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ABSTRACT 

 

Intrinsic Reward Motivates Large-Scale Shifts Between Cognitive Control and Default Mode 

Networks During Task Performance 

 

by 

 

Richard W. Huskey 

 

Cognitive control is an important framework for understanding the neuropsychological 

processes that underlie and enable the successful completion of everyday tasks. Only recently 

has research in this area investigated motivational contributions to control allocation. An 

important gap in our understanding is the way in which intrinsic rewards associated with a 

task motivate the sustained allocation of cognitive control. In three behavioral and one 

functional magnetic resonance imaging studies, we use a naturalistic and open-sourced 

simulator to show that changes in the balance between task difficulty and an individual’s 

ability to perform the task result in different levels of intrinsic reward, which motivates 

dynamic shifts between networked brain states. Specifically, high levels of intrinsic reward 

associated with a balance between task difficulty and individual ability are associated with 

increased connectivity between cognitive control and reward networks. By comparison, a 

mismatch between task difficulty and individual ability is associated with lower levels of 

intrinsic reward and corresponds to increased activity within the default mode network. 

Insular activation suggests that motivational salience, as defined by the level of intrinsic 



 x 

reward, drives shifts between networked brain states associated with task engagement or 

disengagement. These results implicate reward processing as a critical component of 

cognitive control. 
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Foreword  

“As best I can figure out, luck is a big part of a life in science.” 

Michael S. Gazzaniga 

 

 The project described in this report represents the culmination of a five-year research 

program. It also hints at where my research is headed. As is the convention, this manuscript 

presents my project in a linear and orderly manner as if this is exactly what I had planned all 

along. Although, and as any seasoned investigator will attest, this is almost never the normal 

progression of science. My project is no different. It is the result of careful advising, chance 

encounters, a broad reading of interdisciplinary literatures, luck, fortunate timing, and 

determination in the face of obstacles that (on several occasions) threatened to derail the 

entire endeavor. This report is among the first to integrate two literatures from disciplines 

that currently share little interaction. To that end, and as Kuhn (1962) has noted, it is written 

in a technical style that makes it all but uninterruptable to anyone without advanced training 

in Media Neuroscience, a subfield that lies at the intersection of Media Psychology and the 

Cognitive Neurosciences (Weber, Eden, Huskey, Mangus, & Falk, 2015). A regrettable few 

within my chosen discipline of Communication have sufficient training to interpret the 

results reported herein, or clearly see how these results bear on the scientific study of 

Communication. This forward situates my narrow project within these two larger disciplines, 

thereby explicating otherwise obscure connections. It is the first in what will undoubtedly be 

a career-long goal: inspiring my colleagues to see Media Neuroscience as a valuable 

contribution to the scientific investigation of Communication. 
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 Understanding why people enjoy media was my motivation for pursuing graduate 

training in Communication. My advisor, René Weber, turned me on to flow theory 

(Csikszentmihalyi, 1975) and suggested that I consider it as a framework for answering my 

question. Flow is a positively valenced and intrinsically rewarding psychological state that 

results from a balance between task difficulty and an individual’s ability at the task. 

Communication scholars have long thought of flow as a useful framework for understanding 

media selection and enjoyment (Sherry, 2004). However, conceptual and measurement 

ambiguities have severely hamstrung empirical attempts to specify how variation in media 

content contributes to flow (Weber, Tamborini, Westcott-Baker, & Kantor, 2009). With a 

first-year graduate student’s level of optimism and naiveté, I settled on solving the following 

question: How do media contribute to flow? 

 I was immediately confronted with the enormity of this question. Accordingly, our 

first study investigated the narrower topic of how attention is allocated during flow 

experiences. Consistent with predictions based on the limited capacity model of motivated 

mediated message processing (LC4MP; Lang, 2006), we found that flow required more 

attention than less motivationally relevant experiences as measured using a secondary task 

reaction time (STRT; Lang, Bradley, Park, Shin, & Chung, 2006). However, just-published 

results had suggested that attention is capacity-limited by modality (Keitel, Maess, Schröger, 

& Müller, 2013), thereby suggesting a natural follow-up study. In a second study using both 

visual and auditory STRTs, we showed that attentional demand during flow required high 

levels of attention regardless of modality.  

 At this point, we were confident that we had identified a behavioral correlate of flow 

that would allow us to tackle some of Sherry’s (2004) untested predictions about moment-by-
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moment contributions of a media stimulus to flow. We submitted our work for publication 

and were quickly rejected. The reviewers felt we were fooling ourselves. The paradigm 

lacked sufficient control, we had not fully accounted for alternate explanations, and our 

manipulation checks were not as convincing as we thought. Accordingly, we designed a third 

study to address these concerns. Our results showed robust evidence for our effect, even 

when stringent controls were administered. Over the course of three studies, long hours in the 

lab, and several hundred subjects, we had developed a high-control experimental paradigm 

for manipulating and measuring flow.  

 Encouraged, we continued in our investigations of the neurocognitive basis of flow. 

At the time, a recent paper in Communication Theory (Weber et al., 2009) made the case that 

conceptual ambiguities related to flow could be mitigated by adopting a Media Neuroscience 

perspective. Specifically, the Synchronization Theory of Flow predicted that intrinsically 

rewarding flow experiences resulted from a synchronization process between structures in 

cognitive control and reward networks. At the time, this prediction remained untested. The 

results from our three behavioral studies indicated that we had a procedure that would allow 

us to test this prediction. We began to plan the follow-up functional magnetic resonance 

imaging (fMRI) study. 

 Around this time, I was taking a cognitive neuroscience class with Michael Miller in 

the Department of Psychological and Brain Sciences at the University of California, Santa 

Barbara. Mike told me that flow sounded very similar to a problem in the Cognitive 

Neurosciences known as cognitive control (Miller & Cohen, 2001). Like flow, cognitive 

control was also interested in processes such as goal planning, goal maintenance, 

performance monitoring, response inhibition, and reward processing during task execution. 
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One of the unsolved problems within this literature was how intrinsic reward contributes to 

the allocation of cognitive control during task performance (Braver et al., 2014). Encouraged 

by the opportunity to consider flow from a broader interdisciplinary perspective, we dove 

into the literature. The first outcome of this effort was the development of a theoretical case 

for integrating flow and cognitive control. We argued that flow is a subtype of cognitive 

control where a balance between task demands and individual abilities contributes to the 

perception that a flow task requiring cognitive control is intrinsically rewarding (Weber, 

Huskey, & Craighead, 2016). Moreover, we made the case that Communication scholars 

were well positioned to test how variation in media content contributed to intrinsically 

rewarding flow experiences (specifically) and cognitive control (more generally). 

 These ideas persisted during the design and execution of our fMRI investigation of 

flow. Once the study was complete, we were even more convinced that our ideas about the 

integration of flow and cognitive control were on track. Consistent with sync theory 

predictions, we found that cognitive control and reward structures were functionally 

connected during a balance between task difficulty and individual ability (flow). Moreover, 

we found that a mismatch between difficulty and ability resulted in a brain state that 

commonly characterizes task disengagement (Raichle et al., 2001). We also replicated our 

STRT findings four a fourth time.  

 By integrating Media Psychology and Cognitive Neuroscience, we were able to show 

that variation in intrinsic reward of a media stimulus motivated differential levels of task 

engagement and cognitive control. Importantly, we demonstrated this effect in four studies 

using self-reports, behavioral measures, and neuroimaging data. This study addressed an 

important gap in the cognitive control literature by showing that intrinsic reward motivates 
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large-scale shifts in brain-network connectivity. For Communication scholars, our results 

suggest behavioral and neural correlates of the flow experience that provide a path for testing 

Sherry’s (2004) predictions about the dynamic relationship between media content, the 

individual, and flow. They also provide compelling support for sync theory’s central 

predictions. Lastly, our development of a novel paradigm, which includes an open source and 

high-control stimulus, provides both fields with a new tool for empirical research. 

Interdisciplinary projects often underscore instances where different disciplines use distinct 

terminology to describe similar cognitive processes. This project is no different. But this 

project also demonstrates that integrating diverse fields can contribute meaningfully to 

broader research questions. Our hope is that Communication scholars will increasingly adopt 

a Media Neuroscience perspective, thereby integrating our field within the larger scholarly 

community.  
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Introduction  

Planning, goal maintenance, performance monitoring, response inhibition, and reward 

learning are key features of cognitive control (Miller & Cohen, 2001). However, much of the 

work in this area has largely ignored motivation despite the fact that it is theorized to play a 

role in control allocation and task performance (Braver et al., 2014; Pessoa, 2008). Recent 

attempts at integrating these two constructs two have largely focused on the ways in which 

reward expectation motivates the allocation of control (Botvinick & Braver, 2014). A key 

finding demonstrates that control allocation is a function of anticipated task difficulty and 

expected rewards where humans strive to find an optimal balance between the two (Kool & 

Botvinick, 2014). Upon task completion, consummatory reward mechanisms track task-

related outcomes and motivate subsequent behavior in order to maximize future rewards 

(O’Doherty et al., 2004). By comparison, the way in which task-related intrinsic rewards 

(Deci & Ryan, 1985) motivate the sustained allocation of cognitive control during task 

execution remains largely unknown (Braver et al., 2014). Illuminating this relationship has 

important implications for our understanding of cognitive control, particularly for the 

growing body of work showing that intrinsically rewarding, and thereby motivationally 

relevant, tasks contribute to better cognitive control training outcomes (Anguera et al., 2013). 

 Mounting evidence demonstrates that increased extrinsic rewards (e.g., monetary 

payments) facilitate increases in sustained task performance and activity in attentional, 

reward, and cognitive control networks (Engelmann, Damaraju, Padmala, & Pessoa, 2009; 

Locke & Braver, 2008). Similarly, the intrinsically rewarding nature of self-determined 

choice has been shown to elicit activity in reward-network structures and corresponds with 

increases in task enjoyment and performance (Kang et al., 2009; Leotti & Delgado, 2011; 



 7 

Murayama et al., 2015). In order to evaluate intrinsic rewards resulting from task engagement 

(and not from choice), we draw on evidence showing that the sustained execution of a task 

can be intrinsically rewarding, particularly when there is a balance between the task’s 

difficulty and an individual’s ability to meet the task’s demands (Csikszentmihalyi, 1975). 

Experimental manipulations that allow for task difficulty to vary in relationship to subject 

ability show a curvilinear relationship where intrinsic reward is low when difficulty ≠ ability 

and high when difficulty ≈ ability (Keller & Bless, 2008). In a follow-up study, Ulrich and 

colleagues (2013) replicated this finding by having subjects answer to math problems while 

undergoing functional magnetic resonance imaging (fMRI). Problems that matched subject’s 

ability corresponded to the highest levels of intrinsic reward compared to problems that were 

too easy or difficult. This difficulty/ability balance was also associated with increased 

activity in attentional and cognitive control structures, particularly the inferior frontal gyrus 

(IFG) as well as the superior and inferior parietal lobes (SPL, IPL). Increased activity was 

also observed in the putamen, a region implicated in consummatory reward processing 

(Satterthwaite et al., 2007) and performance monitoring during cognitive control (Berkman, 

Falk, & Lieberman, 2012). Similar experimental paradigms using video game stimuli 

indicate that a balance between difficulty and ability corresponds with activation in 

attentional (lateral prefrontal cortex, cerebellum, thalamus, SPL) and reward (caudate 

nucleus, nucleus accumbens, putamen) structures (Klasen, Weber, Kircher, Mathiak, & 

Mathiak, 2012; Yoshida et al., 2014).  

By comparison, a mismatch between difficulty and ability has been shown to result in 

lower levels of intrinsic reward and increased levels of activity within the default mode 

network (DMN; Raichle et al., 2001; Ulrich et al., 2013). Similar findings were also observed 
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in a study using a naturalistic video game stimulus (Mathiak, Klasen, Zvyagintsev, Weber, & 

Mathiak, 2013). Moreover, sustained performance on difficult cognitive tasks has been 

shown to exhaust subjects, resulting in a shift from activity in fronto-parietal control 

networks to the DMN (Esposito, Otto, Zijlstra, & Goebel, 2014). These results suggest that 

intrinsic reward may motivate task engagement and be a key factor driving shifts in brain-

network organization between one optimized for cognitive control and one that characterizes 

task disengagement. Converging evidence suggests that the insula plays a key role in shifting 

between these networks (Chang, Yarkoni, Khaw, & Sanfey, 2013) where changes in activity 

within this structure predict task disengagement (Meyniel, Sergent, Rigoux, Daunizeau, & 

Pessiglione, 2013). To date, no study has systematically evaluated (1) the way in which task-

related intrinsic reward modulates the allocation of cognitive control during task 

performance, and (2) how variation in intrinsic reward magnitude impacts networked brain 

connectivity patterns. 

 To test these questions, a novel, high-control, and open-sourced simulator called 

Asteroid Impact (CC BY-SA 4.0) was developed. This allowed us to manipulate the balance 

between task difficulty and individual ability in three naturalistic and ecologically valid 

(Bohil, Alicea, & Biocca, 2011) experimental conditions: low-difficulty (ability > difficulty), 

high-difficulty (ability < difficulty), and balanced-difficulty (ability ≈ difficulty). Three 

behavioral validation studies showed a curvilinear relationship where intrinsic reward was 

greatest when task difficulty was balanced with individual ability. A secondary task reaction 

time procedure (STRT; Lang et al., 2006) replicated this inverted U-shaped pattern. Next, 

this paradigm was adapted for an fMRI study. Here, we show that a balance between task 

difficulty and individual ability is associated with robust connectivity between structures in 



 9 

cognitive control and reward networks. By comparison, a mismatch between difficulty and 

ability was associated with increased activity in key structures within the default mode 

network. Interestingly, connectivity patterns between the right dorsoanterior insula and 

fontocontrol structures during the balanced-difficulty condition suggests that the salience 

network (Elton & Gao, 2014; Ham, Leff, de Boissezon, Joffe, & Sharp, 2013) plays a role in 

switching between these different neurocognitive states (Gu et al., 2015). These results 

indicate that intrinsic reward motivates shifts between brain states optimized for cognitive 

control, or task disengagement. 

Method 

 Three behavioral experiments were conducted to evaluate a novel procedure for 

manipulating and measuring the relationship between task difficulty, individual ability, and 

cognitive control. 

Subjects 

 Subjects in each experiment were drawn from a pool of students at The University of 

California, Santa Barbara (Table 1). The University’s Institutional Review Board approved 

all experiments. Subjects in the fMRI experiment were right-handed, had normal or corrected 

to normal vision, and did not demonstrate any contraindication to fMRI scanning. Previous 

behavioral research evaluating engagement with naturalistic simulators has shown 

considerable variability in effect sizes. Accordingly, small effects were assumed when 

calculating a power analysis for the first behavioral experiment with subsequent behavioral 

experiments seeking to maintain comparable sample sizes. The fMRI sample size 

corresponded to related studies reported in the literature. 
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Naturalistic Simulator  

In experiments one and two, subjects played Star Reaction (ABiGames, 

http://loveisgames.com/Action/1979/Star-Reaction), a point-and-click style simulator where 

subjects used their cursor to collect star-shaped targets that were displayed at different 

locations on a screen while avoiding rings that bounced around the screen. Thirteen levels 

incrementally manipulated difficulty by altering the number of targets a subject needed to 

collect, the number of objects to be avoided, and the rate at which these objects moved 

around the simulator window. While useful for initial testing, Star Reaction offered few 

options for interface customization, thereby limiting experimental control. To overcome this 

issue, an open-source variant called Asteroid Impact (CC BY-SA 4.0) was developed for 

experiment three and the subsequent fMRI experiment. Asteroid Impact was designed to 

have similar mechanics to Star Reaction while allowing for tight experimental control (see 

the simulator’s documentation included in the supplemental materials). 

Secondary Task Reaction Time Measurement 

Subjects completed a STRT measure (Lang et al., 2006) while playing the 

experimental simulator (Figure 1). Reaction times (RTs) were defined as the latency between 

the onset time of a stimulus (trial) and the moment when a subject responded with a key 

press. For experiments one and two, each condition included 48 trials that lasted for 1500 ms. 

Only visual trials were used in experiment one while half of the visual trials were replaced 

with auditory trials (sine waveform, 440.0 Hz) in experiment two. The interstimulus interval 

(ISI) for each trial was calculated by adding a sample of normally distributed randomly 

generated numbers (M = 1969 ms, SD = 1000 ms) to a baseline of 1500 ms. In experiment 

three and the fMRI experiment, 24 visual trials were shown for each condition. The ISI for 
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these trials was jittered around a truncated Gaussian distribution with a floor of 1500 ms and 

a standard deviation of 2.0.  

Measuring Intrinsic Reward  

In experiments one and two, intrinsic reward was measured using a 4-item, 7-point 

scale (Bowman, Weber, Tamborini, & Sherry, 2013; Weber, Behr, & Bates, 2014). 

Experiment three used a better validated and more widely used measure of intrinsic reward 

(Jackson & Marsh, 1996). 

Measuring Simulator Ability 

In experiments one and two, simulator ability was evaluated using a 4-point single-

item measure. In experiment three and the fMRI study, this was changed to a 7-point single-

item measure. In addition, and based on evidence that performance on different cognitive 

tasks correlates with simulator ability (Bowman et al., 2013), established behavioral 

measures of targeting (Watson & Kimura, 1989), attentional vigilance (Robertson, Manly, 

Andrade, Baddeley, & Yiend, 1997), dual-tasking ability (Erickson et al., 2007), and three-

dimensional mental rotation (Peters et al., 1995) were collected as independent behavioral 

proxies for simulator ability (S1–S4). 

Procedures 

Self-reported simulator ability and baseline reaction times were collected at the 

beginning of each experiment. Subjects then familiarized themselves with the simulator 

stimulus by reading the rules and by repeatedly playing the simulator’s first level for a period 

of two minutes. Subjects then played three randomly ordered conditions that manipulated 

low-difficulty, high-difficulty, and balanced-difficulty. The low-difficulty condition (ability 

> difficulty) was operationalized as repeated play of the simulator’s first and least 
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challenging level while the high-difficulty condition (ability < difficulty) required repeated 

play of the most challenging level. In the balanced-difficulty condition (ability ≈ difficulty), 

simulator difficulty and player ability were matched by asking subjects to complete as many 

successive levels (with increasing difficulty) as possible within the allotted time period. In 

experiments one and two, each condition lasted for a total of four minutes whereas each 

condition lasted for two minutes in experiment three and the fMRI experiment. Subjects 

completed each condition just once in experiments one, two, and three. In the fMRI 

experiment, subjects completed a total of four runs where each run included all three 

conditions in a counterbalanced order. 

In experiment three, subjects then completed the three-dimensional mental rotation, 

attentional vigilance, dual-tasking, and targeting measures. In the fMRI experiment, subjects 

completed an n-back and gambling task in order to localize neural activity in key cognitive 

control and reward network regions of interest (S5–S8). 

STRT and Self-Report Data Analysis 

All STRT observations were capped at 1500 ms and the harmonic mean response 

time was calculated for each subject for each condition (Ratcliff, 1993). Repeated measures 

ANCOVAs were calculated to assess how intrinsic rewards and reaction times differed 

across experimental conditions. In each model, the variable of interest was included as a 

within-subjects factor and condition order was included as a between-subjects factor. Self-

reported simulator ability and baseline reaction time covariates were also included in models 

evaluating reaction times. 

fMRI Acquisition, Preprocessing, and Analysis 
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 Data were acquired on a 3-tesla Siemens Magnetom Prisma scanner. Following 

recommendations established by the Human Connectome Project (Ugurbil et al., 2013), a 

multiband echo planar gradient sequence measured the blood oxygenated level dependent 

contrast (TR = 720.0 ms, TE = 37.0 ms, FA = 52 degrees, FOV = 208 mm, multi-band 

acceleration factor = 8) with each volume consisting of 72 interleaved slices with a 2 mm 

isotropic spatial resolution acquired parallel to the AC-PC plane. A high-resolution T1-

weighted sagittal sequence of the whole brain (TR = 2500.0 ms, TE = 2.22 ms, FA = 7 

degrees, FOV = 241 mm, .9 mm isotropic resolution) was collected prior to functional 

scanning.  

Data preprocessing and analysis was performed using FEAT (fMRI Expert Analysis 

Tool v6.0) from the Oxford Center for Functional MRI of the Brain (FMRIB) Software 

Library (FSL v5.0 http://www.fmrib.ox.ac.uk/fsl) using a three-stage pipeline (Weber, 

Mangus, & Huskey, 2015). The first stage included brain extraction (BET; Smith, 2002), 

spatially aligning volumes to a common coordinate system (MCFLIRT; Jenkinson, 

Bannister, Brady, & Smith, 2002), and spatial smoothing (7 mm FWHM kernel). In the 

second step, an independent components analysis (ICA–AROMA; Pruim et al., 2015) was 

applied to the filtered data in order to remove motion artifacts. Finally, the functional data 

were high-pass filtered (sigma = 360.0 s), coregistered to T1-weighted anatomical scans 

(FLIRT; Jenkinson et al., 2002; Jenkinson & Smith, 2001), registered to the MNI152 

standard template using a nonlinear transformation (FNIRT; Andersson, Jenkinson, & Smith, 

2007a, 2007b), prewhitened, and fit to a general linear model (GLM).  

A series of first-level GLMs were estimated for all subjects for all runs. Each model 

included an EV for each condition which was convolved with a hemodynamic response 
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function (gamma convolution = 6 s, SD = 3). Temporal derivatives of each EV were also 

included in as covariates of no interest. Planned contrasts modeled neural activations unique 

to each condition. These first-level models were then carried forward into a second-level 

mixed effects analysis (FLAME; Beckmann & Smith, 2004; Woolrich, Behrens, Beckmann, 

Jenkinson, & Smith, 2004). In line with recommendations for applying cluster-based 

corrections for multiple comparisons (Woo, Krishnan, & Wager, 2014), voxels were 

considered significant if they survived a stringent Z = 3.1, p < .0001 threshold (Worsley, 

2001). 

A series of psychophysiological interaction analyses (PPI; Friston et al., 1997) were 

then modeled to evaluate functional connectivity between structures in cognitive control and 

reward networks. Seed regions of interest (ROIs) were independently defined based on 

functional activations in the n-back and gambling localizer tasks. A 3 mm sphere was drawn 

around peak voxels for each ROI (in MNI152 space), warped to each subject’s native space, 

and used to extract the neural timeseries from filtered functional data for each subject for 

each run. The first level PPI model included an indicator variable that encoded the balanced-

difficulty > low-difficulty and high-difficulty contrast, a physiological regressor, and an 

interaction term. Second level mixed-effects models were then estimated for each seed ROI. 

Given that PPI analyses tend to suffer from decreased statistical power (Friston et al., 1997) 

FSL’s default cluster correction threshold of Z = 2.3, p < .05 was applied. 

Results 

Behavioral Validation Experiments (Studies One, Two, and Three) 

Experiments one and two tested if manipulating a naturalistic simulator stimulus 

modulated task engagement and intrinsic reward. Measures used to assess intrinsic reward 
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showed high internal consistency in both experiments one (Cronbach's α = .906) and two 

(Cronbach's α = .896) and the overall intrinsic reward models were significant for 

experiments one (Wilks’ Λ = .511, F(2,115) = 54.964, p < .001) and two (Wilks’ Λ = .710, 

F(2,103) = 21.027, p < .001). Significant results were also observed when modeling reaction 

times to visual trials in experiments one (Wilks’ Λ = .654, F(2,113) = 29.842, p < .001) and 

two (Wilks’ Λ = .868, F(2,101) = 7.684, p < .001), and for reaction times to auditory trials in 

experiment two (Wilks’ Λ = .822, F(2,101) = 10.937, p < .001). In both experiments, and 

consistent with previous findings, intrinsic reward was the greatest in the balanced-difficulty 

condition. The reaction time data also showed an inverted U-shaped pattern where the 

longest reaction times were observed during the balanced-difficulty condition. 

Experiment three tested whether the simulator ability covariate is best evaluated using 

self-report or behavioral measures. Bivariate Pearson correlations were calculated to assess 

the relationship between subject’s performance on each behavioral measure of ability and the 

total number of targets they successfully collected while playing Asteroid Impact (a measure 

of simulator performance; see Table 2). Self-reported simulator ability (r = .337, p < .01) and 

the standard deviation of reaction times during the dual-mixed procedure (r = -.221, p < .05) 

were significantly correlated with Asteroid Impact performance. These two variables were 

then regressed on Asteroid Impact performance to further characterize the nature of this 

relationship. Self-reported simulator ability was entered into the first block (Adjusted R2 = 

.094, F(1,82) = 9.628, p = .003) with dual-mixed standard deviation and an interaction term 

entered in a second block (Adjusted R2 change = .017, F(3,80) = 4.470, p = .006). Self-

reported simulator ability was the only variable that significantly predicted Asteroid Impact 
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performance (B = .310, p = .004). Therefore, it was again used as a covariate in subsequent 

reaction time analyses.  

For experiment three, the items used to assess intrinsic reward showed acceptable 

internal consistency (Cronbach's α = .751) and the overall repeated measures ANCOVA 

models were significant for intrinsic reward (Wilks’ Λ = .406, F(2,80) = 58.432, p < .001) 

and reaction time (Wilks’ Λ = .310, F(2,78) = 86.698, p < .001). Here again, intrinsic reward 

was the greatest and reaction times were longest in the balanced-difficulty condition (Figure 

2; Table 3). Taken together, the results from these three studies demonstrate that the 

experimental paradigm successfully manipulated levels of intrinsic reward and task 

difficulty. These results also suggest that, within the context of this experimental procedure, 

the STRT measure may serve as a behavioral correlate of intrinsic reward. 

Brain Imaging Results (Study 4)  

 As a manipulation check, and consistent with experiments one, two, and three, STRTs 

measured during the fMRI experiment were the longest in the balanced-difficulty condition 

(Wilks’ Λ = .095, F(2,9) = 42.96, p < .001). Therefore, we infer that our experimental 

procedure successfully manipulated intrinsic reward in an fMRI context.  

 Brain-mapping results. Even with a stringent Z = 3.1, p < .0001 cluster correction, 

the brain mapping analysis yielded a small number of very large clusters (Table 4a). Given 

the issues associated with interpreting cluster corrected results that span across multiple 

anatomical structures (Woo et al., 2014), an FDR correction was applied to provide better 

anatomical specificity (Table 4b). Consistent with previous findings (Klasen et al., 2012; 

Ulrich et al., 2013; Yoshida et al., 2014), results show that the balanced-difficulty condition 

elicited robust neural activity in cognitive control, attentional, and reward structures. 
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Specifically, the balanced-difficulty > low-difficulty and high-difficulty contrast (Figure 3a) 

revealed broad activity in structures associated with cognitive control (thalamus, dorsolateral 

prefrontal cortex; DLPFC), orienting attention (SPL, precentral gyrus), and attentional 

alerting (middle frontal gyrus, dorsoanterior insula). Neural activity was also observed in the 

putamen, a structure implicated in processing consummatory rewards during cognitive 

control tasks (Satterthwaite et al., 2007). By comparison, the low-difficulty > balanced-

difficulty contrast (Figure 3b) showed activity in structures commonly implicated in the 

default mode network, particularly the dorsal and ventral medial prefrontal cortex (PFC), 

ventral posteromedial cortex, temporal pole, and hippocampus. Finally, the high-difficulty > 

balanced-difficulty contrast (Figure 3c) revealed activity in the occipital fusiform gyrus, 

temporal pole, orbitofrontal cortex, and inferior temporal gyrus.  

 PPI results. A series of PPI analyses was then conducted to characterize functional 

connectivity patterns between key cognitive control and reward structures during the 

balanced-difficulty condition. Seed ROIs were defined a priori for anticipatory (nucleus 

accumbens) and consummatory (putamen) reward structures as well as key cognitive control 

(dorsolateral prefrontal cortex, thalamus) ROIs. A posteriori seed ROIs were also evaluated 

for the right dorsoanerior insula and right central precuneus, two structures that were 

implicated in the brain mapping results. 

 During the balanced-difficulty condition, the bilateral nucleus accumbens showed 

functional connections with the occipital pole, paracingulate cortex, central operculum, 

DLPFC, MTG, and temporal-occipital fusiform cortex (Table 5) while the bilateral DLPFC 

seed exhibited connectivity with the orbitofrontal cortex (OFC), frontopolar cortex, STG, 

central precuneus, and occipital fusiform gyrus with several clusters extending into the 
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anterior cingulate (ACC) and paracingulate (PCC) cortices (Table 6). Significant results were 

not observed when seeding from the putamen or thalamus. Nevertheless, an analysis of 344 

lesion patients demonstrates that damage to nearly all these areas is associated with 

behavioral deficits in cognitive control and value-based decision-making tasks (Gläscher et 

al., 2012).  

The exploratory ROIs also exhibited robust connectivity patterns. A seed ROI in the 

right dorsoanterior insula showed connectivity with somatosensory cortices, medial PFC, 

temporal and occipital cortex (Table 7). This result is largely consistent with meta analytic 

results showing that dorsoanterior insula connectivity within these regions is associated with 

task switching and cognitive control (Chang et al., 2013). Similarly, while the precuneus is 

generally understood as a core structure in the default mode network (Utevsky, Smith, & 

Huettel, 2014), there is also evidence that central regions within this large structure are 

implicated in a variety of cognitive processing (Margulies et al., 2009). Seeding from the 

“cognitive” right central precuneus yielded one large cluster with peak voxels located 

primarily in posterior visual and occipital regions (Table 8). However, this cluster also 

extended into key subcortical regions (thalamus, dorsal/ventral striatum) as well as medial 

and lateral frontal cortex. Taken together, these results demonstrate that intrinsically 

rewarding tasks correspond to broad connectivity within cognitive control and reward 

structures. 

Discussion 

To date, research investigating cognitive control and motivation has largely ignored 

the way in which motivation contributes to sustained control during cognitively demanding 

tasks. We show that modulating the balance between task difficulty and individual ability 
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results in different levels of intrinsic reward, which motivates different levels of task 

engagement with a naturalistic simulator stimulus. This allowed us, for the first time, to 

evaluate the self-reported, behavioral, and neural contributions of motivation to the ongoing 

allocation of cognitive control during a continuous performance task. Three key findings 

shed light on this relationship. First, and consistent with previous research (Keller & Bless, 

2008; Ulrich et al., 2013; Yoshida et al., 2014), a balance between task difficulty and 

individual ability results in the highest levels of intrinsic reward. Moreover, high levels of 

consummatory reward corresponded to increased task-related attentional engagement as 

measured by the STRTs. This result is also reflected in the neuroimaging data. Differential 

levels of motivation seem to drive shifts between brain states consistent with high levels of 

task engagement or disengagement. We now turn our focus to these key findings and their 

broader implications. 

Motivation Drives Task-Related Attentional Engagement 

One critique of the emerging cognitive control and motivation literature is that the 

highly controlled experimental tasks employed typically rely on extrinsic and not intrinsic 

rewards (Braver et al., 2014). In this study, we sacrifice some experimental control in favor 

of developing a task that allowed for modulating intrinsic rewards. As a failsafe, we used 

STRTs as a behavioral measure of the extent to which variation in intrinsic reward entrained 

attentional engagement with the task. The rational for this measure capitalizes on the insight 

that motivation has a curvilinear influence on task-related attentional engagement (Lang, 

2000). This result is born out in our STRT data. Interestingly, both visual and auditory RTs 

were the longest during the balanced-difficulty condition, a result that casts doubt on the 

view that attentional resources are capacity-limited by modality (e.g., Keitel et al., 2013) in 
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favor of models that treat attention as a single pool of cognitive resources (Lang et al., 2006; 

Shomstein & Yantis, 2004; Strozak & Francuz, 2016). That our STRT data show the same 

inverted-U shaped pattern as our self-reported intrinsic reward measure suggest that STRTs 

may serve as a behavioral correlate of intrinsic reward, particularly during motivationally 

relevant tasks. With that said, two important constraints are worth noting. First, the absolute 

mean STRT differences between conditions are quite small, thereby obscuring inferences 

about the magnitude of intrinsic rewards. A second issue is that STRTs are only a useful 

index of intrinsic reward when there is a firm understanding of how the stimulus balanced 

task difficulty and individual ability. 

Reward-Processing and Cognitive Control 

While the behavioral and self-report measures suggest a successful experimental 

manipulation, the fMRI data provide additional clarity to the neuroimaging literature on 

cognitive control and motivation. First, our brain-mapping results confirm previous findings 

implicating reward processing during cognitive control tasks. Our novel contribution is in 

elucidating the functional connections between these structures. Of particular interest is the 

relationship between anticipatory and consummatory rewards during cognitive control. Our 

GLM-based results showed that the balanced-difficulty condition elicited the highest levels 

of activity in the putamen. This fits nicely with the notion this structure is implicated in 

consummatory reward processing (O’Doherty et al., 2004; Satterthwaite et al., 2007) and that 

a balance between task difficulty and individual ability elicits strong activity in this structure 

(Ulrich et al., 2013). However, a balance between difficulty and ability has also been shown 

to elicit activity in the ventral striatum, particularly the nucleus accumbens (Klasen et al., 

2012). Our PPI results when seeding from the ventral striatum add clarity here. We show that 
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the nucleus accumbens is functionally connected with the DLPFC when task difficulty is 

balanced with individual ability; a result consistent with the view that these two structures are 

implicated in reward anticipation and cognitive cost calculation (Botvinick, Huffstetler, & 

McGuire, 2009; Kool, McGuire, Wang, & Botvinick, 2013). 

With that said, we did not design our study to directly manipulate reward expectation, 

so it is difficult to tell if our results support the view that reward anticipation and 

consumption is dissociated between the dorsal and ventral striatum (O’Doherty et al., 2004), 

or as some have suggested, if these structures subserve a common function related to 

evaluating the cognitive costs associated with earning a particular reward (Vassena et al., 

2014) and even in consummatory reward processing (Pauli, O’Reilly, Yarkoni, & Wager, 

2016). This common architecture view is also consistent with Braver and colleagues’ (2014) 

observation that intrinsic and extrinsic rewards may not be dissociable at the neuroanatomical 

level, but instead at the temporal level where extrinsic rewards are temporally immediate and 

tangible where intrinsic rewards are less tangible and more temporally disperse. 

Nevertheless, we demonstrate that a balance between task difficulty and individual ability 

modulates reward-related subcortical processing and that these structures are functionally 

connected with frontocontrol structures during a cognitive control task; a finding that 

provides novel evidence that intrinsic reward motivates the allocation of cognitive control 

during sustained task performance.  

Network-Level Effects of Motivation on Cognitive Control 

More broadly, the observed connectivity patterns between lateral and medial PFC 

regions during the balanced-difficulty condition aligns with recent evidence suggesting that 

motivational influences on cognitive control emerge from hierarchical interactions between 
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structures within these regions (Kouneiher, Charron, & Koechlin, 2009). Moreover, our 

results observed during the balance condition map onto recent theorizing about the neural 

basis of so-called flow experiences (Csikszentmihalyi, 1975), an intrinsically rewarding 

motivational state which is though to occur as the result of a network synchronization process 

between cognitive control and reward networks (Weber et al., 2009). In fact, the activity 

pattern observed during the balanced-difficulty condition was remarkably different from the 

low-difficulty and high-difficulty conditions. While the balanced-difficulty condition elicited 

activity consistent with reward-based cognitive control, the low-difficulty condition showed 

activations in the DMN. There is evidence that failures to suppress the DMN are associated 

with lapses in attention (Weissman, Roberts, Visscher, & Woldorff, 2006) and decreased 

performance during cognitive control tasks (Kelly, Uddin, Biswal, Castellanos, & Milham, 

2008). The observed activations in the VMPFC may play a key role here, as this structure has 

been shown to suppress task-related attention with a bias towards rest or inward focused 

attention (Uddin, Kelly, Biswal, Castellanos, & Milham, 2009). 

Interestingly, we also see that STRTs were generally faster and that game 

performance was high during the low-difficulty condition. This result, in conjunction with 

the observed activations in key DMN structures provides additional evidence that the low-

difficulty condition required low levels of cognitive control. Moreover, it also contextualizes 

the extent to which low-difficulty tasks can be performed automatically, or at least with very 

low levels of cognitive control. This, combined with previous evidence showing that boring 

video game play (Mathiak et al., 2013) and a mismatch between difficulty and ability (Ulrich 

et al., 2013) is associated with DMN activity, provides evidence that motivation may be 

driving the shift between DMN activation during low-difficulty, and cognitive control 
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network activation during the balanced-difficulty conditions. An intriguing possibility 

implicated by our exploratory PPI analyses is that the dorsoanterior insula may be facilitating 

shifts between these brain states. A recent meta analysis using Neurosynth (Yarkoni, 

Poldrack, Nichols, Van Essen, & Wager, 2011) data implicates this structure in shifts 

between cognitively demanding tasks and task disengagement (Chang et al., 2013). 

Additional research is needed to determine if momentary shifts in motivation drive dynamic 

shifts between these networks as facilitated by the insula. 

Conclusion 

In their earliest writings, Miller and Cohen (2001) indicated that motivation may play 

a role in cognitive control. In the decades that followed, most of the research in this area 

treated the two as separable processes by choosing to focus on cognition rather than 

motivation. However, an emerging perspective argues that higher order cognitions and their 

resulting behaviors are not easily reducible to their lower-level constitute parts, especially 

when considering the relationship between cognition and motivation (Pessoa, 2008). Our 

results fit within this framework by showing how task-elicited differences in motivation drive 

large-scale shifts in task-related reward perceptions, attentional allocation, and neural states. 

A recent focus has been on understanding how the somewhat ambiguously defined notion of 

stimulus salience facilitates dynamic shifts between network states. We propose that 

motivational salience, defined here as intrinsic reward resulting from a balance between task 

difficulty and individual ability, plays a role in facilitating these shifts.   
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Appendix 

Figure 1: Schematic of the experimental paradigm. In all experiments, the subject’s goal was 

to use their mouse to collect targets while avoiding asteroids and responding to STRT trials 

as quickly as possible. For the behavioral experiments (a), visual STRT trials appeared in 

one of five different locations on a second screen. In the fMRI experiment (b), STRT trials 

appeared on the same screen in one of four different locations.  

 

   (A)         (B)  
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Table 1: Summary statistics for describing the subject samples in all four experiments. 
 

 n Mean Age 
(Std. Dev.) 

% Female 
(% Male) 

Mean Self-Reported 
Simulator Ability 

(Std. Dev.)* 
Experiment 1 122 19.40 (1.21) 64.8 (35.2) 1.80 (1.21) 
Experiment 2 110 20.48 (1.93) 70.9 (29.1) 1.64 (0.85) 
Experiment 3 87 19.49 (1.44) 77.0 (23.0) 3.23 (1.63) 
fMRI Experiment 18 22.83 (4.02) 77.8 (22.2) 3.00 (1.03) 
*Self-reported simulator ability was measured using a 4-item scale in experiments one and two and a 7-item 
scale in experiment three and the fMRI study.  



 37 

Table 2: Pearson correlations between cognitive tasks and Asteroid Impact simulator 

performance. 

 1 2 3 4 5 6 7 
1 Simulator performance 1       
2 Self-reported game ability .337** 1      
3 Targeting -.06 -.053 1     
4 Dual-mixed accuracy .095 .045 -.042 1    
5 Dual-mixed std. dev. -.221* -.083 .150 -.609** 1   
6 SART accuracy .187 .135 -.002 .368** -.094 1  
7 SART std. dev. -.001 -.147 .283** -.063 .131 -.131 1 
*   Correlation is significant at the p = .05 level (two-tailed). 
** Correlation is significant at the p = .01 level (two-tailed). 
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Figure 2: Means and standard errors for intrinsic-reward (a) and reaction times (b). 

(A) 

 
(B) 
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Table 3a: Means and standard errors for intrinsic reward (a) and reaction times (b). 

(A) 

 

Low-Difficulty 
Condition 

Mean (Std. Error) 
(a) 

Balanced-Difficulty 
Condition 

Mean (Std. Error) 
(b) 

High-Difficulty 
Condition 

Mean (Std. Error) 
(c) 

Experiment 1 12.721 (.487)a,b 17.523 (.426)a 16.617 (.528)a 
Experiment 2 15.084 (.594)b,c 18.821 (.520)a 17.589 (.628)a 
Experiment 3 16.562 (.298)b,c 17.431 (.333)a,c 12.694 (.339)a,b 
For each row, superscripted text indicates statistically significant pairwise comparisons after a Bonferroni 
correction for multiple comparisons at the p < .05 level.  
 

(B) 

Table 3b: Means and standard errors for reaction times to visual and auditory trials.  

 

Low-Difficulty 
Condition 

Mean (Std. Error) 
(a) 

Balanced-Difficulty 
Condition 

Mean (Std. Error) 
(b) 

High-Difficulty 
Condition 

Mean (Std. Error) 
(c) 

Experiment 1 Visual 509.491 (9.399)b,c 594.163 (11.624)a,c 536.250 (10.905)a,c 
Experiment 2 Visual 542.059 (11.464)b 589.354 (13.357)a 559.434 (13.028) 
Experiment 2 Auditory 546.189 (12.941)b,c 618.888 (15.367)a 609.970 (13.575)a 
Experiment 3 Visual 394.638 (6.473)a,b 516.009 (11.398)a,c 448.549 (11.480)a,c 
Experiment 4 Visual 577.022 (16.383)b 702.562 (17.768)a,c 575.727 (39.386)b 
For each row, superscripted text indicates statistically significant pairwise comparisons after a Bonferroni 
correction for multiple comparisons at the p < .05 level.  
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Figure 3: Neural activations in the (a) Balanced-difficulty > Low-Difficulty and High-

Difficulty, (b) Low-Difficulty > Balanced-Difficulty, and (c) High-Difficulty > Balanced-

Difficulty contrasts; Z = 3.1, p < .0001. 

(A)         (B) 
 

   
  
(C) 
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Table 4a: Neural activity in the reported contrasts; cluster corrected Z = 3.1, p < .0001; 

coordinates are in MNI152 space. 

Structure Laterality Cluster Size Maximum Z-
score Coordinates 

Balanced-Difficulty > Low-Difficulty & High-Difficulty 

Superior Frontal Gyrus Right 22775 7.13 24, 2, 50 

Precentral Gyrus Left  6.46 -26, -8, 48 

Central Precuneus Right  6.33 6, -50, 50 

Superior Parietal Lobule Right  6.19 28, -48, 66 

Superior Parietal Lobule Left  6.19 -32, -60, 64 

Cerebellum Right 6785 5.59 8, -62, -56 

Cerebellum Right  5.53 24, -56, -20 

Cerebellum Right  5.37 30, -54, -26 

Cerebellum Right  5.35 6, -70, -14 

Occipital Fusiform Gyrus Right  5.21 26, -64, -16 

Cerebellum Left  5.21 0, -76, -32 

Dorsoanterior Insula Left 615 4.83 -32, 12, 6 

Putamen Left  4.70 -22, -2, 4 

Putamen Left  4.68 -30, 20, 10 

Putamen Left  4.67 -26, 14, 0 

Posterior Insula Left  3.8 -42, -2, 6 

Pallidum Left  3.79 -22, -6, -4 

Low-Difficulty > Balanced-Difficulty  

Superior Lateral Occipital Cortex Left 1539 6.75 -42, -76, 42 

Superior Lateral Occipital Cortex Left  6.24 -54, -72, 36 

Superior Lateral Occipital Cortex Left  6.06 -44, -64, 30 

Superior Lateral Occipital Cortex Left  5.59 -54, -66, 34  

Superior Lateral Occipital Cortex Left  5.49 -48, -66, 38 

Ventromedial Prefrontal Cortex Left 1207 4.83 0, 28, -14 

Paracingulate Cortex Right  4.65 8, 42, -4 

Anterior Cingulate Cortex Right  4.5 2. 36. -8 

Anterior Cingulate Cortex Left  4.18 -2, 42, 4 

Paracingulate Cortex Left  4.15 -4, 44, -6 

Ventromedial Prefrontal Cortex Right  4.12 10, 48, -12 

Posterior Cingulate Gyrus Left 967 5.59 -10, -44, 34 
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Ventral Posteromedial Cortex Left  5.07 -2, -60, 16 

Ventral Posteromedial Cortex Left  4.72 -4, -66, 24 

Ventral Posteromedial Cortex Left  4.47 -8, -54, 10 

Posterior Precuneus Right  4.42 2, -70, 30 

Posterior Cingulate Gyrus Left  4.41 -8, -54, 28 

High-Difficulty > Balanced-Difficulty 

Visual Cortex Left 4914 7.01 -12, -90, 4 

Occipital Pole Left  6.94 -6, -94, 14 

Occipital Pole Left  6.74 -20, -94, 24 

Visual Cortex Left  6.72 -14, -82, -10 

Occipital Fusiform Gyrus Left  5.60 -28, -76, -8 

Occipital Pole Left  5.19 -2, -92, 30 
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Table 4b: Neural activity in the reported contrasts; activations are shown for clusters 

containing 25 or more voxels at the reported FDR correction. 

Structure Laterality q Voxels Coordinates 

Balanced-Difficulty > Low-Difficulty & High-Difficulty 

Superior Parietal Lobule Right .0001 2768 28, -54, 42 

Precentral Gyrus Left .0001 1706 -26, -8, 44 

Paracingulate Cortex Left .0001 1565 -6, 8, 44 

Cerebellum Right .0001 680 24, -56, -22 

Cerebellum Left .0001 92 -12, -60, -52 

Occipital Fusiform Gyrus Right .0001 63 40, -68, -12 

Dorsolateral Prefrontal Cortex Right .0001 38 34, 44, 32 

Middle Frontal Gyrus Right .0001 27 38, 18, 24 

Dorsoanterior Insula Right .001 163 -32, 12, 6 

Precentral Gyrus Left .001 112 -42, 4, 24 

Cerebellum Left .001 60 -32, -52, -26 

Middle Frontal Gyus Left .001 57 -26, 30, 28 

Putamen Left .001 44 -22, -2, 4 

Putamen Right .001 20 28, 10, 2 

Thalamus Right .01 144 10, -6, 4 

Inferior Lateral Occipital Cortex Left .01 126 -52, -68, -4 

Thalamus Left .01 67 -8, -6, 12 

Occipital Pole Right .01 34 16, -98, 22 

Primary Auditory Cortex Left .05 86 -46, -24, 12 

Inferior Parietal Lobule Right .05 67 50, -42, 22 

Superior Temporal Gyrus Right .05 58 46, -14, -14 

Orbitofrontal Cortex Right .05 55 34, 50, -16 

Temporal Fusiform Cortex Right .05 49 36, -24, -32 

Low-Difficulty > Balanced-Difficulty 

Superior Lateral Occipital Cortex Left .0001 332 -46, -68, 38 

Temporal Pole Left .001 81 -46, 2, -32 

Ventral Posteromedial Cortex Left .001 65 -2, -60, 16 

Posterior Cingulate Gyrus Left .001 43 -10, -44, 34 

Ventromedial Prefrontal Cortex Left .01 531 0, 28, -14 

Central Operculum Right .01 150 52, -10, 14 
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Hippocampus Left .01 140 -22, -18, -22 

Superior Lateral Occipital Cortex Right .01 107 52, -62, 36 

Inferior Temporal Gyrus Right .01 64 42, 4, -32 

Middle Temporal Gyrus Left .05 155 -64, -38, -10 

Primary Somatosensory Cortex Right .05 127 44, -24, 64 

Middle Frontal Gyrus Left .05 94 -48, 18, 46 

Inferior Frontal Gyrus Left .05 85 -54, 24, 8 

Dorsomedial Prefrontal Cortex Left .05 44 -8, 62, 22 

Dorsomedial Prefrontal Cortex Left .05 38 -10, 44, 48 

Hippocampus Right .05 33 26, -6, -24 

Hippocampus Right .05 25 28, -18, -22 

High-Difficulty > Balanced-Difficulty 

Occipital Fusiform Cortex Left .0001 1790 -8, -90, -18 

Temporal Pole Left .05 246 -44, 2, -34 

Orbitofrontal Cortex Left .05 198 -30, 22, -22 

Inferior Temporal Gyrus Left .05 29 -46, -24, -20 
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Table 5: Psychophysiological interaction results when seeding from the bilateral (right: 10, 

16, -6; left: -10, 16, -6) nucleus accumbens; cluster corrected Z = 2.3, p < .05; coordinates 

are in MNI152 space. 

Structure Laterality Cluster Size Maximum Z-
score Coordinates 

Balanced-Difficulty > Low-Difficulty & High-Difficulty 

Occipital Pole Left 1442 6.18 -34, -96, 4 

Superior Lateral Occipital Cortex Left  3.96 -22, -74, 48 

Paracingulate Cortex Right 841 4.32 4, 22, 44 

Middle Frontal Gyrus Left  3.73 -34, 34, 34 

Superior Frontal Gyrus Left  3.67 -18, 26, 42 

Paracingulate Cortex Right  3.60 10, 36, 36 

Central Operculum Right 578 4.64 44, -12, 22 

Precentral Gyrus Right  3.42 34, 0, 36 

Middle Frontal Gyrus Right  3.19 44, 14, 32 

Dorsolateral Prefrontal Cortex Left 541 3.88 -30, 60, 8 

Caudate Nucleus Left  3.74 -8, 12, 12 

Middle Temporal Gyrus Right 398 4.23 52, -50, 6 

Superior Temporal Gyrus Right  3.40 58, -12, -8 

Tempo-occipital Fusiform Cortex Left 378 3.70 -30, -52, -20 

Lingual Gyrus Left  3.42 -20, -44, -14 

Hippocampus Left  2.93 -32, -34, -14 
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Table 6: Psychophysiological interaction results when seeding from the bilateral (right: 32, 

54, 10; left: -32, 54, 10) dorsolateral prefrontal cortex; cluster corrected Z = 2.3, p < .05; 

coordinates are in MNI152 space. 

Structure Laterality Cluster Size Maximum Z-
score Coordinates 

Balanced-Difficulty > Low-Difficulty & High-Difficulty 

Orbitofrontal Cortex Left 6615 5.12 -36, 32, -8 

Superior Temporal Gyrus Left  4.97 -58, -10, -8 

Middle Frontal Gyrus Left  4.73 -46, 22, 26 

Frontopolar Cortex Left 6110 5.03 -8, 62, 28 

Subcallosal Cortex Right  4.78 2, 24, -12 

Superior Frontal Gyrus Right  4.48 10, 24, 60 

Frontopolar cortex Right  4.34 8, 52, 42 

Superior Temporal Gyrus Right 1887 5.10 54, -26, 0 

Posterior Insula Right  4.08 36, -16, 8 

Secondary Somatosensory Cortex Right  3.84 44, -14, 22 

Broca’s Area Right 1271 4.16 58, 26, 22 

Orbitofrontal  Left  3.91 24, 34, -10 

Temporal Pole Right  3.57 48, 24, -18 

Central Precuneus Left 754 4.12 -10, -48, 36 

Ventral Posteromedial Cortex Left  3.83 -4, -56, 14 

Visual Cortex Right  3.28 4, -66, 8 

Anterior Precuneus Left  3.13 -2, -48, 60 

Occipital Fusiform Gyrus Left 690 4.58 -16, -86, -18 

Occipital Pole Left  3.24 -12, -98, -4 
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Table 7: Psychophysiological interaction results in the when seeding from the right (40, 16, -

6) dorsoanterior insula; cluster corrected Z = 2.3, p < .05; coordinates are in MNI152 

space. 

Structure Laterality Cluster Size Maximum Z-
score Coordinates 

Balanced-Difficulty > Low-Difficulty & High-Difficulty 

Primary Somatosensory Cortex Right 15664 5.28 44, -22, 64 

Primary Motor Cortex Right  5.18 12, -30, 74 

Inferior Frontal Gyrus Right  5.00 56, 18, 26 

Secondary Somatosensory Cortex Right  4.93 44, -10, 20 

Hippocampus Left  4.89 -24, -30, -10 

Dorsomedial Prefrontal Cortex Right 4415 4.81 4, 62, 14 

Superior Frontal Gyrus Left  3.95 4, 28, 50 

Ventromedial Prefrontal Cortex Left  3.80 -8, 46, -16 

Superior Lateral Occipital Cortex Left 1096 3.98 -52, -72, 28 

Angular Gyrus Left  3.93 -52, -60, 28 

Middle Temporal Gyrus Left 724 4.12 -58, -52, 0 

Superior Temporal Gyrus Left  3.45 -50, -16, -10 

Superior Lateral Occipital Cortex Right 644 3.65 50, -62, 42 

Inferior Parietal Lobule Right  3.45 58, -58, 36 

Inferior Frontal Gyrus Left 544 3.53 -46, 32, -4 

Orbitofrontal Cortex Left  3.35 -24, 34, -14 

Frontopolar Cortex Left  2.97 -42, 40, -2 

Subcallosal Cortex Right 546 4.28 2, 30, -18 

Caudate Nucleus Left  2.71 -10, 14, 6 
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Table 8: Psychophysiological interaction results in the when seeding from the right (8, -76, 

52) central precuneus; cluster corrected Z = 2.3, p < .05; coordinates in MNI152 space. 

Structure Laterality Cluster Size Maximum Z-
score Coordinates 

Balanced-Difficulty > Low-Difficulty & High-Difficulty 

Visual Cortex Left 58649 5.84 -2, -76, 16 

Posterior Precuneus Left  5.66 0, -52, 38 

Posterior Cingulate Cortex Left  5.65 -2, -44, 36 

Ventral Posteromedial Cortex Right  5.27 2, -66, 18 

Occipital Fusiform Gyrus Right  5.12 18, -86, -16 

Ventral Posteromedial Cortex Left  5.10 -4, -60, 14 
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Supplemental Materials 
 
Figure S1: The redrawn Vandenberg and Kusemental rotations test (Peters et al., 1995) was 
administered in two three-minute runs. For each run, subjects were shown 12 three-
dimensional reference shapes. For each reference shape, subjects were asked to identify 
which two (out of four) shapes matched the reference. Subjects were given a point if they 
correctly identified both shapes (M = 7.298, SD = 3.894, Range = 0–22). 
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Figure S2: In the sustained attention response test (Robertson et al., 1997), subjects were 
shown a series of numbers (1–9) in five different font sizes for 250ms (font sizes were 
balanced across all values). The trial was then masked for 900 ms. Subjects were instructed 
to press a key as quickly as possible for all numbers (a go trial) except the number 3 (a no-go 
trial). A total of 225 trials were shown, 25 of which were no-go trials. Mirroring previous 
studies (Unsworth et al., 2015), the two dependent measured included: (1) accuracy – a 
frequency count of no-go trials where a key press was withheld (M = 21.824, SD = 2.780, 
Range = 11– 25) and (2) the standard deviation of reaction times for correct go trials (M = 
453.012, SD = 87.169, Range = 102.07–544.40). 
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Figure S3: In the dual-task paradigm (Erickson et al., 2007), subjects were shown two types 
of trials (single-mixed, dual-mixed) which lasted for 2500ms and were separated by a 500ms 
fixation cross. In single mixed trials, subjects were shown one of four possible stimuli: >, <, 
a red square, or a green square. Each stimulus was mapped to a specific key and subjects 
were instructed to press the correct key as quickly as possible when a trial was shown 
without sacrificing accuracy. In the dual-mixed condition, two of four possible stimuli were 
shown and subjects were instructed to press the two keys that corresponded to each stimulus. 
A total of eight combinations of single- and dual-mixed trials were possible. Each was 
presented a total of 20 times in a randomized order. 
 
Two dependent measures were assessed: (1) accuracy – the total number of dual-mixed trials 
where both keys were correctly pressed (M = 67.279, SD = 13.495, Range = 5–79), and (2) 
variability in task updating/monitoring – for dual-mixed trials, the standard deviation of 
Reaction Time 2 – Reaction Time 1 for all correct dual mixed trials (M = 182.566, SD = 
92.079, Range = 14.25–612.65). 
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Figure S4: Subjects targeting abilities were evaluated using a dart-throwing procedure. 
(Watson & Kimura, 1989). A 60 cm diameter circular target with the bullseye 152 cm from 
the floor was fixed to a wall 3 m from where subjects stood. Subjects completed 25 overhand 
throws of a 25-gram dart using their dominant hand. The distance of each throw from the 
center was recorded in millimeters and averaged for each subject (M = 137.838, SD = 27.085, 
Range = 70.89–207.00). Smaller values indicated greater accuracy. 
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Figure S5: An n-back task was used to behaviorally localize functional activity in cognitive 
control regions of interest. The n-back task was selected as it shows reliable activation 
patterns across subjects (Drobyshevsky, Baumann, & Schneider, 2006), sessions (Caceres, 
Hall, Zelaya, Williams, & Mehta, 2009), and does not show gender differences (Schmidt et 
al., 2009). In a series of 2 runs, subjects were shown 320 trials where each trial was a 
randomly selected letter from A–Z that was shown for 1000 ms. In the 2-back condition, 
subjects were required to press a key when the letter shown was the same as one shown two 
trials back. In the 0-back condition, subjects pressed a key when the trial showed the letter 
“X”. Each run followed a 2-back (40 trials), 0-back (40 trials), 2-back (40 trials), 0-back (40 
trials) pattern. Subjects were instructed to prioritize accuracy before speed. The 2-back and 
0-back conditions were modeled in a block design with a 2-back > 0-back contrast in 
subsequent fMRI data analyses. 
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Figure S6: Activation and resulting seed ROIs in the 2-back > 0-back contrast; cluster 
corrected Z = 2.3, p < .05. 
 

 
 
See ROIs (in MNI 152 space) for PPI analyses included: 
 
Right DLPFC:   32, 54, 10 
Left DLPFC   -32, 54, 10 
Right Insula:   40, 16, -6 
Right Thalamus:  16, -16, 10 
Left Thalamus:  -8, -10, -2 
Right Precuneus:  8, -76, 52 
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Figure S7: Structures within the reward network were behaviorally localized using a 

gambling task that has been shown to reliably activate structures in the basal ganglia 

(Delgado, Nystrom, Fissell, Noll, & Fiez, 2000; May et al., 2004; Tricomi, Delgado, & Fiez, 

2004). In this task, subjects were shown a series of cards with a numeric value of 1–9. During 

an initial guessing period (2500 ms), subjects were asked to indicate if they thought value of 

the card was greater or less than 5. Subjects were then shown the outcome of their guess 

(1000 ms), and then a fixation cross during the post-outcome period (11500 ms) for a 

cumulative trial duration of 15,000 ms. A total of 100 trials were shown across 5 runs. 

Subjects were rewarded $1.00 for correct guesses, lost $0.50 for incorrect guesses, and did 

not win or lose any money for tie trials. The ratio of wins, losses, and ties was set at 40:40:20 

(balanced across all runs). Neural activity during the post-outcome period was modeled in an 

event-related design with a wins > loss contrast. 
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Figure S8: Activation and resulting seed ROIs in the win > loss contrast; cluster corrected Z 
= 2.3, p < .05. 
 

 
 
 
See ROIs (in MNI 152 space) for PPI analyses included: 
 
Right Ventral Striatum (Nucleus Accumbens): 10, 16, -6 
Left Ventral Striatum (Nucleus Accumbens): -10, 16, -6 
Right Dorsal Striatum (Putamen):   16, 12, -6 
Left Dorsal Striatum (Putamen):   -18, 12, 6 
 
 




