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Increased Human Incidence of West Nile Virus Disease near Rice Fields in California but
Not in Southern United States

Tony J. Kovach* and A. Marm Kilpatrick
Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California

Abstract. Anthropogenic land use change, including agriculture, can alter mosquito larval habitat quality, increase
mosquito abundance, and increase incidence of vector-borne disease. Rice is a staple food crop for more than half of the
world’s population, with ∼1% of global production occurring within the United States (US). Flooded rice fields provide
enormous areas of larval habitat for mosquito species and may be hotspots for mosquito-borne pathogens, including
West Nile virus (WNV). West Nile virus was introduced into the Americas in 1999 and causes yearly epidemics in the US
with an average of approximately 1,400 neuroinvasive cases and 130deaths per year.Weexamined correlations between
rice cultivation and WNV disease incidence in rice-growing regions within the US. Incidence of WNV disease increased
with the fraction of each county under rice cultivation in California but not in the southern US. We show that this is likely
due to regional variation in themosquitoes transmittingWNV.Culex tarsaliswas an important vector ofWNV in California,
and its abundance increased with rice cultivation, whereas in rice-growing areas of the southern US, the dominant WNV
vector wasCulex quinquefasciatus, which rarely breeds in rice fields. These results illustrate how cultivation of particular
crops can increase disease risk and how spatial variation in vector ecology can alter the relationship between land cover
and disease.

INTRODUCTION

Human land cover change can alter the spatial and
temporal risk of vector-borne disease.1–3 Anthropogenic land
use changes commonly associated with increasedmosquito-
borne disease include deforestation, urbanization, and agri-
cultural development.1 Agricultural cropland covers ∼12% of
the earth’s surface and flooded rice fields make up ∼11% of
these areas.4 Rice fields can provide an extensive larval hab-
itat for particular mosquito species, increasing local mosquito
populations and disease risk in surrounding regions.5,6

West Nile virus (WNV) is a widespread mosquito-borne
pathogen that was introduced to the Americas in 1999 and
causes yearly epidemics in the United States (US) with an
average of ∼1,400 neuroinvasive cases and 130 deaths.7,8 In
addition, WNV has caused widespread mortality and sub-
stantial declines in populations of several bird species.9–11

Culex mosquitoes are considered to be the most important
vectors for WNV transmission,12,13 and the abundance of
infected Culex mosquitoes is strongly correlated with the
number of human WNV cases.14,15

Several studies have previously examined the effect of land
use on several aspects of WNV transmission. Urbanization
has been associated with higher WNV seroprevalence in wild
bird andmammal populations,16,17 and higher human disease
incidence on a county scale in the eastern and central regions
of the US.18–21 This is thought to be due to urbanization in-
creasing larval habitat for container-breeding vectors of WNV
including Culex pipiens and Culex quinquefasciatus.22–24 In the
western US, grassland and agricultural land covers have been
associatedwithhigherhumanWNVdisease incidence.19–21,25,26

Grassland and agricultural habitats are thought to increase the
abundanceof another importantWNVvector,Culex tarsalis.27,28

Several studies at the national scale have argued that regional
differences in land covers associated with increased WNV

disease incidence roughly correspond to the distributions of
majorCulex vectors.19–21,29However, thebroad classificationof
grassland and agriculture land cover encapsulates a wide di-
versity of crop types, each with variable effects on mosquito
abundance andWNV risk.27 In addition, noneof the broad-scale
studies correlating land cover with WNV disease incidence in-
clude quantitative data on mosquito abundance or infection to
support the different regional correlations and conclusions.
We examined the influence of a particular agricultural land

cover, rice fields, that provides larval habitat for some but not
allmosquito species.We tested the following hypotheses: rice
cultivation would increase the abundance of C. tarsalis mos-
quitoes; human WNV disease incidence would increase with
C. tarsalis abundance; as a result, human WNV disease in-
cidence would increase with rice cultivation in regions where
C. tarsalis was a key vector of WNV but not in areas where
C. tarsalis is rare or absent and other mosquito species are
the dominant WNV vectors.

MATERIALS AND METHODS

Land use, climate, and WNV disease incidence. We
obtained 30 m land cover data from the United States De-
partment of Agriculture National Agricultural Statistics Ser-
vice.30 For each county, we summed the area of several land
cover classes that could potentially be important formosquitoes
(rice fields, developedareas,wetlands, openwater, and forested
areas). We averaged data from seven different years available
with 30 m resolution (2008–2014) and calculated the percent
cover of each land cover class using the area of each land cover
class divided by total county area. Developed areas included a
combination of low, medium, and high intensity, as well as open
space developed. Wetland areas included a combination of
woodyandherbaceouswetlandsand forestedareas includedall
deciduous, mixed, and evergreen forest types.
Wecalculated thepercent of eachcounty thatwas “irrigated

agriculture” (including rice fields) from United States Geo-
logical Survey Moderate Resolution Imaging Spectroradi-
ometer at 250m resolution.31Weestimated “non-rice irrigated
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areas” by subtracting the rice-growing areas from the total
irrigated area within each county. In addition, we calculated
mean annual temperature and precipitation (2003–2011) for
each county using data from the North America Land Data
Assimilation System.32

We compiled reported human cases of WNV for each
county from Centers for Disease Control and Prevention
(CDC) ArboNET program for the years 2004–2015.7 Average
human WNV disease incidence was calculated as the mean
number of all cases (fever and neuroinvasive cases com-
bined) per year divided by the county’s population.33

West Nile virus vector identification. We estimated the
role of differentCulex species mosquitoes in the transmission
of WNV in each county using the fraction of Culex WNV-
positive pools reported to the CDC from 2004 to 2009. We
used the fraction of positive pools to account for differences in
sampling effort among counties; as long as each pool ofCulex
mosquitoes is equally likely to be tested and reported to the

CDC, these data should provide relatively accurate estimates
of the relative abundance of infected mosquitoes of each
Culex species. We also examined the importance of Culex
species in human WNV disease incidence across the US, by
calculating a human population–weighted average of the
county values of the fraction of WNV-positive mosquito pools
attributed to each species. These estimates do not take into
account the differences in feeding preferences or the fraction
of WNV-infected mosquitoes that transmit WNV between
mosquito species.12

Mosquito abundance.Weobtainedmosquito trapping data
from the California Vectorborne Disease Surveillance Gateway
vector-borne disease surveillance system, which includes trap-
pingdata fromvector control districts acrossCalifornia.Weused
New Jersey light trap (NJLT) data from the summer months
(June–September) from the years 2000–2015. This dataset
consisted of > 100,000 unique site visits across 1,284 loca-
tions spanning 34 counties in California. We estimated relative

FIGURE 1. Rice cultivation and West Nile virus (WNV) incidence in rice-growing regions of the United States (US). (A) Average percent of each
county growing rice over the period 2008–2014. (B) Average yearly humanWNV incidence in reported cases per 100,000 people over the period in
rice-growing counties 2004–2015. (C) Yearly averageWNV incidence plotted against average rice cover inCalifornia: Log10WNV incidence= 0.35+
0.21 (±SE = 0.039) × Log10 percent rice cultivation; R2 = 0.41, N = 46; general least squares model including spatial autocorrelation, P = 0.04. (D)
Average yearly WNV incidence plotted against average rice cover in the rest of the US: Log10 WNV incidence = −0.11 + 0.04 (±SE = 0.014) × Log10
percent rice cultivation;N = 413; R2 = 0.02; general least squares model including spatial autocorrelation, P = 0.88. For panels (C) and (D) counties
with no WNV cases are shown with an incidence of 0.1. This figure appears in color at www.ajtmh.org.
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summer abundance of C. tarsalis in each county by taking the
mean number of mosquitoes caught per trap location and then
averaging across all trap locations within each county over the
period 2000–2015. We further estimated the mean summer
(June–September) abundance ofCulexmosquitoes at particular
trap sites locatedwithin 10 km of rice fields. This distance is well
above the estimated average dispersal distance forC. tarsalis.34

For these estimates, each trap site was included only if it had at
least 5 years of NJLT data with at least 10 visits per year.
Statistics. We summarized geographic data using ESRI

ArcMap10, andperformedall statistical analysesusingprogram
R, version 3.1.3.Weusedgeneralized least squares (gls) to build
least squares regression models to predict the mean WNV dis-
ease incidence in eachcounty using landcover andclimatedata
(developed, water, wetland, rice, forest, irrigated areas, mean
temperature, and mean rainfall data). West Nile virus disease
incidence, land cover variables, and Culex abundance data
were log10 transformed to equalize leverage and maintain
adequate homogeneity of variance (see Supplemental
Table 1). We accounted for spatial autocorrelation in WNV
disease incidence data using exponential correlation struc-
ture within the gls models. We used piecewise regression

models (R package “segmented”) to examine relationships
between mosquito abundance and distance to nearest rice
field.35 Piecewise regression uses an iterative process to re-
duce the residual sumof squares by fitting linear line segments
across different rice distance intervals and comparing models
with multiple segments to models with fewer segments.35

RESULTS

Themain rice-growing regionsof theUSwere inCalifornia, the
Mississippi river delta, and southern Texas,with small additional
areas in South Carolina and Florida (Figure 1A). A total of 459
counties in the US had rice-growing regions during the years
2008–2014. The amount of rice grown in each county varied
widely with some rice-intensive counties having up to 30% of
the county area covered in rice fields. Mean WNV disease in-
cidence (2004–2015) in rice-growing counties was 1.25 people/
100,000 per year (95% confidence interval = 1.08–1.42, stan-
dard error (SE) = 0.09) and ranged from 0 to 31 cases/100,000
people/year (Figure 1B).
In California, incidence of WNV disease increased with the

percent of the county growing rice (Figure 1C). No other

FIGURE 2. Spatial variation inWest Nile virus (WNV) infectedmosquitos. Panels show the fraction of 51,650 reportedCulexWNV-positivemosquito
pools (of 1–50mosquitoes) fromeach of fourCulex species (A =Culex tarsalis,B =Culex restuans,C =Culex pipiens, andD =Culex quinquefasciatus)
for 821 counties across the United States (US) between the years 2004 and 2009. This figure appears in color at www.ajtmh.org.
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climate or land use variables contributed to an increase in
WNV disease incidence (Supplemental Table 2). By con-
trast, outside California, incidence of WNV disease was
uncorrelated with rice cover, and increased with developed
area and decreased with open water cover (Figure 1D;
Supplemental Table 3).
Of 13 differentCulex species found to test positive for WNV

across the US, the vast majority (> 93%) of WNV-positive
mosquito pools came fromonly four species:C. pipiens (29%,
SE = 1.1),C. tarsalis (28.3%, SE = 1.4),Culex restuans (18.7%,
SE = 0.9), and C. quinquefasciatus (16.6%, SE = 1.2)
(Supplemental Figure 1). The population weighted analysis
also identified the same four species: C. pipiens (33%, SE =
0.7), C. quinquefasciatus (27%, SE = 1.5), C. restuans (17%,
SE = 0.5), and C. tarsalis (15%, SE = 0.5) (Supplemental
Figure 1). However, the importance of each mosquito species
differed among counties and regions (Figures 2 and 3). In rice-
growing regions of California, approximately 65% (SE = 5.0)
of all reported WNV-positive mosquito samples were from
C. tarsalis, 14% (SE = 3.6) wereC. pipiens, and 14% (SE = 4.3)
were C. quinquefasciatus (Figure 3). In rice-growing regions
outside of California, the most important species were
C. quinquefasciatus 66.8% (SE = 3.7), C. pipiens 20% (SE =
2.8), andC. restuans7.3% (SE=1.6), whereasC. tarsalismade
up very few of the WNV pools 0.02% (SE = 0.01) (Figure 3).
In California, rice cultivation was linked to mosquito abun-

dance, and mosquito abundance was correlated with WNV
disease incidence. The relative abundance of C. tarsalis per
NJLT-week increased with rice cover (Figure 4A) and WNV dis-
ease incidence increasedwithC. tarsalis abundance (Figure 4B).
Culex tarsalisabundance increasedat trapsites (N=388) located
near rice fields (Figure 5). By contrast, we found no significant
relationship betweenC. pipiens abundance and distance to rice
fields (P = 0.74, Supplemental Figure 2). In addition, zero
C. quinquefasciatuswere caught in > 97%of trap sites (377/388)
located within 10 km of rice fields.

DISCUSSION

The larval ecologyofmosquito vectors appears toplay akey
role in determining the effect of land use on mosquito-borne
disease. Previous studies had found correlations between
WNV disease incidence and agricultural land cover in the
western US, and urban land cover in the eastern regions.19–21

These studies attributed these regional differences in which
land cover increasedWNV disease incidence to differences in
the distributions ofmosquito vectors.We extend these results
by showing that an important agricultural crop, rice, appears
to play a key role in WNV transmission in the western US by
increasing the abundance of an important WNV vector in this

FIGURE 3. Relative contribution to West Nile virus (WNV)-infected
Culex species in rice-growing areas across twodifferent regions of the
United States (US), 2004–2009. Columns show average fraction of
WNV-positive pools attributed to each mosquito species from Cal-
ifornia countieswith rice fields (CA,N=44) andother rice field counties
not in California (Not CA, N = 106).

FIGURE 4. Rice cover, Culex tarsalis mosquito abundance, and
human West Nile virus (WNV) incidence. (A) C. tarsalis abundance
(New Jersey light trap mosquitoes per trap-week) in California be-
tween June and September, over the period 2000–2015 plotted
against the percent rice cover in each county: Log10 C. tarsalis
abundance = 1.30 + 0.28 (±SE = 0.06) × Log10 percent rice cultiva-
tion; N = 31, R2 = 0.44, general least squares model including spa-
tial autocorrelation, P = 0.0004. (B) Average yearly human
WNV incidence per 100,000 people (2004–2014) plotted against C.
tarsalis abundance in each county: Log10 WNV incidence = −0.54 +
0.69 (±SE = 0.11) × Log10 C. tarsalis abundance; N = 31, R2 = 0.59,
general least squares model including spatial autocorrelation,
P = 0.0002. For panel (B), counties with no WNV cases are shown
with an incidence of 0.1.
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region, C. tarsalis. We further showed that the effect of rice
fields on WNV disease incidence depended on the relative
importance of C. tarsalis in that region. Of the four Culex
species that make more than 93% of reported WNV-positive
mosquito pools in the US (C. pipiens, C. quinquefasciatus,
C. restuans, and C. tarsalis), only C. tarsalis breeds in flooded
agricultural fields and grasslands, whereas the other three
species breed in container habitats.36 As a result, in rice-
growing regionsoutsideofCalifornia,where thedominantWNV
vector was C. quinquefasciatus, WNV disease incidence was
no longer correlated with rice cover andwas instead correlated
with urban land cover, as in other studies.37–39 These results
provide a more detailed understanding of the mechanisms
underlying some previous correlations with land use and land
cover along with an evidentiary basis for the previously pro-
posedhypotheses.19–21 It isworthnoting that thesefindingsare
limited to rice-growing regions inCalifornia and theUS. In other
regions of North America, other species of mosquitoes are
more important WNV vectors, including C. pipiens and
C. restuans.12,14,40 Our study further shows how rice fields
specifically increasedC. tarsalis abundancewhereas having no
effects on other important WNV vectors such as C. pipiens or
C. quinquefasciatus. Previous studies in California have found
C. tarsalis larva to be abundant in rice fields41 and the rice-
growing region of northernCalifornia to have the highest overall
abundance of adultC. tarsalis of anywhere in the state.42 Other
studies outside of theUShave also found that the extent of rice
fields was uncorrelated with the abundance of C. pipiens and
C. quinquefasciatus.43,44 We also show that the increased
abundanceofC. tarsalis in rice field areas extendedoutward 2 km
from rice field sites, well within the dispersal distance associated
with this mosquito species.45 We observed a 7-fold increase in
C. tarsalis abundancewithin 2 kmof rice fields. This suggests that
residential neighborhoods located within 2 km of rice fields are

likely to have higher WNV disease risk. Although rice culti-
vation is clearly important for C. tarsalis, other factors, such
as blood meal hosts46 and anthropogenic sources of light,
also influence mosquito abundance or abundance estimates
using NJLT.47

Rice fields also appear to be important for othermosquito-
borne diseases. Results from this study are similar to findings
in another disease system, Japanese encephalitis (JE). Jap-
anese encephalitis is an important emerging infectious dis-
ease, endemic to many regions of Southeast Asia resulting in
widespread morbidity (30,000–50,000 annual cases) and
mortality (10,000–15,000 annual deaths).48,49 The abundance
of one potentially important mosquito vector of JE, Culex tri-
taeniorhynchus, closely tracks rice-growing in space5,43,50

and time,51 and C. tritaeniorhynchus abundance is correlated
with JE disease incidence.52–54

Rice is grown in more than 100 countries worldwide, with
extensive cultivation in Southeast Asia (Supplemental
Figure 3).55 Our results illustrate how certain crops can in-
crease disease risk and howspatial variation in vector ecology
can alter the relationship between land cover and disease.
Efforts tomitigate this increased disease risk while supporting
production of this key agricultural crop are needed to maxi-
mize human health and well-being.56
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