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ABSTRACT OF THE THESIS

Application of Recurrent Neural Networks

In Toxic Comment Classification

by

Siyuan Li

Master of Applied Statistics

University of California, Los Angeles, 2018

Professor Yingnian Wu, Chair

Moderators of online discussion forums often struggle with controlling extremist comments

on their platforms. To help provide an efficient and accurate tool to detect online toxicity,

we apply word2vec’s Skip-Gram embedding vectors, Recurrent Neural Network models like

Bidirectional Long Short-term Memory to tackle a toxic comment classification problem with

a labeled dataset from Wikipedia Talk Page. We explore different pre-trained embedding

vectors from larger corpora. We also assess the class imbalance issues associated with the

dataset by employing sampling techniques and penalizing loss. Models we applied yield high

overall accuracy with relatively low cost.
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1 Introduction

Internet negativity has always been a hot topic. The anonymity and the sense of distance of

people’s internet presence have encouraged people to express themselves freely. This freedom

can sometimes lead to extreme outtakes on others people or the particular topics. Extreme

negativities has sometimes stopped people from expressing themselves or made them give

up looking for different opinions online[1]. Issues like this happen almost all the time, across

all platforms of discussion, and the modulators of these platforms have limited capabilities

dealing with it. Needless to say the time, energy and effort these modulators have to put

into controlling this negativity on their platform. People have been seeking help from various

tools to analyze text-based information so that they can identify toxic expressions from a

sea of information, both efficiently, and more importantly, accurately.

Natural language processing with deep Neural Networks is one of the most influential tools

that enable researchers to extract, analyze, and classify essential features from text-based

information. We see tremendous interests and development in utilizing deep learning in sen-

timent[2] and semantic analysis[3], text generation[4], machine translation[5], speech recog-

nition[6] and so much more over the recent years.

In this thesis, we will be applying word embedding techniques and recurrent neural network

to perform text classification on a multi-label text dataset to identify different forms of

internet toxicity.
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2 Problem Definition

The data we will be focusing on is a public dataset provided by the Conversation AI team; a

research initiate co-founded by Jigsaw and Google. Jigsaw is a technology incubator created

by Google, with the primary objective to “use technology to tackle the toughest geopolitical

challenges, from countering violent extremism to thwarting online censorship to mitigating

the threats associated with digital attacks.”[7] Jigsaw and Google launched Perspective API

in February 2017, a free tool that utilizes machine learning to identify toxic comments.[8]

To improve the performance of the Perspective API, and with the belief that “collaborative

problem-solving yields the best solutions”[7], the Conversation AI team hosted a “Wikipedia

Talk Page Comments annotated with toxicity reasons” Kaggle competition[9]. We will be

building our deep learning classification model and monitor its performance base on the

dataset provided in this competition.

Currently, the model used by Conversation API performs quite well, able to provide a rel-

atively accurate toxic score given text comments. However, the team mentioned that their

model still makes errors[10]; it is unable to classify toxicity if the model has not seen the

pattern before, and it may miss-classify texts that share similar patterns as toxic comments.

Recurrent neural networks’ ability to process sequences of documents and analyze contexts

may prove useful in resolving the problems Conversation API currently encounters.

3 Methodologies

This section will emphasize on providing detailed explanations on the general methods that

will be employed in later sections. Methodologies of our approach can be summarized in

three section: word segmentation, embedding, and recurrent neural network. Model-specific

components such as activation functions and optimizers will be elaborated in later sections.
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3.1 Word Segmentation

Text data is a perfect example of unstructured data. To efficiently translate this unstructured

data into machine-interpretable information, we separate chunks of continuous text data

into a list of words, then encode them into numerical vectors. We then encode each unique

word to its numerical representation. As shown in Figure 1, mapping this tokenization to

segmented text data essentially returns the text as a list of numeric factors, which represent

involved words in the vocabulary. This brief explanation serves to provide foundations to

the “word2vec” method we will employ.

Figure 1: Tokenization Example

3.2 “word2vec”

Created by a team of researchers from Google in 2013, word2vec is a group of models to

produce word embeddings that retains the context of words [11]. Word2vec models are

shallow, two-layer neural networks constructed based on the idea that similar words would

appear in similar positions in the context.

Representing this intuition is Cosine Similarity. Similarities of the given vectors are measured

3



in their inner product space by the cosine angle between them.

cos(θ) =
u · v
||u||||v||

Which in turn, means that larger dot product: u ·v = ||u||||v|| cos(θ), indicates more similar-

ity. Word2vec introduced two approaches in calculating the word embedding so that similar

word vectors have higher dot product.

3.2.1 Skip-Gram

Skip-Gram model was first introduced by Mikolov et al.[11] in 2013. The skip-gram approach

is to learn neighboring word vector representations based on a center word. Figure 2 [12]

shows the sample extraction method of skip-gram. In this example, a “window” of size 2

is chosen, which means two word in the front of the center word and two words after the

center word will be selected to pair up with the center word. The objective function of this

skip-gram method is then defined to maximize the probability of any context word given the

current center word:

L(θ) =
T∏
t=1

∏
−m≤j≤m,j 6=0

P (wt+j|wt; θ)

Which translate to minimizing the negative log likelihood of any context word given the

current center word:

Loss(θ) = − 1

T

T∑
t=1

∑
−m≤j≤m,j 6=0

logP (wt+j|wt; θ)

In these functions, t is the position of the center word, with a maximum of T ; m is the defined

window size; θ represents all the variables to be optimized in the function. The probability

P (wt+j|wt; θ) is defined using a softmax function which involves the dot products of context

4



words and center word:

P (wO|wI) =
exp(v

′T
wO
vwI

)∑W
w=1 exp(v

′T
w vwI

)

Where v′ and v denotes the output and input vector representation of w; W is the number

of words in the vocabulary.

Figure 2: Skip-gram Window Example[12]

3.3 Stochastic Gradient Descent

When training a neural network with back-propagation, we use gradient descent to update

the parameters by finding the minimum of the loss functions. Suppose we have loss function

Loss(θ) where θ is the parameters to be optimized using the whole training dataset. And

L(θ) = 1
n

∑n
i=1 Lossi(θ), which is the loss averaged over the whole training dataset. Gradient

descent, is then defined as: θt+1 = θt − ηL′(θt).

However, this algorithm is not always efficient, since we have to sum over all the training

samples. Instead, we substitute η with ηt, a mini-batch step at step t. ηt is called step size or

learning rate. The gradient descent is then θt+1 = θt−ηtLoss′i(θt), which we call it stochastic

gradient descent (SGD).
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3.4 Recurrent Neural Network

Unlike a general feed-forward neural network, each node in a Recurrent Neural Network

(RNN) has a memory component to process sequences of inputs. A recurrent neural net can

be trained to compress previous inputs in low-dimensional space and are better at handling

position invariance problems. This structure allows RNN to be highly efficient in processing

text data where the order and structure of the inputs are essential.

Figure 3: Recurrent Neural Network

3.4.1 Long Short-term Memory

First introduced by Hochreiter et al.[13] in 1997, Long Short-term Memory (LSTM) has

become one of the fundamental components of tools like language translations and voice as-

sistants. LSTM models can avoid vanishing gradient problem, where long-term dependencies

issues in RNN cause weights from the neural network cannot update its value because the

gradient is becoming trivially small.

A general equation form of LSTM can be shown as:

ft = σg(Wfxt + Ufht−1 + bf )
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it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)

Ct = ft ∗ Ct−1 + it ∗ tanh(Wcxt + Ucht−1 + bc)

ht = ot ∗ σh(Ct)

In above equations, xt is the input vector of the LSTM cell. it, ft, ot is the input gate,

forget gate, and output gate activation vector respectively; they use σg, Sigmoid activation

function. Cell state Ct is an important component in an LSTM cell; it allows LSTM to pass

down processed historical states. Finally, ht is the output vector of the LSTM cell unit. Note

that W , U matrices, and b vector are weights to be learned in training of this cell. This b

also stands for bias vector.

Figure 4: Detailed Structure of a LSTM Cell

As input xt and ht−1 was feed into the LSTM cell, first, forget gate ft decides what values

in cell state Ct−1 to discard. Then xt and ht are passed to it to see what new values to store

in current cell state Ct. After that, the output gate ot computes what information to be

outputted. During this process, weights W , U and b are continuously updated to minimize

loss function.[14] Typical back-propagation method used in this trainig process is SGD.

7



3.4.2 Bidirectional Long Short-term Memory

Bidirectional Recurrent Neural Network was first introduced by Schuster et al.[15] in 1997.

It increases the amount of input for a neural network. As the name suggests, the model

not only takes in information in previous states, it processes data from both past and future

states, which further enhances the neural network’s ability to understand the context of

the input. Comparing to a standard LSTM layer, a bidirectional LSTM adds another set

of LSTM cells to process inputs in a reversed sequence. Outputs in both sets of cells are

concatenated and feed to the next layer.

Figure 5: Bidirectional LSTM
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4 Data Treatment

This section will go over the background, structure, and issues with the dataset we were set

to investigate. In addition to brief exploratory analysis, data cleaning, text pre-processing

will also be applied. Finally, we will build embedding vectors using Word2Vec algorithms

discussed in the Methodology section.

4.1 Data Structure

“Wikipedia Talk Page Comments annotated with toxicity reasons” is a crowd-sourced data-

set[10] including approximately 160,000 manually labeled comments from Wikipedia Talk

Pages. Conversation AI team asked 5000 crowd-workers to read and label these comments

based on the reasons why they think these comments would make others leave the discussion.

These labels were summarized into a total of six classes:

• Toxic: a general classification of the toxicity of the comment;

• Severe Toxic: extreme toxicity;

• Obscene: indecent language;

• Threat: statements with the intention to inflict hostile action;

• Insult: disrespect or verbal abuse;

• Identity Hate: sexism, racism, homophobic, etc..

As shown in Figure 6, these categories were individually labeled, meaning that comments

were binary labeled in each class. And, one comment can have multiple labels attached to

it.

9



Note that for further illustrations of the comment texts, offensive words will be blurred.

Word-cloud plot is an excellent visualization for displaying word frequency. Due to the

nature of our dataset, a word-cloud plot will not be shown.

Figure 6: Sample of the Data Structure

4.2 Issues

One of the problems the dataset exhibits is class imbalance. As shown in Table 1, the total

number of comments that were not labeled (in other words, clean) take up around 90% of the

dataset. Class imbalance issue has proven to be very impactful in the model training process

because the model can be overwhelmed by majority class instances which can cause the

model to ignore minority classes[16]. Class imbalance in our dataset is likely due to the fact

that Wikipedia is an openly editable collaborative platform so that these toxic comments

only take up a small portion of discussions[1]. As explained by Ying Liu et al.[17] in a

similar situation, the high cost of efforts of human labeling can also cause this imbalance

issue. Usually, with a neural network, class imbalance can be sorted out by the model given

enough passes through training data (epochs). We can employ sampling techniques to the

input dataset or even penalize on the loss function if the model makes a wrong prediction.

Although there are no missing values present in the dataset, the text section is slightly

10



Figure 7: Toxicity Type

Table 1: Composition of Labeled and Unlabeled Rows

Clean Labeled
143346 16225

polluted by spams, about 0.3% out of all the comments. Although their numbers are small,

spams are harmful to both word embedding and model training. Firstly, with the increasing

frequencies of words in the spams, embedding model is forced to take in words that are not

meaningful. Secondly, spams fed into model training will cause unpredictable weight changes

on these repeated sentences, potentially wasting training time and increase training cost. As

shown in Figure 8, the majority of our comment texts has unique word percentage higher

than 50 percent. After some exploration and testing, we will label comment texts with less

than 30 percent unique words as spams. Treatments for these spam texts include removing

all the repeated versions and keeps only the unique words.

4.3 Text Pre-processing and Segmentation

General text pre-processing steps are taken to clean the comment texts for embedding model

training. All characters are converted to lower space. Numbers, punctuation and unnecessary

11



Figure 8: Percentage of Unique Words in Each Sentence

white spaces are removed since they provide no apparent meaning or context to our text.

Stop words are removed from the comment text for the same reason. We us R to perform

these text cleaning steps.

Segmentation is done using the tokenizer function in Keras framework with Tensorflow back-

end in Python. We first define how many unique words to include in the vocabulary, then

construct the tokenizer using the framework. We choose 20,000 words to keep the vocabulary

small. The rule of selecting words to add to our vocabulary is to pick 20,000 words that have

the highest frequencies in the comment text. Removing spam in our previous step helps to

keep repeated spam words out of our vocabulary. Fitting the comment texts to the tokenizer

returns a list of word vectors that consists of tokenized words in our comment text.

An input layer in a neural network takes in vectors of a set length. However, our lists of

sequenced sentences vary in lengths. Exploratory analysis, as shown in Figure 9, indicates

12



that sentences in the comment text are generally less than 200 words; but 99% confidence

interval shows that length of sentences falls in around 65. To give the training sample some

headroom, we pad our sentence sequences to 100 words with trailing series of zeros. That is,

we cut off sentences with longer than 100 words and put sequences of zeros after the shorter

sentences. While the neural network will ignore the sequences of zeros, we may lose some,

however negligible, information in our dataset.

Figure 9: Length of Segmented Sentences

4.4 Embedding

Word2Vec embedding is then employed using Gensim package in Python. Gensim uses

Word2Vec algorithms written with C backend which are developed by Google. The Word2Vec

model in Gensim takes in a list of lists of tokenized words as input, which we converted in

the previous step. We also specify that we will only include words with a frequency above

10 in the lists of embedding vectors. We choose a common embedding size of 300 for the

embedding vectors. We then train the Word2Vec embedding model using ten passes of our

comment text data.

13



model_sg = gensim.models.Word2Vec(

comment_token,window=2,min_count=10,size=300,workers=4,iter=10)

The returned embedding vectors show promising results. As shown in Figure 10, they can

group words with similar meanings and functions with ease. Note that the similarity prob-

ability of each of these cases is not very high. It is likely because our corpus is very noisy,

meaning we have a lot of different words with similar definitions and are used in a multitude

of contexts, which is typical for comments on the internet. This noisiness can also indicate

that our training samples and vocabulary are small. Using pre-trained embedding matrices

with large corpora might prove beneficial.

Figure 10: Similarity Output of Skip-Gram Model

(a) “Wikipedia” (b) “Obscene” (c) f-word
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5 Model

This section will elaborate on the structure of our classification neural network model. We

will also explain model-specific methodologies in this section.

5.1 ReLU and Sigmoid Activation Functions

Activation functions are used to transform the weighted sums of inputs in a fully connected

layer to an output value. We will implement two activation functions in the recurrent neural

network.

Defined as ReLU(x) = max(0, x), ReLU activation function serves to counter gradient van-

ishing problems often associated with back-propagation in deep and complex neural network,

and provide more efficient computations when training.

Another activation function we employ in the neural network is Sigmoid activation function.

Sigmoid function exhibits a “s”-shaped curve and has a range of [0, 1]. It is defined as:

S(x) = 1
1+e−x . It is a non-linear, smooth function with steep slope when x is close to zero.

Which means it can show clear distinctions of response values even changes in predictors are

small. Since we are dealing with binary classifications, it is important for the activation to

side with either 0 or 1.

5.2 Binary Cross-entropy

Entropy measures the unpredictability of a state for a variable[18]. It calculates the op-

timal information needed to identify a state given the current distribution of information.

Mathematically, H(y) = −∑
i yi log yi[19]. A cross entropy is then the optimal information

needed to identify a state given a false distribution, substituting log yi by log ŷi, distribution

15



of wrong information. Simplifying for binary cases, we have the binary cross-entropy as

−yi log ŷi + (1− y) log(1 − ŷi). This binary cross entropy loss increases when the predicted

probability diverges from actual values.

5.3 Adam Optimizer

We introduce optimizers to accelerate the minimization of loss functions by gradient descent.

We already covered SGD, one of the optimizing algorithms in the methodology section.

Although SGD is faster in helping the descent of gradient, its accuracy is not as desirable.

Here, we introduce Adaptive Moment Estimation (Adam)[20], an optimizer that combines

the concepts of Momentum and RMSprop.

Momentum uses an exponentially weighted average of gradients to solve the gradient descent

oscillation problem. Sometimes, gradients take too many oscillations of descent to reach the

local minimum, because when calculating gradients in SGD, we calculate in mini-batches,

which not always leads to local minimum straight away. And increasing the learning rate of

the gradient descent may cause the gradient to overshoot in their descent and even diverge.

A mathematical formulation of momentum (vt) can be shown:

vt = γvt−1 + ηgt

θ = θt−1 − vt

Where η is learning rate, and γ is a constant parameter that controls the weighted average,

usually at 0.9, and gt is the average of the gradient at batch t. By using this exponentially

weighted average, we compound the “momentum” toward the local minimum of loss function

as we calculate the gradient descent.

RMSprop divides the learning rate by an exponentially decaying average of squared gradi-

16



ents[21], which drastically reduces learning rate as gradients approaches the minimum.

E[g2]t = γE[g2]t−1 + (1− γ)g2t

θt = θt−1 −
η√

E[g2]t−1 + ε
gt−1

Adam computes an adaptive learning rate for gradient descent. It not only calculates expo-

nentially decaying average of squared gradients like RMSprop, it also calculates exponentially

decaying average of gradients like Momentum.

mt = γ1mt−1 + (1− γ1)gt

vt = γ2vt−1 + (1− γ2)g2t

θt = θt−1 − η
mt−1√
vt−1 + ε

mt and vt are first and second moment of gradient respectively, which are essentially mean

and variance of the gradient. Adam out performs regular SGD and RMSprop in terms of

training cost.

5.4 Baseline Network Layers

Proceeding to construct a baseline recurrent neural network, we use Keras framework which

uses Tensorflow backend with Graphics Processing Unit(GPU) support. The sheer amount

of computations involved in training a neural network often throttles the CPU, that is the

reason we use a Nvidia GTX 1060 GPU with 6 gigabytes of memory. It is tested that the GPU

speed up our computation by more than three times, comparing to a typical four code eight

thread CPU. On the other hand, Keras is a high level open-source neural network framework

written in Python, which can utilize many machine learning backends, like Tensorflow. It

17



is user-friendly and modular without losing the functionality of a typical machine learning

framework. We use its Sequential Model to build our recurrent neural network.

mode = Sequential()

The first layer of our model is the input/embedding layer. We will not do the embedding

entirely again, but load the embedding matrices that was built using Skip-gram model. Since

we have our 20,000-word vocabulary, padded our sentences to 100 words and each word has

an embedding vector of length 300, this input/embedding layer has the size of [20000× 300]

for each input of size 100. One of the default hyperparameters in this layer is whether the

embedding matrix is trainable. We default it to trainable so that the embedding vectors serve

as initialization. Since we did not include all the available vocabularies in the embedding

matrix with the minimum word count option in Skip-gram model, slight improvements can

be made to the embedding vectors by this “trainable” option.

model.add(Embedding(20000,300,weights=[embedding_matrix],input_length=100))

The second layer of our model is the bidirectional LSTM layer. We set LSTM layer to have

100 cells. Thus the Bidirectional LSTM layer has 200 nodes in total. We also set it to have

a 10% dropout rate and a 10% recurrent dropout rate. Referring to Figure 4, a regular

dropout in this layer means that dropout is applied to the input gates, whereas a recurrent

dropout means dropout is applied to hidden states across the recurrent units in the layer[22].

model.add(

Bidirectional(LSTM(100,dropout=0.1,recurrent_dropout=0.1)))

We connect some fully connected layers with a dropout layer in between. The first fully-

connected layer uses ReLU activation function, and the second one with Sigmoid. We use

18



Sigmoid in the second fully-connected layer because we are producing an output six binary

classifications and we want results to be probabilities between 0 and 1.

model.add(Dense(50, activation=‘relu’))

model.add(Dropout(0.1))

model.add(Dense(6, activation=‘sigmoid’))

Finally, we compile the model using binary cross-entropy loss, Adam optimizer and evalu-

ation metric of Area Under Curve (AUC). AUC is the area under the Receiver Operating

Characteristics (ROC) curve, drawn by plotting true positive rate against false positive rate.

AUC is essentially the probability that the classifier/model will rank a randomly drawn pos-

itive case higher than a randomly drawn negative case, all assuming “positive” ranks higher

than “negative.”[23]

model.compile(loss=‘binary_crossentropy’,optimizer=‘adam’,metrics=[auc])

We fit the model with a mini-batch size of 256 and over ten epochs. We also take 10% of

our training data out as a validation set. This validation set is drawn before model training.

The reason behind this is that we want to control the splitting with a set random seed so

that our result is somewhat reproducible. We also introduce early stopping on validation

loss, so that training is stopped after the epoch that it detects the model is overfitting the

training set.

X_t, X_v, Y_t, Y_v = train_test_split(X,Y,train_size=0.9,random_state=123)

early = EarlyStopping(monitor="val_loss", mode="min")

model.fit(X_t,Y_t,batch_size=256,epochs=10,

validation_data=(X_v, Y_v),callbacks=[early])
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6 Analysis of Results

This section will illustrate the training cost and performance of previously constructed base-

line model with Word2Vec embedding, bidirectional LSTM, fully connected layers with

dropout, using binary cross entropy loss and Adam optimizer.

The approach of our analysis will be focusing on substituting components in our baseline

model with proven alternatives instead of tuning. We will perform comparison studies that

demonstrate models with Gated Recurrent Units, pre-trained word embedding vectors, pe-

nalizing loss, and undersampling.

6.1 Baseline Model

Baseline model took 706 seconds to complete training on 143613 samples and validating on

15958 samples. As shown in Figure 11 training stopped at epoch 4. We see that training

loss and validation loss is extremely close at epoch 3. Training AUC at epoch 4 is 0.9782

and validation AUC is 0.9797.

Figure 11: AUC and Loss Over Epochs - Baseline Model

(a) “AUC” (b) “Loss”

It is important to note that validation AUC is higher than training AUC. Explanation of

this phenomena is that we use dropout vigorously in our training model to avoid overfitting,
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and training and validation samples do not go through the same pipeline. When training

data goes through the model and dropout layers, information is lost, resulting in harder

training but less overfitting. However, when validation data goes through evaluation using

the model, dropout is not applied to them, and validation samples retain all its information.

This difference occurs similar to the model being underfitting. But in reality, it does not

necessarily mean the model is underfitting.

However, using AUC as a single model performance metric does not give us a full picture,

especially considering this is an imbalanced dataset. Here we introduce precision and recall

scores to explore the model performance further.

Precision, in the Mathematical formulation, is defined as TP
TP+FP

. TP stands for true positive

rate, and FP is the false positive rate. In simple terms, it calculates the percentage of correct

classification out of all the positive classifications. On the other hands, recall is defined as

TP
TP+FN

, where FN stands for the false negative rate. Also called “Sensitivity”, recall shows

the classifier’s ability to classify the results as positive when the subjects are genuinely

positive.

Figure 12: Baseline Precision and Recall

An indication for a descent classifier is that it shows not only high values in both precision

and recall but also a balance between them. From Figure 12, we see that for relatively minor
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classes like “Severe Toxic”, “Threat”, and “Identity Hate”, the baseline model produces

decent precision but low recall. These scores mean that while the model is somewhat accurate

when it detects these minority classes, it still misses these comments quite often. It is

also surprising to see that the baseline model performs worse at detecting “Severe Toxic”

comments comparing to “Threat”, since “Severe Toxic” comments have more occurrences in

our training samples.

6.2 Comparison Study: Gated Recurrent Units

One of the alternatives to LSTM is Gated Recurrent Units (GRU). It has fewer parameters,

as shown in Figure 13, which combines the input gate and forget gate as update gate,

connects the hidden state with a reset gate and has no output gate. It has lower training

cost and is shown to perform better on small datasets[24].

Figure 13: Detailed Structure of a GRU Cell

A general formulation of a GRU cell can be shown as:

zt = σg(Wzxt + Uzht−1 + bz)

rt = σg(Wrxt + Urht−1 + br)
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ht = (1− zt) ∗ ht−1 + zt ∗ tanh(Whxt + Uh(rt ∗ ht−1) + bh)

Where zt is the update gate, rt is the reset gate, and ht is the output vector. Note that from

Figure 13, ĥt is equivalent to tanh(Whxt + Uh(rt ∗ ht−1) + bh) in the above equation.

GRU model took 427 seconds to complete training on 143613 samples and validating on

15958 samples. As shown in Figure 14, training stopped at epoch 3. Training AUC at epoch

3 is 0.9761 and validation AUC is 0.9782. GRU model shows lower training cost, but it is

faster to overfit.

Figure 14: AUC and Loss Over Epochs - GRU

(a) “AUC” (b) “Loss”

Shown in Figure 19 (at the end of Section 6), we see that the GRU model shows slightly

lower precision and higher recall compared to the baseline model. Note that GRU model

completely misclassifies comments that should be labeled “Threat”. It performs somewhat

worse overall and fails at detecting extremely minor classes.

6.3 Comparison Study: Pre-trained Embedding Vectors From Large

Corpora

Word vectorization models like word2vec we implemented usually requires a large corpus to

compute suitable word vector representations, which is evident in our observations on the
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similarity output of the Skip-gram model on our comment texts. Thus, it is often suggested

that we use pre-trained embedding vectors from large corpora to perform analysis on samples

with a small corpus[25]. In this section, we introduce two pre-trained embedding vectors and

use them as embedding initialization for our model.

First, we use embedding vectors trained by Google using 3 Million word vocabulary from

Google Negative News.[26] These embedding vectors are prepared using the same word2vec

method we employed in previous sections.

Same baseline model but with pre-trained “Google News Negative 3M” took 842 seconds to

complete training on 143613 samples and validating on 15958 samples. As shown in Figure

15 training stopped at epoch 4. Training AUC at epoch 3 is 0.9719 and validation AUC is

0.9750. The model using pre-trained word2vec embedding shows worse overall performance

and higher training cost comparing to baseline model.

Figure 15: AUC and Loss Over Epochs - Pre-trained Google News Negative 3M

(a) “AUC” (b) “Loss”

We also implement embedding vectors pre-trained using scrapped twitter data. These em-

bedding vectors are trained using a different embedding method called Global Vector (GloVe)

for word representation developed by Stanford[27]. It is an unsupervised learning model that

obtains the embedding vectors by aggregating global word-word co-occurrence statistics in
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a corpus. Its formulation is defined by:

wTi wj + bi + bj = logXij

Loss =
V∑
i=1

V∑
j=1

f(Xij)(w
T
i wj + bi + bj − logXij)

2

f(Xij) = (
Xij

xmax
)α if Xij < XMAX or 1, otherwise.

Where wi and wj are chosen word and context word, bi and bj are biases for the chosen and

context word. Xij is the occurrence matrix of word i in context word j. f(Xij) denotes the

weight function that reduces the weight on most common words[28].

This GloVe embedding matrix is trained using a 2 billion word twitter corpus, which shares

more words with our vocabulary than the word2vec embedding vectors trained on Google

News Dataset.

Same baseline model but with pre-trained “Twitter 2B” took 808 seconds to complete train-

ing on 143613 samples and validating on 15958 samples. As shown in Figure 16 training

stopped at epoch 6. Training AUC at epoch 6 is 0.9771 and validation AUC is 0.9780.

Figure 16: AUC and Loss Over Epochs - Pre-trained Twitter 2B

(a) “AUC” (b) “Loss”

We see that model with GloVe embedding vectors takes more epochs to overfit, shows less

validation loss at later epochs, and has relatively higher AUC score. However, it also in-
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dicates that our baseline model with our own embedding performs as well as pre-trained

embedding. The explanation behind this is that pre-trained embedding on larger corpus

does not necessarily have the domain-specific vocabulary of our dataset, resulting in a lack-

luster performance.

Regarding precision and recall, as shown in Figure 19, Google News word2vec and Twitter

GloVe model both have slightly lower precision and higher recall comparing to our base-

line model. Overall, they perform slightly worse than the baseline model. Moreover, we

notice that they also completely missed “Threat” class from the validation set. Comparing

Google News word2vec and Twitter GloVe models, GloVe has higher training cost and lower

validation AUC but has higher precision across all labels.

6.4 Comparison Study: Penalizing Loss

One of the ways to combat class imbalance issue is to add weights on minority class prediction

losses, which penalize against misclassification at the same time. These weights tell the model

to pay more attention to the minority classes in the training samples.

The Mathematical formulation of our weight, Inverse Frequency[29], is defined as

Wc = log(
N

nc
) if Wc > 1, else 1

Where N stands for total observations, nc stands for the number of observations for the

specific class, and they are logarithmically scaled. We also keep the weight of majority class

samples (clean comments) at 1.0.

Our model with penalizing class weights took 1246 seconds to complete training on 143613

samples and validating on 15958 samples. It is less efficient in training than models we previ-

ously employed because penalizing weights on the loss function causes the model parameter
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Figure 17: AUC and Loss Over Epochs - Penalizing Loss

(a) “AUC” (b) “Loss”

to fluctuate and converge very slowly. Training stopped at epoch 6 with training set AUC at

0.9830 and validation set AUC at 0.9838. According to Figure 19, penalizing class weights

model shows slightly lower precision but higher recall overall.

6.5 Comparison Study: Undersampling

We explore simple sampling techniques on our training step to see if they improve model

performance. As an example, we apply undersampling to majority class training samples

(clean comments) while retaining minority classes. This method essentially makes the model

pay more attention to minority class samples.

We sample 10% the majority class training samples with replacement and combine them with

all the minority class samples into a new training set. We do this on every new epoch and

training our baseline model using the new training sets. Note that total amount of samples

from majority class and minority class are about equal with this way of undersampling.

Model with undersampling majority class samples took 622 seconds to complete training.

It stopped at epoch 16 with training AUC of 0.9824 and validation AUC 0.9828. It shows

higher overall accuracy and relatively low cost. The model exhibits higher recall rate across

the board with different classes, which means it is significantly better at picking out toxic
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Figure 18: AUC and Loss Over Epochs - Undersampling

(a) “AUC” (b) “Loss”

comments. However, it has lower precision in general, meaning it is underfitting for classify-

ing clean comments. The model still under-performs on minority class samples like “Severe

Toxic” and “Threat”.

Figure 19: Model Comparisons

28



7 Conclusions

We successfully employed word2vec embedding and recurrent neural network in building

a toxic comment classification model and achieved high accuracy with relatively low cost.

Gated recurrent units layer proves to be more efficient at training but performs slightly

worse than the baseline model with LSTM layer. Comparison studies show that pre-trained

embedding vectors obtained from larger corpora do not necessarily improve the performance

of our model because they require domain-specific vocabulary to perform accurately enough.

Penalizing loss functions and using sampling techniques only marginally enhanced our model

in detecting underrepresented classes. Like mentioned by [10], one of the significant chal-

lenges researchers in machine learning face is the limitation of “high quality” data. If we

can have a significantly larger training sample, with more labeled texts and more balanced

classes, we will likely achieve sound improvements to our model without relying heavily on

the assistance of class imbalance solutions, since they require significant amount of tuning.

These observations also mean that further improvements can be made to improve our current

model, which does not limit to a different overall network structure. We can also perform

additional hyperparameter tuning on our model, which will most definitely prove beneficial.

Nevertheless, the model’s ability to process context of words proves efficient in identifying

toxic texts from a large sample.

On a closing note, Conversation AI team’s intention and effort in building an open source

tool to monitor and control online toxicity is commendable. Researchers and discussion

platform moderators have already found numerous ways to apply this tool in very creative

manners[30]. We hope that with the collaborative help from the machine learning community,

the team can continuously improve the performance of Perspective API and help maintain

a toxic-free environment for our online discussions.
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