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A SIMPLE, CONSISTENT ESTIMATOR OF SNP HERITABILITY 
FROM GENOME-WIDE ASSOCIATION STUDIES

Armin Schwartzman*, Andrew J. Schork†, Rong Zablocki*, Wesley K. Thompson*,†

*University of California, San Diego, La Jolla, CA and

†Institute of Biological Psychiatry, Mental Health Center St. Hans, Mental Health Services 
Copenhagen, Roskilde, Denmark

Abstract

Analysis of genome-wide association studies (GWAS) is characterized by a large number of 

univariate regressions where a quantitative trait is regressed on hundreds of thousands to millions 

of single-nucleotide polymorphism (SNP) allele counts, one at a time. This article proposes an 

estimator of the SNP heritability of the trait, defined here as the fraction of the variance of the 

trait explained by the SNPs in the study. The proposed GWAS heritability (GWASH) estimator 

is easy to compute, highly interpretable, and is consistent as the number of SNPs and the sample 

size increase. More importantly, it can be computed from summary statistics typically reported in 

GWAS, not requiring access to the original data. The estimator takes full account of the linkage 

disequilibrium (LD) or correlation between the SNPs in the study through moments of the LD 

matrix, estimable from auxiliary datasets. Unlike other proposed estimators in the literature, we 

establish the theoretical properties of the GWASH estimator and obtain analytical estimates of 

the precision, allowing for power and sample size calculations for SNP heritability estimates, and 

forming a firm foundation for future methodological development.
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1. Introduction.

Genome-wide association studies (GWAS) attempt to describe an observed trait or 

phenotype, typically assuming a polygenic additive linear model, in terms of a large number 

of single-nucleotide polymorphisms (SNPs), each captured by the number of copies of a 

reference allele (0, 1 or 2). The sample size in typical GWAS may be in the order of tens 

to hundreds of thousands, while the number of SNPs may be ten to one hundred times as 

large, in the order of millions. Since the number of SNP predictors is larger than the sample 

size, the linear model is under-determined and it is impossible to estimate the coefficients 

simultaneously without additional assumptions. Low-dimensional summaries, however, are 

estimable. In particular, in this paper we focus on the SNP heritability (Yang et al., 2010), 

defined as the proportion of variance of the outcome explained by the measured SNPs.

While heritability has traditionally been assessed via familial studies, the concept and 

estimation of SNP heritability have recently become of great interest in the field (for 

example, Yang et al. (2010) has been cited more than 2800 times to date). This is because 

GWAS for most human traits have not yet discovered loci accounting for a majority of 

heritability estimated via familial studies. The invention of the SNP-heritability concept was 

critical for explaining why this might be because for many traits, most of the variance is 

distributed across very many loci with small effects that GWAS have not yet been powered 

to fully discover. With this insight there has been a rejuvenated interest in pursuing larger 

GWAS and also in the possibility of effective genome-wide predictions. SNP heritability 

is thus an extremely important parameter that quantifies the proportion of the observed 

outcome that can be predicted from common SNPs and so defines the amount of information 

available in the GWAS. It has been a critical parameter in motivating the continued 

application of GWAS and the utility of GWAS data for predictions (Visscher et al., 2017).

In addition to estimating the heritability of phenotypes based on additive effects of assayed 

SNPs, the prototypical GWAS analysis also aims to identify individually important genetic 

loci. This is typically done by regressing the outcome variable on each SNP, one at a time, 

selecting only the most stringently significant SNPs p < 5 × 10−8  as discoveries. Thousands 

of studies have been performed and tens of thousands of candidate causal variants have been 

cataloged for all variety of trait and disease (MacArthur et al. (2017), www.ebi.ac.uk/gwas/). 

In part due to funding institution data sharing mandates, to increase transparency, and to 

fuel post-hoc and secondary analysis of GWAS results (Pasaniuc and Price, 2017), per-SNP 

univariate regression statistics (beta coefficients, t-statistics, p-values, standard errors, etc.) 

are now regularly published along with GWAS articles. While privacy concerns often 

prevent the sharing of subject level genotypes and phenotypes, these summary statistics 

are readily available for hundreds of individual GWAS studies (e.g., www.ebi.ac.uk/gwas/

downloads/summary-statistics).

It is of practical interest, therefore, to develop an estimator of SNP heritability that can 

provide accurate estimates using only summary statistics from GWAS. Computational 

efficiency is another desired property given the large size of the data. And, as with any 

estimation procedure, interpretability is also desired in order to gain further insights into 

the data. For example, we wish to understand how SNP heritability estimates are affected 
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by the correlation between the predictor genomic markers, called linkage disequilibrium 

(LD) in the context of GWAS. Finally, it is crucial that the theoretical properties of a SNP 

heritability estimator from GWAS summary statistics are well understood to understand the 

conditions under which the performance of the estimator is likely to be adequate and to 

facilitate development of extensions to SNP heritability estimates.

In this paper, we propose an estimator called GWAS heritability (GWASH) estimator. The 

estimator is based on the variance-fraction estimator in Dicker (2014) and is astonishingly 

simple. For a GWAS with m predictors and n independent subjects, the estimator is

ℎGWASH
2 = m

nμ2
s2 − 1 ,

where s2 is the empirical variance of the GWAS t-statistics (up to a small transformation) 

and μ̂2 is an estimate of the second spectral moment of the LD matrix, capturing the effect of 

LD in a single number.

The GWASH estimator is not only easy to remember and compute as a simple formula. 

It also has an interpretation as being proportional to the excess empirical variance of the 

univariate t-statistics with respect to the complete null hypothesis of independence between 

the outcome and the predictors, in which case the the empirical variance is about 1. The 

empirical variance s2 is in itself an intuitive quantity that summarizes the strength of the 

relationship between the predictors and the outcome, and has been used as a simple measure 

of enrichment in GWAS contexts (Schork et al., 2013). Thus, the proposed estimator has the 

nice property that it increases linearly with enrichment, where the proportionality constant 

depends on LD.

Moreover, the formula dictates that LD affects the estimation of SNP heritability as a 

scaling factor, yielding a definition of the effective number of SNPs involved. Computing 

the factor μ̂2 to find the effective number of predictors is the only relatively difficult part 

of the estimation. The factor μ̂2 estimates μ2 = tr Σ2 /m, where Σ is the correlation matrix 

of the predictors, the LD matrix. As a first approximation, the patterns of correlations 

among SNPs can be taken as a feature of a given population and estimated from publicly-

available data resources such as the 1000 genomes project (1KGP) (Genomes Project et 

al. (2015), http://www.internationalgenome.org/.). This approach has been reasonable when 

the reference sample plausibly represents the same population as the GWAS sample in 

contexts including imputation (Li et al., 2009), heritability estimation (e.g., Bulik-Sullivan 

et al. (2015)), functional fine-mapping (e.g., Spain and Barrett (2015)) and various post-hoc 

burden tests (e.g., de Leeuw et al. (2015)). One of the key contributions of this work is that 

we propose an efficient way of calculating the factor μ̂2 so that the entire LD matrix need not 

be computed.

As an alternative method, Linkage Disequilibrium Score (LDSC) regression (Bulik-Sullivan 

et al., 2015) has become the most popular approach for estimating SNP heritability 

from summary statistics. LDSC estimates SNP heritability by regressing squared per-SNP 
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univariate regression scores t or Wald statistics) on corresponding “LD Scores,” defined 

as estimates of the sum of squared correlations for a given SNP and all others. While 

an effective and computationally efficient approach, LDSC was not motivated by a well-

specified generative model and relies on a number of heuristics, including binning LD 

scores, censoring outlying values, and empirical approximations to standard errors. These 

features are difficult to consider analytically and limit assessment of theoretical properties, 

opportunities for further methodological development, and use in power analyses.

As a real data example, Table 1 shows the estimated SNP heritability using GWASH and 

LDSC regression from publicly available GWAS summary statistics for three phenotypes. 

This analysis used a subset of SNPs of size m = 872,188 that was available in all four GWAS, 

in LDSC regression, and in the 1KGP data to calculate μ̂2 and other auxiliary quantities. 

Owing to a model where samples are taken from a single population, LDSC regression was 

applied here with a fixed intercept equal to 1. As Table 1 shows, GWASH yields very similar 

estimates to LDSC regression, confirming its validity in real data, but also produces smaller 

standard errors. More details about this table are given in Section 7.

In addition to its simplicity and interpretability, the main strength of the GWASH estimator 

is its solid theoretical foundation. Following Dicker (2014), we show that the GWASH 

estimator is consistent as m and n increase to a limiting fixed ratio, which could be greater 

than 1. We also provide a formula for estimating the asymptotic standard error (SE). For 

ease of comparison both analytically and in small scale simulations, we consider a stylized 

version of LDSC regression (intercept = 1) without binning, bootstrap and other elements. 

We find that both estimators are, in fact, asymptotically equivalent, suggesting avenues to 

further improve the theoretical foundation for both methods.

We wish to emphasize that accurately computing SNP heritability is of very substantial 

interest within the field of genetics, as evidenced by the large numbers of publications that 

use current approaches. To date, this literature has focused on a simple random effects model 

where a Gaussian distribution was proposed for genetic effects. Closer scrutiny as to the 

scale at which the single Gaussian was specified (with respect to standardized genotypes in 

Yang et al. (2010)) revealed implicit assumptions surrounding dependencies between allele 

frequency and effect sizes. This has resulted in a hotly-contested debate about which set 

of assumptions provides in the most robust estimates of SNP heritability (see, for example, 

Speed et al. (2017)). Emerging from this has been a series of post hoc methods which 

split genetic markers into different bins, estimating heritability per bin and summing, each 

attempting to counter challenges about specific alternate models (see, as examples, Gazal et 

al. (2017); Yang et al. (2015)). Part of the problem with development of novel approaches is 

the lack of a well-grounded theoretical framework, wherein assumptions and limitations are 

rigorously specified.

The current paper thus has a critically-important aim with regards to the state of the field 

in SNP-heritability estimation: introducing a principled theoretical framework with well-

specified assumptions and consistency properties. This should have the beneficial impact 

of clarifying the debate and spurring development of models with desirable theoretical 

properties.
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In the rest of the paper we derive the GWASH estimator, show its asymptotic properties, 

evaluate its performance in non-asymptotic settings via simulations comparing with LDSC 

regression, and provide further details on the data analysis. We conclude with a discussion 

of how the GWASH asymptotic SE formula may be used to perform power analysis in 

prospective GWAS.

2. GWAS.

2.1. The classic polygenic linear model.

Suppose that a continuous outcome variable or phenotype is measured together with a panel 

of genotype markers at m loci for each of n independent subjects. Let yi and x i = xi1, …, xim

denote the outcome and genomic panel for subject i = 1, …, n. According to the classic 

polygenic model (Fisher, 1918; Lynch and Walsh, 1998), the outcome is generated according 

to the linear model

yi = x iβ + εi,      i = 1, …, n,

(1)

where the error terms εi are independent with mean 0 and variance σ2. This model may also 

be written in matrix form as

y = Xβ + ε,

(2)

where y = y1, …, yn
T, β = β1, …, βm

T, ε = ε1, …, εn
T and X is the regression matrix with rows 

x i, i = 1, …, n. It is also useful to write the regression matrix in terms of its columns as 

X = x1, …, xm .

True to the sampling scheme, we shall consider the genomic panels x i to be randomly 

drawn from the population together with the associated phenotypes. Let Σ = Cov x i  denote 

the m × m covariance matrix between genomic markers in the underlying population. The 

corresponding correlation matrix, which we shall denote Σ = Cor x i , is the so-called LD 

matrix and contains the marginal correlations between SNP counts. The entries of this 

matrix tend to decay away from the diagonal, and we shall exploit this structure in our 

calculations below.

For simplicity, our model does not explicitly include other fixed covariates (e.g. age, gender, 

ethnicity factors, etc.) but rather we shall assume that a regression model has adjusted for 

these other covariates. The interpretation of the coefficients and the SNP heritability shall 

be conditional on having accounted for those other covariates and is the same as if those 

covariates had been included in the full model.

Similarly, rather than including an intercept term, we may equivalently assume that the 

vector y and the columns x1, …, xm of X have been centered by subtracting the vector average, 
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so that 1Ty = 0 and 1Txj = 0 for j = 1, …, m. A nice consequence of centering is that, for 

the centered data, E y = 0 and E X = 0, where the expectation is taken with respect to the 

population distribution. Hence, the model (1) or (2) have no intercept term.

2.2. SNP heritability.

The SNP heritability ℎ2 is defined as the variance explained by the predictors in model (2). 

Specifically, model (1) has the variance decomposition

Var yi ∣ β = E βTx i
T x iβ ∣ β + E εi

2 = βTΣβ + σ2 .

(3)

since E x i = 0. Let τ2 = βTΣβ. The SNP heritability is the quantity (Falconer and Mackay, 

1996; Lynch and Walsh, 1998)

ℎ2 = τ2
τ2 + σ2 .

(4)

Note that in this model the vector β is fixed and arbitrary, with no prespecified distribution. 

The model places no restrictions on the distribution of model coefficients as long as 

they yield the proper SNP heritability. Thus, as opposed to other methods such as Yang 

et al. (2010); Bulik-Sullivan et al. (2015); Zhou, Carbonetto and Stephens (2013), no 

distributional assumptions are required on β in order to estimate SNP heritability, an 

important point given recent debate in the literature (Speed et al., 2017).

2.3. GWAS univariate regressions.

In GWAS, the vector of SNP effects β is estimated by univariate regression coefficients. 

Since y and the columns xj are assumed centered, there is no need to fit an intercept term and 

the slope parameters βj for each SNP j = 1, …, m are estimated via

βj = xj
Txj

−1xj
Ty = xj

−2xj
Ty .

(5)

The univariate regression estimates are typically converted into t-scores by dividing by an 

estimate of SE at each SNP. For each j = 1, …, m, the residual variance is

σj
2 = 1

n − 2 y − xjβj
2 .

(6)

yielding the t-score
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tj = βj

σj
2 xj

Txj
−1 = xj βj

σj
.

(7)

The goal is to produce an estimator of SNP heritability that relies on the above so-called 

summary statistics β̂j, σ̂j
2 and tj, j = 1, …, m. We describe the SNP heritability estimator in 

general in Section 3 and return to the summary statistics in Section 5.1.

3. The Dicker estimator.

To better describe the derivation of the GWASH estimator, we first discuss the estimator 

proposed by Dicker (2014). Addressing the high-dimensional case where m is greater than 

n, and separately from the GWASSH problem, Dicker (2014) proposes an estimator of 

the fraction of variance explained by X in model (2) when the vector of coefficients β is 

fixed. While not called heritability there, this fraction is the same as the SNP heritability 

defined in (4). Since ordinary least squares methods fail when m > n, Dicker’s estimator is 

based instead on a clever use of the method of moments. Dicker proposes two forms of the 

estimator depending on whether the covariance matrix Σ, typically unknown, is estimable or 

not.

3.1. The Dicker estimator for estimable covariance.

An estimable covariance matrix Σ presumes the existence of a norm-consistent positive 

definite estimator Σ̂, despite the dimension m being larger than the sample size n. Examples 

of estimable covariance matrices are a diagonal Σ, so that the columns of X are uncorrelated 

but have different variances, or matrices where the correlation structure is captured by 

a fixed number of parameters, such as autoregressive (AR) and exchangeable correlation 

models.

Written in our notation, the Dicker estimator of ℎ2 for estimable covariance (Dicker, 2014, 

Sec. 4.1) can be simplified to

ℎI
2 = m

n
Σ−1/2XTy

2

m ∥ y ∥2 − 1

(8)

(see Supplementary Material), where n is replaced by n − 1, owing to the centering of y and 

the columns of X (Dicker, 2014, Sec. 1). This estimator requires a consistent estimator Σ̂
of the covariance matrix Σ, which is not available without further assumptions. The sample 

covariance matrix

S = 1
n − 1XTX,
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(9)

whose entries are the sample covariances of the columns of X, is an unbiased estimator of 

Σ, satisfying E S = Σ. It is, however, not norm-consistent in general if the dimension m is 

larger than the sample size n.

Assuming that the true correlation is nonzero only close to the diagonal, as is the case 

with human population genetics, consistent estimators may be obtained, for example, by 

banding the sample covariance matrix (Bickel and Levina, 2008; Cai, Zhang and Zhou, 

2010). Even so, the estimator (8) requires computation of the inverse square root Σ̂−1/2
. 

This is computationally taxing for the typical large matrix size m in GWAS in the order of 

magnitude of a million. Dicker’s estimator for unestimable covariance avoids this problem.

3.2. The Dicker estimator for unestimable covariance.

When a model for Σ is not sufficiently specified to be estimable, Dicker (2014) offers 

another form of the estimator that replaces estimation of Σ by estimation of its first few 

moments. Written in our notation, the Dicker estimator of ℎ2 for unestimable covariance 

(Dicker, 2014, Sec. 4.2) can be simplified to

ℎII
2 = mm1

2

nm2

XTy 2

mm1 ∥ y ∥2 − 1

(10)

(see Supplementary Material), where

m1 = 1
m tr S ,      m2 = 1

m tr S2 − m
n − 1m1

2,

(11)

and S is the sample covariance matrix (9).

Proposition 2 of Dicker (2014) states that if the entries of X and ε are Gaussian and Σ is not 

too far from the identity matrix (technical details omitted here), then ℎ̂II
2

 satisfies a CLT and 

is approximately Gaussian with mean ℎ2 and variance

ψII
2

n = 2
n

mm1
2

nm2
+ 2m1m3

m2
2 ℎ2 − ℎ4 ,

(12)

for large m and n such that m/n is bounded, where

m1 = 1
m tr Σ ,      m2 = 1

m tr Σ2 ,      m3 = 1
m tr Σ3 .

(13)
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By the commutative property of the trace, it can be shown that the quantities in (13) 

correspond to the first, second and third moments of the eigenvalues of Σ. In that sense they 

can be called spectral moments.

An estimate of SE for ℎ̂II
2

 can be obtained as the square root of (12) by plugging in the 

estimate of ℎ2 and those of m1 and m2 given by (11). As an estimate of m3, Dicker (Dicker, 

2014, Remark 12) suggests

m3 = 1
m tr S3 − 3m

n − 1m1m2 − m2

(n − 1)2
m1

3.

(14)

4. The GWASH estimator.

In GWAS, it is feasible to implement Dicker’s estimator (10) if the entire dataset composed 

of X and y is available. However, often only GWAS summary statistics are avaiable. The 

GWASH estimator is essentially a modification of the Dicker estimator where the columns 

of X are standardized. This standardization allows writing the estimator in terms of the 

correlation scores defined next, which easily translate into summary statistics.

4.1. Correlation scores.

Let y = n − 1y/ ∥ y ∥ be the standardized vector y so that ∥ y ∥2 / n − 1 = 1. Similarly, 

let X = x1, …, xm  be the result of standardizing the matrix X by columns, so that the 

standardized columns xj = n − 1xj/∥ xj ∥ satisfy ∥ xj ∥2/ n − 1 = 1, for j = 1, …, m. Because 

of the original centering, 1Ty = 0 and 1Txj = 0.

The main idea of the GWASH estimator is to replace X and y in (10) by their standardized 

versions X and y. Because (10) depends on the summary statistic ∥ XTy ∥2
, to become 

∥ XTy ∥
2
, it is convenient here to define what we call the correlation scores

uj = 1
n − 1xj

Ty = n − 1 xj
Ty

xj ∥ y ∥,      j = 1, …, m,

(15)

or in vector form, u = XTy/ n − 1.

The score uj is equal to n − 1 times the sample correlation between xj and y. Under the 

null hypothesis of no heritability ℎ2 = 0 , so that xj and y are independent, the score (15) is 

asymptotically normal with mean zero and variance one. In this sense it plays the role of a 

z-score.
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4.2. The LD matrix.

By standardization, we may define the sample covariance matrix of the columns of X,

S = 1
n − 1XTX .

(16)

By definition, this is the sample correlation matrix with ones on the diagonal and can be 

referred to as the sample LD matrix.

Let Σ = Cor x i  be the population correlation matrix corresponding to the covariance matrix 

Σ. Analogous to (13), we can define the first three spectral moments of Σ by

μ1 = 1
m tr Σ = 1,      μ2 = 1

m tr Σ2 ,      μ3 = 1
m tr Σ3 .

(17)

These quantities capture the total effect of LD between the genomic markers. If the genomic 

markers are independent with Σ = I, then μ2 = μ3 = 1; otherwise both moments are greater 

than 1.

4.3. The GWASH estimator from subject-level data.

The GWASH estimator is defined as a modification of the Dicker estimator where: 1) X
and y in (10) are replaced by their standardized versions X and y; 2) the moment estimators 

m̂1, m̂2 and m̂3 in (10), (11) and (14) are replaced by moment estimators μ̂1 = 1, μ̂2 and μ̂3 based 

on the correlation matrix (16) instead (details on these are given in sections 4.4 and 5.3 

below).

Performing the replacements outlined above yields the expression

ℎGWASH
2 = m

nμ2

XTy
2

m n − 1 − 1 .

(18)

However, this expression can be written succinctly in terms of the correlation scores. We 

may now define our estimator.

Definition 1. The GWAS heritability (GWASH) estimator is given by

ℎGWASH
2 = m

nμ2
s2 − 1 ,

(19)

where s2 is the empirical second moment of the correlation scores:
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s2 = 1
m u 2 = 1

m ∑
j = 1

m
uj

2,

(20)

and μ̂2 is an estimator of μ2 in (17).

The GWASH estimator depends on the data only through two summary statistics, s2 and μ̂2. 

Under the null hypothesis of no heritability ℎ2 = 0 ,  s2 1 for large m by the law of large 

numbers. Thus, (19) expresses the estimate of SNP heritability as proportional to the excess 

variance of the scores with respect to the null variance 1.

The quantity μ̂2 contains all the necessary information about the correlation between the 

predictors. From (17), if the predictors are independent, μ2 = 1. Otherwise, μ2 > 1. This 

implies that ignoring LD causes overestimation of the SNP heritability. Taking account of 

LD is equivalent to using a smaller number of predictors. In this sense, we may define 

m̂eff = m/μ̂2 as the estimated effective number of markers: the higher the LD, i.e. the higher 

the correlation between the predictors, the lower their effective number.

4.4. Estimation of the LD second spectral moment μ2.

From (11), an appropriate estimate of μ2 is

μ2 = 1
m tr S2 − m − 1

n − 1 = 1 + 1
m ∑

i ≠ j
Sij

2 − 1
n − 1 .

(21)

The expression on the left, in comparison to (11), uses S instead of S and uses μ̂1 = 1 instead 

of m̂1. The replacement of m − 1 instead of m is more clearly understood in the expression on 

the right, obtained by replacing tr S2 = m + ∑i ≠ j Sij
2
. Here we can see that μ̂2 is equal to 1 

(the value of μ2 under no correlation) plus 1/m times the total squared correlation observed 

in the sample LD matrix S, after subtracting from each term a bias correction of 1/ n − 1 . 

The extra term 1/ n − 1  is the approximate second moment, for large n, of the empirical 

correlation Sij when the true underlying correlation Σij is zero. It is pervasive in the LD 

matrix and we may refer to it as a “correlation floor”.

The following lemma, whose proof is in Section S2 in the Supplementary Material, states 

that μ̂2 is a consistent estimator of μ2.

Lemma 1. Assume the spectral moments mk = tr Σk /m, k = 1, …, 4, are bounded as m gets 

large. Then, as m and n get large such that m/n converges to a constant (which may be zero),

μ2 = μ2 + OP
1
n .
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(22)

4.5. Asymptotic properties of the GWASH estimator.

By construction, the GWASH estimator has similar asymptotic properties to the Dicker 

estimator (10), namely consistency and asymptotic normality. Theorem 1 below shows this 

formally and gives the theoretical justification for using the GWASH estimator in GWAS.

Assumption 1. Suppose that the assumptions of Proposition 2 of Dicker (2014) hold, 

namely:

• The variance components σ2 and τ2, as well as the spectral moments 

mk = tr Σk /m, k = 1, …, 4, are bounded.

• Let τk
2 = βTΣkβ, Δk = ∑ℓ = 1

k τℓ
2 − τ0

2mℓ , and suppose Δ3 = o 1/ n .

Theorem 1. Under Assumption 1, as m and n get large such that m/n converges 
to a constant (which may be zero), the GWASH estimator (19) satisfies the 

CLT n ℎ̂GWASH
2 − ℎ2 /ψ N 0,1 , where

ψ2
n = 2

n
m

nμ2
+ 2 μ3

μ2
2 ℎ2 − ℎ4 .

(23)

Theorem 1 implies consistency of the estimator for large m and n. The proof is given in 

Section S3 in the Supplementary Material. Moreover, notice that the theorem allows for 

m > n as well as m < n. In particular, the GWASH estimator may be used to estimate the 

heritability of a fixed set of m SNPs for increasing n, as long as model (1) holds.

For large m and n, the GWASH estimator is approximately Gaussian with mean ℎ2 and 

variance (23). In this scenario, an estimate of SE for ℎ̂2
 can be obtained as the plug-in 

estimate ψ̂ / n = ψ̂2/n, where

ψ2
n = 2

n
m

nμ2
+ 2μ3

μ2
2 ℎ2 − ℎ4

(24)

and μ̂3 is an estimator of μ3 (see Section 5.3). The asymptotic normality of ℎ̂2
 allows 

constructing an approximate two-sided 95% confidence interval for ℎ2 of the form 

ℎ̂2 ± 1.96ψ̂ / n. In addition, the null hypothesis H0:ℎ2 = 0 may be tested against the 

alternative HA:ℎ2 > 0 using the Wald statistic nℎ̂2/ψ̂ and declaring it significant at the α
level if it exceeds the normal quantile z1 − α.
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4.6. Aggregation and partition of SNP heritability.

The GWASH estimator (19) can be applied to any set of SNPs, large or small. Here we 

show how the heritability of several sets of SNPs can be aggregated to estimate the total 

SNP heritability, or conversely, how the total SNP heritability can be partitioned into SNP 

subsets. Suppose we have K subsets of SNPs defined by the index sets J1, …, JK. The sets 

may be partially overlapping. Let mk be the number of SNPs in the index set Jk, k = 1, …, K. 

Applying (19), the SNP heritability estimate of the set Jk is

ℎGWASH, k
2 = mk

nμ2, k
sk

2 − 1 ,      sk
2 = 1

mk
∑

j ∈ Jk

uj
2,

(25)

where sk
2 is the empirical second moment of the correlation scores within the set Jk. Similar 

to (21),

μ2, k = 1
mk

tr S k 2
− mk − 1

n − 1 = 1 + 1
mk

∑
i ≠ j ∈ Jk

Sij
k 2 − 1

n − 1

(26)

applies to the submatrix S k  including only the indices in Jk. From (25), using (19) and 

(20), we obtain the following result.

Proposition 1. The total SNP heritability estimate ℎ̂GWASH
2

 of the set J = J1 ∪ … ∪ JK can be 

computed as

ℎGWASH
2 = ∑

k = 1

K μ2, k
μ2

ℎGWASH, k
2 .

(27)

Moreover, if the K sets of SNPs are independent,

μ2 = ∑
k = 1

K mk
m μ2, k + o 1

n .

(28)

Proposition 1 indicates that the total SNP heritability is a weighted sum of the contributions 

of the various subsets, where the weights depend on the amount of LD in each subset 

relative to the total. Note that this is not a weighted average, as the weights μ̂2, k/μ̂2 may be 

smaller or larger than 1. For example, if the sets are dependent, the total μ̂2 may be larger 

than the individual values μ̂2, k in each set. On the other hand, if the amount of LD within 

each set is larger than between sets, the total μ̂2, which is an average over a larger number of 

SNPs, may be smaller than the individual values μ̂2, k in each set.
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Another way to interpret Proposition 1 is as follows. Recall that μ̂2, k is the ratio between 

the number of SNPs mk and the corresponding effective number of SNPs, measuring SNP 

redundancy. The weight of each set is the ratio between the redundancy in the set and the 

redundancy of all sets put together.

5. Practical aspects in the context of GWAS.

5.1. The GWASH estimator from summary statistics.

In publicly available GWAS results, the original data y and X required to compute the 

correlation scores (15) are typically not available. Instead, it is possible to access the 

t-statistics (7) from the univariate regressions. The next result shows that the original data 

is not necessary, but it is possible to convert the squared t-statistics to squared correlation 

scores by a simple formula.

Proposition 2. The square of the correlation scores (15) can be obtained from the squared 
t-statistics (7) via

uj
2 = n − 1

n − 2
tj

2

1 + tj
2/ n − 2 .

(29)

The squared correlation scores and the squared t-statistics are very close for large n, but 

not exactly. The transformation is needed because the residual variance (6) typically used in 

GWAS is a biased estimator of the true noise variance. The effect of the transformation is to 

“undo” the division by (6) and turn the t-statistic into a more appropriate score.

To compute the GWASH estimator (19), s2 can be computed directly from the u-scores (29). 

The LD second spectral moment μ̂2 cannot be computed from summary statistics. However, 

μ̂2 is a property of the population from which the GWAS data was sampled. Following 

others, we make the assumption that the sampled population has similar properties to those 

in public datasets such as the 1000 genomes project (1KGP) (Genomes Project et al., 2015). 

Under this assumption, μ̂2 can be estimated from any random sample assayed on the same 

set of predictors, even if the representative sample is of a different size. For example, if a 

representative auxiliary dataset of size n is available on the same set of SNPs, then μ̂2 can be 

estimated using the methods of Section 4.4 with n instead of n. The same holds for μ̂3 (see 

Section 5.3).

5.2. Efficient computation of the LD second moment estimator μ̂2.

From a computational point of view, we may take advantage of the fact that, in a 

randomly mating population, SNPs appreciably far away within the same chromosome, 

or on different chromosomes, should be segregating independently. For independent markers 

i, j, their squared correlation Sij
2
 has mean of about 1/ n − 1  (see Eq. (S1)), and so the 

terms Sij
2 − 1/ n − 1  in (21) far from the diagonal are small and can be excluded from the 

calculation.
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In general, suppose that only a set ℐ2 of index pairs i, j , i ≠ j, are included in the calculation 

of μ̂2. This results in the modified estimator

μ2, ℐ2 = 1 + 1
m ∑

i, j ∈ ℐ2

Sij
2 − 1

n − 1 = 1 + 1
m ∑

i, j ∈ ℐ2

Sij
2 − ℐ2

n − 1 ,

(30)

where ℐ2  is the number of elements in the set ℐ2. Note that the bias correction of 1/ n − 1
is applied to only the terms included in the sum.

Specifically, for a single chromosome with mk markers, k = 1, …, K, excluding all pairs more 

than q > 0 indices away is equivalent to applying formula (21) to the restricted matrix Sq
k

with entries

Sq
k

ij =
1 i = j
Sij i ≠ j, i, j ∈ ℐ2

k

0 i ≠ j, i, j ∉ ℐ2
k

,

(31)

where ℐ2
k = i, j :1 < i − j ≤ q  with indices i, j within chromosome k. It can be shown 

that Iq
k = q 2mk − q − 1 , yielding the formula

μ2, q
k = 1

mk
tr  Sq

k 2 − q 2mk − q − 1
n − 1 .

(32)

In practice, the restricted matrix (31) can be stored as a sparse matrix and the trace above 

computed using the property that for any squared matrix A, tr A2 = ∑i, j Aij
2.

For a set of K chromosomes with m1 + ⋯ + mK = m, the overall estimate μ̂2, q is calculated, 

using (28), as the weighted average of the per-chromosome estimates (32), weighted by the 

number of markers mk in each chromosome. In what follows, we refer to the distance q as 

correlation bandwidth.

5.3. Estimation of the LD third spectral moment μ3.

To compute the variance (24), we need an estimator of μ3. From (14), an appropriate estimate 

of μ3 is

μ3 = 1
m tr S3 − 3m − 1

n − 1 μ2 − m − 1 m − 2
(n − 1)2

= 1
m tr S3 − 3m m − 1

n − 1 μ2 − m m − 1 m − 2
(n − 1)2

.

(33)
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To understand this estimator, we realize that

tr S3 = tr SS2 = ∑
i, j = 1

m
Sij S2

ij
= ∑

i, j, k = 1

m
SijSjkSik

= m + ∑
i ≠ j

Sij
2 + ∑

i ≠ k
Sik

2 + ∑
j ≠ k

Sjk
2 + ∑

i ≠ j ≠ k
SijSjkSik,

(34)

where we have replaced Sii = 1, i = 1, …, m. Thus, the first subtracted term in (33) makes 

a bias correction of μ̂2/ n − 1  for each of the 3m m − 1  second order terms in the sum 

above, while the second subtracted term makes a bias correction of 1/ n − 1 2 for each of the 

m m − 1 m − 2  third order terms. A computationally efficient approximation for μ̂3 is given 

in Section S4 in the Supplementary Material.

5.4. Relationship to LDSC regression.

The LDSC regression method (Bulik-Sullivan et al. (2015)) is derived under different 

modeling assumptions to ours, the most important being the assumption that the β
coefficients are random. In addition, the corresponding software is written for large GWAS 

applications and is not amenable to smaller scale simulations as we do here. To allow direct 

comparison both analytically and in simulations, here we consider a stylized version of 

LDSC regression that closely matches the GWASH estimator.

Assuming independent subjects from a single population, the LDSC method is essentially 

based on the approximation

E uj
2 ∣ ℓ

ˆ
j ≈ ℎ2 n

m ℓ
ˆ

j − 1 + 1,      j = 1, …, m,

(35)

written in our notation (see Section S5 in the Supplementary Material), where ℓ̂j = ∑k = 1
m rjk

2

are the so-called LD-scores and rjk are the entries of S = XTX / n − 1 . The LDSC 

method estimates ℎ2 by fitting a linear model based on (35) plus observation noise. 

Defining u2 = u1
2, …, um

2 T and l = n/m ℓ̂1 − 1, …, n/m ℓ̂m − 1 T
, the model (35) reads 

E u2 = ℎ2l + 1, leading to the least squares estimator

ℎLD
2 = ℓ

−2
ℓ T u2 − 1 ,

(36)

fitted with a fixed intercept equal to 1.
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The GWASH estimator is related to the LDSC regression estimator above in the following 

way. In linear regression, the fitted line always goes through the average of the point cloud. 

Therefore, the average ℓ‾ , u2− = 1Tl/m, 1Tu2/m  must satisfy the equation

u2 = ℎLD
2 ℓ + 1.

(37)

We show in Section S5 in the Supplementary Material that this implies

ℎLD
2 = u2 − 1

ℓ = ℎGWASH
2 + O 1

n .

(38)

In other words, if we consider a scatterplot of uj
2 as a function of the LD scores ℓ̂j, LDSC 

fits the least-squares straight line through the distribution, while GWASH targets the mean 

of the distribution directly, and the two are asymptotically equivalent. We will see in the 

simulations and data analysis that both give similar estimates but have different SEs.

6. Finite sample performance.

The following simulations evaluate the performance of the GWASH estimator under various 

finite sample scenarios. To push the limits of the estimator, we consider an autoregressive 

(AR) covariance structure for the predictor matrix X where the AR parameter ρ ranges from 

0 to 0.8 and where the variances of the columns of X have a wide spread from 1 to m. We 

consider two different distributions for the entries of X:

• The rows of X are i.i.d. multivariate normal with mean 0 and covariance matrix 

Σ = Diag Σ 1/2Σ ρ Diag Σ 1/2, where Diag Σ = Diag 1,2, …, m  and Σ ρ  is the 

m × m AR correlation matrix with entries Σij = ρ i − j .

• The rows of X are i.i.d. multivariate binomial, generated using a Gaussian 

multivariate copula (Hofert et al., 2014; Kojadinovic and et al., 2010). According 

to this method, a multivariate normal vector is generated with the same 

covariance matrix Σ as above and AR parameter ρ*. The multivariate normal 

vector is then transformed to binomial by a quantile transformation with the 

corresponding variance. Because of the copula, the correlation between the 

binomial variables is not exactly AR and we use the notation ρ* as a reminder of 

this.

For the vector of coefficients β, we consider two different structures:

• β is a single realization of m i.i.d. N 0,1  variables.

• β is a mixture, containing 90% of 0 ‘s and 10% i.i.d. N(0,1) variables.

Note that β is generated once in each case and then fixed for all simulations. In all cases, the 

outcome y is generated according to model (2) with i.i.d. Gaussian errors. Given β and Σ, for 
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any desired SNP heritability ℎ2 > 0, the error variance is set to σ2 = τ2 1 − ℎ2 /ℎ2 so that (4) 

gives SNP heritability ℎ2. For ℎ2 = 0, we set β = 0.

6.1. Estimation of SNP heritability.

Figure 1 shows the estimates of ℎ2 under the aforementioned combinations. The estimation 

methods shown are:

• The GWASH estimator (19) using the full sample correlation matrix q = m − 1
to estimate μ2, as in (21).

• The GWASH estimator (19) using only q off-diagonals of the sample correlation 

matrix to estimate μ2, as in (32) (only when ρ > 0).

• The Dicker estimator for unestimable covariance (10).

• The simple LD regression estimator (36).

All ℎ2 estimates are hardly distinguishable and close to the true values (grey diagonal line) 

within simulation error. This is precisely the desired behavior, as it shows that the GWASH 

estimator can estimate SNP heritability just as well as the Dicker and LDSC estimators 

using only summary statistics. Note too that the correlation bandwidth q has little influence 

on the results.

6.2. Estimation of spectral moments and SE.

To understand the effect of LD on the spectral moment estimators, estimates of μ2 and μ3

are shown in Table 2 under the different X structures considered above. Both μ̂2 and μ̂3

match their true values whether the full or partial sample correlation matrix is used in their 

estimation. Note that the empirical SE when using the partial S is slightly smaller than that 

when using the full S.

Finally, Figure 2 compares estimates of SE according to the following methods:

• Empirical SE of the GWASH estimator (19) using the full sample correlation 

matrix q = m − 1  to estimate μ2.

• Empirical SE of the GWASH estimator (19) using only q off-diagonals of the 

sample correlation matrix to estimate μ2 (only when >0).

• Theoretical asymptotic SE of the GWASH estimator (square root of (24)), using 

the full sample correlation matrix q = m − 1  to estimate μ2 and μ3.

• Theoretical asymptotic SE of the GWASH estimator (square root of (24)), using 

only q off-diagonals of the sample correlation matrix to estimate μ2 and μ3.

• Empirical SE of the LDSC regression estimator (36).

• Theoretical SE of the LDSC regression estimator (36) obtained from the linear 

model fit.
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In all plots, the asymptotic SE formula for the GWASH estimator approximates the 

empirical SE closely. LDSC regression, however, overestimates or underestimates the 

corresponding empirical SE, explaining why the estimation of SE in Bulik-Sullivan et al. 

(2015) requires computational methods such as jackknife and bootstrapping to estimate the 

SE more accurately.

7. Application to GWAS data.

GWASH and LDSC regression (intercept = 1) estimates were obtained for three complex 

traits (Table 1). To enable comparison between the two approaches, we used a subset 

of SNPs that was present in each of the four GWAS, had an LD score that had been 

precomputed by the LDSC authors, and had genotype data available in the 1KGP data. We 

also excluded SNPs with a minor allele frequency less than 0.1% in any of the five 1KGP 

European subpopulations as these may be less reliably genotyped or vary more in frequency 

among populations, limiting their representativeness. After these exclusions, m = 872,188
SNPs remained for analysis for each GWAS. The SNP heritability was estimated using (27), 

aggregating by chromosomes. (A more extensive study using all available SNPs is shown in 

Section 8.3 below.)

For our estimator, calculation of μ̂2 and μ̂3 requires LD information not provided with 

summary statistics. To compute representative values, we used a sample of the same 1KGP 

data with a correlation bandwidth of q = 1000, yielding the values μ̂2 = 16.93 and μ̂3 = 617.35. 

Further details on data pre-processing, application of LDSC regression and calculation of μ̂2

and μ̂3 are given in Section A in the Supplementary Material.

7.1. Results and interpretation.

The estimated values by GWASH and LDSC regression in Table 1 are very similar. 

Considering LDSC as the current leading standard, these results validate the GWASH 

estimator. However, the SEs for the GWASH estimator are smaller, owing to its simplicity.

All SNP heritability estimates are highly significantly greater than zero and significantly 

different from each other. Based on the common set of SNPs analyzed, we may infer that 

height has a stronger correlation with these SNPs at the population level than IQ, and more 

so than BMI and Educ. Attain., suggesting that the latter traits may be more influenced by 

other genetic factors or the environment. For all traits, the SNP heritability explained by 

the specific SNPs that were found as statistically significant in those studies is much lower 

(Table 1, last column). The difference suggests that there are many SNP effects on these 

traits that remain undiscovered.

7.2. Choice of correlation bandwidth.

To evaluate the choice of correlation bandwidth q, the GWASH estimate was recomputed for 

a range of values of q up to 5000 used in the calculation of μ̂2. Figure 3 (left panel) shows 

that the GWASH estimate is fairly insensitive to the correlation bandwidth q, the chosen 

value q = 1000 being a reasonable compromise between accuracy and computation. At this 

value of q and larger, the GWASH and LDSC estimates are statistically the same.
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7.3. Computation time.

Figure 3 (right panel) shows the computation time for the chromosome with the largest 

number of SNPs as a function of the correlation bandwidth q, broken down by the various 

computation components. Most of the computation time is spent pre-computing μ̂2 and μ̂3. 

As indicated by Eqs. (32) and (S10), the computation time for μ̂2 grows linearly with q while 

the computation time for μ̂3 grows quadratically.

Once μ̂2 and μ̂3 are computed, estimating the SNP heritability is fast. For example, for 

q = 1000 used in the data analysis above, calculation of μ̂2 and μ̂3 took 3.4 min. and 14.5 

min., respectively, with the remaining calculation of ℎ̂2
 taking only 0.07 min. In contrast, 

calculation of the LDSC estimate took 0.5 min. using their already pre-computed parameters 

and not assessing its uncertainty. Note that LDSC requires a list of LD scores that is as long 

as the number of SNPs, while GWASH requires only a single number μ̂2. The third moment 

μ̂3 is needed only to estimate the standard error of GWASH using formula (24); the accuracy 

of LDSC is estimated using a computationally intensive jackknife procedure.

8. Discussion.

The key advantages of the GWASH estimator are its simplicity and grounding in statistical 

theory, both of which can be leveraged to better understand the empirical properties of SNP 

heritability estimates, as well as serving as a basis for future methods development. We 

now discuss several practical implications of the GWASH estimator for GWAS analysis and 

understanding of genetic inheritance.

8.1. Estimation of SE.

A nice property of the GWASH estimator, inherited from the Dicker estimator and not 

available with other currently used estimators, is that the precision (23) of the estimator is 

known theoretically based on the number of SNPs m, the sample size n, the second and 

third spectral moments μ2 and μ3 of the LD matrix, and the true SNP heritability ℎ2. The 

first two quantities are known from the study, while the second two can be estimated from 

a public resource (e.g. 1KGP). The true SNP heritability is unknown. In this paper we have 

substituted for ℎ2 an estimate from the study itself.

To assess the sensitivity of the SE to the value of ℎ2, Figure 4 shows the SE (square root 

of (24)) as a function of the sample size n and the true SNP heritability ℎ2 using the values 

m = 872, 188, μ2 = 16.93 and μ3 = 617.35 from the data analysis. The plot shows that the SE is 

almost insensitive to the value of ℎ2, increasing only slightly as ℎ2 increases for any fixed n. 

As a consequence, a slightly conservative but more stable estimate of the SE can be obtained 

by simply using the worst-case value ℎ2 = 1 instead of the estimated value ℎ̂2
.

8.2. Sample size and power calculations for prospective GWAS.

Relation (23) can be used in a prospective study to determine the number of subjects 

required to estimate SNP heritability according to a desired accuracy. Given any fixed set of 
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m SNPs, the values of μ2 and μ3 may be estimated from a public resource (e.g. 1KGP) and 

then the SE can be designed as a function of n and the targeted ℎ2. For the values of m, μ2 and 

μ3 in the data analysis, Figure 4 shows that the SE can be quite large for small n, but it drops 

as n increases.

From a design point of view, the sample size n can be chosen to achieve a desired SE. For 

example, for a SNP heritability of ℎ2 = 0.5, an SE of 0.05 is achieved with n = 7234 (red 

circle in Figure 4). The SE can also help design studies with the goal of detecting a SNP 

heritability that is significantly greater than zero. As mentioned at the end of Section 4.5, 

a one-sided Wald test will be significant at the 5% level if the estimate of ℎ2 is greater 

than 1.645 SEs. In Figure 4, this corresponds to choosing n to the right of the red curve. 

For example, to detect a SNP heritability of ℎ2 = 0.8, the minimal sample size is n = 673; to 

detect a SNP heritability of ℎ2 = 0.2, the minimal sample size is n = 2699 (red triangles).

8.3. How many SNPs are needed to estimate SNP heritability?

In the data analysis above, we chose to use the same SNP set for all datasets to have the 

same basis of comparison with LDSC in terms of the LD content, captured by μ2 and μ3. 

Different SNPs sets may represent different portions of the total genetic variance and give 

discrepant results. To demonstrate that GWASH behaves as expected, we estimated the SNP 

heritability from different random subsets of the total SNP set available for each GWAS. 

Figure 5 shows that the estimates of ℎ2 rise sharply until around 1,000,000 SNPs and then 

begin to asymptote. In the most extreme example, increasing the SNP size more than seven 

times for EduYears from 1,000,000 to 7,500,000 results in a negligible increase in SNP 

heritability. Interestingly, these results suggest that little information is gained by increasing 

the number of SNPs beyond about 2,000,000.

We note here that producing Figure 5 required changing the correlation bandwidth from the 

previous analysis. The q = 1000 SNP correlation bandwidth was tuned to the original SNP 

set of 872,188 SNPs. In this analysis, a new value of q would have to be tuned for every 

new SNP set. To facilitate the multiple computations in Figure 5, we instead used genetic 

distance to band the LD matrix, estimating all correlations within 1 centimorgan. The value 

of μ̂2 was then calculated using (30), the value of ℐ2 obtained by explicitly counting the 

number of estimated paired correlations. The required computations for calculating μ̂3 were 

prohibitive for the large SNP sets, so we omit standard errors in Figure 5.

8.4. Precomputation of μ̂2.

The value of μ2 depends on the specific collection of SNPs used in a GWAS. However, it 

seems to be highly predictable once certain features of the SNP set are fixed. Figure 6 shows 

the estimate μ̂2 of random subsets of SNPs for various imputation panels (HM2, hapmap2; 

HM3, hapmap3; HRC, haplotype reference consortium; KGP, thousand genomes project), 

genetic ancestry populations (AFR, African; EAS, East Asian; EUR, European) and minor 

allele frequency (MAF) thresholds, as a function of the size m of post-MAF thresholded 

subset of the imputation panel SNPs. Details are given in Section A.
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Interestingly, random sub-selections of different sized SNP sets from a given super-

collection results a linear increase in μ̂2 such that μ̂2 − 1 /m converges to a constant. From 

(21), this constant is the limit

r2 = lim
m ∞

μ2 − 1
m = lim

m ∞
1

m2 ∑
i ≠ j

Sij
2 − 1

n − 1 ,

which is the average squared correlation above the correlation floor per SNP pair. This 

relationship allows one to calculate an approximate μ̂2 as

μ2 ≈ 1 + mr2

for any GWAS that can be considered as studying a random collection of SNPs from a 

reference set as described above. Values of r2 for each of the 36 super-collections described 

above is given in Table 3.

8.5. Fixed effects vs. random effects.

In this paper, the vector of coefficients β was treated as fixed and arbitrary, allowing for 

the greatest flexibility in the model. LDSC regression assumes instead the SNP effects to 

be random. If the entries of β are drawn independently from a distribution with mean 0 and 

variance ς2 then, from (3),

Var yi = E Var yi ∣ β + Var E yi ∣ β = E βTΣβ + σ2 + Var E x i β
= tr ΣE ββT + σ2 = ς2tr Σ + σ2 .

Thus, as opposed to (4), the SNP heritability estimated by LDSC regession is the quantity 

ℎ2 = ς2tr Σ / ς2tr Σ + σ2 . In Bulik-Sullivan et al. (2015), it is assumed that the phenotype 

and genomic markers have variance 1 so that Var yi = 1 and Σ has ones on the diagonal. 

Thus tr Σ = m and a desired SNP heritability of ℎ2 is achieved by setting ς2 = ℎ2/m and 

σ2 = 1 − ℎ2.

The two models have different interpretations. The fixed-effects model assumes that the 

effect of each SNP is consistent across samples within a population, while in the random-

effects model, the SNP effects may change across samples. The fixed-effects model is more 

consistent with the original formulations of heritability (Falconer and Mackay, 1996; Lynch 

and Walsh, 1998). It is interesting that both LDSC and GWASH reach the same estimates, 

even though they have been derived from different data models.

8.6. Epistasis.

Epistasis refers to the contribution of interaction between SNPs in model (1) (Hill, 

Goddard and Visscher, 2008). In principle, epistasis can be incorporated simply by adding 

columns to the X matrix that contain all the desired interaction terms between SNPs 

and then proceeding as prescribed by the estimator. This can be done for a limited 
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number of interaction terms, but considering all m m − 1 /2 interactions in addition to the 

m main effects is computationally intractable, as this would lead to an LD matrix of size 

m m + 1 /2 × m m + 1 /2 (e.g. take m 106 .

There is also some debate in the genetics literature surrounding the practical evidence for 

a large epistatic component. To date, only a small amount of variance was explained by 

these higher order effects (Hill, Goddard and Visscher, 2008; Hemani et al., 2014a) and this 

was challenged as potentially erroneous (Hemani et al., 2014b; Wood et al., 2014). There 

are in fact theoretical grounds as to why interactions may not explain a large portion of 

variance in most complex traits (Hill, Goddard and Visscher, 2008). Nonetheless, it remains 

an interesting topic and one which could be pursued in future studies.

8.7. Connections to enrichment.

Schork et al. (2013) used the quantity s2 − 1 as a measure of enrichment to compare different 

functional classes of SNPs. Being proportional to this quantity, the GWASH estimator can 

be viewed as a correction that accounts for the LD between SNPs through the factor μ2. 

Hence, the GWASH estimator may be used in a similar way to partition SNP heritability 

among different functional classes of SNPs and help narrow down the most important SNPs 

involved in genetic inheritance of complex traits. This extension of GWASH is left for future 

work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A: DATA PROCESSING

Pre-processing of GWAS summary statistics.

Summary statistics from the three GWAS studies listed in Table 4 were downloaded 

from the authors’ cited public repositories. For each study we kept the SNP name, effect 

allele (A1), non-effect allele (A2), per SNP sample size n , association p-value p  and 

corresponding test statistic t . Where per SNP sample sizes were not available (Edu. 

Attain.), we used the sample size reported in the paper for each SNP. Where test statistics 

were not reported (BMI, Edu. Attain), we converted two-tailed p-values to z-scores via the 

inverse of the normal CDF, maintaining the sign from the regression coefficients.

Application of LDSC regression.

To perform LDSC regression for each of the four GWAS studies, we downloaded all 

necessary software and reference data from the authors repository (https://github.com/bulik/

ldsc). Both GWASH and LDSC require information about the LD among SNPs that is not 
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typically made available alongside summary statistics. The LDSC authors address this by 

providing pre-computed LD scores estimated from a subset of representative individuals’ 

genotypes, available as part of the 1KGP data. We used these pre-computed values and their 

recommended protocols as faithfully as possible, following their provided tutorial.

Estimation of μ2 and μ3 from the 1KGP data.

A sample of 503 individuals of European ancestry were used to compute representative 

values of μ̂2 and μ̂3. Genome-wide genotypes are available for these individuals through the 

1KGP data, phase 36 (http://www.internationalgenome.org/).

To compute the LD matrix, we used the statistical genetic software package plink2 

(Chang et al., 2015), which provides fast routines for manipulating large genotype data sets. 

Restriction to the correlation bandwidth q = 1000 was achieved using the plink2 commands 

--r and --ld-window 1000, which returns correlations up to only 1000 rows off the 

diagonal, for each chromosome in parallel. Similar commands were used for other values 

of q. To compute pairwise LD within 1 centimorgan for Figure 5, we used the plink2 

commands --r and --ld-window-cm 1. Matrix calculations for μ̂2 and μ̂3, as described in 

Sections 4.4 and S4 in the Supplementary Material, were performed in an R routine using 

sparse matrix operations in the package matrix.

Precomputation of μ̂2 in Figure 6.

To study the predictability of μ̂2 shown in Figure 6, we estimated LD among different 

collections of SNPs, in different collections of individuals, using individual genotype data 

released as part of the 1KG project. First, we collected lists of SNPs available in four of 

the most common imputation reference panels: HapMap2 (version 22; HM2; YRI 2,852,185 

SNPs; JPT+CHB 2,416,664 SNPs; CEU 2,543,888 SNPs), HapMap3 (release 2; HM3; 

1,387,467 SNPs), the Haplotype Reference Consortium (version 1.1; HRC; 40,405,530 

SNPs) and the 1000 Genome Project (version 5a; KGP; 81,271,745 SNPs). For HapMap 

studies, SNP lists were obtained from pre-processed data made available for imputations 

on the IMPUTE website (http://mathgen.stats.ox.ac.uk/impute/impute_v1.haplotypes.html), 

where for HRC and KGP, SNP lists were taken from original data sources.

Next, for each of the four imputation panels, we extracted the genotypes of subjects in 

three different ancestry groups (AFR, African, n = 661; EAS, East Asian, n = 504; EUR, 

European, n = 503) at the overlapping SNPs. From each of the twelve resulting ancestry-

specific imputation panel genotype sets, we created three subsets including only genotypes 

above selected minor allele frequencies (MAF > 0.05, > 0.01, > 0.001). This resulted in 36 

collections of genotypes meant to represent the potentially unique patterns of LD that could 

arise when choosing SNP subsets based on an imputation panel or minor allele frequency 

threshold for GWAS in samples from different genetic ancestries. For each of the 36 KGP 

data subsets, we calculated μ̂2 for differently sized random subsets of SNPs m =10,000, 

25,000, 50,000, 100,000, 500,000, 1,000,000, 1,500,000, 2,000,000, 2,500,000, 5,000,000 

and the complete set, if it was less than 5,000,000), repeating each sampling five times.
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FIG 1. 

Average estimates of ℎ2 m = 2000, n = 1000, 100 repetitions) 

and empirical standard deviations (bars) for: 

β normal and X normal  left column ;  β mixture and X normal  center column ;  β mixture and X
binomial (right column).

Schwartzman et al. Page 27

Ann Appl Stat. Author manuscript; available in PMC 2024 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG 2. 

SEs of ℎ2 estimates m = 2000, n = 1000, 100 repetitions) for: 

β normal and X normal  left column ;  β mixture and X normal  center column ;  β mixture and X
binomial (right column).
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FIG 3. 
Left: Sensitivity of GWASH estimates to the correlation bandwidth q in the calculation of 

μ̂2. The LDSC (int=1) estimator is added in gray for reference. Standard errors are indicated 

as vertical lines for GWASH and as dashed horizontal lines for LDSC. Right: Computation 

time of GWASH for the largest chromosome as a function of the correlation bandwidth q.
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Fig 4. 

The SE of the GWASH estimator as a function of n and ℎ2, for m = 872,188,  μ2 = 16.93 and 

μ3 = 617.35. The red curve indicates the pairs n, ℎ2  for which ℎ2 = 1.645 SE; values of n to 

the right of the curve allow detection of a non-zero SNP heritability at the 5% level.
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FIG 5. 
Dependence of GWASH estimates on the number of SNPs included in the estimation, for 

three traits: IQ (top line), EduYears (middle line) and BMI (bottom line).

Schwartzman et al. Page 31

Ann Appl Stat. Author manuscript; available in PMC 2024 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG 6. 
Values of μ̂2 (increasing lines, left scale) and μ̂2 − 1 /m (nearly constant lines, right scale) for 

random SNP subsets of size m for various imputation panels, genetic ancestry populations 

and MAF thresholds.
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Table 1

Heritability estimates for three complex traits: IQ (Sniekers et al., 2017), years of education (Okbay, 2016) and 

body mass index (BMI) (Locke, 2015). Estimated SEs are given in parentheses. The last column is the 

heritability attributed to SNPs found significant in those studies.

Trait n m (total) m (used) GWASH LDSC (int=1) Attr.

IQ 75,270 12,104,295 872,188 0.21 (0.006) 0.20 (0.008) 0.048

EduYears 328,917 9,444,231 872,188 0.10 (0.002) 0.10 (0.003) 0.01

BMI 233,018 2,554,638 872,188 0.05 (0.002) 0.05 (0.006) 0.027
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Table 2

Estimates of μ2 and μ3 m = 1000 : values presented are the mean and empirical standard deviation over 100 

repetitions. The symbol ρ* represents the AR parameter of the Gaussian copula.

X AR μ2 true

μ2

Full S
μ2, q

Partial S μ3 true

μ3

Full S
μ3, q

Partial S
normal ρ = 0.8 4.55 4.53 (0.03) 4.50 (0.02)q=11 30.49 30.2 (0.48) 29.1 (0.32)q=11

ρ = 0.4 1.38 1.38 (0.006) 1.38 (0.003)q=5 2.36 2.35 (0.04) 2.35 (0.01)q=5

ρ = 0.2 1.08 1.08 (0.004) 1.08 (0.001)q=3 1.26 1.26 (0.02) 1.26 (0.004)q=3

ρ = 0 1 1.00 (0.004) 1 1.00 (0.01)

binomial ρ* = 0.8 2.54 2.55 (0.02) 2.55 (0.02)q=11 10.42 10.48 (0.24) 10.28 (0.18)q=11

ρ* = 0.4 1.13 1.13 (0.005) 1.13 (0.003)q=5 1.44 1.44 (0.02) 1.44 (0.009)q=5

ρ* = 0.2 1.03 1.03 (0.004) 1.03 (0.001)q=3 1.08 1.08 (0.01) 1.08 (0.003)q=3

ρ* = 0 1 1.00 (0.004) 1 1.00 (0.01)
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Table 3

Values of the constant r2 × 10−6  for each of the 36 super-collections in Figure 6.

African East Asian European

MAF > 0.05 0.01 0.001 0.05 0.01 0.001 0.05 0.01 0.001

HM2 11.2 9.64 9.46 23.7 20.6 19.6 23.0 19.6 19.0

HM3 9.50 8.53 8.02 20.1 17.6 16.2 19.1 16.9 15.5

HRC 9.97 5.53 3.48 23.1 15.5 10.5 22.3 14.2 6.99

KGP 10.1 5.73 2.56 23.4 15.8 6.92 22.6 14.6 7.24
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Table 4

Reference information on the three GWAS studies used in this paper

Trait Ref. Data source (website)

IQ Sniekers et al. (2017) https://ctg.cncr.nl/documents/p1651/sumstats.txt.gz

EduYears Okbay (2016) http://ssgac.org/documents/SSGAC_Rietveld2013.zip

BMI Locke (2015) http://portals.broadinstitute.org/collaboration/giant/images/1/15/SNP_gwas_mc_merge_nogc.tbl.uniq.gz
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