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Abstract

Essays on Agricultural Trade in Sub-Saharan Africa

by

Obie Cannon Porteous

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Brian Wright, Chair

This dissertation consists of two essays on agricultural trade in sub-Saharan Africa. The
42 countries of continental sub-Saharan Africa include 21 of the 24 poorest countries in the
world. Unlike industrialized countries where structural transformation and income growth
have led to declines in the share of agriculture in overall output and consumption, nearly
two-thirds of the labor force in sub-Saharan Africa still works in agriculture and nearly
half of consumer expenditure is on food. Agricultural products are produced by tens of
millions of farmers and consumed by hundreds of millions of consumers across Africa. In
this dissertation, I show that the costs of trade between producers and consumers in different
locations are very high, I explore the consequences of these high trade costs, and I evaluate
the effects of a type of trade policy that has been used to insulate markets in particular
countries from high and volatile prices elsewhere. My findings can be used to improve
the design and understand the impact of infrastructure investment, trade liberalization,
agricultural technology adoption, and price stabilization initiatives in Africa and elsewhere
in the developing world.

In the first chapter, I estimate and solve a dynamic model of agricultural storage and trade
in sub-Saharan Africa using a new intra-national dataset of monthly prices and production of
the 6 major staple grains from 2003 to 2013 and a new approach to identify cost parameters
when trade and storage are unobserved. The model includes monthly storage in each of
230 large hub markets in all 42 countries of continental sub-Saharan Africa, monthly trade
between them, as well as monthly trade with the world market through 30 ports. I find
median intra-national trade costs over 5 times higher than elsewhere in the world along with
significant extra costs for trade across borders and with the world market. I then simulate
a counterfactual in which trade costs for staple grains are lowered to match an international
benchmark. Lowering trade costs results in a 46% drop in the average food price index, a
42% loss of net agricultural revenues, and a welfare gain equivalent to 2.2% of GDP. I show
that 86% of this welfare gain can be achieved by lowering trade costs through ports and along
key links representing just 18% of the trade network, supporting a corridor-based approach
for infrastructure investment and trade policy. In an extension, I find that the effects of
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agricultural technology adoption depend crucially on trade costs, with technology adoption
increasing farmer incomes only when trade costs are low. Compared to my dynamic monthly
model with storage, a static annual model of agricultural trade underestimates trade costs
by 23% and welfare effects by 33% by failing to correctly identify when trade occurs.

In the second chapter, I investigate the empirical effects of temporary export restrictions,
which have been widely used by many countries in sub-Saharan Africa and elsewhere in recent
years in an attempt to stabilize domestic prices of staple grains. I use monthly, market-level
price data from a 10-year period during which 13 short-term export bans on maize were
implemented by 5 countries in East and Southern Africa. I find no statistically significant
effect of export bans on the price gaps between pairs of affected cross-border markets. My
results for price gaps match those from a simulation of the model developed in the first
chapter in which export bans are not implemented. However, prices and price volatility in
the implementing country are significantly higher during export ban periods in the data than
in the model simulation with no bans. Export bans in the region are imperfectly enforced,
divert trade into the informal sector, and appear to destabilize domestic markets rather than
stabilizing them.
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Chapter 1

High Trade Costs and Their
Consequences: An Estimated
Dynamic Model of African
Agricultural Storage and Trade

1.1 Introduction

The 42 countries of continental sub-Saharan Africa have a combined population of 960 million
people. Despite recent economic growth, these countries have a GDP per capita of just 3.71
USD per day and include 21 of the 24 countries worldwide with a GDP per capita less than
2 USD per day. Agriculture is the dominant sector in most African economies: 64% of the
labor force in sub-Saharan Africa works in agriculture and 44% of consumer expenditure is
on food, with even higher numbers for the poorest countries. Although there are large areas
of land well-suited to agricultural production in sub-Saharan Africa, productivity in African
agriculture is extremely low with output per hectare 5 times lower and output per worker 78
times lower than in North America, facts which (together with the large share of the labor
force in agriculture) can explain most of the income differences between sub-Saharan Africa
and the rest of the world (Caselli 2005, Restuccia et al 2008, Vollrath 2009).

One of the most striking facts that emerges from data on the African agricultural sector
is that the prices of agricultural products vary tremendously across space. The left panel
of figure 1.1 shows monthly maize prices from four large hub markets in East Africa on a
2000 kilometer south-north axis from Songea — a maize surplus area in southern Tanzania
— to Mandera — a maize deficit area in northern Kenya. The right panel shows equivalent
maize prices from three markets in the US on a 2000 kilometer north-south axis from inland
surplus area Minneapolis to the major export ports near New Orleans. By December 2011,
maize prices in Mandera had exceeded 0.85 USD/kg during the height of the Horn of Africa
famine — the first UN-declared famine in 30 years. Meanwhile, maize prices in New Orleans
were 0.25 USD/kg and maize prices in Songea were a mere 0.15 USD/kg.
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Figure 1.1: Monthly Maize Prices in East Africa (left) and the US (right), January 2007 –
December 2011. Sources: WFP VAM, USAID FEWS NET, USDA Feed Grains Database.

Empirical evidence from African agricultural markets suggests that traders in large hub
markets like those in figure 1.1 behave competitively, facing low four-firm concentration
ratios and not deviating detectably from marginal cost pricing (Aker 2010, Osborne 2005).
The large price gaps between markets within African countries, between African countries,
and between Africa and the world market must therefore be reflective of large trade costs —
the total costs involved in getting a product from a producer or trader in one location to a
trader or consumer in another. There are several reasons why one might expect ex ante that
trade costs in Africa are higher than elsewhere in the world, including poor infrastructure,
lots of borders with formal and informal tariffs and delays, vast interior areas far from ports
including 16 countries that are completely landlocked, high fuel costs, etc. Several recent
studies have provided evidence that freight rates and the distance-dependent component of
total trade costs are two to five times higher in particular African countries than elsewhere
in the world (Taravaninthorn and Raballand 2009, Atkin and Donaldson 2015).

Given the importance of agricultural production and consumption in Africa, high trade
costs and the large spatial price gaps they cause have significant consequences. In surplus
regions like Songea, trade costs confine African farmers to local markets with low prices and
inelastic demand, limiting their incentives for productivity-enhancing technology adoption.
In deficit regions like Mandera, trade costs mean that African consumers face high food prices
that fluctuate with volatile local harvests, leading to regular food security crises. How big
are trade costs in the agricultural sector in Africa? What would be the gains from lowering
them to match levels in other parts of the world? What is the most efficient way to achieve
these gains? And how do trade costs alter the potential effects of productivity-enhancing
technology adoption? This chapter addresses these questions by building and estimating a
dynamic model of African agricultural storage and trade.

I start by assembling a new intra-national dataset including ten years of monthly price and
production data for the 6 major staple cereal grains in 230 regional markets covering all 42
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countries of continental sub-Saharan Africa. While many previous studies have made use of
spatial data on grain prices from individual countries or regions within sub-Saharan Africa1,
I am the first to compile and use monthly intra-national grain price data from all countries
in the entire sub-continent. I combine these price data with GIS grid cell level production
data, which I allocate to individual markets using a market catchment methodology based
on minimum travel time (Pozzi and Robinson 2008).

With data in hand, I proceed to write down, estimate, and solve a two-part model
including (i) a model of consumer demand for staple grains and an outside numeraire good,
from which I derive an expression for welfare; and (ii) a rational expectations model of
monthly grain storage and trade under uncertainty (Williams and Wright 1991, chapter 9)
including storage in each of the 230 markets, overland trade between them, and trade with
the world market through 30 ports. Although the focus of this chapter is trade and the
consequences of high trade costs, forward-looking storage is inextricably linked to trade in a
sector where uncertain harvests occur once or twice a year, harvest periods vary by location,
and both harvests and prices fluctuate dramatically (figure 1.2). Dimensionality problems
have traditionally restricted the use of this class of dynamic models to contexts involving two
markets and a single commodity (e.g. Gouel and Jean 2015, Steinwender 2015). I make use of
an additional assumption about trader expectations that converts the intractable stochastic
problem into a series of tractable deterministic problems, and I show that this assumption
does not significantly affect my results.
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Figure 1.2: Annual Millet Harvest Per Capita (kg) in Niger, 1960 – 2010 (left) and Monthly
Millet Prices (USD/kg) in Maradi, Niger, 2002 – 2011 (right). Sources: FAO-STAT, FAO
GIEWS.

My estimation strategy includes a new, iterative approach to inferring trade costs from
price differences when precise data on where trade occurs is not available (as it was for
Donaldson 2012 and Atkin and Donaldson 2015). My median estimated intra-national trade

1Recent examples include Aker 2010, Brenton et al 2014, Dillon and Barrett 2015, and Myers 2013.
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cost using this approach is over 5 times higher than benchmark freight rates elsewhere in the
world. My estimates appear to be in line with the results of trucking surveys (Taravaninthorn
and Raballand 2009) and studies of the distance-dependent component of trade costs (Atkin
and Donaldson 2015), with larger magnitudes reflective of additional components of overall
trade costs not previously captured. In reduced-form regressions, I find that higher trade
costs are correlated with lower road quality, international borders, the absence of regional
trade agreements, and lower scores on the Transparency International Corruption Percep-
tions Index and the World Bank Logistics Performance Index. My port-to-world trade cost
estimates are also over five times higher than benchmark shipping rates.

After verifying the goodness of fit of my model-generated equilibrium, I begin my coun-
terfactual analysis. In my main counterfactual, I lower trade costs in Africa to match bench-
mark freight rates in other parts of the world. Lowering trade costs leads to a 46.4% drop
in the average price index for staple grains across all markets, a decrease in continent-wide
agricultural revenues net of storage and trade costs of $117.4 billion over ten years (–42.1%),
and a welfare gain equivalent to 2.2% of GDP (a $125 billion equivalent variation). The
aggregate drop in prices and revenues is largely attributable to increased penetration of im-
ports from the world market (the “missing food imports” of Tombe 2015), with the gains
from lower food prices outweighing the lost income for farmers. However, there is significant
heterogeneity in my results, with exporting regions experiencing increases in prices, revenues,
and welfare and some regions experiencing welfare losses due to terms-of-trade effects. My
results are robust to different demand specifications and allowing for a long-run reallocation
of factors of production between sectors.

Reducing trade costs everywhere in Africa may be politically and financially infeasible
in the near future. However, in additional counterfactuals, I show that 86% of the aggre-
gate welfare gain from lower trade costs can be achieved by lowering trade costs through
ports and along key links representing just 18% of the trade network. This suggests that
a corridor-based approach of the kind advanced by multilateral donors may be effective
(African Development Bank 2010).

In two additional counterfactuals I estimate the effects of widespread agricultural tech-
nology adoption under existing high trade costs and counterfactual low trade costs. In 2013,
African cereal grain yields were half of South Asia’s and a third of Latin America’s due
largely to the low use of inputs like fertilizer. Institutional donors and organizations like
the Alliance for a Green Revolution in Africa (AGRA) are promoting widespread technol-
ogy adoption to increase smallholder incomes and decrease food prices. While I find that
doubling agricultural productivity under either existing high or counterfactual low trade
costs does lower food prices, the effects on farmer incomes are dramatically different in the
two cases, with net agricultural revenues actually falling by 71.4% under existing high trade
costs and increasing by 12.4% under counterfactual low trade costs. These results underscore
the importance of implementing policies to lower trade costs and improve market access in
tandem with technology adoption initiatives.

This chapter is most closely related to a recent literature on trade costs along intra-
national spatial transportation networks that has expanded rapidly since the seminal work
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of Donaldson 2012. Atkin and Donaldson 2015 estimate the distance-dependent component
of intra-national trade costs within two sub-Saharan African countries (Ethiopia and Nigeria)
using price and origin data for specific, narrowly-defined manufactured goods. Sotelo 2015
uses a richer dataset from Peru to explore how intra-national trade costs lower agricultural
productivity by preventing agricultural producers in particular locations from specializing in
the crops in which they have a comparative advantage, a mechanism which is less important
in the African context for the range of crops that I consider. This chapter goes beyond the
existing literature in several important ways, including covering a larger network of African
markets (including international trade between countries and with the world market) and
using a dynamic monthly model with storage, which I show is important for identifying when
trade occurs so as to avoid underestimating trade costs and welfare effects. In my case, using
a static annual model underestimates trade costs by 23% and welfare effects by 33%.

The balance of this chapter proceeds as follows. In Section 2, I describe the context and
data. In Section 3, I present my model. In Section 4, I detail my estimation strategy, present
my estimates for the model parameters including trade costs, and examine the goodness of
fit of my estimated model. In Section 5, I present the results of my counterfactual analysis
and robustness checks. Section 6 concludes.

1.2 Context and Data

Agricultural products are consumed everywhere and produced nearly everywhere in sub-
Saharan Africa. Due to data limitations and comparability issues, I restrict my attention
in this chapter to the consumption and production of the six major staple cereal grains:
maize, millet, rice, sorghum, teff, and wheat2. Table 1.1 shows the relative share of cereal
grains and other categories of agricultural goods in production value, caloric intake, and
gross value of international trade in sub-Saharan Africa. Although they make up only 17.2%
of the total value of agricultural production in sub-Saharan Africa, cereal grains are by far
the most important source of calories in African diets. Tubers like cassava and yams are
another important source of staple carbohydrates, but their perishability and low value-to-
weight ratios severely constrain their trade and storage. Cash crops like cocoa and tea make
up the largest share of the value of African countries’ international agricultural trade, but
they differ from cereals in that their production is often localized near ports or in certain
geographic niches and is nearly all exported to the world market.

Grain trade in sub-Saharan Africa can be roughly classified into two types: farm-to-
market and market-to-market trade. Although farm-to-market trade may involve much
higher trade costs than market-to-market trade due to extremely poor rural infrastructure,
I will not be able to capture farm-to-market trade and trade costs in a continent-level model
due to data limitations and will focus exclusively on market-to-market trade instead. One
important difference between the two types of trade is the level of competition — while

2Cereal grains (cereals), legumes, and oilseeds are sometimes all considered to be grains. This chapter
just focuses on the six major cereal grains.
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Table 1.1: Relative Share of Categories of Agricultural Goods in Continental Sub-Saharan
Africa

Production Value Caloric Intake Gross Trade Value

Cereal Grains 17.2% 46.3% 22.1%
Tubers 30.2% 16.8% 0.2%
Legumes/Seeds/Nuts 6.8% 8.6% 6.3%
Fruits/Vegetables 12.0% 5.6% 5.1%
Animal Products 20.8% 7.3% 15.9%
Cash Crops 13.0% 15.4%a 50.4%

Note: Value of production in local prices and caloric intake are from FAO-STAT
for 2010. Gross international trade value is value of imports plus value of exports
from CEPII BACI (Gaulier and Zignago 2010) for 2003-2012. All countries with
available data are included (30 for production, 37 for calories, 37 for trade).
aIncludes vegetable oil, sugar, and beverages.

farm-to-market trade may be conducted by relatively few traders with significant market
power, market-to-market trade at the level considered here tends to be highly competitive
with many traders, low firm concentration ratios, homogeneous products, and few barriers
to entry (Osborne 2005, Aker 2010). I will therefore assume that traders are competitive
price-takers.

Grain is bought and sold in thousands of open-air markets across sub-Saharan Africa.
I seek to identify and include in my model the larger, regionally important hub markets
that collect grain from surrounding smaller markets for trade with other hub markets. I do
so in three steps. First, I include the 178 towns and cities in my 42 countries of interest
which have a population of at least 100,000 people and are at least 200 kilometers apart (if
two towns with over 100,000 people are closer than 200 kilometers I include the larger one).
Second, I add smaller towns that are located at important road junctions or ports. Third, I
add additional major towns (some closer than 200 kilometers apart) in countries which still
have high population-to-market ratios after my first two steps. Together these steps produce
a list of 263 markets (cities/towns).

In order to be able to include a particular market in my model, I must have grain price
data for it. Using my “ideal” list of 263 markets, I conducted an exhaustive search for
monthly grain price series from these markets and obtained price series for 230 of them.
I then used maps of road networks and navigable waterways to identify the pairs of these
markets between which direct trade (trade that does not pass through another market in
the network) is feasible. A map of my final network of 230 markets with the 413 direct links
between them is shown in figure 1.3. A complete list of markets and further details on the
market selection process are contained in the appendix.

The median market town has a population of 207,000, and the median transport distance
between directly linked markets is 337 kilometers. Among the 230 markets, I identify 30
major ports that trade with the world market and include direct links between them and
the most important world market for each crop (Bangkok, Thailand for rice and the US
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Figure 1.3: Map of 230 Markets and 413 Direct Links

Gulf for maize, sorghum, and wheat; millet and teff are generally not traded on the world
market except for small shipments by specialized companies). I also treat Johannesburg,
South Africa like the world market for maize in my model due to its special circumstances3.

The monthly grain price series for the 230 markets cover a 10-year period from May 2003
to April 2013. The price series include series for the 6 cereal grains most produced and
consumed in sub-Saharan Africa – maize (45.6% of total cereal grain production), sorghum
(21.8%), millet (14.3%), rice (7.7%), wheat (5.3%), and teff (2.6%)4. In each market, only
a subset of these major grains are sold – 54 markets have price series for 1 grain, 111 have
series for 2 grains, 24 have series for 3 grains, and 41 have series for 4 grains. Maize is by
far the most common grain with price series from 180 of the 230 markets, followed by rice
(126), sorghum (110), millet (64), wheat (23), and teff (9).

3These include its functioning commodity exchange which is used as a reference point throughout Southern
Africa, its close integration with the world market, South Africa’s very large maize production relative to
its neighbors, and South Africa’s advanced internal market information systems. Johannesburg is the only
market from South Africa included in my model for the same reasons.

4The remaining 2.7% of total cereal grain production consists of minor cereal grains (barley, oats, fonio,
etc.).
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Of the 512 total price series, 42% were obtained from the World Food Programme’s
VAM unit and 25% from FAO’s GIEWS project, which both maintain online databases of
staple food price series collected by themselves or by national government agencies. The
remaining 33% were obtained directly from national ministries of agriculture and statistical
offices or through USAID’s FEWS NET project, non-governmental organizations, and other
researchers. Each original source typically employs teams of surveyors who observe and
record prices at multiple points of sale in each location on a weekly or monthly basis and
then relay them to analytical teams in the capital city who compile and publish monthly and
annual reports. The price series are not all complete — the average series has 72 observations
(6 years) worth of data. The original price series are in local currency. Of the 512 series,
76% are identified as retail price series for quantities ranging from 0.5 to 3.5 kg, while the
remaining 24% are identified as wholesale price series for quantities ranging from 50 to 100 kg.
I convert all price series to USD/kg using monthly exchange rates and conduct a statistical
analysis of 37 series for which I have both retail and wholesale prices that fails to reject a
hypothesis of equality between retail and wholesale prices. This is consistent with interviews
of market participants which suggest that separate retail and wholesale markets typically do
not exist and that prices per kilogram often do not vary with quantity sold. Details on this
statistical test as well as the grain types and data sources by market are contained in the
appendix.

Across all time periods and all markets, average prices are $0.41/kg for maize, $0.44/kg
for wheat, $0.45/kg for both millet and sorghum, $0.58/kg for teff, and $0.84/kg for rice.
Regressions with market fixed effects comparing price levels within particular markets show
maize significantly cheaper than sorghum, which is significantly cheaper than millet and
wheat, which are significantly cheaper than teff, which is significantly cheaper than rice
(significance at the 5% level).

My next step is to acquire production and population data for sub-Saharan Africa and
assign each of the 230 markets a monthly production and population to match its monthly
prices. I start by obtaining annual national totals for production of all cereal grains from FAO
and annual national totals for population from the UN Population Division. To allocate the
production data by month, I use agricultural calendar data from FAO to divide the continent
into three zones: a Northern Hemisphere zone with a single annual grain harvest in October
(112 markets), an Equatorial zone with a larger grain harvest (two-thirds of the annual total)
in July and a smaller grain harvest (one-third of the annual total) in December (70 markets),
and a Southern Hemisphere zone with a single annual grain harvest in May (48 markets)5.

Allocating the national-level data by market is more challenging. I first obtain GIS grid
cell level data for population and production of each crop for the year 2000 at the 5 arc-minute
(10 km by 10 km) level from the GAEZ project of FAO and IIASA and the HarvestChoice
project of IFPRI and the University of Minnesota6 and use it to derive the percentage of

5These divisions involve some simplification (e.g. some specific areas may have harvests a month earlier
or later or not exactly a two-thirds / one-third breakdown), but for the purposes of my model they are
enough to capture the seasonal variation at the continent level.

6You, L., S. Crespo, Z. Guo, J. Koo, K. Sebastian, M.T. Tenorio, S. Wood, U. Wood-Sichra. Spatial
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national population and production of each crop belonging to each grid cell. Under the
assumption that these percentages stay constant during my study period, I combine them
with my monthly national production and population data to get monthly production and
population series at the grid cell level.

The final step is to assign grid cells to particular markets. I do this by constructing market
catchment areas following the methodology of Pozzi and Robinson 2008. The underlying
assumption of this methodology is that if producers and consumers in a given grid cell have to
choose one of the markets in the network at which to sell and buy their grain they will choose
the market to which they can travel in the least time. To identify which of the 230 markets
is the closest in terms of travel time for each of the 292,000 grid cells, I combine information
from the following GIS datasets: the roads layer from the World Food Programme’s SDI-T
database7, the FAO Land and Water Division’s Rivers of Africa and Inland Water Bodies
in Africa datasets, the USGS-EROS Global 30-Arc Second Elevation (GTOPO30) dataset,
the European Commission Joint Research Centre’s Global Land Cover 2000 dataset, and
the US Department of State’s Large Scale International Boundaries and Simplified Shoreline
datasets. Following Pozzi and Robinson 2008, I assign different average travel speeds to
different categories of road and different average walking speeds to different land cover classes,
and I then adjust these speeds based on the degree of slope of the terrain. I assign inland
water bodies and rivers with Strahler number of at least 4 a travel speed of zero (except
when crossed by a bridge)8. I also assign a travel speed of zero to international borders
so as to keep market catchment areas within countries to match my national production
and population data. Combining all of this information, I assign each pixel a travel cost
in minutes and then use a least-cost path algorithm to identify the minimum travel time
from each grid cell to any market in the network. I then assign each grid cell to the market
catchment area of its nearest market in terms of travel time. Figure 1.4 shows maps of
estimated grid-cell level travel time to the nearest market in the network and the resulting
market catchment areas.

Once each grid cell has been assigned to a market catchment area, it is straight-forward
to add up the production and population data for all of the grid cells in a given market
catchment area and assign the total production and population to that market and its price
series. Although my 512 price series do not include a price for every grain in every market,
86.3% of total cereal grain production in my countries of interest is covered by a price series
in its associated market.

To obtain an initial sense of the dispersion of agricultural production across market catch-
ment areas, I use a comprehensive database of the caloric value of food crops in Africa (Leung
1968) to assign an approximate caloric level per unit weight to all staple carbohydrates (ce-
real grains as well as tubers and plantains) and convert production data into calories9. The

Production Allocation Model (SPAM) 2000 Version 3 Release 6.
7Kindly provided by the UN World Food Programme Emergency Preparedness and Response Branch.
8Strahler numbers are measures of branching complexity that are used to classify rivers by size based on

their tributaries. Rivers with Strahler number 1–3 are headwater streams that are unlikely to impede travel.
9I assign a value of 350 kcal/100 grams to all cereal grains. I assign the following values to non-grain
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Figure 1.4: Estimated Travel Time from Grid Cells to Nearest Network Market (top, grid
cells in lighter colors have smaller travel time) and 230 Market Catchment Areas (bottom)
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median market catchment area had a 2010 population of 2.37 million and has an average
production per capita of 1,863 kcal per day of staple carbohydrates during my study period.
Average production ranges from 0 to 10,347 kcal per person per day with 63 markets (27.4%)
producing less than 1,000 kcal per person per day and 54 markets (23.5%) producing more
than 3,000 kcal per person per day, suggesting significant opportunities for net trade between
markets.

Table 1.2: Regression of Price Levels on Market Characteristics

(1)

Capital City 0.0248
(0.0435)

Port 0.1110*
(0.0618)

Town Population (thousands) –0.000223
0.0125

Per Capita Prod’n (thousand kcal) –0.0184***
(0.00588)

Constant 0.4331***
(0.0268)

Fixed Effects Crop
Observations 512
Clusters 230

Note: Robust standard errors in () clustered
by market; *significant at 10%, ** at 5%,
*** at 1%. Maize is the omitted crop.

Table 1.2 shows results from regressing the average price level for each of the 512 price
series on market characteristics and crop fixed effects to reveal some basic correlations. Town
population and whether or not the town is a capital city are not significantly correlated with
higher or lower price levels. Ports appear to be weakly correlated with higher price levels,
which is likely due to the geography of much of sub-Saharan Africa in which grain production
is concentrated in inland non-port regions and port cities must import grains from either the
inland regions or the world market. In contrast, per capita production (kcal/person/day)
is significantly negatively correlated with price levels. The point estimates imply that price
levels are on average 2 cents (5%) lower for each additional 1,000 kcal/person/day production
of staple carbohydrates.

Having assembled a dataset of monthly prices, production, and population for a network
of 230 market catchment areas covering all 42 countries of continental sub-Saharan Africa,
I proceed in the next section to build a dynamic model of grain consumption, storage, and
trade.

staples: cassava 150 kcal/100 grams, plantains 135 kcal/100 grams, sweet potatoes and yams 120 kcal/100
grams, and potatoes 80 kcal/100 grams.
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1.3 Model

My model uses the notation and basic framework of the one-commodity, two-market rational
expectations storage and trade model of Williams and Wright 1991, chapter 9, which I extend
to include the storage and trade of 6 grains across the network of 230 African markets and
the world market built in the previous section. I embed this storage and trade model within
a simple general equilibrium setting by including a composite outside good. While the six
grains are subject to trade costs between locations (which I estimate), the outside good has no
trade costs so that its price is the same in all locations, and I choose units so as to normalize
its price to 110. Production of the outside good is used either for final consumption or for
trade and storage services in the agricultural sector. In my simplest baseline case reflective
of the short-term, I abstract away from production decisions by letting production of both
the 6 grains and the outside good be an exogenous endowment that is unaffected by price
changes. In an extension presented at the end of this section, I explicitly model production
in each sector and allow for reallocation of factors of production between sectors in response
to price changes.

In each location, a representative consumer chooses monthly consumption of each grain
and the outside good to maximize utility and a representative competitive grain trader
with rational expectations chooses monthly storage, trade, and local sales of each grain to
maximize profits. I proceed by considering each of these agents in turn.

1.3.1 A Model of Consumer Demand and Welfare

Let m index the markets in the network, t the time periods in months, and i the six grains in
my dataset, with Im the set of grains sold in a particular market m. Let the representative
consumer in market m have utility quasilinear in a grain composite Qmt and the outside
good Xmt:

Umt = θmt
Q

1+ 1
ε

mt

1 + 1
ε

+Xmt (1.1)

where θmt is a parameter and ε < 0. Let preferences for individual grains be CES with
elasticity of substitution σ and share parameters αim (normalized such that

∑
i∈Im αim = 1):

Qmt =

[∑
i∈Im

α
1/σ
im Q

(σ−1)/σ
imt

]σ/(σ−1)
(1.2)

Let Ymt represent total income, which is endogenous to the model but which the consumer
takes as given. The consumer chooses consumption to maximize utility subject to a budget
constraint:

10The use of an outside numeraire good with no trade costs has been a common device in the trade
literature since Krugman 1980. Recent examples include Costinot et al 2014 and Sotelo 2015.

12



max
{Qimt}i∈Im ,Xmt

θmt

(∏
i∈Im

[∑
i∈Im α

1/σ
im Q

(σ−1)/σ
imt

]σ/(σ−1))1+ 1
ε

1 + 1
ε

+Xmt such that
∑
i∈Im

PimtQimt+Xmt ≤ Ymt

(1.3)

Let θ−εmt = AmNmt where Am is a parameter and Nmt is the population of market catchment
m in time t11. Taking first order conditions and solving for demand12 gives:

Qmt = AmNmtP
ε
mt (1.4)

where Pmt is the CES grain price index (Pmt =
[∑

i∈Im αimP
1−σ
imt

]1/(1−σ)
). This demand

structure has three important and desirable features:
(1) Demand is non-homothetic. Demand for staple grains is independent of income and
depends only on price. Demand for the composite numeraire good is the residual Xmt =
Ymt − PimtQimt. In other words, consumers decide first how much grain to buy (based on
grain prices) and then use all remaining income to buy the composite numeraire good13.
(2) Demand for staple grains has constant price elasticity ε. This demand elasticity has been
precisely estimated in the literature (Roberts and Schlenker 2013), an estimate which I will
use in my baseline specification.
(3) Demand for staple grains has constant population elasticity 1. A doubling in population
size will lead to a doubling in quantity demanded for staple grains at a given price.

For integration with the representative trader’s side of the model I will use the inverse
demand function for a particular grain i:

Pimt =
α
1/σ
im

Q
1/σ
imt

∗ Q
1/σ+1/ε
mt

(AmNmt)1/ε
(1.5)

Equation 1.4 can be used to derive an expression for indirect utility Vmt:

Vmt = Ymt −
1

ε+ 1
AmNmtP

ε+1
mt (1.6)

The main counterfactual scenario in this chapter — lowering trade costs — acts through

11For notational simplicity, the representative consumer in each market is treated as a single aggregate
consumer. The derived expressions for demand and welfare are equivalent to those for a population of Nmt
individual consumers each with θ−εmt = Am whose incomes sum to Ymt.

12The full derivation for the demand and welfare expressions in this section is provided in the appendix.
13Related papers with demand functions for agricultural products and an outside good typically use either

homothetic Cobb-Douglas preferences with income elasticity 1 (e.g. Sotelo 2015) or quasilinear preferences
with income elasticity 0 as I have here (e.g. Costinot et al 2014). The quasilinear structure is helpful for
model tractability and more realistic in my view than homothetic demand. Engel’s law suggests an income
elasticity between 0 and 1. Empirical estimates for the income elasticity of expenditure on the category
“cereals” are available for 39 of the countries in my dataset and range from 0.363 to 0.685 (Muhammad et al
2011), but this includes expenditure on processed cereals (e.g. flour and bread). Income elasticity estimates
for staple grains themselves in Africa are as low as 0.030 (maize, Nairobi, Gsaenger and Schmidt 1977). In
my main counterfactual, 81% of markets experience an income change less than 5% and 96% less than 10%,
so a positive income elasticity would not change my results substantially.
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changes in grain prices, which affect both terms in this expression. A price increase, for
instance, has a positive effect on welfare by increasing revenue from grain sales (which is
part of income Ymt) but has a negative effect on welfare by raising consumer prices (the
second term).

For any counterfactual, the associated welfare change for market m for the entire period
of interest expressed as a percentage of baseline GDP is given by:∑T

t=1 ∆Vmt∑T
t=1 Ymt

=

∑T
t=1(Ymt − 1

ε+1AmNmtP
ε+1
mt )′ − (Ymt − 1

ε+1AmNmtP
ε+1
mt )∑T

t=1 Ymt
(1.7)

where the prime symbol denotes counterfactual values. Given quasilinear preferences, the
numerator of equation 1.7 is the equivalent variation of the counterfactual, since additional
income is spent exclusively on the outside good, for which price and marginal utility are
both equal to 1.

1.3.2 A Model of Grain Storage and Trade

Consider the problem of a representative competitive trader in market m in month t who
takes prices as given. Without loss of generality, consider the trader’s problem for a particular
crop i. The trader enters the period with non-negative stocks of crop i from the previous
period (Sim,t−1 ≥ 0). In addition, the trader buys up all local production of crop i (Himt,
with Himt = 0 in all months except for market m’s harvest months). The trader then must
decide how much of this total available supply (Sim,t−1 +Himt) to sell for local consumption
(Qimt), how much to put into storage for the next period (Simt ≥ 0), and how much to
trade with other markets indexed n (Timnt, where Timnt > 0 indicates exports from m to n,
Timnt < 0 indicates imports from n to m). The choice of any two of these three variables
determines the value of the other: I focus on the choice of Simt and Timnt and solve for
consumption in a later step using the market clearing condition:

Qimt = Sim,t−1 +Himt − Simt −
∑
n 6=m

Timnt (1.8)

There are obviously many factors that our representative trader must take into account
when making her decision. Storage and trade both entail some costs. I make the standard
assumption that there are no costs to move grain into and out of storage, but that there is
a per-unit monthly storage cost km and a monthly interest rate rm in market m. Let τmn
represent per-unit trade costs from market m to market n. I assume that trade costs are
additive, symmetric (τmn = τnm), and cumulative (τmo = τmn+ τno if trade from m to o must
travel via n). Despite being unusual in the recent trade literature, additive trade costs are
standard in models of agricultural storage and trade where additive freight rates tend to be
much larger empirically than ad valorem costs like tariffs due to low value-to-weight ratios
(see for instance Steinwender 2015). Letting trade costs be cumulative allows me to focus
exclusively on the 413 direct links shown in figure 1.3 (plus 49 direct links with the world
market) rather than the 26,335 possible combinations of 230 markets, since I can capture
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100 units traded from m to o as 100 units traded from m to n and 100 units traded from n
to o if trade from m to o must travel via n. Let Nm ∈ M represent the subset of markets
with which market m trades directly (excluding itself).

Our representative trader must also take prices into account, both in her own market
and in the Nm markets with which she directly trades. Moreover, the possibility of storage
means that expected future prices must also be considered. With this in mind, I write the
trader’s profit maximization problem in period t as:

max
Sims,Timns

Et

[ ∞∑
s=t

−PimsHims + PimsQims − kmSims +
∑
n(PinsTimns − τmn|Timns|)

(1 + rm)s−t

]
(1.9)

where Sims ≥ 0 and there is one Timns for every n in Nm. Combining this with the market
clearing condition (equation 1.8) I get:

max
Sims,Timns

Et

[ ∞∑
s=t

Pims(Sim,s−1 − Sims −
∑
n Timns)− kmSims +

∑
n(PinsTimns − τmn|Timns|)

(1 + rm)s−t

]
(1.10)

Taking the first-order condition with respect to Simt gives the temporal arbitrage condition:

Pimt + km −
Et[Pim,t+1]

1 + rm
≥ 0, = 0 if Simt > 0 (1.11)

Taking the first-order condition with respect to Timnt gives the spatial arbitrage conditions:

Pimt + τmn − Pint ≥ 0, = 0 if Timnt > 0 and Pint + τmn − Pimt ≥ 0, = 0 if Timnt < 0 (1.12)

The world market enters the model through 49 direct links subject to the spatial arbitrage
conditions in equation 1.12. As sub-Saharan Africa’s cereal grain production makes up only
5% of world production, I assume that traders take the world market prices as given and
can import or export unlimited quantities from the world market at these prices (plus trade
costs), so I do not include storage, trade, and consumption outside of Africa in my model14.
The model thus combines elements of a small open economy taking world prices as given
and a closed economy with local prices determined endogenously, as in Sotelo 2015.

1.3.3 Competitive Equilibrium

In a competitive equilibrium, the representative consumer in each location maximizes util-
ity, the representative trader in each location maximizes profits, and markets clear. Since
grain demand is independent of income, the equilibrium in the grain market can be fully
characterized before considering the numeraire good:

14I treat Johannesburg, South Africa in the same way as the world market for the reasons described
previously, i.e. Johannesburg is treated as exogenous to the model with traders in connected markets in
neighboring countries able to import or export unlimited quantities at the Johannesburg price (plus trade
costs).
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Definition 1. A grain market equilibrium is a set of prices Pimt, consumption Qimt, storage
Simt, and trade Timnt such that the inverse consumption demand function (equation 1.5),
temporal and spatial arbitrage conditions (equations 1.11 and 1.12), and market clearing
condition (equation 1.8) hold for every grain i, market m, market pair mn, and time period
t.

The numeraire good can be traded but not stored and can be used either for final con-
sumption or for trade and storage services in the agricultural sector. Therefore, local pro-
duction of the numeraire good (Πmt) must equal the sum of local final consumption (Xmt),
net exports of the numeraire good

∑
n∈Nm

TXmnt, and expenditure on local storage services
and local trade services (half of trade costs for a market pair are allocated to each market),
as summarized in the following accounting identity:

Πmt = Xmt +
∑
n∈Nm

TXmnt +
∑
n∈Nm

∑
i∈Im

0.5τmn|Timnt|+
∑
i∈Im

rmSim,t−1(Pim,t−1 + km) +
∑
i∈Im

kmSimt (1.13)

Total income for a given market m and period t is the sum of revenue from selling the
production of the numeraire good (Πmt) at price 1 and from sales of grains net of storage
and trade costs15:

Ymt = Πmt +
∑
i∈Im

Pimt(Sim,t−1 +Himt − Simt)−
∑
i∈Im

rmSim,t−1(Pim,t−1 + km)−
∑
i∈Im

kmSimt (1.14)

Once the model has been solved for a grain market equilibrium, equation 1.14 and data
on income Ymt can be used to solve for Πmt

16. In my counterfactual scenarios, the endoge-
nous variables change, meaning that overall income Ymt changes according to equation 1.14.
Income and prices under both baseline and counterfactual can then be plugged into equa-
tion 1.7 to obtain the change in welfare.

I define a full competitive equilibrium as follows:

Definition 2. A competitive equilibrium consists of a grain market equilibrium together with
consumption Xmt of the numeraire good such that equation 1.13 holds for every market m
and time period t and trade for every market m is balanced in every period t:∑

n∈Nm

TXmnt = −
∑
n∈Nm

∑
i∈Im

PimtTimnt −
∑
n∈Nm

∑
i∈Im

0.5τmn|Timnt| (1.15)

A competitive equilibrium can clearly be found directly from a grain market equilib-
rium using equations 1.13 and 1.15. I therefore spend the rest of this section exploring the
properties of a grain market equilibrium.

15Note that trade costs τmn do not appear explicitly here as they are accounted for by the use of the local
price.

16Practically speaking, I multiply Nmt by national per capita GDP for the relevant year and country and
divide by 12 to obtain Ymt for each market m and month t. This implicitly assumes that GDP per capita is
the same across regions of a country, a necessary assumption to obtain estimates of market-level income.
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The model makes strong predictions about when and where grain storage and trade occur
in equilibrium. Under identical or similar storage costs, traders will “store first and trade
later” in equilibrium, with storage and imports never occurring simultaneously. This is a
general result for this class of commodity storage and trade models first noted by Williams
and Wright 1991, chapter 9. The intuition is that it is cheaper for storage to occur in the
exporting market so as not to incur interest on the trade costs in the importing market. The
following proposition and its corollaries summarize the relevant results:

Proposition 1. Consider any two markets m and n. If m and n have identical storage costs
then neither market stores and imports from the other simultaneously in equilibrium, i.e. for
any month t and grain i:

Sint > 0⇒ Timnt ≤ 0 and Timnt > 0⇒ Sint = 0 (1.16)

with a symmetric condition holding for Simt and trade from n to m.

Corollary 1. Consider a particular harvest year for two markets m and n with net trade of
grain i from m to n in equilibrium. Let the harvest year months be indexed s with the last
month before the next harvest s̄. Let the first month with trade from m to n be designated
s∗. Then the following must be true for any grain i:
(i) If rm ≤ rn and km − kn < rmτmn

1+rm
, then Sins > 0 for s < s∗ − 1, Sins ≥ 0 for s = s∗ − 1,

Sins = 0 for s ≥ s∗, Timns ≤ 0 for s < s∗, and Timns > 0 for s ≥ s∗. Traders store first and
trade later.
(ii) If rm ≥ rn and km − kn > rmτmn

1+rm
, then Sins > 0 for s < s∗ − 1, Sins ≥ 0 for s = s∗ − 1,

Sins > 0 for s∗ ≤ s < s̄, Timns∗ > 0, and Timns ≤ 0 for all s 6= s∗. Trade from m to n only
occurs in s∗.
(iii) For any values of rm, rn, km, and kn, the pattern of storage and trade will be the same
as (i) if the following expression is negative and the same as (ii) if the following expression
is positive:

(1 + rm)km − (1 + rn)kn + (rm − rn)Pims∗ − rnτmn (1.17)

Corollary 2. Given a set of demand and cost parameters, there is a unique grain market
equilibrium (competitive equilibrium).

Proof. See appendix.

Importantly, these results establish that storage and trade flows (not just prices and con-
sumption) are unique, which means that the set of periods in which the spatial and temporal
arbitrage conditions (equations 1.11 and 1.12) hold with equality is unique. Intuitively, equa-
tion 1.17 encapsulates the trade-off between storing in the exporting market (m) and storing
in the importing market (n). Practically speaking, there is little reason why k and r would
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be significantly different between a particular market and its direct trading partners (par-
ticularly when they are within the same country), so equation 1.17 is likely to be negative
(especially with high trade costs), implying that case (i) holds in most cases. This means
that trade will generally only occur (and the spatial arbitrage conditions will generally only
hold with equality) during the later months of the harvest year.

1.3.4 Extension: A Model of Production

In the baseline case, I assume for tractability and transparency that production of both grains
and the outside good are exogenous endowments that do not change in my counterfactuals.
This assumption is realistic in the short term when factors of production are immobile. In
the longer term, factors of production would likely reallocate as a result of the relative price
changes in my counterfactuals. Incorporating a supply response into a rational expectations
model of commodity storage and trade and estimating supply parameters is a non-trivial
task that is beyond the scope of this chapter, particularly given the fact that agricultural
producers typically make planting decisions ahead of time based on expected future prices
with supply realizations affected by subsequent stochastic shocks. In this section, I outline
a simplified approach under the assumptions that the price elasticity of supply is a known
constant, that supply decisions are made in the harvest month, and that these decisions do
not affect expected future harvests, which are still exogenous. Importantly, while allowing
for a supply response changes my counterfactual equilibria, it has no effect on my estimation
of the demand and cost parameters and the baseline equilibrium, as these rely on actual
production data.

For simplicity, assume that there is a single composite factor of production called labor
(L). In each time period, the labor endowment in each market (L̄mt) is allocated between
production of the numeraire good and each grain i:

LXmt +
∑
i

Limt = L̄mt (1.18)

Let production of the numeraire good be linear in labor (Πmt = BXLXmt) and production
of each grain be concave in labor17:

Himt = BimtL
β
imt (1.19)

where Bimt is a crop-market-time specific productivity shock and 0 < β < 1. Labor is
perfectly mobile between sectors, and workers are paid a wage W equal to the value of their
marginal product. Given that the freely-traded numeraire good is produced everywhere with
the same technology, the wage W is equal across locations. Choose units of labor such that
W = 1. Then for any grain i:

W = 1 = βBimtL
β−1
imt Pimt (1.20)

Combining equations 1.19 and 1.20 leads to the following supply function:

17This reflects the diminishing returns to labor for agricultural production on a fixed amount of land.
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Himt = β
β

1−βB
1

1−β
imt P

β
1−β
imt (1.21)

The supply function in equation 1.21 has a constant price elasticity of supply η = β
1−β .

For a given value of η, equation 1.21 can be used with data on Himt and baseline equilibrium
prices Pimt to back out the implied productivity shocks Bimt. These can then be used
with equation 1.19 to obtain implied Limt, which can then be used with equation 1.18 and
equilibrium Πmt (solved for in the previous section) to solve for labor endowments L̄mt given
that LXmt = Πmt

BX
= Πmt

W
= Πmt. In my counterfactual scenarios, I can then endogenize

the harvests Himt by incorporating equation 1.21 into the model and back out the new
production of the numeraire good by subtracting the implied Limt for the new harvests Himt

from the fixed labor endowments L̄mt. Proposition 1 and its corollaries are unaffected by the
addition of a supply response, so the grain market equilibrium (competitive equilibrium) is
still unique.

1.4 Estimation

In this section, I first outline how I solve the model from the previous section given a set
of parameters. I then describe how I estimate both the demand parameters and the cost
parameters using my price data and present the results from these estimates. Finally, I
explore the goodness of fit of my estimated model.

1.4.1 Solution Algorithm for Given Parameters

Table 1.3 summarizes the parameters and variables in the core grain market model summa-
rized by equations 1.5, 1.8, 1.11, and 1.12. My estimation of the demand parameters and
cost parameters using price data is detailed in subsequent sections. In this section, I describe
how I solve for the grain market equilibrium (endogenous Simt, Timt, Qimt, and Pimt) given
a set of demand and cost parameters and data on the exogenous variables (Nmt, Himt, and
world prices).

Table 1.3: Summary of Model Parameters and Variables

Demand Parameters ε, σ, Am, αim

Cost Parameters rm, km, τmn

Exogenous Variables Nmt, Himt, world prices

Endogenous Variables Simt, Timnt, Qimt, Pimt

When a representative trader in market m in time t decides how much of grain i to store,
trade, and sell locally, she must take into account both the current and expected future values
of the exogenous variables for her market and all others. The complexity of the resulting
problem has traditionally limited the application of rational expectations commodity storage
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and trade models to contexts involving two markets and a single commodity (e.g. Gouel and
Jean 2015, Steinwender 2015)18. I make the following assumption to be able to apply the
model to my network of 230 markets and 6 commodities:

Assumption. When making storage decisions, traders assume (i) that all future harvests
will equal a linear prediction of the subsequent harvest and (ii) that all future world prices
will equal the current world price.

This is a strong assumption that eliminates the effects of uncertainty on traders’ storage
decisions and could therefore lead to under-estimation of equilibrium storage19 (Williams
and Wright 1991, chapter 3). However, I show in later sections by estimating smaller scale
models with full rational expectations using my parameter estimates from Africa that it does
not significantly affect my results in this context, largely due to the high storage costs in
Africa and its position as a net grain importer, which limit inter-annual storage of grains
even under full rational expectations20.

Practically speaking, this assumption converts the intractable stochastic problem into
a series of tractable deterministic dynamic problems (one for each of the 120 months of
interest), which I solve consecutively using the PATH solver in GAMS. For a given month t,
traders are given: (1) initial stocks (Sim,t−1) from the previous month, (2) current harvests
(Himt), (3) expected harvests for the following year (calculated separately for each market
each year based on regression results from harvests over the previous 10 years with a time
trend), (4) current population and population for the following year (which I assume is
known with perfect foresight), and (5) identical current and expected future world prices.
For month t, I let traders plan for a sufficiently long time horizon (with repeated identical
expected harvest, population, and world prices) such that initial shocks are smoothed out
and storage decisions start repeating themselves with inter-annual storage falling to zero21. I
then solve for all trader decisions for this time horizon, record the endogenous variables only
for the first month (month t), and then move forward to the next month (t + 1), repeating
the same exercise with initial stocks Simt. To obtain initial stocks for the very first month
(May 2003), I start my month-by-month solution algorithm a full year earlier (May 2002)
and assume zero inter-annual stocks from 2001 to 2002, which allows traders to have some

18The challenge is not unique to commodity storage and trade models. Desmet and Rossi-Hansberg 2014
note that “the dimensionality of the problem... typically make(s) spatial dynamic models intractable, both
analytically and numerically. Thus, the only way forward is to simplify the problem.” The potential solutions
they describe limit either the spatial or the temporal effects on the current equilibrium. My approach (like
theirs) falls in the latter category.

19Intra-annual storage to cover the periods between harvests and some inter-annual storage to smooth out
positive harvest shocks still occur. The assumption removes the motive to store for low harvest or high world
price events.

20Brennan et al 1997 use context specificities in a similar way to apply a rational expectations model of
commodity storage and trade to 104 locations in the Western Australia wheat market, where inter-annual
storage is insignificant.

21Given the range of storage costs in this context, this convergence occurs within 36 months of repeated
identical expectations as described.
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inter-annual stocks by the time they get to May 2003. Solving the model month by month
for the 132 months from May 2002 to April 2003 takes several days of computer run-time.

1.4.2 Estimation of Demand Parameters

Given the solution algorithm for a given set of parameters, the only remaining task to be
able to solve the model is to actually estimate the parameters. To estimate the demand
parameters, the price data that I have must be combined with data on consumption. Un-
fortunately, analogous intra-national monthly consumption data for grains does not exist
for Africa. Instead, I combine my production data with national annual data on imports
and exports of each grain obtained from CEPII’s BACI project (Gaulier and Zignago 2010)
to back out national annual consumption of each grain as the sum of production and net
imports22. I then proceed to estimate my demand parameters using these national annual
data and average national annual prices for each grain across markets and months. I use
these national parameters for all markets within a country under the assumption that the
per capita grain demand function is identical in different markets within a single country23.

The degree of averaging and aggregation necessary for this exercise makes the estimation
of precise elasticities of substitution (σ) and demand (ε) difficult. Consequently, rather than
using estimated elasticities, for my baseline case I let preferences among grains be Cobb-
Douglas (σ = 1) and use a precise and well-identified estimate of the elasticity of demand for
staple grains from Roberts and Schlenker 2013 (ε = −0.066). To confirm that these values
are realistic, I estimate the elasticities by running instrumental variables regressions on my
annual national consumption and price data. As an instrument, I use the landed world
price (the world price plus the average price difference between the world market and the
country’s largest city, which is a lower bound on trade costs). The identifying assumption
is that the landed world price only affects the quantity consumed through its effect on the
local price. The details of these regressions as well as their OLS equivalents are reported
in the appendix and the results summarized in table 1.4. As expected, these estimates are
imprecise, but it is reassuring to note that σ = 1 and ε = −0.066 are both within the 95%
confidence intervals of my instrumental variables estimates. Since the elasticities I use are
on the low end of elasticity estimates in the literature (particularly for σ), I later report the
results of robustness checks using higher elasticity values24.

For a given σ and ε, it is straight-forward to estimate αim and Am for each country.
In the Cobb-Douglas case (σ = 1), αim is the expenditure share on grain i. Quantity and
price indices can then be computed using σ and αim, and Am can then be solved for using

22This could be slightly different than actual consumption due to the possibility of inter-annual storage,
but this is not a major concern given that I find extremely low inter-annual storage in equilibrium.

23Atkin 2013 uses evidence from India to show how this type of assumption could lead to over-estimation of
gains from trade cost reduction if tastes for food are skewed towards crops well-suited to local agro-climatic
conditions. This is less of a concern for most African countries, which are typically much smaller with
relatively homogeneous agro-climatic conditions.

24Sotelo 2015, for instance, estimates σ = 2.6 for the primary 20 crops in Peru, which he describes as
being “on the higher end of plausible values.” I use a value of σ = 3 in my robustness checks.
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Table 1.4: Elasticity Estimates

OLS: σ OLS: ε IV: σ IV: ε

Estimate 0.51** –0.256*** 0.90*** –0.136
(0.21) (0.071) (0.18) (0.116)

1st Stage F Stat 6.0 70.3
Observations 463 289 387b 289
Clustered Errors country-crop country country-crop country
Clusters 67 28 56 28

Note: Robust standard errors in () and F statistic clustered
as indicated; * significant at 10%, ** at 5%, *** at 1%.
bCrops with no world price (millet, teff) excluded.

equation 1.4. Due to the small number of annual observations, I combine several neighboring
countries with similar per capita grain consumption and estimate αim and Am for 28 countries
or groups of countries25. Table 1.5 shows results for the demand parameters for the 6 most
populous countries in my dataset (excluding South Africa) with full results presented in
the appendix. Parameter estimates are obtained by averaging across years with standard
errors calculated by bootstrapping (10,000 iterations). Different values of Am (a per-capita
variable) may reflect several factors including the relative importance of cereal grains in local
diets vis-à-vis other foods like tubers.

1.4.3 Estimation of Cost Parameters

The storage cost parameters (rm and km) and trade cost parameters (τmn) are more difficult
to estimate, and my estimation strategy is more innovative. Let C be the set of unknown cost
parameters to be estimated and P be the set of price data. The key challenge is to identify
the sets of crop-market (pair)-months in which storage and trade occur in equilibrium (S
and T). Since the arbitrage conditions in equations 1.11 and 1.12 hold with equality in these
periods, the price data in these periods can be used to estimate C. However, S and T are
not observed and in equilibrium are clearly a function of the set of cost parameters C itself.

My approach is to search for an internally consistent fixed point in which my cost param-
eters C exactly match the estimates I obtain from solving for equilibrium S and T with those
cost parameters and re-estimating C with the price data only in crop-market (pair)-months
S(C) and T(C). Mathematically, I find C such that:

C(P,S(C),T(C)) = C (1.22)

Based on the spatial arbitrage conditions (equation 1.12), my estimation rules C(P, S,T)

25Even with this aggregation, the number of annual observations per unit remains low as seen in Table 1.5.
However, using multiple observations per country is an improvement over using a single year as in other recent
papers in the trade literature (e.g. Costinot et al. 2014) and allows me to quantify the variation among
observations.
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Table 1.5: Demand Parameter Estimates for 6 Most Populous Countries

Nigeria Ethiopia D.R. Congo Tanzania Kenya Sudan

A 166.9*** 143.0*** 32.1*** 98.1*** 79.1*** 212.7***
(7.4) (5.2) (2.1) (5.7) (2.9) (10.1)

αmaize 0.218*** 0.210*** 0.712*** 0.561*** 1*** 0.018***
(0.011) (0.006) (0.018) (0.025) (0) (0.005)

αmillet 0.257*** 0.089***
(0.009) (0.008)

αrice 0.223*** 0.288*** 0.439***
(0.013) (0.018) (0.025)

αsorghum 0.302*** 0.176*** 0.465***
(0.015) (0.010) (0.026)

αteff 0.308***
(0.015)

αwheat 0.306*** 0.428***
(0.011) (0.033)

Observations 7 7 14c 7 9 5

Note: Standard errors in () are bootstrapped (10,000 iterations);
* significant at 10%, ** at 5%, *** at 1%.
cJoint estimation with Central African Republic.

identify trade costs (τmn) using price differences between markets during periods with trade.
Letting Tmn denote the set of crop-months in which trade occurs between market pair mn
in equilibrium and Tmn denote the total number of crop-month pairs in Tmn, my estimation
rule for each trade cost parameter τmn is:

τmn =
1

Tmn

∑
it∈Tmn

|Pimt − Pint| (1.23)

Based on the temporal arbitrage conditions (equation 1.11), my estimation rules C(P, S,T)
identify storage costs (rm and km) using the rise in price in market m from the harvest month
to the month following the final month with storage within each harvest year y. Let Dimy

be the number of consecutive periods in harvest year y starting with the harvest month for
which there is storage of grain i in market m in equilibrium. Let Pmin

imy and Pmax
imy be the

minimum and maximum prices during these periods and the month immediately following.
Rather than estimating storage costs at the individual market level, I estimate storage costs
in 5 broad regions with similar institutions and climates (Southern Africa, East Africa in-
cluding the Horn of Africa, Central Africa, the West Coast of Africa, and the Sahel). For
each region, I run a non-linear regression to estimate rm and km such that the following
equation holds26:

Pmaximy = (1 + rm)(Pminimy + km) iterated Dimy times (1.24)

26Note that Dimy is the number of times by which Pminimy is increased by rm and km in the regression

expression, e.g. Dimy = 2 would mean a regression expression of Pmaximy = (1+rm)((1+rm)(Pminimy +km)+km).
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To find an internally consistent fixed point, I start with an initial guess for the cost
parameters (C0), solve for equilibrium using the procedure from section 4.1 so as to find
S(C0) and T(C0), and then combine these with the price data and my estimation rules
(equations 1.23 and 1.24) to re-estimate C1(P, S(C0),T(C0)). I repeat this procedure until I
converge to a fixed point for which Cx+1(P, S(Cx),T(Cx)) = Cx.

Since the arbitrage conditions never bind if costs are prohibitively high, it is important to
start the estimation procedure with a set of cost parameters (C0) that is a lower bound of the
true parameters. A logical candidate is the set of cost parameters obtained by estimating
equations 1.23 and 1.24 under the assumption that trade and storage occur always and
everywhere (i.e. T and S include all crop-market (pair)-months, so Tmn = 120 for all mn
and Dimy = 11 for all imy)27. Starting at this C0, it takes 11 iterations to converge to a
fixed point.

Table 1.6 reports results of monthly interest rates rm and additive storage costs km by
region. The magnitudes of both parameters are high but on par with anecdotal evidence
from Africa28. The relative size of km across regions matches exactly their ordering in terms
of relative humidity (a major determinant of the cost of grain storage), from humid Central
Africa and the West Coast through the arid Sahel. The relative size of rm across regions is
similar to their ordering in the World Bank’s Doing Business indicators, in which countries
in Central Africa consistently score the lowest and the West Coast receives relatively high
scores in the Getting Credit component.

Table 1.6: Monthly Storage Cost Estimates by Region

Southern East/Horn Central West Coast Sahel

rm 0.0269*** 0.0281*** 0.0404*** 0.0174*** 0.0259***
(0.0082) (0.0034) (0.0150) (0.0029) (0.0068)

km 0.0069*** 0.0061*** 0.0218** 0.0122*** 0.0050**
(0.0020) (0.0011) (0.0099) (0.0013) (0.0023)

Observations 240 506 156 604 506
Clusters 34 47 27 48 39

Note: Standard errors in () are block bootstrapped (10,000 iterations) at
the cluster (market) level; * significant at 10%, ** at 5%, *** at 1%.

Trade cost estimates with standard errors for each of the 413 overland links in figure 1.3
are presented in the appendix. In order to compare trade cost estimates to one another,
it is useful to convert them to cost per tonne-kilometer29. Among the 271 domestic links,
the median estimated trade cost is $0.287/t-km. The lowest estimated trade cost is along

27The fact that C0 is a lower bound also enables me to avoid the possibility of infinite loops (e.g. due to
measurement error) by only updating τmn if τx+1

mn > τxmn. This ensures monotonicity and hence convergence
since costs are bounded above.

28For example, interviews I conducted with private traders in Tanzania and Malawi suggest that they face
annual interest rates of 25–40%, while the World Food Programme’s full cost of no-loss private storage in
Zambia is approximately 0.010 USD/kg.

29Tonne (abbreviated t) refers to the metric ton (1000 kg).
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the heavily-used paved road between Mombasa and Nairobi, Kenya ($0.049/t-km) while
the highest trade costs include the virtually-impassable dirt track between Kananga and
Tshikapa, D.R. Congo ($3.34/t-km) and the dirt road between Rumbek and Wau, South
Sudan ($3.57/t-km), along which trade was often slowed or blocked due to flooding and
land mines during the study period. Table 1.7 compares my trade cost estimates to esti-
mates of freight rates from trucking surveys along 4 major African corridors reported in
Taravaninthorn and Raballand 2009.

Table 1.7: Comparison of Trade Cost Estimates with Trucking Surveys

TR 2009 My Estimate

Johannesburg-Lusaka $0.077/t-km $0.108/t-km
Mombasa-Kampala $0.074/t-km $0.189/t-km
Douala-N’Djamena $0.106/t-km $0.197/t-km
Accra-Bamako $0.131/t-km $0.269/t-km

The fact that my estimates are higher than baseline freight rates likely reflects the sig-
nificant additional components of trade costs (information costs, tariffs, risk of losses, etc.)
beyond transport costs in the African context30. The same study reports estimated freight
rates from elsewhere in the world: $0.02/t-km in Pakistan, $0.035 in Brazil, $0.04 in the US,
and $0.05 in China and the European Union. My median trade cost estimate from Africa is
thus over 5 times higher than transport costs elsewhere in the world. For my counterfactual
analysis, I will lower trade costs in Africa to $0.05/t-km, the highest of these reported freight
rates from elsewhere in the world. In advanced agricultural markets, trade costs are unlikely
to have significant components beyond baseline freight rates. In the appendix, I analyse
price differences for maize along 11 direct transportation links between 8 markets within the
US using analogous price data from the same period and find a median price difference of
$0.012/t-km with only 1.1% of observations higher than $0.05/t-km.

Atkin and Donaldson 2015 estimate the distance-dependent component of intra-national
trade costs in Ethiopia and Nigeria by observing how prices of specific manufactured goods
increase as they travel further from their entry port or production point and compare them
to analogous estimates for the US. They estimate that the effect of distance on trade costs
is 3.19 times higher in Ethiopia than in the US and 5.40 times higher in Nigeria than in
the US when using road distance as their distance metric. In comparison, I estimate an
average overall trade cost of $0.257/t-km for intra-national links in Ethiopia and $0.437/t-
km for intra-national links in Nigeria, 5.14 and 8.74 times higher than the benchmark freight
rate of $0.05/t-km from Taravaninthorn and Raballand 2009. The ratio of Nigerian to

30The recent trade literature has established that there are other significant components to overall trade
costs beyond transport costs (see for instance Anderson and Van Wincoop 2004). Allen 2014 finds that
information frictions account for roughly half of overall trade costs in agricultural markets in the Philippines.
Sotelo 2015 estimates overall trade costs 2.5 times higher than freight rates in the agricultural sector in Peru.
Aker et al 2014 find agricultural trade costs of at least 20% to cross the “border” between two ethnic groups
in Niger.
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Ethiopian intra-national trade costs that I find (1.70) is reassuringly close to that of Atkin
and Donaldson 2015 (1.69), while the apparently larger ratios of African trade costs to US
trade costs that I find are likely due to the significant non-distance-dependent components of
trade costs that Atkin and Donaldson 2015 do not explicitly measure. Table 1.8 groups the 33
African countries with at least one domestic link by level of average estimated intra-national
trade cost.

Table 1.8: Comparative Levels of Average Intra-National Estimated Trade Costs by Country

Level Trade Cost Range Countries (Alphabetical)

Low $0.10–0.20/t-km Burkina Faso, Chad, Malawi, Mali, Namibia, Niger, Zambia, Zimbabwe
Medium $0.20–0.30/t-km Cameroon, Congo, Ethiopia, Guinea, Liberia, Senegal, Sierra Leone,

Sudan, Tanzania
High $0.35–0.60/t-km Benin, Côte d’Ivoire, Ghana, Kenya, Mauritania, Mozambique, Nigeria,

Rwanda, Somalia, Uganda, Togo
Extreme >$0.75/t-km Burundi, Central African Republic, D.R. Congo, Eritrea, South Sudan

In table 1.9, I explore correlations between my overland trade cost estimates and link
characteristics through reduced-form regressions. Column (1) shows that crossing an inter-
national border is correlated with a $0.0681 increase in trade costs ($68/tonne) and that
longer distances are correlated with a $0.119/t-km increase in trade costs. In column (2)
I interact the distance variable with indicator variables for whether the link is fully paved
(52.5%), partially or fully unpaved (44.3%), or is a water-based route across a lake or along
a river (3.2%)31. Distance is not significantly correlated with trade costs for paved links but
is correlated with a $0.183/t-km increase in trade costs for partially or fully unpaved links
and a $0.314/t-km increase in trade costs for water-based links. In columns (3) and (4) I
repeat these regressions including an indicator variable for whether at least one of the towns
in a link has a population over 500,000 but find that this is not significantly correlated with
trade costs.

In table 1.10, I focus just on the 142 overland links that cross international borders
within Africa. Distance and a difference in colonial language are not significantly correlated
with higher trade costs for international links. The absence of a regional trade agreement
between the countries is correlated with significantly higher trade costs32. A higher score
on the Transparency International Corruption Perceptions Index is correlated with lower
trade costs as is a higher score on the border and customs clearance efficiency component of
the World Bank Logistics Performance Index33, although these correlations lose significance
when all variables are included in column (5).

31Data on paved roads is obtained from 2002 Michelin Maps, a widely-cited authority for accurate infor-
mation on road quality in Africa (see for instance Burgess et al 2015). Water-based routes include 10 riverine
links in the Congo River basin and 3 links crossing Lake Tanganyika.

32Regional trade agreements included in this analysis are SADC, EAC, CEMAC, and ECOWAS.
33CPI: 2013 rankings, score 0–100, higher score for less perception of corruption. LPI: 2014 rankings, score

1–5, higher score for better performance. For both indices, the scores of each country in a given link are
added together to obtain the regressor.
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Table 1.9: Correlation of Overland Trade Costs with Link Characteristics

(1) (2) (3) (4)

International 0.0681*** 0.0552*** 0.0679*** 0.0553***
(0.0169) (0.0163) (0.0169) (0.0163)

Distance (km) 1.19E-04*** 1.19E-04***
(3.95E-05) (3.96E-05)

Distance*paved –3.41E-05 –4.07E-05
(4.46E-05) (4.50E-05)

Distance*unpaved 1.83E-04*** 1.84E-04***
(4.09E-05) (4.09E-05)

Distance*water 3.14E-04*** 3.14E-04***
(8.64E-05) (8.64E-05)

Town pop’n > 500, 000 –0.00390 0.0159
0.0161 (0.0156)

Constant 0.102*** 0.120*** 0.104*** 0.113***
(0.0183) (0.0177) (0.0201) (0.0192)

Observations 413 413 413 413

Note: Standard errors in (); * significant at 10%, ** at 5%, *** at 1%.

Table 1.10: Correlation of Overland International Trade Costs with Link Characteristics

(1) (2) (3) (4) (5)

Distance (km) 1.04E-04 6.14E-05 7.68E-05 6.89E-05 5.39E-05
(1.16E-04) (9.78E-05) (1.05E-04) (1.03E-04) (9.92E-05)

Different language 0.0177 –0.0166
(0.0460) (0.0392)

No FTA 0.170*** 0.140**
(0.051) (0.0615)

CPI index (sum) –0.00435*** –8.57E-04
(0.00124) (0.00178)

LPI customs index (sum) –0.140*** –0.0346
(0.0368) (0.0547)

Constant 0.166*** 0.131*** 0.442*** 0.827*** 0.361*
(0.0521) (0.0387) (0.0830) (0.164) (0.187)

Observations 142 142 142 142 142
Clusters 75 75 75 75 75

Note: Robust standard errors in () clustered by country pair; * significant at 10%,
** at 5%, *** at 1%.
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My trade cost estimation also includes trade costs between 30 African ports and the
world market (Bangkok for rice and the US Gulf for other crops), which I estimate in the
same way as overland trade costs as part of the iterative process outlined above. The median
port-to-world-market trade cost I estimate is $0.275/kg or $275/tonne with over 70% of links
having costs between $100 and $500/tonne. This compares to an average monthly transport
cost of $50/tonne from the US Gulf to Durban, South Africa over the study period, as
reported by the International Grains Council. Durban is the largest port in sub-Saharan
Africa, handling four times more cargo than the largest of the 30 ports I consider with
one-quarter of the dwell time, and it is strategically located on major global shipping lanes
(African Development Bank 2010, Kgare et al 2011). The higher range of costs I estimate
for the ports I consider likely reflects lesser-used routes, increased port congestion with
longer wait times, higher tariffs and non-tariff barriers, etc. In the appendix, I show that
higher sea trade costs are correlated with smaller port populations, lower port volumes, lower
Corruption Perception Indices, and higher tariffs on grains, although none of the correlations
are statistically significant, which is likely due to the small sample size and the idiosyncratic
nature of port costs. For my main counterfactual, I lower sea trade costs to $50/tonne to
match the freight rate to Durban.

1.4.4 Goodness of Fit

Having estimated both the demand parameters and the cost parameters, I proceed to use the
estimated parameters to solve the model for equilibrium storage, trade, consumption, and
prices of every grain in every market in every month. Before proceeding to my counterfactual
analysis in the next section, it is important to verify the goodness of fit of the baseline
estimated model. Of the four equilibrium variables, the only one I observe at the monthly,
market level is prices, so I focus on comparing the model-generated equilibrium prices to the
price data.

Figure 1.5 shows the actual maize price series from the 4 markets in Kenya and Tanzania
from figure 1.1 together with the model-generated price series for these markets. In general,
the correlation of the levels of the actual and model-generated price series is high. The
correlation coefficient for the average prices for a given market and crop is 0.787. Within
markets for all pairs of two crops, the model correctly predicts which crop has a higher
average price 83.3% of the time.

The correlation of the model-generated prices and the price data within a particular price
series seems lower, although the goodness of fit is more difficult to measure. The median
correlation coefficient within price series is 0.385. As is clear from the sample price series
in figure 1.5, there are many month-to-month price fluctuations (due to new information,
government interventions, etc.) that cannot be explained by the parsimonious data used by
the representative traders in my model. It is also the case that the correlation coefficient does
not fully reflect the goodness of fit of the price series. The maize price series from figure 1.5,
for instance, have within series correlation coefficients of 0.136 (Mandera), 0.217 (Nairobi),
0.171 (Arusha), and 0.174 (Songea) for this period despite the fact that the overall shapes
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Figure 1.5: Actual Maize Price Series (left) and Model-Generated Baseline Price Series
(right) for 4 Markets in East Africa, January 2007 – December 2011

of the series (including the timing of peaks and troughs) appear quite similar between the
data and the model.

In addition to monthly, market-level prices, I also observe annual, country-level trade
flows as reported in national trade statistics and compiled by CEPII’s BACI project (Gaulier
and Zignago 2010), which includes 37 of my 42 countries of interest as well as the rest of
the world, which I group together into a 38th country34. Although these data are much less
detailed than my model-generated trade data (1,510 vs. 55,440 observations), I can aggregate
up my monthly, market-level equilibrium trade quantities and compare them to the annual,
country-level data. In table 1.11, I compare net trade flows (exports minus imports) in the
model and the data at different levels of aggregation. The first four rows compare net trade
flows at the country level without distinguishing between specific origins and destinations,
while in the bottom four rows I attempt to make this distinction by assigning observed trade
with non-contiguous partner countries to the adjacent country through which such trade
would have to pass so as to enable comparison with my model-generated trade flows.

Correlation coefficients between net trade flows in the model and the data are generally
very high, although they are somewhat lower at the lowest levels of aggregation. Despite
high correlation coefficients, the model appears to perform only moderately well at predicting
whether net trade flows are positive, negative, or zero in the data. However, this is largely due
to sign discrepancies for very small or zero net trade flows. Once trade flows below a minimum
threshold (Tmin = 10,000 t/year) are dropped, the model predicts the correct sign for net
trade flows for well above 80% of observations at all levels of aggregation. Discrepancies
between the model and the data — particularly for small trade volumes — are likely due in
part to the existence of significant informal grain trade flows across borders in many parts of
sub-Saharan Africa, which are not captured by official trade statistics. Tschirley and Jayne

34The missing countries are Botswana, Lesotho, Namibia, and Swaziland, which together with South Africa
form the Southern African Customs Union (SACU), and South Sudan, which until 2011 was part of Sudan.
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Table 1.11: Goodness of Fit of Net Trade Flows at Different Levels of Aggregation

Correlation Observations Correct Sign |T | > Tmin Correct Sign

Country 0.993 38 84.2% 36 86.1%
Country-Year 0.956 380 84.5% 328 90.5%
Country-Crop 0.897 83 75.9% 51 86.3%
Country-Year-Crop 0.837 830 68.7% 457 86.7%
Country Pair 0.902 91 60.4% 36 83.3%
Country Pair-Year 0.782 910 58.5% 313 89.1%
Country Pair-Crop 0.730 151 53.0% 45 84.4%
Country Pair-Year-Crop 0.615 1510 50.6% 348 89.4%

2010, for instance, cite estimates of informal, unrecorded cross-border trade flows of maize
between Malawi, Mozambique, Tanzania, Zambia, and Zimbabwe exceeding 100,000 t/year.

Having estimated the model and established that it can reproduce both the price data
and annual, country-level trade data reasonably well, in the next section I conduct my
counterfactual analysis in which I compare equilibrium outcomes under the baseline model
to outcomes under counterfactuals in which I change some of the demand parameters, cost
parameters, or exogenous variables.

1.5 Counterfactual Results

In this section, I present my counterfactual analysis and robustness checks. In my main coun-
terfactual, I lower trade costs within sub-Saharan Africa and between sub-Saharan Africa
and the world market to match benchmark freight rates elsewhere in the world. In two
extensions, I explore the extent to which the gains from lower trade costs can be realized by
focusing on a few key trade corridors and how the impact of agricultural technology adoption
depends on trade costs.

1.5.1 Main Counterfactual: Lowering Trade Costs

What would be the gains from lowering trade costs in sub-Saharan Africa to match levels
elsewhere in the world? To answer this question, I re-solve the model replacing just the
trade cost parameters with values equivalent to $0.05/t-km for overland market links and
$50/tonne for port-to-world-market links, in line with baseline freight rates from the rest
of the world discussed previously35. Importantly, this counterfactual does not reduce trade
costs to zero (which would be impossible to achieve) but reduces them to match existing
transport costs elsewhere in the world, a level which is potentially achievable. Empirically
— as shown in the appendix — price differences for grains between locations within the US
and between the US Gulf and other major world markets rarely exceed these benchmark

35This means that trade costs from the world market to an African port in this counterfactual are equivalent
to overland trade costs for a distance of 1,000 km within Africa.
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values, suggesting that transport costs make up most if not all of trade costs for grains in
advanced countries and on the world market. This is consistent with the generally low or
non-existent tariffs on grains in advanced countries and the low or non-existent information
and search costs in these markets, where grains meeting standard quality specifications are
traded on organized commodity exchanges.

For my counterfactual analysis, I continue to use the values of the exogenous variables
(population, harvest, and world prices) from my period of interest (May 2003 – April 2013).
I re-solve the model month-by-month as before with only the trade cost parameters changed
and compare the resulting equilibrium to my original one. Thus while my results show the
effects of lowering trade costs for this particular period, the impact of lower trade costs could
be larger or smaller during other periods where the exogenous variables are substantially
different. Figure 1.6 compares the model-generated price series under actual high trade
costs from figure 1.5 to the model-generated price series under counterfactual low trade
costs for the 4 markets from figure 1.1.
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Figure 1.6: Model-Generated Baseline Price Series (left) and Model-Generated Counterfac-
tual Price Series (right) for 4 Markets in East Africa, January 2007 – December 2011

Table 1.12 presents results from my main counterfactual, aggregated across space and
time to include all 229 markets in 41 countries36 and all 120 months in my 10-year period
of interest. On aggregate, lower trade costs lead to a 46.4% drop in the average grain price
index (from $0.54 to $0.29/kg). The counterfactual average grain price index of $0.29/kg is in
the 14th percentile of the baseline distribution of average grain price indices across markets,
while the highest market-level average grain price index in the counterfactual ($0.51/kg
in Impfondo, Congo) is lower than the median in the baseline distribution. Lower prices
lead to a decrease in agricultural revenues net of trade and storage costs by $117.4 billion
(−42.1%) and a decrease in expenditure on grains by $226.4 billion (−44.1%). The direction
of these aggregate results is explained by the fact that Africa as a whole is a net importer of

36Johannesburg, South Africa is excluded as I have treated it like the world market in my model.
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grain, with most consumers and producers facing artificially high prices that fall once trade
costs are lowered. Imports of grain from the world market increase by 32.0 million tonnes
(17.5%), although the value of grain imports declines due to lower trade costs. Expenditure
on trade costs declines substantially as does expenditure on storage costs (due to lower
interest payments for storing cheaper grain and some substitution of trade for storage).
Consumption of the outside good increases as less income is spent on grains. Overall welfare
gains are equivalent to 2.2% of GDP over the 10-year period (a $125.0 billion equivalent
variation), with the benefits of lower consumer prices outweighing the income losses in the
agricultural sector.

Table 1.12: Aggregate Results from Main Counterfactual

Quantity Percent

Average Grain Price Index
–$0.25/kg*** –46.4%***

($0.01/kg) (1.0%)

Net Agricultural Revenues
–$117.4 billion*** –42.1%***

($10.2 billion) (1.7%)

Expenditure on Grains
–$226.4 billion*** –44.1%***

($14.1 billion) (1.0%)

Net Grain Imports – Quantity
+32.0 million tonnes*** +17.5%***

(4.6 million tonnes) (1.8%)

Net Grain Imports – Value
–$16.2 billion*** –20.9%***

($1.2 billion) (0.9%)

Gross Trade Volumes
+537.7 million tonnes*** +65.9%***

(48.4 million tonnes) (6.4%)

Expenditure on Trade Costs
–$65.5 billion*** –72.8%***

($3.0 billion) (1.0%)

Expenditure on Storage Costs
–$27.3 billion*** –41.0%***

($1.6 billion) (2.0%)

Consumption of Outside Good
+$109.0 billion*** +2.1%***

($4.7 billion) (0.1%)

Welfare
+$125.0 billion EV*** +2.2%***

($5.6 billion EV) (0.1%)

Note: Standard errors in () are bootstrapped (40 iterations) as described
in the text; * significant at 10%, ** at 5%, *** at 1%.

Standard errors in table 1.12 were obtained using a computationally-intensive bootstrap-
ping procedure with 40 iterations. For each iteration, I re-solved the model for equilibrium
storage, trade, consumption, and prices under both high and low trade costs using different
demand and cost parameter estimates obtained by re-sampling the data used to estimate
each parameter with replacement. Due to the lengthy run-time, I limit my iterations to 40
and do not report standard errors for the later counterfactuals in this chapter.

In addition to the direct effect on price levels, lowering trade costs also affects local price
volatility. In absolute terms, the average standard deviation of prices for the 511 grain price
series falls from 0.188 to 0.123 (–34.5%) under low trade costs. However, in relative terms,
the average coefficient of variation increases from 0.330 to 0.387 (+17.4%) due to the fall
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in the mean prices. A similar distinction holds for the frequency of high price events. In
absolute terms, the frequency of grain prices over 1 USD/kg falls dramatically from 12.5% to
0.9% when trade costs are lowered. In relative terms, the frequency of grain prices exceeding
double the series mean increases slightly from 2.0% to 2.1%. Lowering trade costs does
therefore appear to be effective at preventing local prices from far exceeding regional and
international levels as they have during events like the Horn of Africa famine (figure 1.1),
but relative price volatility remains significant as high storage costs and similar agricultural
calendars within regions mean that seasonal price fluctuations continue to be substantial (as
seen in figure 1.6).

The aggregate results in table 1.12 do not reflect the heterogeneity of the effects of
reducing trade costs across African markets and countries. Table 1.13 summarizes this
heterogeneity by grouping markets and countries according to the sign of the changes they
experience in their average grain price index, their net agricultural revenues, and their overall
welfare when trade costs are lowered. The 181 markets (79.0%) and 37 countries in Group
A are primarily net grain importers and experience changes similar to the continent-wide
aggregate with falling prices and revenues and increasing welfare. The 14 markets (6.1%)
and 2 countries (Malawi and Zambia) in Group B are primarily net grain exporters who
experience price increases, revenue increases, and welfare increases under lower trade costs.
This is not the case for all exporting regions: the 24 markets (10.5%) in Group C are net
exporters that experience price decreases, revenue decreases, and welfare losses. These are
mostly landlocked surplus regions (e.g. in the Sahel) that experience negative terms-of-trade
effects when the urban and coastal regions they trade with are able to access cheaper grain
imports from the world market. Finally, a small group of 10 markets (4.4%) and 2 countries
(Sierra Leone and Zimbabwe) in Group D experience price decreases, revenue gains, and
welfare gains due to their particular crop mix and/or their changing export position over
time.

Table 1.13: Heterogeneous Effects of Reducing Trade Costs

Group A Group B Group C Group D

Price Index – + – –
Net Agricultural Revenues – + – +
Welfare + + – +
Markets 181 14 24 10
Countries 37 2 0 2

The results discussed thus far reflect the effects of reducing trade costs in the short
run when factors of production cannot reallocate between sectors. In the longer run, the
large price changes that my model predicts under lower trade costs are likely to lead to the
reallocation of factors of production. In the majority of markets (Group A), the decrease in
the relative price of grains would lead to a shift of factors of production out of agriculture
and into the outside good sector. Using my production model developed previously, I use
the actual harvests and the baseline equilibrium prices to back out the implied productivity
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shocks Bimt and then re-solve the counterfactual with an endogenous supply response using
different values for the price elasticity of supply η. Roberts and Schlenker (2013) estimate
the year-to-year price elasticity of supply for staple grains at 0.097. In the longer run, η may
be larger (closer to η = 0.5), while a value of η = 1 would be considered unusually high in
the agriculture literature.

Table 1.14: Aggregate Results with Supply Response

η = 0 η = 0.1 η = 0.5 η = 1

Average Grain Price Index –46.4% –45.2% –42.8% –41.7%
Net Agricultural Revenues –42.1% –41.4% –40.0% –33.7%
Expenditure on Grains –44.1% –42.4% –39.1% –37.5%
Net Grain Imports – Quantity +32.0 million t +64.0 million t +113.1 million t +39.9 million t
Welfare +2.2% +2.2% +2.4% +2.5%

Table 1.14 compares results for key aggregate variables with an endogenous supply re-
sponse for η = 0.1, η = 0.5, and η = 1 to results from the original counterfactual with
no supply response (η = 0). As η increases, aggregate agricultural production in Africa
falls, leading to a slightly smaller fall in prices, expenditure on grains, and net agricultural
revenues (for which the price effect is larger than the quantity effect). Welfare, buoyed by
increased income through increased production of the outside good, increases by more than
before. Net grain imports from the rest of the world increase substantially as η increases,
helping make up for the lower level of agricultural production within Africa37. The magni-
tude and direction of the changes in the aggregate variables remain similar to the base case,
even when allowing for a large supply response (η = 1).

1.5.2 Robustness Checks and Alternate Approaches

My model and estimation strategy included several important assumptions. In this section,
I explore the effects of relaxing some of these assumptions.

When defining market catchment areas, I allocated all agricultural production in my 42
countries of interest to the 230 markets in my network. As an alternative, I define market
catchment areas for all 263 markets on my initial ideal list and then drop production in the
catchment areas of the 33 markets for which I was unable to obtain price data. Re-solving
the model for both baseline and counterfactual scenarios using these revised production
data does not change my results substantially. Results for all indicators in table 1.12 are
well within 95% confidence intervals constructed using the standard errors reported there.

37This trend appears to reverse in the rightmost column (η = 1), but this is due to unrealistically large
increases in production in 9 markets for which extremely low baseline equilibrium prices in some harvest
periods imply unrealistically large productivity shocks when η = 1. Net grain exports from these 9 markets
increase by over 100 million tonnes when moving from η = 0.5 to η = 1. The increased production in these
9 markets is also behind the much smaller loss in net agricultural revenues in this column.
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For my baseline estimation, I used the Cobb-Douglas elasticity of substitution (σ = 1) and
set the price elasticity of demand for grains to match the estimate of Roberts and Schlenker
2013 (ε = −0.066). Both of these values are at the lower end of elasticity estimates in
the literature. In table 1.15, I compare my baseline results to results obtained using larger
elasticities (σ = 3 and ε = −0.5) in my estimation. Each time I change an elasticity, I
re-estimate the other demand parameters (αim and Am) using the new elasticities, re-solve
the model under both existing high trade costs and counterfactual low trade costs, and
report the aggregate effects of lowering trade costs in table 1.15. Increasing the elasticity
of substitution σ to 3 has virtually no impact on my aggregate results38. Increasing the
price elasticity of demand ε to −0.5 leads to less of a fall in expenditure on grains and net
agricultural revenues, as consumers increase expenditure more under lower prices. However,
the average fall in the grain price index is nearly the same as before, with net grain imports
from the world market increasing by nearly eight times as much to cover increased demand.
The overall welfare increase from decreasing trade costs does not change significantly from
my baseline case.

Table 1.15: Comparison to Results Using Different Elasticities

σ = 1 σ = 3 σ = 1
ε = −0.066 ε = −0.066 ε = −0.5

Average Grain Price Index –46.4% –46.4% –40.6%
Net Agricultural Revenues –42.1% –42.0% –27.6%
Expenditure on Grains –44.1% –44.3% –21.6%
Net Grain Imports – Quantity +32.0 million t +40.8 million t +249.9 million t
Welfare +2.2% +2.1% +2.2%

I next analyse the effects of my assumption about trader expectations, which is necessary
for model tractability but is likely to lead to underestimates of equilibrium storage by elim-
inating the effects of uncertainty. To evaluate the extent to which this assumption affects
my results, I build 30 individual, small-scale, tractable models of grain storage and trade
with full rational expectations in which harvests and world prices are stochastic. For the
purposes of these models, I collapse all months, all grains, and all markets in each country
into a single annual national harvest for which I calculate a sample mean and variance over
my 10 year period of interest. For 20 countries with ports or direct access to Johannes-
burg, South Africa, I build a model for each country with just that country and the world
market. For the remaining 21 countries, I build 10 models each consisting of a landlocked
country, a coastal country, and the world market39. I choose a centrally-located major city

38This might seem surprising as the elasticity of substitution is in many trade models one of the key
parameters determining the gains from trade (Arkolakis et al 2012), with the gains from lower trade costs
expected to be smaller with a higher elasticity of substitution. Here the gains are only slightly smaller when
σ is 3 because each grain is a homogeneous good without location-specific varieties and most markets are
either exporters or importers of all grains, so substitution between grains is second-order.

39One of these models includes Rwanda and Burundi combined into a single landlocked country.
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in each country and use my trade cost estimates to compute a single representative trade
cost between each landlocked and coastal country and between each coastal country and
the world market. I use my estimated demand parameters for each country as well as my
estimated monthly storage cost parameters aggregated up to the annual level. For world
prices, I compute a single annual world price index for each coastal country based on its
harvest year and demand share parameters and calculate the sample variance of the month-
to-month change in price of these indices over my 10 year period of interest. Putting all
of this information together, I use the RECS solver in MATLAB to solve each of the 30
models and run simulations using actual observed harvest and world price shocks to solve
for equilibrium storage, trade, price, and consumption in every country in every year under
full rational expectations. I then re-solve each model under counterfactual low trade costs.

Despite volatile local harvests and high baseline trade costs, my results from this exercise
indicate that inter-annual storage in Africa is limited even under full rational expectations,
likely due to high storage costs and the position of most countries as net grain importers.
Under existing high trade costs, an average of 2.0% of the grain harvest is stored inter-
annually, and there is positive inter-annual storage in only 50 (12.5%) of the 400 total
country-years in my 30 models. Under counterfactual low trade costs, an average of 0.3% of
the grain harvest is stored inter-annually, and there is positive inter-annual storage in only
7 (1.8%) of the 400 total country-years in my 30 models, as cheaper trade serves as a partial
substitute for storage.

The use of my assumption about trader expectations does appear to lead to underes-
timates of annual storage, but adjusting for these underestimates does not affect my main
results. In my main model, under existing high trade costs, an average of 0.3% of the grain
harvest is stored inter-annually, and there is positive inter-annual storage in just 1.5% of
total market-crop-years, while under counterfactual low trade costs there is no inter-annual
storage in any market-crop-year. To determine how allowing for full rational expectations
affects my results, I re-solve my main model under both existing and counterfactual trade
costs while restricting traders’ choice of inter-annual storage of each grain in each market to
equal the percentage of grain stored inter-annually in equilibrium for that country for that
year in the results from my individual full rational expectations models. The percentage
changes in net agricultural revenues, the average grain price index, expenditure on grains,
and welfare are all within two tenths of a percentage point of my baseline results, and the
results for all indicators in table 1.12 are well within 95% confidence intervals constructed
using the standard errors reported there. Thus I conclude that my assumption about trader
expectations does not have a statistically significant effect on my results.

Given the fact that inter-annual storage is limited, it is reasonable to ask to what extent
my results would change if I used a more parsimonious model with no storage at all. In
recent trade papers dealing with the agricultural sector (e.g. Costinot et al 2014), it is
common to use annual data on production and farm-gate prices, the prices farmers receive
when they sell their produce immediately after harvest. Using annual data, one can avoid
having to deal with harvest cycles and intra-annual storage, which is necessary for there to be
positive consumption in non-harvest months. To better understand the differences between
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this approach and the one I have used in this chapter, I use the harvest month price for
each crop in each market from my baseline estimated model as the annual farm-gate price
and build a new static model with all variables aggregated up to the annual level and no
storage. I re-estimate trade costs for this new static annual model using the same approach
as for my dynamic monthly model and then solve for equilibrium with both my new trade
cost estimates and counterfactual low trade costs.

Trade cost estimates converge in 6 iterations for the static annual model, and each itera-
tion takes only 2 minutes (less than 0.1% of the run-time for the dynamic monthly model).
However, my trade cost estimates are 23.4% lower on average using the static annual model,
and the overall welfare gain from lowering trade costs is 32.9% smaller than under the dy-
namic monthly model with storage. These differences can be explained by the pattern of
equilibrium storage and trade described in Proposition 1. When production is widespread,
trade between markets almost never occurs at the beginning of the harvest cycle when
farm-gate prices are measured. During this period, local production and storage is used for
consumption, spatial arbitrage conditions do not bind, and equilibrium price gaps are nar-
rower. Instead, trade occurs primarily at the end of the harvest cycle once local stocks have
been depleted, which is when equilibrium price gaps are wider and spatial arbitrage condi-
tions bind. Using monthly data and a dynamic model with storage to identify more precisely
when agricultural trade occurs thus seems important to avoid underestimating trade costs
and their effects on welfare, particularly in developing country contexts with large seasonal
price fluctuations. Further details on this exercise with graphical examples are contained in
the appendix.

Having confirmed the robustness of my main results to the relaxation of several of my key
assumptions and explored alternate approaches, I next turn my attention to two extensions
in which I run additional counterfactuals to further explore the consequences of high trade
costs in sub-Saharan Africa and the options for reducing them.

1.5.3 Extension: Trade Corridors

Reducing trade costs everywhere in Africa to match transport costs elsewhere in the world
is likely not feasible in the short run. However, it may be feasible to reduce trade costs
along certain high-priority routes. This section considers the extent to which some routes
matter more than others for achieving the welfare effects of the main counterfactual. Even if
a long-term goal of reducing trade costs everywhere is maintained, trade cost reduction will
not be simultaneous, so the results in this section also shed light on welfare effects during
the potentially long transitional period from a high trade cost to a low trade cost regime.

I start by looking at the effects of reducing trade costs along the 413 overland links
within Africa while holding port-to-world-market sea trade costs constant and of reducing
port-to-world-market sea trade costs while holding overland trade costs constant. Results in
the second and third columns of table 1.16 indicate that while overland trade cost reduction
accounts for over 70% of the overall welfare gain, nearly half of the overall welfare gain
is achievable by just reducing sea trade costs between African ports and the world market.
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Overland trade and sea trade are partial substitutes as both can reduce prices in grain-deficit
markets.

Table 1.16: Aggregate Results with Trade Cost Reduction on Specific Links

All Links Just Land Just Sea Sea & 30 Land Sea & 75 Land

Average Grain Price Index –46.4% –29.9% –25.6% –32.6% –39.2%
Net Agricultural Revenues –42.1% –16.6% –33.2% –40.3% –43.6%
Expenditure on Grains –44.1% –24.9% –27.8% –37.7% –42.1%
Net Grain Imports +32.0 mill t –1.0 mill t +43.0 mill t +47.8 mill t +41.3 mill t
Welfare +2.2% +1.6% +1.0% +1.6% +1.9%

Since reducing port-to-world-market sea trade costs is likely more feasible than reducing
overland trade costs everywhere in Africa, I start with this scenario and then look at whether
adding trade cost reductions on a few key overland routes can substantially narrow the gap
with my main counterfactual. I select key routes by first identifying the markets with the
biggest welfare gaps between the “just sea” scenario in column 3 and the main counterfactual
in column 1 and then identifying the most important overland links connecting these markets
to their trading partners. In columns 4 and 5 of table 1.16, I show that adding trade cost
reductions on just 30 overland links (7.3%) to the “just sea” scenario allows for over 70% of
welfare gains to be achieved, and adding trade cost reductions on 75 overland links (18.2%)
allows for 86% of welfare gains to be achieved.

These results are encouraging for policy-makers and multilateral donors who may have
limited resources to invest in trade cost reduction. Generally speaking, the results suggest
that investment in “trade corridors” of the type promoted by the African Development Bank
and other institutional donors may be worthwhile. Although it is likely that the specific
corridors I identify might not be the most important ones when other goods besides grains
are considered, my corridor selection exercise, which is detailed in the appendix, suggests
that certain types of corridors may be particularly beneficial. First, reducing trade costs
from the world market all the way to “dry ports” in densely-populated inland areas like
Addis Ababa, Ethiopia and Kinshasa, D.R. Congo can achieve major welfare gains even if
trade costs from the dry ports to further-inland areas remain high. Second, reducing trade
costs along inland corridors with imbalances or fluctuations in production and consumption
(e.g. the trans-Sahelian highway) can lead to large gains without significant involvement of
the world market. Third, targeting those inland areas isolated by extremely high trade costs
(e.g. South Sudan) can lead to very large welfare improvements for those areas.

1.5.4 Extension: Technology Adoption and Trade Costs

In 2013, African cereal grain yields averaged 1.4 tonnes per hectare, compared to 3.1 in South
Asia, 4.2 in Latin America, and 7.3 in the US. Low productivity in African agriculture is
primarily due to the low use of inputs like fertilizer, and institutional donors and organiza-
tions like the Alliance for a Green Revolution in Africa (AGRA) are promoting technology
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adoption to narrow this productivity gap. This section uses my estimated model to look at
the effects that widespread technology adoption in Africa would have under existing high
trade costs and counterfactual low trade costs.

A complete model of technology adoption is beyond the scope of this chapter. Instead,
I estimate what would happen if productivity everywhere in Africa doubled, i.e. if African
cereal grain yields increased to 2.8 tonnes per hectare, which is much closer though still below
levels elsewhere in the world. In the context of my model of production, this is equivalent to
a doubling of all Bimt, which would double agricultural production in the short run (η = 0).
Practically speaking, I implement this counterfactual by doubling the harvest (Himt) in all
markets and all time periods while keeping all other exogenous variables and parameters the
same40.

Table 1.17 compares results for key aggregate indicators from my main counterfactual
(first column), counterfactuals with technology adoption under high trade costs (second col-
umn) and low trade costs (third column), and a combined counterfactual in which trade
costs are lowered and technology adoption occurs (fourth column = first column + third
column)41. Under high trade costs, technology adoption leads to a collapse of prices and
agricultural revenues, as high trade costs confine much of the increased production to local
markets with inelastic demand. Only 39 markets (17.0%) experience an increase in agricul-
tural revenues, 37 of which are net importers for which increased production primarily serves
to replace imports so that the price does not fall as much as in other markets42. In contrast,
under low trade costs, agricultural revenues increase on aggregate and for 184 individual
markets (80.3%), as much more of the increased production can be exported to deficit areas
and the world market. Low trade costs are thus a prerequisite for widespread technology
adoption to increase the incomes of African farmers.

Table 1.17: Aggregate Results with Technology Adoption

Baseline High τ High τ Low τ High τ
Counterfactual Low τ Double H Double H Both

Average Grain Price Index –46.4% –58.6% –14.2% –60.2%
Net Agricultural Revenues –42.1% –71.4% +12.4% –29.7%
Net Grain Exports –32.0 mill t +254.1 mill t +697.0 mill t +665.0 mill t
Welfare +2.2% +2.6% +2.2% +4.4%

The net welfare effect of doubling productivity through technology adoption is similar
in magnitude to the net welfare effect of lowering trade costs43. Although lower trade costs
and productivity improvements are partial substitutes as both lead to lower prices in most

40In the appendix, I experiment with increasing production by less than 100% (10%, 20%,... 90%) and
find that the effects always have the same sign, with lower percentages just leading to lower magnitudes.

41For ease of comparison, all percentage changes in table 1.17 are given in terms of the baseline equilibrium
with existing high trade costs and low productivity.

42The other 2 markets are net exporters that have relatively cheap access to the world market even under
high trade costs and/or have changing export positions over time.

43If policies that reduce agricultural trade costs also reduces trade costs for other sectors, the effect
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markets, the combined welfare effect of both (4.4%) represents 92% of the sum of the effects of
each intervention on its own (2.2% + 2.6% = 4.8%). These findings suggest that agricultural
policy in Africa should give as much weight to trade cost reduction as to technology adoption
and prioritize comprehensive approaches that include both.

1.6 Conclusion

In this chapter, I have built, estimated, and solved a dynamic model of agricultural storage
and trade in sub-Saharan Africa and used it to estimate the gains from reducing trade costs
to levels on par with the rest of the world. I began by assembling a new intra-national
dataset of monthly prices and production of the 6 major staple cereal grains in 230 market
catchment areas covering all 42 countries of continental sub-Saharan Africa over the ten-
year period from May 2003 to April 2013. I then wrote down a dynamic model of storage
and trade under uncertainty in which a representative consumer in each market chooses
consumption of each grain and an outside good given prices and income in each period and
a representative competitive trader in each market chooses how much of available grain to
put into storage, sell locally, and import or export from other markets given current and
expected stocks, harvests, world prices, and consumption demand across all markets in the
network. I used my data to estimate both the model’s demand parameters and its cost
parameters (including trade costs for each of 413 overland links and between each of 30
ports and the world market). My storage and trade cost estimation strategy utilized a novel
iterative approach to determine the markets and periods in which the storage and trade
arbitrage conditions were binding. The median intra-national trade cost I estimated using
this approach is over 5 times higher than benchmark freight rates elsewhere in the world.

After solving my estimated model for equilibrium storage, trade, consumption, and prices
for every grain in every market in every month, I proceeded to re-solve the model for several
counterfactual scenarios. In my main counterfactual, I lowered agricultural trade costs within
Africa and between Africa and the world market to match transport costs elsewhere in the
world. On aggregate, lower trade costs would have led to a large drop in grain prices,
agricultural revenues, and expenditure on grains in sub-Saharan Africa during the study
period, with an overall welfare gain equivalent to 2.2% of GDP. These findings change only
slightly when allowing for reallocation of factors of production in the long run and are
robust to alternative demand specifications and the relaxation of the key assumption about
trader expectations that I used for tractability. There is significant variation in these effects
between markets within Africa, with some markets experiencing increases in prices, revenue,
and welfare, and others experiencing welfare losses due to terms-of-trade effects. Using a
dynamic monthly model with storage is important for correctly identifying when agricultural
trade occurs, particularly in contexts like this one with large seasonal price fluctuations. In
my case, I showed that a static annual model underestimates trade costs by 23% and welfare

of lowering trade costs would likely be much larger than the effect of doubling productivity just in the
agricultural sector.
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effects by 33%.
In two extensions, I explored the extent to which investment in select trade corridors

could achieve similar gains to continent-wide trade cost reduction and the degree to which the
impact of productivity-enhancing technology adoption depends on trade costs. I showed that
reducing port-to-world-market trade costs and trade costs along just 18% of the 413 overland
links enables achievement of 86% of overall welfare gains, suggesting that a corridor-based
approach to trade cost reduction may be efficient in this context. The effects of technology
adoption are very different under existing high and counterfactual low trade costs. Doubling
agricultural productivity leads to large declines in net agricultural revenues under existing
high trade costs due to limited market access and inelastic local demand. In contrast, the
same productivity change under counterfactual low trade costs leads to increases in net
agricultural revenues as surplus production can be exported. The welfare gains from trade
cost reduction and technology adoption are similar in magnitude and nearly additive when
both occur together, highlighting the importance of prioritizing both in agricultural policy.

The findings in this chapter complement and need to be further complemented by micro-
level studies looking at the components of trade costs, the impact of policies designed to
reduce trade costs, and the size and nature of farm-to-hub-market trade costs. It is beyond
the scope of this chapter to identify precise components of trade costs, but my trade cost
estimates can be a useful starting point for studies that attempt to do so. Since intra-
national price data on staple grains is relatively widely available for sub-Saharan African
markets, these data could be used as the basis for evaluating the impact of specific policy
interventions on trade costs and welfare using some of the techniques used in this chapter.
Importantly, this chapter considered only trade costs between the 230 large hub markets in
my dataset. Farm-to-hub-market trade costs are potentially even larger and their reduction
would likely have a positive effect on farmer incomes, although the significant market power
of traders in remote rural areas must be taken into account.

Aside from the findings of my counterfactuals, a major contribution of this chapter is the
estimated model of African agricultural storage and trade in and of itself. The model can
potentially be used to explore many additional counterfactuals beyond the few considered in
this particular chapter, including the effects of events like climate change, international food
price spikes, conflicts, and disease outbreaks on prices, revenues, and welfare in individual
markets or countries or for the continent as a whole.
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Chapter 2

Empirical Effects of Short-Term
Export Bans: The Case of African
Maize

2.1 Introduction

The prices of basic agricultural commodities have fluctuated dramatically over the last
decade. In developing countries, where food expenditure makes up a large proportion
of household consumption, these price fluctuations have led to a proliferation of policies
to control or stabilize food prices. Temporary export restrictions have been particularly
widespread, with at least 33 countries using some form of export restriction during the 2007
– 2008 food price spike and its aftermath, including 4 of the top 5 rice producers (China,
India, Bangladesh, Vietnam) and 7 of the top 13 wheat producers (China, India, Russia,
Pakistan, Ukraine, Argentina, Kazakhstan) (Sharma 2011). This chapter focuses on the
most common and severe of such restrictions: the short-term export ban.

The literature on export restrictions has focused on understanding why countries imple-
ment them and the role they play in exacerbating international price spikes. Theoretically,
export restrictions introduce welfare-reducing price distortions, with local farmers losing
more than local consumers gain from lower domestic prices (Mitra and Josling 2009; Liefert
et al. 2011). Governments likely implement export restrictions because they put more
weight on consumers’ interests than those of producers, are more concerned about negative
deviations from the status quo than positive ones, or seek to avoid extreme events (Abbott
2011). Gouel and Jean (2015) have also shown that export restrictions can be part of an op-
timal dynamic food price stabilization policy when consumers are risk averse and insurance
markets are incomplete. Regardless of their domestic rationale, the welfare effects on other
countries appear to be unambiguously negative: by cutting off supply to the world market
during times of high prices, export restrictions magnify international price fluctuations and
have been criticized for representing a beggar-thy-neighbor approach to trade (Headey 2011;
Martin and Anderson 2011; Anderson and Nelgen 2012).
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This chapter provides new empirical evidence from East and Southern Africa that export
bans do not always have the effects that governments (or economists) think they do. Unlike
other parts of the world where export restrictions were one-time policies implemented during
the 2007 – 2008 food price spike (e.g. Götz et al. 2013), export bans in East and Southern
Africa are regularly used to respond to high international prices or domestic production
shortfalls of maize, the main staple grain in the region. I use monthly, market-level maize
price data from 49 large hub markets in 12 countries over a 10-year period during which 5 of
these countries (Ethiopia, Kenya, Tanzania, Malawi, and Zambia) implemented 13 distinct
export bans on maize. I document a surprising and robust empirical result: export bans in
this region do not have a statistically significant effect on the gaps in prices between pairs
of affected cross-border markets.

I compare my empirical results to results from simulations using the estimated dynamic
monthly model of grain storage and trade in sub-Saharan Africa from the previous chapter,
which includes nearly all of the same markets and cross-border trade routes. The model
predicts a large and statistically significant increase in the gaps in prices between the affected
cross-border markets due to the 13 export bans, even when traders are able to anticipate the
bans with perfect foresight. The absence of an effect on the price gaps in the data matches
a model simulation in which the export bans are not implemented. However, prices in both
implementing and trading partner countries during export bans are significantly higher in
the data than in the model simulation with no implementation.

Information collected from market participants in sub-Saharan Africa indicates that ex-
port bans are imperfectly enforced, with informal local traders as well as some formal traders
who are able to secure export permits through back-door channels able to continue trading
during bans. These alternative trade channels may be subject to capacity constraints, but
these constraints appear to only bind at the very end of bans. However, the unpredictable,
ad hoc nature of the bans and their enforcement appears to destabilize markets on both sides
of the border. In addition to prices that are higher than they would have been without a
ban, price volatility is also significantly higher in the implementing country.

Taken together, my results suggest that export bans in East and Southern Africa do not
have their intended effects of stabilizing or lowering domestic prices or insulating them from
high international prices and have unintended destabilizing consequences instead. Policy-
makers in the region (and perhaps elsewhere) should therefore re-evaluate their use even
when they appear justified on political economy grounds. My results are also a cautionary
note for studies that have used model-based simulations to estimate the effects of export
restrictions (e.g. Ahmed et al. 2012; Diao and Kennedy 2016), as these effects are likely
different in practice if the export restrictions in question are imperfectly enforced.

2.2 A Surprising Empirical Result

Maize is the primary staple grain produced and consumed in East and Southern Africa.
Empirical evidence suggests that while imperfect competition is important in small, remote
rural grain markets in sub-Saharan Africa, larger hub markets of the type considered here are
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competitive, with many traders and low firm concentration ratios (Osborne 2005; Aker 2010).
Trade in the region is almost exclusively by diesel truck and is constrained by geography and
the limited road network. Although most maize production is consumed domestically, maize
is actively traded across all of the borders in the region. Formal maize trade volumes recorded
in official trade statistics between the 12 countries considered here averaged 424,000 metric
tons annually during the study period (Gaulier and Zignago 2010), with at least another
120,000 metric tons of unrecorded informal cross-border trade (Tschirley and Jayne 2010),
together representing roughly 3% of the 19 million metric tons produced annually in the
region.

Table 2.1: Dates of 13 Export Bans

Country Start Month End Month Affected Pairs

Ethiopia Jan-06 Jul-10 6
Ethiopia Mar-11 Post-2011 6
Kenya Oct-08 Post-2011 14
Malawi Jul-05 Feb-07 7
Malawi Apr-08 Aug-09 7
Malawi Dec-11 Post-2011 7
Tanzania Jul-03 Jan-06 18
Tanzania Aug-06 Dec-06 18
Tanzania Jan-08 Oct-10 18
Tanzania May-11 Oct-11 18
Zambia Pre-2002 Jul-03 7
Zambia Mar-05 Jul-06 7
Zambia May-08 Jul-09 7

My primary dataset consists of a panel of monthly maize price data from large hub
markets (major towns) in East and Southern Africa assembled by the Famine Early Warn-
ing System Network (FEWS NET) and covering the 10-year period from January 2002 to
December 2011. Using local newspaper archives and FEWS NET monitoring reports, I iden-
tified the starting and ending dates of 13 short-term export bans implemented by 5 countries
during this period, ranging in duration from 4 to 54 months (table 2.1). I then selected the
major markets on either side of the affected international borders from the FEWS NET
database and identified the pairs of cross-border markets directly linked by transportation
infrastructure. With competitive trade, any price change caused by an export ban should
be detectable at these directly-linked cross-border markets, with markets further away from
the border experiencing equivalent price changes if they are trading with the directly-linked
markets and no price change otherwise. The resulting dataset includes 49 markets and 40
cross-border market pairs (figure 2.1). This includes an additional 6 markets in areas not
covered by the FEWS NET database in western Tanzania, eastern Malawi, and northern
Mozambique, which I added to my dataset using price data from the Ministries of Agricul-
ture (Malawi and Mozambique) and of Industry, Trade, and Marketing (Tanzania) in these
countries.
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Figure 2.1: Map of 49 Markets and 40 Market Pairs in Dataset

The median market town has a population of 178,000, and the median market pair is
separated by a road distance of 345 kilometers. All prices are expressed in US dollars per
kilogram using monthly exchange rates provided by FEWS NET. The mean maize price
across all markets and all periods is $0.274/kg. The price data is not complete as data
collection began in some markets after January 2002 and there are a few missing observations
throughout. The median price series has 102 of 120 possible observations, and 40 of the 49
markets have at least 6 years (72 observations) of data. Of 5,880 possible price observations,
1,435 (19%) are missing. I will show that my results are robust to restricting the panel to a
more balanced subset.

Export bans are likely implemented during periods of high prices and are thus endoge-
nous to prices. My main empirical specification estimates the effects of export bans on the
price gaps between pairs of cross-border markets instead. Export bans are unlikely to be
endogenous to price gaps, since the events that trigger them are unlikely to affect the costs of
trade between the cross-border market pairs. In the following section, I confirm with model
simulations that in the absence of any bans price gaps would not have been higher or lower
during periods in which bans were in fact implemented than in periods in which they were
not.

In theory, export bans work by increasing the costs of trade between cross-border market
pairs (to infinity if the ban is perfectly enforced). The spatial price analysis literature has
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thought carefully about the relation between price gaps, which are observable, and total trade
costs, which are typically unobservable (Fackler and Goodwin 2001). Under competitive
trade, the price gap between a pair of markets is equivalent to the total trade costs between
those markets if trade is occurring, which Baulch (1997) and others have called “regime 1.”
If trade is not occurring, the markets are in a segmented equilibrium (Baulch’s “regime 2”),
and the price gap between them is a lower bound on the total trade costs. The price gap
may also temporarily exceed the trade costs if the markets are in disequilibrium following a
shock (Baulch’s “regime 3”). Regimes 1 and 3 motivate a regression of the form:

∆Pijt = βBit + φij + εijt (2.1)

In equation 2.1, ∆Pijt = Pjt − Pit is the price gap between market j and market i in
month t, Bit is an indicator variable for an export ban affecting exports from market i to
market j in month t, φij is a directional market pair fixed effect capturing components of
price differences that do not vary over time (e.g. baseline trade costs), and εijt is a mean-zero
error term reflecting the possibility of a shock that would cause price gaps to be greater or
less than trade costs during a particular month t. In estimating equation 2.1, I exclude
observations with negative price gaps so that a given market pair has a single observation
per month in the direction of the positive price gap.

For markets with relatively low trade costs and consistent import-export relationships,
restricting attention to regimes 1 and 3 would be appropriate. However, given the high trade
costs in the agricultural sector in sub-Saharan Africa estimated in the previous chapter and
the fact that maize is produced locally in all of the markets in my dataset, it is important
to account for the possibility of regime 2 segmented equilibria in which export bans would
have no effect because they are not binding. If I include these “no-trade” observations
in my estimation, the resulting estimate of my parameter of interest β is a valid measure
of the effects of export bans in a reduced-form sense conditional on market conditions at
the time of ban implementation but is a downwardly-biased estimate of the effects of export
bans conditional on the ban actually binding and preventing trade that would otherwise have
occurred. Recent empirical evidence in contexts where regime 2 observations can be identified
confirms this downward bias when all observations are included (Atkin and Donaldson 2015).
In the regressions that follow, I experiment with different ways of identifying and excluding
potential regime 2 no-trade observations and compare my subsequent results to my baseline
reduced-form result using all observations.

Column 1 of table 2.2 shows results from the specification given in equation 2.1 with all
observations. The mean of the dependent variable (the gap in prices between cross-border
market pairs) is $0.0853/kg. The point estimate for the effect of export bans on this gap
is less than three-thousandths of a US cent or less than three-hundredths of a percent of
the mean price gap and is not statistically significantly different from zero at any confidence
level. I calculate standard errors directly because of the complicated nature of potential
correlation between the residuals in my dataset. The standard approach with panel data
(shown in column 2) would be to cluster at the market pair level to allow for correlation
of residuals for a given market pair in different time periods. However, as is clear from
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the map in figure 2.1, the market pair structure also has features of a dyadic regression,
with a single market often being a member of multiple market pairs. To deal with this
additional source of correlation, I extend the approach of Fafchamps and Gubert (2007)
for calculating consistent standard errors in cross-sectional dyadic regressions, allowing for
correlation of residuals between any observations sharing at least one common market (even if
those observations are in different time periods) while continuing to assume that residuals are
independent across observations with no common markets. The standard errors calculated
using this dyadic approach (column 1) are very close to those obtained by clustering at the
market pair level (column 2).

Table 2.2: Basic Specification and Robustness Checks

(1) (2) (3) (4) (5) (6)

Export ban 0.0000214 0.0000214 –0.00139 –0.0154 0.00311 –0.00619
(0.00959) (0.00969) (0.0100) (0.0124) (0.00559) (0.0114)

Distance * Gas price 0.0000231
(0.0000158)

Infrastructure Yes

Time trend 0.00128
(0.00110)

Time fixed effects Quarter

Observations 3253 3253 3253 3253 3096 2579
Standard errors Dyadic Cluster: Pairs Dyadic Dyadic Dyadic Dyadic

Note: Robust standard errors in () calculated as indicated; *significant at 10%, ** at 5%, *** at 1%.

Using the standard errors from column 1 and the mean maize price of $0.274/kg, I can
reject an alternate hypothesis that export bans have an effect at least as large as that of a
5% export tax (0.05 ∗ $0.274 = $0.0137/kg) at an 8% significance level. A 5% export tax is
at the low end of short-term trade policy responses to commodity market price fluctuations
— temporary export taxes of 25–40% are not uncommon (Sharma 2011). Of course, such
taxes may (like export bans) not translate into empirical price differences, so the benchmark
used here should be interpreted as the theoretical effect of a permanent 5% export tax.

The specification in equation 2.1 implicitly assumes that no other variables besides export
bans systematically affect price gaps over time. In columns 3 and 4 of table 2.2, I introduce
additional covariates to capture some of this potential temporal variation. Recent results
from Dillon and Barrett (2016) highlight the importance of fuel prices for maize trade in East
and Southern Africa. I construct monthly retail diesel price series in US dollars per liter at
the national level for my 12 countries of interest (plus the breakaway republic of Somaliland)
by using biennial observations from the International Fuel Prices project of GTZ (the German
technical cooperation) to compute markups over the Dubai Fateh crude oil index (the most
relevant for oil imports into East and Southern Africa) and filling in gaps between GTZ
observations using markups inferred by linear interpolation. In column 3, I add a term
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interacting these fuel prices in the origin market with the distance to the destination market
as well as a set of indicator variables for major infrastructure projects affecting particular
cross-border links compiled from government ministries and local newspaper archives. The
point estimate for the diesel-distance coefficient corresponds to the expected cost of a 10-
metric ton truck consuming 23 liters per 100 kilometers (11 miles per gallon), although it
is not statistically significant at conventional levels. In column 4, I include quarterly time
fixed effects and a time trend instead. In both of these new specifications, the coefficient
estimate on export bans is negative and not statistically different from zero. Similar results
were obtained using monthly and annual fixed effects with and without a time trend as well
as including all variables from both columns 3 and 4.

In column 5 of table 2.2, I exclude two outliers: the pairs involving Juba, South Sudan
and Hargeisa, Somaliland, which have the highest and most volatile prices of the markets in
my dataset. Their exclusion does not affect my results but does reduce the standard error
on my export ban coefficient estimate. This enables me to reject my alternate hypothesis
that the effect of export bans is as large as the theoretical effect of a 5% export tax at a 3%
significance level. In column 6, I explore whether the unbalancedness of the panel is affecting
my results by excluding all observations before January 2006, reducing my dataset from ten
years to six. With this adjustment, of the 3,528 possible price observations in my new panel,
only 171 (4.8%) are missing, as opposed to 19% in my original panel. My basic result that
export bans do not have a statistically significant effect on the price gaps between pairs of
affected cross-border markets remains unchanged.

In a further set of robustness checks not presented here, I interacted implementing country
indicator variables with the export ban indicator variable to look at potential heterogeneous
effects. Again, none of the coefficients were statistically different from zero, indicating that
none of the countries’ export bans had a statistically significant effect on the price gaps
between pairs of affected cross-border markets.

I next consider the possibility that regime 2, segmented equilibrium observations are
biasing my coefficient estimate towards zero. Suppose that export bans do increase price
gaps significantly for market pair-periods where they prevent trade from occurring but that I
am not detecting this increase because I am including many other observations of segmented
equilibria where trade would not occur with or without an export ban. In this case, if I were
to progressively drop increasing numbers of these regime 2 observations from my dataset my
coefficient estimate should increase.

In figure 2.2, I experiment with two different ways of identifying and excluding potential
regime 2 observations. Teravaninthorn and Raballand (2009) present data on transport prices
for several major African transport corridors that range from $0.07 to $0.13 per metric ton-
kilometer. In the previous chapter, I find that total trade costs are roughly double these
baseline freight rates and are higher off of major corridors, with a median trade cost of
$0.29/t-km. Among the cross-border market pairs considered in this chapter, the maximum
per-distance trade cost estimated in the previous chapter is $0.70/t-km, and the maximum
absolute trade cost is $0.20/kg. Since trade costs are un upper bound on price gaps in
regime 2, I proceed by dropping all observations in my dataset with price gaps below a
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Figure 2.2: Estimate of Export Ban Coefficient (solid black) and Bounds of 95% Confidence
Interval (dashed grey) with Increasing Threshold in USD/t-km (left) and USD/kg (right)

progressively increasing threshold. In the left panel of figure 2.2, I use the per-distance price
gap and progressively drop observations from 0 up to $0.70/t-km. In the right panel, I use
the absolute price gap and progressively drop observations from 0 up to $0.20/kg. At the
maximum threshold, only 354 (10.9%) and 297 (9.1%) observations remain in the dataset.
In both cases, the point estimate stays statistically insignificant and very close to zero, and
there is no sign of an upward trend as I drop increasing numbers of potential regime 2
observations. I conclude that my failure to detect an effect of export bans on cross-border
price gaps is not due to the presence of regime 2 observations.

2.3 Comparison to Model Simulations

In this section, I run simulations using the estimated dynamic monthly model of grain storage
and trade in sub-Saharan Africa from the previous chapter to help understand the surprising
empirical result from the previous section. The model consists of a representative consumer
and a representative competitive trader in each of 230 large hub markets covering all 42
countries of continental sub-Saharan Africa. The model includes maize and five other major
staple grains, and its demand, storage cost, and trade cost parameters were estimated using
data from May 2003 – April 2013. Given monthly (expected) production, (expected) world
prices, demand, storage costs, and trade costs, traders decide each month how much of each
grain to sell locally, to put into storage in each of the 230 locations, and to trade along
each of 413 overland bilateral transportation links as well as with the world market through
30 major ports. The model output includes equilibrium price series for each grain in each
market.

I adjust the model to start and stop a year earlier so as to match the timeframe of the
empirical exercise in the previous section and run three simulations. In the first simulation, I
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assume that export bans are not implemented so that trade is possible between cross-border
market pairs during every month at the constant, pair-specific trade costs from the original
estimated model. In the second simulation, I assume that the 13 export bans from table 2.1
are implemented and perfectly enforced and that traders are näıve, so the imposition and
lifting of the bans takes traders by surprise. This means that prior to bans storage and
trade decisions are made assuming that trade will always be possible at the constant, pair-
specific trade costs, and during bans these decisions are made assuming that trade will
never again be possible between the affected pairs (trade costs are infinite). In the third
simulation, I assume that the bans are implemented and perfectly enforced but that traders
have perfect foresight about the imposition and lifting of bans. This gives them the possibility
of exporting prematurely before bans are imposed and storing for future exports during bans.
Realistically, trader behavior is likely somewhere in between the second and third simulations,
given that precise information about future discretionary government actions is not available
but that some anticipation is certainly possible.

Figure 2.3: Map of 33 Selected Market Pairs (in bold) from Model

After solving month by month for the full continent-wide equilibrium for each of the three
simulations, I extract the price series for the 47 markets and 33 market pairs corresponding
most closely to the 49 markets and 40 market pairs from the dataset used in the previous
section. Figure 2.3 highlights these market pairs against the backdrop of the other markets
and transportation links in the continent-wide model. I then run the same regression from
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equation 2.1 using the price gaps for these market pairs from each of the model simulations
(table 2.3). The results reported here do not change significantly when all affected cross-
border pairs from the model (including those with Namibia, D.R. Congo, Eritrea, Sudan,
and the world market) are included.

Table 2.3: Results Using Simulated Price Series

No Bans Näıve Foresight

Export ban –0.00359 0.301*** 0.178***
(0.00287) (0.0726) (0.0408)

Observations 2938 2958 2934

Note: Robust dyadic standard errors in ();
*significant at 10%, ** at 5%, *** at 1%.

The results in table 2.3 are helpful for distinguishing between different explanations for
my finding in the previous section that export bans do not have a statistically significant
effect on the price gaps between cross-border markets. One possible explanation is that
export bans do increase price gaps but are implemented during periods of abnormally small
price gaps, which prevents me from detecting the effect. I can rule out this explanation using
the first simulation, which shows that in the absence of export bans, the difference between
the cross-border price gaps during periods when export bans were and were not actually
implemented would not have been significantly different from zero. A second explanation is
that export bans are not binding or that the trade flows they do prevent are so small that
the bans do not have a significant effect on price gaps. I can rule out this explanation using
the second simulation, which shows a very large effect of export bans on cross-border price
gaps (significant at the 1% level) when traders do not anticipate ban imposition and lifting.
The size of the effect is over four times larger than the average price gap of $0.0853/kg. A
third possible explanation is that since maize is storable and bans are temporary, traders
are able to limit the actual effects of export bans when they can anticipate their imposition
and lifting. The third simulation shows that perfect foresight would enable traders to cut
the effect of export bans on cross-border price gaps nearly in half, but the effect is still large
and statistically significant at the 1% level. Interviews with traders in the region confirm
that high storage costs (including the high cost of capital) make it costly for them to hold
on to stocks while waiting for a ban to be lifted.

Comparing my results from the model simulation without export ban implementation
in the first column of table 2.3 with my results using the actual price data in table 2.2,
it is clear that I cannot reject a hypothesis that export bans are simply not enforced. To
shed additional light on this hypothesis, I run additional regressions looking at the effects of
export bans on prices in both the origin markets in the export ban implementing countries
and the destination markets in the trading partner countries. These regressions are of the
form:

Pit = βBit + φi + εit (2.2)
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for origin markets and
Pjt = βBit + φj + εjt (2.3)

for destination markets, where φi and φj are fixed effects for origin and destination markets
respectively. I continue to restrict the data to the direction of the positive price gap so that
a given market pair has a single origin market and destination market each period. I run
these two regressions on the price data as well as the price series from each of the three
model simulations (table 2.4).

Table 2.4: Price Regressions with Data and Model Simulations

Data Data No Bans No Bans

Dependent variable Orig. price Dest. price Orig. price Dest. price
Export ban 0.0624*** 0.0574*** 0.0220*** 0.0183***

(0.00887) (0.0117) (0.00444) (0.00467)
Observations 3253 3253 2938 2938

Näıve Näıve Foresight Foresight

Dependent variable Orig. price Dest. price Orig. price Dest. price
Export ban –0.0438*** 0.256*** –0.0104 0.167***

(0.0130) (0.0509) (0.0682) (0.0312)
Observations 2958 2958 2934 2934

Note: Robust standard errors in () clustered by market;
*significant at 10%, ** at 5%, *** at 1%.

A concern with the specifications in equations 2.2 and 2.3 discussed previously is that
export bans are likely endogenous to prices as they are ostensibly implemented during periods
of high prices. Results in table 2.4 using the price series from the simulation with no bans
confirm that in the absence of export bans, prices in both origin and destination markets
would have been 2 US cents/kg higher during periods when bans were in fact in place than
in periods when they were not. However, in the data, prices in both origin and destination
markets are 6 US cents/kg higher during export ban periods, and the difference with the no-
ban simulation is statistically significant. This suggests that export bans are in fact having
some effect on market outcomes, although the empirical effects of export bans in the data are
still very different from those in the model simulations in which the bans are fully enforced
with either näıve traders or traders with perfect foresight. In both of these simulations,
the price response to bans is more consistent with theory, with destination market prices
increasing substantially and origin prices falling (näıve) or remaining statistically unchanged
(perfect foresight).

The results from this section suggest that the lack of an effect of export bans on the price
gaps between pairs of cross-border markets is consistent with the bans not being enforced
and is not consistent with the bans being perfectly enforced, even if traders can anticipate
the bans. However, the fact that prices in both origin and destination markets are higher
during export bans than they would have been in the absence of bans suggests that the bans
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are affecting markets somehow. In the following section, I present information collected from
market participants in the region about ban enforcement that helps explain these findings.

2.4 Imperfect Enforcement and Destabilizing Stabiliza-

tion

As part of the research for this chapter, I obtained information about ban enforcement from
market participants in Malawi, Tanzania, and Zambia, which together are responsible for 10
of the 13 export bans in my dataset. I conducted interviews with formal and informal private
traders of all sizes, trader associations, farmers, government officials, and market observers
including FEWS NET and the World Food Programme in these countries. I also visited six
border points in the region during export bans.

The consensus among market participants is that export bans are implemented but im-
perfectly enforced. The formal export of maize requires an export permit, typically issued
by the Ministry of Agriculture. When an export ban is imposed, permits are no longer
issued. The bans shut down most of the formal maize trade, but maize continues to cross
borders. Some formal traders (particularly those with the right political connections) are
able to obtain export permits during bans through back-door channels. Informal traders,
who may not be eligible for or choose to obtain export permits even during non-ban periods,
are also able to continue moving maize across borders during bans. At official border points,
informal traders often use bicycles, which are not regulated, to move maize between trucks
on either side of the border. Informal traders also use unofficial border crossings along the
long, porous land borders between countries in the region.

The total volume of maize that can be transported across affected borders during bans
may be subject to capacity constraints. At and around official border points, market par-
ticipants report that enforcement is positively correlated with volume, with border officials
generally tolerating low volumes of informal trade during bans but initiating patrols and
crackdowns when volumes increase. At one border point in Malawi, FEWS NET monitors
estimate the volume of informal maize trade tolerated by officials to be 200 metric tons per
month. This compares to formal export volumes that have occasionally been as high as
10,000 metric tons or more through this border point in non-ban months. At an unofficial
border crossing I visited elsewhere, a single dugout canoe with a capacity of 0.7 metric tons
is available to ferry maize between trucks across a river border during bans, allowing for the
transport of approximately 1,000 metric tons per month.

Theoretically, if capacity constraints are binding during bans, the price gaps between pairs
of affected cross-border markets should increase, which I do not observe in the data. However,
anecdotal evidence suggests that bans are often lifted in response to complaints from farmers
and traders about a lack of trading opportunities following bumper harvests, precisely the
time when capacity constraints may start to bind. To assess this possibility, I divide the
nine export bans for which I have start-to-finish data into quarters, drop observations from
the other four bans, and redo my main specification with separate indicator variables for the
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first, second, third, and fourth quarters of export bans. Results in table 2.5 indicate that
while price gaps are unchanged in the first three quarters of bans, they do exhibit a small
but statistically significant increase in the final quarter of bans. This suggests that capacity
constraints on informal cross-border trade generally only bind at the very end of bans, when
large new harvests may make governments amenable to lifting the bans anyway.

Table 2.5: Effect on Price Gaps by Ban Quarter

1st quarter of ban –0.00485
(0.00667)

2nd quarter of ban 0.011831
(0.00959)

3rd quarter of ban 0.0108
(0.0163)

4th quarter of ban 0.0182**
(0.00774)

Observations 3159

Note: Includes only bans with start-to-finish
data. Robust dyadic standard errors in ();
*significant at 10%, ** at 5%, *** at 1%.

Of potentially greater concern is that market participants report that the climate of
uncertainty created by discretionary export bans with ad hoc enforcement and the diver-
sion of trade away from formal, regulated traders to informal channels during export bans
destabilize markets. Faced by fluctuations in bans, permit issuing, and enforcement, both
formal and informal traders choose to engage less in long-term storage for future trade, in
contractual agreements with cross-border purchasers (particularly those with long-term de-
livery commitments), and in long-distance trade across far-off borders where they have fewer
connections and less local knowledge about informal channels. Instead, they prioritize short-
term, non-contractual, local transactions. This potentially weakens the capacity of markets
to respond efficiently to the harvest shortfalls or price increases that characterize export ban
periods.

To see whether these destabilizing effects show up in the data, I compute the standard
deviation of prices during export ban and non-export ban periods for each origin and destina-
tion market and re-run the regressions in equations 2.2 and 2.3 using the standard deviation
of prices as my dependent variable (table 2.6). In the data, the standard deviation of prices
for origin markets is 36% higher during export bans than its average in non-ban periods
(statistically significant at the 1% level), whereas model simulations indicate no significant
difference in standard deviation between ban and non-ban periods if the bans had not been
implemented. The point estimate for the standard deviation of prices for destination mar-
kets is also much larger in the data than in the “no bans” simulation (23% of its non-ban
average), but it is not statistically significant at conventional levels and is smaller than the
effect in model simulations when bans are implemented and fully enforced.

Taken together, my results suggest that export bans are having very different effects

54



Table 2.6: Standard Deviation Regressions with Data and Model Simulations

Data Data No Bans No Bans

Dependent variable Orig. SD Dest. SD Orig. SD Dest. SD
Export ban 0.0238*** 0.0198 0.00573 –0.00189

(0.00833) (0.0162) (0.00971) (0.00499)
Observations 78 82 52 64
Mean SD (no bans) 0.0662 0.0873 0.0648 0.0682

Näıve Näıve Foresight Foresight

Dependent variable Orig. SD Dest. SD Orig. SD Dest. SD
Export ban 0.00819 0.0661** 0.00936 0.0693**

(0.00796) (0.0296) (0.00655) (0.0299)
Observations 53 65 53 64
Mean SD (no bans) 0.0638 0.0654 0.0627 0.0676

Note: Robust standard errors in () clustered by market;
*significant at 10%, ** at 5%, *** at 1%.

than those intended by implementing country governments in East and Southern Africa.
Rather than cutting off trade, export bans divert it to the informal sector. Rather than
widening price gaps, export bans do not affect them. Rather than maintaining or lowering
domestic prices and domestic price volatility, export bans appear to increase both. Export
bans may thus be contributing to high and volatile domestic maize prices in a cycle that
makes governments all the more inclined to implement them.

2.5 Conclusion

In this chapter, I have used monthly data on maize prices from 40 pairs of cross-border
markets to investigate the empirical effects of 13 short-term export bans implemented by 5
countries in East and Southern Africa over a ten-year time period. My initial estimation
yielded the surprising result that export bans do not have a statistically significant effect on
cross-border price gaps. This result is robust to a variety of alternative specifications and
modifications of the dataset, including the elimination of potential segmented equilibria in
which the bans might not be binding. I am also able to reject a hypothesis that the effect
of export bans on price gaps is at least as large as the theoretical effect of a 5% export tax.

I compared my empirical results to results from running the same regressions on price
series obtained from three simulations using the estimated dynamic monthly model of grain
storage and trade in sub-Saharan Africa from the previous chapter. The simulations enabled
me to rule out several potential explanations for my surprising result, including that bans
are implemented in periods of abnormally low price gaps, that bans are not binding, and
that bans are ineffective due to trader anticipation. My results on price gaps are consistent
with a model simulation in which bans are not implemented, but prices in both implement-
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ing country and trading partner markets are significantly higher during bans than in this
simulation, as is price volatility in implementing country markets.

Information collected from market participants and visits to affected border points indi-
cates that export bans in the region are imperfectly enforced. Export bans divert trade into
the informal sector, which appears to be able to move enough maize across borders to keep
price gaps from widening until market conditions change and the implementing government
is ready to lift the ban. However, the increased prices and volatility during export ban peri-
ods compared to the model simulation with no bans suggest that the bans are destabilizing
markets as traders shift into short-term, non-contractual, local transactions.

While it is already widely accepted that export bans are disruptive for trading partner
countries, they can theoretically be justified by the countries that implement them, par-
ticularly those that weight consumers’ welfare more than that of producers. My results,
however, suggest that they may have unexpected empirical effects. Instead of stabilizing
and lowering domestic prices, export bans in East and Southern Africa appear to destabilize
markets, leading to increases in both domestic prices and domestic price volatility. Govern-
ments in the region should therefore reconsider their use of these policies even when they
seem justified on political economy grounds.

Although many of my findings appear to depend on the institutional and geographic
details of East and Southern Africa, these features are not unique to countries in the region.
Many of the countries that implemented export restrictions during the 2007 – 2008 food price
spike and its aftermath were developing countries with relatively weak institutions. Although
countries like India that are mostly surrounded by water may find it easier to enforce trade
policies, others like Ukraine have long and relatively porous land borders, and the active
smuggling of rice from Indonesia to the Philippines suggests that even island countries are
not immune to informal trade circumventing trade barriers. Moreover, chronologies of trade
policies used during this period reveal how unpredictable and ad hoc they were in many
countries (Sharma 2011, Headey 2011). The results presented here highlight how these
types of discretionary stabilization policies can end up being destabilizing — even for the
implementing countries themselves.
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Appendix A

A.1 Proofs of Propositions

Proposition 1. Consider any two markets m and n. If m and n have identical storage
costs then neither market stores and imports from the other simultaneously in equilibrium,
i.e. for any month t and grain i:

Sint > 0⇒ Timnt ≤ 0 and Timnt > 0⇒ Sint = 0

with a symmetric condition holding for Simt and trade from n to m.

Corollary 1. Consider a particular harvest year for two markets m and n with net trade of
grain i from m to n in equilibrium. Let the harvest year months be indexed s with the last
month before the next harvest s̄. Let the first month with trade from m to n be designated
s∗. Then the following must be true for any grain i:
(i) If rm ≤ rn and km − kn < rmτmn

1+rm
, then Sins > 0 for s < s∗ − 1, Sins ≥ 0 for s = s∗ − 1,

Sins = 0 for s ≥ s∗, Timns ≤ 0 for s < s∗, and Timns > 0 for s ≥ s∗. Traders store first and
trade later.
(ii) If rm ≥ rn and km − kn > rmτmn

1+rm
, then Sins > 0 for s < s∗ − 1, Sins ≥ 0 for s = s∗ − 1,

Sins > 0 for s∗ ≤ s < s̄, Timns∗ > 0, and Timns ≤ 0 for all s 6= s∗. Trade from m to n only
occurs in month s∗.
(iii) For any values of rm, rn, km, and kn, the pattern of storage and trade will be the same
as (i) if the following expression is negative and the same as (ii) if the following expression
is positive:

(1 + rm)km − (1 + rn)kn + (rm − rn)Pims∗ − rnτmn

Corollary 2. Given a set of demand and cost parameters, there is a unique grain market
equilibrium (competitive equilibrium).

Proof. Let m and n have identical storage costs k and r. First note that the spatial arbitrage
condition must hold in expectation in period t+ 1:

Et[Pin,t+1]− Et[Pim,t+1] ≤ τmn (A.1)
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Suppose market n has both imports and storage of grain i in period t (Sint > 0 and Timnt > 0).
Then by equations 1.11 and 1.12:

Sint > 0⇒ Pint =
Et[Pin,t+1]

1 + r
− k (A.2)

Timnt > 0⇒ Pint = Pimt + τmn (A.3)

Combining these two equations gives:

Pimt =
Et[Pin,t+1]

1 + r
− k − τmn (A.4)

The temporal arbitrage condition for market m implies:

Pimt ≥
Et[Pim,t+1]

1 + r
− k (A.5)

Combining these two equations gives:

Et[Pin,t+1]

1 + r
− k − τmn ≥

Et[Pim,t+1]

1 + r
− k (A.6)

⇒ Et[Pin,t+1]− Et[Pim,t+1] ≥ (1 + r)τmn > τmn (A.7)

Which is a contradiction of equation A.1, thus proving the main proposition.
For the first corollary, I allow for the possibility that rm 6= rn and km 6= kn and use

subscripts s for the months of the particular harvest year. Then equation A.6 becomes:

Es[Pin,s+1]

1 + rn
− kn − τmn ≥

Es[Pim,s+1]

1 + rm
− km (A.8)

⇒ Es[Pin,s+1]

1 + rn
− Es[Pim,s+1]

1 + rm
≥ τmn − (km − kn) (A.9)

Consider case (i) with rm ≤ rn:

rm ≤ rn ⇒
Es[Pin,s+1]

1 + rn
− Es[Pim,s+1]

1 + rm
≤ Es[Pin,s+1]

1 + rm
− Es[Pim,s+1]

1 + rm
(A.10)

⇒ Es[Pin,s+1]

1 + rm
− Es[Pim,s+1]

1 + rm
≥ Es[Pin,s+1]

1 + rn
− Es[Pim,s+1]

1 + rm
≥ τmn − (km − kn) (A.11)

Now suppose that km − kn < rmτmn

1+rm
. Then:

Es[Pin,s+1]

1 + rm
− Es[Pim,s+1]

1 + rm
≥ τmn − (km − kn) > τmn −

rmτmn
1 + rm

(A.12)

⇒ Es[Pin,s+1]− Es[Pim,s+1] > τmn (A.13)

This is a contradiction of equation A.1, so the conditions of the main proposition hold. By
definition, any months before s∗ have Timns ≤ 0, with or without storage (Sins ≥ 0). In
order to ensure positive grain consumption in these months, Sins > 0 for s < s∗ − 1. By the
main proposition, Timns∗ > 0 ⇒ Sins∗ = 0. Now consider the month s∗ + 1. Since there is
no additional harvest and Sins∗ = 0, the only source of grain for consumption is imports, so
Timn,s∗+1 > 0 and Sins∗+1 = 0. The same holds true for all s ≥ s∗.
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Now consider case (ii). Consider the first month with trade from m to n, s∗. Suppose that
there is also expected trade from m to n in the following month, i.e. E[Timn,s∗+1] > 0. Then
Sm > 0 as there is no subsequent harvest. Thus the following three arbitrage conditions are
binding:

Pims∗ = Pins∗ − τmn (A.14)

Es∗ [Pim,s∗+1] = Es∗ [Pin,s∗+1]− τmn (A.15)

Pims∗ + km =
Es∗ [Pim,s∗+1]

1 + rm
(A.16)

Substituting the first and second of these conditions into the third I get:

Pins∗ − τmn + km =
Es∗ [Pin,s∗+1]− τmn

1 + rm
(A.17)

⇒ Pins∗ + km −
rmτmn
1 + rm

=
Es∗ [Pin,s∗+1]

1 + rm
(A.18)

Now suppose that rm ≥ rn and km − kn > rmτmn

1+rm
(so that km − rmτmn

1+rm
> kn). Then I get:

Pins∗ + kn <
Es∗ [Pin,s∗+1]

1 + rm
≤ Es

∗ [Pin,s∗+1]

1 + rn
⇒ Pins∗ + kn <

Es∗ [Pin,s∗+1]

1 + rn
(A.19)

This is a contradiction of the temporal arbitrage condition for market n. The intuition is that
with sufficiently higher storage costs in m it is cheaper to import first and store the imports
in n for later consumption. Since having imports in s∗ and in s∗ + 1 led to a contradiction
and since s∗ was the first month with imports, it follows that Timns∗ > 0 and Timns ≤ 0 for
all s 6= s∗. With all imports concentrated in just one month (s∗), storage Sins in market
n must be strictly positive for all s < s̄ (with the exception of s∗ − 1) to ensure positive
consumption in every month.

Now consider case (iii). Taking equation A.9 for month s∗ and rearranging gives:

Es∗ [Pin,s∗+1]− Es∗ [Pim,s∗+1] ≥ (1 + rm)(1 + rn)τmn − (1 + rm)(1 + rn)(km − kn)

+ rnEs∗ [Pim,s∗+1]− rmEs∗ [Pin,s∗+1] (A.20)

For case (i) to hold the right-hand side of this expression must be larger than τmn, i.e.:

(1 + rm)(1 + rn)τmn − (1 + rm)(1 + rn)(km − kn) + rnEs∗ [Pim,s∗+1]− rmEs∗ [Pin,s∗+1] > τmn (A.21)

Substituting in for Es∗ [Pin,s∗+1] using the spatial arbitrage condition (which holds with equal-
ity for s∗ + 1 in case (i)) gives:

⇒ (1+rm)(1+rn)τmn−(1+rm)(1+rn)(km−kn)+rnEs∗ [Pim,s∗+1]−rm(Es∗ [Pim,s∗+1]+τmn) > τmn (A.22)

⇒ km − kn <
rnτmn

(1 + rn)
+
rnEs∗ [Pim,s∗+1]

(1 + rm)(1 + rn)
− rmEs∗ [Pim,s∗+1]

(1 + rm)(1 + rn)
(A.23)

63



Substituting in for Es∗ [Pim,s∗+1] using the temporal arbitrage condition (which holds with
equality for m in s∗ in case (i)) gives:

⇒ km − kn <
rnτmn

(1 + rn)
+
rn(Pims∗ + km)

(1 + rn)
− rm(Pims∗ + km)

(1 + rn)
(A.24)

⇒ (1 + rm)km − (1 + rn)kn + (rm − rn)Pims∗ − rnτmn < 0 (A.25)

Now taking equation A.18 and rearranging gives:

1 + rm
1 + rn

(Pins∗ + km)− rmτmn
1 + rn

=
Es∗ [Pin,s∗+1]

1 + rn
(A.26)

For case (ii) to hold the left-hand side of this expression must be larger than Pins∗ + kn, i.e.:

1 + rm
1 + rn

(Pins∗ + km)− rmτmn
1 + rn

> Pins∗ + kn (A.27)

⇒ (1 + rm)km − (1 + rn)kn > rnPins∗ − rmPins∗ + rmτmn (A.28)

Substituting in for Pins∗ using the spatial arbitrage condition (which holds with equality for
s∗) gives:

(1 + rm)km − (1 + rn)kn > rn(Pims∗ + τmn)− rm(Pims∗ + τmn) + rmτmn (A.29)

⇒ (1 + rm)km − (1 + rn)kn + (rm − rn)Pims∗ − rnτmn > 0 (A.30)

This completes the proof of the first corollary.
For the second corollary, suppose there exist two different grain market equilibria with

the second equilibrium denoted by the prime symbol. Consider first the case of a system of
two markets m and n with no world market for a single harvest year.

Suppose there is no trade between the markets in either equilibrium. Given that the
harvest in each market is exogenous,

∑
tHimt =

∑
tQimt =

∑
tQ
′
imt. The temporal arbitrage

conditions must hold with equality between all periods in each market to ensure positive
consumption in every period. If there were two different sets of prices satisfying the temporal
arbitrage conditions with equality then Pimt > P ′imt or vice versa for all t, implying

∑
tQimt <∑

tQ
′
imt or vice versa, a contradiction. Therefore Pimt = P ′imt ⇒ Qimt = Q′imt ⇒ Simt = S ′imt

for every grain, market, and month, so the equilibria are identical, a contradiction.
Now suppose there is trade between the markets in one equilibrium and there is no trade

between the markets in the other equilibrium. If the markets were in autarky (no trade
allowed) then there would be a unique equilibrium (as shown above). Now they open up to
trade. If there is a no-trade equilibrium then the autarky price gaps are always less than or
equal to trade costs. If there is a trade equilibrium then the autarky price gaps exceed trade
costs in some periods. Since there is a unique autarky equilibrium, this is a contradiction.

Now suppose there is trade between the markets in both equilibria. Without loss of
generality let m by the exporting market and n the importing market. Given the exogenous
harvest in each market,

∑
tHimt +

∑
tHint =

∑
tQimt +

∑
tQint =

∑
tQ
′
imt +

∑
tQ
′
int. The

overall pattern of storage and trade is determined by the first corollary (case (i) or case (ii)).
In either case, the price of a particular grain in every market in every period is connected to
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the price in any other market-period by a series of temporal or spatial arbitrage conditions
that must hold with equality. If there were two sets of prices such that the relevant arbitrage
conditions were satisfied with equality then

∑
tQimt +

∑
tQint 6=

∑
tQ
′
imt +

∑
tQ
′
int, a

contradiction. Therefore Pimt = P ′imt ⇒ Qimt = Q′imt for every grain and month for both
m and n, which in turn implies by the first corollary that Timnt = T ′imnt, Simt = S ′imt, and
Sint = S ′int, so the equilibria are identical, a contradiction.

Now allow for multiple harvest years with storage possible between years. Initial entering
stocks in the very first period are exogenous and hence identical for the two equilibria.
Consider the first harvest year and the first inter-harvest storage decision. With identical
available supply and identical expectations, traders will make the same inter-harvest storage
decision in both equilibria, with the location of the inter-harvest storage determined by the
proposition and first corollary. With identical entering stocks, harvests, and inter-harvest
storage,

∑
tQimt +

∑
tQint =

∑
tQ
′
imt +

∑
tQ
′
int for the first harvest year, so the results

above hold. For the second harvest year, identical inter-harvest storage from the first year
and identical exogenous harvests imply identical total available supply again, so the same
arguments hold. Thus the equilibria are identical, a contradiction.

Now consider extending the two-market multi-year case to many markets (still with no
world market). Assume that there are no knife-edge cases, i.e. cases where grain can pass
from one market to another market elsewhere in the network by two routes with identical
costs. By analogy to the two-market case, any two equilibria must have the same subset
of markets linked by trade. For this subset of markets, inter-harvest storage decisions are
identical across equilibria and

∑
m

∑
tQimt =

∑
m

∑
tQ
′
imt within harvest years. As in the

two-market case, for each harvest year, the price of a particular grain in every market in
every period is connected to the price in every other market-period by a series of temporal
or spatial arbitrage conditions that must hold with equality and are determined by the
first corollary. If there were two sets of prices such that the relevant arbitrage conditions
were satisfied with equality then

∑
m

∑
tQimt 6=

∑
m

∑
tQ
′
imt, a contradiction. Therefore

Pimt = P ′imt ⇒ Qimt = Q′imt for every grain-market-month, which in turn implies by the first
corollary that Timnt = T ′imnt and Simt = S ′imt, so the equilibria are identical, a contradiction.

Now consider extending the multi-market multi-year case to include the world market
with perfectly elastic supply and monthly price uncertainty. Each month, traders (who have
identical expectations) make supply allocation plans for current and future months based
on price expectations. Consider two different plans for a particular month t. If neither
or only one of these plans includes trade with the world market, there is a contradiction
by the arguments above. Suppose both plans include trade with the world market. The
trade pattern with the world market is determined as in the first corollary. For a given plan,
planned prices in all markets connected by trade to the world market in all periods connected
by storage to the period with trade with the world market are pinned down by the expected
world market price. Since both plans have the same trade pattern, Pimt = P ′imt ⇒ Qimt =
Q′imt for every grain, market, and month, which in turn implies by the first corollary that
Timnt = T ′imnt and Simt = S ′imt, so the plans are identical, a contradiction. Since a given plan
for a particular month t is unique, all equilibrium Pimt, Qimt, Simt, and Timnt for that month
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will be unique. By extension, the grain market equilibrium for all months will be unique.
A unique grain market equilibrium implies a unique competitive equilibrium. This com-

pletes the proof.
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A.2 Market Selection

Table A1, which begins on the next page, includes three lists of markets by country and town
population (in thousands). “Markets A” is my initial list of 178 towns with a population of
at least 100,000 that are at least 200 kilometers apart1. When two towns of over 100,000 pop-
ulation are closer than 200 kilometers the larger is chosen. Population data is from national
censuses of different years as reported on various online databases (e.g. citypopulation.de)
and should be taken as approximate. “Markets B” includes all “Markets A” plus 85 addi-
tional towns that are either towns located at important transport hubs (road junctions or
ports) or additional major towns in countries with high initial population-to-market ratios.
This is my ideal list of 263 markets for which I attempted to obtain price data. “Markets
C” is the list of 230 markets in my final network. This includes 218 of the 263 markets on
my ideal list for which I was able to obtain price data as well as an additional 12 markets
with price data which are located close to 12 of the missing markets and which I therefore
use as substitutes (indicated in italics in the table).

Table A2, which follows table A1, shows the population-to-market ratios by country for
the three sets of markets (A, B, and C). In adding markets to generate the ideal list of
markets (Markets B), the population-to-market ratios in the initial list (Markets A) were
used as one criterion. In the ideal list of markets, only Nigeria and Ethiopia — the two most
populous countries — have population-to-market ratios above 4 million. In the final network
(Markets C), the three countries with more than two missing markets (Angola, Cameroon,
and Uganda) are the only ones besides Nigeria and Ethiopia that are significantly above this
threshold.

1Note that Johannesburg is the only town included in South Africa due to its special treatment in my
model.
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Table A.1: List of Markets by Country and Town Population

Country Markets A Population Markets B Population Markets C Population

Angola Luanda 2584 Luanda 2584 Luanda 2584
Cabinda 378 Cabinda 378
Huambo 333 Huambo 333
Lubango 251 Lubango 251
Malanje 157 Malanje 157
Lobito 145 Lobito 145
Uige 116 Uige 116

Luena 85
Saurimo 78

Benin Cotonou 818 Cotonou 818 Cotonou 818
Parakou 227 Parakou 227 Parakou 227
Kandi 150 Kandi 150 Malanville 36

Natitingou 120 Natitingou 120 Natitingou 120

Botswana Gaborone 186 Gaborone 186 Gaborone 186
Francistown 83

Burk. Faso Ouagadougou 1182 Ouagadougou 1182 Ouagadougou 1182
Bobo Dioul. 436 Bobo Dioul. 436 Bobo Dioul. 436

Ouahigouya 71
Fada Ngo. 41 Fada Ngo. 41
Dedougou 38 Dedougou 38

Burundi Bujumbura 340 Bujumbura 340 Bujumbura 340
Gitega 47 Gitega 47

Muyinga 45 Muyinga 45

Cameroon Douala 1907 Douala 1907 Douala 1907
Yaounde 1818 Yaounde 1818 Yaounde 1818
Bamenda 270 Bamenda 270 Bamenda 270
Garoua 236 Garoua 236 Garoua 236
Maroua 201 Maroua 201

Ngaoundere 153 Ngaoundere 153
Kousseri 89
Bertoua 88

C.A.R. Bangui 623 Bangui 623 Bangui 623
Berberati 77
Bambari 41 Bambari 41
Bouar 40

Bangassou 32 Bangassou 32

Chad Ndjamena 818 Ndjamena 818 Ndjamena 818
Moundou 141 Moundou 141 Moundou 141

Sarh 119 Sarh 119 Sarh 119
Abeche 77 Abeche 77

Congo Brazzaville 1373 Brazzaville 1373 Brazzaville 1373
Pointe-Noire 715 Pointe-Noire 715 Pointe-Noire 715

Impfondo 34 Impfondo 34
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Country Markets A Population Markets B Population Markets C Population

C.d.I. Abdijan 3677 Abdijan 3677 Abdijan 3677
Bouake 567 Bouake 567 Bouake 567
Daloa 216 Daloa 216 Daloa 216

San Pedro 197 San Pedro 197
Korhogo 167 Korhogo 167 Odienne 43

Man 139 Man 139
Abengourou 71 Abengourou 71

D.R.C. Kinshasa 8901 Kinshasa 8901 Kinshasa 8901
Lubumbashi 1630 Lubumbashi 1630 Lubumbashi 1630
Mbuji-Mayi 1559 Mbuji-Mayi 1559 Mbuji-Mayi 1559
Kisangani 868 Kisangani 868 Kisangani 868
Bukavu 707 Bukavu 707 Bukavu 707

Tshikapa 524 Tshikapa 524 Tshikapa 524
Kolwezi 451 Kolwezi 451 Kolwezi 451
Goma 377 Goma 377 Goma 377
Kikwit 370 Kikwit 370 Kikwit 370
Bunia 327 Bunia 327 Bunia 327

Mbandaka 324 Mbandaka 324 Mbandaka 324
Matadi 291 Matadi 291 Matadi 291

Butembo 204 Butembo 204 Butembo 204
Isiro 175 Isiro 175 Isiro 175

Kindu 164 Kindu 164 Kindu 164
Kamina 144 Kamina 144 Kamina 144

Bandundu 137 Bandundu 137 Bandundu 137
Gemena 133 Gemena 133 Zongo 33
Bumba 103 Bumba 103 Gbadolite 48

Kananga 967 Kananga 967
Uvira 337 Uvira 337

Kalemie 92 Kalemie 92

Djibouti Djibouti 624 Djibouti 624 Djibouti 624

Eritrea Asmara 650 Asmara 650 Asmara 650
Teseney 65
Massawa 37 Massawa 37
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Country Markets A Population Markets B Population Markets C Population

Ethiopia Addis Ab. 3041 Addis Ab. 3041 Addis Ab. 3041
Dire Dawa 274 Dire Dawa 274 Dire Dawa 274

Mekele 272 Mekele 272 Mekele 272
Gondar 254 Gondar 254 Gondar 254
Awasa 213 Awasa 213 Awasa 213
Jimma 149 Jimma 149 Jimma 149
Dessie 148 Dessie 148 Dessie 148

Bahir Dar 191 Bahir Dar 191
Jijiga 147 Jijiga 147

Arba Minch 96
Nekemte 89 Nekemte 89

Gode 68 Gode 68
Adwa 41

Gambela 39 Gambela 39
Moyale 34 Yabelo 18

Gabon Libreville 591 Libreville 591 Libreville 591
Port Gentil 112 Port Gentil 112

Gambia Banjul 524 Banjul 524 Banjul 524

Ghana Accra 2070 Accra 2070 Accra 2070
Kumasi 2035 Kumasi 2035 Kumasi 2035
Tamale 371 Tamale 371 Tamale 371

Sek. Tak. 539 Sek. Tak. 539 Sek. Tak. 539
Ho 105 Ho 105
Wa 71 Wa 71

Bolgatanga 66 Bolgatanga 66

Guinea Conakry 1400 Conakry 1400 Conakry 1400
Nzerekore 178 Nzerekore 178 Nzerekore 178

Boke 147 Boke 147
Kankan 142 Kankan 142 Kankan 142

Gueckedou 96
Mamou 60 Labe 59

G. Bissau Bissau 388 Bissau 388 Bissau 388
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Country Markets A Population Markets B Population Markets C Population

Kenya Nairobi 3138 Nairobi 3138 Nairobi 3138
Mombasa 939 Mombasa 939 Mombasa 939
Kisumu 388 Kisumu 388 Kisumu 388
Garissa 116 Garissa 116 Garissa 116

Nakuru 308 Nakuru 308
Eldoret 289 Eldoret 289

Mandera 88 Mandera 88
Wajir 82 Wajir 82

Lodwar 48 Lodwar 48
Isiolo 46

Moyale 38 Moyale 38

Lesotho Maseru 218 Maseru 218 Maseru 218

Liberia Monrovia 1022 Monrovia 1022 Monrovia 1022
Gbarnga 57 Gbarnga 57 Gbarnga 57

Malawi Lilongwe 647 Lilongwe 647 Lilongwe 647
Blantyre 585 Blantyre 585 Blantyre 585
Mzuzu 175 Mzuzu 175 Mzuzu 175

Mangochi 40 Mangochi 40
Karonga 34 Karonga 34

Mali Bamako 1809 Bamako 1809 Bamako 1809
Sikasso 226 Sikasso 226 Sikasso 226
Segou 131 Segou 131 Segou 131
Kayes 127 Kayes 127 Kayes 127
Mopti 114 Mopti 114 Mopti 114

Gao 87 Gao 87

Mauritania Nouakchott 719 Nouakchott 719 Nouakchott 719
Nouadhibou 90
Adel Bagrou 58 Adel Bagrou 58

Kiffa 40 Tintane 22

Mozambique Maputo 1766 Maputo 1766 Maputo 1766
Beira 546 Beira 546 Beira 546

Nampula 478 Nampula 478 Nampula 478
Chimoio 239 Chimoio 239 Chimoio 239

Quelimane 193 Quelimane 193 Quelimane 193
Tete 156 Tete 156 Tete 156

Lichinga 142 Lichinga 142 Lichinga 142
Pemba 141 Pemba 141 Pemba 141
Gurue 117 Gurue 117 Cuamba 95

Xai Xai 116 Xai Xai 116 Xai Xai 116
Maxixe 106 Maxixe 106 Maxixe 106

Nacala 208 Nacala 208
Milange 30 Milange 30
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Country Markets A Population Markets B Population Markets C Population

Namibia Windhoek 268 Windhoek 268 Windhoek 268
Rundu 58 Kat. Mulilo 28

Walvis Bay 52 Swakopmund 44
Oshakati 37 Oshakati 37

Niger Niamey 1303 Niamey 1303 Niamey 1303
Zinder 275 Zinder 275 Zinder 275
Maradi 206 Maradi 206 Maradi 206
Agadez 124 Agadez 124 Agadez 124
Tahoua 123 Tahoua 123 Tahoua 123

Arlit 112 Arlit 112 Arlit 112
Diffa 48 Diffa 48

Nigeria Lagos 8029 Lagos 8029 Lagos 8029
Kano 3249 Kano 3249 Kano 3249

Kaduna 1459 Kaduna 1459 Kaduna 1459
Pt. Harcourt 1054 Pt. Harcourt 1054 Pt. Harcourt 1054
Benin City 1052 Benin City 1052 Benin City 1052
Maiduguri 972 Maiduguri 972 Maiduguri 972

Ilorin 756 Ilorin 756 Ilorin 756
Jos 742 Jos 742 Jos 742

Enugu 593 Enugu 593 Enugu 593
Sokoto 501 Sokoto 501 Sokoto 501
Okene 445 Okene 445 Lokoja 90

Calabar 431 Calabar 431 Calabar 431
Makurdi 249 Makurdi 249 Makurdi 249
Gombe 231 Gombe 231 Gombe 231

Yola 218 Yola 218 Yola 218
Abuja 160 Abuja 160 Abuja 160

Gashua 110 Gashua 110
Ibadan 3078 Ibadan 3078
Katsina 387 Katsina 387
Akure 370 Akure 370

Rwanda Kigali 745 Kigali 745 Kigali 745
Butare 90 Butare 90
Gisenyi 84 Gisenyi 84

Senegal Dakar 1999 Dakar 1999 Dakar 1999
Ziguinchor 162 Ziguinchor 162 Ziguinchor 162
St. Louis 131 St. Louis 131 St. Louis 131

Touba 428 Touba 428
Kaolack 174 Kaolack 174

Tambacounda 75 Tambacounda 75

S. Leone Freetown 773 Freetown 773 Freetown 773
Bo 150 Bo 150 Bo 150

Kabala 14 Kabala 14
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Country Markets A Population Markets B Population Markets C Population

Somalia Mogadishu 1353 Mogadishu 1353 Mogadishu 1353
Hargeisa 1200 Hargeisa 1200 Hargeisa 1200
Bosaso 700 Bosaso 700 Bosaso 700
Galkayo 545 Galkayo 545 Galkayo 545
Kismayo 183 Kismayo 183 Kismayo 183
Baidoa 158 Baidoa 158 Baidoa 158

Berbera 233
Beledweyne 67 Beledweyne 67

Garoowe 57 Garoowe 57

South Africa Johannesburg 957 Johannesburg 957 Johannesburg 957

South Sudan Juba 372 Juba 372 Juba 372
Wau 151 Wau 151 Wau 151

Malakal 139 Malakal 139 Malakal 139
Yambio 40
Rumbek 32 Rumbek 32

Bor 27 Bor 27

Sudan Khartoum 4273 Khartoum 4273 Khartoum 4273
Nyala 493 Nyala 493 Nyala 493

Port Sudan 395 Port Sudan 395 Port Sudan 395
El Obeid 345 El Obeid 345 El Obeid 345
Kassala 299 Kassala 299 Kassala 299

Al Qadarif 269 Al Qadarif 269 Al Qadarif 269
Al Fashir 218 Al Fashir 218 Al Fashir 218

Kostil 213 Kostil 213 Kostil 213
Ad Damazin 137 Ad Damazin 137 Ad Damazin 137
El Geneina 134 El Geneina 134 El Geneina 134

Atbarah 112 Atbarah 112
Kadugli 67 Kadugli 67

Swaziland Mbabane 95 Mbabane 95
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Country Markets A Population Markets B Population Markets C Population

Tanzania Dar es Salaam 4365 Dar es Salaam 4365 Dar es Salaam 4365
Mwanza 707 Mwanza 707 Mwanza 707
Arusha 416 Arusha 416 Arusha 416
Dodoma 411 Dodoma 411 Dodoma 411
Mbeya 385 Mbeya 385 Mbeya 385
Tanga 273 Tanga 273 Tanga 273
Tabora 227 Tabora 227 Tabora 227
Kigoma 215 Kigoma 215 Kigoma 215

Sumbawanga 210 Sumbawanga 210 Sumbawanga 210
Songea 203 Songea 203 Songea 203

Musoma 178 Musoma 178 Musoma 178
Iringa 151 Iringa 151 Iringa 151

Singida 150 Singida 150 Singida 150
Bukoba 129 Bukoba 129 Bukoba 129
Mtwara 108 Mtwara 108 Mtwara 108
Mpanda 102 Mpanda 102

Togo Lome 729 Lome 729 Lome 729
Sokode 118 Sokode 118 Kara 104

Uganda Kampala 1660 Kampala 1660 Kampala 1660
Gulu 154 Gulu 154 Gulu 154

Lira 108 Lira 108
Mbale 92
Jinja 90 Jinja 90

Mbarara 84 Mbarara 84
Kasese 74
Masaka 74
Arua 59 Arua 59

Masindi 45 Masindi 45

Zambia Lusaka 2147 Lusaka 2147 Lusaka 2147
Kitwe 410 Kitwe 410 Kitwe 410

Chipata 117 Chipata 117 Chipata 117
Livingstone 113 Livingstone 113 Livingstone 113

Kasama 102 Kasama 102 Kasama 102
Kabwe 193 Kabwe 193
Solwezi 91 Solwezi 91
Mongu 52 Mongu 52

Zimbabwe Harare 1607 Harare 1607 Harare 1607
Bulawayo 713 Bulawayo 713 Bulawayo 713
Mutare 194 Mutare 194 Mutare 194

Masvingo 81 Masvingo 81
Hwange 37 Hwange 37
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Table A.2: Population (2010, Millions) per Market by Country

Country Popn Mkts A Pop/Mkt Mkts B Pop/Mkt Mkts C Pop/Mkt

Angola 19.55 7 2.79 9 2.17 1 19.55
Benin 9.51 4 2.38 4 2.38 4 2.38
Botswana 1.97 1 1.97 2 0.98 1 1.97
Burk. Faso 15.54 2 7.77 5 3.11 4 3.89
Burundi 9.23 1 9.23 3 3.08 3 3.08
Cameroon 20.62 6 3.44 8 2.58 4 5.16
C.A.R. 4.35 1 4.35 5 0.87 3 1.45
Chad 11.72 3 3.91 4 2.93 4 2.93
Congo 4.11 2 2.06 3 1.37 3 1.37
C.d.I. 18.98 5 3.80 7 2.71 6 3.16
D.R.C. 62.19 19 3.27 22 2.83 22 2.83
Djibouti 0.83 1 0.83 1 0.83 1 0.83
Eritrea 5.74 1 5.74 3 1.91 2 2.87
Ethiopia 87.10 7 12.44 15 5.81 13 6.70
Gabon 1.56 2 0.78 2 0.78 1 1.56
Gambia 1.68 1 1.68 1 1.68 1 1.68
Ghana 24.26 4 6.07 7 3.47 7 3.47
Guinea 10.88 4 2.72 6 1.81 4 2.72
G. Bissau 1.59 1 1.59 1 1.59 1 1.59
Kenya 40.91 4 10.23 11 3.72 10 4.09
Lesotho 2.01 1 2.01 1 2.01 1 2.01
Liberia 3.96 1 3.96 2 1.98 2 1.98
Malawi 15.01 3 5.00 5 3.00 5 3.00
Mali 13.99 5 2.80 6 2.33 6 2.33
Mauritania 3.61 1 3.61 4 0.90 3 1.20
Mozambique 23.97 11 2.18 13 1.84 13 1.84
Namibia 2.18 1 2.18 4 0.54 4 0.54
Niger 15.89 6 2.65 7 2.27 7 2.27
Nigeria 159.71 17 9.39 20 7.99 19 8.41
Rwanda 10.84 1 10.84 3 3.61 3 3.61
Senegal 12.95 3 4.32 6 2.16 6 2.16
Sierra Leone 5.75 2 2.88 3 1.92 3 1.92
Somalia 9.64 6 1.61 9 1.07 8 1.20
South Africa NA 1 NA 1 NA 1 NA
South Sudan 9.94 3 3.31 6 1.66 5 1.99
Sudan 35.65 11 3.24 12 2.97 11 3.24
Swaziland 1.19 1 1.19 1 1.19 1 1.19
Tanzania 44.97 16 2.81 16 2.81 15 3.00
Togo 6.31 2 3.15 2 3.15 2 3.15
Uganda 33.99 2 16.99 10 3.40 7 4.86
Zambia 13.22 5 2.64 8 1.65 8 1.65
Zimbabwe 13.08 3 4.36 5 2.62 5 2.62

Total 842.31 178 4.73 263 3.20 230 3.66
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A.3 Grain Types and Data Sources

Table A3, which begins on the next page, lists the seasonal regime and the grain types for
each of the 230 markets in my final network. 112 markets fall into the Northern Hemisphere
zone (N) with a single annual grain harvest in October, 70 markets fall into the Equatorial
zone (E) with a larger grain harvest (two-thirds of the annual total) in July and a smaller
grain harvest (one-third of the annual total) in December, and 48 markets fall into the
Southern Hemisphere zone (S) with a single annual grain harvest in May.

To determine the grain types for each market, I first made a list for each country of
all cereal grains constituting at least 5% of national cereal grain production. I excluded
barley (Eritrea and Ethiopia) and fonio (Guinea) as they are relatively minor grains. I then
searched for available price data for these grains and removed a few from the final list so
as to have contiguous areas for each grain for my trade network. My final list includes 76%
of the grains on the initial list, with the missing grains relatively minor in terms of share
of national cereal grain production. 86% of total cereal grain production in my countries of
interest is covered by a grain price series in its associated market.

Table A4, which follows table A3, lists the data sources by country for my price data.
Most series were obtained from secondary sources, particularly the online databases main-
tained by the World Food Programme’s VAM unit and FAO’s GIEWS project. However,
table A3 also includes the primary sources from which these databases obtained their price
data. Although the price data are often collected by different government ministries in dif-
ferent countries, the methodology is typically quite similar and the mandate usually falls
into one of three categories: (i) agricultural market information systems (MIS) intended to
provide information to farmers and traders on market prices in different locations; (ii) price
monitoring by national statistics offices for the monthly consumer price index (CPI); or (iii)
food security monitoring by agencies like the World Food Programme.
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Table A.3: Seasonal Regime and Grain Types by Market

Country Market Season Maize Millet Rice Sorghum Teff Wheat

Angola Luanda E X

Benin Cotonou N X X
Malanville N X X
Natitingou N X X X
Parakou N X X

Botswana Gaborone S X

Burk. Faso Bobo Dioulasso N X X
Dedougou N X X

Fada Ngourma N X X
Ouagadougou N X X

Burundi Bujumbura E X X
Gitega E X X

Muyinga E X X

Cameroon Bamenda N X X
Douala N X X
Garoua N X X
Yaounde N X X

C.A.R. Bambari E X X
Bangassou E X X

Bangui E X X

Chad Abeche N X X
Moundou N X X
Ndjamena N X X X X

Sarh N X X

Congo Brazzaville E X
Impfondo E X

Pointe Noire E X

C.d.I. Abengourou N X X
Abidjan N X X
Bouake N X X
Daloa N X X
Man N X X

Odienne N X X

77



Country Market Season Maize Millet Rice Sorghum Teff Wheat

D.R. Congo Bandundu E X X
Bukavu E X X
Bunia E X X

Butembo E X X
Gbadolite E X X

Goma E X X
Isiro E X X

Kalemie S X X
Kamina S X X
Kananga E X X
Kikwit E X X
Kindu E X X

Kinshasa E X X
Kisangani E X X
Kolwezi S X X

Lubumbashi S X X
Matadi E X X

Mbandaka E X X
Mbuji Mayi E X X

Tshikapa E X X
Uvira E X X
Zongo E X X

Djibouti Djibouti N X

Eritrea Asmara N X
Massawa N X

Ethiopia Addis Ababa N X X X X
Awasa N X X X X

Bahir Dar N X X X X
Dessie N X X X X

Dire Dawa N X X X X
Gambela N X X X X

Gode E X X X
Gondar N X X X
Jijiga E X X X

Jimma N X X X X
Mekele N X X X X

Nekemte N X X X
Yabelo E X X

Gabon Libreville N X

Gambia Banjul N X X X X
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Country Market Season Maize Millet Rice Sorghum Teff Wheat

Ghana Accra N X X X X
Bolgatanga N X X X X

Ho N X X
Kumasi N X X X X

Sekondi Takoradi N X X
Tamale N X X X X

Wa N X X X X

Guinea Conakry N X
Kankan N X

Labe N X
Nzerekore N X

Guinea Bissau Bissau N X X X X

Kenya Eldoret E X
Garissa E X
Kisumu E X
Lodwar E X

Mandera E X
Mombasa E X
Moyale E X
Nairobi E X
Nakuru E X
Wajir E X

Lesotho Maseru S X

Liberia Gbarnga N X
Monrovia N X

Malawi Blantyre S X
Karonga S X
Lilongwe S X
Mangochi S X

Mzuzu S X

Mali Bamako N X X X
Gao N X X X

Kayes N X X X
Mopti N X X X
Segou N X X X
Sikasso N X X X

Mauritania Adel Bagrou N X X
Nouakchott N X X

Tintane N X X
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Country Market Season Maize Millet Rice Sorghum Teff Wheat

Mozambique Beira S X X
Chimoio S X X
Cuamba S X X
Lichinga S X X
Maputo S X X
Maxixe S X X
Milange S X X
Nacala S X X

Nampula S X X
Pemba S X X

Quelimane S X X
Tete S X X

Xai Xai S X X

Namibia Katima Mulilo S X
Oshakati S X

Swakopmund S X
Windhoek S X

Niger Agadez N X X
Arlit N X X
Diffa N X X

Maradi N X X
Niamey N X X
Tahoua N X X
Zinder N X X

Nigeria Abuja N X X X X
Akure N X X X X

Benin City N X X X X
Calabar N X X X X
Enugu N X X X X
Gombe N X X X X
Ibadan N X X X X
Ilorin N X X X X
Jos N X X X X

Kaduna N X X X X
Kano N X X X X

Katsina N X X X X
Lagos N X X X X
Lokoja N X X X X

Maiduguri N X X X X
Makurdi N X X X X

Port Harcourt N X X X X
Sokoto N X X X X
Yola N X X X X
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Country Market Season Maize Millet Rice Sorghum Teff Wheat

Rwanda Butare E X X
Gisenyi E X X
Kigali E X X

Senegal Dakar N X X X X
Kaolack N X X X X

Saint Louis N X X X X
Tambacounda N X X X X

Touba N X X X X
Ziguinchor N X X X X

Sierra Leone Bo N X
Freetown N X
Kabala N X

Somalia Baidoa E X X
Beledweyne E X X

Bosaso E X X
Galkayo E X X
Garoowe E X X
Hargeisa E X X
Kismayo E X X

Mogadishu E X X

South Africa Johannesburg S X

South Sudan Bor N X X
Juba E X X

Malakal N X X
Rumbek N X X

Wau N X X

Sudan Ad Damazin N X X X
Al Fashir N X X X

Al Qadarif N X X X
El Geneina N X X X
El Obeid N X X X
Kadugli N X X X
Kassala N X X X

Khartoum N X X X
Kosti N X X X
Nyala N X X X

Port Sudan N X X X
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Country Market Season Maize Millet Rice Sorghum Teff Wheat

Swaziland Mbabane S X

Tanzania Arusha E X X
Bukoba E X X

Dar es Salaam E X X
Dodoma E X X
Iringa S X X

Kigoma E X X
Mbeya S X X
Mtwara S X X
Musoma E X X
Mwanza E X X
Singida E X X
Songea S X X

Sumbawanga S X X
Tabora E X X
Tanga E X X

Togo Kara N X X X
Lome N X X X

Uganda Arua E X
Gulu E X X
Jinja E X X

Kampala E X X
Lira E X X

Masindi E X X
Mbarara E X X

Zambia Chipata S X
Kabwe S X

Kasama S X
Kitwe S X

Livingstone S X
Lusaka S X
Mongu S X
Solwezi S X

Zimbabwe Bulawayo S X
Harare S X
Hwange S X

Masvingo S X
Mutare S X

Total 180 64 126 110 9 23
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Table A.4: Primary and Secondary Data Sources by Country

Country Markets Series Primary Source Secondary Source

Angola 1 1 National Institute of Statistics
Benin 4 9 Min. of Ag., Livestock, & Fisheries FAO GIEWS
Botswana 1 1 Central Statistics Office BIDPA
Burk. Faso 4 8 Afrique Verte FAO GIEWS
Burundi 3 6 World Food Programme USAID FEWS NET
Cameroon 4 8 National Institute of Statistics FAO GIEWS
C.A.R. 3 6 World Food Programme WFP VAM
Chad 4 10 USAID FEWS NET FAO GIEWS
Congo 3 3 World Food Programme WFP VAM
C.d.I. 6 12 World Food Programme WFP VAM
D.R.C. 22 44 FAO-DRC & Min. of Ag. & Rural Dev.
Djibouti 1 1 Dept. of Stat. & Demog. Studies USAID FEWS NET
Eritrea 2 2 UN OCHA Eritrea FAO GIEWS
Ethiopia 13 46 Ethiopian Grain Trade Enterp.; WFP FAO GIEWS; WFP VAM
Gabon 1 1 Ministry of Economy and Planning FAO GIEWS
Gambia 1 4 Bureau of Statistics WFP VAM
Ghana 7 24 Ministry of Food and Agriculture FAO GIEWS; WFP VAM
Guinea 4 4 World Food Programme WFP VAM
G. Bissau 1 4 World Food Programme WFP VAM
Kenya 10 10 Min. of Ag., Livestock, & Fisheries; USAID FEWS NET;

NDMA; RATIN FAO GIEWS
Lesotho 1 1 Bureau of Statistics FAO GIEWS
Liberia 2 2 World Food Programme WFP VAM
Malawi 5 5 Min. of Agriculture and Food Security
Mali 6 18 Afrique Verte FAO GIEWS
Mauritania 3 6 World Food Programme WFP VAM
Mozamb. 13 26 Ministry of Agriculture WFP VAM
Namibia 4 4 Namibia Statistics Agency
Niger 7 14 Min. of Trade & Priv. Sec. Promotion FAO GIEWS; WFP VAM
Nigeria 19 76 National Bureau of Statistics D. Donaldson
Rwanda 3 6 Min. of Ag. & Animal Resources WFP VAM
Senegal 6 24 Food Security Commission WFP VAM
S. Leone 3 3 World Food Programme WFP VAM
Somalia 8 16 Food Security & Nut. Analysis Unit
S. Africa 1 1 South African Futures Exchange FAO GIEWS
S. Sudan 5 10 World Food Programme WFP VAM
Sudan 11 33 World Food Programme; WFP VAM;

Food Security Information for Action FAO GIEWS
Swaziland 1 1 Ministry of Agriculture WFP VAM
Tanzania 15 30 Min. of Industry, Trade, & Marketing WFP VAM
Togo 2 6 Min. of Ag., Livestock, & Fisheries FAO GIEWS
Uganda 7 13 Infotrade Uganda; WFP VAM;

Farmgain Africa USAID FEWS NET
Zambia 8 8 Central Statistics Office WFP VAM
Zimbabwe 5 5 World Food Programme WFP VAM

Total 230 512
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A.4 Retail and Wholesale Price Series

390 (76%) of the 512 price series are identified as retail price series for quantities ranging
from 0.5 to 3.5 kg, while the remainder are identified as wholesale price series for quantities
ranging from 50 to 100 kg. Table A5 on the next page reports results from a statistical test
of 37 series from 17 markets in 5 countries for which both “retail” and “wholesale” prices are
available. My null hypothesis is that retail prices and wholesale prices are not significantly
different, which is consistent with interviews of market participants suggesting that separate
retail and wholesale markets typically do not exist and that prices per kilogram often do not
vary with quantity sold. To test this hypothesis, I subtract each wholesale price series from its
respective retail price series and then regress each resulting series of differences on a constant.
I fail to reject the null for 9 of 37 series (24.3%), I find retail prices significantly greater than
wholesale prices for 23 of 37 series (62.2%), and I find wholesale prices significantly greater
than retail prices for 5 of 37 series (13.5%). Interestingly, all 9 of the 9 series from 4 large
commercial capital cities have retail price series significantly greater than wholesale price
series, suggesting that more sophisticated, separate markets may exist in these environments.
These 4 cities all have populations over 1 million, whereas the remaining 28 series come from
cities with populations less than 500,000. Without the 9 series from the large cities, exactly
50% of the remaining 28 series have retail prices significantly greater than wholesale prices
while 50% have retail prices not different or significantly smaller than wholesale price series.

While I cannot reject my null hypothesis of equality, the results of the test are somewhat
inconclusive. If there were a significant difference between retail and wholesale prices in
some markets, it would be problematic for my estimation of trade costs in cases where a
market with wholesale price series is directly connected to a market with retail price series.
Fortunately, such cases are few – only 60 of the 413 links in my network (14.5%). Of
these, only 29 (7.0%) involve a city with a population larger than 500,000. In table A6, I
compare my estimated trade costs along these 29 links to estimated trade costs along similar
nearby links with identical series types (wholesale-wholesale or retail-retail). Although direct
comparisons are difficult to make due to the particularities of each link, the costs per t-km of
the 29 potentially affected links do not appear to be systematically larger than those of their
comparison links. The estimated trade costs along the 29 potentially affected links are also
all much higher than the counterfactual trade cost of $0.05/t-km, suggesting that any small
bias in my trade cost estimates for these links due to retail-wholesale price discrepancies
would not affect my results significantly.
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Table A.5: Statistical Test of Retail–Wholesale Price Difference

Market Country Crop Observ. Coefficient Std. Error Result Large City

Ad Damazin Sudan Millet 79 0.0935*** (0.0143) +
Sorghum 86 0.0629*** (0.0067) +

Addis Ababa Ethiopia Maize 52 0.2525*** (0.0173) + X
Sorghum 64 0.1875*** (0.0132) + X

Teff 72 0.0373*** (0.0036) + X
Wheat 72 0.0812*** (0.0066) + X

Agadez Niger Millet 76 –1.49E-04 (0.0031) =
Sorghum 49 –4.79E-04 (0.0049) =

Al Fashir Sudan Millet 82 0.0458*** (0.0110) +
Sorghum 60 0.1203*** (0.0147) +

Bahir Dar Ethiopia Teff 71 –0.0106** (0.0048) –
Wheat 67 0.0263*** (0.0063) +

Dar es Salaam Tanzania Maize 100 0.1646*** (0.0090) + X
Rice 79 0.0937*** (0.0118) + X

Dire Dawa Ethiopia Maize 41 0.1972*** (0.0162) +
Sorghum 55 0.0360*** (0.0081) +

Teff 65 0.0775*** (0.0175) +

El Geneina Sudan Millet 72 –0.0153* (0.0086) =
Sorghum 66 –0.0259** (0.0107) –

El Obeid Sudan Millet 109 0.0171* (0.0086) =
Sorghum 94 0.0228*** (0.0065) +

Kadugli Sudan Millet 71 0.0345* (0.0185) =
Sorghum 103 0.0176*** (0.0059) +
Wheat 43 –0.0134 (0.0204) =

Kampala Uganda Maize 118 0.0840*** (0.0025) + X

Maradi Niger Millet 76 –1.17E-04 (0.0024) =
Sorghum 76 –0.0098*** (0.0033) –

Mekele Ethiopia Teff 66 0.0362*** (0.0097) +

Niamey Niger Millet 76 0.0593*** (0.0030) + X
Sorghum 76 0.0865*** (0.0032) + X

Nyala Sudan Millet 72 0.0136 (0.0101) =
Sorghum 70 0.0139** (0.0058) +

Port Sudan Sudan Millet 91 0.0788*** (0.0183) +
Sorghum 96 0.0086** (0.0037) +
Wheat 55 0.0064 (0.0174) =

Zinder Niger Millet 76 –0.0328*** (0.0037) –
Sorghum 52 –0.0213*** (0.0039) –

Note: * significant at 10%, ** at 5%, *** at 1%. Result column indicates whether the retail price is
greater than (+), less than (–), or not different from (=) the wholesale price at 5% significance.
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Table A.6: Estimated Trade Costs Along Potentially Affected Links and Nearby Comparison
Links

Potentially Affected Link τmn Dist. /t-km Comparison Link τmn Dist. /t-km

Monrovia LR – Bo SL 0.238 357 0.667 F’town SL – Conak. GN 0.398 311 1.279

B’ko ML – Odienne CI 0.091 406 0.225 Odienne CI – Kankan GN 0.120 301 0.398
B’ko ML – Kankan GN 0.160 372 0.429 Labe GN – Tambac. SN 0.179 422 0.424
B’ko ML – Adel Bag. MR 0.110 431 0.256 Kayes ML – Tambac. SN 0.088 284 0.309
B’ko ML – Tintane MR 0.394 704 0.560

Ouaga. BF – Kara TG 0.132 531 0.248 Ouaga. BF – Bolgat. GH 0.096 212 0.451

Niam. NE – Gao ML 0.127 447 0.284 Niamey NE – Malanv. BJ 0.083 297 0.281
Niam. NE – Fada Ng. BF 0.152 292 0.520

Accra GH – Lome TG 0.249 192 1.298 Cotonou BJ – Lagos NG 0.188 120 1.563
Kumasi GH – Abeng. CI 0.161 266 0.606 Abeng. CI – Bouake CId 0.211 346 0.611

Abidj. CI – Sek.-Tak. GH 0.163 321 0.509 Abidj. CI – Bouake CId 0.147 351 0.418
Bouake CI – Sikasso ML 0.061 492 0.123 Sikasso ML – Bobo D. BF 0.022 176 0.122

Luanda AO – Matadi CD 1.074 920 1.168 Matadi CD – Kinsh. CDd 0.366 362 1.012
Luanda AO – Kinsh. CD 1.041 531 1.960

Jo’burg ZA – Maseru LS 0.071 420 0.168 Jo’burg ZA – Mbab. SZ 0.089 357 0.251
Jo’burg ZA – Gabor. BW 0.114 366 0.312 Bulaw. ZW – Masv. ZWd 0.118 283 0.415
Jo’burg ZA – Map. MZ 0.213 545 0.391
Jo’burg ZA – Wind. NA 0.260 1365 0.190
Jo’burg ZA – Bulaw. ZW 0.081 863 0.093
Jo’burg ZA – Masv. ZW 0.111 827 0.134

Map. MZ – Mbabane SZ 0.100 221 0.451 Map. MZ – Xai Xai MZd 0.105 216 0.485

Nairobi KE – Garissa KEd 0.202 366 0.553 Garissa KE – Wajir KEd 0.155 323 0.480
Momb. KE – Garissa KEd 0.151 463 0.327

Kigali RW – Mwanza TZ 0.079 533 0.147 Kigali RW – Mbarara UG 0.141 242 0.582

Kamp. UG – Bukoba TZ 0.136 299 0.456 Kigali RW – Mbarara UG 0.141 242 0.582

Khar. SD – Ad Dam. SDd 0.112 533 0.211 Ad Dam. SD – Kosti SDd 0.077 352 0.220
Khar. SD – Kosti SDd 0.062 317 0.196 Khar. SD – Al Qad. SDd 0.066 356 0.186

Asmara ER – Mekele ET 0.560 311 1.801 Asmara ER – Gondar ET 0.611 538 1.136
Asmara ER – Kassala SD 0.689 428 1.610

Note: d Domestic link

86



A.5 Derivation of Inverse Demand and Welfare

In this section I derive expressions for inverse demand and welfare (indirect utility). The
consumer’s utility maximization problem is as follows:

max
{Qimt}i∈Im ,Xmt

θmt

([∑
i∈Im α

1/σ
im Q

(σ−1)/σ
imt

]σ/(σ−1))1+ 1
ε

1 + 1
ε

+Xmt such that
∑
i∈Im

PimtQimt +Xmt ≤ Ymt

The first order condition for Xmt is λ = 1 where λ is the Lagrange multiplier. The first order
condition for any grain i is:

θmt


∑
j∈Im

α
1/σ
jm Q

(σ−1)/σ
jmt

σ/(σ−1)


1/ε ∑
j∈Im

α
1/σ
jm Q

(σ−1)/σ
jmt

1/(σ−1)

α
1/σ
im Q

−1/σ
imt = λPimt = Pimt

Rearranging and letting θ−εmt = AmNmt gives the inverse demand function for any grain i:

Pimt =
α
1/σ
im

Q
1/σ
imt

∗ Q
1/σ+1/ε
mt

(AmNmt)1/ε

where Qmt =
[∑

i∈Im α
1/σ
im Q

(σ−1)/σ
imt

]σ/(σ−1)

is the CES quantity index (the grain composite).

I next turn to deriving an expression for welfare (indirect utility). Rearranging the
previous expression gives the demand function for any grain i:

Qimt =
αim
Pσimt

∗ Q
1+σ/ε
mt

(AmNmt)σ/ε

Taking the ratio of any two such equations for grains j and i gives:

Qjmt
Qimt

=
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σ
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σ
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1−σ
jmt
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I can use this last expression to rewrite the grain composite as follows:

Qmt =

[∑
i∈Im

α
1/σ
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imt
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=
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is the CES grain price index. Plugging this into the

demand function derived above gives:
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Plugging this into the expression for the quantity index derived above gives:

Qmt = AmNmtP
ε
mt

I next plug the two previous expressions into the utility function to obtain indirect utility
Vmt:
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This last expression is identical to equation 6 in the main text.
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A.6 Demand Parameters

To estimate the elasticity of substitution (σ) I use standard techniques for CES utility. First
note that:

Qmt = AmNmtP
ε
mt ⇒

Q
σ/ε
mt

(AmNmt)σ/ε
= Pσmt

Plugging this in to the demand function derived in the previous section gives:

Qimt =
αim
Pσimt

∗ Q
1+σ/ε
mt

(AmNmt)σ/ε
⇒ Qimt =

αim
Pσimt

QmtP
σ
mt

Multiplying both sides by Pimt gives expenditure of grain i:

PimtQimt = αimP
1−σ
imt QmtP

σ
mt

⇒
∑
j∈Im

PjmtQjmt =
∑
j∈Im

αjmP
1−σ
jmt QmtP

σ
mt

Combining the previous two equations gives the following expression for the expenditure
share on grain i (simt):

simt ≡
PimtQimt∑

j∈Im PjmtQjmt
=

αimP
1−σ
imt∑

j∈Im αjmP
1−σ
jmt

Taking the natural logarithm of both sides then gives:

ln simt = lnαim + (1− σ) lnPimt − ln

∑
j∈Im

αjmP
1−σ
jmt


Using data on consumption and prices I then run the following regression:

ln simt = µim + β lnPimt + µmt + vimt

where µim and µmt are crop-country and country-year fixed effects and vimt is an error term.
My estimate for σ is then 1− β.

A simple OLS regression yields an estimate of β = 0.49, implying an estimate of σ =
1 − 0.49 = 0.51, with a clustered standard error of 0.21. However, OLS is unlikely to yield
consistent estimates of β since equilibrium prices are affected by unobserved demand shocks,
i.e. Cov(Pimt, vimt) 6= 0. I therefore use an instrumental variables regression with the landed
world price as the instrument. I define the landed world price Zimt as the world price plus
the average price difference between the world price and the country’s largest city, which is
a lower bound on trade costs. Crops with no world price (millet, teff) are excluded. The
identifying assumption is that Cov(Zimt, vimt) = 0, i.e. that the landed world price only
affects the expenditure share through its effect on local prices.

The first stage regression is as follows:

lnPimt = µim + γ lnZimt + µmt + vimt
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which yields an estimate of γ = 0.495 with an unclustered standard error of 0.073 and
a standard error of 0.202 when clustering by country-crop (387 observations, 56 clusters).
There is thus a strong positive correlation between the landed world price and local prices
in Africa, which is to be expected given Africa’s position as a net grain importer. The first
stage F statistic is 45.7 without clustering and 6.0 with clustering by country-crop.

The full instrumental variables regression yields an estimate of β = 0.10, implying an
estimate of σ = 1−0.10 = 0.90, with a clustered standard error of 0.18 and a 95% confidence
interval for σ of [0.56, 1.25]. The estimated σ is close to the Cobb-Douglas benchmark of
σ = 1, implying that expenditure shares are only slightly affected by price changes, if at all.

For a particular σ (e.g. σ = 1 in my baseline case, σ = 3 in my robustness checks) I
proceed to estimate the associated set of αim by estimating individual regressions for each
country m of the form:

(ln simt − (1− σ) lnPimt) = µim + µmt + vimt

and backing out the αim parameters from the coefficients on the fixed effect indicator variables
µim. To compute standard errors, I bootstrap by resampling the data with replacement
(10,000 iterations).

To estimate the price elasticity of grain demand (ε), I first compute the price and quantity
indices for the relevant σ and its associated set of αim. For my baseline case, I set σ =
1, so I use the Cobb-Douglas price and quantity indices: Pmt =

∏
i∈Im P

αim
imt and Qmt =∏

i∈Im

(
Qimt

αim

)αim

. As shown in the previous section, overall grain demand in terms of price

and quantity indices is given by:

Qmt = AmNmtP
ε
mt

Letting qmt denote per-capita grain consumption gives:

qmt ≡
Qmt
Nmt

= AmP
ε
mt

⇒ ln qmt = lnAm + ε lnPmt

I then run the following regression:

ln qmt = µm + ε lnPmt + vmt

where µm are country fixed effects. A simple OLS regression yields an estimate of ε = −0.256
with a clustered standard error of 0.071. However, once again OLS is unlikely to yield
consistent estimates of ε since equilibrium prices are affected by unobserved demand shocks,
i.e. Cov(Pmt, vmt) 6= 0. I therefore again use an instrumental variables regression with the
landed world price index Zmt as the instrument (local prices of millet and teff are used in
this index as necessary). The identifying assumption is that Cov(Zmt, vmt) = 0, i.e. that the
landed world price index only affects the expenditure share through its effect on local prices.

The first stage regression is as follows:

lnPmt = µm + γ lnPmt + vmt
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which yields an estimate of γ = 1.02 with a standard error of 0.12 when clustering by country
(289 observations, 28 clusters). The clustered first stage F statistic is 70.3. Once again there
is a strong positive correlation between the world price indices and the local price indices in
Africa.

The full instrumental variables regression yields an estimate of ε = −0.136 with a clus-
tered standard error of 0.116 and a 95% confidence interval for ε of [−0.363, 0.091]. The
estimated ε is close to zero, consistent with the estimate of Roberts and Schlenker 2013 of
-0.066.

The last parameters to estimate are the demand shifters Am. Given a particular σ, an
associated estimated set of αim, and a particular ε, I estimate Am as an average across years:

Am =
1

T

∑
t

Qmt
NmtP εmt

To compute standard errors, I implement a two-stage bootstrap procedure with 10,000 iter-
ations in which I first re-estimate the set of αim and then the associated average Am.

Table A7 on the next page reports estimates for Am and αim for 20 individual countries
(above the line) and 8 groups of countries (below the line). Country groups were formed
due to the limited number of annual observations. Countries with less than 7 observations
were given special priority for group formation. Groups were formed from contiguous coun-
tries having the same set of grains and similar per-capita consumption of each grain. The
maximum number of annual observations for a given country is 9 as trade data for 2013 was
unavailable at the time of estimation.
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Table A.7: Demand Parameter Estimates for 28 Countries or Country Groups

A αmaize αmillet αrice αsorghum αteff αwheat Observ.

Benin 179.4*** 0.329*** 0.614*** 0.058*** 9
(10.1) (0.034) (0.037) (0.004)

Burkina Faso 170.5*** 0.421*** 0.579*** 7
(7.5) (0.009) (0.009)

Cameroon 90.7*** 0.618*** 0.382*** 8
(3.2) (0.015) (0.015)

Chad 115.9*** 0.145*** 0.363*** 0.140*** 0.352*** 9
(4.9) (0.007) (0.015) (0.005) (0.011)

Côte d’Ivoire 101.4*** 0.172*** 0.828*** 7
(3.8) (0.008) (0.008)

Djibouti 45.0*** 1*** 9
(5.5) (0)

Eritrea 38.3*** 1*** 3
(11.0) (0)

Ethiopia 143.0*** 0.210*** 0.176*** 0.308*** 0.306*** 7
(5.2) (0.006) (0.010) (0.015) (0.011)

Ghana 102.5*** 0.401*** 0.074*** 0.436*** 0.088*** 7
(5.2) (0.024) (0.006) (0.021) (0.007)

Kenya 79.1*** 1*** 9
(2.9) (0)

Malawi 169.0*** 1*** 9
(14.7) (0)

Mali 234.7*** 0.285*** 0.515*** 0.201*** 7
(13.2) (0.018) (0.017) (0.007)

Mauritania 70.1*** 0.680*** 0.320*** 5
(4.4) (0.049) (0.049)

Mozambique 70.0*** 0.602*** 0.398*** 8
(4.2) (0.027) (0.027)

Niger 251.2*** 0.766*** 0.234*** 9
(11.8) (0.006) (0.006)

Nigeria 166.9*** 0.218*** 0.257*** 0.223*** 0.302*** 7
(7.4) (0.011) (0.009) (0.013) (0.015)

Somalia 29.6*** 0.590*** 0.410*** 9
(2.6) (0.033) (0.033)

Tanzania 98.1*** 0.561*** 0.439*** 7
(5.7) (0.025) (0.025)

Togo 158.9*** 0.400*** 0.406*** 0.194*** 9
(3.3) (0.013) (0.011) (0.008)

Uganda 72.1*** 0.833*** 0.167*** 2
(0.7) (0.002) (0.002)
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A αmaize αmillet αrice αsorghum αteff αwheat Observ.

Angola/ 48.8*** 1*** 9
Bots./Namib. (10.2) (0)

Burundi/ 31.6*** 0.627*** 0.373*** 12
Rwanda (3.7) (0.026) (0.026)

C.A.R./ 32.1*** 0.712*** 0.288*** 14
D.R.C. (2.1) (0.018) (0.018)

Congo/ 40.6*** 1*** 8
Gabon (1.7) (0)

Gambia/ 170.6*** 0.125*** 0.229*** 0.570*** 0.076*** 19
G. Biss./Sen. (9.0) (0.011) (0.024) (0.030) (0.006)

Guinea/ 108.3*** 1*** 17
Lib/S. Leone (5.4) (0)

Leso./Swazi. 105.5*** 1*** 16
Zam./Zim. (7.8) (0)

South Sudan/ 212.7*** 0.018*** 0.089*** 0.465*** 0.428*** 5
Sudan (10.1) (0.005) (0.008) (0.026) (0.033)
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A.7 Trade Cost Parameters

Table A8, which begins on the next page, shows estimated trade costs τmn for each of the 413
overland links in my model. Each link is only listed once, i.e. a link with a given “Market
1” is only listed if its “Market 2” has not yet been listed as a “Market 1”. Links are listed
by country of “Market 1” (both domestic and overland international links are included).
Observations listed are observations with trade on the last iteration in which trade costs for
that particular link were estimated prior to convergence. Standard errors were obtained by
bootstrapping (10,000 iterations) using this set of final-iteration observations for resampling
with replacement. Distances are in kilometers, with cost per tonne-kilometer (with standard
errors) also reported.

Table A9, which follows Table A8, shows estimated trade costs τmn for the 47 links
between 30 African ports and the world market (Bangkok for rice and the US Gulf for
maize, sorghum, and wheat). Whether or not a port is linked to Bangkok and/or the US
Gulf depends on its mix of crops. Observations and standard errors are obtained using the
same procedure as for table A8. Over 70% of links have costs between $0.10 and $0.50/kg
($100 – $500/tonne). The lowest cost ports ($70 – $100/tonne) are Nacala (Mozambique),
Mombasa (Kenya), Mogadishu (Somalia), and Dakar (Senegal) while the highest cost ports
(>$1000/tonne) are Angola (Luanda), Massawa (Eritrea), and Bissau (Guinea-Bissau).

Table A10, which follows Table A9, shows correlations between these port to world market
trade costs and port characteristics. Although none of the correlations are significant at the
5% level (which is likely due to the small sample size and the idiosyncratic nature of port
costs), most of the point estimates have the expected signs, with higher costs correlated
with smaller port populations, lower port volumes, lower Corruption Perception Indices, and
higher import tariffs. Import tariffs were obtained for the relevant grains from the World
Bank’s World Integrated Trade Solution (WITS). “High Volume” is an indicator variable
for whether the port handled more than 500,000 TEUs in 2007 (African Development Bank
2010).
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Table A.8: Estimated Overland Trade Costs

Market 1 Market 2 τmn Std. Error Dist. /t-km Std. Error Obs.

Botswana Gaborone Jo’burg 0.1142 0.0076 366 0.3120 0.0209 52

Lesotho Maseru Jo’burg 0.0707 0.0087 420 0.1683 0.0207 31

Malawi Blantyre Lilongwe 0.0536 0.0236 365 0.1468 0.0647 2
Blantyre Mangochi 0.0601 0.0137 191 0.3147 0.0717 17
Blantyre Milange 0.0883 0.0185 115 0.7682 0.1609 14
Blantyre Tete 0.0609 0.0227 215 0.2835 0.1055 4
Karonga Mzuzu 0.0530 0.0088 222 0.2389 0.0396 21
Karonga Mbeya 0.1131 0.0359 161 0.7023 0.2227 5
Lilongwe Mangochi 0.0558 0.0097 272 0.2053 0.0356 5
Lilongwe Mzuzu 0.0323 0.0022 358 0.0901 0.0060 92
Lilongwe Tete 0.0533 0.0079 370 0.1441 0.0212 15
Lilongwe Chipata 0.0644 0.0044 145 0.4441 0.0306 95
Mangochi Cuamba 0.0804 0.0049 205 0.3924 0.0238 40
Mangochi Lichinga 0.0665 0.0139 221 0.3008 0.0631 14

Mozamb. Beira Chimoio 0.0989 0.0132 204 0.4848 0.0648 36
Beira Quelimane 0.0424 0.0100 487 0.0871 0.0206 12

Chimoio Maxixe 0.1286 0.0084 677 0.1900 0.0124 90
Chimoio Quelimane 0.1516 0.0179 552 0.2747 0.0324 20
Chimoio Tete 0.1919 0.0272 381 0.5036 0.0715 44
Chimoio Mutare 0.0597 0.0210 96 0.6218 0.2189 3
Cuamba Lichinga 0.3503 0.0528 315 1.1119 0.1678 9
Cuamba Nampula 0.1566 0.0242 358 0.4374 0.0676 46
Maputo XaiXai 0.1047 0.0112 216 0.4847 0.0520 34
Maputo Mbabane 0.0997 0.0117 221 0.4510 0.0531 24
Maputo Jo’burg 0.2131 0.0115 545 0.3910 0.0211 38
Maxixe XaiXai 0.0738 0.0111 256 0.2883 0.0432 30
Milange Quelimane 0.0833 0.0159 320 0.2603 0.0498 19
Nacala Nampula 0.0744 0.0141 192 0.3875 0.0736 27

Nampula Pemba 0.0926 0.0067 404 0.2293 0.0167 79
Nampula Quelimane 0.0488 0.0041 551 0.0885 0.0075 76
Pemba Mtwara 0.1822 0.0341 445 0.4095 0.0766 18
Tete Chipata 0.1590 0.0213 379 0.4196 0.0561 9
Tete Harare 0.0324 0.0075 383 0.0845 0.0195 14

Namibia K.Mulilo Oshakati 0.1634 0.0137 1114 0.1467 0.0123 14
K.Mulilo Windhoek 0.1026 0.0228 1226 0.0837 0.0186 12
K.Mulilo Livingstone 0.2864 0.0345 208 1.3772 0.1657 10
K.Mulilo Mongu 0.3367 0.0174 312 1.0792 0.0557 15
Oshakati Windhoek 0.0902 0.0118 716 0.1259 0.0165 14

Swakopmund Windhoek 0.0279 0.0040 362 0.0771 0.0111 16
Windhoek Jo’burg 0.2600 0.0058 1365 0.1905 0.0043 16

Swaziland Mbabane Jo’burg 0.0894 0.0062 357 0.2505 0.0175 89
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Market 1 Market 2 τmn Std. Error Dist. /t-km Std. Error Obs.

Zambia Chipata Lusaka 0.0368 0.0044 572 0.0644 0.0077 46
Kabwe Kasama 0.1438 0.0325 721 0.1994 0.0451 4
Kabwe Kitwe 0.0425 0.0023 221 0.1922 0.0104 119
Kabwe Lusaka 0.0571 0.0068 140 0.4081 0.0485 24
Kabwe Mbeya 0.0921 0.0228 986 0.0934 0.0231 14

Kasama Mbeya 0.0935 0.0142 400 0.2337 0.0354 11
Kasama Sumbawanga 0.0902 0.0113 287 0.3144 0.0393 17
Kitwe Solwezi 0.0362 0.0059 223 0.1625 0.0265 22
Kitwe Lubumbashi 0.8285 0.3733 187 4.4306 1.9961 5

Livingstone Lusaka 0.0323 0.0041 477 0.0678 0.0086 27
Livingstone Mongu 0.0854 0.0165 508 0.1680 0.0325 10
Livingstone Hwange 0.1884 0.0110 117 1.6103 0.0938 9

Lusaka Mongu 0.0662 0.0145 607 0.1091 0.0238 9
Lusaka Harare 0.0807 0.0092 493 0.1636 0.0187 24
Mongu Solwezi 0.1750 0.0106 591 0.2961 0.0179 3
Solwezi Lubumbashi 0.4837 0.0522 166 2.9139 0.3144 60

Zimbabwe Bulawayo Harare 0.0344 0.0081 447 0.0769 0.0181 32
Bulawayo Hwange 0.0422 0.0094 339 0.1245 0.0278 9
Bulawayo Masvingo 0.1175 0.0065 283 0.4152 0.0230 4
Bulawayo Johannesburg 0.0805 0.0214 863 0.0933 0.0248 10

Harare Masvingo 0.0485 0.0033 294 0.1648 0.0111 39
Harare Mutare 0.0155 0.0095 254 0.0608 0.0374 11

Masvingo Mutare 0.0500 0.0082 298 0.1678 0.0274 3
Masvingo Johannesburg 0.1110 0.0061 827 0.1342 0.0073 40

Angola Luanda Kinshasa 1.0407 0.0187 531 1.9599 0.0353 4
Luanda Matadi 1.0745 0.0667 920 1.1679 0.0725 4

Burundi Bujumbura Gitega 0.0706 0.0034 101 0.6986 0.0332 184
Bujumbura Uvira 0.1002 0.0060 31 3.2335 0.1949 60
Bujumbura Butare 0.1755 0.0554 162 1.0834 0.3419 7
Bujumbura Kigoma 0.1225 0.0090 229 0.5350 0.0393 34

Gitega Muyinga 0.0842 0.0031 96 0.8773 0.0320 183
Gitega Kigoma 0.0847 0.0192 218 0.3885 0.0880 18

Muyinga Butare 0.0811 0.0039 118 0.6871 0.0327 108
Muyinga Mwanza 0.1016 0.0134 423 0.2402 0.0317 33

C.A.R. Bambari Bangassou 0.3381 0.0386 353 0.9577 0.1093 48
Bambari Bangui 0.6447 0.0457 385 1.6744 0.1188 14
Bambari Gbadolite 0.4744 0.0806 250 1.8975 0.3226 23

Bangassou Gbadolite 0.4891 0.0863 290 1.6866 0.2976 11
Bangui Impfondo 0.1576 0.0259 320 0.4924 0.0808 5
Bangui Zongo 0.4158 0.0895 2 207.8856 44.7520 4

Congo Brazzaville Impfondo 0.2016 0.0489 780 0.2584 0.0628 9
Brazzaville PointeNoire 0.1169 0.0302 548 0.2133 0.0551 10
Brazzaville Kinshasa 0.3888 0.0602 4 97.2042 15.0425 14
Impfondo Mbandaka 0.4169 0.0229 352 1.1845 0.0652 10
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Market 1 Market 2 τmn Std. Error Dist. /t-km Std. Error Obs.

D.R.C. Bandundu Kikwit 0.3097 0.0610 395 0.7841 0.1545 18
Bandundu Kinshasa 0.3963 0.0584 395 1.0033 0.1479 18
Bandundu Mbandaka 0.4737 0.0712 580 0.8167 0.1227 20

Bukavu Goma 0.2805 0.0366 199 1.4097 0.1839 42
Bukavu Kindu 0.4623 0.0291 695 0.6652 0.0418 119
Bukavu Kisangani 0.3585 0.0137 641 0.5593 0.0213 119
Bukavu Uvira 0.3384 0.0388 137 2.4700 0.2832 41
Bukavu Butare 0.1966 0.0163 147 1.3375 0.1112 48
Bunia Butembo 0.3463 0.0559 251 1.3798 0.2227 27
Bunia Isiro 0.2737 0.0321 486 0.5632 0.0660 40
Bunia Kisangani 0.3564 0.0127 706 0.5049 0.0179 120
Bunia Juba 0.2254 0.0131 633 0.3560 0.0207 59
Bunia Arua 0.2819 0.0170 256 1.1013 0.0666 5
Bunia Gulu 0.3151 0.0386 350 0.9004 0.1103 13

Butembo Goma 0.3609 0.0933 313 1.1531 0.2980 8
Butembo Mbarara 0.1645 0.0109 303 0.5430 0.0359 25
Gbadolite Mbandaka 0.5745 0.0806 675 0.8511 0.1195 2
Gbadolite Zongo 0.5942 0.1088 404 1.4708 0.2692 2

Goma Gisenyi 0.1481 0.0239 9 16.4538 2.6558 35
Isiro Kisangani 0.4951 0.1192 577 0.8581 0.2065 9
Isiro Juba 0.2966 0.0179 674 0.4401 0.0265 43

Kalemie Kamina 0.3238 0.0379 990 0.3271 0.0383 40
Kalemie Kindu 0.4430 0.0325 802 0.5524 0.0406 120
Kalemie Uvira 0.7118 0.2536 312 2.2814 0.8129 2
Kalemie Kigoma 0.3550 0.0467 148 2.3986 0.3153 31
Kamina Kolwezi 0.3372 0.0407 512 0.6586 0.0795 37
Kamina Lubumbashi 0.2104 0.0305 578 0.3640 0.0528 42
Kamina MbujiMayi 0.2612 0.0353 458 0.5702 0.0770 35
Kananga Kisangani 0.3761 0.0399 1282 0.2934 0.0311 120
Kananga MbujiMayi 0.5579 0.2753 179 3.1169 1.5379 6
Kananga Tshikapa 0.7875 0.2223 236 3.3371 0.9420 5
Kikwit Kinshasa 0.3412 0.0404 347 0.9832 0.1164 42
Kikwit Tshikapa 0.4704 0.0275 519 0.9064 0.0530 118
Kindu Kisangani 0.4090 0.1099 592 0.6910 0.1857 34
Kindu MbujiMayi 0.7201 0.1357 752 0.9576 0.1804 8

Kinshasa Matadi 0.3663 0.0257 362 1.0119 0.0711 117
Kinshasa Mbandaka 0.3287 0.0154 620 0.5302 0.0248 120
Kisangani Mbandaka 0.1624 0.0187 976 0.1664 0.0192 89
Kolwezi Lubumbashi 0.2304 0.0167 304 0.7578 0.0549 112

Mbandaka Zongo 0.2274 0.0318 672 0.3384 0.0474 55
Uvira Kigoma 0.1787 0.0165 172 1.0390 0.0961 54
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Market 1 Market 2 τmn Std. Error Dist. /t-km Std. Error Obs.

Kenya Eldoret Kisumu 0.0508 0.0156 117 0.4342 0.1334 10
Eldoret Lodwar 0.2718 0.0126 367 0.7406 0.0345 109
Eldoret Nakuru 0.0224 0.0017 155 0.1444 0.0112 64
Eldoret Jinja 0.0693 0.0054 268 0.2585 0.0203 25
Garissa Mombasa 0.1514 0.0117 463 0.3269 0.0252 103
Garissa Nairobi 0.2024 0.0201 366 0.5529 0.0549 36
Garissa Wajir 0.1552 0.0069 323 0.4804 0.0213 115
Garissa Kismayo 0.2042 0.0055 410 0.4981 0.0134 4
Kisumu Nakuru 0.1075 0.0207 183 0.5877 0.1133 5
Kisumu Musoma 0.0743 0.0046 307 0.2421 0.0150 82
Kisumu Jinja 0.1623 0.0054 238 0.6821 0.0226 25
Lodwar Juba 0.1741 0.0197 641 0.2716 0.0307 50

Mandera Wajir 0.1687 0.0237 420 0.4016 0.0565 11
Mandera Baidoa 0.2629 0.0125 269 0.9773 0.0465 109
Mandera Awasa 0.1598 0.0171 704 0.2270 0.0242 31
Mombasa Nairobi 0.0246 0.0014 500 0.0493 0.0028 108
Mombasa Tanga 0.1103 0.0138 164 0.6727 0.0844 14
Moyale Wajir 0.4087 0.0287 258 1.5839 0.1112 2
Moyale Yabelo 0.0979 0.0083 213 0.4594 0.0391 67
Nairobi Nakuru 0.0388 0.0033 159 0.2439 0.0210 39
Nairobi Arusha 0.1556 0.0003 269 0.5785 0.0010 2

Rwanda Butare Gisenyi 0.0655 0.0238 202 0.3240 0.1180 2
Butare Kigali 0.0972 0.0144 123 0.7906 0.1171 23
Gisenyi Kigali 0.0905 0.0082 151 0.5996 0.0543 49
Gisenyi Mbarara 0.0785 0.0115 299 0.2625 0.0383 7
Kigali Mwanza 0.0786 0.0329 533 0.1474 0.0618 11
Kigali Mbarara 0.1409 0.0342 242 0.5820 0.1415 10

Somalia Baidoa Mogadishu 0.0604 0.0037 247 0.2447 0.0150 112
Baidoa Awasa 0.3026 0.0446 891 0.3396 0.0500 6

Beledweyne Galkayo 0.1293 0.0062 389 0.3325 0.0158 176
Beledweyne Mogadishu 0.0494 0.0024 339 0.1459 0.0070 182
Beledweyne Gode 0.0903 0.0088 263 0.3432 0.0334 101
Beledweyne Jijiga 0.1001 0.0052 599 0.1672 0.0087 118

Bosaso Garoowe 0.1210 0.0065 443 0.2731 0.0146 191
Galkayo Garoowe 0.4358 0.0728 230 1.8947 0.3164 8
Garoowe Hargeisa 0.3701 0.0478 594 0.6230 0.0804 5
Hargeisa Jijiga 0.1663 0.0065 165 1.0081 0.0397 149
Kismayo Mogadishu 0.0698 0.0203 485 0.1438 0.0418 10
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Market 1 Market 2 τmn Std. Error Dist. /t-km Std. Error Obs.

Tanzania Arusha Dodoma 0.0712 0.0115 423 0.1682 0.0271 13
Arusha Musoma 0.0693 0.0122 504 0.1375 0.0243 27
Arusha Singida 0.0642 0.0104 350 0.1834 0.0297 37
Arusha Tanga 0.0464 0.0074 436 0.1065 0.0170 37
Bukoba Mwanza 0.0628 0.0086 434 0.1446 0.0197 63
Bukoba Kampala 0.1363 0.0114 299 0.4560 0.0380 2
Bukoba Mbarara 0.1799 0.0115 313 0.5747 0.0367 25

DaresSalaam Dodoma 0.0669 0.0128 449 0.1490 0.0285 47
DaresSalaam Iringa 0.0686 0.0038 501 0.1369 0.0077 174
DaresSalaam Mtwara 0.0640 0.0068 559 0.1144 0.0122 52
DaresSalaam Tanga 0.0595 0.0122 355 0.1675 0.0345 57

Dodoma Iringa 0.0765 0.0033 265 0.2886 0.0124 174
Dodoma Singida 0.0925 0.0112 250 0.3699 0.0448 37
Iringa Mbeya 0.0740 0.0069 336 0.2201 0.0205 74
Iringa Songea 0.0594 0.0030 436 0.1362 0.0069 134

Kigoma Sumbawanga 0.1178 0.0113 536 0.2197 0.0211 34
Kigoma Tabora 0.1190 0.0099 716 0.1663 0.0138 59
Mbeya Songea 0.0622 0.0031 423 0.1472 0.0073 132
Mbeya Sumbawanga 0.0757 0.0041 317 0.2388 0.0130 149
Mtwara Songea 0.0996 0.0129 655 0.1521 0.0197 20
Musoma Mwanza 0.0743 0.0089 223 0.3330 0.0397 67
Mwanza Singida 0.1024 0.0104 475 0.2156 0.0218 38
Mwanza Tabora 0.0707 0.0111 367 0.1927 0.0304 24
Singida Tabora 0.1839 0.0175 357 0.5151 0.0490 16

Uganda Arua Gulu 0.0590 0.0091 232 0.2545 0.0394 9
Arua Juba 0.5288 0.0422 336 1.5737 0.1257 12
Gulu Kampala 0.0755 0.0064 339 0.2227 0.0188 50
Gulu Lira 0.0580 0.0036 135 0.4293 0.0267 50
Gulu Masindi 0.0877 0.0059 175 0.5010 0.0339 14
Gulu Juba 0.8681 0.0850 281 3.0892 0.3027 15
Jinja Kampala 0.0649 0.0045 79 0.8214 0.0574 50

Kampala Lira 0.0864 0.0073 342 0.2527 0.0214 34
Kampala Masindi 0.1442 0.0459 214 0.6737 0.2147 3
Kampala Mbarara 0.3276 0.0673 265 1.2364 0.2540 3

Lira Masindi 0.0702 0.0090 180 0.3898 0.0502 14

Djibouti Djibouti AddisAbaba 0.1481 0.0192 920 0.1610 0.0209 53
Djibouti Dessie 0.1333 0.0151 548 0.2432 0.0276 98
Djibouti DireDawa 0.1411 0.0197 323 0.4368 0.0610 58

Eritrea Asmara Massawa 0.4333 0.0709 110 3.9394 0.6447 2
Asmara Gondar 0.6112 0.0419 538 1.1360 0.0779 16
Asmara Mekele 0.5602 0.0468 311 1.8012 0.1504 14
Asmara Kassala 0.6892 0.0533 428 1.6103 0.1245 16
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Ethiopia AddisAbaba Awasa 0.0843 0.0046 272 0.3100 0.0168 222
AddisAbaba BahirDar 0.1069 0.0112 551 0.1941 0.0203 44
AddisAbaba Dessie 0.0612 0.0059 385 0.1590 0.0152 59
AddisAbaba DireDawa 0.0349 0.0013 507 0.0688 0.0026 299
AddisAbaba Jimma 0.0490 0.0018 306 0.1600 0.0058 283
AddisAbaba Nekemte 0.1202 0.0064 325 0.3699 0.0197 147

Awasa Gode 0.1498 0.0068 629 0.2382 0.0108 134
Awasa Jimma 0.1876 0.0432 416 0.4509 0.1039 12
Awasa Yabelo 0.1260 0.0077 295 0.4271 0.0262 96

BahirDar Dessie 0.0537 0.0024 474 0.1134 0.0051 273
BahirDar Gondar 0.0389 0.0016 176 0.2208 0.0088 224
BahirDar Nekemte 0.0575 0.0027 399 0.1442 0.0067 148
BahirDar AdDamazin 0.1034 0.0058 466 0.2219 0.0124 112

Dessie Gondar 0.0582 0.0067 528 0.1102 0.0127 78
Dessie Mekele 0.0603 0.0053 388 0.1555 0.0136 103

DireDawa Jijiga 0.1178 0.0097 155 0.7597 0.0626 78
Gambela Jimma 0.1162 0.0050 420 0.2768 0.0120 136
Gambela Nekemte 0.1511 0.0056 390 0.3875 0.0144 92
Gambela Malakal 0.2816 0.0831 445 0.6328 0.1867 11

Gode Jijiga 0.0934 0.0092 572 0.1632 0.0160 40
Gondar Mekele 0.0468 0.0022 599 0.0781 0.0036 221
Gondar AlQadarif 0.2117 0.0274 357 0.5929 0.0766 31
Jimma Nekemte 0.0875 0.0055 244 0.3588 0.0227 155

S. Sudan Bor Malakal 0.4707 0.0433 472 0.9971 0.0916 63
Bor Juba 0.2114 0.0215 200 1.0571 0.1077 37
Juba Rumbek 0.7834 0.0966 678 1.1554 0.1425 34

Malakal AdDamazin 0.4076 0.0322 484 0.8421 0.0666 80
Malakal Kadugli 0.3680 0.0331 334 1.1018 0.0990 79
Malakal Kosti 0.3487 0.0350 500 0.6975 0.0699 69
Rumbek Wau 0.8301 0.0749 226 3.6732 0.3312 42

Wau Kadugli 0.4991 0.0542 610 0.8182 0.0889 48
Sudan AdDamazin AlQadarif 0.0683 0.0032 523 0.1307 0.0061 169

AdDamazin Khartoum 0.1124 0.0081 533 0.2109 0.0152 89
AdDamazin Kosti 0.0774 0.0139 352 0.2198 0.0394 12

AlFashir ElGeneina 0.1326 0.0108 352 0.3768 0.0308 126
AlFashir ElObeid 0.1442 0.0127 613 0.2352 0.0208 98
AlFashir Nyala 0.0755 0.0089 194 0.3894 0.0459 72

AlQadarif Kassala 0.0779 0.0056 271 0.2873 0.0208 101
AlQadarif Khartoum 0.0662 0.0032 356 0.1859 0.0091 254
AlQadarif Kosti 0.0360 0.0018 396 0.0910 0.0044 209
ElGeneina Nyala 0.1391 0.0050 376 0.3700 0.0133 240
ElGeneina Abeche 0.0555 0.0026 197 0.2816 0.0130 217
ElObeid Kadugli 0.0941 0.0043 262 0.3592 0.0162 211
ElObeid Kosti 0.0354 0.0020 311 0.1139 0.0064 222
Kassala PortSudan 0.0951 0.0032 575 0.1654 0.0056 252

Khartoum Kosti 0.0622 0.0016 317 0.1963 0.0052 292
Khartoum PortSudan 0.0611 0.0037 821 0.0744 0.0045 214
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Benin Cotonou Parakou 0.1162 0.0129 425 0.2735 0.0304 37
Cotonou Lagos 0.1875 0.0154 120 1.5627 0.1284 113
Cotonou Lome 0.0957 0.0041 147 0.6513 0.0278 240

Malanville Parakou 0.1461 0.0763 320 0.4566 0.2384 4
Malanville Niamey 0.0834 0.0034 297 0.2810 0.0115 88
Malanville Sokoto 0.1050 0.0192 334 0.3144 0.0576 16
Natitingou Parakou 0.1500 0.0685 217 0.6914 0.3159 4
Natitingou FadaNgo. 0.1718 0.0287 253 0.6790 0.1134 15
Natitingou Kara 0.1051 0.0068 119 0.8833 0.0571 110
Parakou Ibadan 0.1142 0.0210 301 0.3794 0.0699 14
Parakou Ilorin 0.1164 0.0094 284 0.4099 0.0332 70
Parakou Kara 0.1281 0.0369 200 0.6407 0.1845 10

Burk. Faso BoboDiou. Dedougou 0.0222 0.0016 179 0.1238 0.0090 82
BoboDiou. Ouagadougou 0.0228 0.0014 356 0.0639 0.0039 82
BoboDiou. Wa 0.1386 0.0056 313 0.4429 0.0178 82
BoboDiou. Mopti 0.0532 0.0106 475 0.1120 0.0224 8
BoboDiou. Segou 0.0675 0.0055 377 0.1791 0.0145 4
BoboDiou. Sikasso 0.0215 0.0017 176 0.1223 0.0097 82
Dedougou Ouagadougou 0.0263 0.0013 225 0.1170 0.0059 128
FadaNgo. Ouagadougou 0.0538 0.0088 223 0.2414 0.0396 33
FadaNgo. Niamey 0.1517 0.0026 292 0.5196 0.0089 104

Ouagadougou Bolgatanga 0.0955 0.0170 212 0.4505 0.0800 20
Ouagadougou Kara 0.1317 0.0203 531 0.2481 0.0382 18

Cameroon Bamenda Douala 0.0686 0.0042 305 0.2248 0.0138 158
Bamenda Yaounde 0.1053 0.0031 368 0.2862 0.0085 200
Bamenda Calabar 0.1774 0.0268 331 0.5361 0.0808 20
Bamenda Enugu 0.2563 0.0205 511 0.5016 0.0402 2
Douala Yaounde 0.1092 0.0058 236 0.4627 0.0247 101
Douala Calabar 0.1254 0.0063 453 0.2768 0.0140 103
Douala Enugu 0.1697 0.0154 632 0.2685 0.0243 30
Garoua Yaounde 0.1058 0.0044 939 0.1127 0.0047 200
Garoua Ndjamena 0.1142 0.0136 495 0.2306 0.0274 39
Garoua Maiduguri 0.0848 0.0137 425 0.1995 0.0323 20
Garoua Yola 0.1072 0.0141 167 0.6421 0.0844 33
Yaounde Libreville 0.2128 0.0296 933 0.2281 0.0317 2

Chad Abeche Ndjamena 0.0980 0.0068 753 0.1301 0.0090 95
Moundou Ndjamena 0.0796 0.0053 474 0.1680 0.0112 84
Moundou Sarh 0.0600 0.0150 305 0.1969 0.0493 18
Ndjamena Sarh 0.0700 0.0059 558 0.1255 0.0105 103
Ndjamena Maiduguri 0.0956 0.0136 260 0.3678 0.0525 52
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Market 1 Market 2 τmn Std. Error Dist. /t-km Std. Error Obs.

C.d.I. Abengourou Abidjan 0.1216 0.0107 205 0.5932 0.0524 45
Abengourou Bouake 0.2114 0.0225 346 0.6108 0.0651 45
Abengourou Kumasi 0.1612 0.0146 266 0.6059 0.0551 45

Abidjan Bouake 0.1468 0.0127 351 0.4182 0.0362 50
Abidjan Daloa 0.0968 0.0128 385 0.2513 0.0331 51
Abidjan Sek.Tak. 0.1635 0.0274 321 0.5092 0.0852 19
Bouake Daloa 0.1068 0.0113 241 0.4432 0.0471 50
Bouake Sikasso 0.0607 0.0044 492 0.1234 0.0088 62
Daloa Man 0.0979 0.0137 188 0.5205 0.0731 52
Man Odienne 0.0799 0.0046 268 0.2982 0.0171 104
Man Nzerekore 0.2739 0.0497 205 1.3363 0.2423 4
Man Gbarnga 0.0946 0.0092 270 0.3505 0.0341 41

Odienne Kankan 0.1197 0.0107 301 0.3978 0.0355 39
Odienne Bamako 0.0914 0.0058 406 0.2251 0.0143 52

Gambia Banjul Kaolack 0.1662 0.0354 153 1.0864 0.2314 5
Banjul Ziguinchor 0.0875 0.0038 115 0.7612 0.0334 154

Ghana Accra Ho 0.1589 0.0307 156 1.0188 0.1966 31
Accra Kumasi 0.1309 0.0055 253 0.5175 0.0218 347
Accra Sek.Tak. 0.1692 0.0116 248 0.6824 0.0467 118
Accra Lome 0.2492 0.1001 192 1.2978 0.5212 5

Bolgatanga Tamale 0.1485 0.0541 172 0.8635 0.3144 2
Bolgatanga Wa 0.0485 0.0016 264 0.1839 0.0060 347

Ho Tamale 0.1826 0.0089 469 0.3893 0.0190 114
Ho Kara 0.1503 0.0263 462 0.3252 0.0569 4
Ho Lome 0.2800 0.0286 129 2.1704 0.2219 28

Kumasi Sek.Tak. 0.1084 0.0121 281 0.3858 0.0430 51
Kumasi Tamale 0.1256 0.0101 380 0.3305 0.0266 79
Kumasi Wa 0.0860 0.0045 446 0.1928 0.0102 222
Tamale Wa 0.1587 0.0287 303 0.5237 0.0946 2
Tamale Kara 0.1221 0.0058 258 0.4733 0.0226 260

Guinea Conakry Kankan 0.1724 0.0270 651 0.2648 0.0415 8
Conakry Labe 0.2316 0.0189 404 0.5733 0.0468 7
Conakry Nzerekore 0.1077 0.0220 845 0.1275 0.0260 3
Conakry Freetown 0.3976 0.0460 311 1.2786 0.1481 4
Kankan Labe 0.0882 0.0068 518 0.1703 0.0131 50
Kankan Nzerekore 0.2030 0.1054 450 0.4511 0.2343 2
Kankan Bamako 0.1596 0.0100 372 0.4291 0.0269 53

Labe Nzerekore 0.1482 0.0394 727 0.2039 0.0541 4
Labe Bissau 0.2681 0.0168 539 0.4974 0.0311 51
Labe Tambacounda 0.1789 0.0763 422 0.4240 0.1808 2

Nzerekore Gbarnga 0.3618 0.0372 168 2.1533 0.2214 6

G. Bissau Bissau Ziguinchor 1.0714 0.0736 145 7.3892 0.5076 46

Liberia Gbarnga Monrovia 0.0513 0.0060 196 0.2619 0.0307 33
Monrovia Bo 0.2382 0.0024 357 0.6671 0.0066 3
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Market 1 Market 2 τmn Std. Error Dist. /t-km Std. Error Obs.

Mali Bamako Kayes 0.0644 0.0023 613 0.1051 0.0037 264
Bamako Segou 0.0383 0.0015 236 0.1621 0.0065 192
Bamako Sikasso 0.0416 0.0061 364 0.1144 0.0168 28
Bamako AdelBagrou 0.1103 0.0070 431 0.2559 0.0161 82
Bamako Tintane 0.3943 0.0733 704 0.5601 0.1041 17

Gao Mopti 0.0435 0.0029 583 0.0747 0.0050 163
Gao Niamey 0.1270 0.0032 447 0.2842 0.0071 98

Kayes Tintane 0.3863 0.0759 563 0.6861 0.1349 17
Kayes Tambacounda 0.0878 0.0117 284 0.3092 0.0412 43
Mopti Segou 0.0506 0.0037 401 0.1263 0.0092 52
Segou Sikasso 0.0385 0.0044 291 0.1323 0.0151 33

Mauritania AdelBagrou Tintane 0.2659 0.0488 479 0.5552 0.1019 17
Nouakchott Tintane 0.1165 0.0277 747 0.1560 0.0370 4
Nouakchott SaintLouis 0.4857 0.0641 303 1.6029 0.2117 7

Niger Agadez Arlit 0.0532 0.0055 241 0.2207 0.0229 72
Agadez Tahoua 0.0546 0.0034 406 0.1344 0.0083 70
Agadez Zinder 0.0771 0.0024 446 0.1728 0.0053 193
Diffa Zinder 0.0703 0.0079 475 0.1479 0.0165 14
Diffa Maiduguri 0.0764 0.0048 220 0.3472 0.0216 32

Maradi Niamey 0.1763 0.0065 664 0.2654 0.0098 2
Maradi Tahoua 0.1108 0.0039 352 0.3148 0.0112 70
Maradi Zinder 0.0325 0.0095 238 0.1367 0.0397 11
Maradi Katsina 0.0902 0.0279 92 0.9803 0.3030 11
Maradi Sokoto 0.1053 0.0388 342 0.3080 0.1134 6
Niamey Tahoua 0.0356 0.0032 553 0.0643 0.0058 70
Niamey Sokoto 0.0666 0.0157 513 0.1298 0.0306 10
Tahoua Sokoto 0.0783 0.0051 230 0.3406 0.0223 36
Zinder Kano 0.0700 0.0230 240 0.2917 0.0960 8
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Market 1 Market 2 τmn Std. Error Dist. /t-km Std. Error Obs.

Nigeria Abuja Ilorin 0.1351 0.0727 453 0.2982 0.1604 2
Abuja Jos 0.0656 0.0024 275 0.2387 0.0089 288
Abuja Kaduna 0.1263 0.0259 211 0.5987 0.1229 8
Abuja Lokoja 0.0963 0.0062 202 0.4767 0.0305 144
Abuja Makurdi 0.1837 0.0716 283 0.6491 0.2531 4
Akure BeninCity 0.1252 0.0049 172 0.7282 0.0284 283
Akure Ibadan 0.0957 0.0030 178 0.5378 0.0171 282
Akure Ilorin 0.1327 0.0060 203 0.6539 0.0296 197

BeninCity Enugu 0.1244 0.0091 254 0.4899 0.0360 100
BeninCity Ibadan 0.1798 0.0054 282 0.6375 0.0190 278
BeninCity Lagos 0.1629 0.0660 326 0.4996 0.2025 13
BeninCity Lokoja 0.1561 0.0119 276 0.5657 0.0432 90
BeninCity PortHarcourt 0.1326 0.0061 332 0.3993 0.0182 287
Calabar Enugu 0.1540 0.0269 263 0.5857 0.1022 129
Calabar PortHarcourt 0.2567 0.0341 216 1.1886 0.1580 62
Enugu Makurdi 0.1455 0.0153 257 0.5662 0.0594 63
Enugu PortHarcourt 0.1679 0.0126 233 0.7204 0.0542 172
Enugu Yola 0.1830 0.0111 761 0.2404 0.0145 133
Gombe Jos 0.0859 0.0030 279 0.3080 0.0109 272
Gombe Maiduguri 0.1146 0.0457 319 0.3594 0.1431 3
Gombe Yola 0.0862 0.0092 250 0.3447 0.0368 96
Ibadan Ilorin 0.0703 0.0046 159 0.4420 0.0290 177
Ibadan Lagos 0.2131 0.0164 142 1.5005 0.1152 121
Ilorin Kaduna 0.0573 0.0056 492 0.1164 0.0113 127
Ilorin Lokoja 0.2157 0.0444 326 0.6617 0.1363 6
Ilorin Sokoto 0.0678 0.0024 682 0.0994 0.0035 276
Jos Kaduna 0.0605 0.0027 274 0.2208 0.0099 280
Jos Kano 0.0791 0.0030 392 0.2018 0.0075 284
Jos Maiduguri 0.1016 0.0206 587 0.1730 0.0350 4
Jos Makurdi 0.0874 0.0101 310 0.2818 0.0326 77

Kaduna Kano 0.0529 0.0026 233 0.2271 0.0112 288
Kaduna Sokoto 0.0588 0.0055 468 0.1255 0.0116 84

Kano Katsina 0.0614 0.0061 173 0.3547 0.0353 91
Kano Maiduguri 0.0748 0.0099 636 0.1176 0.0155 29
Kano Sokoto 0.0912 0.0297 540 0.1689 0.0551 7

Maiduguri Yola 0.1032 0.0167 406 0.2542 0.0411 62
Makurdi Yola 0.0811 0.0032 617 0.1314 0.0052 276
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Market 1 Market 2 τmn Std. Error Dist. /t-km Std. Error Obs.

Senegal Dakar Kaolack 0.0778 0.0045 214 0.3636 0.0209 80
Dakar SaintLouis 0.0457 0.0022 245 0.1864 0.0090 152
Dakar Touba 0.0752 0.0027 181 0.4155 0.0151 135

Kaolack Tambacounda 0.0404 0.0033 375 0.1077 0.0087 73
Kaolack Touba 0.0366 0.0021 154 0.2379 0.0139 177

SaintLouis Touba 0.0940 0.0114 176 0.5341 0.0647 7
Tambacounda Ziguinchor 0.1128 0.0267 408 0.2765 0.0653 6

S. Leone Bo Freetown 0.0622 0.0076 237 0.2624 0.0321 25
Bo Kabala 0.0679 0.0153 253 0.2684 0.0603 18

Freetown Kabala 0.0667 0.0253 302 0.2209 0.0838 3

Togo Kara Lome 0.1858 0.0092 412 0.4510 0.0224 97
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Table A.9: Estimated Port to World Market Trade Costs

Market 1 Market 2 τmn Std. Error Observ.

Mozambique Beira Gulf 0.1084 0.0166 36
Beira Bangkok 0.2419 0.0160 61

Maputo Gulf 0.1838 0.0103 65
Maputo Bangkok 0.2092 0.0083 120
Nacala Gulf 0.0732 0.0096 28
Nacala Bangkok 0.2384 0.0144 26

Namibia Swakopmund Gulf 0.2751 0.0170 4
Angola Luanda Gulf 1.4519 0.0116 4
Congo PointeNoire Bangkok 0.6152 0.0649 10
D.R. Congo Matadi Gulf 0.3994 0.0239 55

Matadi Bangkok 0.7986 0.0492 57
Kenya Mombasa Gulf 0.1000 0.0070 64
Somalia Bosaso Gulf 0.3319 0.0142 184

Kismayo Gulf 0.1182 0.0112 55
Mogadishu Gulf 0.0764 0.0067 117

Tanzania DaresSalaam Gulf 0.1062 0.0117 33
DaresSalaam Bangkok 0.3191 0.0137 87

Djibouti Djibouti Gulf 0.0912 0.0032 112
Djibouti Bangkok 0.2737 0.0095 112

Eritrea Massawa Gulf 1.5038 0.0754 9
Sudan PortSudan Gulf 0.2723 0.0113 137
Benin Cotonou Gulf 0.2571 0.0182 53

Cotonou Bangkok 0.4291 0.0071 120
Cameroon Douala Gulf 0.3615 0.0072 100

Douala Bangkok 0.2482 0.0067 97
Côte d’Ivoire Abidjan Gulf 0.2730 0.0127 26

Abidjan Bangkok 0.2413 0.0178 25
Gabon Libreville Bangkok 0.5394 0.0119 74
Gambia Banjul Gulf 0.3193 0.0046 156

Banjul Bangkok 0.1151 0.0093 61
Ghana Accra Gulf 0.2816 0.0082 112

Accra Bangkok 0.4399 0.0315 73
Guinea Conakry Bangkok 0.5813 0.0478 9
Guinea Bissau Bissau Gulf 1.5468 0.1344 8

Bissau Bangkok 0.4296 0.0304 32
Liberia Monrovia Bangkok 0.1156 0.0117 39
Mauritania Nouakchott Gulf 0.6870 0.0536 11

Nouakchott Bangkok 0.1219 0.0048 48
Nigeria Lagos Gulf 0.4879 0.0309 47

Lagos Bangkok 0.5720 0.0337 41
PortHarcourt Gulf 0.4651 0.0096 147
PortHarcourt Bangkok 0.6436 0.0201 74

Senegal Dakar Gulf 0.2202 0.0062 88
Dakar Bangkok 0.0919 0.0280 8

Sierra Leone Freetown Bangkok 0.2129 0.0257 10
Togo Lome Gulf 0.3925 0.0366 14

Lome Bangkok 0.3816 0.0136 120
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Table A.10: Correlation of Port to World Market Trade Costs with Port Characteristics

(1) (2)

Population < 500, 000 0.184 0.169
(0.151) (0.142)

High volume -0.0213 -0.0378
(0.0990) (0.124)

Corruption index -0.0109 -0.0208*
(0.0102) (0.0121)

LPI customs index 0.184 0.241
(0.237) (0.209)

GDP per capita 5.07E-05 4.89E-05
(3.21E-05) (3.02E-05)

Import tariff 4.06E-04
(0.00176)

Constant 0.203 0.404
(0.430) (0.354)

Observations 47 43
Clusters 25 23

Note: Robust standard errors in () clustered by country;
* significant at 10%, ** at 5%, *** at 1%. Import tariff
data was unavailable for Liberia and Somalia, so these 2
countries and their 4 ports are excluded from column (2).
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A.8 Price Differences Elsewhere

In this section I assess whether my counterfactual trade costs of $0.05/t-km for overland
market links and $50/tonne for port-to-world-market links are in line with observed price
differences within the US and between the US and other major world markets. Importantly,
I do not develop a full model of production, consumption, storage, and trade as I do for
Africa, so I do not identify when and where trade occurs. The price differences I consider
are therefore lower bounds on the actual trade costs, with the upper end of the range of
price differences likely closest to actual trade costs.

I start by considering price series of maize (corn) for the 8 major US markets included
in the USDA Feed Grains Database (Chicago, Kansas City, Memphis, Minneapolis, New
Orleans, Omaha, St. Louis, and Toledo). As for my African network, I identify 11 trans-
portation links along which direct trade between pairs of these markets is feasible. I then
compute the price difference between each pair of markets for each of the 120 months corre-
sponding to my African data (May 2003 – April 2013). The median price difference across all
1,320 observations is $0.012/t-km with only 15 observations (1.1%) higher than $0.05/t-km.
Details for each link are shown in table A11. Given that the US is a major maize exporter
through the Gulf ports near New Orleans, this evidence is highly suggestive that trade costs
within the US rarely if ever exceed $0.05/t-km.

Table A.11: Domestic US Price Differences

Market 1 Market 2 Avg. Difference Distance (km) Avg. /t-km % > $0.05

Chicago Minneapolis 0.0115 657 0.0175 0%
Chicago Omaha 0.0061 758 0.0081 0%
Chicago St. Louis 0.0053 478 0.0110 0.83%
Chicago Toledo 0.0036 394 0.0092 0%
Kansas City Minneapolis 0.0097 702 0.0139 0%
Kansas City Omaha 0.0035 303 0.0115 0%
Kansas City St. Louis 0.0077 399 0.0193 2.50%
Memphis New Orleans 0.0183 636 0.0287 6.67%
Memphis St. Louis 0.0039 455 0.0085 1.67%
Minneapolis Omaha 0.0075 615 0.0121 0%
Minneapolis St. Louis 0.0134 900 0.0148 0.83%

I next consider prices at the major maize export ports for the US, Argentina, and Ukraine,
which are the first, second, and fifth largest exporters of maize globally (Brazil and China
are third and fourth). Pairing each of these three markets together and computing monthly
price differences for my study period as above I find an average price difference of $0.015
($15/tonne) with only 2.8% of observations higher than $0.05 ($50/tonne). Details for each
pair are shown in table A12. Although these ports may not regularly trade with each other,
this evidence suggests that trade costs between major global maize ports do not significantly
exceed $50/tonne, which is the average transport cost from the US Gulf to Durban, South
Africa over the study period.
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Table A.12: Price Differences Between Major Global Maize Ports

Market 1 Market 2 Avg. Difference % > $0.05

US Gulf Argentina 0.0106 0%
US Gulf Ukraine 0.0185 3.96%
Argentina Ukraine 0.0170 4.95%
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A.9 Comparison to Static Annual Model

To implement a static annual model, I remove storage Simt and associated costs rm and km
from the model. There are now 10 time periods (years) instead of 120 (months). In each
time period, traders must decide how much of the local harvest Himt to trade with other
markets (Timnt) and to sell for local consumption (Qimt). Equation 8 from the main text
becomes:

Qimt = Himt −
∑
n 6=m

Timnt

While the spatial arbitrage conditions still hold, there are no temporal arbitrage condi-
tions, so equilibrium for each time period (year) can be solved independently. I proceed to
re-estimate trade costs τmn using the same iterative algorithm as before with the price series
from my baseline estimated model as my price data. Trade cost estimates converge in 6
iterations.

Trade cost estimates are 23.4% lower on average using the static annual model. Of the
460 trade cost parameters (413 overland and 47 sea), the static annual model underestimates
12.2% by 50–97%, 25.2% by 25–50%, 33.0% by 10–25%, and 19.1% by 2–10%, while the
percentage change for the remaining 10.4% of parameters is between –2% and +2%.

I next re-solve the model under counterfactual trade costs and compare equilibrium out-
comes to those under the baseline (underestimated) trade costs. Given that the baseline
trade costs are smaller than in the dynamic monthly model, it is not surprising that the
effects of reducing trade costs are smaller. The overall welfare gain from lowering trade costs
is 33.6% smaller than under the dynamic monthly model with storage. Of the 229 markets
excluding Johannesburg, the welfare effects for 23.6% are underestimated by 50–98%, 30.1%
by 25–50%, 23.6% by 10–25%, and 7.4% by 0.5–10%, while 7.4% of markets have a welfare
effect that changes sign and 7.9% of markets have a welfare effect that is overestimated.

The intuition for the underestimation of trade costs and welfare effects is clear from the
example in figure A1. For ease of illustration, I consider a case in which trade occurs between
an African port and the world market. The left panel shows baseline maize price series in
Accra, Ghana and the US Gulf, as well as the parity price for imports from the US Gulf
to Accra under baseline trade costs. As is clear from the figure, Accra is an importer of
maize. In keeping with Proposition 2, traders in Accra store maize first and import maize
later, so that maize prices are significantly below import parity at harvest time and then
increase to reach import parity as local stocks are consumed. Whereas my dynamic model
estimates trade costs using price differences during the months when trade occurs at the
end of the harvest cycle (i.e. from the peaks in the blue line to the black line), the static
annual model using farm-gate prices estimates trade costs at the beginning of the harvest
cycle (i.e. from the troughs in the blue line to the black line). The static annual model
underestimates trade costs between the US Gulf and Accra by 22%. The right panel shows
counterfactual maize price series in Accra (in red) as well as the parity price for imports
from the US Gulf to Accra under counterfactual trade costs. The welfare effect of lowering
trade costs depends on the change in prices, which for the dynamic monthly model is the
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difference between the blue and the red lines. In contrast, in the static annual model the
change in prices is the difference between the troughs in the blue line and the dashed black
line. This change in prices is always less than in the dynamic monthly model. The static
annual model underestimates the welfare effect of lowering trade costs for Accra by 24%.
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Figure A.1: Maize Price Series for Accra, Ghana and the US Gulf Under Baseline and
Counterfactual Trade Costs, May 2003 – April 2013

For inland market pairs, the changes that take place under the counterfactual are less
easily visualized as they depend on interactions between multiple markets. However, figure
A2 illustrates the difference between the two models using baseline maize price series in
Butembo, D.R. Congo and Mbarara, Uganda, as well as the parity price for imports from
Mbarara to Butembo under baseline trade costs. These markets are both in the equatorial
zone with two annual harvests. As in the previous case, traders in Butembo store maize first
and import maize later, so that maize prices are significantly below import parity at harvest
time and then increase to reach import parity as local stocks are consumed. Again, the
dynamic model estimates trade costs using price differences during the months when trade
occurs at the end of the harvest cycle (i.e. from the peaks in the blue line to the black line),
while the static annual model using farm-gate prices estimates trade costs at the beginning
of the harvest cycle (i.e. from the troughs in the blue line to the black line). The static
annual model underestimates trade costs between Mbarara and Butembo by 58% and the
welfare effect of lowering trade costs for Butembo by 37%.
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Figure A.2: Maize Price Series for Butembo, D.R. Congo and Mbarara, Uganda Under
Baseline Trade Costs, May 2003 – April 2013
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A.10 Corridor Selection Exercise

This section describes in greater detail the selection of overland links for targeted trade cost
reduction in the trade corridor extension in the main text. To select links, I first compared
the absolute difference in equilibrium welfare between the “just sea scenario” in which only
port to world market costs are reduced and the main counterfactual in which all trade costs
are reduced. Table A13 shows these differences for the 34 markets with a welfare difference
of over $500 million equivalent variation, which together account for 65.5% of the total
difference in welfare. These 34 markets come from only 9 countries, with 28 of them coming
from only 4 countries (Nigeria, South Sudan, Sudan, and Ethiopia). I then identified 30
critical links for closing the welfare gap by looking at equilibrium trade flows to and from
these 34 markets.

Table A14 shows the 24 markets in 14 countries which have a welfare gap of over $300
million equivalent variation after my initial reduction of trade costs along the 30 critical
links. I proceeded to identify an additional 45 links (for a total of 75) important for closing
the welfare gap for these markets. 87.5% of the welfare gains from reducing trade costs
everywhere can be achieved by lowering trade costs on the 75 links in tables A13 and A14
along with port to world market trade costs. A map of the 75 targeted links is included in
figure A3.

My corridor selection exercise suggests that certain types of trade corridors may be
particularly beneficial. First, reducing trade costs all the way from the world market to
“dry ports” in densely-populated inland areas can achieve significant welfare gains even if
trade costs from the dry ports to areas further inland remain high. Table A15 shows the
welfare effects of reducing trade costs along a single link between the port of Matadi in
the Democratic Republic of Congo and the capital city Kinshasa. The table compares the
potential gains from full trade cost reduction on all links with the gains achieved by reducing
trade costs on this single link, reporting results for Kinshasa as well as for seven other inland
markets in the western D.R. Congo which are either directly linked to Kinshasa or have only
a single market in between. Reducing trade costs for this one of the 11 links that connect
these markets results in 53.7% of the welfare gain achievable by reducing trade costs on all
11 links ($1.03 of $2.22 billion equivalent variation). This is due both to the large population
in the Kinshasa market catchment, which accounts for 39.5% of the potential welfare gains
for the eight markets, as well as the secondary effects on the other seven markets, which
achieve 26.9% of their potential welfare gains as lower prices in Kinshasa translate into lower
prices everywhere despite continued high trade costs further inland.

Second, reducing trade costs along major inland corridors with significant imbalances or
fluctuations in production and consumption can lead to major gains. My second, 75-link
corridor counterfactual includes trade cost reduction along the complete east-west trans-
Sahelian highway from Dakar, Senegal to Port Sudan, Sudan (22 links). This route traverses
7 countries (including 4 land-locked countries) which are major producers of millet and
sorghum and include 6 of the 8 countries with the highest per-capita grain demand as mea-
sured by my estimated Am parameters. The Sahel is also subject to significant local harvest
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fluctuations due to its arid climate with erratic rainfall. Out of a total possible welfare gain
of $65.2 billion equivalent variation from reducing trade costs on all 413 overland links, the
23 markets on the trans-Sahelian highway gain $9.1 billion (14.0%) in my 75-link corridor
counterfactual. This figure increases to $15.2 billion (23.3%) when the 35 markets with direct
connections to one of the 23 markets on the trans-Sahelian highway are included.

Finally, targeting those inland areas isolated by extremely large trade costs can lead
to very large welfare improvements. The five markets of South Sudan are perhaps the
continent’s most isolated grain deficit areas. These five markets account for $10.5 billion
(16.1%) of the total possible welfare gain from reducing trade costs on all 413 overland links,
and my second, 75-link corridor counterfactual achieves all of this welfare gain.
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Table A.13: Initial Targeting of 30 Overland Links

Country Market Welfare Diff. Targeted Links

Nigeria/ Enugu 3187 Enugu–Makurdi
Niger BeninCity 2969 BeninCity–Enugu

Ibadan 2542 Ibadan–Ilorin
PortHarcourt 1776 PortHarcourt–Enugu

Kano 1547 Kano–Katsina
Lagos 1386 Lagos–BeninCity
Akure 1294 Lagos–Ibadan

Calabar 931 PortHarcourt–Calabar
Tahoua 668 Katsina–Maradi

Maiduguri 658 Kaduna–Kano
Makurdi 593 Makurdi–Jos

Ilorin 575 Ilorin–Kaduna
Lokoja 569 Jos–Kano
Gombe 523
Maradi 520

South Sudan/ Wau 2527 Rumbek–Wau
Sudan/ Rumbek 2473 Juba–Rumbek
Uganda Juba 2071 Gulu–Juba

Malakal 1723 Kosti–Malakal
Bor 1718 Juba–Bor

Nyala 1620 Kosti–ElObeid
AlFashir 1098 ElObeid–AlFashir

ElGeneina 869 AlFashir–ElGeneina
Kosti 611 Khartoum–Kosti

Mbarara 573 Kampala–Mbarara
Kampala–Gulu

Ethiopia Awasa 1176 AddisAbaba–Awasa
Dessie 1003 Djibouti–Dessie

BahirDar 977 AddisAbaba–BahirDar
AddisAbaba 852 Djibouti–AddisAbaba

Yabelo 711
Mekele 658

Mali Bamako 912

D.R. Congo Kinshasa 876 Matadi–Kinshasa

Ghana Kumasi 560 Accra–Kumasi

115



Table A.14: Targeting of 45 Additional Overland Links

Country Market Welfare Diff. Additional Targeted Links

Nigeria/ Maiduguri 915 Kano–Maiduguri
Niger/ Akure 610 Ibadan–Akure
Chad Zinder 586 Maradi–Zinder

Lokoja 491 BeninCity–Lokoja
Gombe 468 Jos–Gombe

Ndjamena 451 Maiduguri–Ndjamena
Tahoua 405 Maradi–Tahoua

Maradi–Niamey
Ndjamena–Abeche

South Sudan/ Wau 1578 Kadugli–Wau
Sudan/ Juba 966 ElObeid–Kadugli
Uganda Bor 910 Malakal–Bor

Kampala 875 Jinja–Kampala
Rumbek 767 Abeche–ElGeneina

Nyala 679 AlFashir–Nyala
Mbarara 404 Kigali–Mbarara

Mombasa–Nairobi
Nairobi–Nakuru
Nakuru–Eldoret

Eldoret–Jinja
PortSudan–Kassala
Kassala–AlQadarif
AlQadarif–Kosti

Ethiopia/ Yabelo 353 Awasa–Yabelo
Eritrea Asmara 349 Massawa–Asmara

Gambela 311 Gambela–Malakal
Nekemte–Gambela

AddisAbaba–Nekemte

Mali Bamako 807 Bamako–Kayes
Kayes–Tambacounda

Tambacounda–Kaolack
Kaolack–Dakar
Sikasso–Bamako

BoboDioulasso–Sikasso
Ouagadougou–BoboDioulasso
FadaNgourma–Ouagadougou

Niamey–FadaNgourma

Ghana Bolgatanga 371 Ouagadougou–Bolgatanga
Bolgatanga–Tamale

Tamale–Kumasi
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Country Market Welfare Diff. Additional Targeted Links

D.R. Congo Kisangani 342 Gulu–Bunia
Lubumbashi 303 Kitwe–Lubumbashi

Guinea Labe 333 Conakry–Labe

Zambia Chipata 326 Chipata–Lilongwe

Cameroon Yaounde 302 Douala–Yaounde
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Figure A.3: Map of 75 Targeted Links
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Table A.15: Welfare Effects of Trade Cost Reduction for Single Link (Matadi-Kinshasa, D.R.
Congo)

Potential Gains Achieved Gains Percent Achieved

Kinshasa 876.4 831.2 94.8%
Bandundu 93.3 32.6 34.9%
Gbadolite 191.5 4.9 2.6%
Kisangani 461.7 119.8 25.9%
Kikwit 154 44.5 28.9%
Mbandaka 207.3 100.4 48.4%
Tshikapa 83.2 8.3 10.0%
Zongo 153.4 50.8 33.1%

Total 2220.8 1192.5 53.7%
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A.11 Partial Technology Adoption

In the main text I report results from counterfactuals in which I double African agricultural
production to mimic the effects of technology adoption. In this section, I consider counter-
factuals in which African agricultural production increases by less than 100% under existing
high trade costs. This could reflect a scenario in which all farmers adopt a technology that
increases yields by less than 100%, or it could reflect partial technology adoption with only
a certain percentage of farmers adopting yield-doubling technology.

Table A16 reports the results from these counterfactuals and compares them to the results
of doubling agricultural production from the main text (bottom row). The effects have the
same sign for all indicators and all levels of technology adoption, with increasing levels of
technology adoption leading to increasing magnitudes.

Table A.16: Effects of Partial Technology Adoption

Level Grain Price Index Net Ag Revenues Net Grain Exports Welfare

+10% –12.6% –14.1% +51.0 mill t +0.6%
+20% –22.8% –26.3% +93.2 mill t +1.0%
+30% –31.3% –37.1% +127.3 mill t +1.4%
+40% –38.0% –45.8% +154.1 mill t +1.7%
+50% –43.5% –53.1% +176.8 mill t +1.9%
+60% –48.1% –59.5% +195.9 mill t +2.1%
+70% –51.7% –64.2% +212.6 mill t +2.2%
+80% –54.4% –67.4% +227.1 mill t +2.4%
+90% –56.5% –69.5% +240.5 mill t +2.5%

+100% –58.6% –71.4% +254.1 mill t +2.6%
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