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The use of longitudinal cohorts for studies of dengue viral 
pathogenesis and protection

Leah C. Katzelnick and Eva Harris*

Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, 
Berkeley, Li Ka Shing Center, 1951 Oxford Street, Berkeley, CA 94720-3370

Abstract

In this review, we describe how longitudinal prospective community-, school-, and household-

based cohort studies contribute to improving our knowledge of viral disease, focusing specifically 

on contributions to understanding and preventing dengue. We describe how longitudinal cohorts 

enable measurement of essential disease parameters and risk factors; provide insights into 

biological correlates of protection and disease risk; enable rapid application of novel biological 

and statistical technologies; lead to development of new interventions and inform vaccine trial 

design; serve as sentinels in outbreak conditions and facilitate development of critical diagnostic 

assays; enable holistic studies on disease in the context of other infections, comorbidities, and 

environmental risk factors; and build research capacity that strengthens national and global public 

health response and disease surveillance.

Introduction

Although the most well-known prospective cohort studies have focused on predictors of 

chronic disease [1], cohort studies are also important for understanding infectious diseases. 

In this study design, individual-level baseline characteristics are measured in a healthy 

population followed over time as participants naturally acquire disease, thus enabling 

identification of factors associated with or protective against disease risk. For example, two 

key findings of such studies include identification of distinct transmission rates of influenza 

A and B viruses among humans [2] and differential gender-based HIV transmission rates in 

discordant couples [3]. Prospective community-, school-, and household-based cohort 

studies are particularly useful to study acute viral diseases such as dengue. Dengue virus is 

comprised of four serotypes, DENV1–4. Infection with one serotype provides long-term 

protection against disease upon re-infection with the same serotype. However, prior 

immunity can protect against or enhance disease during secondary heterotypic DENV 

infection, which is the greatest risk factor for severe dengue, Dengue Hemorrhagic Fever/

Dengue Shock Syndrome (DHF/DSS). DHF/DSS is thought to be caused in part by 
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antibody-dependent enhancement (ADE): sub-neutralizing antibody titers enhance viremia 

[4] by enabling infection of monocytes and macrophages via Fcγ receptors [5,6]; this 

instigates pathologic immune cell activation and elevated NS1 secretion that result in 

vascular leak and shock [7]. Because immune history is critical for understanding 

subsequent disease risk and protection, cohort studies are invaluable for studying protection 

against and pathogenesis of dengue disease.

Here, we discuss the full value of longitudinal cohorts for: measuring basic determinants and 

immunological and virological characteristics of dengue disease in populations, estimating 

correlates of protection and disease risk, providing critical and timely information during 

outbreaks, enabling rapid development of new assays for diagnosis and surveillance, 

informing vaccine trial design, studying disease in a broader population context, building 

research capacity, and informing local and international policy-making (Table 1).

Review of dengue cohort studies

We used PubMed to download all articles with the term 'dengue' in the title and 'cohort' in 

either the title or abstract (n=283, January 4, 2018). Titles and abstracts were screened to 

identify prospective cohort studies of dengue in healthy populations (some reviewed 

previously in [8–10]; we do not review infant cohorts here). We identified 28 cohort studies 

from 1964 to the present (Table 2).

Incidence, burden, and risk factors

Incidence

Dengue cohort studies are used to estimate DENV infection and disease incidence in a given 

population. Symptomatic disease is measured by active surveillance for febrile illness and 

testing of acute and convalescent blood samples with molecular biological, virological 

and/or serological methods. Inapparent infections are measured by rise in antibody titers 

between pre- and post-epidemic or annual blood samples. Dengue disease incidence ranges 

from 0.3 to 4.6 per 100 person-years, exhibiting substantial heterogeneity by year and 

location. Cohort studies have shown that incidence of symptomatic dengue is higher in Asia 

than Latin America and that a larger fraction of dengue cases require hospitalization in Asia 

[11–13]. DENV-attributable incidence among febrile cases was measured in Thailand and 

accounted for 15% of DALYs attributable to febrile illness [14,15]. Estimates of dengue 

disease incidence in cohort studies have been compared to national-level surveillance data, 

enabling determination of expansion factors (e.g., from 4.7 to 22 cases identified by active 

surveillance for every 1 case identified by passive surveillance) [16–19] and estimation of 

national and global incidence, burden, and mortality [20–22]. DENV infection incidence 

ranges from 3 to 39.4 per 100 person-years [12,23–25], with the ratio of symptomatic to 

inapparent infections (S:I) varying dramatically in cohorts within epidemics, across years 

[12], and by geographic area (e.g., nearby schools) [13,26,27]. Analysis has shown that 

years with high S:I ratio (more symptomatic infections) are often followed by years with low 

S:I ratio (more inapparent infections) [12,28].
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Primary versus secondary infections

The first dengue cohort studies found that DHF/DSS cases were only observed in individuals 

who had anti-DENV antibodies in pre-infection samples [8,29]. Larger cohort studies proved 

that pre-existing immunity is a strong risk factor (odds ratio 6.5 in one study, relative risk 

>50 in another) for DHF/DSS, and DENV2 was most strongly associated with DSS [30–32]. 

Cohort studies also showed that the probability of symptomatic disease is lower during 

primary than secondary DENV infection, particularly when the secondary DENV infection 

occurred >1 year after primary infection [33].

Age and sex

Cohort studies have not consistently shown differences in DENV infection or symptomatic 

dengue by sex [12,13,24,25], although differences in DSS by sex have been observed [8]. 

Age is related to both the probability of exposure and disease incidence. First, younger 

children have more undifferentiated fever caused by DENV, possibly because they do not 

describe symptoms as easily as older children [34]. Second, older age is associated with 

probability of DENV infection, likely due to increased mobility [12,35] and body surface 

area [36,37]. Third, age of secondary DENV infection is associated with higher probability 

of severe disease [38], while age of acquisition of post-secondary infection immunity is 

associated with reduced probability of serologically detectable DENV infection given 

exposure [24,29]. Finally, older age is associated with greater probability of disease, even 

controlling for anti-DENV antibody titer and number of previous infections [39].

Spatial heterogeneity

Dengue cohort studies have revealed spatial heterogeneity of circulating serotypes and 

genetic diversity of viral strains circulating in a given population, including extensive gene 

flow from larger urban centers into more rural populations as well as between nearby 

schools [40–42]. Spread of a novel serotype, DENV3, in Iquitos, Peru, was correlated with 

high pre-existing community seroprevalence, suggesting certain areas had higher risk of 

transmission [27,43].

Force of infection

Cohort studies collect age-stratified seroprevalence data, enabling estimation of the force of 

infection – the rate at which naïve individuals become infected in a population. Age-

stratified seroprevalence data from cohort studies have been used to estimate average 

historical and annual differences in the force of infection, and where serotype-specific 

neutralizing antibody titers were measured, serotype-specific force of infection [24,44–46].

Correlates of protection and disease risk

The value of cohort studies for measuring immune correlates

While hospital-based studies are critical for identifying prognostic indicators in acute-phase 

samples for progression to severe dengue [47] or viral determinants [48] associated with 

severe dengue outcomes, they are limited in that they can only examine individuals who are 
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already sick. Cohorts are essential for evaluating how pre-existing immunity correlates with 

infection and disease outcome.

Correlates of protection and risk

Most studies of correlates of protection and risk have examined neutralizing antibody or 

ADE titers in non-random subsets of dengue cohorts using classical serological assays such 

as the plaque reduction neutralization test (PRNT) or ADE assays, although some use newer 

tools [27,32,35,49,50]. In a Thai cohort, neutralizing antibodies distinguished non-severe 

dengue fever (DF) cases from DHF/DSS cases infected with DENV3, but not DENV2 [51]. 

In the same cohort, antibody-dependent cellular cytotoxicity was found to correlate with 

neutralizing antibody titers and IgG1 levels as well as viremia in DENV3 patients, but not 

with disease severity [52]. Another Thai cohort confirmed that PRNT titer does not perfectly 

correlate with protection, as individuals with high PRNT titers could still acquire 

symptomatic DENV infections [53]. Other cohort studies have compared inapparent to 

symptomatic DENV infections and found that the magnitude [50,54] and breadth [35,55] of 

neutralizing antibody titers correlate with reduced probability of symptomatic disease. The 

Dengvaxia Phase 3 clinical trial data demonstrated that neutralizing antibody titers are 

associated with vaccine efficacy, although with differences by age and/or pre-vaccination 

immune status [56].

Efforts to relate ADE titers to severe dengue probability have been less successful in cohort 

studies, possibly due to issues with how ADE is measured in vitro. One early success 

measured enhancement capacity in primary human monocytes [57], but other studies using 

different cell lines were not able to find an association between ADE level in vitro and 

disease severity [58]. Recently, it has been shown that specific titers of pre-existing anti-

DENV binding antibodies are associated with elevated risk of DHF/DSS, controlling for 

other covariates, in the Nicaraguan cohort [39].

Flavivirus interactions

Cohort studies are ideal for estimating the effect of prior dengue immunity on Zika disease, 

and will ultimately enable measurement of the effect of ZIKV infection on dengue. The 

historical finding that anti-Japanese Encephalitis Virus neutralizing antibodies are associated 

with elevated probability of symptomatic DENV infection is potentially relevant to the 

current Zika epidemic and the impact it may have on future dengue disease risk [59].

Antibody longevity

Another major value of cohorts is longitudinal sampling that enables measurement of 

durability and decay of key antibody populations and biomarkers over long periods of time. 

Hospital-based studies reveal antibody decay out to 6–12 months post-infection, followed by 

stability or increases in titer at >1 year [60–62]. Studies of cohort samples also show 

stability or increases in breadth >1 year after primary DENV infection, with less clear trends 

following secondary infection [27,49,50,63]. Further analyses of the dynamics of antibodies 

for all individuals in cohorts will improve our understanding of the durability of antibodies 

following primary, secondary, and post-secondary DENV infection. Systems serology 
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approaches, as used for evaluation of HIV trial samples, are also promising, especially when 

high-throughput methods are available [64].

Full cohort analyses

Promising but under-utilized potential immune correlates include the antibody titers (often 

binding antibodies) measured regularly on all cohort participants. It has now been shown 

that anti-DENV binding antibodies correlate with protection from symptomatic dengue at 

high titer and with elevated risk of DHF/DSS at a specific range of low titers [39], 

suggesting these antibody measurements are more useful than previously thought. Because it 

is not feasible to run all assays on all cohort participants, a research priority is sampling 

cohort participants for in-depth analysis in a way that accounts for how well they represent 

the population as a whole to allow inference of cohort-level effects.

Infection histories

Measuring the rise in anti-DENV binding antibodies [12,13,24,55] and/or neutralizing 

antibodies [27,49,65], between paired samples has enabled identification of the sequence 

and number of previous DENV infections. However, cross-reactivity between serotypes, 

which can be assay-dependent, makes inferring the exact history of infections difficult, and 

serological responses resembling homologous re-exposures may have been erroneously 

called heterotypic infections [66,67]. There are now efforts to call infection histories with 

fewer assumptions and in a more data-driven way, accounting for potential homotypic 

infections [66,67] and for boosts [50,68] that do not reach the 4-fold rise antibody titer 

requirement for inapparent infections. For influenza, accounting for measurement error 

makes it possible to meaningfully interpret 2-fold rises in Hemagglutinin Inhibition titer 

[69], and a similar approach is in process for dengue (H.Salje, personal communication). 

Another approach is to estimate timing of infections based on differential antibody decay to 

distinct antigens, as has been done for malaria [70].

Viral antigenic diversity

Substantial antigenic diversity by genotype and clade exists, both within and between 

serotypes [71]. In Peru, prior DENV1 immunity differentially neutralized DENV2 

genotypes, resulting in mild disease instead of the expected severe dengue epidemic when 

DENV2 was introduced for the first time [72,73]. A recent study in the same population 

suggests that immunity to one DENV2 genotype may not protect against another DENV2 

genotype [67]. A key finding from the Nicaraguan cohort study was that a particular 

relationship existed between prior serotype-specific immunity and susceptibility to severe 

disease with different clades of the secondary infecting serotype [74]. Importantly, there is 

concern about the effect of genotypic variation on homologous protection – some type-

specific antibodies may be so specific that they do not protect against other genotypes of the 

same serotype [67,75,76], which could affect vaccine efficacy [77].
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Novel immunological and virological techniques

Antibodies

Natural infections are critical for understanding vaccine-mediated protection. Tools such as 

antibody depletions followed by neutralization tests [78,79] and chimeric viruses in which 

key epitopes are swapped between serotypes enable identification of particular antibody 

populations and epitopes associated with protection for each serotype [80–82]. A recent 

study used chimeric viruses and samples from hospital and cohort studies to show that 

variable proportions of DENV3 neutralizing activity in natural primary DENV3 infections 

were attributable to the quaternary type-specific epitope 5J7 across individuals, indicating 

that other DENV3 type-specific epitopes remain to be identified [63]. Investigating whether 

cross-neutralizing epitopes other than the potently neutralizing multitypic EDE epitope 

[83,84] exist is also a major priority.

B cells

Multiple studies have shown significantly more plasmablasts during DENV infection than 

other febrile illnesses [85], in some cases associated with secondary dengue and disease 

severity [86]. B cells were found to be type-specific early after primary infection but became 

more cross-reactive later (6 months), while cross-reactive B cell responses were seen both 

early and late after secondary infection, often with highest specificity to a serotype other 

than the secondary infecting serotype [86,87]. A sequencing study of peripheral blood cells 

from dengue cases across time revealed a convergent antibody signature in the B cell 

complementarity-determining region 3 enriched in acute-phase samples [88]. Ongoing work 

is measuring the specificity of B cells to all four DENV serotype plus ZIKV at a single-cell 

level in the context of a cohort study where prior DENV infection history is known [89,90].

T cells

Early studies suggested that during secondary infection, DENV-specific CD4+ and CD8+ T 

cells were mostly heterotypic and became activated, leading to a “cytokine storm”, and then 

underwent programed cell death, potentiating severe dengue disease [91,92]. However, more 

recent studies point to a protective role for T cells. A nested case-control in the Kampheng 

Phet cohort found higher levels of TNFα-, IFNγ-, and IL-2-producing T cells in those who 

developed inapparent as compared with symptomatic DENV infection [93]. Other studies 

used population-based estimates of T cell responses and associated these with previously 

identified HLA alleles found to be protective in case-control hospital studies [94]. Further T 

cell profiling of pre-infection samples in cohorts is needed [95], as it is difficult to establish 

the direction of causality of T cell functionality in acute-phase samples.

Immune profiling

Comprehensive immune profiling of individuals with severe versus non-severe dengue 

versus inapparent DENV infection is an important area of future research. A recent study 

identified viremic but asymptomatic individuals using an index cluster design and found that 

asymptomatic individuals have feedback mechanisms that regulate activation of the adaptive 
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immune response that facilitates viral clearance as compared to those with symptomatic or 

severe dengue [96].

Informing vaccine trial design and evaluation

Estimates of DENV infection and dengue incidence from cohort studies enabled sample size 

and power calculations for Phase 3 dengue vaccine efficacy trials, while an understanding of 

the patterns of serotype circulation allowed vaccine trials to be designed in locations to 

ensure sufficient representation of serotypes for estimating serotype-specific vaccine efficacy 

[10].

Additionally, four critical observations from cohort studies were borne out in recent Phase 3 

clinical trials of a dengue vaccine. First, decent vaccine efficacy was estimated up to 12 

months after final vaccine dose (25 months post-first dose) [97,98], but elevated risk of 

hospitalized dengue was observed thereafter in young vaccine recipients [99]. Cohort studies 

have observed heterotypic protection against symptomatic secondary dengue <2 years after a 

primary infection but elevated risk of symptomatic and severe dengue ≥2 years after primary 

infection [49,100,101]. Second, the observation of dramatically different vaccine efficacy 

against symptomatic dengue between individuals with prior dengue immunity and 

individuals who were dengue-naïve [97,98] is consistent with the observation of differential 

risk of dengue following primary versus secondary DENV infection [32] as well as 

differences in the composition of neutralizing antibodies after primary versus secondary 

infections [79]. Third, serotype-specific vaccine efficacy correlated with prevalence of type-

specific neutralizing antibodies to that serotype [78], consistent with natural infection studies 

showing quaternary type-specific potently neutralizing antibodies after primary infection 

[79]. However, heterotypic neutralizing antibodies at sufficiently high titers can protect 

against symptomatic DENV infection in both natural infections and vaccine trials [50,56]. 

Finally, elevated incidence of severe dengue was observed for seronegative vaccinees 

compared to placebo controls and seropositive vaccinees >12 months after vaccination 

[99,102], an effect strongly suggestive of classical ADE [4,103], as observed in cohort 

studies [39].

Added value of longitudinal cohort studies

Sentinels in outbreak conditions

Cohort studies have proven highly valuable during outbreaks of emerging pathogens, 

pivoting quickly to address new emerging disease threats. Cohort study personnel, especially 

in coordination with national health systems, serve as critical human resources for 

identifying and characterizing emerging pathogens as well as measuring key determinants of 

novel infectious diseases. Such real-time high-quality data are very useful for public health 

decision-making by national authorities and international agencies, as well as for the 

scientific community. For example, the Nicaraguan cohort captured the first pandemic H1N1 

case in 2009 in Nicaragua [104], and chikungunya [105] and Zika were added to the cohort 

study as the respective epidemics emerged. Because the Nicaraguan cohort study is 

embedded within the Ministry of Health, this enabled analyses of Zika in Nicaragua that 

furnished actionable data in real time, including studies of age-stratified seroprevalence, 
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spatial risk factors, the effect of prior DENV immunity on Zika, and outcomes of ZIKV 

infection in pregnancy.

Diagnostic assay development

Well-characterized samples are an essential resource for development of new diagnostic 

assays for public sector laboratories, academic studies, and companies. For example, when 

ZIKV arrived in the Nicaraguan cohort, existing pre-exposure DENV samples and post-

exposure ZIKV samples enabled extensive diagnostic assay development and adaptation of 

existing methods to Zika, including multiplex realtime RT-PCR [106], NS1-based BOB 

ELISA [107], and Zika IgM-capture and inhibition ELISAs [108]. This enabled the 

Nicaraguan Ministry of Health to rapidly implement Zika diagnostics and disease 

surveillance during the epidemic. Samples were also shared widely, enabling multiple novel 

assays to be developed by other groups [109–112].

Use for other pathogens and risk factors

Long-running cohort studies can be expanded into "multiple use" cohorts, as the 

infrastructure and design for monitoring one acute viral disease is amenable to studies of 

other pathogens (e.g., dual dengue-influenza cohort studies; cohorts to study multiple 

arboviruses) [113,114]. Additionally, a broader conception of health and disease can link 

upstream determinants (e.g., household and environmental risk factors, socioeconomic 

status, geospatial data [115–117]) with individual biosignatures (e.g., microbiome, novel 

antibody repertoire profiling, metabolomics, GWAS, eQTL, viral sequencing) and reveal 

stable features that are associated with documented outcomes of specific infectious and 

chronic diseases and overall health patterns. These analyses in turn should suggest 

actionable interventions between the upstream determinants, the stable biosignatures, and 

downstream health outcomes.

Research capacity-building

Longitudinal cohort studies are also models of international collaborations that combine 

local expertise on disease, assay development, and surveillance with international scientific 

expertise, new technologies, and support [118,119]. Such programs require trust built over 

time as groups work side-by-side on research that benefits both the local population and the 

international scientific community. Such collaborations incorporate training opportunities 

for local students and health professionals [118] and technology transfer (biological as well 

as information technologies) to enable national and global public health departments to 

conduct the highest quality infectious disease research and surveillance. Robust involvement 

and communication with local Ministries of Health are critical so that key information about 

the diseases in question can be used for public health decision-making and evidence-based 

policy.

9. Concluding thoughts

Overall, longitudinal cohort studies have provided critical insights into dengue 

epidemiology, immune correlates, and pathogenesis. Importantly, there are many 

possibilities for digging deeper into understanding immunity and disease in populations and 
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impacting public health more broadly, by leveraging and expanding long-running cohorts 

studying endemic and emerging viral pathogens.
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Highlights

• Cohort studies measure disease rates, transmission parameters, and risk 

factors

• Cohorts identify correlates of protection and risk and inform vaccine trial 

design

• They provide critical data in outbreaks and enable development of diagnosis 

assays

• Cohorts build research capacity and inform local and international policy-

making

Katzelnick and Harris Page 19

Curr Opin Virol. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Katzelnick and Harris Page 20

Table 1

Ten ways cohort studies promote scientific research and infectious disease control

1 Estimate basic infection and disease incidence, transmission parameters, and risk factors

2 Identify correlates of protection and disease risk

3 Enable scientific studies of well-characterized samples with advanced scientific techniques

4 Provide longitudinal samples to study kinetics of antibody and biomarker levels

5 Inform vaccine trial design and evaluation

6 Serve as sentinels during outbreaks to inform local and international policy decision-making

7 Collect high-quality samples for diagnostic assay development

8 Enable holistic studies of multiple diseases and environmental and socioeconomic factors

9 Increase understanding of individual and intrinsic differences that drive immunity to pathogens

10 Foster infectious disease infrastructure, research, and control in disease-affected countries in close collaboration with Ministries 
of Health
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Table 2

Community-, school-, or household-based longitudinal prospective cohort studies of dengue (in chronological 

order)

Location Years

Bangkok, Thailand [120] 1962–1964

Koh Samui Island, Thailand [121] 1966–1967

Rayong, Thailand [32] 1980–1981

Bangkok, Thailand [31,32] 1980–1981

Yangon, Myanmar [30] 1984–1988

Iquitos, Peru [73] 1993–1996

Yogyakarta, Indonesia [25] 1995–1996

Kamphaeng Phet I, Thailand [15,23,26] 1998–2002

Iquitos, Peru (2 studies during this period) [27] 1999–2005

West Java, Indonesia [122] 2000–2004

Maracay, Venezuela [123] 2001–2002

Managua, Nicaragua [124] 2001–2003

Kamphaeng Phet II, Thailand [125–128] 2004–2006

Long Xuyen, Vietnam [129] 2004–2007

Managua, Nicaragua [12,113,130] 2004–present

Ratchaburi, Thailand [131–133] 2005–2009

Iquitos, Peru [35,44] 2006–2010

West Java, Indonesia [134] 2006–2009

Kampong Cham, Cambodia, [135] 2006–2008

Patillas, Puerto Rico [136] 2007–2008

Iquitos, Peru [67,137] 2007-present

Colombo, Sri Lanka [55,138,139] 2008–2010

Preparatory studies for CYD-TDV Phase III vaccine trials: Indonesia, Malaysia, Philippines, Thailand Vietnam [140] 2010–2011

Preparatory studies for CYD-TDV Phase III vaccine trials: Brazil, Colombia, Puerto Rico, Mexico [141] 2010–2011

Medellin, Colombia [14] 2010–2011

CYD-TDV Phase III vaccine trial placebo controls [11] 2011–2014

Dhaka, Bangladesh [142] 2012

Cebu City, Philippines [17,24] 2012-present
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