0 r1+r2
24r1r2

.

Hence we have

V arFull
(
β̂2A1B1

)
σ2

=
r1 + r2

8r1r2

,

V arFull
(
β̂2A1B2

1

)
σ2

=
r1 + r2

24r1r2

. (7.11)

From (7.10) and (7.11) we see that the variance expressions are exactly identical.

Also from (7.11) we see that for the particular replication presented in Table 7.9

the replicated design can never be CV. Next we consider the equal replication of

all the six runs as presented in Table 7.10.

Table 7.10: Equal Replication for All Treatments

A/B 0 1 2
0 r r r
1 r r r

Considering the separate model we already had
V ar(β̂2A1B1)

σ2 = 1
4r

and
V ar

(
β̂

2A1B
2
1

)
σ2 =
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1
12r

in (7.7). Considering the full model we have

X ′X =



6r 0 0 0 0 0

0 6r 0 0 0 0

0 0 4r 0 0 0

0 0 0 12r 0 0

0 0 0 0 4r 0

0 0 0 0 0 12r



.

From (X ′X)
−1

we have
V arFull(β̂2A1B1)

σ2 = 1
4r

and
V arFull

(
β̂

2A1B
2
1

)
σ2 = 1

12r
which

exactly coincide with the variances obtained from the separate model. So for

equal replication of the six runs the replicated design can never be CV.

Again we consider the replication structure given in Table 7.6. Without im-

posing any condition on the replication of the runs we consider r1, r2, r3∈ [1, 5]

and search for the designs which may not be CV but the difference between the

variance of the 2−factor interaction estimators is as minimum as possible. The dif-

ferent replications along with the variances of the 2−factor interaction estimators

are given in Table 7.11.

Table 7.11: Replicated Designs

Difference r1 r2 r3 n
V ar(ÂB)

σ2

V ar( ˆAB2)
σ2

0 4 1 4 18 0.0625 0.0625

(0, 0.004)
3 1 5 18 0.0662 0.0625
5 1 3 18 0.0662 0.0625

(0.004, 0.006)
4 1 5 20 0.0562 0.0617
5 1 4 20 0.0562 0.0617

(0.006, 0.01)
3 1 4 16 0.0727 0.0635
4 1 3 16 0.0727 0.0635
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From Table 7.11 we see that the replication in the first row satisfies the con-

dition in (7.6) and hence the variances are equal. For all other replications the

condition is not satisfied and hence they do not give equal variance but the differ-

ence of the variances are very small.

7.5 2×3 Factorial Experiment with General Repli-

cation

In the previous section we considered structured replication of 2×3 full factorial

design. In this section we consider general replication for the runs of the design

without any condition on the levels of any factor. The replications are given in

Table 7.12.

Table 7.12: General Replication

A/B 0 1 2
0 r1 r2 r3

1 r4 r5 r6

We want to find condition for the replicated 2 × 3 design to be CV for this

general replication. Considering the models in (7.4) we get the following two
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design matrices respectively:

X(A1B1) =



1 −1 −1 1 1

1 −1 0 −2 0

1 −1 1 1 −1

1 1 −1 1 −1

1 1 0 −2 0

1 1 1 1 1



→ replicated r1 times

→ replicated r2 times

→ replicated r3 times

→ replicated r4 times

→ replicated r5 times

→ replicated r6 times

,

X(A1B2
1) =



1 −1 −1 1 −1

1 1 −1 1 2

1 −1 0 −2 −1

1 1 0 −2 1

1 −1 1 1 −2

1 1 1 1 1



→ replicated r1 times

→ replicated r2 times

→ replicated r3 times,

→ replicated r4 times

→ replicated r5 times

→ replicated r6 times

where the ith row of each of the two matrices is replicated ri times, i = 1(1)6. To ob-

tain the variance of the interaction estimators we need to compute
(
X(u)′X(u)

)−1

.
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To present
(
X(u)′X(u)

)
, u = A1B1, A1B

2
1 . we define the following:

a = (r1 + r2 + r3 + r4 + r5 + r6) ,

b = (r4 + r5 + r6 − r1 − r2 − r3) ,

c = (r3 + r6 − r1 − r4) ,

d = {(r1 + r3 + r4 + r6)− 2r2 − 2r5} ,

e = (r1 + r6 − r3 − r4) ,

f = {(r4 + r6 − r1 − r3) + 2r2 − 2r5} ,

g = (r1 + r3 + r4 + r6) ,

h = (r4 + r6 − r1 − r3) ,

k = (r1 + 4r2 + r3 + r4 + 4r5 + r6) ,

l = {(r4 + r6 − r1 − r3) + 4r5 − 4r2} .

Thus
(
X(u)′X(u)

)
, u = A1B1, A1B

2
1 becomes

X(A1B1)′X(A1B1) =



a b c d e

b a e f c

c e g c h

d f c k e

e c h e g


,
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X(A1B2
1)′X(A1B2

1) =



a b c d f

b a e f d

c e g c e

d f c k l

f d e l k


.

The variances are obtained from the last diagonal element of
(
X(u)′X(u)

)−1

which

are presented below:

V ar
(
β̂2A1B1

)
σ2

=

[
r1r2r3 (r4 + r5 + r6) + r1r3r5 (r4 + r6)

4 {(r3r4r5 + r3r5r6 + r4r5r6) + r2r3r4r5r6}+ 192 (r1r2r3r4r5 + r1r3r4r5r6)

+r1r2r6 (r4 + r5) + r1r4r5r6
4 {(r3r4r5 + r3r5r6 + r4r5r6) + r2r3r4r5r6}+ 192 (r1r2r3r4r5 + r1r3r4r5r6)

+r2r3r4 (r5 + r6) + r4r5r6 (r2 + r3)

4 {(r3r4r5 + r3r5r6 + r4r5r6) + r2r3r4r5r6}+ 192 (r1r2r3r4r5 + r1r3r4r5r6)

]
,

V ar
(
β̂2A1B2

1

)
σ2

=

[
{r4 (r3r5r6 + r2 (r5r6 + r3 (r5 + r6)))}+ r1 [r5 (r4r6 + r3 (r4 + r6))]

36r2r5 {r3r4r6 + r1r4r6 + r3 (r4 + r6)}
+r2 {(r4 + r5) r6 + r3 (r4 + r5 + r6)}

36r2r5 {r3r4r6 + r1r4r6 + r3 (r4 + r6)}

]
.

The design with general replication of the six runs is CV iff

V ar
(
β̂2A1B1

)
σ2

=
V ar

(
β̂2A1B2

1

)
σ2

. (7.12)

But (7.12) does not simplify to a descent expression and thus finding the values

of ri’s satisfying (7.12) would be a tedious task. Hence computationally it is

challenging to obtain the condition of CV for the general replication of the 2× 3

design. Instead of solving for ri’s we consider r1, . . . , r6 ∈ [1, 5]. In this range we

search for the replicated 2× 3 designs which may not be CV but gives very small

difference among the variances of the two 2−factor interaction estimators. The

replicated designs with the variances are given in Table 7.13 with the smallest

possible difference among the variances which is less than 0.004.

118



Table 7.13: 2×3 Full Factorial Design with General Replication in the range [1, 5]

with Variance Difference< 0.004

r1 r2 r3 r4 r5 r6 V1 V2

3 3 1 1 5 5 0.0662 0.0625

3 4 1 1 4 5 0.0645 0.0626

3 4 1 1 5 4 0.0645 0.0626

3 4 1 1 5 5 0.0612 0.0621

3 5 1 1 3 5 0.0667 0.0630

3 5 1 1 4 4 0.0646 0.0627

3 5 1 1 4 5 0.0614 0.0623

3 5 1 1 5 3 0.0667 0.0630

3 5 1 1 5 4 0.0614 0.0623

3 5 1 1 5 5 0.0582 0.0619

4 3 1 1 4 5 0.0645 0.0626

4 3 1 1 5 4 0.0645 0.0626

4 3 1 1 5 5 0.0612 0.0621

4 4 1 1 3 5 0.0646 0.0627

4 4 1 1 4 4 0.0625 0.0625

4 4 1 1 4 5 0.0594 0.0621

4 4 1 1 5 3 0.0646 0.0627

4 4 1 1 5 4 0.0594 0.0621

4 5 1 1 3 4 0.0645 0.0626

4 5 1 1 3 5 0.0614 0.0623

4 5 1 1 4 3 0.0645 0.0626

r1 r2 r3 r4 r5 r6 V1 V2

4 5 1 1 4 4 0.0594 0.0621

4 5 1 1 5 3 0.0614 0.0623

5 3 1 1 3 5 0.0667 0.0630

5 3 1 1 4 4 0.0646 0.0627

5 3 1 1 4 5 0.0614 0.0623

5 3 1 1 5 3 0.0667 0.0630

5 3 1 1 5 4 0.0614 0.0623

5 3 1 1 5 5 0.0582 0.0619

5 4 1 1 3 4 0.0645 0.0626

5 4 1 1 3 5 0.0614 0.0623

5 4 1 1 4 3 0.0645 0.0626

5 4 1 1 4 4 0.0594 0.0621

5 4 1 1 5 3 0.0614 0.0623

5 5 1 1 3 3 0.0662 0.0625

5 5 1 1 3 4 0.0612 0.0621

5 5 1 1 3 5 0.0582 0.0619

5 5 1 1 4 3 0.0612 0.0621

5 5 1 1 5 3 0.0582 0.0619

5 5 1 2 5 5 0.05 0.0472

5 5 2 1 5 5 0.05 0.0472

In table 7.13 by V1 we denote
V ar(β̂2A1B1

)

σ2 and by V2 we denote
V ar(β̂

2A1B
2
1

)

σ2 .

Also we replicate 5 out of 6 runs of the 2× 3 design in the range [1, 5] and obtain

replicated designs which give small difference among the variances of the 2−factor

interaction estimators. We present the 2 × 3 designs with 5 replicated runs with

smallest possible difference among the variances in the range [1, 5] in Table 7.14.
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Table 7.14: Replicated 2× 3 Designs with 5 Distinct Runs

Delete r1 r2 r3 r4 r5 r6
V ar(β̂2A1B1

)

σ2

V ar(β̂
2A1B

2
1

)

σ2 Difference

0, 0

1 5 5 5 5 0.2 0.2222 0.1778
2 5 5 5 5 0.2 0.2222 0.1778
3 5 5 5 5 0.2 0.2222 0.1778
4 5 5 5 5 0.2 0.2222 0.1778
5 5 5 5 5 0.2 0.2222 0.1778

0, 1 4 5 1 4 5 0.0563 0.0384 0.0179

0, 2

5 5 5 5 1 0.2 0.2222 0.1778
5 5 5 5 2 0.2 0.2222 0.1778
5 5 5 5 3 0.2 0.2222 0.1778
5 5 5 5 4 0.2 0.2222 0.1778
5 5 5 5 5 0.2 0.2222 0.1778

1, 0

1 5 5 5 5 0.2 0.2222 0.1778
2 5 5 5 5 0.2 0.2222 0.1778
3 5 5 5 5 0.2 0.2222 0.1778
4 5 5 5 5 0.2 0.2222 0.1778
5 5 5 5 5 0.2 0.2222 0.1778

1, 1 5 4 1 5 4 0.0562 0.0384 0.0179

1, 2

5 5 5 5 1 0.2 0.2222 0.1778
5 5 5 5 2 0.2 0.2222 0.1778
5 5 5 5 3 0.2 0.2222 0.1778
5 5 5 5 4 0.2 0.2222 0.1778
5 5 5 5 5 0.2 0.2222 0.1778

7.6 Other Mixed Designs

In this section we consider different mixed designs which do not satisfy the CV

property but they possess a particular structure of the variance of their 2−factor

interaction estimators. For a general 2ma×3mb factorial experiment there are four

different kinds of 2−factor interactions which are presented in Table 7.15
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Table 7.15: Different Types of 2−Factor Interactions

Type Notation
Pure in A′s AiAj
Pure in B′s BiBj, B

2
iB

2
j , BiB

2
j , B

2
iBj

Mixed linear in B′s AiBj

Mixed quadratic in B′s AiB
2
j

. We did computer search to obtain CV designs for 2ma × 3mb factorial ex-

periment for small values of ma and mb. We did not find any CV design with

distinct runs. Searching for higher values of ma and mb was beyond the scope as

computationally it is very challenging. Hence we start searching for designs whose

2−factor interaction estimators possess common variance within each group of

interactions as presented in Table 7.15.

We consider mixed designs for 2m×3 and 2m×33 factorial experiments, m ≥ 2.

Consider the following CV design for 2m factorial experiment with (m+ 2) runs:

d4A =


0′

j ′m

Jm − Im

 .

Consider the following:

d4B =


0

1

2

 .
Each row of d4A is mixed with each row of d4B to form the design for 2m × 3

experiment. This design satisfies the CV property within each type of its 2−factor

interaction. In Table 7.16 we give the variance of the estimators of different types

of 2−factor interactions for m = 2, 3 and 4.
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Table 7.16: Variance of 2−Factor Interaction Estimators for Different m for 2m×3

m Interaction type Variance

2
A1A2 0.0833
AiB 0.125
AiB

2 0.0417

3
A1A2 0.1667
AiB 0.1042
AiB

2 0.0347

4
A1A2 0.2917
AiB 0.0938
AiB

2 0.0313

Again consider the following:

d5B =


2J3 − I3

2I3

2J3 − 2I3

 .

Now each row of d4A is mixed with each row of d5B to form the design for 2m× 33

experiment. This design also satisfies the CV property within each type of its

2−factor interaction. In Table 7.17 we give the variance of the estimators of

different types of 2−factor interactions for this design for different m.
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Table 7.17: Variance of 2−Factor Interaction Estimators for Different m for 2m×33

m Interaction type Variance

2

A1A2 0.0278
AiB 0.0331
AiB

2 0.0313
B1B2, B

2
1B

2
2 , B1B

2
2 , B

2
1B2 0.0833

3

A1A2 0.0556
AiB 0.0276
AiB

2 0.0260
B1B2, B

2
1B

2
2 , B1B

2
2 , B

2
1B2 0.0667

4

A1A2 0.0972
AiB 0.0248
AiB

2 0.0234
B1B2, B

2
1B

2
2 , B1B

2
2 , B

2
1B2 0.0556

From both Tables 7.16 and 7.17 we see that as the number of factors m gets

large the difference between the variances of the mixed interaction linear in B and

the mixed interaction quadratic in B is getting smaller.

123



Chapter 8

Replicated 33 CV Designs and

Comparisons

8.1 Chapter Summary

In this chapter we present replicated CV designs for 33 factorial experiment for

different n and make comparisons among few 33 CV designs w.r.t some optimality

criteria. Here is what we present in each section:

• (Section 8.2): In this section we present replicated 33 designs which are CV

for n ≥ 12. In Chapter 2 we obtained CV designs for 33 factorial experiment

through complete computer check for n = 8, 9, 10 and 11. We did not find

any CV design beyond n = 11 with distinct runs for 33 factorial experiment.

Thus to obtain CV designs for n > 11 we replicate one or more runs of the

33 designs which are already found to possess the CV property. Also we

compare the CV values of the mixed and pure replications.
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Table 8.1: 33 CV Design for n = 9

t1 t2 t3
0 0 2
0 2 0
2 0 0
0 2 2
2 0 2
2 2 0
1 2 2
2 1 2
2 2 1

• (Section 8.3): In this section we compare the five 33 CV designs for n = 10

presented in Chapter 2 w.r.t different optimality criteria like AD, AT, AE,

GD, GT and GE and their CV values.

8.2 Replicated 33 CV Designs

Consider the 33 CV design for n = 9 in Table 8.1 which is the design d
(2)
m for

m = 3 presented in Chapter 5. We add the runs (0, 0, 0) twice and (2, 2, 2) twice

separately to this design and obtain the respective CV designs for n = 11. Also if

both the runs are added simultaneously once the design is CV for n = 11. Since

the two runs worked for giving CV designs we replicate them a couple more times

and obtain 33 CV designs for n ≥ 12. The replications along with the variances

are presented in Table 8.2. From Table 8.2 we see that the mixed replications

(where both the runs are replicated) give smaller variance as compared to the

pure replications (where one run is replicated a couple of times) for different n.
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Table 8.2: Replicated 33 CV Designs

n Runs added to d
(2)
3 CV

11
(0, 0, 0) twice 0.2889
(2, 2, 2) twice 0.2889

(0, 0, 0) once and (2, 2, 2) once 0.2222

12

(0, 0, 0) thrice 0.2857
(2, 2, 2) thrice 0.2857

(0, 0, 0) once and (2, 2, 2) twice 0.2051
(0, 0, 0) twice and (2, 2, 2) once 0.2051

13

(0, 0, 0) 4 times 0.284
(2, 2, 2) 4 times 0.284

(0, 0, 0) once and (2, 2, 2) thrice 0.1975
(0, 0, 0) thrice and (2, 2, 2) once 0.1975
(0, 0, 0) twice and (2, 2, 2) twice 0.1852

Next we consider the 33 CV design for n = 11 with all distinct runs as presented

in Table 8.3. We want to see if replicating the existing runs of this design give

CV for n ≥ 12. Hence we replicate the existing runs one at a time and obtain CV

designs with pure replications which are presented in Table 8.4. From Table 8.4

we see that by replicating any of the first 9 runs of D
(11)
3 CV designs for n ≥ 12

are obtained. The replication of (0, 0, 0) and (2, 2, 2) gives CV that is already

presented in Table 8.2. Interestingly we see that the replication of any of the runs

from the set {(1, 2, 2) , (2, 1, 2) , (2, 2, 1)} always gives CV = 0.2222 irrespective of

the number of replication. Although in Table 8.4 we have presented the replicated

designs for n = 12, 13 and 14 only but through computer check we found that these

replications can be extended to any number r > 1. So given the CV design D
(11)
3

for n = 11 any of the existing runs can be replicated any number of times (pure

replications) and in all the cases respective CV designs are obtained for n > 11.
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Table 8.3: 33 CV Design D
(11)
3 for n = 11

t1 t2 t3
0 0 2
0 2 0
2 0 0
0 2 2
2 0 2
2 2 0
1 2 2
2 1 2
2 2 1
0 0 0
2 2 2

Table 8.4: Replicated 33 CV designs for n ≥ 12

n Runs added CV

12
(0, 0, 2)/(0, 2, 0)/(2, 0, 0) once 0.2051
(0, 2, 2)/(2, 0, 2)/(2, 2, 0) once 0.2051
(1, 2, 2)/(2, 1, 2)/(2, 2, 1) once 0.2222

13
(0, 0, 2)/(0, 2, 0)/(2, 0, 0) twice 0.1975
(0, 2, 2)/(2, 0, 2)/(2, 2, 0) twice 0.1975
(1, 2, 2)/(2, 1, 2)/(2, 2, 1) twice 0.2222

14
(0, 0, 2)/(0, 2, 0)/(2, 0, 0) thrice 0.1932
(0, 2, 2)/(2, 0, 2)/(2, 2, 0) thrice 0.1932
(1, 2, 2)/(2, 1, 2)/(2, 2, 1) thrice 0.2222

We presented one CV design for n = 11 from which several replicated designs are

obtained. Similar replicated designs can be obtained from several other 33 CV

designs.
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8.3 Comparison of the Five 33 CV Designs for

n = 10

In Chapter 2 we presented five 33 CV designs for n = 10 from five groups of

different CV value in Table 2.4. We make comparisons among them w.r.t different

optimality criteria like the arithmatic and geometric average of the determinant,

trace and the maximum eigen value of the variance-covariance matrices, average

being taken over all the models. We define these optimality criteria in the follow-

ing:

1. Determinant: For a model having full rank design matrix, the variance-

covariance matrix of the estimators of the parameters is given by

V ar(β̂)

σ2
= (X ′X)

−1
. (8.1)

The D−Optimal designs are those obtained by maximizing the determi-

nant of the information matrix, i.e, maximizing |X ′X| or equivalently by

minimizing the determinant of the variance-covariance matrix given in (8.1)

among the possible designs in a particular class of m and n. Lowering the

| (X ′X)
−1 | is an optimality criteria because it is directly proportional to

the volume of the confidence region of the parameters. Hence designs giving

smaller value of | (X ′X)
−1 | are better.

2. Trace: Trace of any matrix is defined as the sum of all the diagonal elements

of the matrix. Optimal designs can be obtained by minimizing the trace of

(X ′X)
−1

. This is an optimality criteria because smaller the value of the

128



average variance of the parameter estimators better is the esimation.

3. Eigenvalue: Eigenvalues of a matrix are obtained from solvingAx = λx, λ is

the Eigenvalue and x is the Eigenvector. Maximum Eigenvalue of (X ′X)
−1

is

proportional to Maxa∈Rp
a′V ar(β̂)a

a′a
. Hence minimizing the maximum Eigen-

value is an optimality criteria since it minimizes the maximum value of

V ar(a′β̂) over all real vector a ∈ Rp.

Since we consider a class of models with general mean and main effects as the

common parameters and the 2−factor interaction as the uncommon parameter,

the design matrices vary from one model to the other and hence the values of

the criterion functions are different for different models. But optimality criteria

should not depend on any model as all the models are being treated equally. So we

take the average of all the criterion functions over all the models to get one value

of each of the functions from one design. The average is taken by arithmatic mean

as well as geometric mean. The average arithmatic mean of the three criterion

functions are denoted by AD, AT and AE whereas the geometric mean of the

functions are denoted by GD, GT and GE respectively. In Table 8.5 we present

the values of the different criterion functions for the five CV designs along with

their CV values. So from the table we see that although design I is an optimal 33

CV design for n = 10 because of the the minimum CV value but it is not optimal

w.r.t the other criterion functions. Design III which is the third best design w.r.t

the CV, is optimal w.r.t all other criterion functions. Also we see that there is not

much difference between the optimal CV design (I) and the second best CV design
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Table 8.5: Criterion Functions

Design CV Determinant Trace Max Eigen Value
AM=GM(×108) AM GM AM GM

(I) 0.2564 6.10 1.957 1.944 1.007 0.98
(II) 0.2667 5.95 1.959 1.938 1.03 0.988
(III) 0.2837 5.07 1.742 1.717 0.897 0.838
(IV ) 0.2963 19.85 2.5 2.462 1.467 1.402
(V ) 0.4 15.88 2.619 2.516 1.603 1.413

(II) w.r.t the CV value as well as all the criterion functions since the values of

the functions are very similar for these two designs. Design IV followed by design

V are the worst among all w.r.t any of the optimality criteria as well as the CV

value.

130



Chapter 9

Dose Finding Experiment and

Simulation

9.1 Chapter Summary

In this chapter we present an example of a dose finding experiment where

factorial designs are widely used to identify the optimal potential drug dosage

combinations to treat any disease. Also we do a simulation study using two CV

designs to compare the class of models to identify the true interaction. Here is

what we present in each section:

• (Section 9.2): In this section we present the dose finding experiment where

both two and three level experiments are carried out sequentially to identify

the optimal drug dosage combinations for treating the Herpes Simplex Virus.

For the three level experiment an 81-run resolution IV design is used which

can estimate the general mean, all main effects and some of the two-factor
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interactions along with the block factors. From the significance test of the

parameters only one two-factor interaction is found to be significant along

with general mean, some of the main effects and the block parameters.

• (Section 9.3): In this section for the three level factorial experiment a class

of models is considered each with general mean, all main effects and the

block factors as the common parameters and the two-factor interaction as

the uncommon parameter. All the models are fitted and the sum of squares

due to error is calculated for them. The model with the minimum error sum

of squares contains the possible non negligible two-factor interaction. The

result exactly matches with the one obtained in section 9.2 for the three level

experiment.

• (Section 9.4): In this section we do a simulation study using two CV designs

for 33 factorial experiment. We generate artificial data from an assumed true

model and compare the error sum of square values for all the fitted models

in the class to identify the true interaction.

9.2 Dose Finding Experiment

9.2.1 Introduction

In USA, UK and other western countries one of the very common virus called

the Herpes Simplex Virus type 1 (HSV-1) causes various severe diseases like

mucocu-taneous diseases, neonatal herpes and herpes encephalitis and it can even
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lead to the increasing risk of HIV infection. Many therapeutics have been devel-

oped to treat HSV infections but the drug resistance and toxicity have always been

concerns. Often times instead of using the individual drugs the combination of

different anti viral drugs are preferred as their low dosage combinations are found

to be more effective as well as reduce the cytotoxity. But it is huge time, cost and

labor consuming to test for every possible combination when various dosages of

multiple drugs are considered. Factorial designs have been widely used to find the

optimal drugs and their interactions and also predict the optimal combination by

building statistical models. Since often times in most of the scientific experiments

the three factor and higher order interactions are found to be non important so

using a full factorial design is just waste of most of the degrees of freedom to

estimate the non important higher order interactions. Hence a more practical and

economical approach is to use fractional factorial designs which use much smaller

number of runs that allows estimation of the lower order interactions. Differ-

ent combinations of the six different anti viral drugs: (1) Interferon-alpha (A),

(2) Interferon-beta (B), (3) Interferon-gamma (C), (4) Ribavirin, (5) Acyclovir

and (6) TNF-alpha are used to treat HSV-1 and then two level and three level

experiments are carried out sequentially.

9.2.2 2−level Experiment

9.2.2.1 Design and Model

In the two level experiment a half fraction of 26 design is used which is a

resolution VI design and hence can estimate the general mean, all main effects
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Table 9.1: Dosages for 26 Experiment

Factors
Levels (ng/mL)
Low High

A 3.12 50
B 3.12 50
C 3.12 50
D 1560 25000
E 31 5m
F 0.31 5

and all 2−factor interaction effects under the assumption that the four factor and

higher order interactions are negligible. The half fraction design with 32 runs is

obtained from the generator F = ABCDE. Along with these 32 runs three center

points are also added to estimate the pure error and carry out the lack of fit test

to check for the model adequacy. From the pilot study the minimum response

dosage and the plateau dosage of each drug are determined. In the study the

plateau dosage is chosen as the high level (coded as 1) and the minimum dosage

which is 16 times diluted than the plateau dosage is chosen as the low level (coded

as -1). The high and low dosage levels of different drugs are given in Table 9.1. The

different combinations of the six drugs are added to the host cells simultaneously

with HSV-1. The virus are engineered to carry the green fluorescent protein (GFP)

gene which serves as a biomarker to measure the percentage of infected cells. The

readout of the percentage of infected cells along with the design with 35 runs are

given in Table 9.2. The distribution of the readouts is positively skewed and hence

the logarithm of the readouts with base 10 are considered as the response. The

model with general mean, main effects and the two and three factor interactions
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Table 9.2: 26 Resolution VI Design

A B C D E F Read out
-1 -1 -1 -1 -1 -1 31.6
-1 -1 -1 -1 1 1 32.6
-1 -1 -1 1 -1 1 13.4
-1 -1 -1 1 1 -1 13.2
-1 -1 1 -1 -1 1 27.5
-1 -1 1 -1 1 -1 32.5
-1 -1 1 1 -1 -1 11.6
-1 -1 1 1 1 1 20.8
-1 1 -1 -1 -1 1 37.2
-1 1 -1 -1 1 -1 51.6
-1 1 -1 1 -1 -1 14.1
-1 1 -1 1 1 1 19.9
-1 1 1 -1 -1 -1 27.3
-1 1 1 -1 1 1 40.2
-1 1 1 1 -1 1 19.3
-1 1 1 1 1 -1 23.3
1 -1 -1 -1 -1 1 31.2
1 -1 -1 -1 1 -1 32.6
1 -1 -1 1 -1 -1 14.2
1 -1 -1 1 1 1 22.4
1 -1 1 -1 -1 -1 32.7
1 -1 1 -1 1 1 41.0
1 -1 1 1 -1 1 20.1
1 -1 1 1 1 -1 18.7
1 1 -1 -1 -1 -1 29.6
1 1 -1 -1 1 1 42.3
1 1 -1 1 -1 1 18.5
1 1 -1 1 1 -1 20.0
1 1 1 -1 -1 1 30.9
1 1 1 -1 1 -1 34.3
1 1 1 1 -1 -1 19.4
1 1 1 1 1 1 23.4
0 0 0 0 0 0 16.8
0 0 0 0 0 0 17.5
0 0 0 0 0 0 16.2
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are given below:

E (yi) = β0 + β1x1i + β2x2i + β3x3i + β4x4i + β5x5i + β6x6i +
∑
j<k

βjkxjixki

+
∑
j<k<l

βijkxjixkixli,

V ar (yi) = σ2,∀i,

where yi is the response variable corresponding to the ith run of the design, β0 is

the general mean, βi, i = 1(1)6 are the main effects, βjk, j < k = 1(1)6 are the

2−factor interaction effects, βjkl, j < k < l = 1(1)6 are the 3−factor interaction

effects, xsi, s = 1(1)6, i = 1(1)35 is the ith level of the sth factor, the levels are

coded as -1 and 1. The least square estimates of the factorial effects are twice as

that of the corresponding β′s.

9.2.2.2 Results

The resolution VI design used in the experiment can estimate the general mean,

all six main effects, all fifteen 2−factor interaction effects and ten pairs of 3−factor

interaction effects. Table 9.3 presents the scaled estimates (estimates/SE) along

with the sum of squares and the p-values for each of the parameter in the model.

From this table we see that the overall sum of squares for the main effects is

maximum followed by that of the 2−factor interactions followed by the ten pairs

of 3−factor interactions. Also we see that the sum of square due to the main effect

of the drug D is maximum followed by that of the drug E. The significance test

also gives the minimum p-value for the coefficient of the drug D which shows that

the drug D is highly significant as compared to the other drugs used in treating
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Table 9.3: Estimates and p-values for 26 Experiment

Effect Estimates % Sum of Squares p−value
A 0.02 1 ∼ 1
B 0.04 3.1 ∼ 1
C 0.01 0.2 ∼ 1
D -0.20 68 ∼ 1
E 0.06 7.3 ∼ 1
F 0.03 1.9 ∼ 1
AB -0.03 1.6 ∼ 1
AC 0.008 0.1 ∼ 1
AD 0.03 1.2 ∼ 1
AE -0.01 0.3 ∼ 1
AF 0.007 0.1 ∼ 1
BC -0.01 0.3 ∼ 1
BD 0.01 0.2 ∼ 1
BE 0.01 0.2 ∼ 1
BF -0.01 0.2 ∼ 1
CD 0.03 1.9 ∼ 1
CE 0.003 0 ∼ 1
CF 0.005 0 ∼ 1
DE 0.002 0 ∼ 1
DF 0.02 0.7 ∼ 1
EF -0.002 0 ∼ 1

ABC +DEF -0.003 0 ∼ 1
ABD + CEF 0.002 0 ∼ 1
ABE + CDF -0.008 0.1 ∼ 1
ABF + CDE -0.002 0 ∼ 1
ACE +BDF -0.02 0.9 ∼ 1
ACF +BDE -0.02 0.8 ∼ 1
ACD +BEF -0.02 0.5 ∼ 1
ADE +BCF -0.005 0 ∼ 1
ADF +BCE -0.01 0.2 ∼ 1
AEF +BCD 0.02 0.7 ∼ 1

Residuals 8.3
Total 100
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Table 9.4: Lack of Fit Test

Source DF SS MS F p
Model 31 0.858 0.028 1.08 > 0.5
Error 3 0.077 0.026

lack of Fit 1 0.0766 0.0766 272.46 0.0037
Pure Error 2 0.00056 0.00028

Corrected Total 34 0.935

HSV-1. Moreover the negative estimate of the coefficient associated with drug

D suggests that high dosage of this drug has the capability of lowering the viral

infection. All other drugs A through F except the drug D have positive coefficients

which implies that if the dosages of all the drugs except drug D are lowered and

the dosage level of drug D is increased then the minimum viral infection can

be achieved. But increasing the dosage level of a drug can simultaneously bring

toxicity to the subjects. So in the follow up experiment all drugs are set at lower

dosage level to avoid unacceptable toxicity.

Using the three independent center points in the design the lack of fit test is

carried out to check for the non linearity in the response. The result is presented

in Table 9.4. From this table we see that the lack of fit is very significant with a

p-value of 0.0037. This clearly shows that the relationship between the response

and the drug dosages is non linear. Hence to study this non linear relationship

additional levels and runs are required and this is the motivation for the follow up

3−level experiment.
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Table 9.5: Dosages for 36 Experiment

Factors Levels (ng/mL)
Low Intermediate High

A 0 0.78 12.5
B 0 0.78 12.5
C 0 0.78 12.5
D 0 390 6250
E 0 80 1250
F 0 0.08 1.25

9.2.3 3−level Experiment

9.2.3.1 Design and Model

In the 3−level experiment the drug dosage levels are lowered from the previous

2−level experiment to screen for less toxic drug combinations. The high dosage for

the 3−level experiment is the intermediate dosage level for the 2−level experiment,

the intermediate dosage for the 3−level experiment is 16 times diluted than the

high dosage and the low dosage is set at no drug. The dosage levels of the six drugs

are given in Table 9.5. The design used in this experiment is a one-ninth fraction

of 36 factorial experiment and is obtained from the generators: ABCD = E and

AB2C = F . This is a resolution IV design which can estimate the general mean,

all main effects and some of the 2−factor interactions assuming that the 3−factor

and higher order interactions are negligible. In practice it is not feasible to carry

out the experiment with 81 runs in a single batch and hence they are divided into

three batches of homogeneous experimental runs. Blocking factor is incorporated

in to the model to reduce systematic sources of variation. Blocking was done

using the generator block = AC2D. The response is again the logarithm of the
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percentage of infected cells. We denote the factors A through F by 1 through 6.

Consider the following linear model:

E (yi) = β0 +
∑
s

βsxsi +
∑
i

βssx
2
si +

∑
j<k

βjkxjki + γ1z1i + γ2z2i, V ar (yi) = σ2,∀i,

(9.1)

where yi is the response variable corresponding to the ith run, i = 1(1)81, β0 is

the general mean, βs, s = 1(1)6 are the linear main effects, βss, s = 1(1)6 are

the quadratic main effects βjk, j < k = 1(1)6 are the linear×linear 2−factor

interaction effects, xsi, s = 1(1)6 is the ith level of the sth factor, the levels being

coded as −1, 0 1, x2
si is the quadratic term corresponding to the ith level of the

sth factor, xjki is the ith component of the two-factor interaction corresponding to

the jth and the kth factor. For i = 1(1)81, the z1i and z2i are defined as

z1i = 1, if the ith run is in block 1

= 0, otherwise.

z2i = 1, if the ith run is in block 2

= 0, otherwise.

The γ1 and γ2 are the coefficients corresponding to the two blocks respectively.

The block 0 is taken as the reference.

9.2.3.2 Results

The estimates of the coefficients of the model (9.1) depend on the type of coding

of the quadratic and the interaction terms. We consider two types of coding: (1)
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used in the paper (2) used in my research. The two types of coding and the results

are illustrated in the following:

• Coding Used in the Paper

The ith level of the sth factor is xsi ∈ (0, 1, 2) , s = 1(1)6, i = 1(1)81 which

is coded as -1, 0, 1 respectively. Now the quadratic term x2
si is calculated by

squaring the coded xsi’s, i.e., the coded x2
si ∈ (0, 1) , s = 1(1)6. The ith component

of the linear×linear interaction corresponding to the jth and the kth factor, xjki,

is computed by multiplying the coded xji with xki, i.e, xjixki ∈ (−1, 0, 1). In

this setting the design matrix X (81× 30) is formed with the first column as the

vector of unity and the remaining columns correspond to the 6 linear main effects,

6 quadratic main effects, 15 linear×linear 2−factor interactions and the two block

variables. The initial analysis identifies the 80th run as an outlier and thus it is

deleted and the model is fitted again without the outlier. The scaled estimates

(estimates/SE) of the coefficients along with the p values for their significance tests

are given in Table 9.6. From the p values we see that the linear main effects of the

drugs B, C, D and E are significant at 5% level of significance and the linear main

effect of drug A is significant at 10% level. But the linear main effect of the drug

F is not significant implying that it is inert in minimization of the viral infection.

Also the coefficients of the drugs A through E are negative indicating that the

high dosage of these drugs have the potential to lower the viral infection. The

quadratic main effect of drug D is very significant but that of the other drugs are

not. Among the fifteen 2−factor interactions only AD is found to be significant.
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Table 9.6: Estimates and p−values for 36 Experiment Following the Coding in the

Paper

Effects Estimates p−values
β0 12.45 0
γ1 -8.45 0
γ2 -4.47 0
A -1.87 0.067
B -2.82 0.007
C -2.32 0.024
D -25.94 0
E -6.17 0
F 0.58 0.563
A2 0.83 0.409
B2 0.31 0.758
C2 -0.77 0.446
D2 4.95 0
E2 1.58 0.119
F 2 1.52 0.135
AB 0.37 0.715
AC 0.18 0.858
AD 3.21 0.002
AE 1.52 0.134
AF -0.46 0.646
BC -0.22 0.824
BD -0.74 0.46
BE 0.84 0.404
BF -0.73 0.468
CD 1.14 0.261
CE -1.22 0.229
CF 0.64 0.525
DE 0.23 0.815
DF 1.29 0.202
EF -1.40 0.166
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Figure 9.1: Contour Plot of the Drugs A and D

Although the drug A is not significant at 5% level we still keep it in the model as

the interaction AD is significant. So the final fitted model is given as:

ŷi = 0.761− 0.037x1i − 0.054x2i − 0.046x3i − 0.509x4i − 0.119x5i + 0.167x2
4i

− 0.327z1i − 0.176z2i + 0.078x14i. (9.2)

To identify the potential drug dosage levels of A and D the contour plot of these

two drugs are drawn for the predicted response from model (9.2) given the drugs

B, C and E are set at high dosage level. The plot is shown in figure 9.1. The
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Table 9.7: Coding of Linear and Quadratic Terms

Level xi x2
i

0 −1 1
1 0 −2
2 1 1

coordinates of the contour plot has the values of the two drugs respectively. The

contour plot indicates that the high dosage of drug D combined with the low

dosage (no drug) of drug A would produce the maximum viral infection minimiza-

tion. So the final optimal potential drug dosage combination would be to set the

drugs B, C, D and E at high dosage level and the drug A at low dosage level

which is no drug.

• Coding Used in my Research

The levels (0, 1, 2) of the factors are still coded as -1, 0, 1 respectively. The

quadratic terms are coded as given in Table 9.7. The linear×linear interaction

terms are calculated as sjki = (xji + xki)mod(3), xji, xki ∈ (0, 1, 2) . This will make

sjki ∈ (0, 1, 2) and then xjki’s are obtained by following the coding in Table 9.7.

The z1i and z2i corresponding to the blocks remain the same. In this setting the

model is again fitted without the outlier and the scaled estimates (estimates/SE)

of the parameters along with the p values are given in Table 9.8. Because of this

coding and the generators defined earlier the interaction BF and AC are aliased

with each other and hence both can not be estimated separately. Again BE and

DF are aliased with each other. The Table 9.8 shows the estimates of BE and

AC but the estimates of BF and DF can not be obtained. The estimates get
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Table 9.8: Estimates and p−values for 36 Experiment Using the Coding in my

Research

Effects Estimates p−values
β0 32.27 0
γ1 -7.85 0
γ2 -4.27 0
A -1.85 0.0697
B -2.61 0.0116
C -2.27 0.0272
D -24.21 0
E -5.73 0
F 0.66 0.5150
A2 0.71 0.4830
B2 0.42 0.6766
C2 -0.78 0.4386
D2 4.53 0
E2 1.6 0.1147
F 2 1.34 0.1854
AB 0.26 0.7993
AC 0.41 0.6865
AD -1.6 0.1147
AE -1.24 0.2204
AF 0.86 0.3912
BC 0.03 0.9796
BD 0.83 0.4130
BE -2.12 0.0388
BF NA NA
CD -0.97 0.3387
CE 1.02 0.3136
CF 0.72 0.4718
DE 0.034 0.7376
DF NA NA
EF 1.32 0.1941
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slightly changed along with the p values but the overall significance remain the

same as compared to the previous coding. The linear main effect of the drugs B

through D are very significant followed by that of the drug A and drug F is again

insignificant. The quadratic effect of only drug D is significant. Because of the

negative coefficients of drugs B through E they are set at the high dosage level

to minimize the infection. The interaction BE is significant at 5% level while the

interaction AD is insignificant unlike the previous coding. The intercept and the

blocks are very significant and hence are kept in the final model. Since the drug

A is not significant at 5% level and no interaction is significant where drug A is

present so it can be considered an inert in minimizing the viral infection like the

drug F and hence can be removed from the model. Again since both drugs B and

E are significant with negative coefficients and their interaction is also significant

so the optimal potential drug dosage combination would be to set the drugs B

through E at high level to minimize viral infection. Here is the final fitted model:

ŷi = 0.951− 0.054x2i − 0.048x3i − 0.511x4i − 0.119x5i + 0.055x2
4i

− 0.327z1i − 0.178z2i − 0.045x25i. (9.3)

9.3 Class of Models to Identify the True Inter-

action

For a 36 factorial experiment there are one general mean, twelve main effects

and sixty 2−factor interaction effects. We consider the class of models Mu ∀u in

(1.3.1) in Chapter 1 for k = 1 for a 36 experiment. Thus there are 60 models
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in the class. However in the 3−level experiment of the dose finding example

only fifteen linear×linear 2−factor interactions are considered and hence there

are 15 models in the class each with one linear×linear 2−factor interaction along

with the general mean, all main effects and the two block parameters which are

the common parameters. Thus each of these fifteen models in the class has 16

parameters. In this case the 81− run design without the outlier can estimate all

the parameters in all the models since no 2−factor interaction is aliased with any

main effect or general mean. Using the 36 design these fifteen models are fitted

and the parameter estimates for all models are found to be identical with those

of the bigger model. Also the significance of the common parameters for each of

the models remain the same as that of the previous model. To identify the true

model containing the true 2−factor interaction we compare the class of models

w.r.t their SSE values. Write the uth model as

E(y) = X(u)β(u), (9.4)

where X(u) =

[
jn

...X1
...X2u

]′
, β(u) =

[
jn

...β1

...β2u

]′
. Under (9.4) the least square

estimator of β(u) and the sum of squares due to error s
2(u)
e for the uth model are

given as

β̂
(u)

=
(
X(u)′X(u)

)−1

X(u)′y,

s2(u)
e = y′

[
In −X(u)

(
X(u)′X(u)

)−1

X(u)′
]
y.

We calculate s
2(u)
e ,∀u. Let β2u∗ be the 2−factor interaction such that s

2(u∗)
e is

minimum for some u∗. Then β2u∗ is the possible non-negligible 2−factor interaction

effect. In the following we present the results for the 36 experiment using both
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Table 9.9: s
2(u)
e Following the Coding in Research

u s
2(u)
e

AB 1.56
AC 1.56
AD 1.50
AE 1.52
AF 1.54
BC 1.56
BD 1.55
BE 1.46
BF 1.56
CD 1.54
CE 1.54
CF 1.55
DE 1.56
DF 1.46
EF 1.52

types of coding.

9.3.1 Coding Used in the Research

Following the coding used in my research we get s
2(u)
e for all the fifteen models.

We present the values of s
2(u)
e in Table 9.9. From the table we see that the values of

s
2(u)
e are almost identical for all the models. Comparing the values we get minimum

s
2(u)
e for u = BE and DF . This result is consistent with that of the bigger model

which yielded BE (aliased with DF ) as the most significant interaction.

9.3.2 Coding Used in the Paper

Following the coding used in the paper we get the values of s
2(u)
e for all u

which are presented in Table 9.10. From this table we see that s
2(u)
e is minimum
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Table 9.10: s
2(u)
e Using the Coding in the Paper

u s
2(u)
e

AB 1.55
AC 1.56
AD 1.35
AE 1.52
AF 1.56
BC 1.56
BD 1.51
BE 1.50
BF 1.55
CD 1.54
CE 1.53
CF 1.54
DE 1.56
DF 1.47
EF 1.48

for u = AD. From the bigger model also we obtained AD as the most significant

interaction and hence the results are consistent.

We also note that if we would have considered all sixty 2−factor interactions

then the 80−run 36 design can estimate all the parameters in all sixty models. Us-

ing the bigger model the design can not estimate all 2−factor interactions because

of the aliases and hence if any interaction from the set of 2−factor interactions that

can not be estimated is the true interaction then it can not be identified. On the

contrary using the class of models all sixty 2−factor interactions can be estimated

and hence by comparing the models the true interaction can be identified.
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9.4 Simulation Study

In this section we do a simulation study using two CV designs to compare the

class of models for the identification of the true interaction. Consider the two 33

CV designs for n = 10 with CV = 0.2564 (design1) and CV = 0.2667 (design2)

presented in Table 2.4 in Chapter 2. For a 33 factorial experiment there are one

general mean, six main effects and twelve 2−factor interactions. We consider the

class of models each with the general mean, six main effects and one 2−factor

interaction effect. Thus there are twelve models in the class. We assume that

the three factor and higher order interactions are negligible and out of the twelve

2−factor interactions AB is the true non negligible one. Hence the true model

becomes

y = jnβ0 +X1β1 +X2ABβ2AB + ε, V ar (y) = σ2In, (9.5)

where y (10× 1) is the vector responses, jn is (10× 1) vector of unity, β0 is the

general mean, β1 (6× 1) is the vector corresponding to the 6 main effects, β2AB

corresponds to the 2−factor interaction AB and X1 (10× 6) and X2AB (10× 1)

are the corresponding design matrices. We simulate the artificial data y under the

model (9.5), generating error from Normal distribution with σ2 = 0.5, 1.0, 1.5 and

2 one at a time for the two designs. The parameter values for the true model are

taken as

β0 = 3.2, β1 = (5, 2, 2.5, 1.3, 2.8, 3.5, 1.8, 1.7) , β2AB = 6.7. (9.6)

150



The design matrix X(AB) =

[
jn

...X1
...X2AB

]
for the two designs are given below:

X
(AB)
design1 =



1 −1 1 −1 1 0 −2 −1

1 −1 1 0 −2 0 −2 0

1 −1 1 1 1 −1 1 1

1 −1 1 1 1 0 −2 1

1 0 −2 0 −2 0 −2 1

1 0 −2 0 −2 1 1 1

1 0 −2 1 1 0 −2 −1

1 1 1 −1 1 −1 1 1

1 1 1 −1 1 0 −2 1

1 1 1 1 1 1 1 0



,

X
(AB)
design2 =



1 −1 1 −1 1 0 −2 −1

1 −1 1 1 1 −1 1 1

1 −1 1 1 1 0 −2 1

1 0 1 0 −2 0 −2 1

1 0 −2 0 −2 1 1 1

1 0 −2 1 1 1 1 −1

1 0 −2 −1 1 −1 1 1

1 1 1 −1 1 0 −2 1

1 1 1 0 −2 1 1 −1

1 1 1 1 1 1 1 0



.

The data y is used to fit all twelve models in the class. After fitting the models

s
2(u)
e is calculated for all u. The s

2(u)
e values are compared to identify the true
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Table 9.11: Average Proportion of Times the Correct Model is Identified

Design σ2 Average Proportion
No. of Iterations

for one proportion

No. of Iterations

for average proportion

1

0.5 0.988 1000 100, 000

1.0 0.912 1000 100, 000

1.5 0.827 1000 100, 000

2 0.747 1000 100, 000

2

0.5 0.986 1000 100, 000

1.0 0.903 1000 100, 000

1.5 0.826 1000 100, 000

2 0.752 1000 100, 000

model. The model with minimum s
2(u)
e is the true model containing the possible

non negligible parameter among all 2−factor interactions. We repeat this process

of identifying the true model 1000 times, i.e, we generate generate the error vector

from Normal distribution 1000 times and using the error vector, design matrix

X(AB) and the true parameter values in (9.6) we generate the data vector y 1000

times and after fitting the models calculate s
2(u)
e ,∀u for 1000 simulations. Out

of 1000 times we calculate the proportion of times the true model is identified.

We repeat this whole process 100, 000 times, i.e. such proportion of identification

of the correct model is calculated 100, 000 times. We report the average of these

proportions in Table 9.11. From Table 9.11 we see that the proportions are very

similar for both the designs. For σ2 = 0.5 the correct model is identified almost

all the times since the proportion is close to 1. The proportion is decreasing as

σ2 is increased. In the following we give the detailed algorithm for obtaining the

average proportion:

1. Given a design calculate the design matrix and fix the parameter values
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assuming a true model.

2. Generate sample of size 10 from Normal distribution with mean 0 and vari-

ance σ2, σ2 ∈ {0.5, 1.0, 1.5, 2}.

3. Generate the data (y) under the true model.

4. Fit all the models in the class using y and calculate s
2(u)
e for all u. Find the

model with minimum s
2(u)
e . If s

2(u)
e turns out to be minimum for the true

model assumed in the beginning then the correct model is identified.

5. Repeat (2)-(4) 1000 times and calculate the proportion of times the correct

model is identified.

6. Repeat (2)-(5) 100, 000 times and calculate the average proportion.
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Chapter 10

Conclusions

In this dissertation we obtain series of CV designs for 3m factorial experiment

and characterize the CV property in terms of the projection matrix and the design

runs for general fractional factorial designs. Also we obtain designs satisfying a

particular structure of the variance of the interaction estimators for 2ma × 3mb

factorial experiment. We conclude by presenting the most important contributions

of this thesis.

10.1 3m Factorial Experiment

1. The two series of CV designs d
(1)
m and d

(2)
m are obtained for general 3m factorial

experiment. The design d
(1)
m for n = 2m+2, m ≥ 2 gives optimum CV design

for m = 2 and the design d
(2)
m for n = 3m, m ≥ 3 gives optimum CV design

for m = 3. The projection matrices of these designs are found to possess

a particular structure giving columns and rows of zeros corresponding to a

particular set of m runs of the respective CV designs. Most of the CV as

154



well as optimal CV designs satisfy this structure of the projection matrix.

2. A class of fractional factorial designs with n runs possessing the common

variance property are characterized for general m. Several sufficient condi-

tions are obtained by using pairs of interaction effects (null space and per-

mutation matrix), independent columns of the projection matrix and runs

of the designs.

3. The condition of obtaining a CV design for (n± 1) from a CV design for n

is derived in terms of the design matrix and the runs of the design.

4. Replicated designs give smaller CV as compared to the designs with distinct

runs. The optimal CV design d
(1)
m for m = 2 always remains CV after

replicating any of its six runs any number of times. Many more such designs

exist for 32 experiment for n = 6.

5. The condition of obtaining a 33 CV design from a 32 CV design is derived

where every pair of columns of the 33 CV design consists of the same runs

as that of the 32 CV design and the runs are replicated in the same way in

both.

10.2 2ma × 3mb Factorial Experiment

1. For the simplest 2×3 factorial experiment no CV design exists with distinct

runs and hence we consider a very structured replication of the six runs

and under a particular condition of replications CV designs are obtained for
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different runs.

2. For higher values of ma and mb it is computationally challenging to obtain

CV designs. We obtain designs that give common variance within each of the

groups: (1) the pure interaction estimators between the factors with same

levels, (2) the mixed interactions linear in both factors and (3) the mixed

interactions quadratic in the factor with 3 levels.
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