
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
The Role of Degeneracy in Real-World Subgraph Counting

Permalink
https://escholarship.org/uc/item/5px4m5b2

Author
Pashanasangi, Noujan

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5px4m5b2
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

THE ROLE OF DEGENERACY IN REAL-WORLD SUBGRAPH
COUNTING

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Noujan Pashanasangi

December 2021

The Dissertation of Noujan Pashanasangi
is approved:

Professor C. Seshadhri, Chair

Professor Yang Liu

Professor Daniele Venturi

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Noujan Pashanasangi

2021

Table of Contents

List of Figures v

List of Tables viii

Abstract ix

Dedication x

Acknowledgments xi

1 Introduction 1
1.1 Main Questions and Challenges 6

1.1.1 Subgraph Counting in Bounded Degeneracy Graphs 7
1.1.2 Vertex Orbit Counting . 7
1.1.3 Temporal Triangle Counting 8

1.2 Results and Contributions . 9
1.2.1 Linear Time Subgraph Counting and The Chasm at Size Six 9
1.2.2 The Barrier of Long Induced Cycles 10
1.2.3 Counting Vertex Orbits of All 5-vertex Subgraphs 10
1.2.4 Generalized Temporal Triangle Counting 11

2 Preliminaries 12
2.1 Degeneracy and Vertex Ordering 12
2.2 Subgraph Counting . 14

3 Linear Time Subgraph Counting and the chasm at Size Six 16
3.1 Main Ideas . 17
3.2 Related Work . 19
3.3 Preliminaries . 21
3.4 Subgraph Counting Through Graph Orientation and Directed Trees 22

3.4.1 5-vertex Subgraph Counting 22
3.4.2 Limitations of Our Framework for a Six Vertex Subgraph . 31

iii

3.5 A Chasm at Six . 32
3.6 Future Directions . 40

4 The Barrier of Long Induced Cycles 42
4.1 Main Ideas . 43
4.2 Related Work . 47
4.3 Preliminaries . 49
4.4 LICL and Homomorphism Counting in Linear Time 51

4.4.1 Main Technical Lemma . 53
4.4.2 DAG Treewidth for Graphs with LICL at most Five 56
4.4.3 DAG Treewidth for Graphs with LICL at least Six 61

4.5 LICL and Homomorphism Counting Lower Bound 64
4.5.1 Proof of Main Theorem 72

4.6 Conclusion . 81

5 Counting Vertex Orbits of All 5-vertex subgraphs 82
5.1 Problem Description . 82
5.2 Main Contributions . 84
5.3 Related Work . 87
5.4 Preliminaries . 89

5.4.1 Main theorem . 92
5.5 Main ideas . 93
5.6 The cutting framework for orbits 94
5.7 Getting orbit counts . 99

5.7.1 Details of Getting 5-VOCs 105
5.8 Experimental Results . 116

6 Generalized Temporal Triangle Counting 121
6.1 Problem Description . 121
6.2 Main Contributions . 123
6.3 Main challenges . 126
6.4 Related Work . 128
6.5 Preliminaries . 129
6.6 Main Ideas . 130
6.7 Our Main Algorithm . 133

6.7.1 Getting the Counts for All Temporal Triangle Types . . . 142
6.8 Experimental Evaluations . 145

7 Conclusion 147

Bibliography 149

iv

List of Figures

1.1 All vertex orbits for 5-vertex patterns. Within any pattern, vertices
of the same color form an orbit. 4

3.1 Application of Alg. 2 on a DAG H→ of an example 5-vertex con-
nected subgraph H. 31

3.2 Let H→ be a DAG of H (C6). Considering any largest DRTS of
H→, the remaining vertices include a vertex with two incoming
edges (in-in wedge). Even graphs with bounded degeneracy can
have Ω(n2) in-in wedges. So hashing in Alg. 2 will not be bounded
by m and κ for H. 32

3.3 Target subgraph for proving conditional lower bounds for sub-cnt8:
the C7 with a tail . 35

3.4 Reduction from the tri-cnt problem to the sub-cntCk problem
for k = 6 (left) and k = 7 (right). 36

3.5 Alg. 2 succeeds to count the number of distinct matches of H in
linear time for bounded (constant) degeneracy graphs. Each acyclic
orientation ofH has a source vertex s, which is connected to exactly
three vertices, as in H→. So, the largest DRTS has at least four
vertices (shown in green). Number of matches of the remaining
vertices (shown in blue) could be counted using HM2 40

v

4.1 Let Sp = {s1, s2, s3}. On the left, we give an example of a URSp

graph with a triangle. On the right, we give a possible example
of the vertices v1,2, v2,3, and v3,1 (vi,j is as defined in the proof
of Lemma 4.4.3). C ′ forms an induced cycle of length six in H. . . 54

4.2 Let H be a six cycle. In the middle figure, we show the DAG H→

of H for which τ(H→) > 2. On the right, we show the UR graph
corresponding to H→. It is a triangle as t1 is only reachable from
{s2, s3}, t2 is only reachable from {s1, s3}, and t3 is only reachable
from {s1, s2}. 62

4.3 GH constructed for an example pattern graph H 69

5.1 Runtime speedup for computing all 5-VOCs achieved by EVOKE over
ORCA (computed as runtime of ORCA/runtime of EVOKE). Graphs
are sorted by increasing number of edges from left to right. For the
blue bars, ORCA ran out of memory or did not terminate after
1000 times the EVOKE running time. EVOKE is significantly faster
than ORCA, and makes 5-VOC counting feasible for large graphs. 84

5.2 All vertex orbits for 5-vertex patterns. Within any pattern, vertices
of the same color form an orbit. 85

5.3 Matrix transforming induced vertex orbit counts for orbits 0-14 to
non-induced counts . 92

5.4 Matrix transforming non-induced vertex orbit counts for orbits 0-14
to induced counts . 93

5.5 Fundamental patterns enumerated for orbit counting 93
5.6 Application of Lemma5.6.8 for vertex orbit 26 98
5.7 All edge orbits of 4-vertex patterns. Within each pattern, edges of

the same line style form an edge orbit. 101
5.8 All different 5-cycle DAGs up to isomorphism. There is only one

directed 3-path as shown on the right side in each 5-cycle DAG
where the remaining wedge is not an in-in wedge. 105

5.9 Directed tailed triangles counted while counting 5-cycles 105

vi

5.10 Empirical analysis of EVOKE runtime 119
5.11 (a), (b): VOCs comp. cum. distribution (CCD) of orbits. For

count x, we plot the fraction of vertices with orbit count at least
x. (c) For web-google-dir, we plot the VOC CCD for all orbits of
the 4-path. Observe that the distributions for the start/end (orbit
15) and the center (orbit 17) behave differently. 120

6.1 All possible temporal triangle types. The start point of the first
edge (in temporal ordering of edges) is shown in red and the end
point in green. 123

6.2 (a): The Speedup of DOTTT for counting (δ1,3, δ1,2, δ2,3)-temporal
triangles over the PBL algorithm for counting δ1,3-temporal trian-
gles. (b): We fix δ1,3 to 1 hr. Blue bars show the ratio of (1 hr,
30 mins, 30 mins)-temporal triangles to (1 hr, 1 hr, 1 hr)-temporal
triangle. The red bars illustrate the ratio for the case of (1 hr, 10
mins, 50 mins)-temporal triangles and is more restrictive. (c): We
fix δ1,3 = 2 hrs and δ1,2 = 1 hr. At t we plot the ratio of (2 hrs, 1
hr, t)-temporal triangles to (2 hrs, 1 hr, 1hr)-temporal triangles. . 125

6.3 All possible ordering of temporal edges of a temporal triangle cor-
responding to a static triangle {u, v, w}. 132

6.4 All possible orientations of temporal edges of a temporal triangle
corresponding to a static triangle {u, v, w}. 133

6.5 (a):The distribution of (1 hr, 1 hr, 1 hr)-temporal triangle counts
over all eight temporal triangle types as shown in Fig. 6.1. (b):We
fix δ1,3 to 2 hrs. We vary δ1,2 from 0 to 60 minutes and plot the ratio
of (2 hrs, δ1,2, δ2,3)-temporal triangles to (2hrs, δ1,2, 1hr)-temporal
triangles for δ2,3 ranging from 0 to 60 minutes. (c) We plot the ratio
of (2 hrs, 1 hr, δ2,3)-temporal triangles to (2hrs, 1hr, 1hr)-temporal
triangles for δ2,3 ranging from 0 to 60 minutes, for cyclic and acyclic
triangles. 144

vii

List of Tables

5.1 Time for computing 5-VOCs for all vertices using equations in The-
orem5.7.6 . 115

5.2 Properties of the graphs and runtime of ESCAPE, EVOKE, and ORCA117

6.1 Conversion from temporal ordering and orientation to temporal
triangle type. 133

6.2 Descriptions of the datasets and runtime of DOTTT and PBL 144

viii

Abstract

The Role of Degeneracy in Real-World Subgraph Counting

by

Noujan Pashanasangi

Many real-world phenomena are modeled by large graphs. Subgraph counting,

the problem of counting occurrences of small target pattern graphs in large input

graphs is a fundamental algorithmic task in network analysis. Subraph counting

has been extensively studied in both theory and practice and has found applica-

tions in areas such as network analysis, social sciences, and bioinformatics.

Graph orientation techniques for subgraph counting based on vertex orderings

such as degeneracy ordering is a classical idea. These techniques have inspired

many recent practical subraph counting algorithms. In this thesis we analyze the

role of graph orientation and degeneracy in subgraph counting, both in theory

and practice. Based on these techniques, we present efficient algorithms for get-

ting local subgraph counts (orbits counts) of all 5-vertex patterns, and counting

triangles in temporal networks.

In modern applications, input graphs are large and one desires (near) linear

time algorithms. We focus on the case where the input graph is in the class of

bounded degeneracy graphs. This is a rich class of sparse graphs that is practically

relevant as real-world graphs such as social networks have been shown to have low

degeneracy. We consider the problem of counting all connected subgraphs with

k vertices, and determine for what values of k this problem is solvable in linear

time, assuming a standard conjecture in fine-grained complexity. We also give a

clean characterizations of all subgraph patterns whose homomorphisms could be

counted in near linear time in bounded degeneracy graphs.

ix

To my family

x

Acknowledgments

I would first like to sincerely thank my advisor, Prof. C. Seshadhri, for his contin-

ued advice, guidance, and encouragement. This thesis would have been impossible

without his mentorship and support. I would also like to thank my other reading

committee members, Prof. Yang Liu and Prof. Daniele Venturi for their valuable

feedback and comments. I am grateful to Prof. David Helmbold for insightful

discussions and his useful comments.

I would like to express my gratitude to my collaborators, especially my co-

author Suman Bera for the many discussions that we had. I was fortunate to

work with him and have learnt a lot from him. I also would like to thank Akul

Goyal for helpful discussions and his collaboration. I like to thank Shweta Jain

and Andrew stolman for being supportive colleagues. I am grateful for all my

friends at UCSC who have helped me get to this point.

Finally, I wholeheartedly thank my wife for her love and patience. I am grateful

to her for believing in me and encouraging me every day. I am grateful to my

sister and my brother-in-law who have supported me from the first day of my

Ph.D. journey. Last but definitely not least, I would like to express my deepest

gratitude to my parents for their unconditional love and support throughout my

entire life.

xi

Chapter 1

Introduction

Many real-world phenomena could be modeled as a set of discrete objects

and a set of connections between certain pairs of them. Graphs are the result

of mathematical abstraction of such representations. For example, in a social

network, nodes represent users and an edge represent the connection between

two users. Examples of real-world graphs include citation networks, transaction

networks, protein-protein interaction networks, and web graphs. Modern real-

world networks are large (tens of millions of edges), but they have structural

properties that help us analyze them.

Consider a social network such as Facebook. One interesting structural prop-

erty of such a network is how often two friends of a user are friends with each

other. This parameter is called the clustering coefficient [189]. To compute the

clustering coefficient of a network we need the counts of triangles, set of three

pairwise connected vertices. Indeed, social networks as well as many other types

of real-world graphs have a significantly higher number of triangles (and other

motifs) than random graphs [118]. Thus, the counts of triangles captures a struc-

tural property of these large graphs. Triangle counting is a fundamental tool in

network analysis, and there has been a rich line of work on counting triangles

1

in graphs [10, 12, 79, 100, 161]. The triangle counts appear in form of different

parameters such as clustering coefficient [189] and transitivity ratios [188]. Tri-

angle counting has applications in social networks analysis [135], indexing graph

databases [88], community discovery [127], and spam detection [16].

A more general problem is the problem of subgraph counting that ask for the

counts of occurrences of small target pattern graphs in a large input host graph.

This problem is also referred to as pattern counting, motif analysis, and graphlet

analysis. Subgraph counting is a fundamental algorithmic problem in network

analysis with a rich line of work in both theory [12, 38, 43, 54, 79, 121, 123, 181]

and practice [17, 36, 41, 76, 77, 88, 138, 139, 140, 153, 154, 173, 179]. Subgraph

counting has found applications in areas such as bioinformatics and biological

networks [77, 139, 140], social networks [62, 124, 165, 171, 179], social sciences [36,

41, 76, 138], community and dense subgraph detection [17, 154, 173, 175], and

many other applications [7, 15, 60, 67, 190]. (Refer to the tutorial [159] for more

details on applications.).

Subgraph counting can appear in various forms based on the pattern graphs

we are interested in counting. Let H be the pattern graph and G be the input

host graph. We denote the problem of counting copies of H in G by sub-cntH .

Counting each type of pattern has its own challenges. Counting special patterns

such as cliques and cycles have received a lot of attention in the history of subgraph

counting. A common version of subgraph counting is to count the frequency of

all connected subgraphs with k vertices [8, 55, 57, 75, 83, 110, 125, 137, 141, 187].

We will denote this problem as sub-cntk. Recently there has been many exact

and approximate algorithms for sub-cntk.

The type of the occurrence of the target pattern is also an important factor

of the subraph counting problem. A non-induced subgraph is obtained by taking

2

a subset of edges of a graph. An induced subgraph of a graph is a subset of

its vertices and all edges among them. The mapping of interest from the target

pattern graph H to the “occurrence” in the host graph G is also of importance.

An injective edge preserving map f : V (H)→ V (G) corresponds to the common

notion of the subgraph. We call such a mapping an embedding, and the occurrence

a match of the pattern graph. If we lift the constraint of being an injection for

the edge preserving map f : V (H) → V (G), then we get a homomorphism of

the pattern graph H (an H-homomorphism). We use HomH(G) to denote the

count of the distinct H-homomorphisms in G. hom-cntH denotes the problem

of obtaining the counts of H-homomorphism.

The problem of computing HomH(G) for various choices of H is a deep subfield

of study in graph algorithms [12, 32, 34, 35, 43, 45, 47, 50, 63, 79, 106, 107, 152].

Homomorphism counting has numerous applications in logic, properties of graph

products, partition functions in statistical physics, database theory, and network

science [32, 35, 37, 50, 46, 129, 137]. Many practical and theoretical algorithms for

subgraph counting are based on homomorphism counting. Subgraph counts can be

expressed as a linear combination of homomorphism counts [43]. It is known that

the problems sub-cntH and hom-cntH is #W [1]-hard when parameterized by k

(even whenH is a k-clique), so we do not expect no(k) algorithms for generalH [45].

Yet the nk barrier can be beaten when H has structure. Notably, Curticapean-

Dell-Marx proved that if H has treewidth at most 2, then HomH(G) can be

computed in poly(k) · nω, where ω is the matrix multiplication constant [43].

In its typical description, subgraph counting asks for the total counts of a

pattern graph in the host graph. But, in many applications we need local counts

of a pattern, also referred to as graphlet distributions, orbit counts, or k-profiles.

Local counts is a much finer grained description of the graph, and can be used to

3

0

H0

2
1

H1

3

H2

5
4

H3

7
6

H4

8

H5

9
11

10

H6

12
13

H7

14

H8

17
16
15

H9

19
21
20
18

H10

23
22

H11

24

26
25

H12

29 30
28
27

H13

31
33

32

H14

34

H15

35
38

37
36

H16

39
42

40
41

H17

44

43

H18

45
47

48
46

H19

50

49

H20

51
53

52

H21

54

55

H22

56
58

57

H23

59 60

61

H24

62
64

63

H25

65 67

66

H26

69

68

H27

70

71

H28

72

H29

Figure 1.1: All vertex orbits for 5-vertex patterns. Within any pattern, vertices
of the same color form an orbit.

generate features for vertices. A compelling application of these local counts are

the graphlet kernel, where local counts are used to construct vector representations

of vertices for machine learning [162]. Similar to the description of sub-cntk,

many applications require local counts for all pattern subgraphs with at most k

vertices. Orbit counts are the more informative version of local counts. Fig. 1.1

shows all connected subgraphs with at most 5 vertices and within each pattern,

vertices are present in different “roles” or orbits. In some patterns like the 5-cycle

(H15) and 5-clique (H29), there is just one orbit. In contrast, H10 has four different

orbits, indicated by the different colors. Thus, a vertex of G can participate in

a copy of H10 in four different ways, and we wish to determine all of these four

different counts.

Another factor that could also introduce new varieties of subgraph counting

is the type of the input graph. Much of the rich history of subgraph counting

algorithms focus on counting patterns in static graphs. But many real-world

graph are essentially temporal, meaning that every edge has an associated times-

tamp [61, 64, 96]. The example of these networks include but are not limited to

4

communication networks, email networks, transaction networks, and social inter-

action networks. To model these networks, we can use directed temporal networks,

where each edge has a timestamp, instead of static networks. For example, a di-

rected edge in a directed temporal network modeling an email network could

represent an email from a sender to the receiver where the timestamp of the edge

represents the time of the email.

Recently, there has been significant interest in temporal triangle and motif

counting algorithms [30, 33, 104, 108, 134, 168, 176, 177, 185]. Temporal triangle

counts provide a far richer set of counts than standard counts. These counts take

into account the temporal ordering of edges in a triangle, and potentially impose

constraints on the timestamp difference among edges. Temporal triangle and motif

counting has applications in graph representation learning [177], expressivity of

graph neural networks (GNNs) [33], network classification [176], temporal text

network analysis [184], computer networks [180], and brain networks [49].

Subgraph counting is extremely challenging due to combinatorial explosion.

For example, the counts of 5-vertex patterns in graphs with a few million edges

can be in the order of billions to trillions [8, 84, 137]. In all applications that use

any variety of subgraph counting, it is essential to have efficient algorithms.

There is a rich line of theoretical work on getting nµk time algorithms, for

µ < 1, using matrix multiplication and tree decomposition methods [12, 28, 29,

43, 44, 79, 95, 97, 123, 182]. From an application standpoint, these algorithms are

typically not practical, and do not provide algorithmic guidance. sub-cntH when

parametrized by |V (H)| = k is #W[1]-hard, so it is not beleived that f(k) · no(k)

algorithms exist. Real-world graphs are large and one typically desires (near)

linear-time algorithms in most modern applications. An approach around this is

to search for efficient algorithms for restricted graph classes that correspond to

5

real-world graphs. We focus on the class of bounded degeneracy graphs, a rich

class of sparse graphs including all minor-closed families, preferential attachment

graphs, and bounded expansion graphs. Degeneracy of a graph G is the smallest

integer k such that every subgraph of G has a vertex of degree at most k and is a

standard sparsity measure. Graph degeneracy appears heavily in network science,

and it has been empirically shown that real-world graphs have low degeneracy [19,

22, 66, 81, 163].

Graph orientation based on vertex orderings such as degree ordering and de-

generacy ordering is a classic and central idea in many subgraph counting algo-

rithms, pioneered by Chiba-Nizhizeki [38]. In a seminal result, Chiba-Nishizeki

proved that k-cliques could be counted in O(mκk−2) where m is the number of

edges of G and κ is its degeneracy. They also gave a O(mκ) algorithm for 4-cycle

counting [38]. There have been many practical subgraph counting algorithms

based on the techniques of Chiba-Nishizeki [81, 83, 125, 137].

In this thesis, we make progress on understanding the role of degenracy in

subgraph counting, both in practice and theory. We present efficient and scal-

able subgraph counting algorithms based on graph orientation and degeneracy

ordering. We also analyze the theoretical complexity of subgraph counting in the

class of bounded degeneracy graphs and whether or not linear time algorithms are

possible.

1.1 Main Questions and Challenges

The main questions we address in this thesis are asked towards a better the-

oretical understanding of subgraph counting and the role of graph orientations

and degeneracy ordering and to improve the state of the art of practical subgraph

counting algorithms.

6

1.1.1 Subgraph Counting in Bounded Degeneracy Graphs

The problems of sub-cntk for k 6 5 have been successfully tackled in practice

using approaches pioneered by Chiba-Nishizeki [8, 125, 137]. These algorithms are

often tailored for k (using, for example, specific tricks to count individual 4-vertex

subgraphs) and it is not clear how far they will extend for larger k.

Towards a better theoretical understanding, we pose the following question.

For what values k, does the sub-cntk problem admit a linear time algorithm

in bounded degeneracy graphs?

Next, we focus on the problem of homomorphism counting. In chapter 3, we

prove that a near-linear time algorithm is possible for subgraph and homomor-

phism counting when |V (H)| 6 5. In a significant generalization, Bressan [34]

defines an intricate notion of DAG treewidth, and shows (among other things)

that a near-linear time algorithm exists when the DAG treewidth of H is one.

These results lead us to the following question.

Can we characterize the pattern graphs H for which HomH(G) is computable

in near-linear time (when G has bounded degeneracy)?

1.1.2 Vertex Orbit Counting

There are efficient algorithms for getting subgraph counts for all patterns with

up to 5 vertices [137]. These algorithms use clever counting methods to avoid

enumerations, so in spite of the combinatorial explosion, they are efficient. But

these techniques are tailored for getting global counts in the input graph G. There

has been recent work on randomized methods for local counting, but these require

large parallel hardware even for graphs with tens of millions of edges [58]. To the

best of our knowledge, there is no algorithm that (even approximately) computes

7

all orbit counts for all 5-vertex paterns, for all vertices of G, even for graphs with

tens of millions of edges. For simplicity, we refer to these counts as 5-vertex orbit

counts (5-VOCs). Results on global counting are much faster, but it is not clear

how to implement these ideas for orbit counting [8, 137]. The ORCA package [75]

is the only algorithm that actually computes all 5-VOCs, but it does not terminate

after days for graphs with tens of millions of edges. The total number of orbit

counts is easily in the order of trillions, and a fast algorithm should ideally avoid

touching each 5-vertex subgraph in G. On the other hand, orbit counts are an

extremely fine-grained statistic, so purely global methods do not work. We pose

the following question.

Can we give an algorithm for getting all 5-VOCs that avoid expensive enumer-

ation and scales to large input graphs?

1.1.3 Temporal Triangle Counting

Counting temporal triangles in (directed) temporal networks introduces new

challenges to that of triangle counting in static graphs. The first challenge is

actually defining types of temporal triangles (or motifs). In essence, all defi-

nitions specify constraints on the time difference between edges of a triangle.

For example, Kovanen et al. [96] restricted temporal triangles to cases where

the gap between two consecutive edges in the temporal ordering is at most ∆

time units, and the two edges incident to each node are consecutive event of that

node. Paranjape-Benson-Leskovec (henceforth PBL) introduced δ-temporal trian-

gles, where all edges of the triangle/motif have to occur within δ timesteps [128].

These varying definitions necessitate different algorithms. Our first motivating

question is whether one can design algorithms for a more general notion of tem-

poral triangles.

8

Secondly, there is a significant gap between the best static triangle counting

algorithms and temporal triangle counters. Specifically, the classic and immensely

practical triangle counting algorithm of Chiba-Nishizeki runs in time O(mκ).

The current state-of-the-art temporal triangle counting algorithm of PBL runs

in O(m
√
τ) time, where τ is the total triangle count (of the underlying static

graph). There is a large gap between κ (which is typically in the hundreds and

thought of as a constant) and τ (which is superlinear in m).

These twin issues motivate our study on temporal triangle counting.

Can we define a more general notion of temporal triangles, and give an algo-

rithm whose asymptotic running time is closer to that of static triangle counting?

1.2 Results and Contributions

In this thesis, we theoretically characterize patterns countable in near-linear

time in bounded degeneracy graphs. We also present practical tools for getting

5-VOCs and temporal triangle counting. The main results of Chapter 3, Chap-

ter 4, Chapter 5, and Chapter 6 were published in ITCS 2020, SODA 2021, WSDM

2020, and KDD 2021, respectively.

1.2.1 Linear Time Subgraph Counting and The Chasm at

Size Six

We prove that for k < 6, the problem of sub-cntk in bounded degeneracy

graphs can be solved in linear time. More than the counting algorithm for k-vertex

patterns where k < 6, our main contribution is the structural decompositions of

the subgraphs that lead to these results. This decomposition also sheds light on

why certain k-vertex subgraphs, for k > 6, do not seem to have any efficient

9

algorithms in bounded degeneracy graphs. Assuming Triangle Detection

Conjecture, a standard conjecture in fine-grained complexity, we prove that

for all k > 6, sub-cntk cannot be solved even in near-linear time. This paper [20]

was published in ITCS 2020.

1.2.2 The Barrier of Long Induced Cycles

There is a rich history of complexity dichotomies for homomorphism detection

and counting problems [45, 50, 68, 72, 152]. In this work, we discover such a

dichotomy for near-linear time algorithms for homomorphism counting in bounded

degeneracy graphs.

We give a surprisingly clean characterization for pattern graphs H for which

HomH(G) is computable in near-linear time assuming G has bounded degeneracy.

Let m denote the number of edges in G. We prove the following: if the largest

induced cycle in H has length at most 5, then there is an O(m logm) algorithm

for counting H-homomorphisms in bounded degeneracy graphs. If the largest in-

duced cycle in H has length at least 6, then assuming Triangle Detection

Conjecture there is a constant γ > 0, such that there is no o(m1+γ) time algo-

rithm for counting H-homomorphisms. This paper [21] was published in SODA

2021.

1.2.3 Counting Vertex Orbits of All 5-vertex Subgraphs

We present EVOKE, a scalable algorithm that can determine vertex orbits counts

for all 5-vertex pattern subgraphs. EVOKE can process graphs with tens of mil-

lions of edges within an hour on a commodity machine, is typically hundreds of

times faster than previous state-of-the-art algorithms, and gets results on datasets

beyond the reach of previous methods.

10

Theoretically, we generalize a recent “graph cutting” framework [137] to get

vertex orbit counts. This framework generate a collection of polynomial equations

relating vertex orbit counts of larger subgraphs to those of smaller subgraphs.

EVOKE carefully exploits the structure among these equations to rapidly count.

We prove and empirically validate that EVOKE only has a small constant factor

overhead over the best (total) 5-vertex subgraph counter. This paper [129] was

published in WSDM 2020.

1.2.4 Generalized Temporal Triangle Counting

In this work, we define (δ1,3, δ1,2, δ2,3)-temporal triangles, a general temporal

triangle notion, that allows for separate time constraints for all pairs of edges of

the triangle. δ1,3 specifies the maximum gap allowed between the first and third

edges in the temporal ordering of the edges of the triangle. δ1,2 and δ2,3 specify the

maximum time difference between the timestamps of the first and second edge in

the temporal ordering and the second and third edge, respectively. Our main result

is a new algorithm, DOTTT (Degeneracy Oriented Temporal Triangle Totaler), that

exactly counts all directed variants of (δ1,3, δ1,2, δ2,3)-temporal triangles. Using the

classic idea of degeneracy ordering with careful combinatorial arguments, we can

prove that DOTTT runs in O(mκ logm) time, where m is the number of (temporal)

edges of the input graph and κ is the graph degeneracy of the underlying static

graph of the input graph. Up to log factors, this matches the running time of

the best static triangle counters. DOTTT has excellent practical behavior and runs

twice as fast as existing state-of-the-art temporal triangle counters (and is also

more general). For example, DOTTT computes all types of temporal queries in

a Bitcoin temporal network with half a billion edges in less than an hour on a

commodity machine. This paper [130] was published in KDD 2021.

11

Chapter 2

Preliminaries

In this chapter we present definitions and notations common to subgraph

counting algorithms and theoretical hardness results presented in this thesis. Gen-

erally, the input graph is denoted by G = (V (G), E(G)) and the target pattern

graph is denoted by H = (V (H), E(H)). Both G and H are considered to be

simple, undirected, and connected graphs, unless stated otherwise.

In both our theoretical results and practical subgraph counting tools, we heav-

ily use directed graphs and acyclic orientations of graphs. In a directed graph,

the out-neighborhood and in-neghborhood of a vertex u is denoted by N+
G (u)

and N−G (u), respectively. We use d+
G(u) and d−G(u) to denote the out-degree and

in-degree of u. We denote an acyclic orientation of a simple graph H by H→.

2.1 Degeneracy and Vertex Ordering

A graph G is k-degenerate if each of its non-empty subgraphs has minimum

vertex degree of at most k. The degeneracy of a graph G is the smallest integer k

such that G is k-degenerate. We denote the degeneracy of G by κ(G). Another

graph sparsity measure that is closely related to degeneracy is arboricity. The

12

arboricity of a graph G, denoted as α(G), is the smallest integer k such that

the edge set E(G) can be partitioned into k forests. When the graph G is clear

from the context, we simply write κ, and α, instead of κ(G) and α(G). A classic

theorem of Nash-Williams shows that the degeneracy and arboricity are closely

related. All our results can be stated in terms of either of the parameters.

Theorem 2.1.1. (Nash-Williams [122]) In every graph G, α(G) 6 κ(G) 6

2α(G)− 1.

Vertex ordering is central to many subgraph counting algorithms [20, 38, 81,

125, 129, 137, 178]. In this thesis, we mostly work with the degeneracy ordering

of G, which is defined as follows.

Definition 2.1.2. Degeneracy ordering of a graph G, denoted by C, is obtained

by repeatedly removing the vertex with minimum degree. The ordering is defined

by the removal time.

For example, if u C v, then u is removed before v according to the above process.

Degeneracy ordering can be found in linear time [112].

Using any vertex ordering ≺ of an undirected graph G, we construct a di-

rected graph G→≺ as follows: for each edge {u, v} ∈ E(G), direct the edge from

u to v iff u ≺ v. We denote this directed edge as (u, v). Observe that G→≺ is

necessarily acyclic. Prominent examples of vertex orderings used by subgraph

counting algorithms are degree ordering and degeneracy ordering. We denote the

directed graph obtained from degeneracy ordering C as G→C . Whenever we use

‘→’ in denoting a graph such as in G→C and H→, the directed graph is a DAG. The

following two are folklore results about vertex ordering and degeneracy and can

be derived from Prop. 5.2.2 of [48].

Lemma 2.1.3. For each vertex v ∈ G→C , d+(v) 6 κ.

13

Lemma 2.1.4. If there exists a vertex ordering ≺ of G such that in the corre-

sponding directed graph G→≺ , d+(v) 6 k for each vertex v, then κ(G) 6 k.

The technique that connects vertex ordering, graph orientation, and degener-

acy to subgraph counting is to count occurrences of H in G, by counting matches

of all possible acyclic orientations H→ of H in G→C instead. This classic idea

enables the bounded out-degree in G→C to play an important role in subgraph

counting algorithms.

2.2 Subgraph Counting

In this section, we formally define homomorphism, embedding, and match

(copy) of a target subgraph H in the input graph G.

Definition 2.2.1. A homomorphism fromH to G is a mapping π : V (H)→ V (G)

such that, {π(u), π(v)} ∈ E(G) for all {u, v} ∈ E(H). If H and G are both

directed, then π should preserve the directions of the edges. If π is injective, then

it is called an embedding of H in G.

Next, we define a match (also called copy) of H in G.

Definition 2.2.2. A match of H in G is a subgraph of G that is isomorphic to

H. If a match of H is an induced subgraph of G, then it is an induced match of

H in G.

Observe that each embedding of H in G corresponds to a match of G. More

precisely, for each match of H in G there are |Aut(H)| (number of automorphisms

of H) many embeddings of H in G that map H to that specific match of H.

Our lower bound results for both the sub-cntk problem and hom-cntH as-

sume the Triangle Detection Conjecture. Abboud and Williams intro-

14

duced the Triangle Detection Conjecture on the complexity of determin-

ing whether a graph has a triangle [6]. Assuming there is no O(m1+γ) time triangle

detection algorithm, they proved lower bounds for many classic graph algorithm

problems. It is believed that the constant γ could be arbitrarily close to 1/3 [6].

Conjecture 2.2.3 (Triangle Detection Conjecture [6]). There exists a

constant γ > 0 such that in the word RAM model of O(log n) bits, any algorithm

to detect whether an input graph on m edges has a triangle requires Ω(m1+γ) time

in expectation.

15

Chapter 3

Linear Time Subgraph Counting

and the chasm at Size Six

In this chapter we theoretically analyze the complexity of the sub-cntk prob-

lem in bounded degeneracy graphs. More specifically, we address the following

question.

For what values k, does the sub-cntk problem admit a linear time algorithm

in bounded degeneracy graphs?

The question above has a surprisingly clean resolution, assuming conjectures

from fine-grained complexity. For simplicity, we assume that the input graph G is

connected. We assume Las Vegas randomized algorithms, so we talk of expected

running times.

Our main theorem asserts linear time algorithms for counting (up to) 5-vertex

subgraphs in bounded degeneracy graphs. For counting 6-vertex subgraphs and

beyond, it is unlikely that even near-linear time algorithms exists.

Theorem 3.0.1 (The chasm at size 6). For k 6 5, there is an expected O(mκk−2)

time algorithm for sub-cntk.

16

Assume the Triangle Detection Conjecture (Conj. 2.2.3). There exists

an absolute constant γ > 0 such that the following holds. For any k > 6 and any

function f : N→ N, there is no (expected) o(m1+γf(κ)) algorithm for sub-cntk.

3.1 Main Ideas

Conditional Lower Bounds It is instructive to look at the conditional lower

bounds. The reduction of triangle detection to subgraph counting in bounded

degeneracy graphs is actually quite simple. Suppose we want to detect (or even

count) triangles in an input graph G. Get graph G′ by subdividing each edge

into two, so a triangle in G becomes a C6 (6-cycle) in G′. But the degeneracy

of G′ is just 2! (In any induced subgraph of G′, the minimum degree is at most

2, proving the bound.) Thus, if there exists o(f(κ)m1+γ) time algorithms for

counting 6-cycles, that would violate the Triangle Detection Conjecture.

It is fairly straightforward to generalize this idea for larger cycles, by replacing

edges in G by short paths. Assuming Triangle Detection Conjecture, for

all k > 6 and k 6= 8, we can rule out linear time algorithms for counting Ck

in bounded degeneracy graphs. Our reduction does not work for C8; instead we

consider a different subgraph for the case of k = 8 (C7 with a tail). We give the

details in Section 3.5.

This reduction fails for counting 5-cycles and in general, it does not work for

counting any 5-vertex subgraph. For good reason, as we discovered an efficient

algorithm for this problem. This is the more technical part of our paper.

Algorithmic Framework We present an algorithmic framework for solving the

sub-cntk problem, that generalizes the core idea of Chiba and Nishizeki [38]. It

is known from past work that their ideas basically provide an O(mκk−2) algorithm

17

for sub-cntk, for k = 3, 4. The main challenge is to get such an algorithm for

k = 5, thereby nailing down the chasm of Theorem 3.0.1. This leads to new results

for counting various 5-vertex subgraphs. Perhaps more than these individual

results, our main contribution lies in identifying structural decompositions of the

pattern subgraphs that allows for efficient algorithms. This decomposition also

sheds light on why certain k-vertex subgraphs, for k > 6, does not seem to have

any efficient algorithms in bounded arboricity graphs. We give an outline of our

framework next, and present it formally in Section 3.4.

The key idea that comes from Chiba-Nishizeki is to perform subgraph counting

on G→, an acyclic orientation of G where the out degree of each vertex is bounded

by O(κ)1. The classic clique and 4-cycle counting algorithms enumerate directed

stars and directed paths of length 2 to count subgraphs. We note that the algo-

rithm does not enumerate 4-cycles, since there can be Ω(n2) 4-cycles. It requires

clever indexing to solve this problem, which we generalize in our algorithm.

The crucial generalization of this idea is to enumerate directed rooted trees.

Specifically, we count occurrences of a connected pattern H by counting occur-

rences of all possible acyclic orientations (up to isomorphism) H→ of H in G→.

The main idea is to find the largest directed rooted tree in H→, with edges di-

rected away from the root. Call this tree T . Since outdegrees in G→ are bounded,

we can efficiently enumerate all copies of T . Any copy of H→ in G→ is formed by

extending a copy of T , but H→ may contain vertices that are not in T . Thus, the

extensions could be expensive to compute. But when H has at most 5 vertices, we

can prove that H→ \T is itself either a collection of rooted stars or paths. We can

create hash tables that store information about the occurrences of the latter. The

final count of H→ is obtained by enumerating T and carefully combining counts
1Technically, this is not the idea of Chiba-Nishizeki, who use the degree orientation. But it

was somewhat of a folklore result that it is easy to get the same result using the degeneracy
orientation. Arguably the first such reference is Schank-Wagener [155].

18

from the hash tables.

3.2 Related Work

Subgraph counting problems has a long and rich history. More than three

decades ago, Itai and Rodeh [79] gave the first non-trivial algorithm for the trian-

gle detection and counting problems with O(m3/2) runtime. Subsequently, Chiba

and Nishizeki [38] gave an elegant algorithm based on the degree based vertex or-

dering that solves triangle counting, 4-cycle counting and `-clique counting with

running times of O(mκ), O(mκ), and O(mκ`−2) respectively (κ denotes the de-

generacy). In comparison, our algorithm exploits the degeneracy ordering of the

vertices (see Section 3.3 for a formal definition); this enables us to create a uniform

framework for any k-vertex subgraph for k ∈ {4, 5}. In dense graphs, the best

bounds for the clique counting problem are achieved by fast matrix multiplications

based algorithms [54, 123]; Vassilevska [181] gave combinatorial algorithm with

significantly reduced space requirement. For general subgraphs, there is a rich line

of research based on matrix multiplication, tree decomposition and vertex cover

methods [12, 28, 29, 43, 44, 79, 95, 97, 123, 182] — these works focus on getting

nµk time algorithmis, for µ < 1.

Subgraph counting problems, specifically triangle counting, clique counting

and cycle counting problems, has also been studied extensively in various Big

Data models such as property testing model [13, 51, 52], MapReduce settings [40,

90, 169], and streaming model [9, 14, 18, 82, 86, 87, 109, 113, 133]. Most of

these work focuses on an approximate count, rather than an exact count. In

the applied world, there are many efficient algorithms that are based on clever

sampling techniques [25, 26, 77, 83, 141, 187, 191, 192, 199]. Exact counting has

also been studied extensively in the applied world [8, 27, 55, 57, 67, 73, 74, 75,

19

110, 117, 125, 137, 166]. In particular, Ahmed et al. [8] presented an algorithmic

framework for solving the sub-cnt4 problem, called PGD (Parametrized Graphlet

Decomposition), which scales to graphs with tens of millions of edges. Pinar et

al. [137] studied the sub-cnt5 problem, and gave the current state of the art

ESCAPE library based on degree ordering techniques. However, the provable

runtime of their algorithm for certain 5-vertex subgraphs is quadratic, O(n2). For

a deeper exploration of related applied work, refer to the tutorial on subgraph

counting by Seshadhri and Tirthapura [159], and the subgraph counting survey

at [144].

The subgraph detection problem, which asks whether an input graph has a

copy of the subgraph, is a well-studied problem [11, 12, 79, 89, 97, 121, 194]. For

the triangle detection problem, the best known algorithm is based on fast matrix

multiplication and it runs in time O(min{nω,m2ω/(ω+1)}) [12]. If ω = 2, this would

give us O(min{n2,m4/3}) algorithm for the triangle detection problem. Hence,

to falsify the Triangle Detection Conjecture, it would require a major

breakthrough result in the algorithmic graph theory world. For a more detailed

discussion on the Triangle Detection Conjecture and its implications, refer

to the paper by Abboud and Williams [6].

In the subgraph enumeration problem, the goal is to output each occurrences

of the target subgraph. Chiba and Nishizeki [38] showed that it is possible to

enumerate all the triangles in a graph along with counting the total number of

triangles in O(mκ) time. For enumerating all the triangles, O(mκ) time is effec-

tively optimal assuming the 3SUM Conjecture [94, 131]. Eppstein [59] studied

the bipartite subgraph enumaration problem in bounded arboricity graphs.

20

3.3 Preliminaries

In this paper, we study the sub-cntk problem. We consider k to be a con-

stant.For a fixed subgraphH, we use sub-cntH to denote the problem of counting

all occurrences of H in the input graph G. When H is the triangle subgraph, we

denote the corresponding counting problem as tri-cnt. In this chapter we abuse

notation and overload the word “match” and define it as follows.

Definition 3.3.1. A match of H in G is a bijection π : S → V (H) where S ⊆

V (G) and for any two vertices u and v in S, {u, v} ∈ E(G) if {π(u), π(v)} ∈ E(H).

Definition 3.3.2. A match of H ′ in G′ is a bijection π : S → V (H ′) where

S ⊆ V (G′) and for any ordered pair of vertices (u, v) where u and v are in S,

(u, v) ∈ E(G′) if (π(u), π(v)) ∈ E(H ′).

We denote the number of matches ofH inG by M(G,H). An incomplete match

of H in G is an injection π : S → V (H) (so |S| < |V (H)|), that has the same

properties of a match except being surjective. Consider two incomplete matches

(injections) of H, π1 : S1 → V (H), and π2 : S2 → V (H). Let Vπ1 = {π1(u) | u ∈

S1} and Vπ2 = {π2(u) | u ∈ S2}. We say that π2 completes π1 to be a match of

H, when V (H) = Vπ1 ∪Vπ2 (surjective), Vπ1 ∩Vπ2 = ∅ (injective), and for any two

vertices u ∈ S1 and v ∈ S2, {u, v} ∈ E(G) if {π1(u), π2(v)} ∈ E(H). In case of

directed graphs, it should hold that (u, v) ∈ E(G′) if (π1(u), π2(v)) ∈ E(H ′) and

(v, u) ∈ E(G′) if (π2(v), π1(u)) ∈ E(H ′).

Two matches are distinct if they are not authomorphims of a match. In other

words, two matches π1 and π2 of H are equivalent, if they map two automorphisms

of the exact same subgraph of G to H. We denote the number of distinct matches

ofH inG by DM(G,H). In the sub-cntk problem, we are interested in DM(G,H)

for all k-vertex subgraphs H.

21

3.4 Subgraph Counting Through Graph Orien-

tation and Directed Trees

In this section, we discuss our algorithmic framework for solving the sub-cntk

problem. Instead of directly counting the number of occurrences of a k-vertex

subgraph H in the input graph G, we count the occurrences of all possible DAG

H→ (up to isomorphism) of H in the graph G→C . To achieve this, our main idea

is to find the largest directed tree of H→, enumerate all matches of this tree, and

then count matches of the remaining vertices using structures we save in a hash

table. In Section 3.4.1, we show that our framework solves the sub-cnt5 problem

in expected O(mκ3) time. In Section 3.4.2, we demonstrate the limitation of our

framework as it fails to solve the sub-cntC6 problem efficiently.

Algorithm 1 Counting distinct matches of all 5-vertex subgraphs in G
(sub-cnt5)
1: procedure Count-All-5(G)
2: Derive G→C by orienting E(G) with respect to degeneracy ordering.
3: for all connected 5-vertex subgraphs H except 4-star do
4: Run Count-Match(G→C , H) and save the result for H.
5: Save ∑u∈V (G)

(
d(u)

4

)
for 4-star.

3.4.1 5-vertex Subgraph Counting

Our main algorithmic result is given in the following theorem.

Theorem 3.4.1. There is an algorithm that solves the sub-cnt5 problem in

O(mκ3) time.

Our strategy is to count matches of all possible DAGs (up to isomorphism)

H→ of H in G→C , to obtain the number of distinct matches of H in G. Alg. 2

22

Algorithm 2 Counting distinct matches of H in G (sub-cntH)
1: procedure Count-Match(G→C , H)
2: DM(G,H)← 0
3: for all possible DAGs (up to isomorphism) H→ of H do
4: M(G→C , H→)← 0
5: Find one of the largest DRTSs in H→, and call it Tmax.
6: for all match π of Tmax in G→C do
7: if π is a match of H→ then . V (Tmax) = V (H→). Lemma3.4.6
8: M(G→C , H→)← M(G→C , H→) + 1
9: else if π is an incomplete match of H→ then . Lemma3.4.6
10: k ← number of ways to complete π to a match of H→. .

Lemma3.4.8
11: M(G→C , H→)← M(G→C , H→) + k

DM(G,H)← M(G→C , H→)/|Aut(H→)|
12: return DM(G,H)

demonstrates this subroutine of our algorithm for sub-cnt5, which is shown in

Alg. 1. First, we find one of the largest directed rooted tree subgraphs (DRTS),

which we define as follows, in H→.

Definition 3.4.2. Given any directed graph D, a directed rooted tree subgraph

(DRTS) of D, is a subgraph T of D, where the underlying undirected graph of T

is a rooted tree, and edges are oriented away from the root in T .

The following lemma shows that we can find all matches of any DRTS in H→ in

the desired time.

Lemma 3.4.3. Let T be a directed tree with k vertices. All matches of T in G→C
can be enumerated in O(mκk−2).

Proof. Let t1, . . . , tk be a BFS ordering of T starting at the root t1. Fix an edge

(u, v) ∈ E(G→C) and map u to t1 and v to t2. There are m possible matches

for (t1, t2), which we can find by enumerating the edges of G→C . Now, we will

choose vertices to map to t3, . . . , tk, one by one, in this order. Since the out-

degree of each vertex in G→C is at most κ, if we have already mapped vertices to

23

t1, . . . , ti, there are at most κ vertices that could be mapped to ti+1. Therefor

M(G→C , T) = O(mκk−2), and we can enumerate all of them by first choosing (u, v)

to map to (t1, t2) and then choosing vertices to map to t3, . . . , tk, in this order and

one by one.

Observation 3.4.4. Call a vertex v of a directed graph a source vertex, if d−(v) =

0. Consider T to be one of the largest DRTSs of a DAG D. T has to have a source

vertex of D as the root, otherwise the root has an in-neighbor v, which is not in

T as it would create a cycle. Adding v to T creates a new DRTS which has one

more vertex than T . This contradicts the fact that T is one of the largest DRTSs

of D. Hence, the root of T has to be a source vertex of D.

Given a 5-vertex DAG H→, we can find a DRTS that has the most number of

vertices among all DRTSs of H→ in constant time. First, find all source vertices,

and then apply a Breath First Search (BFS) starting from each of these vertices

and pick a BFS tree with the most number of vertices among all. The following

lemma shows that the largest DRTS has at least 3 vertices for a 5-vertex connected

subgraphs, except 4-star. Notice that, the largest DRTS of a 4-star with all the

edges oriented towards the center has two vertices.

Lemma 3.4.5. Let H be a connected undirected 5-vertex graph that is not a 4-

star. Each largest DRTS of any DAG H→, which is an acyclic orientation of H,

has at least three vertices.

Proof. We prove this lemma by contradiction. Assume that any DRTS of H→ has

at most two vertices. A directed 2-path, or any vertex with at least two outgoing

edges result in a DRTS with three vertices. Therefore,

(a) H→ does not have a 2-path,

(b) each vertex in H→ has at most one outgoing edges.

24

Notice that, since H→ is a DAG, it has at least one source vertex. Consider a

source vertex u. Since H is connected, u has at least one neighbor, and by (b)

it should have exactly one neighbor. Let N+(u) = {v}, then N+(v) = ∅, by (a).

So, v should have at least one incoming neighbor w. By (a), w has no incoming

edges, and it has no outgoing edges by (b). Call the other two vertices x and y.

As H is connected, there should be a connection between {u, v, w} and {x, y}. u

and w cannot have any neighbor other than v, so x and y could only be connected

to v. Since H is not a star, there should be an edge between x and y. Without

loss of generality, let (x, y) be that edge. By (a), (y, v) /∈ E(H→) and by (b)

(x, v) /∈ E(H→). So, {u, v, w} is not connected to {x, y}, and H is disconnected,

which is a contradiction. Thus, the assumption that any DRTS of H→ has at

most two vertices is wrong, and each largest DRTS of H→ has at least three

vertices.

So far, we know that we can find one of the largest DRTSs of H, which has

at least 3 vertices. We use Tmax to denote this DRTS. By Lemma3.4.3, we can

enumerate all matches of Tmax in G→C in O(mκ3) time. For each such match, we

need to validate whether it is a (incomplete) match of H→ or not. If it is not, then

it could not be completed to a match of H→. The following lemma shows that

we can perform this validation efficiently. In the remaining part of this section,

“constanct expected time”, refers to constant amortized time access to hash maps

that we use.

Lemma 3.4.6. Let T be a DRTS of a DAG H→ of a connected k-vertex graph

H. Assume edges of G→C are saved in a hash table. For each match π of T in G→C ,

it takes O(|E(H→)|) expected time to validate whether π is a (incomplete) match

of H→ or not.

Proof. Since π is a bijection, it has an inverse which we denote by π−1. Let

25

H→[V (T)] denote the subgraph of H→ induced on V (T). Observe that, there

could be edges in H→[V (T)] not present in T . For π to be a match (if V (T) =

V (H→)) or incomplete match of H→, these edges have to be present between

corresponding vertices in G→C mapped to T by π. Formally, consider all ordered

pairs of vertices (a, b) ∈ V (T)×V (T) such that (a, b) ∈ E(H→) and (a, b) /∈ E(T),

π is a match or incomplete match of H→ iff (π−1(a), π−1(b)) ∈ E(G→C) for all such

pairs of vertices. To validate this, we enumerate all edges (a, b) of H→[V (T)]

which are not present in T , and search for (π−1(a), π−1(b)) in hashed edges of G→C
in expected constant time. So this only requires O(|E(H→)|) expected time.

If V (Tmax) = V (H→), then a match of Tmax could be a match of H→ too, which

could be verified as explained. If there is a vertex in H→ which is not present in

Tmax, then after validating that a match of Tmax is an incomplete match of H→,

we need to find the number of ways to complete it to a match of H→. For this

we need to count matches of each possible structures that Tmax does not cover in

H→. We save the count of these structures in G→C , in hash tables. The following

lemma shows that this can be done efficiently.

Lemma 3.4.7. In O(mκ3) time and space, we can save all the following key and

value pairs in hash maps HM1, HM2, and HM3.

1. HM1 : ((u, v), 1) where (u, v) ∈ E(G→C)

2. HM2 : (S, k) ∀S ⊆ V (G→C) where 1 6 |S| 6 4, and k is the number of

vertices u such that S ⊆ N+(u)

3. HM3 : ((S1, S2), `) ∀S1, S2 ⊆ V (G→C), where 1 6 |S1 ∪ S2| 6 3, and ` is the

number of edges e = (u, v) ∈ E(G→C) such that S1 ⊆ N+(u) and S2 ⊆ N+(v).

Proof. We show how to enumerate and save all these structures in HM1, HM2,

and HM3.

26

1. HM1: We can easily do this in O(m) by enumerating the out-neighbors of

each vertex

2. HM2: For each edge e = (u, v), we can enumerate all subsets T of the set

{w ∈ N+(u) | v C w}, where |T | 6 3, in O(κ3) time, and increment the

value for the key T ∪ {v} in the hash map by one.

3. HM3: For each edge e = (u, v) (v ∈ N+(u)), we enumerate all possible

subset S1 ⊆ N+(u) \ {v} where |S1| 6 3. And, for each S1 we enumerate

all possible S2 \ S1 in subsets of N+(v), such that 1 6 |S1 ∪ S2| 6 3. This

takes O(κ3) as the out-degree of each vertex is at most κ, and we choose up

to three vertices. All possible S1 ∩ S2 can be determined by checking the

connection between v and each vertex in S1 using the hashed edges of G→

in HM1.

The following lemma shows that we can count the number of ways to complete

a match of Tmax, which is also an incomplete match of H→, to a match of H→

efficiently.

Lemma 3.4.8. Let H be a 5-vertex connected graph, H→ be a DAG of H, and

Tmax be one of the largest DRTSs in H→. Assume HM1, HM2, and HM3 are

given. For each match π of Tmax in G→C which is an incomplete match of H→,

we can count the number of ways to complete π to a match of H→ in expected

constant time.

Proof. By Lemma3.4.5, Tmax has at least 3 vertices, and since π is an incomplete

match (not a match) of H→, we can assume that |V (Tmax)| < 5. Observe that,

Tmax is a maximal DRTS. Any vertex in H→ which is not in Tmax can only be

connected to vertices of Tmax by outgoing edges, otherwise they could be added to

27

Tmax to create a larger DRTS of H→, which contradicts the maximality of Tmax.

We consider two cases where Tmax has three or four vertices.

Let |V (Tmax)| = 4, and i be the only vertex in H→ that is not in Tmax. To

complete π to a match of H→, we need to choose a vertex in G→C , that is connected

by outgoing edges to vertices mapped to the out-neighborhood of i in H→. Let

Si = {π−1(t) | t ∈ N+
H→(i)}. HM2(Si) is the number of vertices that could be

mapped to i, but some of them may be already mapped to a vertex in Tmax,

by π. Let ri denote the number of vertices v ∈ {π−1(t) | t ∈ V (Tmax)}, where

Si ⊆ N+
G→C

(v). We can obtain ri in expected constant time, by enumerating vertices

mapped to V (Tmax), and counting vertices that are connected to all vertices in Si.

For any vertex, we can check the connection to each vertex of Si using HM1 in

expected constant time. The number of ways to complete π to a match of H→ in

this case is HM2(Si)− ri.

Now we consider the case where |V (Tmax)| = 3. Let V (H→) \ V (Tmax) =

{i, j}. To complete π to a match of H→, we only need to choose two vertices

of G→C to map to i and j. Let Si = {π−1(t) | t ∈ V (Tmax) ∩ N+
H→(i)} and

Sj = {π−1(t) | t ∈ V (Tmax) ∩ N+
H→(j)}. We consider two cases, where i and j

are connected or not. If they are connected, without loss of generality, assume

(i, j) ∈ E(H→). If (i, j) ∈ E(H→), then we can use HM3 in Lemma3.4.7,

to find the number of edges (u, v) where u and v could be mapped to i and j,

respectively. Let r(i,j) be the number of edges e = (w, x) ∈ E(G→C), where w and x

are mapped to vertices in Tmax by π, such that, Si ⊆ N+
G→C

(w), and Sj ⊆ N+
G→C

(x).

We can obtain r(i,j) in expected constant time using HM1. Then the number

of edges (u, v) that could be mapped to (i, j) is HM3((Si, Sj)) − r(i,j). Next

case is when (i, j) /∈ E(H→). In this case, we use HM2 to find the number

of pair of vertices of G→C which could be mapped to i and j. Let ri (rj resp.)

28

denote the number of vertices v ∈ V (G→C) where v is mapped to a vertex in

Tmax and Si ⊆ N+
G→C

(v) (Sj ⊆ N+
G→C

(v) resp.). Also, we use ri,j to denote the

number of vertices v ∈ V (G→C) that are counted in both ri and rj, meaning

Si ∪ Sj ⊆ N+
G→C

(v). We can obtain ri, rj, and ri,j easily in expected constant time

using HM1. The number of pairs of vertices which could be mapped to i and j

is equal to (HM2(Si)− ri) · (HM2(Sj)− rj)− (HM2(Si ∪ Sj)− ri,j).

Now, we have all the tools to efficiently count distinct matches of a DAG of

H→ in G→C . The following lemma shows that we can do this in O(mκ3) expected

time.

Lemma 3.4.9. There is an algorithm which counts distinct matches for each

possible DAG (up to isomorphism) H→ of a 5-vertex connected subgraphs H, in

O(mκ3) expected time.

Proof. Fix a DAG H→ of H. If H is a 4-star and H→ has ` incoming neighbors,

then the number of distinct matches of H→ is ∑u∈V (G→C)

(
d−(u)
`

)(
d+(u)
4−`

)
. Assume

that H is not a 4-star. Find a DRTS of H→ with the most number of vertices

among all its DRTSs, and call it Tmax. This can be done in constant time for

H→. By Lemma3.4.5, Tmax has at least three vertices. We will now enumerate

all matches of Tmax in G→C . By Lemma3.4.3, this step requires O(mκ3) expected

time. For each match π of Tmax in G→C , we can verify whether π is a match

(if (|V (Tmax)| = 5) or incomplete match of H→ in expected constant time, by

Lemma3.4.6. If |V (Tmax)| = 5, while enumerating all matches of Tmax, we only

count them if they are a match of H→. So in this case we can count M(G→C , H→)

in O(mκ3) expected time.

Otherwise, Tmax has 3 or 4 vertices. In this case, for each match π of Tmax,

we first verify that it is also an incomplete match of H→. Then, we count the

number of ways to complete π to a match of H→, which we can do in expected

29

constant time, by Lemma3.4.8. To obtain M(G→C , H→), we simply sum the ways

to complete each incomplete match we have found, to a match of H→.

This approach gives us the number of all (not necessarily distinct) matches of

H→ inG→C . LetH→π be a subgraph ofG→C that π maps toH→. Each automorphism

of H→, gives a new match π′ which is not distinct from π, as it is still mapping Hπ

(the same copy of H) to H→ (example in Fig. 3.1b). As each match of H→, also

maps vertices to Tmax, resulting in a match of Tmax and an (incomplete) match of

H→, we will find all distinct matches ofH→ and count each one exactly |Aut(H→)|

times. We want the number of distinct matches, which we can obtain by dividing

the count of all matches by |Aut(H→)|.

Thus, it requires O(mκ3) expected time to create HM1, HM2, and HM3 by

Lemma3.4.7, O(mκ3) time for enumerating matches of Tmax, expected constant

time to validate these matches, and expected constant time for counting ways to

complete each such match, that is verified to be an incomplete match of H→, to

a match of H→. So overall, we can find DM(G→C , H→) in O(mκ3) expected time.

This completes the proof of this lemma.

Lastly, we can prove Theorem3.4.1 as follows.

Proof of Theorem 3.4.1. Given a 5-vertex connected subgraph H, we can count

all distinct matches of each possible DAG H→ of H, in G→C in O(mκ3) expected

time, by Lemma3.4.9. To count all distinct matches of H in G, we just need to

sum the number of distinct matches of all possible DAGs (up to isomorphism) of

H. The number of such DAGs is constant for H. There are 21 different connected

5-vertex subgraphs (illustrated in [137]), and we perform this process on all of

them. This completes the proof of the theorem.

30

e

a b c

d

H
e

a b c

d

H→

(a) H is 5-vertex connected subgraph and H→ is one possible acyclic orienta-
tion of it. Tmax (largest DRTS of H→) is shown in green and contains three
vertices.

y : e

u : a v : b w : c

x : d

π1
y : e

u : b v : a w : c

x : d

π2
y : e

u : a v : c w : b

x : d

π3

y : e

u : b v : c w : a

x : d

π4
y : e

u : c v : a w : b

x : d

π5
y : e

u : c v : b w : a

x : d

π6

(b) All six figures show exactly the same subgraph in G→C . π1, . . . , π6 are six
equivalent matches of H→ in G→C , one for each automorphism of H→. Notice
(u, v, w) being mapped to all permutations of (a, b, c).

Figure 3.1: Application of Alg. 2 on a DAG H→ of an example 5-vertex con-
nected subgraph H.

3.4.2 Limitations of Our Framework for a Six Vertex Sub-

graph

Consider C6, shown as H in Fig. 3.2. Then H→, shown in the right side of

Fig. 3.2, is a possible DAG of H. In H→, s1, s2, and s3 are the source vertices, and

t1, t2, and t3 are the sink vertices. Any DRTS of H→ has at most three vertices,

and there are three such DRTS, T1, T2, and T3 rooted at s1, s2 and s3, respectively.

T1 is shown by red in Fig. 3.2. For each of T1, T2, and T3, the remaining vertices

31

s1

t1

s2

t2

s3

t3

H H→

Figure 3.2: Let H→ be a DAG of H (C6). Considering any largest DRTS of H→,
the remaining vertices include a vertex with two incoming edges (in-in wedge).
Even graphs with bounded degeneracy can have Ω(n2) in-in wedges. So hashing
in Alg. 2 will not be bounded by m and κ for H.

include a vertex, with two incoming edges, which we call an in-in wedge. For

example, t2 is such a vertex for T1. Even graphs with bounded degeneracy can

have Ω(n2) in-in wedges. We cannot hash the count of such structures in expected

time bounded by m and κ. So, Alg. 2 fails to count occurrences of C6 in the

desired time. In the next section, we discuss why such limitations are natural to

any framework for the sub-cntk problem at and beyond k = 6.

3.5 A Chasm at Six

At the end of the previous section, we showed the limitations of our frame-

work in counting certain 6-vertex subgraphs. In this section, we show that perhaps

such limitations are fundamental to any subgraph counting algorithms. In par-

ticular, the landscape of sub-cntk problem in the bounded degeneracy graphs

changes dramatically as we move beyond k = 5. We prove that for every integer

k > 6, there exists a k-vertex subgraph H such that, the running time of any

algorithm for the sub-cntH problem does not depend on the degeneracy of the

input graph, assuming the Triangle Detection Conjecture. In contrast,

for k 6 5, O(mκk−2) algorithms exists for sub-cntk (see Section 3.4). The

32

following theorem captures the main result of this section.

Theorem 3.5.1. Assume the Triangle Detection Conjecture (Conjec-

ture 2.2.3). There exists an absolute constant γ > 0 such that the following holds.

For any k > 6 and any function f : N → N, there exists a k-vertex subgraph H

such that there is no (expected) o(m1+γf(κ)) algorithm for sub-cntH .

Outline of the Proof For each k > 6 and k 6= 8, the subgraph of interest

will be the k-cycle graph, Ck. For k = 8, the subgraph of interest will be the C7

with a tail (see Figure 3.3). We first give a proof outline. Fix some k > 6 and let

Hk denote the target subgraph of size k. Recall the tri-cnt problem — count

the number of triangles in a graph with m edges. Conjecture 2.2.3 asserts that

for any algorithm A for the tri-cnt problem, T (A) = ω(m) where T (A) denotes

the worst case time complexity of the algorithm A. Our strategy is to reduce

from the tri-cnt problem to the sub-cntHk problem. To this end, we construct

a new graph Gk from the input instance G of the tri-cnt problem such that Gk

has O(m) edges, and has degeneracy at most 2. More importantly, the number of

triangles in G is a simple linear function of the number of Hk in Gk. Hence, we

can derive the number of triangles in G by counting the number of Hk in Gk. As

κ(Gk) 6 2, any O(mf(κ)) algorithm for the sub-cntHk problem translates to a

O(m) algorithm for the tri-cnt problem, contradicting the Triangle Detec-

tion Conjecture. We remark that, for k = 8, our proof strategy will be slightly

different — instead of reducing from the tri-cnt problem, we shall reduce from

the triangle detection problem itself. However, the gadget construction will follow

the same basic principle.

The construction of Gk from G is rather simple. The details of the construction

depends on whether k is a multiple of 3 or not. We take two examples to describe

the construction.

33

First, we take k = 6, and the target subgraph H6 = C6. For each edge e

in E(G), we replace e with a length two path {e1, e2} in E(G6). To accomplish

this, we add a new vertex ve for each edge: V (G6) = V (G) ∪ {ve}e∈E(G). This is

shown in Figure 3.4a. Each triangle in G creates a C6 in G6. We formally prove

in Lemma 3.5.3 that the number of triangles in G is same as the number of C6 in

G6. In Lemma 3.5.2, we bound the degeneracy of G6 by 2. This construction can

be generalized for any k = 3` where ` > 2, by replacing each edge in E(G) with

`-length path.

Next consider the case k = 7. For each edge e ∈ E(G), we first create two

parallel copies of e, and then replace the first one with a length two path {e1,1,

e1,2}, and the second one with a length three path {e2,1, e2,2, e2,3}. So in E(G7),

we have 5 edges for each edge in E(G). We create 3 new vertices per edge to

accomplish this, and denote them as ve, ue1 , ue2 . See Figure 3.4b for a pictorial

demonstration. In Lemma 3.5.3, we argue that the number of C7 is exactly 3 times

the number of triangles in G. In Lemma 3.5.2, we bound the degeneracy of G7

by 2. This construction generalizes to any k = 3` + i where ` > 2 and i ∈ {1, 2}

(except for the case when k = 8, that is ` = 2 and i = 2) by splitting each edge

into ` and `+ 1 many parts respectively.

Finally, we consider the case of k = 8. Note that the target subgraph H8

is the 7-cycle with a tail in this case (see Figure 3.3). It is natural to wonder

why do we not simply take H8 = C8? After all, for all other values of k, taking

Hk = Ck suffices. At a first glance, it seems like if we consider the same graph

G7 as described above (and in Figure 3.4b) the number of C8 would be a simple

linear function of the number of triangles in G — for each triangle in G, there

will be exactly three C8 in G7. However, each C4 in G would also lead to a C8 in

G8. Observe that for k > 8, we do not run into this problem. A more formal

34

treatment of this issue appear in Section 3.5.

So instead, we take H8 to be the subgraph C7 with a tail to prove our con-

ditional lower bound for sub-cnt8. The construction of the graph G8 remains

exactly the same as that of G7. We show in Lemma 3.5.4 that, there exists a C7

with a tail in G8 if and only if there exist a triangle in G.

Figure 3.3: Target subgraph for proving conditional lower bounds for sub-cnt8:
the C7 with a tail

We now present the proof of Theorem 3.5.1 in full details.

Proof of Theorem 3.5.1. Fix some k > 6. Let the subgraph Hk denote the target

subgraph of size k. For k 6= 8, Hk is Ck, and for k = 8, Hk is C7 with a tail

(see Figure 3.3). We reduce from the tri-cnt problem to the sub-cntHk . Let

G = (V,E) be the input instance for the tri-cnt problem with |V | = n and

|E| = m. We construct an input instance Gk = (Vk, Ek) for the sub-cntHk
problem from G. The construction of Gk differs based on whether k is divisible

by 3 or not. We next consider these two cases separately.

Details of the Reduction. First assume k = 3` for some integer ` > 2.

We first define the vertex set Vk. For each vertex in V , we add a vertex in

Vk. For each edge e ∈ E, we add a set of ` − 1 many vertices, denoted as

Ve = {ve,1, ve,2, . . . , ve,`−1}. We collect all these second type of vertices into the

35

u v

e

u

ve

v

e1 e2

e ∈ E(G) e1, e2 ∈ E(G6)
(a) Construction of the edge set E(G6)
from the edge set E(G). The red colored
nodes are only present in V (G6), and not
in V (G).

u v

e
u

ve

v

ue1 ue2

e1,1 e1,2

e2,1

e2,2

e2,3

e ∈ E(G) ei,j ∈ E(G7)
(b) Construction of the edge set E(G7)
from the edge set E(G). The red colored
nodes are only present in V (G7), and not
in V (G).

Figure 3.4: Reduction from the tri-cnt problem to the sub-cntCk problem for
k = 6 (left) and k = 7 (right).

set VE. Formally, we have

Vk = V ∪ VE ,

where VE =
⋃
e∈E

Ve ,

for Ve = {ve,1, ve,2, . . . , ve,`−1} .

We now describe the edge set Ek. We treat each edge e = {u, v} ∈ E as an ordered

pair (u, v) where the ordering can be arbitrary of the vertices (for example, assume

lexicographical ordering). Now for each edge e = (u, v) construct an `-length path

between u and v in Vk by connecting the vertices in {u} ∪ Ve ∪ {v} sequentially.

More precisely, we define Ek as follows.

Ek =
⋃
e∈E

Ee ,

where Ee = {{u, ve,1}, {ve,1, ve,2}, . . . , {ve,`−2, ve,`−1}, {ve,`−1, v}} for e = (u, v) .

36

This completes the construction of the graph Gk = (Vk, Ek). We give an example

in Figure 3.4a for k = 6.

Now assume k = 3` + i for some some integer ` > 2 and i ∈ {1, 2}. In the

previous case, we added a set of `−1 many vertices for each edge in E. But now, for

each edge e ∈ E, we add two sets of vertices, one with `−1 many vertices and the

other with ` many vertices. We denote the first set as Ve = {ve,1, ve,2, . . . , ve,`−1},

and the second set as Ue = {ue,1, ue,2, . . . , ue,`}. We also add the set of vertices in

V to Vk. Formally, we have

Vk = V ∪ VE ,

where VE =
⋃
e∈E

Ve ∪ Ue ,

for Ve = {ve,1, ve,2, . . . , ve,`−1} ,

and Ue = {ue,1, ue,2, . . . , ue,`} .

To construct the edge set Ek, as before we treat each edge in e = {u, v} ∈ E as

an ordered pair (u, v) according to some arbitrary ordering of the vertices. Now,

for each edge e = (u, v), construct an 2` + 1-length cycle between u and v in Vk

by creating a `-length path via the vertices in Ve and another ` + 1-length path

via the vertices in Ue. We denote the corresponding edge sets as EV,e and EU,e

respectively. Formally, we define Ek as follows.

Ek =
⋃
e∈E

(EV,e ∪ EU,e) ,

where EV,e = {{u, ve,1}, {ve,1, ve,2}, . . . , {ve,`−2, ve,`−1}, {ve,`−1, v}} ,

and EU,e = {{u, ue,1}, {ue,1, ue,2}, . . . , {ue,`−1, ue,`}, {ue,`, v}} for e = (u, v) .

This completes the construction of the graph Gk = (Vk, Ek). Note that the con-

37

struction is independent of the value of i. Hence, we produce the same graph Gk

for k = 3`+ 1 and k = 3`+ 2. We give an example in Figure 3.4b for k = 7.

Note that although our target subgraph for the case k = 8 is a 7-cycle with a

tail instead of 8-cycle, our construction is still the same.

Correctness of the Reduction In Lemma 3.5.2, we prove that Gk has de-

generacy at most 2. In Lemma 3.5.3, we show that, for k 6= 8, the number of Ck in

the graph Gk is a linear function of the number of triangles in G. In Lemma 3.5.4,

we show that G8 is H8 free if and only if G is triangle free.

Lemma 3.5.2. κ(Gk) 6 2.

Proof. To prove the lemma it is sufficient to exhibit a vertex ordering ≺ such that

in the corresponding directed graph G→≺ , d+(v) 6 2 for all v ∈ Vk (application

of Lemma 2.1.4). We use an ordering ≺ where VE ≺ V and the ordering within

each set is arbitrary. Observe that each vertex v ∈ VE has degree exactly 2 and no

two vertices in V are connected to each other. Hence, d+(v) 6 2 for all v ∈ Vk.

Lemma 3.5.3. Let ` > 2 be some integer. For k = 3`, DM(Gk, Ck) = DM(G, C3).

For k = 3`+ i with i ∈ {1, 2} and k 6= 8, DM(Gk, Ck) = 3 ·DM(G, C3).

Proof. Let T be the set of triangles in G and C be the set of Ck in Gk. Note that

a triangle in T and a k-cycle in C can be uniquely identified by a set of three and

k edges, respectively.

We first take up case of k = 3` for some ` > 2. Let g be the mapping between

the sets T and C, g : T → C, defined as follows: g({e1, e2, e3}) = Ee1 ∪Ee2 ∪Ee3 .

To prove the lemma, it is sufficient to exhibit that g is a bijection. To this end,

note that if g(τ1) = g(τ2), then τ1 = τ2. This follows immediately from the

definition of g, since Ee1∩Ee2 = ∅ for all e1 6= e2. We now show that every k-cycle

38

in C has an inverse mapping in g. Let ξ be a k-cycle in C. Fix some edge e ∈ E.

By construction, either all the edges from the set Ee are present in ξ, or none of

them are. Hence, ξ must be of the form Ee1 ∪ Ee2 ∪ Ee3 for some three distinct

edges e1, e2, and e3. Clearly, {e1, e2, e3} forms a triangle in G.

Now assume k = 3` + i for some ` > 2 and i ∈ {1, 2}, and k 6= 8. It is

not difficult to see that each triangle in T leads to exactly three k-cycles in C.

The non-trivial direction is to show that for each k-cycles in C there is an unique

triangle in T . Let ξ be a k-cycle in C. Fix some edge e ∈ E. By construction,

exactly one of the following must be true: (i) all the ` edges from the set EV,e are

present in ξ, (ii) all the ` + 1 edges from the set EU,e are present in ξ, (iii) none

of the edges from the set EV,e ∪ EU,e are present in ξ. First assume i = 1. Since

ξ has 3` + 1 many edges, and ` > 2, it must consist of one EU,e set of size ` + 1,

and two EV,e sets of size `. When i = 2 and ` > 2, ξ must consist of two EU,e set

of size ` + 1, and one EV,e sets of size `. Clearly, the three edges corresponding

to these sets form a unique triangle in G. (When k = 8, that is ` = 2 and i = 2,

taking four distinct sets EV,e creates a copy of C8, and hence the argument does

not work.)

Lemma 3.5.4. The input graph G is triangle free if and only if G8 does not have

any C7 with a tail.

Proof. Observe that, if there exists a triangle τ in G, then in G8, there would

be at least one C7 with a tail (in fact, the exact number would depend on the

degree of the involved vertices). In the proof of Lemma 3.5.3, we argued that

each 7-cycle in G7 (which is isomorphic to G8) corresponds to a triangle in G.

Also, by our construction, if G8 has a C7, then that 7-cycle necessarily has a tail.

Therefore, existence of C7 with a tail in G8 implies existence of a triangle in G.

This completes the proof of the lemma.

39

s

H H→

Figure 3.5: Alg. 2 succeeds to count the number of distinct matches of H in
linear time for bounded (constant) degeneracy graphs. Each acyclic orientation
of H has a source vertex s, which is connected to exactly three vertices, as in
H→. So, the largest DRTS has at least four vertices (shown in green). Number of
matches of the remaining vertices (shown in blue) could be counted using HM2

Lemmas 3.5.2 to 3.5.4 together prove the theorem: if there exists an algorithm

A for the sub-cntCk problem with T (A) = O(mf(κ)), then A is an algorithm

for the tri-cnt problem (or the triangle detection problem in the case of k = 8)

with T (A) = O(m), where T (A) denotes the worst case time complexity of the

algorithm A.

3.6 Future Directions

Although our algorithmic framework fails to produce a linear time algorithm

for sub-cntC6 in bounded degeneracy graphs, there are certain other 6-vertex

subgraphs where it indeed succeeds. An easy example is sub-cntK6 . In fact,

our framework gives a linear time algorithm for counting any constant size clique

in bounded degeneracy graphs — for each acyclic orientation of a clique, the

source vertex construct a DRTS covering all the remaining vertices. There exists

other non-clique 6-vertex subgraphs as well, where Alg. 2 succeeds. Consider the

subgraph H shown in Fig. 3.5. It is easy to see that, any acyclic orientation of H

such as H→ has at least one source vertex s that is a root of a DRTS with four

40

vertices. Thus, we can solve sub-cntH in O(mκ3) expected time.

Despite the chasm at six, there exist subgraphs H with 6-vertices (or more)

such that sub-cntH admits a linear time algorithm in bounded degeneracy graph.

We end this exposition with the following natural problem:

Characterize all subgraphs H such that sub-cntH has a linear time algorithm

in bounded degeneracy graphs.

41

Chapter 4

The Barrier of Long Induced

Cycles

The main result of this chapter is a surprisingly clean resolution of the following

problem, assuming fine-grained complexity results.

Can we characterize the pattern graphs H for which HomH(G) is computable

in near-linear time (when G has bounded degeneracy)?

Let LICL(H) be the length of the largest induced cycle in H.

Theorem 4.0.1. Let G be an input graph with n vertices, m edges, and degeneracy

κ. Let f : N → N denote some explicit function. Let γ > 0 denote the constant

from the Triangle Detection Conjecture.

If LICL(H) 6 5: there exists an algorithm that computes HomH(G) in time

f(κ) ·m log n.

If LICL(H) > 6: assume the Triangle Detection Conjecture. For

any function g : N → N, there is no algorithm with (expected) running time

g(κ)o(m1+γ) that computes HomH(G).

(We note that the condition onH involves induced cycles, but we are interested

42

in counting non-induced homomorphisms.)

4.1 Main Ideas

Background for the Upper Bound. We begin with some context on the main

algorithmic ideas used for homomorphism/subgraph counting in bounded degen-

eracy graphs. Any graph G of bounded degeneracy has an acyclic orientation G→,

where all outdegrees are bounded. Moreover, G→ can be found in linear time [112].

For any pattern graph H, we consider all possible acyclic orientations. For each

such orientation H→, we compute the number of H→-homomorphisms (in G→).

(Directed homomorphisms are maps that preserve the direction of edges.) Finally,

we sum these counts over all acyclic orientations H→. This core idea was embed-

ded in the seminal paper of Chiba-Nishizeki, and has been presented in such terms

in many recent works [20, 34, 125, 137].

Since G→ has bounded outdegrees, for any bounded, rooted tree T→ (edges

pointing towards leaves), all T→-homomorphisms can be explicitly enumerated in

linear time. To construct a homomorphism of H→, consider the rooted trees of a

DFS forest T→1 , T→2 , . . . generated by processing the sources first. We first enumer-

ate all homomorphisms of T→1 , T→2 , . . . in linear time. We need to count how many

tuples of these homomorphisms can be “assembled” into H→-homomorphisms.

(We note that the number of H→-homomorphisms can be significantly super-

linear.) The main idea is to index the rooted tree homomorphisms appropriately,

so that H→-homomorphisms can be counted in linear time. This requires a careful

understanding of the shared vertices among the rooted DFS forest T→1 , T→2 ,

The previous work of the authors showed how this efficient counting can be

done when |V (H)| 6 5, though the proof was ad hoc [20]. It did a somewhat

tedious case analysis for various H, exploiting specific structure in the various

43

small pattern graphs. Bressan gave a remarkably principled approach, introducing

the notion of the DAG treewidth [34]. We will take some liberties with the original

definition, for the sake of exposition. Bressan defined the DAG treewidth of H→,

and showed that when this quantity is 1, Hom→H (G→) can be computed in near-

linear time. The DAG treewidth is 1 when the following construct exists. For

any source s of H→, let R(s) be the set of vertices in H→ reachable from s. The

sources of H→ need to be be arranged in a tree T such that the following holds. If

s lies on the (unique) path between s1 and s2 (in T), then R(s1) ∩R(s2) ⊆ R(s).

In some sense, this gives a divide-and-conquer framework to construct (and count)

H→-homomorphisms. Any H→-homomorphism can be broken into “independent

pieces” that are only connected by the restriction of the homomorphism to R(s).

By indexing all the tree homomorphisms appropriately, the total count of H→-

homomorphisms can be determined in near-linear time by dynamic programming.

Note that we need the DAG treewidth of all acyclic orientations of H to be 1,

which is a challenging notion to describe succinctly.

From Induced Cycles to DAG tree decompositions. We observe an interesting

contrast between the previous work of the authors and Bressan’s work. The former

provides a simple family of H for which HomH(G) can be computed in near-linear

time in bounded degeneracy graphs, yet the proofs were ad hoc. The latter gave

a principled algorithmic approach, but it does not succinctly describe what kinds

of H allow for such near-linear algorithms. Can we get the best of both worlds?

Indeed, that is what we achieve. By a deeper understanding of why |V (H)| 6 5

was critical in [20] and generalizing it through the language of DAG tree decom-

positions, we can prove: the DAG treewidth of H is one iff LICL(H) 6 5.

When LICL(H) 6 5, for any acyclic orientation H→, we provide a (rather

complex) iterative procedure to construct the desired DAG tree decomposition T .

44

The proof is intricate and involves many moving parts. The connection between

induced cycles and DAG tree decompositions is provided by a construct called the

unique reachability graph. For any set S of sources in H→, construct the following

simple, undirected graph UR(S). Add edge (s, s′) if there exists a vertex that

is in R(s) ∩ R(s′), but not contained in any R(s′′), for s′′ ∈ S \ {s, s′}. A key

lemma states that if UR(S) contains a cycle (for any subset S of sources), then

H contains an induced cycle of at least twice the length. Any cycle in a simple

graph has length at least 3. So if UR(S) has a cycle, then H has an induced cycle

of length at least 6. Thus, if LICL(H) 6 5, for all S, the simple graph UR(S) is

a forest.

For any set S of sources, we will (inductively) construct a partial DAG tree

decomposition that only involves S. Let us try to identify a “convenient” vertex

x ∈ S with the following property. We inductively take the partial DAG tree

decomposition T ′ of S\{x}, and try to attach x as a leaf in T ′ preserving the DAG

tree decomposition conditions (that involve reachability). By carefully working

out the definitions, we identify a specific intersection property of R(x) with the

reachable sets of the other sources in S \ {x}. When this property holds, we can

attach x and extend the partial DAG tree decomposition, as described above.

When the property fails, we prove that the degree of x in UR(S) is at least 2.

But UR(S) is a forest, and thus contains a vertex of degree 1. Hence, we can

always identify a convenient vertex x, and can iteratively build the entire DAG

tree decomposition.

We also prove the converse. If LICL(H) > 6, then the DAG treewidth (of

some orientation) is at least two. This proof is significantly less complex, but

crucially uses the unique reachability graph.

The Lower Bound: Triangles Become Long Induced Cycles. We start with the

45

simple construction of [20] that reduces triangle counting in arbitrary graphs to

6-cycle counting in bounded degeneracy graphs. Given a graph G where we wish

to count triangles, we consider the graph G′ where each edge of G is subdivided

into a path of length 2. Clearly, triangles in G have a 1-1 correspondence with

6-cycles in G′. It is easy to verify that G′ has bounded degeneracy.

Our main idea is to generalize this idea for any H where LICL(H) = 6. The

overall aim is to construct a graph G′ where each H-homomorphism corresponds

to a distinct induced 6-cycle in G′, which comes from a triangle in G. We will

actually fail to achieve this aim, but get “close enough” to prove the lower bound.

Let H denote the pattern obtained after removing the induced 6-cycle from H.

Let us outline the construction of G′. We first take three copies of the vertices of

G. For every edge (u, v) of G, connect copies of u and v that lie in different copies

by a path of length two. Note that each triangle of G has been converted into six

6-cycles. We then add a single copy of H, and connect H to the remaining vertices

(these connections depend on the edges of H). This completes the description of

G′. Exploiting the relation of degeneracy to vertex removal orderings, we can

prove that G′ has bounded degeneracy.

It is easy to see that every triangle in G leads to a distinct H-homomorphism.

Yet the converse is potentially false. We may have “spurious" H-homomorphisms

that do not involve the induced 6-cycles that came from triangles in G. By a care-

ful analysis of G′, we can show the following. Every spurious H-homomorphism

avoids some vertex in the copy of H (in G′).

These observations motivate the problem of partitioned-homomorphisms. Let

P be a partition of the vertices of G′ into k sets. A partitioned-homomorphism

is an H-homomorphism where each vertex is mapped to a different set of the

partition. We can choose P appropriately, so that the triangle count of G is the

46

number of partitioned-homomorphisms scaled by a constant (that only depends

on the automorphism group of H). Thus, we reduce triangle counting in arbitrary

graphs to counting partitioned-homomorphisms in bounded degeneracy graphs.

Our next insight is to give up the hope of showing a many-one linear-time

reduction from triangle counting to H-homomorphisms, and instead settle for

a Turing reduction. This suffices for the lower bound of Theorem4.0.1. Using

inclusion-exclusion, we can reduce a single instance of partitioned-homomorphism

counting to 2k instances of vanilla H-homomorphism counting. The details are

somewhat complex, but this description covers the basic ideas.

When LICL(H) > 6, we replace edges in G by longer paths, to give longer

induced cycles. The partitions become more involved, but the essence of the proof

remains the same.

4.2 Related Work

Counting homomorphisms has a rich history in the field of parameterized com-

plexity theory. Díaz et al. [47] designed a dynamic programming based algo-

rithm for the HomH(G) problem with runtime O(2kntw(H)+1) where tw(H) is the

treewidth of the target graph H. Dalmau and Jonsson [45] proved that HomH(G)

is polynomial time solvable if and only if H has bounded treewidth, otherwise

it is #W [1]-complete. More recently, Roth and Wellnitz [152] consider a doubly

restricted version of HomH(G), where both H and G are from restricted graph

classes. They primarily focus on the parameterized dichotomy between poly-time

solvable instances and #W [1]-completeness.

We give a brief review of the graph parameters treewidth and degeneracy. The

notion of tree decomposition and treewidth were introduced in a seminal work by

Robertson and Seymour [146, 147, 148]; although it has been discovered before

47

under different names [24, 71]. Over the years, tree decompositions have been

used extensively to design fast divide-and-conquer algorithms for combinatorial

problems. Degeneracy is a nuanced measure of sparsity and has been known since

the early work of Szekeres-Wilf [170]. The family of bounded degeneracy graphs

is quite rich: it involves all minor-closed families, bounded expansion families,

and preferential attachment graphs. Most real-world graphs tend to have small

degeneracy ([19, 22, 66, 81, 163], also Table 2 in [19]), underscoring the practical

importance of this class. The degeneracy has been exploited for subgraph counting

problems in many algorithmic results [8, 38, 59, 81, 83, 125, 129, 137].

Bressan [34] introduced the concept of DAG treewidth to design faster algo-

rithms for homomorphism and subgraph counting problems in bounded degener-

acy graphs. They prove the following dichotomy for the subgraph counting prob-

lem. For a pattern H with |V (H)| = k and an input graph G with |E(G)| = m

and degeneracy κ, one can count HomH(G) in f(κ, k)O(mτ(H) logm) time, where

τ(H) is the DAG treewidth of H (Theorem 4.3.2). On the other hand, assuming

the exponential time hypothesis [78], the subgraph counting problem does not ad-

mit any f(κ, k)mo(τ(H)/ ln τ(H))) algorithm, for any positive function f : N×N→ N.

Previous work of the authors shows that for every k > 6, there exists some pattern

H with k vertices, such that HomH(G) cannot be counted in linear time, assuming

fine-grained complexity conjectures [20]. We note that these results do not give a

complete characterization like Theorem4.0.1. They define classes of H that admit

near-linear or specific polynomial time algorithms, and show that some H (but

not all) outside this class does not have such efficient algorithms.

We remark here that in an independent and parallel work, Gishboliner, Lev-

anzov, and Shapira [65] effectively prove the same characterization for linear time

homomorphism counting.

48

The problem of approximately counting homomorphism and subgraphs have

been studied extensively in various Big Data models such as the property testing

model [13, 51, 52, 53], the streaming model [9, 14, 18, 22, 82, 87, 109, 113, 133],

and the map reduce model [40, 90, 169]. These works often employ clever sampling

based techniques and forego exact algorithms.

Almost half a century ago, Itai and Rodeh [79] gave the first non-trivial al-

gorithm for the triangle detection and finding problem with O(m3/2) runtime.

Currently, the best known algorithm for the triangle detection problem uses fast

matrix multiplication and runs in time O(min{nω,m2ω/(ω+1)}) [12]. Improving

on the exponent is a major open problem, and it is widely believed that m4/3

(corresponding to ω = 2) is a lower bound for the problem. Thus, disproving the

Triangle Detection Conjecture would require a significant breakthrough.

See [6] for a detailed list of other classic graph problems whose hardness is derived

using Triangle Detection Conjecture.

4.3 Preliminaries

We use m and n to denote |V (G)| and |E(G)| respectively, for the input graph

G. We denote |V (H)| by k.

If a subset of vertices V ′ ⊆ V (G) is deleted from G, we denote the remaining

subgraph by G − V ′. We use G[V ′] to denote the subgraph of G induced by V ′.

The length of the largest induced cycle in H is denoted by LICL(H).

DAG tree decompositions. Bressan [34] defined the notion of DAG tree de-

compositions for DAGs, analogous to the widely popular tree decompositions for

undirected graphs. The crucial difference in this definition is that only the set of

source vertices in the DAG are considered for creating the nodes in the tree. Let D

be a DAG and S ⊆ V be the set of source vertices in D. For a source vertex s ∈ S,

49

let reachableD(s) denote the set of vertices in D that are reachable from s. For

a subset of the sources B ⊆ S, let reachableD(B) = ⋃
s∈B reachableD(s).

When the underlying DAG is clear from the context, we drop the subscript D.

Definition 4.3.1 (DAG tree decomposition [34]). Let D be a DAG with source

vertices S. A DAG tree decomposition of D is a tree T = (B, E) with the following

three properties.

1. Each node B ∈ B (referred to as a “bag” of sources) is a subset of the source

vertices S: B ⊆ S.

2. The union of the nodes in T is the entire set S: ⋃B∈B B = S.

3. For all B, B1, B2 ∈ B, if B lies on the unique path between the nodes B1

and B2 in T , then reachable(B1)∩ reachable(B2) ⊆ reachable(B).

The DAG treewidth of a DAG D is then defined as the minimum over all possible

DAG tree decompositions of D, the size of the maximum bag. For a simple

undirected graph H, the DAG treewidth is the maximum DAG treewidth over

all possible acyclic orientations of H. We denote the DAG treewidth of D and H

by τ(D) and τ(H), respectively.

Bressan [34] gave an algorithm for solving the hom-cntH problem in bounded

degeneracy graphs.

Theorem 4.3.2 (Theorem 16 in [34]). Given an input graph G on m edges with

degeneracy κ and a pattern graph H on k vertices, there is an O(κkmτ(H) log n)

time algorithm for solving the hom-cntH problem.

50

4.4 LICL and Homomorphism Counting in Lin-

ear Time

We prove that the class of graphs with LICL 6 5 is equivalent to the class of

graphs with τ = 1.

Theorem 4.4.1. For a simple graph H, LICL(H) 6 5 if and only if τ(H) = 1.

By Theorem4.3.2, this implies that HomH(G) can be determined in near-linear

time when LICL(H) 6 5 and G has bounded degeneracy.

We first prove that, for a simple graph H, if LICL(H) is at most five, then

τ(H) = 1. This is discussed in Section 4.4.2. Then we prove the converse: if

LICL(H) is at least six, then τ(H) > 2. We take this up in Section 4.4.3.

Outline of the Proof Techniques. Before discussing the proofs in detail, we

provide a high level description of the proof techniques.

Fix an arbitrary acyclic orientation H→ of H. We use S to denote the set of

source vertices. We describe a recursive procedure to build a DAG tree decompo-

sition of width one, starting from a single source in S.

Note that property (2) in the definition of DAG tree decomposition (Defini-

tion 4.3.1) requires the union of nodes in the tree to cover all the source vertices

in S. So, we need to be careful, if we wish to use induction to construct the final

DAG tree decomposition. To this end, we relax the property (1) and (2) of DAG

tree decomposition and define a notion of partial DAG tree decomposition. In a

partial DAG tree decomposition with respect to a subset Sp ⊆ S, the nodes in the

tree are subsets of Sp and the union of the nodes cover the set Sp. The require-

ment of property (3) remains the same. The width of the tree is defined same as

before. We formalize this in Definition 4.4.5. Now, consider a subset Sr+1 ⊆ S of

size r+ 1. We show how to build a partial DAG tree decomposition of width one

51

for Sr+1, assuming there exists a partial DAG tree decomposition of width one for

any subset of S of size r.

Let x ∈ Sr+1 and S−x denote the set after removing the element x: S−x =

Sr+1 \ {x}. Let T−x be a partial DAG tree decomposition of width one for the set

S−x (such a tree exists by assumption). We identify a “good property” of the tree

T−x that enables construction of a width one partial DAG tree decomposition for

the entire set Sr+1. The property is the following: there exists a leaf node ` in

T−x connected to the node d ∈ T−x such that reachable(x) ∩ reachable(`) ⊆

reachable(d). We make this precise in Definition 4.4.7. Assume T−x has this

good property, and ` ∈ T−x be the leaf that enables T−x to posses the good

property. Then we first construct a width one partial DAG tree decomposition

T−` for the set S−` = Sr+1\{`} and after that add ` as a leaf node to the node d in

T−`. We prove that the resulting tree is indeed a valid width one partial DAG tree

decomposition for Sr+1(we prove this in Claim 4.4.9). To complete the proof, it

is now sufficient to show the existence of an element x ∈ Sr+1 such that a partial

DAG tree decomposition for T−x has the good property. This is the key technical

element that distinguishes graphs with LICL at most 5 from those with LICL at

least six.

We make a digression and discuss this key technical element further. We

consider a graph that captures certain reachability aspects of the source vertices

in H→. We define this as the unique rechability graph, URSp , for a subset of

the source vertices Sp ⊆ S. The vertex set of URSp is simply the set Sp. Two

vertices s1 and s2 in URSp are joined by an edge if and only if there exists a vertex

v ∈ V (H→) such that only s1 and s2 among the vertices in Sp, can reach v in

H→. We prove that, if the underlying undirected graph H has LICL(H) 6 5, then

the graph URSp , for any subset Sp ⊆ S, is acyclic. This is given in Lemma 4.4.3

52

in Section 4.4.1.

Now, coming back to the proof of Lemma 4.4.4, we show that there must exist

an element x ∈ Sr+1 such that a partial DAG tree decomposition for T−x has the

“good property”, as otherwise the unique reachability graph URSr+1 over the set

Sr+1 has a cycle. However, this contradicts LICL(H) 6 5 (Lemma 4.4.3). This is

established in Claim 4.4.10. This completes the proof of Lemma 4.4.4.

Now consider Lemma 4.4.11. Observe that, to prove this lemma, it is sufficient

to exhibit a DAG H→ of H with τ(H→) > 2. We first prove in Lemma 4.4.12

that if the the unique reachability graph URS(H→) has a triangle, then τ(H→) > 2.

Then, for any graph H with LICL(H) > 6, we construct a DAG H→ such that

the unique reachability graph URS(H→) has a triangle. It follows that τ(H) > 2.

4.4.1 Main Technical Lemma

In this section, we describe our main technical lemma. We define a unique

reachability graph for a DAG H→ over a subset of source vertices Sp ⊆ S(H→).

This graph captures a certain reachability aspect of the source vertices in Sp in

the graph H→. More specifically, two vertices s1 and s2 are joined by and edge

in URSp if and only if there exists a vertex v in V (H→) such that only s1 and s2

among the vertices in Sp, can reach v in H→.

Definition 4.4.2 (Unique reachability graph). Let H→ be a DAG of H with

source vertices S and Sp ⊆ S be a subset of S. We define a unique reachabil-

ity graph URSp(Sp, ESp) on the vertex set Sp, and the edge set ESp such that

there exists an edge e = {s1, s2} ∈ ESp , for s1, s2 ∈ Sp, if and only if the set

(reachableH→(s1) ∩ reachableH→(s2)) \ reachableH→(Sp \ {s1, s2}) is non-

empty.

We are interested in the existence of a cycle in URSp . We show that a cycle in

53

s3

v3,1

s1

v1,2

s2

v2,3

C ′
s3

s1 s2

URSp
Figure 4.1: Let Sp = {s1, s2, s3}. On the left, we give an example of a URSp

graph with a triangle. On the right, we give a possible example of the vertices
v1,2, v2,3, and v3,1 (vi,j is as defined in the proof of Lemma 4.4.3). C ′ forms an
induced cycle of length six in H.

URSp is closely related to an induced cycle in H, the underlying undirected graph

of H→. More specifically, we prove that if LICL of H is at most five, then URSp

must be acyclic for each subset Sp ⊆ S.

Lemma 4.4.3. Let H→ be a DAG of H with source vertices S and Sp ⊆ S be an

arbitrary subset of S. Let URSp(Sp, ESp) be the unique reachability graph for the

subset Sp. If LICL(H) 6 5, then URSp is acyclic.

Proof. We in fact prove a stronger claim. We show that if URSp has an `-

cycle, then LICL(H) > 2`. Consider an edge {si, sj} in the edge set ESp . Let

unique-reachable(si, sj) denote the set of vertices in H→ reachable from si

and sj both, but non-reachable from any other vertices in Sp. Let dist(s, t)

denote the length of the shortest directed path from s to t in H→. We set

dist(s, t) = ∞, if t is not reachable from s. Now, let vi,j be the vertex in the

unique-reachable(si, sj) set with the smallest total distance (directed) from si

and sj (breaking ties arbitrarily). Formally, vi,j = arg minv dist(si, v) + dist(sj, v),

where v ∈ unique-reachable(si, sj).

Let C = s1, s2, . . . , s`, s1(= s`+1) be an `-cycle in URSp . Then using C and the

vertices vi,i+1, for i ∈ [`] (abusing notation, we take v`,`+1 = v`,1), we construct

54

a cycle of length at least 2` in H. Denote by ps→v the directed path from a

source vertex s ∈ Sp to a vertex v ∈ H→. Intuitively, inserting the paths psi→vi,i+1

and psi+1→vi,i+1 between the source si and si+1, for each i ∈ [`] (again, taking

s`+1 = s1), induces a cycle of length at least 2` in H. See Figure 4.1 for a simple

demonstration of this. We make this formal below.

Let V (p) denote the set of vertices of a path p. Any edge between vertices

in V (psi→vi,i+1) other than the edges of psi→vi,i+1 , results in either a path between

si and vi,i+1 shorter than dist(si, vi,i+1) or a directed cycle in H→. Thus, the

edges of psi→vi,i+1 are the only edges between vertices in V (psi→vi,i+1). It is easy

to see that any edge between V (psi→vi,i+1) \ {vi,i+1} and V (psi+1→vi,i+1) \ {vi,i+1}

result in a vertex v′i,i+1 where dist(si, v′i,i+1) + dist(si+1, v
′
i,i+1) < dist(si, vi,i+1) +

dist(si+1, vi,i+1), therefore no such edges exist. Also, any edge from a vertex in

reachableH→(Sp\{si, si+1}) to a vertex in V (psi→vi,i+1) or V (psi+1→vi,i+1) implies

that vi,i+1 ∈ reachableH→(Sp\{si, si+1}), which is not true by definition. Hence,

there are no such edges either.

We use E(p) to denote the set of edges of a path p. For convenience, we assume

`+ 1 in the index is to be treated as 1 instead. Let

VC′ =
⋃
p∈P

V (p), EC′ =
⋃
p∈P

E(p),

where P =
⋃
i∈[`]
{psi→vi,i+1 , psi+1→vi,i+1}.

Now, it is easy to see that the graph induced by the set VC′ is indeed an induced

cycle C ′. There are 2` paths in P , and each path p ∈ P has at least two vertices.

As we showed above, these paths do not share edges. Thus the length of C ′ is at

least 2`, and LICL(H) > 2`. Considering the contrapositive, we deduce that if

LICL(H) 6 5, then URSp is acyclic.

55

4.4.2 DAG Treewidth for Graphs with LICL at most Five

In this section, we prove the following lemma.

Lemma 4.4.4. For every simple graph H, if LICL(H) 6 5 then τ(H) = 1.

We introduce some notation. We start with defining the notion of partial

DAG tree decomposition. In this definition, we consider a tree decomposition

with respect to a subset of the source vertices of the original DAG.

Definition 4.4.5 (partial DAG tree decomposition). Let H→ be a DAG with

source vertices S. For a subset Sp ⊆ S, a partial DAG tree decomposition of H→

with respect to Sp is a tree T = (B, E) with the following three properties.

1. Each node B ∈ B (referred to as a “bag”) is a subset of the sources in Sp:

B ⊆ Sp.

2. The union of the nodes in T is the entire set Sp:
⋃
B∈B B = Sp.

3. For all B,B1, B2 ∈ B, if B is on the unique path between B1 and B2 in T ,

then we have reachable(B1) ∩ reachable(B2) ⊆ reachable(B).

The partial DAG treewidth of T is maxB∈B |B|. Abusing notation, we use τ(T)

to denote the partial DAG treewidth of T .

Observe that, when Sp = S, we recover the original definition of DAG tree

decomposition. Our proof strategy is to show by induction on the size of the

subset Sp that there exists a partial DAG tree decomposition of width one for

each Sp ⊆ S. In particular, when Sp = S, it follows that there exists a DAG tree

decomposition for H→ of width one.

We next define intersection-cover for a pair of vertices, based on the third

property of the DAG tree decomposition. We generalize this notion to a subset

56

of source vertices Sp ⊆ S and define a notion of Sp-cover. These notions will

be useful in identifying a suitable source vertex in an existing partial DAG tree

decomposition to attach a new node to it.

Definition 4.4.6 (intersection-cover and Sp-cover). Let H→ be a DAG

with sources S. Let s1 and s2 be a pair of sources in S. We call a source s ∈ S

an intersection-cover of s1 and s2 if reachable(s1) ∩ reachable(s2) ⊆

reachable(s). Furthermore, assume Sp ⊆ S is a subset of the sources S. We

call a source s ∈ S, a Sp-cover of s1 ∈ S if for each source s2 ∈ Sp, s is an

intersection-cover for s1 and s2.

We now introduce one final piece of notation. Assume Sp ⊂ S be a subset of

the source vertices in the DAG H→. Let x be some source vertex in S that does

not belong to Sp. Let TSp denote a partial DAG tree decomposition of width one

for Sp. Now, consider a leaf node ` in TSp . Let d denote the only node in TSp that

is adjacent to `. We claim that if d is an intersection-cover for ` and x, then

we can construct a partial DAG tree decomposition for Sp ∪{x} of width one (we

will make this more formal and precise in the following paragraph). We identify

such source and partial DAG tree decomposition pair (x, TSp) as a good-pair.

Definition 4.4.7 (good-pair). Let x ∈ S(H→) be a source vertex and TSp be a

partial DAG tree decomposition of width one for Sp ⊂ S(H→) where x /∈ Sp. We

call the pair (x, TSp) a good-pair if there exists a leaf node ` ∈ TSp connected to

the node d ∈ TSp such that d is an intersection-cover for x and `.

We prove a final technical lemma that provides insight into the process of

adding a new source vertex to an existing partial DAG tree decomposition of

width one.

57

Lemma 4.4.8. Let H→ be a DAG of H with sources S and Sp ⊂ S be a subset of

S. Assume T is a partial DAG tree decomposition for Sp with τ(T) = 1. Consider

a source s ∈ S such that s /∈ Sp. If d ∈ Sp is a Sp-cover of s, then connecting s

to d in T as a leaf results in a tree T ′ that is a partial DAG tree decomposition

for Sp ∪ {s}. Furthermore, τ(T ′) = 1.

Proof. We first prove that T ′ is a partial DAG tree decomposition for Sp ∪ {s}.

The properties (1) and (2) of partial DAG tree decomposition (see Definition 4.4.5)

trivially hold for T ′. If T has one or two nodes, then by definition of Sp-cover,

T ′ satisfies property (3). So we assume T has at least 3 nodes.

Note that T and T ′ are identical barring the leaf node s. Hence, for any three

nodes s1, s2, and s3 in T ′ with s /∈ {s1, s2, s3}, property (3) of partial DAG tree de-

composition (Definition 4.4.5) holds. Now, consider s with two other nodes s1 and

s2 in T ′ where s1 is on the unique path between s and s2. If s1 = d, then property

(3) holds as d is a Sp-cover of s. So assume s1 6= d. But then, s1 is on the unique

path between d and s2 (by construction of T ′). Since property (3) holds for d, s1,

and s2 in T , we have reachable(d) ∩ reachable(s2) ⊆ reachable(s1). We

also have reachable(s)∩reachable(s2) ⊆ reachable(d) as d is a Sp-cover

of s. Hence, reachable(s) ∩ reachable(s2) ⊆ reachable(s1). Therefore,

property (3) holds. Thus, T ′ is a partial DAG tree decomposition of Sp ∪{s}. As

τ(T) = 1, it follows immediately from the construction that τ(T ′) = 1.

We now have all the ingredients to prove Lemma 4.4.4. For the sake of com-

pleteness, we restate the lemma.

Lemma 4.4.4. For every simple graph H, if LICL(H) 6 5 then τ(H) = 1.

Proof. The DAG treewidth of a simple graph H is defined as the maximum DAG

treewidth of any DAG H→ obtained from H. So, we prove that τ(H→) = 1 for

58

each DAG H→ of H. In the rest of the proof, we fix a DAG of H, and call it H→.

Let S(H→) denote the set of all source vertices in H→. When H→ is clear from

the context, we simply use S.

Let Sp ⊆ S denote a subset of S. We prove by induction on the size of the

subset Sp that there exists a partial DAG tree decomposition (Definition 4.4.5)

of width one for each Sp ⊆ S. In particular, when Sp = S, it follows that there

exists a DAG tree decomposition for H→ of width one.

The base case of |Sp| = 1 is trivial: put the only source in Sp in a bag B as the

only node in the partial DAG tree decomposition for H→. Similarly, for |Sp| = 2,

put the two sources in two separate bags and connect them by an edge in the

partial DAG tree decomposition for H→. The resulting tree is a partial DAG tree

decomposition of width one. Now assume that, it is possible to build a partial

DAG tree decomposition of width one for any subset Sp ⊂ S where |Sp| 6 r, and

1 6 r < |S|. We show how to construct a partial DAG tree decomposition of

width one for any subset Sp ⊆ S where |Sp| = r + 1 for r > 2.

Fix a subset Sr+1 ⊆ S of size r+1. Consider an arbitrary source x ∈ Sr+1. By

induction hypothesis, we can construct a partial DAG tree decomposition of width

one for the set S−x = Sr+1\{x}. We call the tree T−x. Now recall that, we call the

pair (x, T−x) a good-pair if there exists a leaf node ` ∈ T−x connected to the node

d ∈ T−x such that d is an intersection-cover for x and ` (see Definition 4.4.7).

We argue the existence of a good-pair (x, T−x) and give a constructive process to

find a width one partial DAG tree decomposition of Sr+1 from such a good-pair

(x, T−x).

A good-pair leads to a partial DAG tree decomposition of width one. We

first show that if there exists a source x ∈ Sr+1 and a width one partial DAG tree

decomposition T−x for S−x = Sr+1 \ {x} such that (x, T−x) is a good-pair, then

59

there exists a width one partial DAG tree decomposition for Sr+1. In fact, we

give a simple constructive process to find such a partial DAG tree decomposition:

construct a width one partial DAG tree decomposition T−` for S−` = Sr+1 \ {`},

and then connect ` as a leaf to d in T−`.

Claim 4.4.9. Let x ∈ Sr+1 be a source vertex and T−x be a width one partial

DAG tree decomposition for S−x = Sr+1 \ {x} such that (x, T−x) is a good-pair.

Then, there exists a partial DAG tree decomposition T for Sr+1 with τ(T) = 1.

Proof. Since (x, T−x) is a good-pair, there exists a leaf node ` ∈ T−x connected

to the node d ∈ T−x such that d is an intersection-cover for x and `. We

build a partial DAG tree decomposition of width one for S−` = Sr+1 \ {`} (such a

tree exists by induction hypothesis), and then add ` as a leaf node to the node d.

We prove that the resulting tree, denoted as T , is partial DAG tree decomposition

for Sr+1 with τ(T) = 1.

Since ` is only connected to d in T−x, d is a S−x-cover of `. Also, d is

an intersection-cover of ` and x, so d is a Sr+1-cover of `. Therefore, by

applying Lemma 4.4.8, it follows that T is a partial DAG tree decomposition of

Sr+1 with τ(T) = 1.

Existence of a good-pair. We have shown how to construct a partial DAG tree

decomposition for the set Sr+1 if there exists a good-pair (x, T−x) where x is a

source in Sr+1 and T−x is a width one partial DAG tree decomposition for S−x.

We now show that for any set Sr+1, there always exists a good-pair (x, T−x).

Claim 4.4.10. There exists a vertex x ∈ Sr+1 and a width one partial DAG tree

decomposition T−x for S−x = Sr+1 \ {x}, such that (x, T−x) is a good-pair.

Proof. Assume for contradiction, the claim is false. Consider the unique reacha-

bility graph on the vertex set Sr+1, denoted by URSr+1(Sr+1, ESr+1) (see Defini-

60

tion 4.4.2). Let x ∈ Sr+1 be an arbitrary source vertex. By assumption, (x, T−x) is

not a good-pair. So, for each leaf node ` ∈ T−x connected to the node d ∈ T−x, d

is not an intersection-cover for x and `. Then, there exists a vertex v in H→,

such that v ∈ reachable(x) ∩ reachable(`), but v /∈ reachable(d). On the

other hand, by construction, d is a S−x-cover for ` (d is the only node connected

to ` in T−x). Hence, v is reachable from none of the source vertices in S−x, other

than `. Therefore, the edge {x, `} ∈ ESr+1 . Now, T−x has at least two leaves,

so the degree of the source vertex x in URSr+1 is at least 2. The same argument

holds for each x ∈ Sr+1. Hence, the degree of each vertex in URSr+1 is at least

two. Now |Sr+1| > 3 (recall r > 2), thus there exists a cycle C in URSr+1 of length

at least 3. By applying Lemma 4.4.3, we have LICL(H) > 6. But LICL(H) 6 5,

so this leads to a contradiction. Hence, the claim is true.

We proved by induction that for any non-empty subset Sp ⊆ S, there exist a

partial DAG tree decomposition for Sp with width one. In the case when Sp = S,

the partial DAG tree decomposition is a DAG tree decomposition for H→. This

completes the proof of Lemma 4.4.4.

4.4.3 DAG Treewidth for Graphs with LICL at least Six

In this section, we prove the following lemma.

Lemma 4.4.11. For every simple graph H, if LICL(H) > 6 then τ(H) > 2.

We first discuss the simple case of the 6-cycle. Note that, to prove that τ(H) >

2, it suffices to show that there exists a DAG H→ of H such that τ(H→) > 2. Let

H→ be a DAG of H as shown in the middle figure in Fig. 4.2. Let S = {s1, s2, s3}

be the set of sources in H→. Consider the unique reachability graph URS(S,ES),

shown on the right in Fig. 4.2. The graph URS is a triangle: t1 is not reachable

61

H
s3

t2

s1

t3

s2

t1

H→
s3

s1 s2

URS(H→)

Figure 4.2: Let H be a six cycle. In the middle figure, we show the DAG H→

of H for which τ(H→) > 2. On the right, we show the UR graph corresponding
to H→. It is a triangle as t1 is only reachable from {s2, s3}, t2 is only reachable
from {s1, s3}, and t3 is only reachable from {s1, s2}.

from s1, but reachable from s2 and s3, and so on. In any DAG tree decomposition

T of H→ with width one, all source vertices are a vertex of T by themselves. So

at least one of s1, s2, or s3 (say s1) would be on the unique path between the other

two. But this would violate property (3) of DAG tree decomposition. It follows

that τ(H) > 2. In this case, it is not difficult to argue that τ(H) = 2.

We formalize this intuition to prove in the following lemma: if the URS graph

of a DAG H→ with source vertices S has a triangle in it, then it must the case

that τ(H→) > 2. Then, to prove τ(H) > 2 for a graph H, it is sufficient to show

the existence of a DAG H→ such that the corresponding URS(H→) has a triangle.

Lemma 4.4.12. Let H→ be a DAG of H with source vertices S and URS(S,ES) be

the unique reachability graph for the set S. If URS has a triangle, then τ(H) > 2.

Proof. Assume for contradiction, τ(H→) = 1 and T be a DAG tree decomposition

of width one. Let {s1, s2, s3} be a triangle in the graph URS. As T is a DAG

tree decomposition with width one, all source vertices in S must be a node by

themselves in T . Observe that, there must exists a node s ∈ T that is between

the unique path for a pair of nodes in {s1, s2, s3}. As otherwise, these three

nodes are all pairwise connected by an edge forming a triangle in T . Wlog,

62

assume s is on the unique path between s1 and s2 in T . Since, {s1, s2} is an

edge in URS, by definition, there exists a vertex ts1,s2 ∈ V (H→), such that t ∈

reachableH→(s1) ∩ reachableH→(s2), but t /∈ reachableH→(s). But, this

violates the property (3) of DAG tree decomposition in Definition 4.3.1. So such

a tree T cannot exists and hence, τ(H→) > 2. Therefore, τ(H) > 2.

We are now ready to prove the main lemma. We restate the lemma for com-

pleteness.

Lemma 4.4.11. For every simple graph H, if LICL(H) > 6 then τ(H) > 2.

Proof. Let LICL(H) = r, where r > 6 and r = 3` + q, for some ` > 2 where

q ∈ {0, 1, 2}. Assume C = v1, v2, . . . , vr, v1 is an induced cycle of length r in H.

We construct a DAG H→ as follows.

Consider an edge e = (u, v) in H. Assume only one of the end point does

not belong to V (C) — say u /∈ V (C). Then we orient the edge from v to u.

Now consider the case when both u, v /∈ V (C). We orient such edges in an

arbitrary manner ensuring the resulting orientation is acyclic. We now describe

the orientation of the edges on the r-cycle C. We mark three vertices s1, s2 and

s3 in C as sources that are at least distance two apart from each other. Wlog,

assume s1 = v1, s2 = v`+1, and s3 = v2`+1. Now we mark three vertices t1, t2, and

t3 as sinks such that t1 is between s1 and s2, t2 is between s2 and s3, and t3 is

between s3 and s1 in the cycle C. Again, wlong assume t1 = v2, t2 = v`+2, and

t3 = v2`+2. Finally, orient the edges in C towards the sink vertices and away from

the sources. This completes the description of H→.

Now let S denote the set of source vertices in H→. Consider the unique

reachability graph URS(S,ES). We claim that URS includes a triangle. Indeed,

we show that {s1, s2, s3} forms a triangle in URS. We first argue the existence of

the edge {s1, s2} ∈ ES. The vertex t1 is reachable from s1 and s2, but not from

63

s3. Since all the edges that are not part of the cycle C, are oriented outwards

from the vertices in C, no other source vertices in S can reach t1 in H→. Hence,

{s1, s2} ∈ ES. Similarly, we can argue the existence of the edges {s2, s3} and

{s1, s3} in ESp . Applying Lemma 4.4.12, it follows that τ(H) > 2.

4.5 LICL and Homomorphism Counting Lower

Bound

In this section, we prove our main lower bound result. We show that for a

pattern graph H with LICL(H) > 6, the hom-cntH problem does not admit

a linear time algorithm in bounded degeneracy graphs, assuming the Triangle

Detection Conjecture (Conjecture 2.2.3). We state our main theorem below.

Theorem 4.5.1. Let H be a pattern graph on k vertices with LICL(H) > 6. As-

suming the Triangle Detection Conjecture, there exists an absolute con-

stant γ > 0 such that for any function f : N× N → N, there is no (expected)

f(κ, k)o(m1+γ) algorithm for the hom-cntH problem, where m and κ are the

number of edges and the degeneracy of the input graph, respectively.

Outline of the Proof. We first present an outline of our proof; the complete

proof is discussed in Section 4.5.1. Let tri-cnt denote the problem of counting

the number of triangles in a graph. We prove the theorem by a linear time Turing

reduction from the tri-cnt problem to the hom-cntH problem. Assuming the

Triangle Detection Conjecture, any algorithm (possibly randomized) for

the tri-cnt problem requires ω(m) time, where m is the number of edges in the

input graph. Given an input instance G of the tri-cnt problem, we construct

a graph GH with bounded degeneracy and O(|E(G)|) edges. We show how the

64

number of triangles in G can be obtained by counting specific homomorphisms of

H in GH .

Let LICL(H) = r and C be one of the largest induced cycles in H; let V (C)

denotes its vertices. We now describe the construction of the graph GH . The

graph GH has two main parts: (1) the fixed component, denoted as Gfixed (this

part is independent of the input graph G and only depends on the pattern graph

H) and (2) the core component, denoted as Gcore. Additionally, there are edges

that connect these two components, denoted by Ebridge. Let HC-excluded denote

the graph after we remove V (C) from H. More formally, HC-excluded = H−V (C).

The fixed component Gfixed is a copy of HC-excluded.

Next, we give an intuitive account of our construction. We discuss the role of

Gcore and how its connection to Gfixed through Ebridge ensures that the number

of triangles in G can be obtained by counting homomorphisms of H. Then we

give an overview of the construction.

Intuition behind the Construction. The main idea is to construct Gcore and

Ebridge in such a way that each triangle in G transforms to an r-cycle in Gcore,

that then composes a match of H together with Gfixed (recall that Gfixed is a copy

of HC-excluded). To this end, we design Gcore in r parts, ensuring the following

properties hold for each r-cycle in Gcore that contains exactly one vertex in each

of these r parts: (1) It composes a match of H together with Gfixed and (2)

It corresponds to a triangle in G. Let P ′ denote the partition of V (Gcore) into

these r parts. Further, assume we construct GH in a way that, each match of H

that contains the vertices of Gfixed and exactly one vertex in each set V ∈ P ′,

corresponds to one of the r-cycles described above. It is now easy to see that if

we can count these matches of H, we can then obtain the number of the described

r-cycles in Gcore and hence the number of triangles in G.

65

Consider a partition P of V (GH) where |P| = k. Assume there is a linear time

algorithm ALG for hom-cntH in bounded degeneracy graphs. Then, Lemma4.5.3

proves that there exists a linear time algorithm that, using ALG, counts the

matches of H in G that include exactly one vertex in each set V ∈ P .These

matches are called P-matches of H, as we define formally later in Definition 4.5.2.

Also, each r-cycles in Gcore that contain exactly one vertex in each set V ∈ P ′ is

a P ′-match of C. Now, we define the partition P of V (GH) as follows; P includes

each set in P ′ and each of the k − r vertices in Gfixed as a set by itself.

Overall, by construction of GH , we can get the number of triangles in G by

the number of P ′-matches of C in Gcore. Further, we can obtain the number of

P ′-matches of C in Gcore by the number of P-matches of H in GH that we count

using ALG. The following restates the desired properties of GH we discussed,

more formally.

(I) There is a bijection between the set of P-matches of H in GH and the set

of P ′-matches of C in Gcore.

(II) The number of triangles in G is a simple linear function of the number of

P ′-matches of C in Gcore.

Next, we give an overview of the construction of GH for r = 6. We prove that

properties (I) and (II) hold for our construction in the general case in Lemma4.5.6

and Lemma4.5.7, respectively.

Overview of the Construction. In what follows, we give an overview of Gfixed,

Gcore, and Ebridge. For the ease of presentation, we assume r = 6.

(1) Gfixed is a copy of HC-excluded. We denote the vertex set in Gfixed as

Vfixed-set. Observe that, Gfixed does not depend on the input graph G.

66

(2) The core component Gcore consists of two set of vertices: Vcore-set and

Vauxiliary-set. We first discuss the sets Vcore-set and Vauxiliary-set, and then

introduce the edge set E(Gcore).

(a) Vcore-set consists of three set of vertices, V1 = {w1, . . . , wn}, V2 =

{x1, . . . , xn}, and V3 = {y1, . . . , yn} — each of size n (recall |V (G)| =

n). The vertices in each of these sets correspond to the vertices in

V (G) = {u1, . . . , un}.

(b) The construction of Vauxiliary-set depends on r. For r = 6, it consists

of three sets, denoted as V1,2, V2,3, and V1,3 — each of size 2m (recall

|E(G)| = m). The vertices in each of these sets corresponds to the

edges in E(G). We index them using e, for each e ∈ E(G): V1,2 =

{v1,2
e , v2,1

e }e∈E(G), and so on. The role of these sets will become clear as

we describe the edges of Gcore.

(c) Consider an edge e = {ui, uj} ∈ E(G) and the pair V1 and V2. We

connect the vertex wi ∈ V1 to the vertex xj ∈ V2 by a 2-path via the

vertex v1,2
e ∈ V1,2. Similarly, we connect the vertex wj to the vertex

xi by a 2-path via the vertex v2,1
e . In particular, we add the edges

{wi, v1,2
e } and {v1,2

e , xj}, and the edges {wj, v2,1
e } and {v2,1

e , xi} to the

set E(Gcore). We repeat the process for the pairs (V2, V3) and (V1, V3)

for each edge e ∈ E(G).

(3) We now describe the edge set Ebridge that serves as connections between

Gfixed and Gcore. Let σbridge be a bijective mapping between the sets V (C)

and {V1, V2, V3, V1,2, V2,3, V1,3}; σbridge : V (C) → {V1, V1,2, V2, V2,3, V3, V1,3}.

For each edge e = {u, v} ∈ E(H) such that u ∈ V (C) and v /∈ V (C), we

do the following. Let zv ∈ Vfixed-set denote the vertex corresponding to the

67

vertex v (recall Gfixed-set is a copy of HC-excluded). We connect zv to all the

vertices in the set σbridge(u) and add these edges to Ebridge.

Note that, here P ′ = {V1, V1,2, V2, V2,3, V3, V1,3}. Before diving into the details

of deriving the triangle counts in G, we first take an example pattern graph H

to visually depict the constructed graph GH (see Figure 4.3) and discuss why

properties (I) and (II) hold in our construction.

An Illustrative Example. Let H be the graph as shown in Figure 4.3a. In this

example, LICL(H) = 6. Let C = a3, a4, a5, a6, a7, a8, a3 be the induced 6-cycle in

H. We demonstrate the constructed graph GH in Figure 4.3b. We now discuss

the various components of GH .

(1) The graph Gfixed is shown by the red oval. The vertices z1 and z2 compose

Vfixed-set, where z1 corresponds to a1 and z2 corresponds to a2.

(2) The graph Gcore is shown by the blue oval. For each edge e = {ui, uj} ∈

E(G), (for some input graph G, which is not shown in the figure), we add

a total of six 2-paths: two between each pair of sets from {V1, V2, V3}. For

instance, between the set V1 and V2 these 2-paths are as follows: {wi, v1,2
e , xj}

and {wj, v2,1
e , xi}. The vertices wi, wj belong to V1; xi, xj belong to V2; and

v1,2
e , v2,1

e belong to V1,2.

(3) Finally we describe the edge set Ebridge (the edges in violet). We consider

the following bijective mapping σbridge: σbridge(a3) = V1, σbridge(a4) = V1,2,

σbridge(a5) = V2, σbridge(a6) = V2,3, σbridge(a7) = V3, σbridge(a8) = V1,3.

Now consider the edge {a3, a1} ∈ E(G); a3 ∈ V (C) and a1 /∈ V (C). So

we connect z1 (the vertex corresponding to a1) to each vertex in the set

σbridge(a3) = V1. We repeat the same process for each edge {u, v} in E(H)

where u ∈ V (C) and v /∈ V (C).

68

a1 a2

a3

a4

a5 a6

a7

a8

HC-excluded

(a) The pattern graph H

z1 z2

V1
V1,2

V2
V2,3

V3V1,3

Gcore

Gfixed
Ebridge

(b) The constructed graph GH . In Gcore, we only
depict six edges corresponding to a triangle in G
(there would be six more edges corresponding to the
same triangle, that we do not show here). Also, we
only depict the vertices relevant to the triangle.

Figure 4.3: GH constructed for an example pattern graph H

Observe that in this example, P = {{z1}, {z2}, V1, V1,2, V2, V2,3, V3, V1,3}. It is

easy to see that Ebridge connects Gcore to Gfixed, such that each 6-cycle in Gcore

compose a match of H together with Gfixed. Each P-match of H is actually an

induced match as the only edges between its vertices in GH are the edges that

correspond to the match. Therefore, in this example, each P-match of H in GH

include a 6-cycle in Gcore that is actually a P ′-match of C. Thus, property (I)

holds.

It is not difficult to see that a triangle in G introduces a total of six many

6-cycle in Gcore that are P ′-matches of C in Gcore. The converse follows as each

P ′-match of C, which is a 6-cycle in Gcore, must contain exactly one vertex from

each of the three sets in each of Vcore-set and Vauxiliary-set. So, we could obtain

the number of triangles in G by dividing the number of P ′-matches of C in Gcore

by six. Thus, property (II) holds.

Deriving The Triangle Counts in G. So far, we have shown that properties (I)

69

and (II) hold in GH for our construction. Therefore, the number of P-matches

of H in GH reveals the number of triangles in G. However, we are interested

in utilizing the homomorphism count of H to derive the triangle count in G.

Indeed, we obtain the number of P-matches of H in GH by carefully looking at

“restricted” homomorphisms from H to G. One crucial property of the graph GH

that we will require is bounded degeneracy. In fact, our construction of the graph

GH ensures that it has constant degeneracy irrespective of the degeneracy of G

(we will formally prove this later in Lemma 4.5.5).

Let ALG be an algorithm for the hom-cntH problem, that runs in f(κ, k) ·

O(m) time for some explicit function f , where m and κ are the number of edges

and degeneracy of the input graph, respectively. Then, we can use ALG to count

the homomorphisms from H to any subgraph of GH in time f(κ(GH), k) · O(m).

Note that, here we use the fact that for any subgraph G′H of GH , κ(G′H) 6 κ(GH).

We now solve the final missing piece of the puzzle: how to count the number

of P-matches of H in GH using ALG? We present a two step solution to this

question. First, we count the number of “P restricted" homomorphisms, denoted

by P-homomorphism and defined in Definition 4.5.2, from H to GH by running

ALG on carefully chosen subgraphs of GH . Intuitively, a “P restricted" homo-

morphism is a homomorphism from H to GH that involves at least one vertex in

each part of P . Second, we use the count from the first step to derive the number

of P-matches of H in GH . We present this in Lemma 4.5.3.

We now formally define P-match and P-homomorphism.

Definition 4.5.2 (P-match and P-homomorphism). Let P = {V1, . . . , Vk} be a

partition of the vertex set V (G) of the input graph G where |V (H)| = k for the

pattern graph H. Further assume |Vi| > 1 for each i ∈ [k]. Let GH-match be a

subgraph of G such that GH-match is a match of H. We call GH-match a P-match,

70

if it includes exactly one vertex from each set Vi in P : |V (GH-match) ∩ Vi| = 1

for each i ∈ [k]. Let π : V (H) → V (G) be a homomorphism from H to G.

We call π a P-homomorphism, if the image of π is non-empty in each set Vi:

|{v : π(u) = v for u ∈ V (H)} ∩ Vi| > 1 for each i ∈ [k].

In the following lemma, we prove that it is possible to count the number of

P-matches of H in GH by running ALG on suitably chosen 2k many subgraphs

of GH .

Lemma 4.5.3. Assume that ALG is an algorithm for the hom-cntH problem that

runs in time O(mf(κ, k)) for some function f , where m = E(G) and κ = κ(G)

for the input graph G, and k = V (H). Let P = {V1, . . . , Vk} be a partition of

V (G) with |Vi| > 1 for each i ∈ [k]. Then, there exists an algorithm that counts

the number of P-match of H in G with running time O(2k ·mf(κ, k)).

Proof. Let F1,F2, . . . ,F2k−1 be the non-empty subfamilies of the partition P . Let

G1, G2, . . . , G2k−1 be the subgraphs of G where Gi is induced on the vertex set

V (G) \ (⋃S∈Fi S), for i ∈ [2k − 1]. Note that a homomorphism from H to any

subgraphs Gi, for i ∈ [2k − 1], is also a homomorphism from H to G. Since

each Gi is a subgraph of G, the degeneracy κ(Gi) 6 κ. Then, ALG can count

homomorphisms from H to any Gi in time O(mf(κ, k)). Using the inclusion-

exclusion principle, we can obtain the number of homomorphisms from H to

G that are also a homomorphism from H to at least one of the subgraphs in

{G1, G2, . . . , G2k−1} in O(2k · mf(κ, k)). Hence, we can obtain the number of

P-homomorphisms from H to G as follows,

HomH(G)−
∑

16i62k−1
(−1)|Fi|−1HomH(Gi) .

Note that if a homomorphism from H to G does not include any vertex in a set

71

Vi in P , then it is also a homomorphism from H to at least one of the subgraphs

in {G1, G2, G2k−1}. Thus, we do not count such a homomorphism from H to G.

Since k = |V (H)|, P-homomorphisms of H in G are actually embeddings of H

in G that involve exactly one vertex in each part of P . Observe that each such

embedding of H in G corresponds to a P-match of H in G. For each match

GH-match of H in G, there are |Aut(H)| embeddings of H in G that map H to

GH-match. Thus, by dividing the number of P-homomorphisms from H to G by

|Aut(H)|, we obtain the number of P-matches of H in G in O(2k · mf(κ, k))

time.

4.5.1 Proof of Main Theorem

We now present the details of the construction of GH for the general case and

prove Theorem4.5.1.

Proof of Theorem 4.5.1. We present a linear time Turing reduction form the prob-

lem of tri-cnt to the hom-cntH problem in bounded degeneracy graphs. Let

G be the input instance of the tri-cnt problem where V (G) = {u1, . . . , un} and

|E(G)| = m. First, we construct a graph GH based on G and H such that GH

has bounded degeneracy and O(m) edges.

Construction of GH . Let LICL(H) = r where r > 6; and let V (H) =

{a1, a2, . . . , ak}, where ak−r+1, ak−r+2, . . . , ak, ak−r+1 is an induced r-cycle C. Let

HC-excluded denote H − V (C). GH has two main parts, Gfixed and Gcore. These

two parts are connected by the edge set Ebridge. Gfixed is a copy of HC-excluded

and has the vertex set Vfixed-set = {z1, z2, . . . , zk−r}. zi ∈ Vfixed-set corresponds to

ai in HC-excluded for i ∈ [k − r]. Thus, zi, zj ∈ Vfixed-set are adjacent iff {ai, aj} is

an edge in HC-excluded.

72

Gcore contains two sets of vertices, Vcore-set, and Vauxiliary-set. Vertices in

Vcore-set correspond to vertices in V (G), and vertices in Vauxiliary-set correspond

to the edges in E(G). Vcore-set consists of three copies of V (G) without any

edges inside them. More precisely, Vcore-set is composed of three sets of vertices

V1 = {w1, . . . , wn}, V2 = {x1, . . . , xn}, and V3 = {y1, . . . , yn}. For i ∈ [n], vertices

wi ∈ V1, xi ∈ V2, and yi ∈ V3 correspond to ui ∈ V (G). There are no edges inside

Vcore-set. We describe Vauxiliary-set next.

Vauxiliary-set corresponds to the vertices of the paths of length r/3 that we

add between V1, V2, and V3. Let r = 3` + q, for some ` > 2 and q ∈ {0, 1, 2}.

The vertices in Vauxiliary-set consists of the sets of vertices V1,2, V2,3, and V1,3. For

each edge e ∈ E(G) and each pair in {V1, V2, V3}, we add two sets of vertices to

Vauxiliary-set. Next, we describe the vertices we add to V1,2, V2,3, and V1,3 for an

edge e ∈ E(G). For the pair V1 and V2, we add

V 1,2
e =

{
v1,2
e,1 , . . . , v

1,2
e,`−1

}
and V 2,1

e =
{
v2,1
e,1 , . . . , v

2,1
e,`−1

}

to V1,2. For the pair V2 and V3, we add

V 2,3
e =

{
v2,3
e,1 , . . . , v

2,3
e,`−1+bq/2c

}
and V 3,2

e =
{
v3,2
e,1 , . . . , v

3,2
e,`−1+bq/2c

}

to V2,3. And finally, for the pair V1 and V3, we add

V 1,3
e =

{
v1,3
e,1 , . . . , v

1,3
e,`−1+b(q+1)/2c

}
and V 3,1

e =
{
v3,1
e,1 , . . . , v

3,1
e,`−1+b(q+1)/2c

}

73

to V1,3. The following defines V1,2, V2,3, and V1,3 more formally. For i, j ∈ {1, 2, 3}

where i < j,

Vi,j =
⋃

e∈E(G)
V i,j
e ∪ V j,i

e .

This completes the description of V (Gcore). We describe E(Gcore) next.

The edges inside Gcore stitch vertices in Vauxiliary-set to form paths of length

r/3 between each pair in {V1, V2, V3}. E(Gcore-set) consists of three sets of edges,

E1,2, E2,3, and E1,3. For each edge in G and each pair in {V1, V2, V3}, we add

two sets of edges to Gcore. We describe the edges we add to Gcore for each edge

e = {ui, uj} ∈ E(G). For the pair V1 and V2, we add

E1,2
e =

{
(wi, v1,2

e,1), (v1,2
e,1 , v

1,2
e,2), . . . , (v1,2

e,`−1, xj)
}

and E2,1
e =

{
(wj, v2,1

e,1), (v2,1
e,1 , v

2,1
e,2), . . . , (v2,1

e,`−1, xi)
}

to E1,2. Edges in E1,2 form `-paths between V1 and V2 with V1,2 as interior vertices.

For the pair V2 and V3, we add

E2,3
e =

{
(xi, v2,3

e,1), (v2,3
e,1 , v

2,3
e,2), . . . , (v2,3

e,`−1+bq/2c, yj)
}

and E3,2
e =

{
(xj, v3,2

e,1), (v3,2
e,1 , v

3,2
e,2), . . . , (v3,2

e,`−1+bq/2c, yi)
}

to E2,3. Edges in E2,3 compose `+ bq/2c-paths between V2 and V3, by joining the

vertices in V2,3. And, for the pair V1 and V3, we add

E1,3
e =

{
(wi, v1,3

e,1), (v1,3
e,1 , v

1,3
e,2), . . . , (v1,3

e,`−1+b(q+1)/2c, yj)
}

and E3,1
e =

{
(wj, v3,1

e,1), (v3,1
e,1 , v

3,1
e,2), . . . , (v3,1

e,`−1+b(q+1)/2c, yi)
}

74

to E1,3. The edge set E1,3 joins vertices in V1,3 to form `+b(q+1)/2c-paths between

V1 and V3. We can describe the three sets of edges that compose E(Gcore) more

formally as follows. For i, j ∈ {1, 2, 3} where i < j,

Ei,j =
⋃

e∈E(G)
Ei,j
e ∪ Ej,i

e .

Now, we describe the edge set Ebridge that connects Gfixed and Gcore. First,

we partition V1,2, V2,3, and V1,3 based on distance to V1, V2, and V3, respectively.

For instance, we define V i
1,2 to be all the vertices in V1,2 with i as the length of

the shortest path to a vertex in V1. Recall that each vertex in V1,2 serves as an

internal vertex of a path between a vertex in V1 and a vertex in V2. Formally, we

define

V i
1,2 =

⋃
e∈E(G)

{v1,2
e,i , v

2,1
e,i } for i ∈ {1, . . . , `− 1},

V i
2,3 =

⋃
e∈E(G)

{v2,3
e,i , v

3,2
e,i } for i ∈ {1, . . . , `− 1 + bq/2c},

and V i
1,3 =

⋃
e∈E(G)

{v1,3
e,i , v

3,1
e,i } for i ∈ {1, . . . , `− 1 + b(q + 1)/2c}.

Now that we have partitioned Vauxiliary-set, we add the sets V1, V2, and V3 to

this partition of Vauxiliary-set to define a partition P ′ of V (Gcore) as follows.

P ′ =
{
V1, V2, V3,

V 1
1,2, . . . , V

`−1
1,2 ,

V 1
2,3, . . . , V

`−1+bq/2c
2,3 ,

V 1
1,3, . . . , V

`−1+b(q+1)/2c
1,3

}
.

Observe that |P ′| = r. Let σbridge : V (C)→ P ′ be a bijective mapping. We first

75

describe Ebridge based on σbridge and then specify σbridge. The following describes

the edges we add to Ebridge for each edge e = {u, v} ∈ E(H) where u ∈ V (C)

and v /∈ V (C). Let zv ∈ Vfixed-set be the vertex corresponding to v. We add an

edge between zv and each vertex in σbridge(u). We describe σbridge next.

We set σbridge to map V (C) to an r-cycle in Gcore that is a P ′-match of C

(recall Definition 4.5.2). Recall that C = ak−r+1, ak−r+2, . . . , ak, ak−r+1. We break

this cycle into three parts of length `, `+ bq/2c, and `+ b(q+ 1)/2c, respectively,

starting from ak−r+1. We set σbridge(ak−r+1) to V1, σbridge(ak−r+1+`) to V2, and

σbridge(ak−r+1+2`+bq/2c) to V3. In order for σbridge to map C to a P ′-match of

C, we set σbridge to map vertices of C between ak−r+1 and ak−r+1+` to vertices

of the paths between V1 and V2, which are vertices in V1,2. Similarly, σbridge

maps vertices of C between ak−r+1+` and ak−r+1+2`+bq/2c to V2,3, and vertices of C

between ak−r+1+2`+bq/2c and ak−r+1 to V1,3. Formally,

σbridge(ak−r+1) = V1,

σbridge(ak−r+1+i) = V i
1,2, for i ∈ {1, . . . , `− 1},

σbridge(ak−r+1+`) = V2,

σbridge(ak−r+1+`+i) = V i
2,3, for i ∈ {1, . . . , `− 1 + bq/2c},

σbridge(ak−r+1+2`+bq/2c) = V3,

and σbridge(ak−r+1+2`+bq/2c+i) = V i
2,3, for i ∈ {1, . . . , `− 1 + b(q + 1)/2c}.

This completes the description of Ebridge and hence GH . Before presenting the

details of the reduction, we first show that GH has bounded degeneracy and O(m)

edges.

The following lemma shows that in order to prove a graph G is t-degenerate,

we only need to exhibit an ordering ≺ of V (G) such that each vertex of G has t

76

or fewer neighbors that come later in the ordering ≺. Given a graph G and an

ordering ≺ of V (G), the DAG G→≺ is obtained by orienting the edges of G with

respect to ≺.

Lemma 4.5.4. [Szekeres-Wilf [170]] Given a graph G, κ(G) 6 t if there exists

an ordering ≺ of V (G) such that the out-degree of each vertex in G→≺ is at most

t.

Next, we show that GH has bounded degeneracy using Lemma 4.5.4.

Lemma 4.5.5. κ(GH) 6 k − r + 2.

Proof. We present a vertex ordering ≺ for GH such that for each vertex v ∈

V (GH), the out-degree of v is at most k− r+ 2 in GH
→
≺ . Let ≺ be an ordering of

V (GH) such that Vauxiliary-set ≺ Vcore-set ≺ Vfixed-set, and ordering within each

set is arbitrary. Each vertex in Vauxiliary-set is connected to exactly two other

vertices in V (Gcore) and at most to all k − r vertices in Vfixed-set. So the out-

degree of each vertex in Vauxiliary-set in GH
→
≺ is at most k − r + 2. Since there

are no edges inside Vcore-set, the only out-edges from vertices inside Vcore-set is to

vertices in Vfixed-set. Further, the only out-edges from vertinces in Vfixed-set are

to other vertices in Vfixed-set. Thus the out-degree of each vertex v ∈ V (GH) in

GH
→
≺ is at most k − r + 2.

Observe that GH has at most κ(GH) · |V (GH)| edges. By construction of GH ,

|V (GH)| < 6m` + 3n + k and by Lemma4.5.5, κ(GH) < k. Thus, GH has O(m)

edges.

Details of the Reduction. We define a partition of V (GH) by adding each vertex

77

in Vfixed-set as a set by itself to P ′. Formally,

P =
{
{z1}, {z2}, . . . , {zk−r},

V1, V2, V3,

V 1
1,2, . . . , V

`−1
1,2 ,

V 1
2,3, . . . , V

`−1+bq/2c
2,3 ,

V 1
1,3, . . . , V

`−1+b(q+1)/2c
1,3

}
.

Observe that |P| = k. Also, since GH has bounded degeneracy, each subgraph of

GH has bounded degeneracy too. Thus, by Lemma4.5.3 we can count P-matches

of H in GH in linear time if there exists an algorithm ALG for hom-cntH problem

that runs in time O(mf(κ, k)) for a positive function f . In Lemma4.5.6, we prove

that there is a bijection between P-matches of H in GH and P ′-matches of C in

Gcore. Further, in Lemma4.5.7, we prove that the number of triangles in G is a

simple linear function of the number of P ′-matches of C in Gcore. So, by counting

P-matches of H in GH , we can obtain the number of triangles in G.

Lemma 4.5.6. There exists a bijection between the set of P-matches of H in GH

and the set of P ′-matches of C in Gcore.

Proof. Let H ′ be a P-match of H in GH . Observe that by construction of GH ,

the only edges of GH inside V (H ′) are edges of H ′. Therefore, H ′ is actually

an induced match of H in GH . By construction of GH , specifically Ebridge, the

number of edges between Vfixed-set and V (H ′) \ Vfixed-set is equal to the number

of edges between HC-excluded and C. As Gfixed is a copy of HC-excluded, there are

exactly |E(HC-excluded)| edges inside the set of vertices Vfixed-set. Thus, H ′ has

exactly |E(C)| = r edges inside Gcore. We describe these edges next.

Let wi, xj, and yt be the vertices of H ′ in V1, V2, and V3, respectively. Inside

78

Gcore, wi could only be connected to the two vertices of H ′ in V 1
1,2 and V 1

1,3.

Furthermore, xj could only be adjacent to the two vertices of H ′ in V `−1
1,2 and V 1

2,3.

And finally, yt could only be neighbors of the two vertices of H ′ in V `−1+bq/2c
2,3 and

V
`−1+b(q+1)/2c

1,3 . In addition, each vertex in Vauxiliary-set has at most two neighbors

inside Gcore, and the same holds in H ′. Inside Gcore, H ′ has exactly r edges, so

each vertex is connected (only) to their two possible neighbors specified above.

Hence, there exist an `-path between wi and xj, an ` + bq/2c-path between xj

and yt, and an ` + b(q + 1)/2c-path between wi and yt. Thus, H ′ − Vfixed-set is

an r-cycle inside Gcore that includes exactly one vertex in each part of P ′, and

hence is a P ′-match of C. It is easy to see that this P ′-match of C is actually an

induced match. Next, we show the other direction.

Let C ′ be a P ′-match of C in Gcore. It is easy to see that by construction of

Gcore, C ′ is an induced match. By construction of GH , GH [V (C ′) ∪ Vfixed-set] is

an induced match of H. Therefore, C ′ corresponds to exactly one P-match of H

in GH .

Lemma 4.5.7. Let P ′-match(C,Gcore) denote the set of P ′-matches of C in

Gcore. The number of triangles in G is equal to | P ′-match(C,Gcore)|/6.

Proof. Consider a cycle C ′ ∈ P ′-match(C,Gcore). Let wi, xj, and yt be the the

only vertices of C ′ in V1, V2, and V3, respectively. There should be a path between

wi and xj in C ′ that does not include yt, so other than wi and xj, it only includes

vertices in Vauxiliary-set. The only possible such path in Gcore is an `-path between

wi and xj. Therefore, this `-path exists, and as a result (ui, uj) ∈ E(G). Similarly,

C ′ includes a path between xj and yt that only contain vertices in Vaux other than

xj and yt. Therefore, there exists an ` + bq/2c-path between xj and yt in Gcore,

and hence (uj, ut) ∈ E(G). Finally, a path between wi and yt that other than

its endpoints, only includes vertices in Vauxiliary-set, should be a part of C ′. So,

79

there exists an ` + b(q + 1)/2c-path between wi and yt in Gcore. As a result,

(ui, ut) ∈ E(G). Thus, C ′ corresponds only to the triangle ui, uj, ut in G. Observe

that, C ′ could be specified by its vertices in V1, V2, and V3. Next, we prove the

other direction; exactly 6 P ′-matches of C in Gcore correspond to each triangle

in G.

Consider a triangle T with the vertex set {ui, uj, ut} in G and a P ′-match C ′

of C in Gcore that corresponds to T . There are six different bijective mappings

from {ui, uj, ut} to {V1, V2, V3}. As we showed above, C ′ could be specified by its

vertices in V1, V2, and V3. So, given a bijective mapping σtriangle : {ui, uj, ut} →

{V1, V2, V3}, the three vertices σtriangle(ui), σtriangle(uj), and σtriangle(ut) specify

C ′. Thus, there are exactly 6 P ′-matches of C in Gcore that correspond to T . As

a result, the number of triangles in G is | P ′-match(C,Gcore)|/6.

Lemma4.5.6 and Lemma4.5.7 together show that we can obtain the num-

ber of triangles in G from the number of P-matches of H in GH , in constant

time. In conclusion, we have proved that if there exists an algorithm ALG for

the hom-cntH problem that runs in time O(mf(κ, k)) for a positive function f ,

then there exists an O(m) algorithm for the tri-cnt problem. Assuming the

Triangle Detection Conjecture, the problem of tri-cnt has the worst

case time complexity of ω(m) for an input graph with m edges. Thus, the O(m)

Turing reduction from the tri-cnt problem to hom-cntH problem we presented

proves Theorem4.5.1.

Observation 4.5.8. In the proof of Theorem4.5.1, we count P-homomorphisms

(defined in Definition 4.5.2) from H to GH using the algorithm ALG. Since

|P| = |V (H)|, each P-homomorphism from H to GH is an embedding of H in

GH . Thus, we can apply the same argument of Lemma 4.5.3 assuming there exists

an algorithm for counting subgraphs, that has the same running time of ALG.

80

Therefore, using the same argument as that of the proof of Theorem4.5.1, we can

prove the exact same statement of Theorem 4.5.1 for the sub-cntH problem.

4.6 Conclusion

In this paper, we study the problem of counting homomorphisms of a fixed

pattern H in a graph G with bounded degeneracy. We provided a clean char-

acterization of the patterns H for which near-linear time algorithms are possible

— if and only if the largest induced cycle in H has length at most 5 (assuming

standard fine-grained complexity conjectures). We conclude this exposition with

two natural research directions.

While we discover a clean dichotomy for the homomorphism counting problem,

the landscape for the subgraph counting problem is not as clear. Our hardness

result (Theorem 4.5.1) holds for the subgraph counting version — if a pattern

H has LICL > 6, then there does not exists any near-linear time (randomized)

algorithm for finding the subgraph count of H (see Observation observation 4.5.8).

However, the “only if” direction does not follow. It would be interesting to find a

tight characterization for the subgraph counting problem.

Both this work and the work in chapter 3 attempt at understanding what

kind of patterns can be counted in near-linear time in sparse graphs. It would

be interesting to explore beyond linear time algorithms. Specifically, we pose the

following question: Can we characterize patterns that are countable in quadratic

time?

81

Chapter 5

Counting Vertex Orbits of All

5-vertex subgraphs

In this chapter we present EVOKE, an algorithm for computing all 5-VOCs. To

the best of our knowledge there is only one algorithm, the ORCA package [73], for

computing 5-VOCs, but it does not terminate after days on graphs with tens of

millions of edges. EVOKE counts 5-VOCs in these large datasets efficiently (within

an hour) on a commodity machine and is hundreds of times faster than the-state-

of-the-art.

5.1 Problem Description

The input G = (V,E) is a simple, undirected graph. Our aim is to get local

counts, for every vertex in G, for all the patterns given in Fig. 5.2. Fig. 5.2 shows

all connected subgraphs with at most 5 vertices. We will refer to these as patterns.

(We do not focus on disconnected patterns; results in [137] imply that these can

be easily determined from connected subgraph counts.)

We delay the exact formalism of orbits to §5.4. But hopefully, Fig. 5.2 gives a

82

clear pictorial representation of the 73 different orbits, numbered individually.

Our aim is to design an algorithm that: for every vertex v in V and every orbit

θ, exactly outputs the number of times that v occurs in a copy of θ. Thus, the

output is a set of 73|V | counts. (Technically, we ask for induced counts, but can

also get non-induced counts. Details in §5.4.) For example, the count of orbit 17

is the number of times that v is the middle of a 4-path, while the count of orbit

15 is the number of 4-paths that start/end at v. Analogously, the count of orbit

34 is the number of 5-cycles that v participates in. For a fixed orbit, we refer to

these numbers as the vertex orbit counts (VOCs). Collectively (over all orbits), we

wish to determine VOCs for all 5-vertex subgraphs. For convenience, we refer to

this as simply 5-VOCs. We refer to the total subgraph count as “global” counts,

which is clearly a much easier problem.

As can be seen, the desired output is an immensely rich local description of

the vertices of G. This output subsumes a number of recent subgraph counting

problems in the data mining community [8, 56, 58, 137].

Main challenges: To the best of our knowledge, there is no algorithm that

(even approximately) computes all 5-VOCs even for graphs with tens of millions

of edges. Results on global counting are much faster, but it is not clear how to

implement these ideas for VOCs [8, 137]. The ORCA package is the only algorithm

that actually computes all 5-VOCs, but it does not terminate after days for graphs

with tens of millions of edges. We give more details of previous work in §5.3.

From a mathematical standpoint, the challenge is to get all 5-VOCs without

an expensive enumeration. The total number of orbit counts is easily in the

order of trillions, and a fast algorithm should ideally avoid touching each 5-vertex

subgraph in G. On the other hand, VOCs are an extremely fine-grained statistic,

so purely global methods do not work.

83

S
pe

ed
up

1.00E+00

1.00E+01

1.00E+02

1.00E+03

so
c-

br
ig

ht
ki

te
ia

-e
m

ai
l-E

U
-d

ir
te

ch
-R

L-
ca

id
a

C
ita

tio
n-

ne
tw

or
k

V
1

ca
-c

oa
ut

ho
rs

-d
bl

p
D

B
LP

-C
ita

tio
n

V
5

C
ita

tio
n-

ne
tw

or
k

V
2

w
ik

i-e
n-

ca
t

w
eb

-g
oo

gl
e-

di
r

w
eb

-w
ik

i-c
h-

in
te

rn
al

te
ch

-a
s-

sk
itt

er
w

eb
-h

ud
on

g
w

eb
-b

ai
du

-b
ai

ke
te

ch
-ip

so
c-

Li
ve

Jo
ur

na
l1

C
om

-o
rk

ut

Figure 5.1: Runtime speedup for computing all 5-VOCs achieved by EVOKE over
ORCA (computed as runtime of ORCA/runtime of EVOKE). Graphs are sorted by
increasing number of edges from left to right. For the blue bars, ORCA ran out
of memory or did not terminate after 1000 times the EVOKE running time. EVOKE
is significantly faster than ORCA, and makes 5-VOC counting feasible for large
graphs.

5.2 Main Contributions

Our primary result is the Efficient Vertex Orbit pacKagE (EVOKE), an algo-

rithm to compute all 5-VOCs.

Practical local counting: EVOKE advances the state of the art of subgraph

counting. It is the first algorithm that can feasibly obtain all 5-VOCs on graphs

with tens of millions of edges. We do comprehensive tests on many public data

sets. We observe that EVOKE gets counts on graphs with millions of edges in just

minutes, and on graphs with tens of millions of edges within an hour. This is

on a single commodity machine with 64GB memory, without any parallelization.

In contrast, for the larger instances, the previous state of the art ORCA package

takes more than two days or runs out of memory, on a more powerful machine

(384GB RAM). Even on instances where ORCA terminates, EVOKE is about a

hundred times faster. We show the speedup of EVOKE over ORCA in Fig. 5.1.

EVOKE is also able to get 5-VOCs in a social network with 100M edges, in less

84

0

H0

2
1

H1

3

H2

5
4

H3

7
6

H4

8

H5

9
11

10

H6

12
13

H7

14

H8

17
16
15

H9

19
21
20
18

H10

23
22

H11

24

26
25

H12

29 30
28
27

H13

31
33

32

H14

34

H15

35
38

37
36

H16

39
42

40
41

H17

44

43

H18

45
47

48
46

H19

50

49

H20

51
53

52

H21

54

55

H22

56
58

57

H23

59 60

61

H24

62
64

63

H25

65 67

66

H26

69

68

H27

70

71

H28

72

H29

Figure 5.2: All vertex orbits for 5-vertex patterns. Within any pattern, vertices
of the same color form an orbit.

than two days. (ORCA runs of out memory in such instances.) All the blue bars

in Fig. 5.1 denote instances where ORCA runs of out of memory (in two days) or

is a thousand times slower than EVOKE.

EVOKE has a large number of independent sub-algorithms. It is straightforward

to run them in parallel, and we get about a factor two speedup. We do not consider

this a significant novelty of EVOKE, but it does allow for an even faster running

time.

Local counting without enumeration: Our work builds on the ESCAPE

framework of Pinar-Seshadhri-Vishal [137]. One of their main insights is a combi-

nation of graph orientations and a “pattern cutting” technique. Larger patterns

are carefully cut into smaller patterns. It is then shown that local counts of smaller

patterns can be combined into global (total) counts of larger patterns. We for-

mally prove that, for the orbits in Fig. 5.2, one can generalize their method to

VOCs. This is mathematically quite technical and requires manipulations of vari-

ous pattern automorphisms (which is not required for total counts). But the final

result is a large collection of polynomial formulas to compute individual VOCs

85

through some specialized local counts of smaller subgraphs. EVOKE exploits the

structure among these formulas to count all VOCs efficiently.

Somewhat surprisingly, we mathematically prove that the running time is only

a constant factor more than that of ESCAPE (which only computes total counts).

This is borne out empirically where the running time of EVOKE is typically twice

that of ESCAPE. Our result demonstrates the power of the cutting framework

introduced in [137].

Fast computation of orbit frequency distributions: The distribution of

VOCs is a useful tool in graph analysis, often called graphlet degree distribution in

bioinformatics [139]. EVOKE makes it feasible to compute these distributions over

real data. As a small demonstration of EVOKE, we observe interesting behavior in

VOCs across graphs from different domains. Also, the VOCs of different orbits

within the same pattern behave differently, showing the importance of getting

such fine-grained information.

On 4-VOCs: We do not consider this as a new contribution, but a salient

observation for those interested in subgraph counting. EVOKE determines all 4-

VOCs as a preprocessing step, based on ideas in [137] and Ortmann-Brandes [125].

As stated in these results, the key insight is an implementation of an old algorithm

of Chiba-Nishizeki for 4-cycle counting [39]. This method is incredibly fast, and

computes 4-VOCs in minutes. (Even for the largest instance of more than 100M

edges, it took less than an hour.) For example, for a LiveJournal social network

with 42M edges, EVOKE took ten minutes on a commodity machine (we got the

same time even on a laptop). Contrast this with previous results for counting

4-VOCs for the same graph, which used a MapReduce cluster [58]. (We note that

EVOKE, and the other results, are technically computing edge orbit counts, a more

general problem.)

86

5.3 Related Work

Subgraph counting is an immensely rich area of study, and we refer the reader

to a tutorial for more details [159]. Here, we only document results relevant to

our problem. For this reason, we do not discuss the extremely large body of work

on triangle counting (the most basic subgraph counting problem).

Vertex orbit counts beyond triangles have found significant uses in network

analysis and machine learning. Notably, Shervashidze et al. defined the graphlet

kernel, that uses vertex orbits counts to get embeddings of vertices in a net-

work [162]. Ugander-Backstrom-Kleinberg showed that 4-vertex orbit counts can

be used for role discovery and distinguishing different types of graph neighbor-

hoods [179]. In an exciting recent use of orbit counts, Rotabi-Kamath-Kleinberg-

Sharma showed that four and five cycle counts can be used for weak tie discovery

in the Twitter network [151]. Yin-Benson-Leskovec have defined higher-order

clustering coefficients, which are ratios of specific orbit counts [196, 197]. There

is a line of work on the surprising benefits of using cycle and clique counts as

vertex or edge weights, to find denser and more relevant communities in net-

works [17, 23, 154, 173, 175].

We now discuss the literature on algorithms for subgraph counting. Ahmed-

Neville-Rossi-Duffield gave the first algorithm that could count (total) 4-vertex

subgraph counts for graphs with millions of edges [8]. Their PGD package was

a significant improvement over past practical work for this problem [67]. Pinar-

Seshadhri-Vishal designed the ESCAPE algorithm for practical (total) 5-vertex

subgraph counting [137]. While these algorithms employed many clever combina-

torial ideas, they did not focus on vertex orbit counting. There was concurrent

development of sampling algorithms that are orders of magnitude faster, such as

path-sampling [84] and the MOSS package [186].

87

Elenberg-Shanmugam-Borokhovich-Dimakis gave algorithms for 3, 4-vertex or-

bit counting [56, 58]. They employed a randomized algorithm, and proved conver-

gence through polynomial concentration inequalities. The number of samples re-

quired for concentration was large, and they used Map-Reduce clusters to process

graphs with tens of millions of edges. It was observed implicitly in the ESCAPE

package and explicitly, by Ortmann-Brandes [125] that ideas from a classic result

of Chiba-Nishizeki [39] gave a faster, exact algorithm for 4-vertex orbits.

The state of the art for local counting of 5-vertex orbits is the ORCA package of

Hočevar-Demšar [75]. The algorithm is based on a method to build sets of linear

equations relating various orbit counts. This saves computing all orbit counts

independently. With some careful choices, ORCA tries to perform enumeration

on the “easier” counts, and get the “harder” counts through the linear equations.

There were also results on generating these linear equations auotmatically [116,

115]. We note that ORCA also has algorithms to generate 5-edge orbit counts,

but this takes even longer than 5-VOCs. We leave the generalization of EVOKE to

edge orbit counts as future work.

Rossi-Ahmed-Carranza-Arbour-Rao-Kim-Koh proposed a parallel algorithm

for counting typed graphlets (subgraph patterns), which are a generalization of

subgraph patterns to heterogeneous networks [150].

Most of the exact subgraph and orbit counting algorithms work on subgraphs

of size 5 or less. Algorithms that attempt to count subgraphs beyond that size

typically use randomization, which has inspired a rich literature [14, 26, 42, 80, 82,

84, 85, 91, 92, 99, 103, 114, 126, 132, 141, 157, 158, 164, 174, 186, 191, 198, 199].

88

5.4 Preliminaries

The input is an undirected simple graph G = (V,E), with n vertices and

m edges. The patterns of interest are all connected subgraphs with at most 5

vertices, denoted H0, . . . , H29, as shown in Fig. 5.2. Previous results in [137] show

that disconnected pattern counts can be determined by inclusion-exclusion from all

connected pattern counts. Hence, we only focus on connected pattern subgraphs.

We now formally define orbits. The definitions below are taken from Bondy

and Murty (Chapter 1, Section 2) [31].

Definition 5.4.1. Fix labeled graph H = (V (H), E(H)). An automorphism is a

bijection σ : V (H)→ V (H) such that (u, v) ∈ E(H) iff (σ(u), σ(v)) ∈ E(H).

Define an equivalence relation among V (H) as follows. We say that u ∼ v

(u, v ∈ V (H)) iff there exists an automorphism that maps u to v. The equivalence

classes of the relation are called orbits.

Fig. 5.2 shows the 73 different orbits. Within any Hi, all vertices in an orbit

are colored the same. For example, in H28, there are two different orbits (blue

and red). The blue (resp. red) vertices can be mapped to each other by automor-

phisms, and are therefore “equivalent”.

Technically, we denote orbits as pairs (H,S), where H is a (labeled) pattern

subgraph and S is the subset of vertices forming the orbit. Consider pattern H

and orbit θ = (H,S). We denote:

• orb(H): The set of orbits in the pattern H.

• sz(θ): |S|, the number of vertices in the orbit θ.

We can similarly define edge orbits as follows.

Definition 5.4.2. Fix labeled graph H = (V (H), E(H)). Define an equivalence

relation among E(H) as follows. Let e = (u, v) and e′ = (w, x) be two edges in

89

H. We say that e ∼ e′ iff there exists an automorphism that maps e to e′ (i.e.

it maps u to w and v to x or u to x and v to w). The equivalence classes of the

relation are called edge-orbits.

Induced vs non-induced: A non-induced subgraph is obtained by taking a

subset of edges. An induced subgraph is obtained by taking a subset of vertices

and considering all edges and non-edges among them. (A clique contains all non-

induced subgraphs of smaller sizes, but the only induced subgraphs it contains

are smaller cliques.) A theorem in [137] proves that the vector of non-induced

subgraph (up to a given size) counts can be converted to the corresponding in-

duced counts, through a linear transformation. A directed generalization of the

arguments holds for k-VOCs, in that non-induced orbit counts (for each vertex)

can be converted to induced orbit counts by a linear transformation.

EVOKE computes both non-induced and induced counts. Algorithmically, it is

easier to compute non-induced counts first; hence we shall only refer to them in

the technical description.

We are ready to define VOCs.

Definition 5.4.3. Fix an orbit θ = (H,S) and a vertex v ∈ V (in the input

graph G). A match of θ involving v is a non-induced copy of H in G such that v is

mapped to a vertex in S. Call two matches equivalent, if one can be obtained from

the other by applying an automorphism. We define DM(v, θ) to be the number of

distinct matches of θ involving v.

Our aim is to compute the entire list of numbers {UM(v, θ)}, over all v ∈ V

and all θ in Fig. 5.2.

Conversion between Induced and Noninduced counts: Given u ∈ V (G)

and orbit θ, we used DMG(u, θ) to denote the number of distinct non-induced

90

matches of θ in G. Let DIMG(u, θ) denote the number of distinct induced orbit

counts. Let θi = (H,S), where H has k vertices, where k 6 5. It is easy to

see that we can obtain DMG(u, θi) from the set {DIMG(u, θi), . . . ,DIMG(u, θj)},

where θj is the vertex orbit with the largest index in k-vertex patterns.

Consider orbit θj = (H ′, S ′), where j > i. Let v be a vertex in H ′, where

v ∈ S ′. If we use graph H ′ as our input graph (instead of G), DMH′(v, θi) is

actually the number of non-induced matches of θj in G that an induced match of

θj include as a subgraph.

If we think of the list of induced and non induced node orbit counts for any

vertex u in any graph G as vectors DIM(u) and DM(u), there is a matrix A such

that DM(u) = A DIM(u). The matrix for orbits which lie in 4-vertex patterns

(orbits θ4-θ14) is given in Fig. 5.3. The matrix for orbits of 5-vertex patterns

(orbits θ15-θ72) is too large to be included here, but we made it accessible at [2].

Note that Ai,j is the number of non-induced matches of θi that an induced match

of orbit θj include, for any vertex u in any graph G.

Naturally, DIM(u) = A−1DM(u), and that is how we get induced counts from

non-induced counts. The inverse matrix for vertex orbits θ4-θ14 is given in Fig. 5.4,

the inverse matrix for orbits θ15-θ72 is again too large to be included here, but

could be found in [2].

Degree ordering: We will use the degree orientation, a fundamental tool for

subgraph counting that was pioneered by Chiba-Nishizeki [39]. We will convert G

into an DAG G→ as follows. Let ≺ denote the degree ordering of G. For vertices

i, j, we say i ≺ j, if either d(i) < d(j) or d(i) = d(j) and i < j (comparing vertex

id). The DAG G→ is obtained by orienting the edges with respect to ≺ ordering.

In both the algorithm and analysis, all references to directed structures are with

respect to G→.

91

A =



1 0 0 0 2 2 1 0 4 2 6
0 1 0 0 2 0 1 2 2 2 6
0 0 1 0 0 1 1 0 2 1 3
0 0 0 1 0 0 0 1 0 1 1
0 0 0 0 1 0 0 0 1 1 3
0 0 0 0 0 1 0 0 2 0 3
0 0 0 0 0 0 1 0 2 2 6
0 0 0 0 0 0 0 1 0 2 3
0 0 0 0 0 0 0 0 1 0 3
0 0 0 0 0 0 0 0 0 1 3
0 0 0 0 0 0 0 0 0 0 1


Figure 5.3: Matrix transforming induced vertex orbit counts for orbits 0-14 to
non-induced counts

Notation for subgraph counts: In our formulas for orbit counts, we will use

the following notation. We use d(v) for the degree of vertex v. We will use W (G),

D(G), DP (G→), and DBP (G→) for the total count of wedges, diamonds, di-

rected 3-paths, and directed bipyramids respectively. These subgraphs are shown

in Fig. 5.5.

5.4.1 Main theorem

Theorem 5.4.4. There is an algorithm for exactly counting all VOCs for orbits

0-72, whose running time is O(W (G) +D(G) +DP (G→) +DBP (G→) +m+ n).

This theorem is analogous to that of ESCAPE ([137]) which gives the same

asymptotic running time for just total counting of 5-vertex subgraphs. We con-

sider it quite significant that one gets the same asymptotic running time, despite

the output being much larger and far more fine-grained. We stress that the EVOKE

algorithm is significantly different than ESCAPE, since the orbit counts behave

differently from total subgraph counts. The final proof is long, and is based on a

collection of more than 50 equations for counting different orbits.

92

A−1 =



1 0 0 0 −2 −2 −1 0 4 2 −6
0 1 0 0 −2 0 −1 −2 2 6 −12
0 0 1 0 0 −1 −1 0 2 1 −3
0 0 0 1 0 0 0 −1 0 1 −1
0 0 0 0 1 0 0 0 −1 −1 3
0 0 0 0 0 1 0 0 −2 0 3
0 0 0 0 0 0 1 0 −2 −2 6
0 0 0 0 0 0 0 1 0 −2 3
0 0 0 0 0 0 0 0 1 0 −3
0 0 0 0 0 0 0 0 0 1 −3
0 0 0 0 0 0 0 0 0 0 1


Figure 5.4: Matrix transforming non-induced vertex orbit counts for orbits 0-14
to induced counts

Wedge Diamond Directed 3-path Directed bipyramid

Figure 5.5: Fundamental patterns enumerated for orbit counting

5.5 Main ideas

EVOKE builds off the ideas in ESCAPE for total subgraph counts. First, we

explain difficulties in directly applying previous techniques.

Pattern cutting: Intuitively, a 5-vertex pattern can be “cut” into smaller

patterns that can be explicitly enumerated. An enumeration over these smaller

patterns can then be used to get a subgraph count. As an example, consider the

4-path (H9). By cutting at the center (green) vertex, one gets two wedges. Thus,

we can basically square the number of wedges that end at a vertex, and then

sum this to get the total number of 4-paths. (Not quite, there is some inclusion-

exclusion required to “correct” this count, but it is fairly easy to work out.) But

this fails for orbit counting. The 4-path has three distinct orbits, and the idea

above only works for the green orbit.

93

This is even more problematic for patterns like H21, H25, H27, H28, where

the removal of certain vertices does not “cut” the pattern into convenient smaller

pieces. The main insight in ESCAPE was that all 5-vertex patterns have a con-

venient cutset of vertices, whose removal leads to fragments that can be easily

enumerated. This is not true for orbits. We do have the freedom of choosing the

convenient cutset.

From 4-edge orbit counts to 5-VOCs: Our main insight is that the suit-

able generalization of the pattern cutting approach connects 5-VOCs to 4-edge

orbit counts. We essentially prove that many the orbit counts in Fig. 5.2 for a

vertex v can be related (by non-trivial polynomial equations) to the edge orbits

counts (of 4-vertex subgraphs) on edges incident to v. The edge orbits of 4-vertex

subgraphs are given in Fig. 5.7. These edge orbits counts can be obtained by im-

plementations of the Chiba-Nishizeki clique and 4-cycle counter [39], with extra

inclusion-exclusion tricks to get all counts. EVOKE uses this as a preprocessing

step. We will give more details in §5.7.

Careful indexing during enumeration: Even with the previous ideas,

we still need an efficient implementation that can generate all the counts. We

design a collection of vertex and edge indexed data structures, that are updated

by an enumeration of the patterns shown in Fig. 5.5. Somewhat surprisingly, we

show that as these patterns are enumerated, one can quickly update these data

structures and generate all the orbit counts. This leads to Theorem5.4.4.

5.6 The cutting framework for orbits

In this section, we describe the cutting framework for orbits. As mentioned

earlier, this is a generalization of ideas in [137].

First, we formally define a match, which is a non-induced copy of H. For a

94

set C where C ⊆ V (H), we use H|C to denote the subgraph of H induced on C.

We also denote the remaining graph after removing C from H, by H \ C.

Definition 5.6.1. A match of H in G is a bijection π : T → V (H) where T ⊂ V

and for any two vertices t1 and t2 in T , (t1, t2) ∈ E if (π(t1), π(t2)) ∈ E(H).

Definition 5.6.2. Fix an orbit θ = (H,S) and a vertex v ∈ V . We defineM(v, θ)

to be the set of all (not necessarily distinct) matches π : T → V (H) of H, where

T ⊂ V , such that v ∈ T and π(v) ∈ S. We use M(v, θ) to denote |M(v, θ)|.

Definition 5.6.3. For any orbit θ = (H,S) we define λ = (H, i), where i is a

vertex in S, as a representative of θ.

We use r(θ) to denote its representative (H, j), where j is the vertex with the

smallest id in S.

Let λ = (H, i) be a representative of an orbit θ. Abusing notation, for a

vertex v ∈ V , we use M(v, λ) to denote the set of matches π ∈ M(v, θ) where

π(v) = i. Analogously, we use M(v, λ) to show |M(v, λ)|. We can see that

M(v, θ) = sz(θ) ·M(v, λ). Next, we define fragments in H, which are the result of

cutting H using a cut set.

Definition 5.6.4. Let H be a subgraph pattern and consider a non-trivial cut set

C (V (H). Let S1, S2, . . . be connected components of H \ C. The fragments of

H obtained by removing C are the subgraphs of H induced by C ∪S1, C ∪S2,

We denote the set of these fragments by FragC(H).

A partial match π : T → V (H) is similar to a match, except that it is an

injection, and is not surjective, thus |T | < |V (H)|.

Definition 5.6.5. Amatch π : T → V (H) extends a partial match σ : T ′ → V (H)

if T ′ ⊂ T and for any vertex t in T , π(t) = σ(t). We denote the number of matches

π of H that extend σ, by degH(σ).

95

Consider a match σ of H|C . For σ to extend to a match of H, it is sufficient

that it extends to disjoint matches of all fragments in FragC(H). Merging these

extensions leads to a match of H. If extension of σ to these fragments are not

disjoint, merging them leads to a match of a different pattern H ′, which we call a

shrinkage.

Definition 5.6.6. Let H, H ′ be subgraph patterns, C (V (H) be a cut set of H,

and FragC(H) = {F1, F2, . . . , F|FragC(H)|}. Let τ : H|C → H ′ be a partial match

of H ′. For each Fi ∈ FragC(H), let πi : Fi → H ′ be a partial match of H ′ in H

that extends τ . We call {τ, π1, π2, . . . , π|FragC(H)|} a C-shrinkage of H into H ′ if

for each edge (s, t) ∈ E(H ′), there exists an edge (a, b) in fragment Fj ∈ FragC(H)

such that πj(a) = s and πj(b) = t.

We use ShrinkC(H) to denote the set of patterns (up to isomorphism) H ′, to

which there exist at least a C-shrinkage from H.

Definition 5.6.7. Consider graph H, H ′ ∈ ShrinkC(H), λ = (H, i), and λ′ =

(H ′, j). We define numShC(λ, λ′) to be the number of distinct C-shrinkages of H

into H ′ where τ(i) = j.

Lemma 5.6.8. Consider a pettern H, an orbit θ = (H,S), a representative

λ = (H, i) of θ, and a cut set C in H such that i ∈ C. Then,

M(v, λ) =
∑

σ∈M(v,(H|C ,i))

∏
F∈FragC(H)

degF (σ)

−
∑

H′∈ShrinkC(H)

∑
θ′∈orb(H′),
λ′=r(θ′)

numShC(λ, λ′) · DM(v, λ′)

Proof. Consider any match σ of H|C in M(v, (H|C , i)), and all sets of maps

{π1, . . . , π|FragC(H)|} where π` is a copy of F` ∈ FragC(H) that extends σ. The

number of such sets is exactly:

96

∑
σ∈M(v,(H|C ,i))

∏
F∈FragC(H)

degF (σ) (5.1)

Consider one of these sets of maps {π1, . . . , π|FragC(H)|}, let V (π`) be the set

of vertices that π` maps to F`. If all V (π`) \ V (C) are disjoint, we get a match

inM(v, λ). Therefore, Each match of H inM(v, λ) is counted exactly one time

in (5.1). But for each orbit θ′ = (H ′, S ′) where H ′ ∈ ShrinkC(H), we have also

counted some matches inM(v, θ′). The number of distinct matches of θ′ involving

v is DM(v, θ′). Let λ′ = (H ′, j) be r(θ′). The number of distinct C-shrinkages of

H into H ′, where τ(i) = j, is numShC(λ, λ′). Thus, per each orbit θ′, we have

counted numShC(λ, λ′) ·DM(v, λ′) matches which should now be subtracted from

(5.1).

The reason we considered only distinct matches of λ′ involving v is that

the shrinkage from H to H ′ gives us the labeling of H ′ and the set of maps

{π1, . . . , π|FragC(H)|}, which resulted in counting this match, dictates the match.

Also, notice that the shrinkage determines the vertex in H ′ that v is mapped to.

That is why we consider number of shrinkages for a representative of θ′.

Corollary 5.6.9. As mentioned, M(v, θ) = sz(θ) ·M(v, λ). Therefore, we can de-

rive DM(v, θ), which is the number of distinct matches of θ, as follows: DM(v, θ) =

sz(θ) ·M(v, λ)/|Aut(H)|.

Application of Lemma5.6.8 for vertex orbit 26: We will show how this

lemma works applying it to H12 and computing VOCs for a vertex v ∈ V . Let

θ26 = (H,S), where S = {2, 3} and H is as shown in Fig. 5.6, denote orbit 26. Let

the representative λ26 be (H, 2).

Let triangle {1, 2, 3} be the cut set C. So, FragC(H) = {F1, F2} as we can

see in Fig. 5.6. Let λ̂ = (H|C , 2) be a representative of orbit 3 (the only orbit in

97

1

2
26

3
26

4 5

H

1

2
26

3
26

4

F1

1

2
26

3
26

5

F2

1

2
13

3
13

4

H ′

Figure 5.6: Application of Lemma5.6.8 for vertex orbit 26

the cut set). Every triangle in G incident to v is a match inM(v, λ̂). Each such

triangle has two mappings to H|C . consider triangle {u, v, w} in G. Vertex v has

to be matched to vertex 2, therefore one match (A) is σ(u) = 1, σ(v) = 2, and

σ(w) = 3, and the other match (B) is σ(u) = 3, σ(v) = 2, and σ(w) = 1. For

match (A), degF1(σ) · degF2(σ) = (d(v)− 2)(d(w)− 2), and degF1(σ) · degF2(σ) =

(d(v)− 2)(d(u)− 2) for match (B).

The only possible shrinkage of H is to a diamond H ′, as shown in Fig. 5.6.

Let orbit θ13 = (H ′, S ′), where S ′ = {2, 3}, show orbit 13. We can see that in

any C-shrinkage of H into H ′, τ(2) ∈ S ′. Let λ13 = (H ′, 2) be a representative

of θ13. Notice that numShC(λ26, λ13) = 2. In one case we set τ(1) = 1, τ(2) = 2,

τ(3) = 3, π1(4) = 4, and π2(5) = 4. In the other case, we set τ(1) = 4, τ(2) = 2,

τ(3) = 3, π1(4) = 1, and π2(5) = 1. The set of maps {τ, π1, π2} in both cases

forms a C-shrinkage of H into H ′ where τ(2) = 2.

M(v, λ26) =
∑

t=〈u,v,w〉 triangle
[(d(v)− 2)((d(u)− 2)

+ (d(w)− 2))]− 2 ·DM(v, λ13) (5.2)

Note that sz(θ26) = 2 and H has two automorphisms, so (by Corollary 5.6.9)

DM(v, θ26) = M(v, λ26) .

98

5.7 Getting orbit counts

Lemma5.6.8 gives us a collection of more than fifty equations similar to (5.2).

For each of them, we verify that they can be computed through an enumeration of

the patterns in Fig. 5.5, assuming that all edge orbits of Fig. 5.7 are available. For

readability, we move the details of equations for computing 5-VOC, their runtime

analysis, and the final proof of Theorem5.4.4 to §5.7.1 of the Appendix, but we

give the details of 4 vertex and edge orbit counts and a few example of 5-VOCs

equations in this section. We will prove the following theorem for 4-vertex orbit

counting.

Theorem 5.7.1. All vertex and edge orbit counts for 4-vertex patterns can be

obtained in time O(W (G) +D(G) +m+ n).

Getting 4-VOCs: The easiest way to demonstrate our framework, is to apply

it to orbits in 4-vertex patterns with up to 4 vertex (orbits 0-14). For each vertex

v in G, let T (v), C4(v), and K4(v) denote the number of triangles incident to v,

the number of 4-cycles incident to v, and the number of 4-cliques incident to v,

respectively. For each edge e = (u, v) in G, let T (e), C4(e), and K4(e) denote

the number of triangles incident to e, the number of 4-cyles incident to e, and

the number of 4-cliques incident to e, respectively. For each triangle t, let K4(t)

denote the number of 4-cliques including t. In [137], Pinar-Seshadhri-Vishal have

shown that there is an algorithm that in time O(W (G)+D(G)+m+n), computes

(for all vertices u, edges e = (v, w), and triangles t): all T (v), T (e), C4(v), C4(e),

K4(v), K4(e), and K4(t). Their algorithm also obtains for every edge e, the list of

triangles incident to e. Vertex orbit counts of patterns with up to 4 vertices can

be computed using the equations presented in Lemma5.7.2.

Lemma 5.7.2. For i ∈ 0, . . . , 14, let λi = r(θi). Then, for each vertex u ∈ V ,

99

DM(u, λ0) = d(u)

DM(u, λ1) = ∑
v∈N(u) d(v)− 1

DM(u, λ2) =
(
d(u)

2

)
DM(u, λ3) = T (u)

DM(u, λ4) = ∑
v∈N(u) DM(v, λ1)− 2DM(u, λ2)− 2DM(u, λ3)

DM(u, λ5) = DM(u, λ1)(d(u)− 1)− 2DM(u, λ3)

DM(u, λ6) = ∑
v∈N(u)

(
d(v)−1

2

)
DM(u, λ7) =

(
d(u)

3

)
DM(u, λ8) = C4(u)

DM(u, λ9) = ∑
v∈N(u) DM(v, λ3)− T (u, v)

DM(u, λ10) = ∑
v∈N(u) T (u, v)(d(v)− 2)

DM(u, λ11) = DM(u, λ3)(d(u)− 2)

DM(u, λ12) = ∑
t=(u,v,x) T (v, x)− 1

DM(u, λ13) = ∑
v∈N(u)

(
T (u,v)

2

)
DM(u, λ14) = K4(u)

Proof. For θ12, we use a triangle as the cut set. The remaining component is

a vertex, which forms a triangle with the edge (v, x). After mapping a triangle

t = (u, v, x) to the cut set, we need to select a vertex to extend the copy of the

cut set to a copy of θ12. The number of such vertices are equal to T (v, x) − 1,

which is the number of all triangles incident to the edge (v, x) except t.

The rest of the equations, either have a vertex or an edge as the cut set, or

are computed directly, such as θ2, which are easy to follow.

Getting edge orbit counts of 4-vertex subgraphs: There are eleven edge

orbits for 4-vertex subgraphs as shown in Fig. 5.7. For an edge (u, v), we use

Ei((u, v)) to denote the count of the ith edge orbit (where i is from Fig. 5.7).

100

0

H1

1

H2

3
2

H3

4

H4

5

H5

6

7
8

H6

9
10

H7

11

H8

Figure 5.7: All edge orbits of 4-vertex patterns. Within each pattern, edges of
the same line style form an edge orbit.

Definition 5.7.3. Given an edge e = (v, u) in graph G and edge orbit i which

lies in pattern H, a match of edge orbit i involving edge (v, u), is a non-induced

copy of H in G such that e is mapped to an edge in edge orbit i.

Let the vertex orbits of the two end points of edge orbit i, be θa = (H,Sa) and

θb = (H,Sb) where a > b. From the definition of automorphism, it is clear that

a match of edge orbit i, involving edge e = (v, u), maps v to a vertex in Sa and

u to a vertex in Sb, or vice versa. Similar to vertex orbits, we call two matches

of an edge orbits equivalent if one can be obtained from the other by applying

an automorphism. We use Ei(〈v, u〉) to denote the number of distinct matches

of edge orbit i involving e = (v, u), where v is mapped to a vertex in Sa and u

is mapped to a vertex in Sb. If a = b, then Ei(〈v, u〉) = Ei(〈u, v〉), thus we use

Ei((v, u)) to denote the number of distinct matches of orbit i involving e.

Edge orbit counts of patterns with up to 4 vertex can be computed using the

equations presented in Lemma5.7.4.

Lemma 5.7.4. Let λ3 = r(θ3). For each edge (u, v) ∈ E(G),

E0(〈u, v〉) = d(u)− 1

E1((u, v)) = T (u, v)

E2(〈u, v〉) = ∑
x∈N(u)\v [d(x)− 1]− E1(u, v)

E3((u, v)) = (d(u)− 1)(d(v)− 1)− E1(u, v)

E4(〈u, v〉) =
(
d(u)−1

2

)
101

E5((u, v)) = C4(u, v)

E6(〈u, v〉) = DM(u, λ3)− E1(u, v)

E7((u, v)) = ∑
t=(u,v,x) d(x)− 2

E8(〈u, v〉) = E1(u, v)(d(u)− 2)

E9(〈u, v〉) = ∑
t=(u,v,x) E1(u, x)− 1

E10((u, v)) =
(
T (u,v)

2

)
E11((u, v)) = K4(u, v)

Proof. For E7 and E9, we need to enumerate the triangles incident to (u, v). This

could be obtained by the algorithm presented in [137] in time O(W (G) +m+ n)

for all edges. The rest of the edge orbits are either computed directly or have a

vertex or an edge as a cut set and are easy to follow.

Finally, we can prove Theorem5.7.1.

Proof of Theorem 5.7.1. All vertex and edge orbits of patterns with up to 4-

vertices could be obtained from equations in Lemma5.7.2 and Lemma5.7.4. For

all vertices v, all edges e, and all triangles t, we can get T (v), T (e), C4(v), C4(e),

K4(v), K4(e), K4(t), and also for all edges e we can obtain the list of triangles

incident to e in O(W (G) +D(G) +m+n) [137]. Assuming we have these counts,

the rest of the vertex and edge orbit counts are either computed directly, or use a

vertex, edge, or a triangle a cut set. Therefore, we can obtain all the other orbit

counts for 4-vertex patterns in O(W (G) + m + n) extra time. Overall, it takes

O(W (G) +D(G) +m+n) time to get all vertex and edge orbit counts of 4-vertex

patterns.

Getting 5-VOCs: We demonstrate the main ideas through a number of

examples.

102

• Orbit 26: The pattern cutting framework gives (5.2). We can precompute

and store degrees at all vertices. During an enumeration of all triangles, one can

compute the summand for each triangle. The triangles can be enumerated in

O(W (G)) time (indeed, it can be done even faster using orientations). Orbit 13

belongs to a 4-vertex pattern, so DM(2, θ13) is obtained from Theorem5.7.1.

• Orbit 37: let λ37 = r(θ37) and λ12 = r(θ12), then

DM(u, λ37) =
∑

v∈N(u)
[E5((u, v))(d(v)− 2)]− 2DM(u, λ12). (5.3)

After storing E5-values on each edge, one can get this VOC by a triangle enumer-

ation. Orbit 12 belongs to a 4-vertex pattern.

• Orbit 68:

DM(u, θ68) =
∑

v,w where
〈u,v,w〉 is a wedge

(
D(u, v, w)

2

)
(5.4)

This is a challenging orbit to count. The value D(u, v, w) is the number of dia-

monds (H7) that involves the vertices u, v, w. It is too expensive to precompute

and store all these values, but we can do it piecemeal. With knowledge of trian-

gles, we can enumerate all diamonds involving a fixed vertex u. This can be used

to find all the relevant values. Overall, the total time is a diamond enumeration

and a wedge enumeration.

Overall, this technique can analogously handle all orbits, barring the 5-cycle

and 5-clique (each of which as a single orbit). The 5-clique can be directly enu-

merated in time O(DBP (G→)), a consequence of the classic Chiba-Nishizeki al-

gorithm [39] and explicitly proven in [137].

Dealing with 5-cycles: This is a special case, and handled in the following

theorem. This is a significant strengthening of 5-cycle counter in ESCAPE, which

103

only gave a global count in the same running time.

Theorem 5.7.5. Vertex orbit counts for the 5-cycle can be computed in time

O(W (G) +DP (G→) +m+ n).

Proof. As shown in Fig. 5.8, there are three different 5-cycles DAGs up to isomor-

phism. Each 5-cycle has exactly one directed 3-path as shown in Fig. 5.8, such

that the remaining wedge is not an in-in wedge. In the figure, this directed 3-path

is labeled i, j, k, l, and w is the center vertex of the wedge. By a directed wedge

enumeration, we can precompute the number of such wedges between all pairs of

vertices. We enumerate over the directed 3-paths: for every directed 3-path we get

between vertices i and l, we already know the number of relevant directed wedges

between i and l as shown in Fig. 5.8. This allows us to increment the orbit counts

for the vertices i, j, k, l, by the number of wedges. Notice that an edge between

i and k or between j and l could result in such a directed wedge. We can check

the existence of these two edges using hashed edges of G. For each such edge, we

should decrement the orbit counts for the vertices i, j, k, l by one.

This process does not update the orbit count for vertex w. Let P (i, l) be the

number of directed 3-paths from i to l as shown in Fig. 5.8. To compute the orbit

counts for vertex w, we enumerate in-out and out-out wedges between i and l,

and add P (i, l) to the 5-cycle orbit count of vertex w. Notice that the 3-paths

(corresponding to P (i, l)) potentially intersect with the wedge under consideration.

Any such intersection would result in couting a tailed triangle instead of a 5-cycle.

We need to subtract out the count of these tailed-triangles. Any in-out wedge from

i to l corresponds to a 5-cycle of type (c), in which case we count correctly. An

in-out wedge from l to i corresponds to a 5-cycle of type (b); in this case we will

count each tailed triangle of type (1), shown in Fig. 5.9, as a 5-cycle while passing

over (l, j, i) wedge. An out-out wedge between i and l corresponds to a 5-cycle

104

w

i

jk

l

(a)

k

j

iw

l

(b)

k

l

wi

j

(c)

i

j l

k

Directed 3-path

Figure 5.8: All different 5-cycle DAGs up to isomorphism. There is only one di-
rected 3-path as shown on the right side in each 5-cycle DAG where the remaining
wedge is not an in-in wedge.

i

j l

k

(1)

i

j l

k

(2)

l

k i

j

(3)
Figure 5.9: Directed tailed triangles counted while counting 5-cycles

type (a); in this case we will count each tailed triangle of type (2) as a 5-cycle

while passing over (i, j, l), and count each tailed triangle of type (3) while passing

over (i, k, l).

We can easily get the tailed triangle counts corresponding to each wedge using

the per-edge tailed triangle counts that we already have. All in all, we can get

VOCs for the 5-cycle in the stated time.

5.7.1 Details of Getting 5-VOCs

In this section we provide the formulas for computing 5-VOCs derived from

Lemma5.6.8 and also analysis of run time for computing 5-VOCs using this equa-

tions. This will also prove Theorem5.4.4. In the run time analysis for computing

105

orbit θi, we assume that we have already obtained the counts for θ0-θi−1 and all

edge orbit counts E0-E11. Most of the equations in Theorem5.7.6 have a ver-

tex, an edge, or a triangle as the cut set and are straightforward to follow. we

give a proof sketch for the rest of the equations and how they are obtained from

Lemma5.6.8.

Theorem 5.7.6. For i ∈ 0, . . . , 72, let λi = r(θi). Let TT (u, v) denote the count

of tailed triangles incident to edge (u, v), where u is the tail vertex (θ9) and v is

in θ10. The value D(u, v, w) denotes the number of diamonds (H7) that involves

the vertices u, v, w such that u and w are the vertices incident to the chord. Let

D(u, v) be the number of diamonds where u and v are not incident to the chord.

And finally, let W (u, v) be the number of wedges between vertices u and v. Then,

for each vertex u ∈ V ,

DM(u, λ15) =
∑

v∈N(u)
[DM(v, λ4)]− DM(u, λ5)− 2DM(u, λ11)− 2DM(u, λ8)

DM(u, λ16) = DM(u, λ4)(d(u)− 1)− DM(u, λ10)− 2DM(u, λ8)

DM(u, λ17) =
(
DM(u, λ1)

2

)
− DM(u, λ3)− DM(u, λ6)

− DM(u, λ8)− DM(u, λ10)

106

DM(u, λ18) =
∑

v∈N(u)
[DM(v, λ6)]− 3DM(u, λ7)− DM(u, λ10)

=
∑
v

[
W (u, v)

(
d(v)− 1

2

)]
− DM(u, λ10)

DM(u, λ19) =
∑

v∈N(u)
[DM(v, λ5)]− DM(u, λ4)− DM(u, λu)− DM(u, λ10)

DM(u, λ20) =
∑

v∈N(u)

[
(d(u)− 1)

(
d(v)− 1

2

)]
− 2DM(u, λ10)

DM(u, λ21) =
∑

v∈N(u)

[
(d(v)− 1)

(
d(u)− 1

2

)]
− DM(u, λ11)

DM(u, λ22) =
∑

v∈N(u)

(
d(v)− 1

3

)

DM(u, λ23) =
(
d(u)

4

)

DM(u, λ24) =
∑

v∈N(u)
[DM(v, λ10)]− DM(u, λ10)− 2DM(u, λ11)− 2DM(u, λ12)

DM(u, λ25) =
∑

t=(u,v,x)
[(d(v)− 2)(d(x)− 2)]− DM(u, λ12)

107

DM(u, λ26) =
∑

t=(u,v,x)
[(d(u)− 2)((d(x)− 2) + (d(v)− 2))]− 2DM(u, λ13)

DM(u, λ27) =
∑

v∈N(u)
[DM(v, λ9)]− DM(u, λ11)− 2DM(u, λ13)

=
∑
v

[W (u, v)DM(v, λ3)]− DM(u, λ13)− DM(u, λ9)− DM(u, λ3)

DM(u, λ28) =
∑

v∈N(u)
[(d(u)− 1)DM(v, λ3)]

− 2DM(u, λ3)− 2DM(u, λ11)− 2DM(u, λ12)

DM(u, λ29) =
∑

t=(u,v,x)
[DM(v, λ1) + DM(x, λ1)]

− 4DM(u, λ3)− DM(u, λ10)− 2DM(u, λ11)

− 2DM(u, λ12)− 2DM(u, λ13)

DM(u, λ30) =
∑

v∈N(u)
[(d(v)− 1)DM(u, λ3)]

− 2DM(u, λ3)− DM(u, λ10)− 2DM(u, λ13)

DM(u, λ31) =
∑

v∈N(u)
[(d(v)− 1)DM(v, λ3)]

− 2DM(u, λ9)− DM(u, λ10)− 2DM(u, λ3)

108

DM(u, λ32) =
∑

t=(u,v,x)

[(
d(v)− 2

2

)
+
(
d(x)− 2

2

)]

DM(u, λ33) = DM(u, λ3)
(
d(u)− 2

2

)

DM(u, λ35) =
∑

v∈N(u)
[DM(v, λ8)]− 2R8(u)−R13(u)

DM(u, λ36) =
∑
v

(
W (u, v)

2

)
(d(v)− 2)− DM(u, λ13)

DM(u, λ37) =
∑

v∈N(u)
[E5(u, v)(d(v)− 2)]− 2DM(u, λ12)

DM(u, λ38) = DM(u, λ8)(d(u)− 2)− DM(u, λ13)

DM(u, λ39) =
∑

v∈N(u)
[DM(v, λ13)]− DM(u, λ13)− 2DM(u, λ12)

DM(u, λ40) =
∑

v∈N(u)
E9(u, v)(d(v)− 3)

DM(u, λ41) =
∑

v∈N(u)

(
E1(u, v)

2

)
(d(v)− 3)

109

DM(u, λ42) =
∑

v∈N(u)

(
E1(u, v)

2

)
(d(u)− 3)

DM(u, λ43) =
∑

t=(u,v,x)
[(DM(v, λ3)− 1) + (DM(x, λ3)− 1)]

− 2DM(u, λ12)− 2DM(u, λ13)

DM(u, λ44) =
(
DM(u, λ3)

2

)
− DM(u, λ13)

DM(u, λ45) =
∑

v∈N(u)
[DM(v, λ12)]− 2DM(u, λ13)− 3DM(u, λ14)

DM(u, λ46) =
∑

t=(u,v,x)
[E7(v, x)]− DM(u, λ11)− 3DM(u, λ14)

DM(u, λ47) = DM(u, λ12)(d(u)− 2)− 3DM(u, λ14)

DM(u, λ48) =
∑

t=(u,v,x)
[(E1(u, v)− 1)(d(x)− 2)

+ (E1(u, x)− 1)(d(v)− 2)]− 6DM(u, λ14)

DM(u, λ49) =
∑

v,x∈N(u)

(
W (v, x)− 1

2

)

110

DM(u, λ50) =
∑
v

(
W (u, v)

3

)

DM(u, λ51) =
∑
v

TT (u, v)(W (u, v)− 1)− 2DM(u, λ12)

DM(u, λ52) =
∑

t=(u,v,x)
[E5(v, x)]− 2DM(u, λ13)

DM(u, λ53) =
∑

t=(u,v,x)
[E5(u, v) + E5(u, x)]− 2DM(u, λ13)− 2DM(u, λ12)

DM(u, λ54) =
∑

t=(u,v,x)

(
E1(v, x)− 1

2

)

DM(u, λ55) =
∑

v∈N(u)

(
E1(u, v)

3

)

DM(u, λ56) =
∑

v∈N(u)
[DM(v, λ14)]− 3DM(u, λ14)

DM(u, λ57) =
∑

v∈N(u)
E11(u, v)(d(v)− 3)

DM(u, λ58) = DM(u, λ14)(d(u)− 3)

111

DM(u, λ59) =
∑

t=(u,v,x)
[E9(〈x, v〉) + E9(〈v, x〉)]− 2DM(u, λ13)− 6DM(u, λ14)

DM(u, λ60) =
∑

v∈N(u)
E9(〈v, u〉)(E1(u, v)− 1)− 6DM(u, λ14)

DM(u, λ61) =
∑

t=(u,v,x)
[(E1(u, v)− 1)(E1(u, x)− 1)]

− 3DM(u, λ14)

DM(u, λ62) =
∑

v,x∈N(u)
[D(v, x)]− DM(u, λ13)

DM(u, λ63) =
∑
v

D(u, v)(W (u, v)− 2)

DM(u, λ64) =
∑

v,x∈N(u)
D(v, u, x)(W (v, x)− 2)

DM(u, λ65) =
∑

t=(u,v,x)
[E11(v, x)]− 3DM(u, λ14)

DM(u, λ66) =
∑

〈u,v,x,y〉 is 4-clique
[E1(v, x) + E1(v, y) + E1(x, y)]

112

DM(u, λ67) =
∑

v∈N(u)
E11(u, v)(E1(u, v)− 2)

DM(u, λ68) =
∑

v,x where
〈u,v,x〉 is a wedge

(
D(u, v, x)

2

)

DM(u, λ69) =
∑

v,x∈N(u)

(
D(u, v, x)

2

)

DM(u, λ70) =
∑

〈u,v,x,y〉 is 4-clique
K4(v, x, y)− 1

DM(u, λ71) =
∑

t=(u,v,x)

(
K4(t)

2

)

Proof. For orbits θ36, θ49, θ50, θ51, θ63, and θ64, we need the counts of wedges

which have the vertex at hand in the middle as in the equation for θ49, or at one

of the ends, as in the equation for θ36. We do not precompute and store these

counts for all vertices as it could be expensive. But we can get these counts while

counting, by enumerating wedges in time O(W (G)) [137]. In the equation for θ51,

we need the counts of TT (u, v). But this is easy to get while enumerating the

wedges between u and v, and using the triangle per-edge counts for edge (x, v),

where (u, x, v) is a wedge. Equation of orbits θ62, θ63, θ64, θ68, and θ69 require

the counts of diamonds. These counts are too expensive to precompute and store

for all the vertices, so we do it while computing the counts for each vertex, using

triangle counts for each edge. To compute the coutns of θ70 and θ71, we need

113

to use the counts of 4-cliques incident to each triangle t, which we can get in

O(W (G) +D(G) +m+ n) [137].

Finally, we can prove Theorem5.4.4.

Proof of Theorem 5.4.4. By Theorem5.7.1, we know that we can obtain all the

counts for orbits θ0-θ14 and E0-E11 in time O(W (G)+D(G)+m+n). Also for each

triangle t, we can get K4(t) and for each edge e, the list of triangles incident to e

in time O(W (G) +D(G) +m+ n) [137]. We need to show that computing orbit

counts for θ15-θ72 takes time O(W (G) +D(G) +DP (G→) +DBP (G→) +m+ n).

By Theorem5.7.5, θ34 (the only orbit in 5-cycle) counts can be obtained in time

O(W (G) +DP (G→) +m+ n) and the counts for θ72 (the only orbit in 5-clique)

takes O(DP (G→)) to compute [137]. So, we only need to show that computing

5-VOCs except 5-cycle and 5-clique, using each of the equations in Theorem5.7.6

takes time O(W (G) +D(G) +DP (G→) +DBP (G→) +m+ n).

We divide the set of orbits of 5-vertex patterns to categories with different

runtime. When analysing the runtime for equation Of θi, we assume that we have

access to the counts for θ0-θi−1 and all edge orbit counts E0-E11, as we have stored

them previously. Orbit in each category are shown in Tab. 5.1.

• Orbits that we can count in time O(n) for all vertices:

Computing these vertex orbits, we only need to pass over vertices in G, and then

it is straightforward to get the counts for each vertex in constant time using the

equations in Theorem5.7.6.

• Orbits that we can count in time O(m+n) for all vertices: In this category,

to compute the counts for each vertex in G, we enumerate its neighborhood. This

takes time O(m+ n) overall.

• Orbits that we can count in time O(W (G) + m + n): Enumerating all the

wedges suffices to compute the counts for θ36, θ49, and θ50 using their equations.

114

Table 5.1: Time for computing 5-VOCs for all vertices using equations in The-
orem5.7.6

5-VOC runtime Orbits
O(n) θ16, θ17, θ23, θ33, θ38, θ44, θ47, θ58

O(m+ n)
θ15, θ18, θ19, θ20, θ21, θ22, θ24, θ27
θ28, θ30, θ31, θ35, θ37, θ39, θ40, θ41,
θ42, θ45, θ55, θ56, θ57, θ60, θ67

O(W (G) +m+ n)
θ25, θ26, θ29, θ32, θ36, θ43, θ46, θ48,

θ49, θ50, θ51, θ52, θ53, θ54, θ59, θ61, θ65

While enumerating wedges to get the counts of orbit θ51 for vertex u, we need the

count of tailed triangles incident to edge (u, v), where u is the tail vertex (θ9) and

v is in θ10. But this is easy to get using triangle counts, while (u, v) is the wedge

at hand during the wedge enumeration.

The rest of the orbits in this category could be obtained by enumerating all the

triangles, which is possible in O(W (G)).

• Orbits that we can count in time O(W (G) + D(G) + m + n): For θ66 and

θ70, we need to enumerate 4-cliques, which takes time O(W (G) + D(G) + m +

n) [137]. Getting counts of orbit θ71 requires enumeration of triangles, but for

each triangle t at hand, we need to get K4(t), which is overall possible in time

O(W (G) +D(G) +m+ n).

To get the rest of the orbit counts in this category, we need to enumerate diamonds.

Similar to the way we enumerate wedges while enumerating neighbors of a vertex,

instead of precomputing and storing all the wedge counts, we enumerate diamonds

while enumerating wedges, using triangle counts that we already have.

115

5.8 Experimental Results

We implement EVOKE in C++. We ran experiments on a commodity machine

from AWS EC2: R5d.2xlarge, which has Intel Xeon Platinum 8175M CPU @

2.50GHz with 4 cores and 1024K L2 cache (per core), 34MB L3 cache, and 64GB

memory. For running EVOKE on the com-orkut graph (117M edges), we used the

more powerful R5d.12xlarge EC2 instance (with 384GB RAM). We actually run

ORCA for 5-vertex patterns on the larger machine for any instance with more

than 1M edges. The EVOKE package is available at [2] as open source code.

We used large graph datasets from the Network Repository [149], SNAP [101],

and Citation Network Dataset [1, 172]. We removed directions from edges, and

omitted duplicates and self loops. Tab. 5.2 includes the number of nodes, edges,

and triangles for all the graphs we used. We also run EVOKE on wiki-en-cat, a

bipartite graph from the KONECT network repository [3, 4, 193].

As mentioned earlier, we compare our results with ORCA [75] which is the

state of the art algorithm for computing all 5-VOCs. The runtimes of ESCAPE,

EVOKE, and ORCA is given in Tab. 5.2. We also state the time for just counting

4-VOCs. When we do not report a time for ORCA, it implies that either ORCA

ran out of memory or ran more than 1000 times the EVOKE running time. In all the

results, the time includes the I/O, so we account for the time required to print the

(large) output into files. As mentioned later, there is a parallel implementation of

EVOKE, but all run times reported are of the sequential implementation (to have

a fair comparison with ORCA).

Running time of EVOKE: As seen in Tab. 5.2, for many instances of counting

5-VOCs, we simply cannot get results with ORCA. For all graphs larger than

web-google-dir, ORCA-5 runs out of memory even on the more powerful EC2

instance, or was stopped after a thousand times the corresponding EVOKE running

116

Table 5.2: Properties of the graphs and runtime of ESCAPE, EVOKE, and ORCA

Runtimes in seconds
Dataset (sorted by increasing |E|) |V | |E| |T | ESC-4 EVOKE-4 ORCA-4 ESC-5 EVOKE-5 ORCA-5
soc-brightkite 56.7K 213K 494K 0.43 0.59 1.77 4.69 7.74 562.84
ia-email-EU-dir 265K 364K 267K 0.49 1.29 9.38 5.91 13.18 17.36K
tech-RL-caida 191K 607K 455K 0.68 1.29 2.99 4.65 10.03 595.44
Citation-network V1 2.17K 631K 248K 0.69 2.57 42.91 2.89 8.93 275.15
ca-coauthors-dblp 540K 1.52M 444M 266.81 287.89 510.77 20.69K 26.91K 171.32K
DBLP-Citation-network V5 470K 2.08M 1.38M 2.59 10.18 13.04 19.17 40.76 2.92K
Citation-network V2 660K 3.02M 1.9M 4.11 11.57 28.42 32.78 69.36 7.52K
wiki-en-cat 2.04M 3.8M 0 3.13 12.61 114.31 22.85 86.58 -
web-google-dir 876K 4.32M 13.4M 4.76 10.03 45.40 45.86 104.88 76.37K
web-wiki-ch-internal 1.93M 8.95M 18.19M 30.11 65.45 655.15 1.22K 1.87K -
tech-as-skitter 1.69M 11.1M 28.8M 28.91 68.25 827.46 853.21 1.46K -
web-hudong 1.98M 14.43M 21.61M 48.20 85.83 1.78K 2.41K 3.45K -
web-baidu-baike 2.14M 17.01M 25.2M 61.4 148.11 2.92K 2.66K 4.27K -
tech-ip 2.25M 21.64M 2.3M 92.03 277.87 79.96K 18.14K 40.57K -
soc-LiveJournal1 4.85M 42.85M 285.73M 401.07 599.43 1.30K 28.46K 36.57K -
com-orkut 3.72M 117.18M 627.58M 1.23K 2.77K 7.37K 137.73K 143.41K -

time has passed (shown by blue bars in Fig. 5.1). When ORCA does give results,

the speedup of EVOKE is easily in the orders of hundreds. Fig. 5.1 gives the speedup

as a chart. EVOKE makes 5-VOCs computation feasible, for graphs with tens of

millions of edges. ORCA is unable to process any graph in that size range. Even

for the large com-orkut graph with over 100M edges, EVOKE gets all counts in two

days.

As an aside, for counting 4-VOCs, EVOKE runs typically in minutes, consistent

with previous work [125, 137].

Comparison with ESCAPE: Theorem5.4.4 shows that the asymptotic up-

per bound given for ESCAPE in [137] is also an asymptotic upper bound for

EVOKE run time. We are able to validate this in practice. Fig. 5.10a shows the ra-

tio of runtime of EVOKE over ESCAPE for 5-vertex patterns. Note that ESCAPE

counts subgraphs and EVOKE computes orbit counts for orbits in those subgraphs.

As we can see in Fig. 5.10a, in all our experiments the ratio is typically below 2

and never more than 4. We believe this finding to be significant, since obtaining

the richer information of 5-VOCs is just as feasible as getting exact total counts.

117

Runtime distribution and parallel speedup: Typically, a few orbits take

the lion’s share of the running time. Fig. 5.10b shows the split-up of running time

over the various orbits. We group them into four classes: the 5-clique, the 5-cycle,

the orbits of H25 and H27 (these require diamond enumerations), and everything

else. By and large, just the 5-cycle and 5-clique orbits account for half the time.

It is straightforward to parallelize the computation of these different groups of

orbits. For the non-induced setting, these are simply independent computations.

We perform this parallelism, and present the speedup in Fig. 5.10c. As expected,

there is roughly a 1.5-2 factor speedup, corresponding to the most expensive orbit

to compute.

VOC distributions: As a demonstration of EVOKE, we plot the VOC distri-

bution (also called graphlet degree distribution) of various graphs. To get cleaner

figures, we plot the Complementary Cumulative Distribution (CCD): for x, we

plot the fraction of vertices whose orbit count is at least x. This is plotted for

Orbit 70 (in induced 5-clique minus edge) in Fig. 5.11a and for Orbit 17 (center of

induced 4-path) in Fig. 5.11b. We stress that these induced counts are typically

harder to obtain than the non-induced counts.

For Orbit 17, we observe that the largest count is more than trillions, showing

the challenges in exact counting. Also the distribution of tech-as-skitter has

a bigger dropoff in the tail, which may be indicative of the path structures in

AS networks. The web-google-dir graph has a sharp dropoff at the end as

well. We see that Orbit 70 distributions are quite different over the graphs, unlike

Orbit 17, where the tails are similar for three of the graphs. The counts in

Citation-network V2 are much smaller, suggesting there are not many 5-cliques

missing edges.

In Fig. 5.11c, for the graph web-google-dir, we plot the VOC of the three

118

Ru
n

tim
e

 ra
tio

 (E
VO

KE
-5

/E
SC

-5
)

0

1

2

3

4

so
c-

br
ig

ht
ki

te
ia

-e
m

ai
l-E

U-
di

r
te

ch
-R

L-
ca

id
a

Ci
ta

tio
n-

ne
tw

or
k

V1
ca

-c
oa

ut
ho

rs
-d

bl
p

DB
LP

-C
ita

tio
n

V5
Ci

ta
tio

n-
ne

tw
or

k
V2

w
ik

i-e
n-

ca
t

w
eb

-g
oo

gl
e-

di
r

w
eb

-w
ik

i-c
h-

in
te

rn
al

te
ch

-a
s-

sk
itt

er
w

eb
-h

ud
on

g
w

eb
-b

ai
du

-b
ai

ke
te

ch
-ip

so
c-

Li
ve

Jo
ur

na
l1

Co
m

-o
rk

ut

(a) Ratio of runtime represented as
EVOKE-5/ESC-5 demonstrates Theo-
rem5.4.4

Ru
nt

im
e

di
st

rib
ut

io
n

0%

25%

50%

75%

100%

so
c-

br
ig

ht
ki

te
ia

-e
m

ai
l-E

U-
di

r
te

ch
-R

L-
ca

id
a

Ci
ta

tio
n-

ne
tw

or
k

V1
ca

-c
oa

ut
ho

rs
-d

bl
p

DB
LP

-C
ita

tio
n

V5
Ci

ta
tio

n-
ne

tw
or

k
V2

w
ik

i-e
n-

ca
t

w
eb

-g
oo

gl
e-

di
r

w
eb

-w
ik

i-c
h-

in
t

te
ch

-a
s-

sk
itt

er
w

eb
-h

ud
on

g
w

eb
-b

ai
du

-b
ai

ke
te

ch
-ip

so
c-

Li
ve

Jo
ur

na
1

Other Orbits 62,63,64,68, 69 orbit 72 (5-clique) orbit 34 (5-cylce)

(b) Runtime distribution over 5-vertex or-
bits

S
pe

ed
up

1.00

1.25

1.50

1.75

2.00

2.25

so
c-

br
ig

ht
ki

te
ia

-e
m

ai
l-E

U
-d

ir
te

ch
-R

L-
ca

id
a

C
ita

tio
n-

ne
tw

or
k

V
1

ca
-c

oa
ut

ho
rs

-d
bl

p
D

B
LP

-C
ita

tio
n

V
5

C
ita

tio
n-

ne
tw

or
k

V
2

w
ik

i-e
n-

ca
t

w
eb

-g
oo

gl
e-

di
r

w
eb

-w
ik

i-c
h-

in
te

rn
al

te
ch

-a
s-

sk
itt

er
w

eb
-h

ud
on

g
w

eb
-b

ai
du

-b
ai

ke
te

ch
-ip

so
c-

Li
ve

Jo
ur

na
l1

C
om

-o
rk

ut

(c) Speedup achieved by parallel compu-
tation of 5-VOCs

Figure 5.10: Empirical analysis of EVOKE runtime

different orbits (15-17) of the induced 4-path. Observe how the distribution for

Orbit 15 (the start/end) is significantly different from Orbit 17 (the center), un-

derscoring the fine-grained information that orbits provide over vanilla counts.

Graph mining through orbit counts: As another demonstration, we focus

on the citation network DBLP-Citation-network V5, where we have metadata

associated with vertices (papers). We found that the paper with the largest count

of Orbit 17 (center of induced 4-path) is the classic book “C4.5: Programs for

Machine Learning” by Ross Quinlan. Furthermore, the paper participating in the

119

(a) Orbit 70 VOCs CCD (b) Orbit 17 VOCs CCD

(c) VOCs CCD of orb(H9)

Figure 5.11: (a), (b): VOCs comp. cum. distribution (CCD) of orbits. For
count x, we plot the fraction of vertices with orbit count at least x. (c) For
web-google-dir, we plot the VOC CCD for all orbits of the 4-path. Observe
that the distributions for the start/end (orbit 15) and the center (orbit 17) behave
differently.

most 5-cliques is the highly cited VLDB 94 paper “Fast Algorithms for Mining

Association Rules in Large Databases” by Agarwal and Srikant. It is interesting

that the orbit counts can immediately give us semantically significant vertices.

120

Chapter 6

Generalized Temporal Triangle

Counting

In this chapter we introduce (δ1,3, δ1,2, δ2,3)-temporal triangles, a generalized

notion of temporal triangle counting. Our main contribution is DOTTT, an al-

gorithm for counting (δ1,3, δ1,2, δ2,3)-temporal triangles that runs in O(mκ logm).

DOTTT is up to twice as fast as the state-of-the-art and has an asymptotic running

time closer to that of static triangle counting.

6.1 Problem Description

The input is a directed temporal graph T = (V,E). Each edge is a tuple of

the form (u, v, t) where u and v are vertices in the temporal graph, and t is a

timestamp. For notational convenience, we assume all timestamps in a temporal

network are unique integers.

We introduce our notion of (δ1,3, δ1,2, δ2,3)-temporal triangles.

Definition 6.1.1. Let e1 = (u1, v1, t1), e2 = (u2, v2, t2), and e3 = (u3, v3, t3), be

three directed temporal edges where the induced static graph on them is a triangle,

121

and t1 < t2 < t3.

(e1, e2, e3) is a (δ1,3, δ1,2, δ2,3)-temporal triangle if t2 − t1 6 δ1,2, t3 − t2 6 δ2,3,

and t3 − t1 6 δ1,3.

Thus, we specify timestamp differences between every pair of edges. When one

also considers the direction of edges, there exist eight different types of temporal

triangles as shown in Fig. 6.1. These types are distinguished by temporal ordering

of edges and their direction. Thus, for any choice of (δ1,3, δ1,2, δ2,3), there are eight

different types of temporal triangles (one corresponding to each figure in Fig. 6.1).

We observe that the notion in Definition 6.1.1 subsumes most existing tem-

poral triangle definitions. Specifically, a (δ1,3, δ1,3, δ1,3)-temporal triangle becomes

a δ1,3-temporal triangles as defined in PBL [128]. Temporal triangles with re-

spect to the temporal motif definition by by Kovanen et al. in [96] consider

timestamp differences between consecutive edges in temporal ordering. By our

definition, (2∆,∆,∆)-temporal triangles capture these types of temporal trian-

gles. Although, the definition in [96] is more restrictive and requires that all edges

incident to a node are consecutive events of that node. Most existing temporal

triangle counting literature uses these definitions [104, 108, 168, 185].

We describe a simple example to see how Definition 6.1.1 offers richer temporal

information. Let us measure time in hours, so (2, 1, 1)-temporal triangle is one

where the first and second edge (of the triangle) are at most 1 hour apart, and

similarly for the second and third edge. Now consider (1.5, 1, 1)-temporal triangles.

The time gap between the first and second edge (as well as the second and third)

is again 1 hour, but the entire triangle must occur within 1.5 hours. There is

a significant difference between these cases, but previous definitions of temporal

triangles would not distinguish these.

We note that more general temporal motifs, beyond triangles, have been de-

122

fined. Yet, to the best of our knowledge, most fast algorithms that scale to millions

of edges have been designed for triangles. Paranjape et al. specialized algorithm

for 3-edge triangle motifs (temporal triangles) is up to 56x faster than their gen-

eral motif counting algorithm [128]. Our focus was on scalable algorithms, and

hence, on triangle counting. We believe that generalizing Definition 6.1.1 (and

our DOTTT algorithm) for general motifs would be compelling future work.

3 2

1

T1

3 2

1

T2

3 2

1

T3

3 2

1

T4

2 3

1

T4

2 3

1

T6

2 3

1

T7

2 3

1

T8
Figure 6.1: All possible temporal triangle types. The start point of the first
edge (in temporal ordering of edges) is shown in red and the end point in green.

6.2 Main Contributions

Our main result is the Degeneracy Oriented Temporal Triangle Totaler algo-

rithm, DOTTT that counts (δ1,3, δ1,2, δ2,3)-temporal triangles as defined in Defini-

tion 6.1.1. The running time is only a logarithmic overhead over static triangle

counting. We detail our contributions below.

Theoretically bridging gap between temporal and static triangle

counting: Our main theorem is the following.

123

Theorem 6.2.1. Given δ1,3, δ1,2 and δ2,3, the DOTTT algorithm exactly counts each

of the eight types of (δ1,3, δ1,2, δ2,3)-temporal triangles (Fig. 6.1) in a temporal graph

in O(mκ logm) time. (Here, m is the total number of temporal edges, and κ is

the degeneracy of the underlying static graph.)

Observe that, up to a logarithmic factor, our theoretical running time for

temporal triangle counting matches the O(mκ) bound for static triangle counting.

As mentioned earlier, the previous best bound was O(mτ 1/2). We stress that there

is no dependence on the time intervals (δ1,3, δ1,2, δ2,3).

The idea of degeneracy orientations is tailored to static graphs, and one of

our contributions is to show it can help for temporal triangle counting. A key

insight in DOTTT is to process (underlying) static edges in the exact order of the

Chiba-Nishizeki algorithm, but carefully consider neighboring edges to capture all

temporal triangles. By a non-trivial combinatorial analysis, we can prove that

number of times that a temporal edge is processed is upper bounded by κ. We

need additional data structure tricks to get the counts efficiently, leading to an

extra logarithmic factor.

Excellent practical behavior of DOTTT: DOTTT consistently determines tem-

poral triangle counts in less than ten minutes for datasets with tens of millions

of edges. We only use a single commodity machine with 64GB memory, without

any parallelization. We directly compare DOTTT with the state-of-the-art PBL

algorithm. Our algorithm is consistently faster, and as illustrated in Fig. 6.2a we

typically get a factor 1.5 speedup for larger graphs. (We note that DOTTT can

count a more general class of temporal triangles.)

We note that for the largest dataset in our experiments, Bitcoin (515.5M

edges), DOTTT only uses 64GB memory and runs in less than an hour, while exist-

ing methods ran out of memory (details in §6.8).

124

S
pe
ed
up

1.0

1.5

2.0

2.5

SM
S-
A

as
ku
bu
ntu

su
pe
rus
er

wi
kit
alk

sta
ck
ov
erf
low

wi
kip
ed
ia

bit
co
in

(a) Speedup

R
at

io
 o

f 𝛿
-te

m
po

ra
l t

ria
ng

le
s

0%

25%

50%

75%

100%

Coll
eg

eM
sg

em
ail

-E
u-c

ore

Math
Ove

rflo
w

SMS-A

Ask
Ubu

ntu

Sup
erU

se
r

W
iki

Talk

Stac
kO

ve
rflo

w

W
iki

pe
dia

-D
E

Bitc
oin

𝛿(1,3)=60,𝛿(1,2)=𝛿(2,3)=30 𝛿(1,3)=60,𝛿(1,2)=10,𝛿(2,3)=50

(b) Expressivity

𝛿(2,3) in minutes

R
at

io
 o

f t
ria

di
c

cl
os

ur
e

0%

25%

50%

75%

100
%

0 5 10 15 20 25 30 35 40 45 50 55 60

CollegeMsg email-Eu-core MathOverflow SMS-A
AskUbuntu SuperUser WikiTalk

(c) Triadic closure over time

Figure 6.2: (a): The Speedup of DOTTT for counting (δ1,3, δ1,2, δ2,3)-temporal
triangles over the PBL algorithm for counting δ1,3-temporal triangles. (b): We
fix δ1,3 to 1 hr. Blue bars show the ratio of (1 hr, 30 mins, 30 mins)-temporal
triangles to (1 hr, 1 hr, 1 hr)-temporal triangle. The red bars illustrate the ratio
for the case of (1 hr, 10 mins, 50 mins)-temporal triangles and is more restrictive.
(c): We fix δ1,3 = 2 hrs and δ1,2 = 1 hr. At t we plot the ratio of (2 hrs, 1 hr,
t)-temporal triangles to (2 hrs, 1 hr, 1hr)-temporal triangles.

Richer triadic information from (δ1,3, δ1,2, δ2,3)-temporal triangles: We

demonstrate how (δ1,3, δ1,2, δ2,3)-temporal triangles can give a richer network anal-

ysis method. Consider Fig. 6.2b. For a collection of temporal datasets, we generate

the counts of (1 hr, 30 min, 30 min)-temporal triangle counts, as well as those

for (1 hr, 10 min, 50 min)-temporal triangles. We plot these numbers as a ratio

of (1 hr, 1 hr, 1 hr)-temporal triangles. Across the datasets, the ratios are at

most 75%. The red bars are typically at most 25%, showing the extra power of

Definition 6.1.1 in distinguishing temporal triangles.

125

We note here that for each dataset, DOTTT has the same running time for

obtaining the counts for (1 hr, 30 min, 30 min)-temporal triangle and (1 hr, 10

min, 50 min)-temporal triangles, as it has no dependency on the time intervals

(δ1,3, δ1,2, δ2,3).

An interesting study is presented in Fig. 6.2c. The transitivity and clustering

coefficients are fundamental quantities of study in network science. In temporal

graphs, in addition to these measure, the time it takes for a wedge (2-path) to

close could also be of importance. (Zingnani et al. proposed the triadic closure

delay metric that capture the time delay between when a triadic closure is first

possible, and when they occur [200].) In Fig. 6.2c, we fix δ1,3 = 2 hrs and δ1,2 = 1

hr. We then vary δ2,3 from zero to 60 minutes, and plot the ratio of (δ1,3, δ1,2, δ2,3)-

temporal triangles to (2hrs, 1hr, 1hr)-temporal triangles. We can see the trends

in triadic closure with respect to the time for the third edge. We observe that, by

and large, half the triangles are formed within 20 minutes of the first two edges

appearing. And by 30 minutes, almost 75% of these triangles are formed. These

are examples of triadic analyses enabled by DOTTT.

6.3 Main challenges

In a temporal graph, the number of temporal edges is typically two to three

times the number of underlying static edges. Since most triangle counting algo-

rithms are based on some form of wedge enumerations, this leads to a significant

increase in the number of edges. One method used for temporal triangle counting

is to simply prune the temporal edges based on the time period [108, 167]. But

such algorithms have a dependency on the time period and are inefficient for large

time periods.

Another significant challenge is the multiplicity of an individual edge can be

126

extremely large. The same edge often occurs many hundreds to thousands of

times in a temporal network (in the BitCoin network, there is an edge appearing

447K times Tab. 6.2). These edges create significant bottlenecks for enumeration

methods. It is not clear how efficient methods on the underlying static graphs

(which ignores multiplicities) can help with this problem. Triangle counting often

works by finding a wedge (2-path) and checking for the third edge. With multiple

temporal edges between the same pair of vertices, this method requires many edge

lookups. Paranjape et al. used a clever idea to process edges on a pair of vertices

O(τ 1/2) times. The challenge is to bound it by the degeneracy of the graph.

The time constraints expressed by (δ1,3, δ1,2, δ2,3)-temporal triangles create ad-

ditional challenges. A clever wedge enumeration exploiting the degeneracy may

produce wedges containing the first and second edges of the triangle, the first and

third, or the second and third. This makes the lookup (or counting) of possible

"matches" for the remaining edge challenging, since it appears we need to look at

all multiple edges. On the other hand, if we enumerated wedges that only involved

the first and second edge, we cannot benefit for the efficiencies of degeneracy-based

methods. Some of these problems can be circumvented for (δ, δ, δ)-temporal tri-

angles, but the general case is challenging.

Overall, we can state the main challenge as follows. Fast triangle counting

methods (such as degeneracy based methods) necessarily ignore time constraints

while generating wedges, making it hard to look for the "closing" edge. On the

other hand, a method that exploits the timestamps by (say) pruning cannot get

the efficiency gains of degeneracy based methods. One of the insights of DOTTT is

a resolution of this tension.

127

6.4 Related Work

There is rich history of work on triangle counting in static graphs. Various

algorithm for triangle and motif counting in attributed graphs have also been

proposed [69, 120, 136, 145, 150, 191]. Here we only focus on temporal networks

and refer the reader to [10] and the tutorial [160] for a more detailed list of related

work.

Graph orientation, in particular degeneracy ordering, is a classic idea in count-

ing triangles and motifs in static graphs, pioneered by Chiba-Nizhizeki [38]. Re-

cently, there has been a number of triangle counting and motif counting algorithms

inspired by these techniques [51, 81, 83, 125, 129, 137]. The main benefit of de-

generacy ordering is that the out-degree of each vertex becomes small when we

orient the static graph based on this ordering.

Kovanen et al. called two temporal edges ∆T -adjacent if they share a vertex

and the difference of their timestamps are at most ∆T [96]. In their definition

of temporal motifs, temporal edges must represent consecutive events for a node.

Redmond et al. gave an algorithm for counting δ-temporal motifs but their algo-

rithm does not take the temporal ordering of edges into account [142], and only

counts motifs where incoming edges occur before outgoing edges. Gurukar et al.

present a heuristic for counting temporal motifs [70].

More related to our work, Paranjape-Benson-Leskovec defined the δ-temporal

motifs where all edges occur inside a time period δ and also the temporal ordering

of edges are taken into account [128]. They gave a general algorithm for counting

k-node `-edge motifs in temporal networks. The main idea behind their algorithm

is a moving time window of size δ over the sequence of all temporal edges for each

static motif matching the underlying static motif of the temporal motif of interest.

For temporal triangles, their algorithm runs in O(τm) time where τ is the number

128

of triangles in the underlying static graph of the input temporal graph T , as it

might enumerate temporal edges on static edges with high multiplicity O(τ) time.

They also presented a specialized, more efficient algorithm for counting 3-edge

temporal triangles that runs in time O(τ 1/2m). We call their algorithm PBL and

use it as our baseline.

Mackey et al. presented a backtracking algorithm for counting δ-temporal mo-

tifs that maps edges of the motif to the edges of the host graph one by one in tem-

poral (chronological) ordering. For each edge, it only searches through edges that

occur in the correct temporal ordering and respect the time gap restriction. [108].

Unlike the PBL algortihm and ours, this algorithm could be inefficient for large

values of δ as its runtime depends on the value of δ.

Liu et al. [105] introduced a comparative survey of temporal motif models.

Boekhout et al. gave an algorithm for counting δ-temporal multi-layer temporal

motifs [30]. Li et al., developed an algorithm for counting temporal motifs in

heterogeneous information networks [102]. Petrovic et al. gave an algorithm for

counting causal paths in time series data on networks [134].

There has also been recent progress on approximating the counts of temporal

motifs and triangles [168, 185]. Particularly , Liu et al. presented a sampling

framework for approximating the counts of δ1,3-temporal motifs [104].

6.5 Preliminaries

The input graph is a directed temporal graph that we denote by T (V,E).

Let |V | = n and |E| = m. Temporal graph T is presented as a collection of m

directed temporal edges e = (u, v, t) where u, v ∈ V , and t is the timestamp for

edge e where t ∈ R. We use t(e) to denote the timestamp of a temporal edge

e. Note that there could be multiple temporal edges on the same pair of nodes.

129

We assume that all the timestamps in T are unique. This assumption leads to

the clean definition of different types of temporal triangles (Fig. 6.1), but is not

a necessity of our algorithm. To be more specific, our algorithm also works for

temporal graph including temporal edges with equal timestamp.

We denote the underlying undirected static graph of T as G = (V,Es) and

put |Es| = ms. Two vertices in the static graph G are connected if there is at

least one temporal edge between them. Formally, Es = {{u, v} | ∃t : (u, v, t) ∈

E ∨ (v, u, t) ∈ E}. For v1, v2 ∈ V , let σ((v1, v2)) denote the temporal multiplicity,

that is the number of temporal edges on {v1, v2} directed from v1 to v2.

As shown in Fig. 6.1, there are eight different types of temporal triangles. The

time restrictions δ1,3, δ1,2, and δ2,3 is not involved in definition of these types and

could be applied to each of them. Note that these different types account for all

possible ordering of temporal edges in the triangle in addition to their directions.

6.6 Main Ideas

Our algorithm first enumerates static triangles in G, the underlying static

graph of the input temporal graph T . Let {u, v, w} be a static triangle. We

consider all possible temporal orderings as shown in Fig. 6.3, and all possible ori-

entations as shown in Fig. 6.4, for a temporal triangle corresponding to {u, v, w}.

A temporal ordering and a temporal orientation together determine the type of

the temporal triangle. For example π1 and ρ8 correspond to T1. Tab. 6.1 lists all

possible pairs of temporal ordering and orientations and their corresponding type

of temporal triangle as a function ψ.

We store the input temporal edges of the input temporal graph T in a data

structure in the CSR format. Thus, we can assume that we have constant time

access to temporal edges on each pair of vertices for each direction in the order

130

of increasing timestamps. Let π denote the temporal ordering, and ρ denote the

orientation for which we want to count the temporal triangles. In this section,

from here we only consider temporal edges that follow the orientation ρ.

Assume that the timestamps of two of the edges of a temporal triangle cor-

responding to the static triangle {u, v, w} is given. WLOG, assume that these

temporal edges correspond to {u, v} and {u,w}. We can use a binary search to

find the number of temporal edges on the pair {v, w} that are compatible with the

two given temporal edges. Note that compatibility of timestamps is determined

by the timestamp of edges and the temporal ordering π. Thus, all we need is to

enumerate all possible pairs of temporal edges on {u, v} and {u,w}. This could

be an expensive enumeration if both these static edges have high multiplicity of

temporal edges.

We show that we can obtain the counts of temporal triangles on {u, v, w} with-

out enumeration of all possible pairs of temporal edges on {u, v} and {u,w}. Let

e1, . . . , eσ(ρ({u,v})) denote the sequence of temporal edges in the order of increasing

timestamp on {u, v}, and e′1, . . . , e′σ(ρ({u,w})) denote that of {u,w}. We enumerate

each of these sequences of temporal edges separately, and for each edge we store

cumulative counts of compatible temporal edge on {v, w}. In other words, for

each edge e in these two sequence, we store the counts of edges e3 on {v, w} that

are compatible with e or any other temporal edge in the same sequence with a

smaller timestamp.

Then we enumerate the temporal edges on {u, v}, and for each edge ei we

use binary search to find the sequence of temporal edges e′j, . . . , e′k, in increasing

order of timestamp, on {v, w} that are compatible with ei. We use the cumulative

counts of compatible edges on {v, w} that we stored for ei, e′k, and e′j to compute

the counts of all temporal triangles on {u, v, w} that include ei.

131

u v

w

2 3

1
π1

u v

w

1 3

2
π2

u v

w

3 2

1
π3

u v

w

1 2

3
π4

u v

w

3 1

2
π5

u v

w

2 1

3
π6

Figure 6.3: All possible ordering of temporal edges of a temporal triangle
corresponding to a static triangle {u, v, w}.

Although we avoid the enumeration of pairs of temporal edges on {u, v} and

{u,w}, our algorithm could still be inefficient. The reason is that static edges

{u, v} could have high multiplicity of temporal edges and also participate in a

large number of static triangles. Here is where we use the power of vertex ordering

and graph orientation techniques.

DOTTT enumerates static triangles in G≺, and when processing a static triangle

{u, v, w} where u comes first in the degeneracy ordering ≺ of G, it only enumerates

temporal edges on {u, v} and {u,w}. Thus, each temporal edge on a pair {x, y}

where x ≺ y, is processed only for static triangles where the third vertex is in

the out-neighborhood of x. But we know that the out-degree of each vertex is

bounded by κ in G≺. Therefore, each such temporal edge on {x, y} is processed

O(κ) times.

132

u v

w

ρ1
u v

w

ρ2
u v

w

ρ3
u v

w

ρ4

u v

w

ρ5
u v

w

ρ6
u v

w

ρ7
u v

w

ρ8

Figure 6.4: All possible orientations of temporal edges of a temporal triangle
corresponding to a static triangle {u, v, w}.

Table 6.1: Conversion from temporal ordering and orientation to temporal tri-
angle type.

ψ ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8
π1 T7 T6 T5 T8 T3 T2 T4 T1
π2 T5 T3 T7 T4 T6 T1 T8 T2
π3 T3 T2 T1 T4 T7 T6 T8 T5
π4 T1 T7 T3 T8 T2 T5 T4 T6
π5 T6 T1 T2 T8 T5 T3 T4 T7
π6 T2 T5 T6 T4 T1 T7 T8 T3

6.7 Our Main Algorithm

In this section we describe our algorithm for getting (δ1,3, δ1,2, δ2,3)-temporal

triangles counts. Let T = (V,E) be the input directed temporal graph given as a

list of temporal edges sorted by timestamps. Although not necessary for our algo-

rithm, assuming that edges are given in increasing order of timestamp is common

in temporal networks as the edges are recorded in their order of occurrence [128].

We first extract the static graph G(V,Es) from T . Then, we obtain the degen-

eracy ordering of G, denoted by ≺ using the algorithm by Matula and Beck [112],

133

and orient the edges of G with respect to ≺ to get the DAG G≺. We start by

enumerating static triangles in G≺. This can be done in O(msκ) where κ is the

degeneracy of G [38, 137].

Note that all triangles in G≺ are acyclic as G≺ is a DAG, so each triangle in

G correspond to an acyclic triangle in G≺. In order to enumerate all triangles in

G, we enumerate all directed edges in G≺, and for each directed edge (u, v) we

enumerate N+(u). For each vertex w ∈ N+(u), we check whether {u, v, w} is a

triangle by checking the existence of an edge between v and w.

We call vertex u in a static triangle {u, v, w} the source vertex if u ≺ v and

u ≺ w. Let {u, v, w} be the triangle being processed while enumerating triangles in

G≺. WLOG, assume u is the source vertex in {u, v, w}. Thus, the number of times

we visit {u, v} or {u,w} in a static triangle are limited by d+
G≺(u) that is bounded

by κ. But the number of times we visit the static edge {v, w} is not bounded by κ,

so we want to avoid enumerating temporal edges on {v, w}. Next, we show how to

count the number of (δ1,3, δ1,2, δ2,3)-temporal triangles corresponding to the static

triangle {u, v, w}.

We define the temporal ordering of a temporal triangle corresponding to a

static triangle {u, v, w} as a mapping π : {1, 2, 3} → {{u, v}, {u,w}, {v, w}}.

There are six different possible temporal orderings as shown in Fig. 6.3.

We define the orientation of a temporal triangle corresponding to a static

triangle {u, v, w} as a mapping ρ from each pair of vertices of {u, v, w} to one of the

two possible ordered pairs of the same pair of vertices. For example, ρ1({u, v}) =

(u, v) for ρ1 in Fig. 6.4. The orientation of a temporal triangle simply determines

the direction of its temporal edges. Each such temporal edge can take two possible

directions, so there are eight types of orientation such a temporal triangle can take

as shown in Fig. 6.4. Note that orientation of a temporal triangle is independent

134

of its temporal ordering.

It is easy to see that the temporal ordering and orientation determine the

type of the temporal triangle. But different combinations of temporal orderings

and orientation could result in the same type. The temporal triangle type for all

possible pairs of temporal ordering and orientation are shown in Tab. 6.1.

For a temporal ordering π and for i ∈ {1, 2, 3}, we use Si(π, ρ) to denote

the sequence of temporal edges between the pair of vertices π(i) that have the

direction ρ(π(i)), in sorted order of timestamp. When π and ρ are clear from the

context, we use Si instead of Si(π, ρ). We assume that we have access to S1, S2,

and S3 in constant time. Let σi denote the length of Si. We use Si[`] to denote the

`-th edge in the sequence Si, and Si[` : `′] to denote the consecutive subsequence

of Si ranging from Si[`] to Si[`′].

For a sequence S of temporal edges in increasing order of timestamp and

timestamps t and t′ where t 6 t′, let EC([t, t′], S) denote the number of edges

in S with a timestamp in the time window [t, t′]. For given δ1,3, δ1,2, and δ2,3,

let TTC({u, v, w}, π, ρ) denote the number of (δ1,3, δ1,2, δ2,3)-temporal triangles

corresponding to the static triangle {u, v, w}, temporal ordering π, and orientation

ρ.

Lemma 6.7.1. For a static triangle {u, v, w}, a temporal ordering π, and an

orientation ρ,

TTC({u, v, w}, π, ρ) =
∑
e2∈S2

∑
e1∈S1

t(e1)∈[t(e2)−δ1,2,t(e2)]

EC([t(e2),min(t(e2) + δ2,3, t(e1) + δ1,3)], S3)

Proof. If temporal edge e1 ∈ S1 is in a (δ1,3, δ1,2, δ2,3)-temporal triangle with edge

e2 ∈ S2, then t(e1) ∈ [t(e2) − δ1,2, t(e2)]. Fix a pair of temporal edges (e1, e2)

135

in S1 × S2 = {(e1, e2) | e1 ∈ S1 ∧ e2 ∈ S2} where t(e2) ∈ [t(e1), t(e1) + δ1,2]. A

temporal edge e3 ∈ S3 composes a (δ1,3, δ1,2, δ2,3)-temporal triangle with e1 and e2

iff t(e3) ∈ [t(e2),min(t(e2) + δ2,3, t(e1) + δ1,3)].

For a triangle {u, v, w} where u is the source vertex, we divide all six possible

temporal orderings into three categories based on the place of {v, w} in them.

Recall that we want to avoid enumerating temporal edges on {v, w}. In π1 and

π2, {v, w} is assigned to the third place. {v, w} is assigned to the second place in

π3 and π4, and finally to the first place in temporal ordering π5 and π6.

Temporal orderings π1 and π2: Using Lemma6.7.1, one can compute

TTC({u, v, w}, π, ρ) by enumerating pairs of temporal edges in S1×S2 = {(e1, e2) |

e1 ∈ S1 ∧ e2 ∈ S2}. For each pair we compute EC([t(e2),min(t(e2) + δ2,3, t(e1) +

δ1,3), S3) using binary search. To get the final counts we sum EC([t(e2),min(t(e2)+

δ2,3, t(e1) + δ1,3), S3) over all pairs (e1, e2) ∈ S1 × S2. But enumerating S1 × S2

could be expensive and this process overall runs in time O(σ1σ2 log(σ3)). Next,

we show that we can compute the same count by enumerating edges in S1 and S2

separately and storing cumulative counts of compatible edges on S3 for each edge.

For i, j ∈ {1, 2, 3} where i 6= j, and `, `′ ∈ {1, . . . , σi} where ` 6 `′ we use

CEC+δ1,3(Si[` : `′], Sj) to denote the cumulative count of edges in Sj with a times-

tamp in [t(e), t(e) + δ1,3] for edges e in the sequence Si[` : `′]. Formally

CEC+δ1,3(Si[` : `′], Sj) =
∑

`6r6`′
EC([t(Si[r]), t(Si[r]) + δ1,3], Sj).

Cumulative counts CEC∞, CEC−δ1,3 , and CEC−∞, are defined the same way

with time intervals [t(e),∞), [t(e)−δ1,3, t(e)], and (−∞, t(e)], respectively. Counts

CEC−δ1,2 , CEC+δ1,2 , CEC−δ2,3 , and CEC+δ2,3 are defined similarly. Note that we

can compute CEC(Si[1 : `], Sj) for each ` ∈ {1, . . . , σi} with one pass over Si, and

once we have these counts, we can get the cumulative counts CEC(Si[`′ : `′′], Sj),

136

for each consecutive subsequence Si[`′ : `′′] of Si as follows.

CEC+δ1,3(Si[`′ : `′′], Sj) = CEC+δ1,3(Si[1 : `′′], Sj)

− CEC+δ1,3(Si[1 : `′ − 1], Sj).

where CEC+δ1,3(Si[1 : 0], Sj) = 0.

We first enumerate edges in S1. For each edge e1 ∈ S1 we compute the counts

CEC+δ1,3(S1[1 : `], S3) and CEC∞(S1[1 : `], S3) for each ` ∈ {1, . . . , σ1} and store

them for e1. Next, we enumerate edges in S2 and compute CEC∞(S2[1 : `], S3)

for each ` ∈ {1, . . . , σ2}.

Fix an edge e2 ∈ S2. Let `f and `` be the indices of the first and last edges in

S1 with a timestamp in [t(e2) − δ1,2, t(e2)]. Also let `δ2,3 be the index of the last

edge in S1 with a timestamp at most t(e2)− δ1,3 + δ2,3. We can find `f , `δ2,3 , and

`` using a binary search on S1. Note that δ1,3 6 δ1,2 + δ2,3, thus `f 6 `δ2,3 6 ``.

First consider the temporal edges S1[i] where `f 6 i 6 `δ2,3 . For any such edge

t(S1[i]) + δ1,3 6 t(e2) + δ2,3, so the timestamp of compatible edges in S3 lie in the

interval [t(e2), t(S1[i])+δ1,3]. Having stored the cumulative counts described above,

we can compute the number of pairs of temporal edges (e1, e3) ∈ S1[`f : `δ2,3]×S3

that compose a (δ1,3, δ1,2, δ2,3)-temporal triangle on {u, v, w} with e2, complying

with π1 and ρ, as follows.

∑
`6i6`δ2,3

EC([t(e2), t(S1(i)) + δ1,3], S3) =

CEC+δ1,3(S1[`f : `δ2,3], S3)− CEC∞(S1[`f : `δ2,3], S3)

+(`δ2,3 − `f + 1) · EC([t(e2),∞), S3)

Now, we count the number of temporal edges in S3 that compose a triangle with

137

e2 and S1[i], where `δ2,3 < i 6 ``. For a temporal edge S1[i] where `δ2,3 < i 6 ``,

we have t(S1[i]) + δ1,3 > t(e2) + δ2,3. Thus, there are EC([t(e2), t(e2) + δ2,3], S3)

edges on S3 that compose a triangle with e2 and S1[i]. So the final count of pairs

(e1, e3) ∈ S1 × S3 that are in a temporal triangle with e2 corresponding to the

static triangle {u, v, w} can be computed as follows.

∑
e1∈S1,t(e1)∈

[t(e2)−δ1,2,t(e2)]

EC([t(e2),min(t(e2) + δ2,3, t(e1) + δ1,3)], S3)

=
∑

`f6i6`δ2,3

EC([t(e2), t(S1(i)) + δ1,3], S3)

+(`` − `δ2,3) · EC([t(e2), t(e2) + δ2,3], S3)

Algorithm 3 Counting (δ1,3, δ1,2, δ2,3)-temporal triangles corresponding to a static
triangle and temporal orientation π1 or π2

1: procedure TTC-vw3(δ1,3, δ1,2, δ2,3,〈u, v, w〉, π, ρ)
. π({v, w}) = 3

2: Enumerate S1 and compute CEC+δ1,3 and CEC∞ on S3.
3: count = 0
4: for i = 1, . . . , σ2 do
5: Let `f = lowerBound(t(S2[i])− δ1,2, S1)
6: Let `δ2,3 = upperBound(t(S2[i])− δ1,3 + δ2,3, S1)
7: Let `` = upperBound(t(S2[i]), S1)
. Edges in S1[`f : `δ2,3]

8: count + = CEC+δ1,3(S1[`f : `δ2,3], S3)
9: count − = CEC∞(S1[`f : `δ2,3], S3)
10: count + = (`δ2,3 − `f + 1) · EC([t(S2[i]),∞), S3)

. Edges in S1[`δ2,3 + 1 : ``]
11: count + = (`` − `δ2,3) · EC([t(S2[i]), t(S2[i]) + δ2,3], S3)

12: return count

138

By Lemma6.7.1, to get TTC({u, v, w}, π, ρ), we only need to sum these counts

over edges in S2. Let 〈u, v, w〉 denote a static triangle where u ≺ v ≺ w. Alg. 3

formalizes the procedure described above for computing TTC(〈u, v, w〉, π, ρ) where

π is either π1 or π2.

Similar to Alg. 3, in algorithms for the remaining temporal orderings, for each

static triangle {u, v, w} where u is the source vertex, we only enumerate temporal

edges on {u, v} and {u,w}. And for each temporal edge we perform a constant

number of binary searches on temporal edges on the other two static edges of the

static triangle {u, v, w}.

Temporal orderings π3 and π4: Consider an orientation ρ, and a static

triangle on vertices {u, v, w} enumerated in G≺, where u is the source vertex. The

category of temporal orderings π3 and π4 is more intricate because π3({v, w}) =

π4({v, w}) = 2. Recall that we want to avoid enumerating temporal edges on

{v, w}, so we do not enumerate edges on S2 as in the case of π1 and π2. Instead,

we enumerate edges on S1, and compute the counts of edges on S2 that form a

temporal triangle with compatible edge in S3.

We start by enumerating edges on S1. Consider an edge e1 ∈ S1. Let `f and ``

denote the indices of first and last edge in S3 with a timestamp in [t(e1), t(e1)+δ1,3].

Also, let `δ1,2 denote the index of the first edge in S3 with a timestamp greater

than t(e1)+δ1,2, and `δ2,3 be the index of the first edge in S3 that has a timestamp

greater than t(e1) + δ2,3. Note that `δ1,2 and `δ2,3 divide S3[` : ``] into three

consecutive subsequences. We show how to count temporal triangles that involve

temporal edges in each of these three subsequences.

For a temporal edge S3[i] where `f 6 i < min(`δ1,2 , `δ2,3), each edge e2 ∈ S2

where t(e2) ∈ [t(e1), t(S3[i])] form a (δ1,3, δ1,2, δ2,3)-temporal triangle with e1 and

S3[i]. To obtain the counts of these edges in S2, it suffices to store CEC−∞ on S2

139

for each edge e3 ∈ S3.

Now, consider the temporal edges S3[i] where max(`δ1,2 , `δ2,3) < i 6 ``. The

timestamp of these edges are in time window [t(e1) + max(δ1,2, δ2,3), t(e1) + δ1,3],

and together with temporal edge e1 form a (δ1,3, δ1,2, δ2,3)-temporal triangle with

each temporal edge e2 ∈ S2 where t(e2) ∈ [t(S3[i])−δ2,3, t(e1)+δ1,2]). To count the

number of such temporal edges in S2 we only need to store CEC−δ2,3 and CEC−∞

on S2 for each temporal edge e3 in S3.

Algorithm 4 Counting (δ1,3, δ1,2, δ2,3)-temporal triangles corresponding to a static
triangle and temporal orientation π3 or π4

1: procedure CTT-vw2(δ1,3, δ1,2, δ2,3,〈u, v, w〉, π, ρ)
. π({v, w}) = 2

2: count = 0
3: Enumerate S3 and compute CEC−∞ and CEC−δ2,3 on S2
4: for i = 1, . . . , σ1 do
5: Let `f = lowerBound(t(S1[i]), S3)
6: Let `δ1,2 = upperBound(t(S1[i]) + δ1,2, S3)
7: Let `δ2,3 = lowerBound(t(S1[i]) + δ2,3, S3)
8: Let `` = upperBound(t(S1[i]) + δ1,3, S3)
9: Let `min = min(`δ1,2 , `δ2,3)
10: Let `max = max(`δ1,2 , `δ2,3)

. Edges in S3[`f : `min]
11: count + = CEC−∞(S3[`f : `min], S2)
12: count − = (`min − `f + 1) · EC((−∞, t(S1[i])], S2)

. Edges in S3[`min + 1 : `max − 1]
13: if δ1,2 6 δ2,3 then
14: count + = (`δ2,3 − `δ1,2)
15: ·EC([t(S1[i]), t(S1[i]) + δ1,2], S2)
16: else if δ2,3 6 δ1,2 then
17: count + = CEC−δ2,3(S3[`δ2,3 : `δ1,2], S2)

. Edges in S3[`max : ``]
18: count + = CEC−δ2,3(S3[`max : ``], S2)
19: count − = CEC−∞(S3[`max : ``], S2)
20: count += (`` − `max) · EC((−∞, t(S1[i]) + δ1,2], S2)
21: return count

Finally, consider an edge S3[i] where min(`δ1,2 , `δ2,3) 6 i 6 max(`δ1 , `δ2,3). The

140

number of compatible edges in S2 depend on how δ1,2 compares to δ2,3. There are

two cases: (a) : δ1,2 < δ2,3 and (b) : δ2,3 < δ1,2. In case (a) edges in S2 have to have

a timestamp in [t(e1), t(e1)+δ1,2] to form a triangle with e1 and S3[i], and in case (b)

their timestamps should be in the time window [t(S3[i])−δ2,3, t(S3[i])]. Alg. 4 give

the step by step procedure for counting temporal triangles for temporal orderings

π3 and π4.

Algorithm 5 Counting (δ1,3, δ1,2, δ2,3)-temporal triangles corresponding to a static
triangle and temporal orientation π5 or π6

1: procedure TTC-vw1(δ1,3, δ1,2, δ2,3,〈u, v, w〉, π, ρ)
. π({v, w}) = 1

2: count = 0
3: Enumerate S3 and compute CEC−δ1,3 and CEC−∞ on S1
4: for i = 1, . . . , σ2 do
5: Let `f = lowerBound(t(S2[i]), S3)
6: Let `δ1,2 = lowerBound(t(S2[i]) + δ1,3 − δ1,2, S3)
7: Let `` = upperBound(t(S2[i]) + δ2,3, S3)
. Edges in S3[`δ1,2 : ``]

8: count + = CEC−δ1,3(S3[`δ1,2 : ``], S1)
9: count − = CEC−∞(S3[`δ1,2 : ``], S1)
10: count + = (`` − `δ1,2 + 1) · EC((−∞, t(S2[i])], S1)

. Edges in S3[`f : `δ1,2 − 1]
11: count + = (`δ1,2 − `f) · EC([t(S2[i])− δ1,2, t(S2[i])], S1)
12: return count

Temporal orderings π5 and π6: This case is similar to the case of temporal

ordering π1 and π2. The difference is that while enumerating edges in S2, we will

first find the compatible edges in S3 instead of S1, and then count edges in S1 that

complete a temporal triangle. Consider a static triangle {u, v, w} and orientation

ρ. Fix a temporal edge e2 in S2. Let `f and `` denote the indices of the first and last

temporal edges in S3 with a timestamp in the time period [t(e2), t(e2) + δ2,3]. Let

`δ1,2 be the first temporal edge in S3 such that t(S3(`δ1,2)) > t(e2)+δ1,3−δ1,2. Since

δ1,3 6 δ1,2 + δ2,3, we have `f 6 `δ2,3 6 ``. Consider a temporal edge S3[i] where

`f 6 i < `δ1,2 . The number of edges in S1 that form a triangle with e2 and S3[i]

141

is EC(S1, [t(e2) − δ1,2, t(e2)]). For each temporal edge S3[i] where `δ1,2 6 i 6 ``,

there are EC(S1, [t(S3[i]) − δ1,3, t(e2)]) edges that complete a temporal triangle.

This is the same as in the case of π1 and π2 with different time windows. We need

to get CEC−∞ and CEC−δ1,3 on S1 for each edge e3 ∈ S3.

6.7.1 Getting the Counts for All Temporal Triangle Types

Now that we can count (δ1,3, δ1,2, δ2,3)-temporal triangles for each combination

of temporal ordering and orientation, it only remains to get the counts for each

temporal triangle type (Fig. 6.1). Let ψ(π, ρ) denote the triangle type for π and

ρ. Alg. 6 gets the counts for all eight types. Now, we can finally prove Theo-

rem6.2.1.

Algorithm 6 Counting (δ1,3, δ1,2, δ2,3)-temporal triangles for each temporal tri-
angle types
1: procedure Count-temporal-triangles(T , δ1,3, δ1,2, δ2,3)
2: Extract the static graph G of T .
3: Find the degeneracy ordering ≺ of G.
4: Derive G≺ by orienting G with respect to ≺.
5: Initialize Counts to 0 for T1, . . . , T8.
6: for all Static triangles {u, v, w} do

. WLOG let u ≺ v ≺ w
7: for all Temporal ordering π and orientation ρ do
8: Counts(ψ(π, ρ)) += TTC(〈u, v, w〉, π, ρ) . Tab. 6.1

. Using Alg. 3, Alg. 4, and Alg. 5

Proof of Theorem 6.2.1. Extracting the static graph G from T can be done in

O(m) time. We simply enumerate all temporal edges of T and for each temporal

edge e = (v1, v2, t), we add an static edge between {v1, v2} in G if they are not

connected already. The degeneracy ordering of G could be obtained in O(ms)

time [112], and G≺ could also be derived in time O(ms). For enumerating static

triangles we first enumerate each edge in G≺. For each edge (u, v), we enumerate

142

N+(u) which takes O(κ) as d+
G≺(u) 6 κ. We can lookup if there is an edge between

v and w in constant time. Thus, enumerating triangles take O(ms ·κ) time overall.

Note that for each static triangle we only enumerate temporal edges on static

edges incident to the source vertex. So for the static triangle 〈u, v, w〉, we only

enumerate temporal edges on the pairs {u, v} and {u,w}. While processing a

temporal edge during enumeration of temporal edges on {u, v} or {u,w}, we either

perform a constant time operation, or spend O(log(σmax)) time for a constant

number of binary searches over the temporal edges of the other two static edges

in the static triangle 〈u, v, w〉. Thus,

T (A) = O(ms · κ+
∑
〈u,v,w〉

(σ(u, v) + σ(u,w)) log(σmax))

where A denotes Alg. 6, and T (A) denotes the worst case time complexity of A.

For each vertex u ∈ V , d+
G≺(u) 6 κ, so each edge (u, v) in G≺, is a part of

at most κ static triangles where u is the source vertex. Therefore, the temporal

edges on each edge {u, v} in G are enumerated at most O(κ) times. Thus,

T (A) = O(ms · κ+
∑

{u,v}∈Es

(σ(u, v) + σ(v, u)) · κ log(σmax)).

Hence,

T (A) = O(mκ log(σmax)).

143

Table 6.2: Descriptions of the datasets and runtime of DOTTT and PBL .

dataset #vertices #edges #static edges #static triangles degeneracy max multiplicity time span (years) DOTTT runtime PBL runtime
CollegeMsg 1.9K 59.8K 13.8K 14.3K 20 98 0.51 0.09 0.07
email-Eu-core 986 332K 16.1K 105K 34 2.8K 2.2 2.31 3.37
MathOverflow 24.7K 390K 188K 1.4M 78 225 6.46 3.17 3.6
SMS-A 44.1K 545K 52.22K 10K 9 5.3K 0.92 0.45 0.81
AskUbuntu 157K 727K 456K 680K 48 154 7.09 2.23 5.08
SuperUser 192K 1.11M 715K 1.54M 61 78 7.59 4.41 8.84
WikiTalk 1.09M 6.11M 2.79M 8.12M 124 1.1K 6.21 34 56
StackOverflow 2.58M 47.9M 28.18M 114.2M 198 549 7.60 347 678
Wikipedia-DE 2.17M 86.21M 39.71M 169.9M 265 347 10.18 576 987
Bitcoin 59.61M 515.5M 366.4M 706.2M 604 447K 5.98 2923 4374

Distribution of temporal triangle counts

MathOverflow

AskUbuntu

SuperUser

StackOverflow

SMS-A

CollegeMsg

0% 25% 50% 75% 100%

𝓣1
𝓣2
𝓣3
𝓣4
𝓣5
𝓣6
𝓣7
𝓣8

(a) Temporal triangle count distribution

𝛿(1,2) in minutes

Tr
ia

di
c

cl
os

ur
e

ra
tio

0

0.25

0.5

0.75

1

10 20 30 40 50 60

𝛿(2,3)=10 mins
𝛿(2,3)=20 mins
𝛿(2,3)=30 mins
𝛿(2,3)=40 mins
𝛿(2,3)=50 mins
𝛿(2,3)=60 mins

(b) Effect of δ1,2 and δ2,3 on triadic closure

𝛿(2,3) in minutes

Tr
ia

di
c

cl
os

ur
e

ra
tio

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50 55 60

CollegeMsg
(cyclic)
CollegeMsg
(acyclic)
SMS-A (cyclic)
SMS-A (acyclic)
MathOverflow
(cyclic)
MathOverflow
(acyclic)
AskUbuntu (cyclic)
AskUbuntu

(c) Triadic closure in cyclic and acyclic
cases

Figure 6.5: (a):The distribution of (1 hr, 1 hr, 1 hr)-temporal triangle counts
over all eight temporal triangle types as shown in Fig. 6.1. (b):We fix δ1,3 to 2
hrs. We vary δ1,2 from 0 to 60 minutes and plot the ratio of (2 hrs, δ1,2, δ2,3)-
temporal triangles to (2hrs, δ1,2, 1hr)-temporal triangles for δ2,3 ranging from 0 to
60 minutes. (c) We plot the ratio of (2 hrs, 1 hr, δ2,3)-temporal triangles to (2hrs,
1hr, 1hr)-temporal triangles for δ2,3 ranging from 0 to 60 minutes, for cyclic and
acyclic triangles.

144

6.8 Experimental Evaluations

We implemented our algorithm in C++ and used a commodity machine from

AWS EC2: R5d.2xlarge to run our experiments. This EC2 instance has Intel(R)

Xeon(R) Platinum 8175M CPU @ 2.50GHz and 64GB memory. On this AWS

machine, PBL runs out of memory for the Bitcoin graph, so we used one with

more than 256GB memory for this case. The implementation of DOTTT is available

at [5].

We performed our experiments on a collection of temporal input graphs from

SNAP [101], KONECT [98], and the Bitcoin transaction dataset from [93], con-

sisting of all transactions up to Feb 9, 2018. The timestamp of each transaction

is the creation time of the block on the blockchain that contains it [143].

Running time: All the running times are shown in Tab. 6.2. We ran all

experiments on a single thread. In most instances, DOTTT takes a few seconds to

run. For graphs with tens of millions of temporal edges, DOTTT runs in less than

ten minutes. Even for the Bitcoin graph with 515M edges, DOTTT takes less than

an hour.

Running time independent of time periods: The running time of both

DOTTT and PBL algorithms are independent of the time periods. DOTTT has the

same running time for time restrictions ranging from 0 to the time span of the

input dataset. For comparison with PBL, we set δ1,3 = δ1,2 = δ2,3 = 1 hr.

Comparison with PBL :We compare our algorithm with the PBL algorithm

that counts δ1,3-temporal triangles, as it is the closest to our work. We typically get

a 1.5x-2x speedup over PBL for large graphs (more than 0.5M edges) as shown

in Fig. 6.2a. Note that DOTTT computes (δ1,3, δ1,2, δ2,3)-temporal triangle counts

while PBL only gets the counts of δ1,3-temporal triangles.

Distribution of counts over types of triangles: The distribution of (1

145

hr, 1 hr, 1 hr)-temporal triangle counts for our datasets are shown in Fig. 6.5a.

As we expected [119, 128, 183, 195], networks from similar domains have similar

distributions. It is easy to see in Fig. 6.5a, that all the stack exchange networks

have similar distributions. The same holds for the message networks CollegeMsg

and SMS-A.

We observe that cyclic temporal triangles, T4 and T8, have a larger share in

temporal triangle counts in messaging networks than in stack exchange networks.

Triadic closures in temporal networks: In static triangles, the transitivity

measures the ratio of number of static triangles to the number of all wedges. In

temporal graphs, in addition to transitivity, the time it takes for a wedge to

appear and close is of importance [200]. In Fig. 6.5b, we study the effect of the

time it takes for a wedge to appear from an edge, on the time it takes to close

for CollegeMsg graph. We fix δ1,3 = 2 hrs. For δ1,2 ranging from zero to 60

minutes (10 minute steps), we vary δ2,3 from zero to 60 minutes and plot the ratio

of (δ1,3, δ1,2, δ2,3)-temporal triangles over (2hrs, δ1,2, 1hr)-temporal triangles. We

observe that the set of ratios for all values of δ2,3 are almost identical for different

values of δ1,2. For instance, for all values of δ1,2, roughly half the triangles are

formed in 10-20 minutes. This implies that once a wedge is formed, the time it

took to appear does not affect the time it takes to close.

As another demonstration of DOTTT, for δ1,3 = 2 hrs and δ1,2 = 1 hrs, we

plot the ratio of (δ1,3, δ1,2, δ2,3)-temporal triangles to (2hrs, 1hr, 1hr)-temporal

triangles, this time separately for cyclic and acyclic temporal triangles in Fig. 6.5c.

We observe that for stack exchange networks, acyclic temporal triangles tend to

take a shorter time to close from the moment their second edge appears than

cyclic temporal triangles. As we see in Fig. 6.5c, this is not the case for message

networks.

146

Chapter 7

Conclusion

In this thesis we studied the problem of subgraph counting and the role of

graph orientation and degeneracy, both in theory and in practice. We gained

a better theoretical understanding of the problem by giving a linear time algo-

rithm for sub-cntk in bounded degenreacy graphs for k < 6, and proving that

it does not admit a linear time algorithm, assuming a standard conjecture in

fine grained complexity. Moreover, we discovered a near-linear time algorithm

dichotomy for homomorphism counting in bounded degenreacy grpahs. We gave

a clean characterization of patterns for which near linear time homomorphism

counting algorithms are possible in bounded degenreacy graphs.

Our results on subgraph and homomorphism counting in bounded degeneracy

graphs advanced our theoretical understanding of this problem and the limits of

degenracy based methods. We pose the following open problems as possible future

research direction.

• In Chapter 4, we gave a clean characterization of pattern graphs H for

which HomG(H) is computable in near-linear time when G has bounded

degeneracy. Our lower bound result (Theorem Theorem 4.5.1) also holds

147

for sub-cntH (see Observation Observation 4.5.8). However, our argument

for the other direction does not follow to the subgraph counting version

of the problem. Can we characterize pattern graphs H where sub-cntH

admits a (near) linear time algorithm in bounded degeneracy graphs?

• Can we describe the restricted class of graphs G, for each pattern H, where

HomG(H) for G ∈ G is countable in (near) linear time?

We also contributed to the practical world of subgraph counting. We gave

practical algorithm for getting all 5-VOCs, based on graph orientation and vertex

ordering, that is typically hundreds of times faster than the state-of-the-art. This

is an exemplary result, showing the power of these techniques.

Another practical subgraph counting subfield we explored is counting patterns

in temporal networks. We introduced (δ1,3, δ1,2, δ2,3)-temporal triangles, a gen-

eralized notion of temporal triangles that considers time gaps between any pair

of edges of the triangle. We presented DOTTT, an efficient algorithm based on

graph orientation and degeneracy ordering, for counting (δ1,3, δ1,2, δ2,3)-temporal

triangles. DOTTT improves on the state-of-the-art temporal triangle counting al-

gorithms and has an asymptotic running time closer to that of static triangle

counting. It would be interesting to study the possiblity of extension of the no-

tion of (δ1,3, δ1,2, δ2,3)-temporal triangles to other temporal patterns.

148

Bibliography

[1] Citation network dataset. Available at https://aminer.org/citation.

[2] Evoke. https://bitbucket.org/nojan-p/orbit-counting.

[3] The koblenz network collection. Available at http://konect.uni-koblenz.
de/.

[4] Wikipedia (en) network dataset – KONECT, October 2016.

[5] DOTTT. https://github.com/nojanp/temporal-triangle-counting,
2021.

[6] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply
strong lower bounds for dynamic problems. In Proc. 55th Annual IEEE
Symposium on Foundations of Computer Science, 2014.

[7] Monica Agrawal, Marinka Zitnik, and Jure Leskovec. Large-scale analysis
of disease pathways in the human interactome. In Pacific Symposium on
Biocomputing, volume 23, page 111. World Scientific, 2018.

[8] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick Duffield.
Efficient graphlet counting for large networks. In International Conference
on Data Mining, 2015.

[9] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches:
sparsification, spanners, and subgraphs. In Proc. 31st ACM Symposium on
Principles of Database Systems, pages 5–14. ACM, 2012.

[10] Mohammad Al Hasan and Vachik S Dave. Triangle counting in large net-
works: a review. Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, 8(2), 2018.

[11] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM,
42(4):844–856, 1995.

[12] Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given
length cycles. Algorithmica, 17(3):209–223, 1997.

149

https://aminer.org/citation
https://bitbucket.org/nojan-p/orbit-counting
http://konect.uni-koblenz.de/
http://konect.uni-koblenz.de/
https://github.com/nojanp/temporal-triangle-counting

[13] Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A simple sublinear-
time algorithm for counting arbitrary subgraphs via edge sampling. In Proc.
10th Conference on Innovations in Theoretical Computer Science, 2018.

[14] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming
algorithms, with an application to counting triangles in graphs. In Proc.
13th Annual ACM-SIAM Symposium on Discrete Algorithms, 2002.

[15] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient semi-streaming
algorithms for local triangle counting in massive graphs. In Annual SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages
16–24, 2008.

[16] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. Efficient
semi-streaming algorithms for local triangle counting in massive graphs. In
Proceedings of the 14th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 16–24, 2008.

[17] A. Benson, D. F. Gleich, and J. Leskovec. Higher-order organization of
complex networks. Science, 353(6295):163–166, 2016.

[18] Suman K Bera and Amit Chakrabarti. Towards tighter space bounds for
counting triangles and other substructures in graph streams. In Proc. 34th
International Symposium on Theoretical Aspects of Computer Science, 2017.

[19] Suman K Bera, Amit Chakrabarti, and Prantar Ghosh. Graph coloring via
degeneracy in streaming and other space-conscious models. In Proc. 47th
International Colloquium on Automata, Languages and Programming, 2020.

[20] Suman K Bera, Noujan Pashanasangi, and C Seshadhri. Linear time sub-
graph counting, graph degeneracy, and the chasm at size six. In Proc.
11th Conference on Innovations in Theoretical Computer Science. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[21] Suman K Bera, Noujan Pashanasangi, and C Seshadhri. Near-linear time
homomorphism counting in bounded degeneracy graphs: the barrier of long
induced cycles. In Proceedings of the 2021 ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 2315–2332. SIAM, 2021.

[22] Suman K Bera and C Seshadhri. How the degeneracy helps for triangle
counting in graph streams. In Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, pages 457–
467, 2020.

150

[23] Jonathan W. Berry, Bruce Hendrickson, Randall A. LaViolette, and Cyn-
thia A. Phillips. Tolerating the community detection resolution limit with
edge weighting. Phys. Rev. E, 83:056119, May 2011.

[24] Umberto Bertele and Francesco Brioschi. On non-serial dynamic program-
ming. J. Comb. Theory, Ser. A, 14(2):137–148, 1973.

[25] Nadja Betzler, Rene Van Bevern, Michael R Fellows, Christian Komusiewicz,
and Rolf Niedermeier. Parameterized algorithmics for finding connected
motifs in biological networks. IEEE/ACM Transactions on Computational
Biology and Bioinformatics (TCBB), 8(5):1296–1308, 2011.

[26] M. Bhuiyan, M. Rahman, M. Rahman, and M. Al Hasan. Guise: Uniform
sampling of graphlets for large graph analysis. In International Conference
on Data Mining, pages 91–100, 2012.

[27] Etienne Birmele et al. Detecting local network motifs. Electronic Journal
of Statistics, 6:908–933, 2012.

[28] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto.
Counting paths and packings in halves. In Proc. 17th Annual European
Symposium on Algorithms, pages 578–586, 2009.

[29] Andreas Björklund, Petteri Kaski, and Łukasz Kowalik. Counting thin sub-
graphs via packings faster than meet-in-the-middle time. ACM Transactions
on Algorithms (TALG), 13(4):48, 2017.

[30] Hanjo D Boekhout, Walter A Kosters, and Frank W Takes. Efficiently
counting complex multilayer temporal motifs in large-scale networks. Com-
putational Social Networks, 6(1):1–34, 2019.

[31] JA Bondy and USR Murty. Graph theory (2008). Grad. Texts in Math,
2008.

[32] Christian Borgs, Jennifer Chayes, László Lovász, Vera T Sós, and Katalin
Vesztergombi. Counting graph homomorphisms. In Topics in discrete math-
ematics, pages 315–371. Springer, 2006.

[33] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bron-
stein. Improving graph neural network expressivity via subgraph isomor-
phism counting. arXiv preprint arXiv:2006.09252, 2020.

[34] Marco Bressan. Faster subgraph counting in sparse graphs. In 14th Interna-
tional Symposium on Parameterized and Exact Computation (IPEC 2019).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

151

[35] Graham R Brightwell and Peter Winkler. Graph homomorphisms and phase
transitions. Journal of combinatorial theory, series B, 77(2):221–262, 1999.

[36] R. Burt. Structural holes and good ideas. American Journal of Sociology,
110(2):349–399, 2004.

[37] Ashok K Chandra and Philip MMerlin. Optimal implementation of conjunc-
tive queries in relational data bases. In Proc. 9th Annual ACM Symposium
on the Theory of Computing, pages 77–90, 1977.

[38] Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing al-
gorithms. SIAM Journal on computing, 14(1):210–223, 1985.

[39] Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing al-
gorithms. SIAM J. Comput., 14:210–223, 1985.

[40] Jonathan Cohen. Graph twiddling in a mapreduce world. Computing in
Science & Engineering, 11(4):29, 2009.

[41] J. Coleman. Social capital in the creation of human capital. American
Journal of Sociology, 94:S95–S120, 1988.

[42] Graham Cormode and Hossein Jowhari. A second look at counting triangles
in graph streams (corrected). Theor. Comput. Sci., 683:22–30, 2017.

[43] Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a
good basis for counting small subgraphs. In Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, pages 210–223, 2017.

[44] Radu Curticapean and Dániel Marx. Complexity of counting subgraphs:
Only the boundedness of the vertex-cover number counts. In Proc. 55th
Annual IEEE Symposium on Foundations of Computer Science, pages 130–
139, 2014.

[45] Víctor Dalmau and Peter Jonsson. The complexity of counting homomor-
phisms seen from the other side. Theor. Comput. Sci., 329(1-3):315–323,
2004.

[46] Holger Dell, Marc Roth, and Philip Wellnitz. Counting answers to existential
questions. In Proc. 46th International Colloquium on Automata, Languages
and Programming. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[47] Josep Díaz, Maria Serna, and Dimitrios M Thilikos. Counting h-colorings
of partial k-trees. Theor. Comput. Sci., 281(1-2):291–309, 2002.

[48] Reinhard Diestel. Graph Theory, Fourth Edition. Springer, 2010.

152

[49] Stavros I Dimitriadis, Nikolaos A Laskaris, Vasso Tsirka, Michael Vourkas,
Sifis Micheloyannis, and Spiros Fotopoulos. Tracking brain dynamics
via time-dependent network analysis. Journal of neuroscience methods,
193(1):145–155, 2010.

[50] Martin Dyer and Catherine Greenhill. The complexity of counting graph
homomorphisms. Random Structures & Algorithms, 17(3-4):260–289, 2000.

[51] Talya Eden, Amit Levi, Dana Ron, and C Seshadhri. Approximately count-
ing triangles in sublinear time. SIAM Journal on Computing, 46(5):1603–
1646, 2017.

[52] Talya Eden, Dana Ron, and C Seshadhri. On approximating the number of
k-cliques in sublinear time. In Proc. 50th Annual ACM Symposium on the
Theory of Computing, pages 722–734, 2018.

[53] Talya Eden, Dana Ron, and C Seshadhri. Faster sublinear approximations
of k-cliques for low arboricity graphs. In Annual ACM-SIAM Symposium
on Discrete Algorithms, 2020.

[54] Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed
parameter clique and dominating set. Theor. Comput. Sci., 326(1-3):57–67,
2004.

[55] Ethan R Elenberg, Karthikeyan Shanmugam, Michael Borokhovich, and
Alexandros G Dimakis. Beyond triangles: A distributed framework for
estimating 3-profiles of large graphs. In Proc. 12th Annual SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pages
229–238. ACM, 2015.

[56] Ethan R. Elenberg, Karthikeyan Shanmugam, Michael Borokhovich, and
Alexandros G. Dimakis. Beyond triangles: A distributed framework for es-
timating 3-profiles of large graphs. In Annual SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages 229–238, 2015.

[57] Ethan R Elenberg, Karthikeyan Shanmugam, Michael Borokhovich, and
Alexandros G Dimakis. Distributed estimation of graph 4-profiles. In Proc.
25th Proceedings, International World Wide Web Conference (WWW),
pages 483–493. International World Wide Web Conferences Steering Com-
mittee, 2016.

[58] Ethan R. Elenberg, Karthikeyan Shanmugam, Michael Borokhovich, and
Alexandros G. Dimakis. Distributed estimation of graph 4-profiles. In Pro-
ceedings, International World Wide Web Conference (WWW), pages 483–
493, 2016.

153

[59] David Eppstein. Arboricity and bipartite subgraph listing algorithms. In-
formation processing letters, 51(4):207–211, 1994.

[60] G. Fagiolo. Clustering in complex directed networks. Phys. Rev. E,
76:026107, Aug 2007.

[61] Mehrdad Farajtabar, Manuel Gomez-Rodriguez, Yichen Wang, Shuang Li,
Hongyuan Zha, and Le Song. Coevolve: A joint point process model for
information diffusion and network co-evolution. In Companion Proceedings
of the The Web Conference 2018, 2018.

[62] K. Faust. A puzzle concerning triads in social networks: Graph constraints
and the triad census. Social Networks, 32(3):221–233, 2010.

[63] Jörg Flum and Martin Grohe. The parameterized complexity of counting
problems. SIAM J. Comput., 33(4):892–922, 2004.

[64] Noé Gaumont, Clémence Magnien, and Matthieu Latapy. Finding remark-
ably dense sequences of contacts in link streams. Social Network Analysis
and Mining, 6(1):1–14, 2016.

[65] Lior Gishboliner, Yevgeny Levanzov, and Asaf Shapira. Counting subgraphs
in degenerate graphs, 2020.

[66] G. Goel and J. Gustedt. Bounded arboricity to determine the local structure
of sparse graphs. In International Workshop on Graph-Theoretic Concepts
in Computer Science, pages 159–167. Springer, 2006.

[67] Mira Gonen and Yuval Shavitt. Approximating the number of network
motifs. Internet Mathematics, 6(3):349–372, 2009.

[68] Martin Grohe. The complexity of homomorphism and constraint satisfaction
problems seen from the other side. Journal of the ACM (JACM), 54(1):1–24,
2007.

[69] Shawn Gu, John Johnson, Fazle E Faisal, and Tijana Milenković. From ho-
mogeneous to heterogeneous network alignment via colored graphlets. Sci-
entific reports, 8(1):1–16, 2018.

[70] Saket Gurukar, Sayan Ranu, and Balaraman Ravindran. Commit: A scal-
able approach to mining communication motifs from dynamic networks. In
Proceedings of the 2015 ACM SIGMOD International Conference on Man-
agement of Data, 2015.

[71] Rudolf Halin. S-functions for graphs. Journal of geometry, 8(1-2):171–186,
1976.

154

[72] Pavol Hell and Jaroslav Nešetřil. On the complexity of h-coloring. Journal
of Combinatorial Theory, Series B, 48(1):92–110, 1990.

[73] Tomaž Hočevar and Janez Demšar. A combinatorial approach to graphlet
counting. Bioinformatics, 30(4):559–565, 2014.

[74] Tomaž Hočevar and Janez Demšar. Combinatorial algorithm for counting
small induced graphs and orbits. PloS ONE, 12(2):e0171428, 2017.

[75] Tomaž Hočevar, Janez Demšar, et al. Computation of graphlet orbits for
nodes and edges in sparse graphs. Journ. Stat. Soft, 71, 2016.

[76] P. Holland and S. Leinhardt. A method for detecting structure in sociometric
data. American Journal of Sociology, 76:492–513, 1970.

[77] F. Hormozdiari, P. Berenbrink, N. Prulj, and S. Cenk Sahinalp. Not all
scale-free networks are born equal: The role of the seed graph in ppi network
evolution. PLoS Computational Biology, 118, 2007.

[78] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which prob-
lems have strongly exponential complexity? In Proc. 39th Annual IEEE
Symposium on Foundations of Computer Science, pages 653–662, 1998.

[79] Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM
Journal on Computing, 7(4):413–423, 1978.

[80] Shweta Jain and C. Seshadhri. A Fast and Provable Method for Estimating
Clique Counts Using Turán’s Theorem. In Proceedings, International World
Wide Web Conference (WWW), pages 441–449, 2017.

[81] Shweta Jain and C Seshadhri. A fast and provable method for estimating
clique counts using turán’s theorem. In Proc. 26th Proceedings, International
World Wide Web Conference (WWW), pages 441–449. International World
Wide Web Conferences Steering Committee, 2017.

[82] Madhav Jha, C Seshadhri, and Ali Pinar. A space efficient streaming algo-
rithm for triangle counting using the birthday paradox. In Proc. 19th Annual
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 589–597, 2013.

[83] Madhav Jha, C Seshadhri, and Ali Pinar. Path sampling: A fast and prov-
able method for estimating 4-vertex subgraph counts. In Proc. 24th Proceed-
ings, International World Wide Web Conference (WWW), pages 495–505.
International World Wide Web Conferences Steering Committee, 2015.

155

[84] Madhav Jha, C. Seshadhri, and Ali Pinar. Path sampling: A fast and
provable method for estimating 4-vertex subgraph counts. In Proceedings,
International World Wide Web Conference (WWW), 2015.

[85] H. Jowhari and M. Ghodsi. New streaming algorithms for counting triangles
in graphs. In Computing and Combinatorics Conference (COCOON), pages
710–716, 2005.

[86] Hossein Jowhari and Mohammad Ghodsi. New streaming algorithms for
counting triangles in graphs. In Computing and Combinatorics, pages 710–
716, 2005.

[87] Daniel M Kane, Kurt Mehlhorn, Thomas Sauerwald, and He Sun. Counting
arbitrary subgraphs in data streams. In Proc. 39th International Colloquium
on Automata, Languages and Programming, pages 598–609, 2012.

[88] Arijit Khan, Nan Li, Xifeng Yan, Ziyu Guan, Supriyo Chakraborty, and Shu
Tao. Neighborhood based fast graph search in large networks. In Proceedings
of the 2011 ACM SIGMOD International Conference on Management of
data, 2011.

[89] Ton Kloks, Dieter Kratsch, and Haiko Müller. Finding and counting small
induced subgraphs efficiently. Information Processing Letters, 74(3-4):115–
121, 2000.

[90] Tamara G Kolda, Ali Pinar, Todd Plantenga, C Seshadhri, and Christine
Task. Counting triangles in massive graphs with mapreduce. SIAM Journal
on Scientific Computing, 36(5):S48–S77, 2014.

[91] Tamara G. Kolda, Ali Pinar, Todd Plantenga, C. Seshadhri, and Christine
Task. Counting triangles in massive graphs with mapreduce. SIAM J.
Scientific Computing, 36(5), 2014.

[92] M. N. Kolountzakis, G. L. Miller, R. Peng, and C. Tsourakakis. Efficient
triangle counting in large graphs via degree-based vertex partitioning. In
WAW’10, 2010.

[93] Dániel Kondor, István Csabai, János Szüle, Márton Pósfai, and Gábor Vat-
tay. Inferring the interplay between network structure and market effects in
bitcoin. New Journal of Physics, 16(12):125003, 2014.

[94] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the
3sum conjecture. In Proc. 27th Annual ACM-SIAM Symposium on Discrete
Algorithms, 2016.

156

[95] Ioannis Koutis and Ryan Williams. Limits and applications of group alge-
bras for parameterized problems. In International Colloquium on Automata,
Languages and Programming, pages 653–664, 2009.

[96] Lauri Kovanen, Márton Karsai, Kimmo Kaski, János Kertész, and Jari
Saramäki. Temporal motifs in time-dependent networks. Journal of Sta-
tistical Mechanics: Theory and Experiment, 2011(11):P11005, 2011.

[97] Mirosław Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Counting and
detecting small subgraphs via equations. SIAM Journal on Discrete Math-
ematics, 27(2):892–909, 2013.

[98] Jérôme Kunegis. KONECT – The Koblenz Network Collection. In Proc.
Int. Conf. on World Wide Web Companion, pages 1343–1350, 2013.

[99] Konstantin Kutzkov and Rasmus Pagh. On the streaming complexity of
computing local clustering coefficients. In ACM International Conference
on Web Search and Data Mining, pages 677–686, 2013.

[100] Matthieu Latapy. Main-memory triangle computations for very large (sparse
(power-law)) graphs. Theoretical computer science, 407(1-3):458–473, 2008.

[101] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

[102] Yuchen Li, Zhengzhi Lou, Yu Shi, and Jiawei Han. Temporal motifs in
heterogeneous information networks. In MLG Workshop@ KDD, 2018.

[103] Yongsub Lim and U. Kang. MASCOT: memory-efficient and accurate sam-
pling for counting local triangles in graph streams. In Annual SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages
685–694, 2015.

[104] Paul Liu, Austin Benson, and Moses Charikar. A sampling framework for
counting temporal motifs. arXiv preprint arXiv:1810.00980, 2018.

[105] Penghang Liu, Valerio Guarrasi, and A Erdem Sariyuce. Temporal network
motifs: Models, limitations, evaluation. IEEE Transactions on Knowledge
and Data Engineering, 2021.

[106] László Lovász. Operations with structures. Acta Mathematica Academiae
Scientiarum Hungarica, 18(3-4):321–328, 1967.

[107] László Lovász. Large networks and graph limits, volume 60. American
Mathematical Soc., 2012.

157

http://snap.stanford.edu/data

[108] Patrick Mackey, Katherine Porterfield, Erin Fitzhenry, Sutanay Choudhury,
and George Chin. A chronological edge-driven approach to temporal sub-
graph isomorphism. In 2018 IEEE International Conference on Big Data
(Big Data), pages 3972–3979. IEEE, 2018.

[109] Madhusudan Manjunath, Kurt Mehlhorn, Konstantinos Panagiotou, and
He Sun. Approximate counting of cycles in streams. In Proc. 19th Annual
European Symposium on Algorithms, pages 677–688, 2011.

[110] Dror Marcus and Yuval Shavitt. Efficient counting of network motifs.
In IEEE 30th International Conference on Distributed Computing Systems
Workshops, pages 92–98. IEEE, 2010.

[111] Dror Marcus and Yuval Shavitt. Efficient counting of network motifs. In
ICDCS Workshops, pages 92–98, 2010.

[112] David W Matula and Leland L Beck. Smallest-last ordering and clustering
and graph coloring algorithms. J. ACM, 30(3):417–427, 1983.

[113] Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu. Better algorithms
for counting triangles in data streams. In Proceedings of the 35th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
pages 401–411, 2016.

[114] Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu. Better algorithms
for counting triangles in data streams. In ACM Symposium on Principles
of Database Systems, pages 401–411, 2016.

[115] Ine Melckenbeeck, Pieter Audenaert, Didier Colle, and Mario Pickavet. Ef-
ficiently counting all orbits of graphlets of any order in a graph using auto-
generated equations. Bioinformatics, 34(8):1372–1380, 2018.

[116] Ine Melckenbeeck, Pieter Audenaert, Tom Michoel, Didier Colle, and Mario
Pickavet. An algorithm to automatically generate the combinatorial orbit
counting equations. PLoS ONE, 11(1):1–19, 01 2016.

[117] Tijana Milenković and Nataša Pržulj. Uncovering biological network func-
tion via graphlet degree signatures. Cancer informatics, 6:CIN–S680, 2008.

[118] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon.
Network motifs: Simple building blocks of complex networks. Science,
298(5594):824–827, 2002.

[119] Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai Shen-Orr,
Inbal Ayzenshtat, Michal Sheffer, and Uri Alon. Superfamilies of evolved
and designed networks. Science, 303(5663):1538–1542, 2004.

158

[120] Misael Mongioví, Giovanni Micale, Alfredo Ferro, Rosalba Giugno, Alfredo
Pulvirenti, and Dennis Shasha. glabtrie: A data structure for motif discovery
with constraints. In Graph Data Management, pages 71–95. Springer, 2018.

[121] Burkhard Monien. How to find long paths efficiently. In North-Holland
Mathematics Studies, volume 109, pages 239–254. Elsevier, 1985.

[122] C. St. J. A. Nash-Williams. Decomposition of finite graphs into forests.
Journal of the London Mathematical Society, 39(1):12, 1964.

[123] Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the sub-
graph problem. Commentationes Mathematicae Universitatis Carolinae,
26(2):415–419, 1985.

[124] Derek O’Callaghan, Martin Harrigan, Joe Carthy, and Pádraig Cunning-
ham. Identifying discriminating network motifs in youtube spam. arXiv
preprint arXiv:1202.5216, 2012.

[125] Mark Ortmann and Ulrik Brandes. Efficient orbit-aware triad and quad
census in directed and undirected graphs. Applied network science, 2(1),
2017.

[126] R. Pagh and C. Tsourakakis. Colorful triangle counting and a mapreduce
implementation. Information Processing Letters, 112:277–281, 2012.

[127] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. Uncovering
the overlapping community structure of complex networks in nature and
society. nature, 435(7043):814–818, 2005.

[128] Ashwin Paranjape, Austin R Benson, and Jure Leskovec. Motifs in temporal
networks. In Proceedings of the Tenth ACM International Conference on
Web Search and Data Mining, pages 601–610, 2017.

[129] Noujan Pashanasangi and C Seshadhri. Efficiently counting vertex orbits of
all 5-vertex subgraphs, by evoke. In Proc. 13th ACM International Confer-
ence on Web Search and Data Mining, pages 447–455, 2020.

[130] Noujan Pashanasangi and C. Seshadhri. Faster and generalized temporal
triangle counting, via degeneracy ordering. In Proc. 27th Annual SIGKDD
International Conference on Knowledge Discovery and Data Mining, page
1319–1328, New York, NY, USA, 2021. Association for Computing Machin-
ery.

[131] Mihai Patrascu. Towards polynomial lower bounds for dynamic problems.
In Proc. 42nd Annual ACM Symposium on the Theory of Computing, 2010.

159

[132] A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu. Counting and
sampling triangles from a graph stream. In International Conference on
Very Large Data Bases, 2013.

[133] Aduri Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-LungWu.
Counting and sampling triangles from a graph stream. Proceedings of the
VLDB Endowment, 6(14):1870–1881, 2013.

[134] Luka V Petrovic and Ingo Scholtes. Counting causal paths in big times
series data on networks. arXiv preprint arXiv:1905.11287, 2019.

[135] Joseph J Pfeiffer, Timothy La Fond, Sebastian Moreno, and Jennifer Neville.
Fast generation of large scale social networks while incorporating transitive
closures. In 2012 International Conference on Privacy, Security, Risk and
Trust and 2012 International Confernece on Social Computing, pages 154–
165. IEEE, 2012.

[136] Joseph J Pfeiffer III, Sebastian Moreno, Timothy La Fond, Jennifer Neville,
and Brian Gallagher. Attributed graph models: Modeling network struc-
ture with correlated attributes. In Proceedings of the 23rd international
conference on World wide web, 2014.

[137] Ali Pinar, C Seshadhri, and Vaidyanathan Vishal. Escape: Efficiently count-
ing all 5-vertex subgraphs. In Proceedings, International World Wide Web
Conference (WWW). International World Wide Web Conferences Steering
Committee, 2017.

[138] Alejandro Portes. Social capital: Its origins and applications in modern
sociology. Annual Review of Sociology, 24(1):1–24, 1998.

[139] Natasa Przulj. Biological network comparison using graphlet degree distri-
bution. Bioinformatics, 23(2):177–183, 2007.

[140] Natasa Przulj, Derek G. Corneil, and Igor Jurisica. Modeling interactome:
scale-free or geometric?. Bioinformatics, 20(18):3508–3515, 2004.

[141] M. Rahman, M. A. Bhuiyan, and M. Al Hasan. Graft: An efficient graphlet
counting method for large graph analysis. IEEE Transactions on Knowledge
and Data Engineering, PP(99), 2014.

[142] Ursula Redmond and Pádraig Cunningham. Temporal subgraph isomor-
phism. In 2013 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM 2013), pages 1451–1452. IEEE,
2013.

160

[143] Fergal Reid and Martin Harrigan. An analysis of anonymity in the bitcoin
system. In Security and privacy in social networks, pages 197–223. Springer,
2013.

[144] Pedro Ribeiro, Pedro Paredes, Miguel EP Silva, David Aparicio, and
Fernando Silva. A survey on subgraph counting: concepts, algo-
rithms and applications to network motifs and graphlets. arXiv preprint
arXiv:1910.13011, 2019.

[145] Pedro Ribeiro and Fernando Silva. Discovering colored network motifs. In
Complex Networks V, pages 107–118. Springer, 2014.

[146] Neil Robertson and Paul D Seymour. Graph minors. i. excluding a forest.
Journal of Combinatorial Theory, Series B, 35(1):39–61, 1983.

[147] Neil Robertson and Paul D Seymour. Graph minors. iii. planar tree-width.
Journal of Combinatorial Theory, Series B, 36(1):49–64, 1984.

[148] Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects
of tree-width. Journal of algorithms, 7(3):309–322, 1986.

[149] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with
interactive graph analytics and visualization. In AAAI, 2015.

[150] Ryan A Rossi, Nesreen K Ahmed, Aldo Carranza, David Arbour, Anup
Rao, Sungchul Kim, and Eunyee Koh. Heterogeneous network motifs. arXiv
preprint arXiv:1901.10026, 2019.

[151] Rahmtin Rotabi, Krishna Kamath, Jon M. Kleinberg, and Aneesh Sharma.
Detecting strong ties using network motifs. In Proceedings, International
World Wide Web Conference (WWW), pages 983–992, 2017.

[152] Marc Roth and Philip Wellnitz. Counting and finding homomorphisms is
universal for parameterized complexity theory. In Proc. 31st Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 2161–2180, 2020.

[153] Seyed-Vahid Sanei-Mehri, Ahmet Erdem Sariyüce, and Srikanta Tirthapura.
Butterfly counting in bipartite networks. In Annual SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 2150–2159,
2018.

[154] Ahmet Erdem Sariyuce, C. Seshadhri, Ali Pinar, and Umit V. Catalyurek.
Finding the hierarchy of dense subgraphs using nucleus decompositions.
In Proceedings, International World Wide Web Conference (WWW), pages
927–937, 2015.

161

[155] T. Schank and D. Wagner. Finding, counting and listing all triangles in large
graphs, an experimental study. In Experimental and Efficient Algorithms,
pages 606–609. Springer, 2005.

[156] C. Seshadhri, Tamara G. Kolda, and Ali Pinar. Community structure
and scale-free collections of Erdös-Rényi graphs. Physical Review E,
85(5):056109, May 2012.

[157] C. Seshadhri, Ali Pinar, and Tamara G. Kolda. Fast triangle counting
through wedge sampling. In Proceedings of the SIAM Conference on Data
Mining, 2013.

[158] C. Seshadhri, Ali Pinar, and Tamara G. Kolda. Wedge sampling for com-
puting clustering coefficients and triangle counts on large graphs. Statistical
Analysis and Data Mining, 7(4):294–307, 2014.

[159] C. Seshadhri and Srikanta Tirthapura. Scalable subgraph counting: The
methods behind the madness: WWW 2019 tutorial. In Proceedings, Inter-
national World Wide Web Conference (WWW), 2019.

[160] C Seshadhri and Srikanta Tirthapura. Scalable subgraph counting: The
methods behind the madness: Www 2019 tutorial. In Proceedings of the
Web Conference (WWW), volume 2, page 75, 2019.

[161] Comandur Seshadhri, Ali Pinar, and Tamara G Kolda. Triadic measures
on graphs: The power of wedge sampling. In Proceedings of the 2013 SIAM
international conference on data mining, pages 10–18. SIAM, 2013.

[162] Nino Shervashidze, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn,
and Karsten M. Borgwardt. Efficient graphlet kernels for large graph com-
parison. In AISTATS, pages 488–495, 2009.

[163] K. Shin, T. Eliassi-Rad, and C. Faloutsos. Patterns and anomalies in k-
cores of real-world graphs with applications. Knowledge and Information
Systems, 54(3):677–710, 2018.

[164] Kijung Shin. WRS: waiting room sampling for accurate triangle counting
in real graph streams. In International Conference on Data Mining, pages
1087–1092, 2017.

[165] S. Son, A. Kang, H. Kim, T. Kwon, J. Park, and H. Kim. Analysis of context
dependence in social interaction networks of a massively multiplayer online
role-playing game. PLoS ONE, 7(4):e33918, 04 2012.

[166] Alina Stoica and Christophe Prieur. Structure of neighborhoods in a large
social network. In International Conference on Computational Science and
Engineering, volume 4, pages 26–33. IEEE, 2009.

162

[167] Xiaoli Sun, Yusong Tan, Qingbo Wu, Baozi Chen, and Changxiang Shen.
Tm-miner: Tfs-based algorithm for mining temporal motifs in large tempo-
ral network. IEEE Access, 7, 2019.

[168] Xiaoli Sun, Yusong Tan, Qingbo Wu, Jing Wang, and Changxiang
Shen. New algorithms for counting temporal graph pattern. Symmetry,
11(10):1188, 2019.

[169] Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse
of the last reducer. In Proceedings of the 20th international conference on
World wide web, pages 607–614, 2011.

[170] George Szekeres and Herbert S Wilf. An inequality for the chromatic number
of a graph. Journal of Combinatorial Theory, 4(1):1–3, 1968.

[171] M. Szell and S. Thurner. Measuring social dynamics in a massive multiplayer
online game. Social Networks, 32:313–329, 2010.

[172] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Ar-
netminer: extraction and mining of academic social networks. In Annual
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 990–998. ACM, 2008.

[173] Charalampos E. Tsourakakis. The k-clique densest subgraph problem. In
Proceedings, International World Wide Web Conference (WWW), pages
1122–1132, 2015.

[174] Charalampos E. Tsourakakis, U. Kang, Gary L. Miller, and Christos Falout-
sos. Doulion: counting triangles in massive graphs with a coin. In Annual
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 837–846, 2009.

[175] Charalampos E. Tsourakakis, Jakub Pachocki, and Michael Mitzenmacher.
Scalable motif-aware graph clustering. In Proceedings, International World
Wide Web Conference (WWW), pages 1451–1460, 2017.

[176] Kun Tu, Jian Li, Don Towsley, Dave Braines, and Liam D Turner. Net-
work classification in temporal networks using motifs. arXiv preprint
arXiv:1807.03733, 2018.

[177] Kun Tu, Jian Li, Don Towsley, Dave Braines, and Liam D Turner. gl2vec:
Learning feature representation using graphlets for directed networks. In
Proceedings of the 2019 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining, pages 216–221, 2019.

163

[178] Ata Turk and Duru Turkoglu. Revisiting wedge sampling for triangle count-
ing. In Proceedings, International World Wide Web Conference (WWW).
ACM, 2019.

[179] Johan Ugander, Lars Backstrom, and Jon M. Kleinberg. Subgraph frequen-
cies: mapping the empirical and extremal geography of large graph collec-
tions. In Proceedings, International World Wide Web Conference (WWW),
pages 1307–1318, 2013.

[180] Sergi Valverde and Ricard V Solé. Network motifs in computational graphs:
A case study in software architecture. Physical Review E, 72(2):026107,
2005.

[181] Virginia Vassilevska. Efficient algorithms for clique problems. Information
Processing Letters, 109(4):254–257, 2009.

[182] Virginia Vassilevska and Ryan Williams. Finding, minimizing, and counting
weighted subgraphs. In Proc. 41st Annual ACM Symposium on the Theory
of Computing, pages 455–464, 2009.

[183] A Vazquez, R Dobrin, D Sergi, J-P Eckmann, Zoltan N Oltvai, and A-L
Barabási. The topological relationship between the large-scale attributes
and local interaction patterns of complex networks. Proceedings of the Na-
tional Academy of Sciences, 101(52):17940–17945, 2004.

[184] Davide Vega and Matteo Magnani. Foundations of temporal text networks.
Applied network science, 3(1):1–26, 2018.

[185] Jingjing Wang, Yanhao Wang, Wenjun Jiang, Yuchen Li, and Kian-Lee Tan.
Efficient sampling algorithms for approximate temporal motif counting. In
Proceedings of the 29th ACM International Conference on Information &
Knowledge Management, 2020.

[186] Pinghui Wang, Junzhou Zhao, Xiangliang Zhang, Zhenguo Li, Jiefeng
Cheng, John C. S. Lui, Don Towsley, Jing Tao, and Xiaohong Guan. MOSS-
5: A fast method of approximating counts of 5-node graphlets in large
graphs. IEEE Transactions on Knowledge and Data Engineering (TKDE),
30(1):73–86, 2018.

[187] Pinghui Wang, Junzhou Zhao, Xiangliang Zhang, Zhenguo Li, Jiefeng
Cheng, John CS Lui, Don Towsley, Jing Tao, and Xiaohong Guan. Moss-5:
A fast method of approximating counts of 5-node graphlets in large graphs.
IEEE Transactions on Knowledge and Data Engineering, 30(1):73–86, 2017.

[188] Stanley Wasserman, Katherine Faust, et al. Social network analysis: Meth-
ods and applications. Cambridge university press, 1994.

164

[189] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-
world’networks. nature, 393(6684):440–442, 1998.

[190] B. Welles, A. Van Devender, and N. Contractor. Is a friend a friend?:
Investigating the structure of friendship networks in virtual worlds. In CHI-
EA’10, pages 4027–4032, 2010.

[191] S. Wernicke and F. Rasche. Fanmod: a tool for fast network motif detection.
Bioinformatics, 22(9):1152–1153, 2006.

[192] Sebastian Wernicke. Efficient detection of network motifs. IEEE/ACM
Transactions on Computational Biology and Bioinformatics (TCBB),
3(4):347–359, 2006.

[193] Wikimedia Foundation. Wikimedia downloads. http://dumps.wikimedia.
org/, January 2010.

[194] Virginia Vassilevska Williams, Joshua R Wang, Ryan Williams, and
Huacheng Yu. Finding four-node subgraphs in triangle time. In Proc. 26th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1671–1680,
2014.

[195] Ömer Nebil Yaveroğlu, Noël Malod-Dognin, Darren Davis, Zoran Levnajic,
Vuk Janjic, Rasa Karapandza, Aleksandar Stojmirovic, and Nataša Pržulj.
Revealing the hidden language of complex networks. Scientific reports,
4(1):1–9, 2014.

[196] Hao Yin, Austin R. Benson, and Jure Leskovec. Higher-order clustering in
networks. Phys. Rev. E, 97:052306, 2018.

[197] Hao Yin, Austin R. Benson, and Jure Leskovec. The local closure coefficient:
A new perspective on network clustering. In ACM International Conference
on Web Search and Data Mining (WSDM), pages 303–311, 2019.

[198] Jin-Hyun Yoon and Sung-Ryul Kim. Improved sampling for triangle count-
ing with MapReduce. In Convergence and Hybrid Information Technology,
volume 6935, pages 685–689. 2011.

[199] Zhao Zhao, Guanying Wang, Ali R Butt, Maleq Khan, VS Anil Kumar, and
Madhav V Marathe. Sahad: Subgraph analysis in massive networks using
hadoop. In IEEE 26th International Parallel and Distributed Processing
Symposium, pages 390–401. IEEE, 2012.

[200] Matteo Zignani, Sabrina Gaito, Gian Paolo Rossi, Xiaohan Zhao, Haitao
Zheng, and Ben Zhao. Link and triadic closure delay: Temporal metrics for
social network dynamics. In Proceedings of the International AAAI Confer-
ence on Web and Social Media, 2014.

165

http://dumps.wikimedia.org/
http://dumps.wikimedia.org/

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Main Questions and Challenges
	Subgraph Counting in Bounded Degeneracy Graphs
	Vertex Orbit Counting
	Temporal Triangle Counting

	Results and Contributions
	Linear Time Subgraph Counting and The Chasm at Size Six
	The Barrier of Long Induced Cycles
	Counting Vertex Orbits of All 5-vertex Subgraphs
	Generalized Temporal Triangle Counting

	Preliminaries
	Degeneracy and Vertex Ordering
	Subgraph Counting

	Linear Time Subgraph Counting and the chasm at Size Six
	Main Ideas
	Related Work
	Preliminaries
	Subgraph Counting Through Graph Orientation and Directed Trees
	5-vertex Subgraph Counting
	Limitations of Our Framework for a Six Vertex Subgraph

	A Chasm at Six
	Future Directions

	The Barrier of Long Induced Cycles
	Main Ideas
	Related Work
	Preliminaries
	LICL and Homomorphism Counting in Linear Time
	Main Technical Lemma
	DAG Treewidth for Graphs with LICL at most Five
	DAG Treewidth for Graphs with LICL at least Six

	LICL and Homomorphism Counting Lower Bound
	Proof of Main Theorem

	Conclusion

	Counting Vertex Orbits of All 5-vertex subgraphs
	Problem Description
	Main Contributions
	Related Work
	Preliminaries
	Main theorem

	Main ideas
	The cutting framework for orbits
	Getting orbit counts
	Details of Getting 5-VOCs

	Experimental Results

	Generalized Temporal Triangle Counting
	Problem Description
	Main Contributions
	Main challenges
	Related Work
	Preliminaries
	Main Ideas
	Our Main Algorithm
	Getting the Counts for All Temporal Triangle Types

	Experimental Evaluations

	Conclusion
	Bibliography

