
UC Irvine
ICS Technical Reports

Title
Scheduling for reuse of datapath components in the interactive synthesis environment

Permalink
https://escholarship.org/uc/item/5q42j878

Authors
Ang, Roger
Dutt, Nikil

Publication Date
1995-08-25

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5q42j878
https://escholarship.org
http://www.cdlib.org/

Notice: This Materiai
may be protected
by Copyright Law
(Titie 17 U.S.C.)

Scheduling for Reuse of Datapath Components
in the Interactive Synthesis Environment*

Roger Ang and Nikil Dutt

Technical Report 95-36
August 25, 1995

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717
(714) 824-8059

rang@ics.uci.edu

Abstract

This report describes an implementation ofa scheduling algorithm constructed to use the func
tionality of existing RT datapath components more effectively. Scheduling algorithms for High-Level
Synthesis (HLS) have been based on assumptions that failed to recognize that RT datapath com
ponents may have complex, concurrent functionality. The algorithm described in this report takes
advantage of a representation that was designed to capture the complex, concurrent functionality
ofcombinatorial RT functional units. This enables the algorithm to utilize RT functions that have
been available in existing RT components but had been ignored by other scheduling techniques.
The algorithm has been implemented to work with the Interactive Synthesis Environment (ISE).

*This work was supported in part by SRC contract 95-DJ-146

Contents

1 Introduction and Problem Definition

2 Related Work

Scheduling Algorithm
3.1 Algorithm Overview and Examples

3.1.1 Example 1: Unconditional Assignments
3.1.2 Example 2: Conditional Assignments . .
3.1.3 Example 3: Conditional Loops

3.2 Basic Block Scheduling In-Depth
3.2.1 Estimation of Critical Path Delay . . .
3.2.2 Scheduling the Critical Path
3.2.3 Scheduling Remaining Operators
3.2.4 Search Reduction

4 System Overview
4.1 Component Capture
4.2 Component Database
4.3 Input of Design and Allocation of Units

5 Experimental Results

6 Conclusions

A Components

1 Introduction and Problem Definition

Early work in High-Level Synthesis (HLS) assumed a simple model for the functionality of RT
components: 1 component can perform a single operation in a single time step (clock period).
This was reflected in the simple way HLS algorithms mapped operations, such as additions or
multiplications, directly to RT components, such as adders and multipliers. This was an intuitive
assumption and even seemed to work well when using multi-function RT components. However, as
we move towards more complex designs, the role ofdesign reuse, i.e., the use ofexisting components,
becomes critical. Hence, a concern that helps speed up the design process is whether pre-e.xisting
RT components, such as those found in design databooks. can be reused in a new design. Examining
the components in a databook reveals that the original HLS assumptions about RT components
are insufficient. Some components may have complex functionality. For example, a multiply-
accumulator is capable of performing a multiplication and an addition in combination. Also, some
commonly used components will have secondary outputs. For example, an ALU may be able to
perform an addition of two numbers as well as generate overflow and carrv status bits. These
separate but simultaneous outputs are equivalent tofunctions performed concurrently by the ALU.
Consequently, most scheduling algorithms for High-Level Synthesis (HLS) have been based on
assumptions that failed to recognize that RT datapath components may have complex, concurrent
functionality.

Input description

Generic RT

Components

Finite State Machine &

Generic Datapath Netlist

Technology mapping

Input description

I

Tectinology-specific
RT Components

Finite State Machine &
Technology-specific

Datapath Netlist

Refinement and floorplanning /

I Insertion of design
I info, into reusable

I RT-library

Figure 1. (a) Traditional HLS with generic components, (b) Synthesis for design reuse.

To address the problem of reusing existing RT components efficiently in HLS, our research is
investigating these two aspects of the problem:

1. How to represent the full functionality ofpre-existing combinatorial RT components.

2. How algorithms for HLS can effectively use the fuU functionality of pre-existing combinatorial
RT components.

[AnDu93] describes our work in representing component functionality. .This report describes a
scheduling algorithm that is part of the second aspect of our overall research. How our overall
approach to HLS differs from traditional HLS is illustrated in Figure 1. Traditional HLS worked
with generic models of RT components. These models are based on the simplified assumptions
discussed above. The same models are used by the system regardless of the actual technology
or library of components used for the final implementation. In contrast, the system we envision
will work with different model sets of RT components. These models will represent the library
of available components for the specific technology used to implement the design. These models
differ fundamentally from traditional, generic RT component models because they capture complex,
concurrent functionality. Therefore, new algorithms need to be constructed that are aware of the
features of the models and can effectively use the information captured in the models.

The algorithm described in this report is a conversion and enhancement of the algorithm de
scribed in [AnDu94]. The algorithm now uses Assignment Decision Diagrams (ADDs) [ChGa92] in
the Interactive Synthesis Environment (ISE) [Had95]. As compared to the algorithm in [AnDu94],
the algorithm described here is enhanced to deal with control constructs such as conditional ex
ecution of operations and loops in the design description. In many situations, our algorithm will
find schedules that are an improvement over other techniques, or the algorithm will find a feasible
schedule where other techniques will fail.

This report is organized as follows: Section 2 describes previous and related work. Section 3
describes our scheduling algorithm and presents some iUustrative examples of how it functions.
Section 4 presents how the scheduler is used in the overaU system, and describes some external
design models and representations used by the algorithm. Section 5presents experimental results
on some standard HLS benchmarks to iUustrate the utility ofour approach. Section 6 concludes
with a summarv.

2 Related Work

Early scheduling algorithms in HLS assumed a single component can perform a single operation
in a single time step, and that for each operation there was a single component type that the
operation could be directly mapped to [McCP88]. But it was recognized that some components
are able to perform a set of different functions (e.g., Adder/Subtractor, ALUs). To deal with these
multifunction units, the assumption about the mapping of operations was changed so that asingle
operation may be performed by one or more types of components. However, nearly all scheduling al
gorithms still assumed acomponent could perform asingle operation in asingle time step [Camp91]
[PLNG90] [PaKn89] [PaGa87]. But examination of some commonly used RT components shows
that this assumption will not hold. For example, there are no single operators that are equivalent
to the function of a multiply-accumulator or a parity generator. Consequently, most HLS tools are
unable to make effective use of such components. In considering the ongoing use of HLS tools, this
can be very detrimental. Designers today can construct modules from the basic RT components
types available. But by assumption, it is likely such modules can not be used effectively by the HLS
tools if they perform combinations of operations. Obviously, the assumptions about how operators
should map to RT components needs to be changed.

Both [LMD94] and [GCDM95] describe formulations that are astep towards improved compo
nent reuse. [LMD94] uses implication rules as the mechanism to map possibly complex expressions
to RT units using integer programming. Currently, this formulation has not been extended to

(a) direct operator mapping (b) mapping operator into components

(c) complex function mapping (d) complex, parallel function mapping

(e) decomposed complex, parallel function mapping

Figure 2: Synthesis RT models.

recognize concurrent functions but this is a viable alternative to our approach. However, one ofthe-
goals ofour work is integration with an interactive environment. Because ofconcerns related to how
data should be presented interactively and the quick response required for an interactive tool, we
opted for an approach based on graphs and algorithms driven by heuristics. Consequently, our work
has more in common with [GCDM95] which uses agraph-based representation and graph topology
matching to map behavior to RT structures. However, the algorithm in [GCDM95] uses a repre
sentation that allows a combination of operators, which produce a single output, to be mapped to a
single function of a RT function unit. While this model proves useful for Digital Signal Processing
applications, where the functional units fit well into this model, we want to consider a wider range
of components. For example, the representation we desire should be able to describe the addition
of two numbers and a carry bit as a function producing a sum and carry output. That is, RT
function units may have multiple inputs and may produce multiple outputs. Both [KnWi92] and
[WPAV92] describe representations that recognize the multi-I/0 nature of RT components. With
these representations, it is possible to map a set of interconnected operations that produce multiple
outputs to an RT component. But when we examined how the behavior of components needs to
be used in HLS, we realized that partial matching of functionality was important. For example,
it should be possible for an adder to add two numbers and a carry bit and produce a sum and
carry output. But that same adder should also be able to just add two numbers to produce a sum.
Consequently, we derived a representation that decomposes RT unit behavior into RT operations
each of which may perform a set of RT functions [AnDu93]. In our representation, a component
may have various modes of operation, where each output of the components performs a distinct
function. Figure 2illustrates the conceptual differences between the various assumptions and mod-
els. Figure 2a is the most basic model early algorithms dealt with: an operator mapped to a

single component type [McCP88]. Figure 2b is the model many weU-known scheduling algorithms
assumed: a single operator can map to various component types [Camp91] [PLNG90] [PaKn89]
[PaGa87]. Figure 2c illustrates the complex function model [LA1D94] and [GCDM95] are able to
deal with. Figure 2d is the model represented in [KnWi92] and [WPAV92].^ Figure 2e is the model
our scheduling algorithm uses.

One point of terminology should be clarified. In this work and in [AnDu93]. the term "behavioral
template" is used. This same term is also used in [LKMM95]. However, these are different objects
with different uses. In [LKMM95], behavioral templates are ordered sets of nodes used to specify
local timing constraints. These are created, merged, and expanded during scheduling. In this work
and in [AnDu93], a behavioral template is a partial data flow graph used to match behavior to RT
unit functionality. These are user-defined templates and are maintained in an external database
for each specific library of components.

3 Scheduling Algorithm

In this section we wiU describe our algorithm for scheduling to reuse pre-defined components. First,
we wiU give a very general description of how the algorithm works. We wiU illustrate the general
workings with simple examples. Then we will explain in more detail the metrics and method ofour
scheduling algorithm. Again, it must be emphasized that our formulation is fundamentally different
from previous approaches. We build upon previous assumptions about component behavior in HLS
in order to consider components with complex, concurrent behavior. Consequently, our algorithm
considers agreater variety of ways that operators can be mapped to component types as illustrated
in Figure 3. This means that determining how a given operator can possibly map to a set of
allocated components becomes a more complicated search than previous scheduling algorithms had
formulated.

A B C 32767

multiplier

comparator

X COND

1-to-1 mapping

muitiplier/
accumuiator

comparator

complex behavior mapping

A B C 32767

multiplier

O \ adder (carry)
adder (sum)]

X COND

complex, concurrent mapping

Figure 3: Example ofalternative ways to map operators to RT units that scheduler considers.

3.1 Algorithm Overview and Examples

Obviouslv, there are many approaches that can be used to solve this formulation of the scheduling
problem. Our approach is to divide the design into a set of scheduling subtasks, and then use a
branch-and-bound search with various search reduction heuristics to solve each subtask. We treat
each ADD basic block as a separate scheduling subtask. So for each block, the algorithm:

1. estimates the critical path through the block. This involves a "quick-and-dirty" mapping of
operators to components so that component pin-to-pin delays are used for the operators.

2. schedules all operators related to the critical path. A more thorough search of mapping of
operators to components is done in this phase. Our algorithm will be given a constraint on
the allowed propagation delay through function units in a single clock cycle. This constraint
will be used to determine chaining and multicycling of RT unit operations.

3. schedules the off-critical path operators. The algorithm determines whether remaining un
scheduled operators can be assigned to an already scheduled RT unit (i.e.. searches for con
current operations).

At this point, some control flow characteristics of the ADD representation should be noted. In
ADDs, conditional assignments do not imply state transitions. In a Control/Data Flow Graph
(CDFG) representation, a construct like an "if-then-else" statement is usually translated toa control
flow branch node which, for scheduling, is usually interpreted into branching state transitions (see
Figure 4). However, this is a scheduhng assumption based on language syntax, "if-then-else"
statements only attach conditions to assignments. The typical interpretation that all assignments
and operations that appear before an "if-then-else" should beexecuted before the evaluation ofthe
condition for the "if", is an assumption used to simplify scheduling algorithms based on CDFGs.
In contrast, the ADDs used in ISE are not built with such an assumption. The effect is that
descriptions that consist of only unconditional or conditional assignments are represented by a
single ADD basic block.

iCOND

if COND then

State transition graph

Figure 4: Conditional branch translated to state transitions.

For conditional loops in ADDs, states must be introduced into the description. For loop con
structs like "while" loops, we concluded that three separate blocks of assignments were needed:
before the loop, for the body of the loop, and after exiting the loop. For scheduling, this would
require state transitions like those shown in Figure 5. Consequently, ADD does not use any special
loop construct. Instead, it uses an attached state transition graph. In the finite-state machine
represented in this manner, each state represents an ADD basic block, while the state transitions
represent the loop.

We illustrate this representation and the operation of the algorithm on three simple examples
that respectively deal with unconditional assignments, conditional assignments, and loops. For
these examples, three RTL components were captured through ISE: a 16-bit Adder/Subtractor,

while COND loop

end loop

ICOND

ICOND

State transition graph

Figure 5: Conditional loop translated to state transitions.

a 16-bit Multiplier, and a 16-bit Subtractor/6-function Comparator (see Table 1). The area and
delay characteristics of these components were based on the 0.8 micron CMOS VTI library [VTI92].
For a design description, we assume that an allocation of components is given. Also, we assume
a delay value is specified for the maximum allowed data propagation delay through the datapath
components. Note, that this is not a clock period length since it does not account for delays related
to registers, interconnect and wiring, or memory accesses.

Component

16-bit Adder/Subtractor (DPASBOOIS)

16-bit Multiplier (DPMLTOIQH)

16-bit Subtractor/Comparator
(DPSUBOOIS + DPZDTOOIS)

delavs

input to sum 11 ns
input to carry/overflow 7 ns
input to product 25 ns
input to difference 11 ns
input to Greater-or-Equal/Less 12 ns
input to Less-or-Equal/Greater 14 ns
input to Equal/Not-Equal 14 ns

Table 1: Components used for examples.

3.1.1 Example 1: Unconditional Assignments

This example will illustrate how the algorithm estimates the critical path and schedules operations.
The description for this example is shown in Figure 6. In this example, COND describes the
overflow output for the addition A -f B. A 16-bit Adder/Subtractor and a 16-bit Multiplier were
allocated for this e.xample.

The first step in scheduling a set ofassignments is to estimate the critical path. To do this we
calculate the delay to output (DTD) for data flowing through this basic block. We will need to find
the operator delays for this. Operator delays are found by mapping the operator to an allocated
component. The matching for this example is shown in Figure 7. Note how the match for the
overflow overlaps with the match for the add and how this single delay match encompasses more
than one operator. Once the delays for the operators are found, the DTOs are calculated by the
formula:

entity examplel is
port (A: in BiT_VECT0R(15 downto 0);

B: in BIT_VECT0R(15downto 0);
C: in BIT_\/ECT0R(15 downto 0);
COND: out BIT;
X:out BIT_VECT0R(15 downto 0));

end examplel;

architecture BEHAVIOR of examplel is

begin

process(A,B,C)
variableTEM1: BIT_VECTOR(15 downto0);

begin
TEM1 := A + B;
COND:=TEM1 >B"0111111111111111";
X := TEM1 * 0;

end process;
end BEHAVIOR:

A B C 32767

X COND

Figure 6: Example 1 - unconditional assignments: VHDL and equivalent ADD.

delay: 11ns
add on Adder/Sub

DTO: 36ns

delay: 25ns
mult on Multiplier
DTO: 25ns

X COND

32767

^elay: 7ns
overflow on Adder/Sub

DTO: 7ns

Figure 7: Operator mapping for calculating delay.

DTO = delay of operator + max. DTO of dependent operators

where a dependent operator is an operator that uses the data output of this operator. Once the
DTOs have been calculated, we find the critical path by starting at the operator with the highest
DTO. We then proceed to the dependent operator with the highest DTO. Once we reach an operator
that outputs to a write node, we have found the bottom of the critical path.

Now that the critical path has been found, the algorithm will try to schedule the critical path
operators. At this point, it is necessary to describe the scheduling options available with our
algorithm. Since delay information about RT functions is available, our scheduling algorithm
makes no assumptions about operator delays. Consequently, the algorithm can be configured to do
various combinations of RT operation chaining and multicycling. We define operation chaining as
linking the input of one RT component to the output of another so that data is propagated from
one unit to the other within a single state. We define operation multicycling as allowing an RT
operation to be executed on a component for more than one state. For operation multicycling, we
assume that appropriate latching of inputs will be implemented, either built into the RT component
or added to the design by other synthesis tools.

A B C 32767

A B C 32767

X COND

Figure 8: Scheduling options: (a) no operator chaining or multicycling. (b) combined operator
chaining and multicycling. (c) exclusive operator chaining and multicycling.

Some of the scheduling options are illustrated in Figure 8. In exclusive chaining/multicycling,
operations are chained only if the operations can fit within a single state. As shown in Figure 8b,
chaining the multiplication and addition results in a propagation delay that is greater the allowed
maximum. For exclusive chaining/multicycling in Figure 8c, the multiplication starts execution in
state 2. As Figure 8 illustrates, by using available delay information and not making assumptions
about component delays, our scheduling algorithm is able to explore a variety of schedules based
on the configured options and the allowed propagation delay. Of course, this can produce infeasible
combinations. For this example, if the allowed datapath propagation delay is only 20 nanoseconds
and no multicycling is allowed, there is no way to execute the multiplication that takes 25 nanosec
onds. During scheduling, when a template match is scheduled to acomponent during agiven state,
the appropriate operator inputs and outputs are bound to the component pins in that state. This
information is needed when the algorithm tries to schedule other operations to the same component
in the same state.

Once the critical path has been scheduled, the algorithm wiD try to schedule the rest of the
description in an As-Soon-As-Possible (ASAP) manner. For this example, we will now illustrate
some of the key advantages of our models. For the Adder/Subtractor. a template for the overflow
output of an addition matches the portion of the graph shown in Figure 7 for the overflow function.
Our scheduling algorithm is able to find this template match and query the component database to
find that the allocated Adder/Subtractor can perform this template concurrently with the already
scheduled addition. To confirm this concurrency, the algorithm checks that the pin bindings for
both templates are compatible, i.e., the pins of the Adder/Subtractor will be bound to the same
inputs and outputs. Once the compatibility of the pin bindings has been confirmed, the "overflow" is
scheduled to the Adder/Subtractor in the same state as the "addition." This is why the comparison
in Figure 8b and Figure 8c is scheduled to the same state as the addition.

3.1.2 Example 2: Conditional Assignments

entity example2 is
port (A: in BIT_VECT0R(15 downto 0);

B: in B1T_VECT0R(15 downto 0);
C: in BIT_VECTOR(15downto 0);
D; out BIT_VECT0R(15 downto 0));

end examplel;

architecture BEHAVIORof example2 is

process(A,B,C)
variable TEM1, TEM2; BIT VECTOR(15 downto 0):
variable COND: BIT;

begin
COND :=C>16;
TEM1;= A * B;
if COND then

TEM2 ;= TEM1 - C;
else

TEM2 := A - B;
end if;
D ;= TEIVf2;

end process;
end BEHAVIOR;

Figure 9: Example 2 - conditional assignments: VHDL and equivalent ADD.

The second example will illustrate how the algorithm handles conditional assignments. The
description of this example is shown in Figure 9. For this example, a multiplier and a subtrac-
tor/comparator were allocated. For conditional assignments, the ADD has an Assignment Deci
sion Node (ADN) which serves a function similar to the select in the Value-Trace representation
[McFar78]. An ADN has data inputs, each of which has an associated condition input. Each input
can be an ADD graph for an expression. Each data input of the ADN must be the same bit-width
as the ADN's output. Each condition input must evaluate to a Boolean value (i.e. 1 bit wide) and
must be mutually exclusive to the other condition inputs. That is, only one condition input should
true at any time. The value of a data input is transferred to the output of an ADN when the
appropriate condition input becomes true.

Special consideration must be given to ADNs to correctly schedule a design. First, consider
that a condition input applies to all the operators in the expression "rooted" at a data input to
the ADN. For scheduling, this is important when we are determining under what condition a given
operator needs to be executed. This becomes the problem of determining the condition vectors

for each operator. For ADDs. the generation of condition vectors is described in [JCG94]. These
condition vectors are used to determine whether operators have mutually exclusive conditions, and
thus, can possibly share the same component. Another point about ADNs is that they do not
impose an order of evaluation between the data and condition inputs. There is no requirement
stating that the data input must be ready before the condition input is evaluated or vice versa. For
scheduling, it is necessary to have both the data and condition values ready when a data transfer
through an ADN node is to be assigned to a state. These ideas will be further illustrated in the
example.

A B C La b c ra

state 1

3(-) C-)4

state 2

Figure 10: Scheduling conditions: (a) order operators are scheduled, (b) schedule for example with
allocation of a multiplier and subtractor/comparator.

Our scheduling algorithm makes certain assumptions to deal with conditional assignments
Conditional assignments do not affect the way delays or DTDs are calculated. But for determining

• the critical path, only one data or condition input to an ADN will be considered critical. For
scheduling the critical path, we need to consider all operators related to the critical path, i.e.,
operators that have data or condition dependencies with operators on the critical path. For this
example, scheduling the critical path means not only scheduling the multiplication and asubtraction
but also the "greater than" comparison, since it determines the assignment condition of the critical
path. To ensure that the corresponding condition input is ready when a data input arrives at a
ADN, we schedule the condition vector operators first, then we schedule the data input operator to
astate after the condition vector operators are executed. For this example, that means we first try
to schedule the "greater than," then the multiplication, then the subtraction, and the subtraction
must be scheduled to a state after the "greater than" is performed. Figure 10a shows the order
in which the operators are scheduled. Likewise for the other operators in the description, the
condition vector operators are scheduled first. So to complete the schedule for this example, the
"not" operator should be scheduled before the subtraction. However, we assume that some basic
logic functions, such as 1-bit AND, OR, NOT, are better implemented as random logic or can be
incorporated into the control logic. Consequently, for our experiments and examples, we do not
allocate gates for these logic operations and we do not schedule them because we assume they will
be implemented as random logic or will be part of the control unit.

When conditional assignments are used, an additional consideration for sharing of components is

mutual exclusiveness of operators. The condition vectors from [JCG94] are used to determine this.
Consequently, when our algorithm attempts to schedule operators to the allocated components, it
not only checks for data and condition dependencies but also for mutual exclusiveness of condition
vectors. In this example, the algorithm schedules the two subtractions to the same state on the
same component. Figure 10b shows a complete schedule for this example. Note, that regardless
of the allowed propagation delay, at least two states are required for this example because of the
assumptions we make for scheduling conditions.

3.1.3 Example 3: Conditional Loops

entity examples is
port (A: in BIT_VECT0R(15downto 0);

B: in BIT_VECT0R(15 downto 0);
X:out BIT_VECT0R(15 downto 0));

end examplel;

architecture BEHAVIOR of examples is

begin

process(A,B)
variable TEM1, TEM2; BIT_VECT0R(15 downto 0);

begin
TEM1:= A-B;
TEM2 ;= 0;
while (TEM1 > 0) loop

= A-B;
= TEM2 + 1;

TEM1 := A-E
TEM2 ;= TE^

end loop;
end if;
X := TEM2;

end process;
end BEHAVIOR;

temi I rol I

TEM1 I I TEM2 cond| I \
j ,

I Istate 2 ^
Icond I

I
B TEM2 1 TEMI I m

7
/ V)

/
/ cond

—' fcond

Figure 11: Example 3 - conditional loop: VHDL and equivalent ADD.

This example will illustrate the scheduling of a loop. The description of this example is shown
in Figure 11. As previously mentioned, to introduce looping into an ADD description requires
introducing states. For scheduling, each of these states can be treated as a basic block. So, schedul
ing a description with loops can be done by scheduling the individual blocks. Thus, a description
with loops simply becomes a set of scheduling tasks similar to the two previous examples, and the
scheduler will "split" each state into a set of states. Figure 12 illustrates the scheduling of this
example for an allocation of one Adder/Subtractor and one Subtractor/Comparator.

3.2 Basic Block Scheduling In-Depth

Now that we have explained how control-flow constructs are dealt with by our scheduling algorithm,
we will go into a more detailed discussion of how the algorithm schedules individual basic blocks.
We will describe in detail the three phases of basic block scheduling for ADDs: estimation of

TEM1 TEM2

j-rij^ B TEM2 1

TEM1 I ITEM2 j

condI \' I
state 2a ^

Tn m I
TEM1 0

Figure 12: Schedule for Example 3with one Adder/Subtractor and one Subtractor/Comparator.

the critical path, scheduling of operators related to the critical path, and scheduling of remaining
operators.

3.2.1 Estimation of Critical Path Delay

For identifying the critical path through the given description we calculate the delay to output
(DTO) for each operator. To do this, we first must find the input-to-output delay of each operator.
This involves mapping the operators to the RT components allocated from the library. For this
phase, we do a "quick and dirty" mapping, trying to map each operator directly to an aUocated
component. An operator may map to more than one type of component, so we select the fastest, i.e.,
the component with the minimum input-to-output delay. But there is a side-effect of this approach
that could lead to a false critical path: since only individual operators are considered, the best
mapping of operators to components may not be used. For example, ifa multiply-accumulator has
been allocated and the description has multiplication outputting to an addition (e.g., A*B-fC),
both operators can be mapped to asingle RT operation (a multiply-accumulate), but for estimating
delay, we will try to map each to separate RT operations {multiply and addition). The delays for a
multiply plus an addition could be greater than a multiply-accumulate. However, if the mapping of
A*B+C to a multiply-accumulate is the only one possible, the delay of a multiply-accumulate is
used for A*B-|-C. For this first pass, we are simply checking if there exists at least one allocated
component that can execute each part of the description. For each operator we find the delay by
locating which allocated components can perform this operator and checking the pin-to-pin delays.

Once the delays for the operators are found, the DTOs are calculated by propagating the delays
to their inputs. For each operator match, this formula is used:

DTO = delay ofoperator -f max. DTO of dependent match

Ajiependent match is one that uses the data output of this operator match. For example, in
A*B+C, the addition is dependent on the multiplication. Once the DTOs have been calculated.

we find the critical path by starting at the operator with the highest DTO. We then proceed to
the dependent operator with the highest DTO. Once we reach an operator that outputs to a write
node, we have found the bottom of the critical path. During the entire scheduling algorithm, the
set ofoperators that we have calculated delays for is maintained as the set of all operators that
need to be scheduled. When operators are scheduled, they are marked but remain in the set.

Note, as previously mentioned, we assume that some basic logic functions, such as 1-bit .AND.
OR, NOT, are better implemented as random logic or can be incorporated into the control logic.
During calculation of delays, if we encounter a 1-bit AND, OR. NOT that cannot be mapped to\n
allocated component, we ignore it assuming that subsequent synthesis will implement it as random
logic or it will be part of the control logic.

3.2.2 Scheduling the Critical Path

The second phase of basic block scheduling will schedule the operations related to the critical
path. These include the operators that have condition or data dependencies with the critical path
operators. This portion of the algorithm will assign the operations toa sequence of states, starting
with the operators at the top of the critical path (the ones receiving data that is coming into this
basic block) and working down to the output operators. In the process, the algorithm determines
if multicycling or chaining of the operations is possible or needed.

The scheduling ofthe critical path isdescribed in procedure Sched_CP() in Figure 13. To handle
condition and data dependencies between operators, we build a "critical path stack" prior to railing
this procedure. For each critical path operator, operators with data or condition dependencies are
above it on the stack. During scheduling of the critical path, we pop operators off the stack to
ensure that the dependencies for an operator have already been scheduled. The internal looping and
recursive procedure calls of Sched_CP() implement a "branch and bound" search, trying various
schedules and stopping on alternatives that become longer than the shortest schedule found so
far. During scheduling of the critical path, the algorithm does not try to evaluate all possible
combinations of template matches for the entire critical path. Instead, it evaluates only a portion
of the critical path at any time. In effect, the algorithm schedules a small "window" of the critical
path, sliding the window down the critical path at each step ofthe scheduling process. The size of
this window is the variable depth.

The procedure begins by finding an unscheduled critical path operator on the stack (line 1).
If the stack has been exhausted, all operators related to the critical path have been scheduled.
Then we first try to add this operator to the existing schedule at line 3, i.e., schedule it to a state
before the current end of the schedule. If that is possible we go on to the next operator at line
4. Regardless of whether we can schedule the operator to a previous state, we will still explore
the possibility of scheduling the operator to this state, i.e. lines 5 and on will still be executed
whether line 3 fails or not. At line 6, the procedure tries different size "windows" of the critical
path. The current critical path operator to be scheduled is always at the top of this "window"
and each iteration ofline 6 shrinks the window. All possible template matches in this window that

cover the critical path operator are examined at lines 7and 8. For each template match we try
to schedule it to all possible RT functions and RT units (lines 9 and 10). If the selected function
cannot be performed within the current time step, it is scheduled to multiple time steps at lines
11 and 12, i.e., a multi-cycle operation. If the function can be performed within the time left for
the current step, it will be scheduled to this step, i.e., it will be chained to other operators at line
13. Chaining is possible because we maintain the amount of delay the needed for the operations
already scheduled to the current step. We also assume an additive delay model (i.e., the delay to
perform two operations is equal to the sum of each operation's delay). Of course, multicycling and

Sched.CPO
1 Pop an unscheduled node from the stack
2 if there is an unscheduled operator on the critical path
3 if can ASAP schedule node to existing schedule.
4 Sched_CP() next node on stack
5 /* Try other schedules of node *j
6 for depth = max. downto 0 do
7 find covers of node of size depth
8 for each cover of node do
9 for each RT function cover can bind to do

10 for each RT unit RT Function can bind to do
11 if RT function needs to be multi-cycled,
12 add states and schedule
13 if RT function can be chained, schedule.
14 if schedule not shorter than best schedule found,
15 cancel this search.

lb if could not schedule RT function,
11^ if could not schedule RT function to an empty state,
18 cancel this search.
10 else maybe no RT units were available,
20 add a state to the schedule and retry
21 else could schedule RT function
22 Sched_CP() next node on stack

Figure 13: Scheduling ofcritical path related operators

chaining is only done when these options are allowed. If the function was scheduled, we go on to
the next operator at line 22. If the function was not scheduled, the algorithm will add astate (line
20) and attempt to schedule the function again. If the algorithm fails to schedule an operator when
given an empty state, then the algorithm returns a failure to find a feasible schedule for the critical
path (lines 16-18). This can be due to a combination of no multicycling and the aUowed maximum
propagation delay being too short for an operation.

3.2.3 Scheduling Remaining Operators

After the critical path is scheduled, the algorithm will schedule the remaining operators. For these
operations, the algorithm will try to share functional units. That is, schedule an operation to a
state when a unit is free or when other operations scheduled to that unit have mutually exclusive
condition vectors. The algorithm will also try to schedule operations concurrently, i.e., determine
if an operator can be scheduled to a function that can execute concurrently with other functions
on an RT unit.

The scheduling of remaining operators is described in Figure 14. In procedure ASAP_nCP(),
the algorithm will first attempt to schedule the operators ASAP, without additional time steps. If
this fails, the algorithm will schedule the operators ASAP with time steps added to the schedule.
During the ASAP scheduling of an operator condition and data dependencies are checked as well
as exploration of concurrent RT functions.

Lines 1and 2in ASAP_nCP() check if the current partial schedule for the critical path is shorter
than the best solution found so far. If not, there is no point in finishing this schedule. Line 3 will
call ASAP^chedule() to try to schedule the remaining operators into the existing schedule. If that

was not possible at line 4. the loop through lines 6 to 14 will alternately add states to the end and
beginning of the schedule to try to make room for the remaining operators. Lines 8 and 13 check
that the current partial schedule created in the loop is shorter than the best solution found so far.
As line 5 indicates, the procedure will add states and attempt to schedule until a schedule is found
or the total number ofstates added is greater than or equal to 3 times the number ofoperators
we are trying to schedule. This limit on the number states is arbitrary and was derived on the
assumption that efficient designs will not have a large number ofoperators multicycled for 4 states
or more.

The procedure ASAP^chedule() attempts the actual scheduling of each of the remaining op
erators. Since this procedure tries to schedule operations as early as possible in the schedule, it
makes sense to try to first schedule the operators at the top of long expressions. Consequently, at
line 19, ASAP_schedule() looks for the unscheduled operator with the highest DTO. But before any
operator can be scheduled, the operators that it is dependent on. for its data or condition, must
be scheduled first (line 20). If the data and condition dependencies are already schedule, then the
procedure will try to insert the operator into the schedule at line 21. It is here that the algorithm
will search for concurrent functions and try to map the operator to them. If for any reason the
operator cannot be scheduled, line 22 wiU cause the procedure to quit and return that a feasible
schedule could not be found.

ASAPmCPO
1 if not shorter than best schedule found,
2 cancel this search.

3 ASAP^cheduleO
4 if failed

5 while not successful or num. added states < 3x num. unscheduled ops. do
6 add state to end of schedule

7 ASAP_schedule()
8 if not shorter than best schedule found,
9 cancel this search.

10 if successful exit while loop.
11 add state to front of schedule
12 ASAP_schedule()
13 if not shorter than best schedule found,
14 cancel this search.

15 if a schedule found
16 if shorter than best schedule found,
17 save as best schedule found

ASAP_schedule():
18 do

19 find unscheduled operator with highest DTO.
20 check if for unscheduled op with data/condition dependency
21 ASAP schedule operator to available units
22 if fails return failed.

23 while there is an unscheduled node.

Figure 14: Scheduling of remaining operators

3.2.4 Search Reduction

The search space for this scheduler can be envisioned as a search graph that is a tree. The first
branches from the root determine which critical path operators are scheduled to RT units for the
first state of the schedule. Subsequent branches add more operators and states to the schedule.
Obviously, the size of the search space grows proportional to the number of operators, and the
number of different ways each operator can be mapped to an allocated RT unit.

Our scheduhng algorithm conducts a depth-first search of this tree. It '-prunes" off searches
that will obviously not find a better solution than the current solution. That is. it will abandon
a schedule that is not shorter than the current schedule already found. However, this still could
leave a very large space to search. From experiments we have conducted, we find that the final
solution returned is most often found very early in the search. Consequently, we have two additional
strategies to limit the search space further; progressive backtracking and a maximum search limit.

Backtracking is an inherent part of depth-first search where the search "backtracks" up one
level of the search tree when searching of a branch completes or is pruned. With only one level of
backtracking, each schedule the search explores is only shghtly different from the previous schedules
that have been searched. This is desirable early in the search process when few orno solutions have
been found. But as the search progresses, we want to look at schedules that differ more, in order
to explore a wider variety of schedules faster. Consequently, in our algorithm, we progressively
increase the number of levels of backtracking as the search progresses. This is done by maintaining
the number of attempts to schedule operators, i.e., the number of edges the search has traversed.
Whenever a search of a branch fails, the amount of backtracking is calculated.

num. levels to backtrack
num. attempts to schedule operators

num. operators in design

Further, since the best solution found is usually discovered early in the search of the entire tree, we
allow setting a hmit on the number of attempts to schedule operators. Potentially, the limit could
be set so that no solution is found but for our experiments the hmit was set so that at least several
dozen schedules for very complex designs would be searched. This search hmit was implemented
with the idea that the algorithm would be used in an interactive environment where deriving a
"good" solution in a short amount of time was desirable.

4 System Overview

To illustrate how the scheduhng algorithm reuses components, it is helpful to describe its use
within a system. The scheduhng algorithm is constructed to work within the Interactive Synthesis
Environment (ISE) [Had95]. Consequently, various types of information used by the scheduhng
algorithm are entered through the ISE interface or are represented by ISE-related data structures.
In order to use an existing component for scheduhng, we need to do the following:

• Capture the component's physical characteristics and behavior.

• Incorporate the component's characteristics and behavior into a hbrary database.

• Specify the aUocation ofRT function units for a design description.

4.1 Component Capture

Figure 15 shows the graphical interface in ISE used to capture component information. The upper
left of the display shows a diagram for a behavioral template. The lower part of the display shows
a table for the mapping of component pins. These will be described later. The upper right of the
display is primarily used to capture physical information about the component.

To describe an RT component in ISE, the designer can specify the height and width of the
component in microns. This yields a rectangular box representing the physical shape of the com
ponent. Aset of ports for the component can be specified. Ports can be classified as input, output,
input/output, or control. A port's bitwidth and placement on the edge of the component box
can also be specified. Delay values between pairs of ports can be specified.' The value can be in
picoseconds, nanoseconds, or microseconds. In this way, this portion of the ISE interface captures
the area and delay information for a component. The component information for this interface can
be saved to and loaded from an external file.

ii
II

CSU6 « constant{'0'}

direct{016} [016]

HDD.aJB18_DPftSB001S

PW?.VA.t.'lWJ»W.WWM>Vg;v'BlH!g

Figure 15: ISE component capture interface.

As mentioned above , the upper left portion of the display in Figure 15 displays behavioral
information about a component. Each component in ISE can have an associated set of behavioral
templates. Each template is an Assignment Decision Diagram (ADD) [ChGa92] describing, in a
data-flow like manner, a function the component can perform. Atemplate typically is an inter-

connected set of operations, read nodes, and a single write node. The table in the lower part of
Figure 15 describes how a template is mapped onto the component. Usually, read nodes are simply
mapped to a component s input ports, and a write node is mapped to a component"s output port.
However, simple logic operations can also be involved in the port mappings (e.g. ANDing two
values to obtain the input value to a port) or ports can be set to a binary constant value. The
ADD for the behavioral template is input from an external file. The port mapping table is entered
manually through the ISE interface.

For our model of component behavior, we are interested in describing concurrent functions of
an RT component. For a template, we interpret the constant values assigned to the control ports of
the component as the mode of operation for that component. Consequently, for a given component,
templates that have the same values on the control ports are interpreted to beconcurrent functions.
This information is maintained in our component data base.

4.2 Component Database

The component database organizes the physical and behavioral information about all available
components. The database also maintains the relationships between the templates and compo
nents. The behavior ofeach component is decomposed into RT operations and RT functions. Each
component can have a set of RT operations. Each RT operation represents a distinct mode of
operation that the RT component can be configured for. Each RT operation can have a set of
RT functions that can be performed concurrently by the component under this particular mode of
operation. Each RT function is associated to a template. Figure 16 illustrates this hierarchy.

Component Set

ComponentLibrary

Component

Operation Set

RT Operation

RT Function

Function Set

Behavior

Tempiates

Figure 16: Representation hierarchy for component to behavior mappings.

A basic task in many HLS algorithms is determining how behavior can be mapping to RT
components. With our representation, this task is equivalent to trying to find a behavior template
that matches to some segment of agiven ADD. To do this effectively, we construct a template parse

tre€ structure from all the behavioral templates of the components in a library database. Figure 17
shows some example templates for the addition of two 4-bit numbers, addition of two 4-bit numbers
and a carrv-in bit, the carr\ function for the addition of two 4-bit numbers, decrementing of a
4-bit number, and a 'hs-zero" function for the decrementing of a 4-bit number. Figure 18 is tlie
parse tree constructed from the templates in Figure 17. The first level of internal nodes of the tree
are write nodes that describe the outputs of the templates, i.e., the output bitwidth. There will be
only one write node for all templates with output of a particular bitwidth. The other internal nodes
of the tree are operators. The leaf nodes of the trees are read nodes which describe the inputs to
the template. Edges (going down) from an internal node are alternative input sets: in this case,
sets of input pairs. This arrangement maintains the context of the templates, i.e.. the particular
combinations of inputs and operations. Input pairs that have leaf nodes are labeled with the RT
functions that can perform that template. Figure 19 illustrates how a match is done. First the
appropriate write node is found from the root. Then the operator that outputs to the write node
is matched. Now for operators, the set of inputs to the operator is matched. In this case. +2 has
as inputs -hi and a constant 1. Matching of input sets is recursively done for each subexpression.
In this case, we continue by matching the two 4-bit variable inputs of the -hi subexpression.

4XX4

ADDL._.0) ADDL._.1) CARRY(,„,0) DECL.1) DEC_ZER0L.1)

Figure 17: Example behavioral templates of RT functions.

The component database is used in combination with the template parse tree to determine how
behavior can map to components. Given some design, the template parse tree is searched to find
templates that match segments of the design. Querying the component database determines what
components can perform each template, and which templates can be performed concurrently on a
single component.

4.3 Input of Design and Allocation of Units

For our scheduling algorithm we assume we are given a design with an allocation of RT functional
units. For our examples and experiments, designs were translated from VHDL or entered manually
through an ISE interface. The VHDL to ADD translator is still under development and can only
be used at the moment for descriptions with no control constructs, i.e., "straight-line code."

Allocation of functional units for the design is done through ISE. Acomponent type is brought
into ISE through the component capture interface. "Dragging and dropping" a component from
the capture interface into the allocation interface allocates an instance of that component type for
the design.

5 Experimental Results

For our experiments, we used descriptions of the Fifth Order Elliptical Wave Filter [PaBu87].
a greatest common divisor algorithm [BrBr88]. and an 32-bit floating point adder/subtractor
[HLSD95]. We ran our experiments to explore the possible schedules for different allocations and
delay limits, and to examine the effects of combining operation multicycling and chaining. These
experiments also demonstrate how our algorithm is able to use components with different functions
and delays.

1 Adder/Subtractor
1 Multiplier/Accumulator

Max. states in
Allocation (16-bit components) Scheduling options delay schedule

no chaining 20 ns not possible
no multicycling 50 ns 27

no chaining 20 ns 28
1 Adder/Subtractor multicycling 50 ns ^
1 Multiplier chaining 20 ns 29

multicycling 50 ns 26
exclusive chaining 20 ns 28

& multicycling ~50 ns 26
no chaining 20 ns not possible

no multicycling 50 ns 16
no chaining 20 ns 24

1 Adder/Subtractor multicycling 50 ns TO
1 Multiplier/Accumulator chaining 20 ns 27

multicycling 50 ns 16
exclusive chaining 20 ns 25

fc multicycling 50 ns 16
no chaining 20 ns "not possibl~

no multicycling 50 ns l5
no chaining 20 ns 21

2 Adder/Subtractor multicycling 50 ns 15
1 Multiplier chaining 20 ns 23

multicycling 50 ns 14
exclusive chaining 20 ns 21

fc multicycling 50 ns 14
no chaining 20 ns ^ot possible"

no multicycling 50 ns 15
no chaining 20 ns f?

2 Adder/Subtractor multicycling 50 ns l5
2 Multipliers chaining 20 ns 18

multicycling 50 ns 14
exclusive chaining 20 ns Tt

k. multicycling 50 ns 14

2 Adder/Subtractor
1 Multiplier

2 Adder/Subtractor
2 Multipliers

Table 2: Results for the Elliptic Filter

Table 2 shows results of experiments done with the Fifth Order Elliptical Wave Filter. As
shown in the first column of the table, we conducted experiments with various allocations of
adder/subtractors, multipliers, and multiply/accumulators. The second column indicates the type
of scheduling attempted, "no chaining" means no operator chaining was allowed, "no multicycling"
means no operator multicycling was allowed, "exclusive chaining &multicycling" means operations

simulated annealing [SaZa90]

PBS [PLNG90]

FDLS [PaKn89]

CATHEDRAL 2nd [LCGM931
OSCAR [LMD94]

Allocation ^ their result
2 adders, 2 multicycle mult. 19
2 adders. 1 multicycle mult.
2 adders. 2 multicycle mult. 17
2 adders. 1 multicycle mult. 21
2 adders. 2 multicycle mult. 18
2 adders. 1 multicycle mult. Tl

2 adders. 1 single-cycle mult.r 15
1 adder. 1 single-cycle mult./accum. 15

our result

Table 3: Comparisons to results from previous work. ^operator multicycling, no operator chaining.
20 ns propagation delay. ^no operator multicycling, no operator chaining, 50 ns propagation delay.

could be chained only if such chains could fit within a single state. The third column indicates
the amount of time allowed for data propagation through the function units. The fourth column
indicates the number of states in the solution found by the algorithm.

The Fifth Order Elliptical Wave Filter is a well-known example used in previous works. But
because of the assumptions used by previous scheduling algorithms, only a subset ofour results
are comparable to previous results. Table 3 compares some of our results with results to some
previous work. Only specific instances can be compared because only these restricted instances use
assumptions and allocations equivalent to these previous works. Table 3 shows that our scheduler
is able to produce solutions equivalent to most previous results. Compared to the published results
for simulated annealing [SaZa90] and force-directed list scheduling [PaKn89], our algorithm was
able to find an improved schedule. One of our results compared with OSCAR [LMD94] reflects the
trade-off of guaranteed optimality vs. algorithm speed. While OSCAR was able to find an optimal
solution with one less control step, it reportedly took over 10 minutes to find the solution on a
SPARC 10. Our scheduler took less than 2minutes on a SPARC 2. On other experiments with the
Fifth Order Elliptical Wave Filter, OSCAR took over an hour to find a solution. In contrast, our
scheduler took a maximum of approximately 5 minutes for any experiment.

From our experiments with the Elliptic Wave Filter, we found that allowing a combination of
operation chaining and multicycling sometimes produced poorer results. This problem arises be
cause, by allowing combined chaining and multicycling, the critical path can excessively monopolize
the available resources. An example of this problem is shown in Figure 20. If two ADD() operations
are chained and the execution of the second ADD() must be carried over to the next state (as in
State 1of Figure 20), the second Adder will be unavailable for two states, even though that Adder
could perform an addition in a single state. This leads to the heuristic that operation multicycling
and chaining should be done exclusive of each other, i.e., operator chaining should not be done
when the chaining forces the operator to be multicycled.

A schedule for the greatest common divisor algorithm is shown in Figure 21. One subtrac-
tor/comparator component was allocated for the algorithm. Note, in states 1 and 2, multiple
comparisons of X and Y have been scheduled to the same state. That is because a single compara
tor can generate each of these tests simultaneously as separate outputs. This demonstrates how
parallel functionality in the component library can be exploited.

State 1 State 2

ADD(_J

ADDER1

ADD(_J

A0DEI|t2

ADD(_.J

ADDER1

I State3

A0DER2

Figure 20: MonopoUzing resources by combining chaining and multicycling: the chaining and
multicycUng ofADD() 1 and ADD() 2 forced ADD() 4 to be scheduled to a third state. But all
four additions can be performed in only two states.

X = Xin

Y = Yin

X== Y

TMP = X < Y

TEMO = X == Y

TEM1 = X != Y

IfTMP Y = Y-X

i'iTMP X = X-Y

Figure 21: Schedule for greatest common divisor algorithm. 1Subtractor/Comparator allocated.

Table 4shows results of experiments done with a description of an IEEE standard 32-bit floating
point adder/subtractor. These experiments demonstrate how a wide variety of components can be
utilized by our scheduler because it recognize complex behavior. In this example, the library
contained specialized components with unusual functionality that other scheduling algorithms are
not formulated to deal with (e.g., 0-detection, concurrent subtraction and comparison). These
experiments reused custom components which were incorporated into the system described in the
previous section. We were able to explore different allocations and found that we could replace
the 8-bit Adder/Subtractor in allocation 1 of Table 4 with an Incremetor/Decrementor. Also,
allocating additional 0-detectors to allocation 2 helped reduce the number of states for the design
while adding only a few, relatively small components.

Allocation

8-bit Adder/Subtractor
27-bit Adder/Subtractor
27-bit Shifter

8-bit Subtractor/Comparator
23-bit Subtractor/Comparator
27-bit 0 Detector

8-bit Incrementor/Decrementor
27-bit Adder/Subtractor
27-bit Shifter

8-bit Subtractor/Comparator
23-bit Subtractor/Comparator
27-bit 0 Detector

8-bit 0 Detector

23-bit 0 Detector

Scheduling
options

no chaining
no multicycling

no chaining
multicycling

exclusive chaining
fc multicycling

chaining
multicycling
no chaining

no multicycling
no chaining
multicycling

exclusive chaining
k. multicycling

chaining
multicycling

states in
schedule

Table 4: Results for 32-bit Floating Point Adder/Subtractor. Permitted datapath propagation
delay: 20 ns.

We conducted more experiments than those listed in the table, with different datapath prop
agation delay limits. But we discovered there were few scheduling possibilities with each given
allocation. The results in Table 4 are the same as results we obtained with propagation delay limits
of 50 and 100 nanoseconds. There were several reasons for this:

1. The data-dependencies and loops in the design determined where many state boundaries
were. More schedules may be possible ifcertain optimizations are first applied to the descrip
tion before scheduling (e.g., expression-tree height reduction, operator strength reduction).
However, the work described in this report is not concerned with such "code" transformations.

2. Most of the arithmetic components used had approximately the same delay. Lowering the
propagation delay limit would force nearly all operations to be multicycled which is very
impractical.

3. In the description, there were no long sequences of interdependent arithmetic operations.
Consequently, there were no possibilities for chaining of operations.

"^ou will note that thesecond aUocation in Table 4 produced different length schedules of20 and 19
states. The schedule with 20 states actually has an unneeded state which was introduced because of
the heuristics used in our algorithm. However, even in such cases, the search done by our algorithm
greatly minimizes such inefficiencies and derives a schedule close to the best possible.

6 Conclusions

In this paper, we presented a scheduling technique that enables reuse of e.\isting datapath compo
nents from user-defined libraries. The reusable datapath components can exhibit more parallelism
than simple, generic models of RT components used in the past. We believe this is an important
issue that will enable the acceptance of HLS techniques for datapath-oriented designs - an area
where traditional HLS tools are often discounted as "unrealistic" and "too naive" by real designers.

Our scheduling approach uses a heuristic-guided, branch-and-bound algorithm on our novel
design representation for RT-functionality. The scheduling algorithm has been implemented in C
on a Sun SPARC workstation. We presented experimental results on some HLS benchmarks and
demonstrated the practical effectiveness of our approach. There are several fundamental advantages
of our algorithm and formulation:

1. We believe this is the first scheduling algorithm based on a model of RT functional units that
recognizes complex and concurrent functionality.

2. The algorithm and formulation are integrated into a system such that the user is able to
describe the RT components they wish to use. The information captured and used by the
algorithm includes not only the physical features of a component (e.g., pin-to-pin delays) but
also how to recognize the abstract behavior of the RT component.

3. The algorithm allows exploration of the design space with different options for operation
chaining and multicycling as well as specifying permitted functional unit propagation delays.

In our experiments, we observed that operation chaining and multicycling are most effective when
done exclusive of each other.

Our approach is a step towards techniques for design reuse of realistic datapath components in
HLS, but currently has some limitations:

• We only consider reuse of non-pipelined, combinatorial datapath components.

• The effects of interconnect, storage, and physical layout have not been incorporated into our
approach.

• Timing constraints between operators has also not been explored.

Future work will address some of these issues with respect to using pre-defined components. Lastly,
while the implementation of algorithm works with data structures for ISE, it is currently a separate
tool that produces output readable by ISE. A tighter integration with ISE is planned.

[AnDu93] R. Ang and N. Dutt, ARepresentation for the Binding of RT-Component Functionality
to HDL Behavior," Proceedings of the Conference on Hardware Description Languages, pp. 2-51-
266. April 1993.

[AnDu94] R. Ang and N. Dutt. "Scheduling for Design Reuse of Datapath Components." Tech.
Report 94-16 University of California at Irvine, May 1994.

[BrBrSS] G. Brassard and P. Bratley, Algorithmics: Theory and Praclme, Prentice-Hall. New Jer
sey, p. 15, 1988.

[Camp91] R. Camposano, "Path-Based Scheduling for Synthesis," IEEE Transactions on
Computer-Aided Design for Integrated Circuits and Systems, vol. 10. no. 1. pp. 136-141. Jan
uary 1991.

[ChGa92] V. Chaiyakul and D.D. Gajksi, "Assignment Decision Diagrams for High-Level Synthe
sis," Tech. Report 92-103 University of California at Irvine, Dec. 1992.

[GCDM95] W. Guerts, F. Catthoor, and H. De Man, "Quadratic Zero-One Programming-Based
Synthesis of Application-Specific Data Paths," IEEE Trans, on CAD, vol. 14, no. 1 pp. 1-11,
Jan 1995.

[Had95] T. Hadley, "A System for Interactive High-Level Synthesis," Ph. D. dissertation, U. C.
Irvine, April, 1995.

[HLSD95] P. Panda and N. Dutt, "1995 High-Level Synthesis Design Repository," Tech. Re
port 95-04 University of California at Irvine, Feb. 1995. available for anonymous FTPfrom
ftp.ics.uci.edu.

[JCG94] H.-P. Juan, V. Chaiyakul and D.D. Gajski, "Condition Graphs for High-Quality Behav
ioral Synthesis," Proc. ICCAD 94, 1994.

[KnWi92] D. Knapp and M. Winslett, "A Prescriptive Formal Model for Data-Path Hardware,"
IEEE Transactions on Computer-Aided Design for Integrated Circuits and Systems, vol. 11, no.
2, pp. 158-184, February 1992.

[LMD94] B. Landwehr, P. Marwedel, R. Domer, "OSCAR: Optimum Simultaneous Scheduling,
Allocation and Resource Binding Based on Integer Programming," Proceedings ofEURO-DAC
1994.

[LCGM93] D. Lanneer, M. Cornero, G. Goossens, and H. De Man, "An assignment technique for
incompletely specified data-paths," Proceedings of EDAC, pp. 284-288, 1993.

[LKMM95] T. Ly, D. Knapp, R. Miller, D. MacMiUen, "Scheduling using Behavioral Templates,"
Proceedings of DAC,

[McFar78] M. C. McFarland, "The Value Trace: AData Base for Automated Digital Design," Ph.
D. Dissertation, Dept. ofElectrical Enginerring, Canegie-Mellon University, 1978.

[McCP88] M. C. McFarland, A. C. Parker, R. Camposano, "Tutorial on High-Level Synthesis,"
Proceedings of DAC, pp. 330-336, 1988.

[PaGa87] B. Pangrle and D. Gajski, "Slicer: AState Synthesizer for Intelligent Silicon Compila
tion," Proceedings of the International Conference on Computer Design, pp. 42-45, 1987.

[PaBu87] T.W. Parks, C.S. Burrus, Digital filter design, Wiley, New York, 1987.

[PaKn89] P. Paulin and J. Knight. 'Torce-Dlrected Scheduling for the Behavioral Synthesis of
ASIC's," IEEE Transactions on Computer-Aided Design for Integrated Circuits and Systems.
vol. 8. no. 6, pp. 661-679. June 1989.

[PaPM86] A. Parker, J. Pizarro, M. Mlinar, "MAHA: A Program for Datapath Synthesis," Pro
ceedings of the Design Automation Conference, pp. 461-466. 1986.

[PLNG90] R. Potasman, J. Lis, A. Nicolau, D. Gajski, "Percolation Based Synthesis." Proceedings
of the 27"' Design Automation Conference, pp. 444-449, 1990.

[SaZa90] A. Safir and B. Zavidovique, "Towards a Global Solution to High Level Synthesis Prob
lems," Proceedings of EDAC, pp. 283-288, 1990.

[VTI92] 0.8 Alicron CMOS VCCfDPS Datapath Library, VLSI Technology, Inc., 1992.

[WPAV92] A. van der Werf, M. Peek, E. Aarts, J. Van Meerbergen. P. Lippens, W. Verhaegh,
Area Optimization of Multi-Functional Processing L'nits," Proceedings of the International

Conference on Computer-Aided Design, pp. 292-299, 1992.

A Components

8-bit Adder/Subtractor (DPASBOOIH)
Input Ports: 10 (8-bit), II (8-bit), ICIN (1-BIT)
Output Ports: OO (8-bit), OCOUT (1-BIT)
Delays:
10 to OO: 9.3 ns

11 to OO: 8.4 ns

ICIN to OO: 7.5 ns

10 to OCOUT: 9.5 ns

11 to OCOUT: 10.5 ns

ICIN to OCOUT: 8.3 ns

16-bit Adder/Subtractor (DPASBOOlS)
Input Ports: 10 (16-bit), II (16-bit), ICIN (1-BIT)
Output Ports: OO (16-bit), OCOUT (1-BIT)
Delays;

10 to OO: 11.0 ns

11 to OO: 11.1 ns

ICIN to OO: 8.7 ns

10 to OCOUT: 7.1 ns

11 to OCOUT: 7.2 ns

ICIN to OCOUT: 4.8 ns

27-bit Adder/Subtractor (DPASBOOlS)
Input Ports: 10 (27-bit), II (27-bit), ICIN (1-BIT)
Output Ports: OO (27-bit), OCOUT (1-BIT)
Delays:
10 to OO: 11.4 ns

11 to OO: 11.6 ns

ICIN to OO; 9.0 ns

10 to OCOUT: 9.5 ns

11 to OCOUT: 9.7 ns

ICIN to OCOUT: 7.1 ns

8-bit 0 detector (DPZDTOOIS)
Input Ports: 10 (8-bit)
Output Ports: OO (1-bit)
Delays:
10 to OO: 1.91 ns

23-bit 0 detector (DPZDTOOIS)
Input Ports: 10 (23-bit)
Output Ports: OO (1-bit)
Delays:
10 to OO: 3.95 ns

27-bit 0 detector (DPZDTOOIS)
Input Ports: 10 (27-bit)
Output Ports: OO (1-bit)
Delays:
10 to OO: 3.95 ns

8-bit Is detector (DPIDTOOIS)
Input Ports: 10 (8-bit)
Output Ports: OO (1-bit)
Delays:
10 to OO: 1.52 ns

23-bit Is detector (DPIDTOOIS)
Input Ports: 10 (23-bit)
Output Ports: OO (1-bit)
Delays:
10 to OO: 3.18 ns

8-bit Incrementor/Decrementor
Input Ports: 10 (8-bit)
Output Ports: OO (8-bit)
Delays:
10 to OO: 6.24 ns

16-bit Multiplier (DPMLTOIOH)
Input Ports: 10 (16-bit), II (16-bit)
Output Ports: MSB (16-bit), LSB (16-bit)
Delays:
10 to LSB: 22.9 ns

11 to LSB: 25.1 ns

10 to MSB: 31.2 ns

II to MSB: 32.8 ns

16-bit Multiplier/Accumulator (DPMLTOllH -t- DPADDOOIS)
Input Ports: 10 (16-bit). II (16-bit). 12 (16-bit)
Output Ports: GO (16-bit)
Delays:
ID to GO: 32.6 ns

11 to GO: 34.7 ns

12 to GO: 10.3 ns

27-bit L/R Shifter (using DPMUX2021)
Input Ports: 10 (27-bit), ILIN (1-bit), IRIN (1-bit)
Output Ports: GO (27-bit)
Delays:
10 to GO: 2.04 ns

ILIN to GO: 2.04 ns

IRIN to GO: 1.71 ns

8-bit Subtractor/Comparator (DPSUBOOIH -f DPZDTOOIS)
Input Ports: 10 (8-bit), II (8-bit)
Output Ports: GO (8-bit), GEQ (1-bit), GNEQ (1-bit), GGE (1-bit), GOT (1-bit), OLE (1-bit),
GLT (1-bit)
Delays:
10 to GO: 8.3 ns

11 to GO: 9.0 ns

10 to GEQ: 10.2 ns
11 to GEQ: 10.9 ns
10 to GNEQ: 10.7 ns
11 to GNEQ: 11.4 ns
10 to GGE: 12.8 ns

11 to GGE: 13.5 ns

10 to GGT: 14.2 ns

11 to GGT: 14.9 ns

10 to OLE: 14.2 ns

11 to OLE: 14.9 ns

10 to GLT: 12.8 ns

11 to GLT: 13.5 ns

16-bit Subtractor/Comparator (DPSUBOOIS -f DPZDTOOIS)
Input Ports: 10 (16-bit), II (16-bit)
Output Ports: GO (16-bit), GEQ (1-bit), GNEQ (1-bit), GGE (1-bit), GGT (1-bit), OLE (1-bit),
GLT (1-bit)
Delays:

10 to GO: 10.2 ns

11 to GO: 10.7 ns

10 to GEQ: 13.4 ns
11 to GEQ: 13.9 ns
10 to GNEQ: 13.9 ns

' ONEQ: 14.4 ns
OGE: 11.9 ns

OGE: 12.4 ns

OGT: 13.3 ns

OGT: 13.8 ns

OLE: 13.3 ns

OLE: 13.8 ns

OLT: 11.9 ns

OLT: 12.4 ns

23-bit Subtractor/Comparator (DPSUBOOIS + DPZDTOOIS)
Input Ports: 10 (23-bit), II (23-bit)
Output Ports: OO (23-bit), OEQ (1-bit), ONEQ (1-bit), OGE (1-bit), OGT (1-bit), OLE (1-bit).
OLT (1-bit)
Delays:
10 to OO: 10.5 ns

11 to OO: 11.0 ns

10 to OEQ: 14.5 ns
11 to OEQ: 15.0 ns
10 to ONEQ: 15.0 ns
11 to ONEQ: 15.5 ns
10 to OGE: 13.4 ns

11 to OGE: 13.9 ns

10 to OGT: 14.9 ns

11 to OGT: 15.4 ns

10 to OLE: 14.9 ns

11 to OLE: 15.4 ns

10 to OLT: 13.4 ns

11 to OLT: 13.9 ns

