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Abstract

Quantifying Links Between Fire and Water Cycles Across Time, Place and Processes, in
California’s Sierra Nevada

by

Ekaterina Rakhmatulina

Doctor of Philosophy in Civil and Environmental Engineering

University of California, Berkeley

Professor Sally E. Thompson, Co-chair

Professor Steven Glaser, Co-chair

Drought, elevated temperatures, and extended fire seasons combine with high fuel loads to
increase the scale and severity of wildfires in California. Many of these fires occur in the
forested montane watersheds that provide approximately 60% of the developed water supply
of the state, creating a critical nexus between water and fire from a management perspec-
tive. However, the links between hydrological and fire processes go well beyond a common
dependence on forests. Both water and fire cycles are impacted by, and impact upon the
growth, spread, function, and disturbance of vegetation communities. This means there are
multiple processes linking plants, fire and water. With climate change projected to warm
temperatures, reduce snowpack, extend fire seasons, and increase drought stress on Cali-
fornian watersheds, foresters are turning to alternative forest management strategies. One
such strategy involves the re-introduction of frequent mixed-severity fire into the landscape
to lower fuel loads and reduce the risk of catastrophic fires. Co-benefits of this strategy are
anticipated to include greater water yields and storage, and increased landscape diversity
and forest resilience. In my primary study site of the Illilouette Creek Basin (in Yosemite
National Park, California), this strategy has proven to be successful to date. Many impor-
tant knowledge gaps remain, however, including how the strategy of re-introduce fire will
impact the water cycle as climates warm, how transferable this strategy is to other basin, the
potential implications of frequent burning on erosion and water quality, and how changes in
water storage in fire-treated landscapes, and specifically in soil moisture, might modify the
resulting fire regime. To answer these questions, this dissertation draws on satellite and field
collected data, laboratory experiments, and hydrological and statistical modeling to explore
fire-vegetation-water-climate feedbacks and inform future forest management in California.
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Chapter 1

Introduction

1.1 Motivation

Twenty-first century California (and much of the Western US) is experiencing a combina-
tion of extended droughts and large number of catastrophic wildfire events. The state is
experiencing a number of extreme conditions each year; for example, years 2012-2016 were
some of the driest years on record, followed by 2017 which had extremely wet conditions.
Meanwhile, wildfire activity has greatly increased. In fact, five of the six largest fires in
California’s recorded history occurred in 2020 alone (CalFire, 2020b). With climate change
projected to warm temperatures further, reduce snowpack, extend fire seasons, and increase
drought stress on Californian watersheds (Goulden & Bales, 2019), a better understanding
of the dynamic interactions of fire, water, vegetation, and climate is urgently needed. Al-
though a growing literature addresses the interactions of many of the components of these
systems individually, important knowledge gaps remain (Archibald et al., 2018). My dis-
sertation addresses several of these knowledge gaps from two complementary perspectives:
(i) understanding process interactions, and (ii) understanding how changes to fire dynamics
influence the interactions of these processes leading to emergent, watershed scale environ-
mental outcomes. Specifically, from a process perspective I investigate, in Chapters 2 and
3:

1. How soil moisture - dead fuel moisture interactions affect fire risks, a process that
connects the water cycle with fire risks, but which has been almost unstudied to date;
and

2. How climate cycles (namely wet-dry and freeze-thaw cycles) influence post-fire soil
water repellency of the Sierra Nevada soils. Water repellent soils inhibit the infiltration
of rainfall, pre-disposing fire-impacted landscapes to flooding and erosion.

Throughout the dissertation, I will also lean on observations made in two watersheds in
the Sierra Nevada (Illilouette Creek and Sugarloaf Creek Basins) where the historical fire
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management regime of “fire suppression” was replaced with a regime of “managed wildfire”
in the 1970s. This change represents a shift from no fire occurrence for approximately 80
years, to frequent fire occurrence for the past 50 years. I investigate the effect of this policy
shift on watershed processes in chapter 4 and 5 of my dissertation:

3. How altering fire management strategies from suppression to fire-management impacts
the hydrological states and processes of the Illilouette Creek and Sugarloaf Creek Basins
in the Sierra Nevada; and

4. How changing climate might influence the hydrological response to changes in fire
management regimes in the well-characterized Illilouette Creek Basin.

.
In the remainder of this introduction, I outline my conceptual model for how fire, water,

vegetation, and climate impact each other. This conceptual model is strongly influenced
by processes in the major study region addressed in the thesis, namely California’s Sierra
Nevada Mountains. Multiple locations in the Sierra Nevada Mountains are featured in my
analyses. I therefore provide a detailed introduction to this region in the next section of the
introduction. Lastly I introduce contemporary wildfire management strategy in the Sierra
Nevada and what we know about its impacts on the ecosystems and water resources.

Despite the place-based nature of my research, the results are likely to have relevance to
fire and water management in seasonally dry, snow-dominated montane systems worldwide.
Globally, these regions are unified by their importance as water sources, the prevalence of
fire as a disturbance mechanism, and their vulnerability to climate change.

1.2 Background 1: Fire and water interactions

mediated by vegetation

Fire-vegetation feedbacks

Ecosystems generate fuel that can be consumed by fire. Fuels comprise living and dead
vegetation, litter and duff. Anything that has a potential to burn on the landscape is a fuel.
Dead fuel properties, such as moisture content, loading (fuel mass per unit area), and spa-
tial distribution throughout the landscape determine fire’s probability of ignition, intensity,
spread, and consequently its spatial pattern (C. Miller & Urban, 2000; Van Wagtendonk,
1977; Rothermel, 1983). Typically, fires are initiated by dead fuels, which enable fires to
spread and increase in their intensity until they are hot enough to consume wetter live fuels,
and eventually spread into the vegetation canopy (Parsons & DeBenedetti, 1979). If ignited,
live vegetation further exacerbates fire severity by providing additional fuel and increasing
fire spread via ember production (Graham & McCaffrey, 2003).

Vegetation influences fire properties, and in turn, fire influences the location, composi-
tion, structure and biomass of vegetation. Fires can induce major conversions in vegetation
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type, in which dominant species are eliminated and cannot regrow either due unfavorable
environmental conditions post-fire (Rother et al., 2015; Davis et al., 2019), or because fire
has destroyed the seed-bank (Meng et al., 2015; Young et al., 2019). These conversions
are often seen after severe wildfires, for example those which convert forest vegetation into
shrubland (Tepley et al., 2018; Batllori et al., 2018; Lauvaux et al., 2016). Since shrub vege-
tation is more likely to burn under severe fire conditions, such conversions may be permanent
(Karavani et al., 2018; Coppoletta et al., 2015; Stevens-Rumann et al., 2017). In montane
environments, fire can also convert forests into meadows: for example, in Lassen National
Forest, fire was deemed to be the primary factor mitigating tree encroachment into meadow
edges (Norman & Taylor, 2005). If regular disturbance by fire shapes vegetation, removing
fire disturbance has equally huge implications. Absence of fire in mixed conifer ecosystems
leads to dense forested stands with heavy fuel loads which favor shade tolerant species, such
as Incense cedar and White fir which can replace fire-prone but shade intolerant Ponderosa
pines (Van Wagtendonk, 1977; Norman & Taylor, 2005).

Vegetation-water feedbacks

Ecosystems not only shape fire processes, but also act as major intermediaries in the ter-
restrial water cycle. In a simple water balance, water enters the basin as precipitation, and
leaves the basin though streamflow and evapotranspiration. Plants take up water from the
soil as they photosynthesize, and the water is lost through plants’ stomata as transpiration.
Living vegetation is one of the largest consumers of water with transpiration accounting for
∼39% of the terrestrial water budget (Schlesinger & Jasechko, 2014). Vegetation canopy
intercepts precipitation (rain and snow), from where it can sublimate or evaporate. Fur-
thermore, vegetation modifies the local energy balance by shading the ground surface and
reducing wind speeds beneath the canopy (Cristea et al., 2013, 2017; Kostadinov et al.,
2019). In snow-dominated systems, such as the Sierra Nevada Mountains, between 20 and
50% (depending on the topography) of yearly precipitation is stored as snowpack (Cooper
et al., 2020; Hunsaker et al., 2012). Although direct shading of the snowpack from incoming
shortwave radiation limits snowmelt, this can be confounded by vegetation inhibiting out-
going long-wave radiation, which increases air temperature and promotes snowmelt. Thus,
snow water equivalent can be either lower or greater in forested vegetation in comparison
to similar open areas, depending on which of these processes dominates (Hotovy & Jenicek,
2020; Revuelto et al., 2020; Kostadinov et al., 2019; Lundquist et al., 2013). Because of
the impacts of fire disturbance on post-fire vegetation properties, fires can indirectly im-
pact the water balance. For example, low to moderate severity fires can remove under-story
vegetation which has high transpiration rates (Jayasuriya et al., 1993), leaving bigger and
older species alive and reducing transpiration immediately post-fire. Recovery of understorey
plants or re-sprouting, however, can cause transpiration rates to increase several years post
fire (Tague et al., 2019). High-severity fires that remove all vegetation reduce transpiration,
but may increase soil evaporation as the soil albedo is reduced (Quintano et al., 2019) and
shading removed (Breshears et al., 1998).
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Fire-water feedbacks

Fire processes are also influenced by water availability. As the landscape becomes water-
limited, vegetation may die from inability to photosynthesize as stomata close due to water
stress, or from vulnerability to insect attacks as a result of lowered sap flow rates (Raffa et al.,
2008). As vegetation dies, landscape fire risks increase, since dead vegetation is both more
flammable than live vegetation and creates a connected network of ground fuels, assisting fire
propagation. Soil moisture can influence moisture levels of dead vegetation as well. C. Miller
& Urban (2000) concluded that fuel moisture conditions (both wet and dry) can override the
effect of fuel accumulation; if the fuels are dry, a risk of large fires will be present even if the
fuel loads are low. The reverse is also true; if the fuels are wet, even dense and continuous
fuel accumulations may not result in fire propagation. These fuel moisture effects may be
particularly important in complex terrain, where valleys and poleward aspects may retain
moisture longer than sun exposed terrain, creating natural fire breaks.

In addition to fire disturbance impacting the water cycle through its impacts on vegeta-
tion, fires also affect hydrology by modifying soil properties. In particular, heat can change
soil bulk density and aggregate stability (Nimmo, 2005; Giovannini et al., 1983; Kořenková
& Matúš, 2015). Heating can increase soil water repellency when soil organic matter gets
vaporized during heating and condenses on soil particles during cooling, creating a hydropho-
bic coating (DeBano & Krammes, 1966). All of these factors contribute to a decrease in soil
water infiltration, enhancing ponding of water on the soil surface, which can contribute to
post-fire flooding and erosion (Keeley, 2009; Mataix-Solera et al., 2011; Stoof et al., 2011;
Caon et al., 2014; Stoof et al., 2015). Where vegetation is removed by fire, flooding and
erosion is likely to be more severe, since vegetation reduces rain splash erosion and retains
surface water on the landscape, which can promote infiltration (Assouline & Mualem, 1997).
Lastly, wildfires often create an ash layer which in some cases is associated with clogging of
soil pores and reductions in infiltration (Woods & Balfour, 2010).

Climate

The fire-water-vegetation interactions above create a complex three-way feedback system
which is likely to be further complicated by climate change. For example, increasing tem-
peratures will elevate snowlines in montane watersheds (Hatchett et al., 2017), causing a
shift to earlier snowmelt, peak streamflow, and the start of the growing season (Stewart et
al., 2004; North et al., 2012). Prolonged droughts and the longer growing season will lead to
drier fuel conditions and higher vegetation mortality, increasing fire risk (Nolan et al., 2020;
Flannigan et al., 2015). Yet water stress could ultimately decrease vegetation density and
therefore fuel loading, thus reducing the spread of fire (Hurteau et al., 2019). To manage
the joint risks of fire and water stress under a warming climate, these interactions need to
be understood.
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1.3 Background 2: Sierra Nevada ecosystems

Fire-water-vegetation-climate feedbacks are important drivers of ecosystem processes in the
Sierra Nevada mountain range in the western United States. The Sierra Nevada is a 63,100
km2 mountain range primarily situated in the state of California, occupying 24% of the
state’s area, with portions extending into the state of Nevada. The range runs 640 km
north-south, starting at the Mojave Desert in the south and terminating at the Cascade
range in the north. The Sierra Nevada is about 105 km wide in the east-west direction and
is bordered by the Central Valley of California to the west and the Great Basin to the east
(Minnich & Padgett, 2003). At its foothills in the west, Sierra Nevada starts at ∼300 m,
and reaches a maximum height of 4,396 m (Mount Whitney), with mean elevations being
highest in the Southern portion of the range (Schoenherr, 2017a).

The mountain range is composed of a granitic block that was uplifted along the Sierra
Nevada fault system. The uplift created gentle western slopes compared to the steeper
eastern slopes (Minnich & Padgett, 2003). The soil across the Sierra Nevada is relatively
young and shallow (Meyer et al., 2007), coarse grains and well-draining (E. Moghaddas &
Hubbert, n.d.). At elevations above 1,543 m (5,000 ft), vegetated areas are often interspersed
with granite outcrops (Rundel, 1975).

The Sierra Nevada is a crucial resource for California’s economy (Klausmeyer & Fitzger-
ald, 2012; California Department of Food and Agriculture, 2019), human well-being, ecosys-
tem health (Millar, 1996), and biodiversity (Richter et al., 2019). Sierra Nevada ecosystems
are fire prone and dynamic, and experience a highly volatile climate characterized by ex-
tensive inter-annual variability in precipitation (Taylor & Beaty, 2005). Droughts are often
relieved by precipitation-heavy years (Swain et al., 2018). Under natural conditions, wild-
fire is a ubiquitous component of this landscape, impacting local ecosystems, downstream
communities and infrastructure (Millar & Stephenson, 2015).

Climate Trends

The Sierra Nevada mountain range experiences a Mediterranean climate with warm dry
summers and cool wet winters. Climate varies with elevation and latitude across the Sierra
Nevada; temperature drops ∼ 1oC per 100 m of elevation (Millar, 1996), while precipitation
increases with elevation, reaching a peak of 180 cm/year on the western slope. The eastern
slope is in the rain-shadow and much drier than the western, receiving an average of only 50
cm of precipitation a year (Schoenherr, 2017b). Additionally, precipitation increases with
latitude; from 75 cm/yr in the south to 225 cm/yr in the north (for a common altitude of
1500 m Millar, 1996).

Precipitation form is also very important for ecosystems across the Sierra Nevada (Bar-
bour et al., 1991). The transition between precipitation falling as rain and precipitation
falling as snow is called the snowline (Erman, 1997). The snowline influences water storage
dynamics and vegetation distributions across elevations. Above the snowline, up to 90% of
Sierra Nevada’s yearly precipitation occurs as snowfall (Millar, 1996; Dolanc et al., 2014),
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compared to 47% for the entire Sierra Nevada range (Jepsen et al., 2016). The snowline is
located around 1,500 m today, but is rising as fast as 72 m/yr (Hatchett et al., 2017) due to
climate warming. Snowpack is predicted to decline by 20-90% by 2100 (North et al., 2012).

California has a large variation in inter-annual precipitation totals, which correlate with
global patterns of El Niño-Southern Oscillation (ENSO) (Jong et al., 2016; Dettinger et al.,
2011). During La Niña ocean cooling, California receives below average precipitation, and
during the El Niño ocean warming counterpart, California receives above-average precipi-
tation (Jong et al., 2016). In addition to inter-annual climate variations, climate change is
projected to shift multi-decadal precipitation and temperature baselines; average tempera-
tures in the Sierra Nevada are expected to increase by 1.1-2.2oC in the winter and 2.2-4.4o

in the summer (North et al., 2012), and precipitation is likely to increase slightly (Dettinger,
2005; Pierce et al., 2013). Project precipitation is highly uncertain, but many models predict
an increase in the number of extreme precipitation events (Gershunov et al., 2019).

Vegetation

There is a strong climatic gradient with elevation in the Sierra Nevada which leads to a
distinct distribution of ecotones (Barbour et al., 1991). At low-elevations (<915 m) the
climate is hot and dry, favoring drought tolerant vegetation. Oak woodland and chaparral
vegetation dominate this lower elevation range (Erman, 1997).

At mid-elevations (760–1400 m in the north and 915–3050 m in the south of the western
slope), the predominant vegetation is comprised of a mix of coniferous trees and black oaks.
This band is referred to as the mixed-conifer forest (Minnich & Padgett, 2003; C. Chang,
1996), which is the most productive and widely distributed forest type across the Sierra
Nevada, making up a least 5.7 million ha (Schoenherr, 2017b). Ponderosa pine, Jeffrey
pine, and Incense cedar are drought-tolerant and tend to occupy drier, south-facing aspects.
Meanwhile white fir and sugar pine occupy north-facing, wetter, and cooler portions of the
mixed-conifer forest (Millar, 1996). Within the mixed conifer forest, Ponderosa and Jeffrey
pines are shade intolerant but adapted to frequent fires, while white firs are shade tolerant
though not well-adapted to survive fires (Tubbesing et al., 2020; Parsons & DeBenedetti,
1979; Safford & Stevens, 2017). These traits affect spatial distribution of species based on
environmental conditions. Today mixed-conifer forest is the most vulnerable to disturbance
and climate change (Dolanc et al., 2014).

At high-elevations (>1500 m), precipitation transitions from rain to snow and mixed
conifer forest gives way to sub-alpine vegetation comprised mostly of white fir and then red
fir forests (Erman, 1997). Upper elevation red fir forests receive 70-90% of precipitation
as snow and historically experience little fire activity (Agee, 1993). Climate warming is
predicted to increase the density of young trees while decreasing the number of older trees
(McIntyre et al., 2015; Dolanc et al., 2014).

Mid to high elevation forests are the focus of the work presented throughout the disser-
tation.
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Water

Water in the Sierra Nevada is an important resource not only to the local ecosystems, but also
to downstream rural and urban communities (Bales, Battles, et al., 2011). Sierra Nevada
watersheds provide between 60% and 90% of California’s water supply (Madani & Lund,
2009) and 20% of the State’s energy production (Cayan et al., 2008). The Sierra Nevada
contain 24 major watersheds, 16 of which have major dams that cumulatively store between
12.3 and 43.1 thousand cubic meters of water (Dettinger & Anderson, 2015).

With most winter precipitation falling as snow, spring snowmelt is the main contributor
to soil water storage that supports summer vegetation growth (Hunsaker et al., 2012; Bales,
Hopmans, et al., 2011; Kurpius et al., 2003; Harpold et al., 2014). The length of the growing
season and the water stress experienced by vegetation vary as a function of both snow water
equivalent and melt timing (Lundquist & Loheide, 2011). The location of the snowline
strongly controls soil moisture availability (Bales, Hopmans, et al., 2011): for example, in
the upper-elevations of Stanislaus Forest, sites above the snowline had approximately double
the May and August water content than sites located < 70m away that were below the
snowline (Barbour et al., 1990). About two thirds of the precipitation is transpired and
evaporated with the rest going into streamflow (Bales, Battles, et al., 2011).

Drought tolerant tree species in the Sierra Nevada are adapted to low soil water avail-
ability in the late summer season, having deep roots that can tap into water stores in the
fractured bedrock (Bales, Hopmans, et al., 2011). Up to 70% of the water consumed during
the growing season can come from weathered bedrock (Witty et al., 2003). Despite this adap-
tation, the effect of droughts on the Sierra Nevada forests is profound; during the 2012-2016
drought, an estimated 129 million trees died across the Sierra Nevada.

The downstream effects of the 2012-2016 drought were also acute: in 2015, reservoir
storage dropped to as little as 18% and hydropower generation declined by 50% (Dettinger &
Anderson, 2015). The economic cost of the drought reached 2.2 billion dollars in 2014 alone,
with a loss of ∼17,100 jobs (Howitt et al., 2014). The five-year drought was followed by one of
the wettest years on record; in 2017 precipitation was 150-400% of normal, causing flooding,
threatening infrastructure and human life (Mount et al., 2018). Both intense drought and
flooding are projected to increase by ∼50% by the end of the century (Yoon et al., 2015).

Fire

Historically (pre-1800), the Sierra Nevada experienced frequent fires, with 3.4 million ha (33%
of Sierra Nevada) of mixed-conifer forest burning each year prior to European settlement
(Stephens et al., 2007). Fire histories show a frequent and relatively steady areas burned
by fire during this period, with fire-return period being consistently < 30 years (Stephens et
al., 2007). In addition to lightning ignited fires, indigenous populations used fire as a tool
for land management, burning frequently (Pyne, 1997; Skinner & Chang, 1996; Stephens et
al., 2007; Anderson, 2005).
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By the turn of the nineteenth century, European settlers had decimated indigenous popu-
lations, and in 1905, US Forest Service established a strict national policy of wildfire suppres-
sion (Stephens & Ruth, 2005; Agee, 1993). During this period, the area burned by wildfires
was almost negligible. Indeed, the fire return interval for mixed-conifer forests during the
fire suppression period was estimated as 640 years compared to < 30 years pre-European
settlement (McKelvey et al., 1996; Scholl & Taylor, 2010; Stephens et al., 2007). At its peak
in 1935, the fire suppression policy was one of strict control of all natural and man-made
wildfires, with a ”10:00 A.M. rule” stating that all fires should be put-out by 10 am the
following day (Pyne, 1997). The fire suppression policy caused an upward of 430% densifi-
cation of forests and a 25-49% increase of canopy and surface fuels (McKelvey et al., 1996;
Vankat & Major, 1978; Parsons & DeBenedetti, 1979). Forests began to look drastically
different: forests that one could easily walk through became so overgrown with vegetation
and stacked with fuels, that they became completely impassible (Vankat & Major, 1978;
Van Wagtendonk, 1977; Collins & Stephens, 2007).

Today, the area burned by wildfires in California is approaching pre-European Settlement
statistics (1.8-4.8 million acres burned each year), with 4.5 million acres burned in 2020 alone
(CalFire, 2020b). Contemporary wildfires, however, are much larger in size than historical
fires were. Five of the largest fire complexes in 2020 represent 60% of the total area burned
that year (CalFire, 2020a). Much of the increase in recent fire activity and fire severity is
related to the combination of climate change and the legacy of fire suppression (J. D. Miller
et al., 2012). Abatzoglou & Williams (2016) attributed a 4.2 million ha wildfire area during
1984-2015 in the US to Anthropogenic climate change, doubling the fire area that would
have burned in its absence.

1.4 Background 3: Managed wildfire as a forest

management strategy

By the 1960s, the negative effects of fire suppression on ecosystem diversity, forest health,
and fire risk in the Sierra Nevada began to be better documented (Leopold, 1963). The
National Park Service was the first Government agency to re-introduce wildfires to the
landscape (Van Wagtendonk, 1977) in response to these impacts. In 1968, Sequoia-Kings
Canyon National Park created a natural fire program for some of its remote watersheds, in
which naturally ignited fires were allowed to burn unless they posed unacceptable threats
to health, life or infrastructure. Sequoia-Kings Canyon National Park was soon followed
by Yosemite National Park (Stephens & Ruth, 2005), although other National Forest lands
continued fire suppression practices.

Today, scientists and policy-makers generally do agree that to have resilient forests, Cal-
ifornia needs to reduce forest density and fuel loads (Stephens et al., 2020). Resilient forests
are those that can both resist and recover from disturbance. The re-introduction of wildfire
to the Sierra Nevada forests is one tool being considered to promote such resilience. In this
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dissertation, I will refer to such reintroduction interchangeably as a ”fire use” or ”managed
wildfire” strategy. Managed wildfire entails allowing lightning-ignited wildfires to burn, sub-
ject to a strict management policy that calls for intervention to suppress fire when air quality,
structures, or people are placed at risk (van Wagtendonk, 2007).

Managed wildfire requires time to reshape ecosystems. Yet only two watersheds in Cali-
fornia - Illilouette Creek Basin (ICB) in Yosemite National Park and Sugarloaf Creek Basin
(SCB) in Kings Canyon National Park - have been managed in this way for multiple decades.
These sites are unique locations in which to study the interaction of managed wildfire, veg-
etation, and hydrology. Since the introduction of the managed wildfire strategy in 1972 in
ICB and 1968 in SCB, 29 fires greater than 40 ha have burned in ICB (van Wagtendonk et
al., 2012), and 10 in SCB. The mean fire return period for 1972-2005 was 6.8 years in ICB
and 12 years in SCB, which is similar to the pre-suppression (1700-1900) fire return period
of 6.3 and 9 years for ICB and SCB respectively (Collins & Stephens, 2007).

Of the two basins, ICB is the better characterized. In ICB, wildfire re-introduction had
profound effects on landscape composition; since 1972, 75% of the vegetated area burned at
least once in ICB, causing a 24% decline in conifer vegetation, while increasing shrub area
by 35%, sparse meadows by 199%, and dense meadows by 155% (Boisramé et al., 2017).
These vegetation conversions produced an upward of 7% increase in mean watershed soil
moisture and increased landscape heterogeneity metrics (Boisramé et al., 2017). Meanwhile,
watersheds surrounding the ICB have experienced greater tree mortality (47 trees per km2)
during the 2014-2016 drought than did the ICB (4 dead trees per km2), suggesting that ICB
is more resilient to disturbances than the surrounding areas experiencing similar climate
(Boisramé et al., 2017).

Using a spatially-distributed ecohydrological model, Boisramé et al. (2019a) modeled
wildfire effects in ICB on basin vegetation growth and water balance for the period 1972-
2017. Boisramé et al. (2019a) predicted a 2.2% increase in watershed soil moisture storage,
along with a 5% increase in streamflow production from reduced transpiration and a 1%
increase in snow water equivalent attributed to the fire-altered vegetation structure. Bois-
ramé et al. (2017) identified that approximately 19,100 km2 of the Sierra Nevada region
is topographically and climatically similar to ICB, making these areas potential candidates
for wildfire management strategy. Yet extending such management to other locations re-
mains fraught with open questions regarding fire, hydrology, vegetation and their coupled
feedbacks.

1.5 Scope of the Dissertation

In this dissertation, I aim to fill some of the knowledge gaps in the fire-vegetation-hydrology-
climate feedbacks discussed in the previous section. To do so, I use a broad range of tools,
including remote sensing, field-based observations/data collection, laboratory-based experi-
ments, and detailed hydrological modeling.
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I begin with a broad exploration of how two-poorly understood fire-hydrological processes
interact with each other; in Chapter 2, using field collected fuel and soil moisture data, I
assess the impact of soil moisture on fire risk, both temporally and throughout space. Then,
in Chapter 3, I design an experiment that measures the decay of post-fire soil hydrophobicity
when exposed to different combinations of wetting/drying and freezing/thawing. By doing
so, I quantify timescales and hydrological processes over which post-fire hydrophobicity de-
cays. In Chapter 4, using satellite data, years of weather station record, thousands of soil
moisture samples, and data collected from forestry plots, I compare hydrological outcomes of
wildfire management strategy on soil storage and landscape structure in SCB to the ones ob-
served in ICB. Lastly, I use a distributed ecohydrological model to quantify the outcomes of
wildfire management strategy if it was implemented in ICB in the future climate (2030-2070)
and compare those outcomes to the historically modeled climate from 1970-2010.

Figure 1.1 provides an overview of the specific feedbacks that each chapter addresses
and how these feedbacks interact with other components of the fire-water-vegetation-climate
feedback system.
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Figure 1.1: Overview of the relationships and variables involved in my systems thinking
about wildfire and ecohydrology. Knowledge gaps are presented as red arrows and indicate
dissertation work, blue arrows indicate work added to previous projects, and gray arrows
indicate phenomena which have been well studied by the scientific community.
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Chapter 2

Soil Moisture Influences on Sierra
Nevada Dead Fuel Moisture Content
and Fire Risks

2.1 Introduction

Fire behavior is strongly dependent on the availability and quality of living and dead fuels.
Amongst dead fuels, which comprise duff, litter, dry grasses and non-living woody material,
the moisture content (Fuel Moisture Content or FMC) has a profound influence on the
probability of ignition, a fire’s rate of spread and its burn intensity (Renkin & Despain,
1992; Chuvieco et al., 2004; Rothermel, 1983; Larjavaara et al., 2004; P. M. Fernandes et al.,
2008). In fact, Van Wagtendonk (1977) cited dead fuel moisture to be ”the principal factor
influencing fire characteristics and subsequent effects on fuel and vegetation”. Consequently,
FMC is widely used as an input into fire risk assessment and fire modeling applications.
Fine FMC is conventionally reported for fuels of two distinct sizes (1-hr and 10-hr fuels),
corresponding to fuels with diameters of <0.64 cm and 0.64-2.54 cm, respectively. The size
class names refer to the timescales over which the fuel moisture equilibrates with changing
atmospheric conditions (M. Schroeder & Buck, 1970): finer fuels desorb and absorb moisture
more rapidly than coarser fuels, resulting in distinct timelags (Cochrane, 2009). These fine
dead fuel size classes are associated with the initial ignition and spread of fires, such that
their moisture content is particularly relevant to the risk of fire occurrence (Bennett et al.,
2010).

FMC for dead fuels is measured at numerous points across the United States - for example,
∼60% of the 2,400 Remote Automated Weather Stations (RAWS) nationwide, and 85% of
the 470 located in California, include continuous FMC readings of 10-hr wooden dowels.
Moisture data from these readings forms the main input to the US National Fire Danger
Rating System (NFDRS). Measured fuel moisture is interpolated to a 10 km grid over the
continental US using atmospheric data to inform the interpolation (Wildland Fire Assesment
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System, n.d.). These stations measure FMC using a standard 100 g pine dowel installed 10-
12 inches above the ground (National Wildfire Coordinating Group, 2019). However, a study
by Bovill et al. (2015), concluded that 10-hr fuel sticks were only able to accurately describe
burning conditions (assuming that true burning conditions were represented by surface fuel
measurements) about 50% of the time. Cawson et al. (2020) concluded that elevated fuel
sticks report FMC values 3-fold lower than surface measured FMC. These finding suggest
that RAWS stations on their own may not be sufficient for making FMC predictions, and
that there may be important processes occurring at the ground surface that alter FMC.
Field-sampled FMC is reported by the National Fuel Moisture Database (National Fuel
Moisture Database, n.d.), but mostly on sparse (e.g. bi-monthly) time intervals, and at
limited locations. For example, only 31 sites in California have 10-hr FMC records, and
only 13 report 1-hr FMC. This suggests that no datasets in the U.S. have appropriate
measurements on suitable temporal and spatial resolutions to accurately predict the FMC
of surface fuels.

This relatively sparse measurement network means that fire predictions mostly rely on a
range of empirical and mechanistic models to estimate FMC (Matthews, 2014). One of the
most complete and widely used is the Nelson Dead Fuel Moisture Model (R. M. Nelson, 2000),
a process-based model that forms a component of the FlamMap, BEHAVEPlus, and NFDRS
fire behavior and management models used throughout the USA (https://www.firelab.org/
applications). The Nelson model is forced using precipitation volume and time since precip-
itation, in conjunction with environmental conditions to describe heat and moisture transfer
for an idealized 10-hr stick. The Nelson model performs well in many environmental condi-
tions, but underestimates dead FMC predictions under wet conditions, when field sampled
FMC exceeds 20% (Estes et al., 2012; Carlson et al., 2007). Errors in estimated FMC
have real-world consequences: over-predicting FMC can result in escaped prescribed fires,
higher severity fires, and less predictable fire behavior. Under-predicting FMC may cause
unsuccessful prescribed fires (for example, 41% of interrupted burns in Portugal were due to
high FMC, P. Fernandes & Botelho, 2004), due to exaggerated perceptions of risk (Quinn-
Davidson & Varner, 2012; Bovill et al., 2015), or in failing to meet intended objectives, such
as fuel hazard reduction or ecosystem restoration (Bovill et al., 2015; Johnson & Miyanishi,
1995; P. Fernandes & Botelho, 2004). In the context of modeling, reported uncertainty in
FMC of +/- 50% (that is, ±2 percentage points around a mean of 4 percent FMC) can
produce errors of up to 80% in output variables such as the rate of fire spread (Trevitt,
1988).

One possible explanation for errors in FMC, including the observed bias under wet condi-
tions, is that soil moisture is excluded from model formulations predicting FMC (Hiers et al.,
2019). Although FMC models attempt to account for antecedent wetness using precipitation
data, these data may poorly represent soil moisture in topographically complex landscapes
(Berryman et al., 2015; Holsinger et al., 2016), in snowmelt dominated systems where snow-
pack decouples the timing of precipitation from the input of moisture to soil (Harpold &
Molotch, 2015; C. J. Williams et al., 2009; Bales, Hopmans, et al., 2011), or in other areas
with heterogeneous moisture environments (McLaughlin et al., 2017; S. E. Thompson et al.,
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2011; Kreye et al., 2018). Since surface fuels are often in direct contact with soil, heteroge-
neous soil moisture environments could produce variations in FMC - indeed, such variations
are often implicitly assumed in fire management approaches when planning prescribed burns
(Robert York, personal communication October 1, 2020).

Improved understanding of SMC - FMC relationships could be valuable for better in-
terpolating FMC observations, for example using downscaled (e.g. Mascaro et al., 2019)
remotely sensed observations of surface soil moisture from the Soil Moisture Active Passive
(SMAP) radar (Chan et al., 2016) or NOAA’s Soil Moisture Operational Products System
(SMOPS) soil moisture product. The global availability of such products and a growing
field of downscaling methodologies, coupled with in situ soil moisture measurements, would
enable soil moisture to be viably used for continental-scale fuel moisture estimates.

To date only a handful of studies address the relationship between fuel moisture and
soil moisture, but all suggest that FMC is likely to be related to underlying soil moisture.
For example, Hatton et al. (1988) and Rothwell et al. (1991) found that soil moisture was
a significant determinant of litter moisture content in Eucalyptus and Aspen forests. Pook
& Gill (1993) showed that predictions of litter FMC were improved when incorporating
soil moisture information, while Samran et al. (1995) concluded that precipitation and soil
moisture account for 41% - 59% of the moisture content in the portion of the fuel bed in
direct contact with soil.

Water transport processes in unsaturated soils include the flow of liquid water and the
diffusion of water vapour. Both processes could transport water from soil to fuels. This
transport would be expected to slow down under dry soil conditions which suppress hydraulic
conductivity in both mineral soil and organic materials (e.g. ≈ 10−4cm−1 for duff with≈ 20%
water content, Raaflaub & Valeo, 2009), and also impeded evaporation fluxes (Gardner &
Hillel, 1962; Kondo et al., 1990; Han et al., 2017). Consistent with these expectations,
hydrologic modeling suggests dry conditions decoupled surface organic layers from underlying
soil moisture content. This coupling was restored by increased liquid and vapour fluxes when
soils became wetter (Keith et al., 2010). We therefore expect that FMC is likely to vary in
how closely it is coupled to soil moisture content depending on how dry soils are.

In this study, we aim to expand the body of work addressing the connections between
SMC and FMC by exploring the relationships between SMC and the FMC of fine (1-hr
and 10-hr) woody fuels in the Sierra Nevada. We use the results to quantify the potential
importance of accounting/failing to account for soil moisture variations when estimating fuel
ignition probability in the mid-elevation mixed-conifer forests in the Sierra Nevada. Three
research questions (RQs) guide the study:

(i) Is soil moisture content a significant driver of variation in fuel moisture content for
1-hr and 10-hr fuels?

(ii) How do predictions of 1-hr and 10-hr fuel moisture vary when soil moisture is included
or excluded from predictive models?
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(iii) What are the practical implications of inclusion or exclusion of soil moisture on the
timing and spatial variation in ignition probability?

Throughout, we quantify soil moisture using the volumetric water content of the soil.
This choice of a soil moisture metric is not necessarily obvious: arguably, if SMC-FMC
relationships are primarily driven by fluxes of water from soil to fuels, soil water potential
might provide a more direct physical control on FMC. Volumetric water content, however,
offers several advantages over water potential, including spatially-scalable data (from remote
sensing and geophysical models) and ease of field-sampling; soil water potential estimates
require knowledge of soil textural properties and thus require much more extensive soil
sampling. On the other hand, volumetric water content can be easily approximated using a
portable TDR with minimal soil disturbance. Since either metric can introduce error into
the inference of the SMC-FMC relationship, we have elected to work with water content as
the independent variable throughout due to its ease of sampling and data availability.

2.2 Methods

Study Site

Blodgett Research Forest: Data Collection

Fuel moisture, soil moisture and other covariates were sampled from the 1,763 ha Blodgett
Research Forest (lat: 38.91, lon: -120.66, elev: 1,200-1,500 m ), located in the foothills of
the Sierra Nevada. Tree species in this area include sugar pine (Pinus lambertiana), pon-
derosa pine(Pinus ponderosa), white fir (Abies concolor), incense-cedar (Calocedrus decur-
rens), Douglas-fir (Pseudotsuga menziesii), California black oak (Quercus kelloggii), tanoak
(Lithocarpus densiflorus), bush chinkapin (Chrysolepis sempervirens), and Pacific madrone
(Arbutus menziezii). Soils are well-draining, deep, weathered, sandy-loams overlain by an
organic forest floor horizon. Common soil depths range from 85–115 cm (E. E. Y. Moghaddas
& Stephens, 2007).

A variety of research activities take place within different compartments of this forest.
Sampling took place in 15 out of 110 compartments (Appendix Figure A.1). Because some
treatments associated with each compartment (treatments listed in Appendix Table A.1) had
the potential to alter soil or fuel structure, which could bias the study results, we confined
the sampling to locations in which no soil disturbance or recent prescribed fires had occurred.
We selected compartments for sampling to get a wide representation of overstory cover, slope,
aspect, and soil wetness conditions. Soil type, forest species composition, and fuel depths
were comparable across locations. Because of similarities in soil texture, we were confident
that soil moisture (rather than water potential) could be reasonably used as a fuel moisture
predictor variable.

Blodgett Forest receives an average of 1340 mm of precipitation each year (2006-2019)
of which 340 mm is snowfall. Average daily summer maximum temperatures are 30◦C, and
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average daily minimum winter temperatures are 2.6◦C. A meteorological station (CDEC
station BMT) located 2 kilometers from the Blodgett Research Forest perimeter measures
wind speed, relative humidity, and temperature.

Data Collection

One hundred and one 1 and 10-hr fuel samples were taken in daylight hours between May 7th
and May 12th, 2019. Sampling locations are plotted in the Appendix Figure A.1. Weather
was sunny and clear throughout the sampling period, with an average wind speed of 4-6.5
km/h. The last precipitation events prior to sampling were 13 mm on April 15th and 20
mm on April 8th. At the time of sampling, the accumulated water-year precipitation was
1320 mm. Fuels were collected sufficiently late in the morning that no dew was observed on
the fuel surface. Within a sampling compartment, fuels were collected along an elevation
gradient or in transects following the profile of a stream. Samples were taken on slopes 0-
35%. All topographic aspects were sampled, but south-facing aspects were most represented
(54% of all samples).

At each sampling location, an average of 39 grams of 1-hr and 109 grams of 10-hr fuels
were collected and weighed using a scale with a 0.01 gram resolution, then stored in paper
bags. A standard fuel sizing gauge (<0.64 cm for 1-hr fuels, and 0.64-2.54 cm for 10-hr fuels)
was used to standardize fuel collection. At the end of each day, fuels were oven dried at 105◦C
for 24 hours (Matthews, 2010). Dry fuel weight was recorded and FMC was calculated as the
ratio of the difference between wet and dry fuel weight and dry fuel weight (Pollet & Brown,
2007). During sampling, temperature (T ) and relative humidity (RH) were measured on
1 min intervals using a HOBO U23 Pro v2 data logger mounted at the top of a 2 m staff,
which was moved to each sampling location. Temperature and humidity were reported as
the 5-min average around sampling time. Vapor pressure deficit (V PD) was calculated as
the difference between saturation vapor pressure ( esat, computed following Buck, 1981) and
vapour pressure of water in air (ea = esat ∗ RH/100). The presence/absence of wind was
reported as a binary variable. Volumetric soil moisture was measured with a CS HydroSense
II handheld probe across the top 12 cm of the mineral soil profile. At each sample site, 3
soil moisture readings were taken within 1-m radius of the fuel sampling location. Any duff
and litter were cleared before measuring soil moisture.

To account for differences in fuel shading, at each sampling location, we took pho-
tographs of the canopy at the ground level using a phone camera (12 megapixel resolution).
Canopy cover was calculated by binarizing photographs into canopy vs open sky by ap-
plying greyscale thresholds in RStudio (ver 1.3.1056), and the percentage canopy coverage
was computed as the number of canopy pixels over the total number of pixels. Across the
different sampled compartments, canopy cover ranged from 0-67% (Table 2.1). Addition-
ally, we noted if fuel samples were shaded or in direct sunlight at the time of sampling.
The time of day for each fuel collection was translated to solar elevation angle (sun an-
gle from the horizon) using The National Renewable Energy Laboratory’s Solar Position
and Solar Intensity calculator (https://midcdmz.nrel.gov/solpos/solpos.html). Elevation,
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Table 2.1: Summary of both field collected and topographically-derived variables collected
across one hundred and one sampling sites within the Blodgett Research Forest. Both 1-hr
and 10-hr fuels were collected at each location.

Continuous
Variable Abr. Range Unit
Fuel Moisture FMC 2.8 - 46 %
Soil Moisture SMC 6.3 - 53 %
Relative Humidity RH 10 - 70 %
Temperature T 14 - 27 oC
Canopy Cover C 0 - 67 %
Solar Elevation Angle § SE 0 - 68 deg
Vapor Pressure Deficit† VPD 0.6 - 3.0 kPa
Elevation ‡ Elev 1216 - 1382 m
Topographic Wetness Index † TWI 3.7 - 17 -
Distance to stream 1 - 220 m
Slope † 0 - 34 %
Aspect † 0 - 360 deg

Discrete

Wind W
1 if there is wind/breeze;
0=otherwise

Shade Sh
1 if fuel is in shade;
0=otherwise

§ : Calculated based on latitude/longitude and time of day
† : Calculated from temperature and relative humidity
‡ : Derived from 1/3 arc-second (10 by 8 meter)
spatial resolution digital elevation model

slope, aspect and topographic wetness index (TWI, K. J. Beven & Kirby, 1979) were cal-
culated for all sampling locations using a 1/3 arc-second DEM ( 10 m by 8 m) obtained
from USGS (https://www.sciencebase.gov/catalog/item/5aea899ee4b0860c0f70ed94). TWI
quantifies topographic controls on landscape wetness. Table 2.1 summarizes collected data
and sampling ranges.

Data Exploration

Before developing models to analyze the data, we scaled all data to have a mean of zero and
a standard deviation of 1, and visually inspected the form of the SMC-FMC relationships for
both 1-hr and 10-hr fuels. We expected that these relationships might have a nonlinear form,
weakest under dry soil conditions and stronger under wet soil conditions. Visual inspection
of the scaled data indicated that if such non-linearity was present in the 1-hr fuels, it was
weak, and that a more pronounced non-linearity was obvious in the 10-hr fuels, as shown in
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Figure 2.1. These soils saturated at SMC of ∼53% and we collected only limited number of
FMC samples (n=3) under saturated soil conditions.

Figure 2.1: Relationship between field sampled SMC and FMC for 1-hr fuels (left) and 10-hr
fuels (right). Regression fit between SMC and FMC is shown as a blue line. SMC coefficient,
βSMC , is the line’s slope.

Research Question 1: Is soil moisture content a significant driver
of variation in fuel moisture content for 1-hr and 10-hr fuels?

We addressed this question with a statistical modeling approach. An initial exploration of
linear models for FMC showed that these models were heteroscedastic when applied to 10-hr
fuels, but homoscedastic when applied to 1-hr fuels. Homoscedasticity was assessed by the
Breusch–Pagan (BP) test on studentized residuals (Bischoff et al., 2006). Heteroscedastic-
ity biases uncertainty estimates from linear models confounding the interpretation of the
significance of SMC (and other variables) as drivers of FMC.

We employed several methods to account for heteroscedasticity in the 10-hr FMC linear
models, including data transforms (logarithmic), robust errors (White, 1980; Huber, 1967),
and weighted least squares (WLS) regression. Only WLS is capable at simultaneously ad-
dressing heteroscedasticity and non-linearity in the SMC-FMC relationship while avoiding
variable transforms, which become difficult to interpret. Thus, WLS was chosen as the main
method to assess the significance of the SMC-FMC relationship. Other statistical modeling
results produced similar results to WLS across different modeling approaches (in terms of
the relative ranking of coefficient strength across variables and the significance of SMC). We
report the WLS results in the main text and the results from other methods are presented
in Appendix C.2.

Multiple linear regression models were fit to explain variations in measured 1-hr and 10-
hr FMC. Several field variables provided redundant information and were collinear with each
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other - for instance, both TWI and soil moisture provide descriptions of landscape wetness.
A correlation matrix for all variables is shown in the Appendix Figure A.2. To reduce the
number of variables in the linear model and avoid multi-collinearity, we checked the partial
correlation of the variables with FMC and used only the variables with the highest partial
correlation for analysis (e.g. soil moisture was retained and TWI discarded).

Linear models were developed using backward stepwise selection (Chambers, 1992, step.model
in RStudio) in order to identify the model with the lowest Akaike Information Criterion
(Akaike, 1987, AIC). Weights for the 10-hr FMC WLS were assigned iteratively to maximise
the p-value of Shapiro-Wilk (Shapiro & Wilk, 1965, SW) and Breusch–Pagan (Breusch &
Pagan, 1979, BP) tests applied to studentized residuals (i.e. to maximise the normality and
homoscedascity of the resulting model). We applied the weighting scheme separately to low
values of SMC (where residual variance in the unweighted model was relatively low) and to
high values of SMC (where residual variance was higher), using a SMC of 20.9% as a thresh-
old. The weighting for low SMC was 1/exp(FMC)0.5 and for high SMC, 1/exp(FMC)1.3.

The final models (OLS for 1-hr fuels and WLS for 10-hr fuels) did not exhibit spatial
autocorrelation (Moran’s I test), and satisfied assumptions of linearity, normality (SW), and
homoscedasticity (BP). Multicollinearity was not detected in 1-hr and 10-hr models, based
on the variance inflation factor. Goodness-of-fit was assessed with root mean square error
(RMSE).

The primary outcome of this analysis is a determination of whether SMC provides a
significant contribution to variation in FMC. For the 1-hr FMC model, the strength of
this contribution can also be evaluated relative to other variables. For the 10-hr FMC
model, these comparisons are more problematic due to the apparently nonlinear SMC-FMC
relationship, which could lead to linear coefficients over-estimating the importance of driving
FMC variation at low soil moisture values, and under-estimating the response of FMC to
SMC at higher soil moisture content. The linear model provides a stringent test of the
significance of SMC as a linear predictor of FMC, given that heteroscedasticity must be
accounted for. To predict the impact of soil moisture variations on FMC, however, we
altered the regression strategy to piecewise linear regression (Toms & Lesperance, 2003).

Research Question 2: How do predictions of 1 and 10-hr fuel
moisture vary when soil moisture is included or excluded from the
predictive model?

To formulate predictive models for FMC, we used the OLS model for 1-hr fuels. To better
represent the nonlinear relationship between SMC and 10-hr FMC, we developed a piecewise
regression for the 10-hr fuels, with a single break-point based on SMC. We did not enforce
model continuity at this break-point, allowing both the SMC coefficient and the intercept to
change at the break-point. All other variables had a single coefficient (i.e. the coefficients on
other variables did not change at the break-point). With these specifications, we repeatedly
fit the piecewise model with different break-point locations, identifying the break-point that
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minimized AIC, which was used to specify the final model. Since piecewise regression does
not eliminate heteroscedasticity, we calculated robust errors (heteroscedasticity consistent
errors or White-Huber standard errors) which allow for significance testing in the presence
of heteroscedasticity (White, 1980; Huber, 1967). To enable us to compare the impact of
including/excluding SMC on the FMC predictions, we refit both fuel models without SMC.
For the 10-hr piecewise regression, we separated the dataset at the previously used SMC
break-point, allowing us to compare the models with and without SMC directly; we split
the data (as opposed to fitting a linear regression to the entire dataset) to allow for a more
rigorous comparison between model with SMC and model without SMC. Because VPD has
higher correlation to 10-hr FMC during wet conditions, we expected the split linear regression
model to perform better at predicting high FMC, allowing for a more fair model comparison.
All model summaries are provided in Appendix A.2.

We applied the resulting models with/without soil moisture to an environmental dataset
obtained from the Upper Providence CZO weather station network in the Southern Sierra
Nevada (Bales, Hopmans, et al., 2011, data: https://eng.ucmerced.edu/snsjho/files/MHWG/
Field/SouthernSierraCZOKREW). To obtain soil moisture at 10-cm depth (the shallowest
measured), we selected a node located on a flat aspect with an open canopy (elevation: 1982
meters, lat: 37.0626N, lon: -119.1823E). For other environmental variables such as snow-
pack depth, temperature, relative humidity, and wind speed, we obtained data from the
nearby base-station (data: https://www.fs.usda.gov/rds/archive/catalog/RDS-2018-0028).
The base-station is located 40 meters from the soil moisture node and is also under an open
canopy. Other nodes in the CZO network were used for data gap-filling, which was minimal.

We used the models to estimate FMC for each hour of the data record in three ways:
(i) using daily soil moisture, (ii) using models that includes soil moisture, but holding SMC
constant at its seasonal average value, and (iii) using the models that exclude soil moisture.
We excluded periods when air temperature was below freezing, snow depth exceeded 1 cm,
or solar angle was lower than 45 degrees in the morning and 1 degree in the evening - during
these periods, the environmental conditions were too distant from the field sampled range
for model validity. Given these constraints, we used the regressions to identify the lowest
normalised fuel moisture for 1-hr and 10-hr daily FMC values for each of the three predic-
tion models and each prediction day. To convert the normalised FMC values to absolute
FMC estimates, we transformed the unit-less predicted to have the Blodgett field-collected
statistics (mean and standard deviation of 11.3 % and 4.2% for 1 hr fuels; 13.4% and 6.6%
for 10-hr fuels, respectively). These experiments enable evaluation of the consequences of
including/excluding soil moisture on temporal variability when predicting FMC.
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Research Question 3: What are the practical implications of
inclusion or exclusion of soil moisture on the timing and spatial
variation in ignition probability?

Temporal variation in ignition probability

Because of the long temporal weather and soil moisture record, we used the Upper Providence
CZO weather station described above to explore the temporal fire risk dynamics at a single
point and how they might be influenced by including or excluding soil moisture from the
FMC predictions.

FMC estimated by each of the three regression models described in Section 2.2 applied
at the Upper Providence CZO site from January 1, 2008 to January 1, 2018 was used to
estimate the probability of ignition of 1-hr and 10-hr fuel classes. These predictions were
based on probability of ignition tables adapted by Pat Andrews (Rothermel, 1983), which
are derived based on a mechanistic model developed by M. J. Schroeder (1969), and are
used in the field by fire managers. Predictions were made on hourly timescales, and the
highest probability of ignition for each day is reported. Depending on the SMC-FMC model
used, the time of day with the lowest FMC (highest ignition probability) may vary. The
probability of ignition values were converted into an estimate of fire season start and end by
finding the 5th and 95th percentile of all recorded days for each season with a probability of
ignition of 30% or above, respectively. This threshold is partially based on the field sampled
fuel moisture range, where relatively high minimum 10-hr FMC (4.5%-46.1%) results in a
small number of days with high probabilities of ignition. Sampling during the entire growing
season, may provide a greater range in FMC variability, and thus a different probability of
ignition threshold might be more appropriate. Though the specific timing of the start and
end of the fire season varies with the selected probability of ignition threshold, the relative
relationship between predictions of fire season among different SMC models remained the
same across different thresholds. We summarize the start and end of the fire season over a
10-year record using box and whisker plots (range, mean, and 90th percentile) for each model
and fuel category. We compare the 10-year fire season start and end means derived from
each model to determine the effect of SMC inclusion/exclusion on the fire season statistics.

Spatial variation in ignition probability

To assess the spatial variation in ignition probability, we used a soil moisture model for
the Illilouette Creek Basin (ICB) developed by Boisramé et al. (2017) to explore spatial
variations in fire risk at two points in time (spring and fall), again when including/excluding
SMC from FMC predictions. ICB was chosen for spatial analysis of fire risk, because of
extensive soil moisture measurement campaigns across many years and vegetation types in
addition to having a fine weather station record. This weather record spans four years, which
is why we did not use it for the temporal assessment of fire risk described in Section 2.2.

We compare the effect of SMC inclusion/exclusion on the spatial distribution of fire prob-
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ability in the ICB over a snapshot in time in the spring of 2017 and fall of 2017. ICB is a well
characterized 150 km2 basin located in Yosemite National Park, USA, spanning elevations
of 1,270-3,600 meters. Like Blodgett Research Forest, the soils are sandy and well-drained
and vegetation is a mix of coniferous forest. ICB also has large areas of shrub/grassland and
meadow vegetation (Boisramé et al., 2017). Although we do not alter the SMC-FMC model
for different vegetation cover types, we use a percent canopy map for ICB from LANDFIRE
for 2016 (USGS, 2016) to separately estimate percent canopy for forest and shrubland. We
set percent canopy for non-forest landcover to 0%, because we do not expect sufficient shad-
ing to affect FMC. A spatial 30 m resolution SMC map of the top 12 cm soil profile was
derived based on the random forest model developed by Boisramé et al. (2017). The SMC
values in this map are representative of a two week interval close to the dates of field sam-
pling of SMC used to train and cross-validate the random forest model (May 23-24th in the
spring and August 5-9th 2017 in the fall). Three temporary weather stations are installed
in ICB (lat -119.57, lon 37.68, elevation 2,136 m) recording volumetric SMC at 10 cm depth
along with climatic variables at 10-min resolution for years 2016-2020. We used the weather
station record to determine a data point at the lowest VPD within each two week period.
We use this lowest VPD value to make spatial FMC predictions which represent high fire risk
periods, meteorologically, for both fall and spring seasons. Temperature (used to calculate
VPD) was spatially scaled from the weather station location to the rest of the basin based
on temperature lapse rate of -0.00070C/m of elevation (following Boisramé et al., 2019b).
The actual vapor pressure was not scaled in calculating VPD. The wind binary was set to
1 (presence of wind) for the entire basin, and the solar angle was determined based on the
weather station time, day, and location. The solar angle was not corrected for slope (i.e.
this variable measures sun elevation, not the inclination of light onto the land surface).

We then calculated FMC at all 30 m pixels in the basin using the changing SMC model
and the no SMC model for 10-hr fuels only, and converted these to probability of ignition
(Rothermel, 1983), using the air temperature, and LANDFIRE derived percent canopy val-
ues. Finally, we report the differences in the probability of ignition between the two models
for both spring and fall soil moisture scenarios.

2.3 Results

Research Question 1: Is soil moisture content a significant driver
of variation in fuel moisture content for 1-hr and 10-hr fuels?

Table 2.2 summarizes the fitted regression coefficients for 1-hr OLS regression and 10-hr
WLS regression. Both 1 and 10-hr FMC regressions satisfy homoscedasticity, linearity, and
normality tests (Table 2.2 and Figure A.2 in the Appendix). For both regressions, SMC
variations contributed significantly (p < 0.05) to variability in FMC. This finding is robust
to the specific methodology used to control for heteroscedasticity in the 10-hr regression, as
shown in Appendix C.2: all methods used indicate that SMC is a significant predictor of
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Table 2.2: Scaled regression coefficients for 1-hr FMC regression (top), and 10-hr FMC
regression (bottom). Regression intercept is α and regression residuals are represented by
ε. The significance level of each coefficient is reported using p-values. Normalized partial
r2 (sum of all partial r2 coefficients=1) values are used to assess relative importance of each
variable. Model performance is assessed by AIC and RMSE. P-values of homoscedasticity
test (BP) and residuals’ normality (SW) test are provided, where the null hypothesis is the
assumption of homoscedasticity and normality of the studentized residuals. Lastly, expected
value of studentized residuals is reported as E[ε]

Coefficient (β) Estimate p-Value Partial r2 Significance
FMC1−hr = α + βSMSM + βV PDV PD + βCC + βSESE + βWW + ε

α -0.000 1.000
SMC 0.146 0.032 0.058 *
V PD -0.329 0.000 0.258 ***
C 0.580 0.000 0.560 ***
SE 0.189 0.005 0.099 **
W -0.089 0.167 0.024

AIC=199 RMSE= 0.61
SW: p-value=0.70 BP: p-value= 0.85 E[ε]= 0.00
FMC10−hr = α + βSMCSMC + βV PDV PD + βCC + βSESE + βWW + ε

α -0.098 0.009 **
SMC 0.109 0.018 0.098 *
V PD -0.126 0.001 0.173 **
C 0.290 0.000 0.629 ***
SE 0.071 0.071 0.057 ·
W -0.086 0.167 0.045

AIC=117 RMSE=0.76
SW: p-value=0.40 BP: p-value= 0.24 E[ε]=0.00
Significance Level: ·0.1, ∗0.05, ∗ ∗ 0.01, ∗ ∗ ∗0.001

FMC.
The use of scaled variables in the models allows the importance of SMC as a driver of

FMC to be evaluated between 1-hr and 10-hr fuels and between different variables. All
coefficients in Table 2.2 are unit-less, with a mean of zero and a standard deviation of 1,
facilitating such comparisons.

In making such comparisons we note that the heteroscedasticity corrections (WLS or
other methods outlined in the Appendix C.2) under-predict FMC under high SMC condi-
tions. This is illustrated in Figure 2.1, which shows both the 1-hr and 10-hr SMC-FMC
data and the fitted linear regression for the SMC-FMC relationship. The under-prediction
of 10-hr FMC during wet soil conditions suggests that comparing SMC coefficients to others
within the WLS regression framework may underestimate the effect size of SMC on FMC
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when soils are wet. With this caveat, the models show that 1-hr and 10-hr fuels respond
to similar environmental factors, since both ”final” forms of the regression include the same
variables. The AIC of 1-hr regression is 199, higher than the AIC of 117 for the 10-hr WLS
regression. The AIC of the 10-hr regression is lower due to the weighting factors which
put less weight on high FMC/SMC values which show large variation. On the other hand,
the root mean squared error (RMSE) is lower for the 1-hr OLS compared to 10-hr WLS
(0.61 vs 0.76), meaning that on average, we would have more accurate 1-hr FMC predictions
than 10-hr FMC predictions. The wind variable (indicating binary presence or absence of
wind) was not significant, but was also not eliminated from the model using stepwise model
selection.

Table 2.2 shows two measures of variable importance in addition to significance: 1) the
partial r2 (aka partial correlation) which measures the degree of association of each predictor
with FMC, while controlling for correlation with all other predictors, and 2) the regression
coefficients, which measure the sensitivity of change in FMC to a change in each variable.
Canopy cover is the most important environmental control on FMC in terms of both goodness
of fit and coefficient strength for both 1-hr and 10-hr fuels, with FMC increasing with canopy
cover. VPD is the next most important predictor for both fuel categories, again in terms of
both goodness of fit and coefficient size. As VPD increases, FMC decreases. For 1-hr fuels,
sun elevation is the next most important predictor, followed by SMC. For 10-hr fuels, SMC
is more important than sun elevation. In all cases, the presence/absence of wind is the least
important variable in the model.

We conclude that SMC is a significant predictor of FMC; that it is somewhat important
for 1-hr fuels (similar in importance to solar angle), and may be more important in controlling
10-hr fuel variations.

Research Question 2: How do predictions of 1 and 10-hr fuel
moisture vary when soil moisture is included or excluded from the
predictive model?

We first address this question in the context of model fit and coefficient values, before turning
to the implications in terms of predicted FMC time-series based on observational data.

We find that in general, excluding SMC from predictions of the linear models for 1-hr
fuels slightly worsens the model fit (AIC increased by 2.9, the adjusted r2 dropped slightly
by 0.015, and the RMSE increased by 0.1). The linear model continued to meet all linear
regression assumptions (homoscedasticity, normality, and with residual expectation of ∼ 0).
In the absence of SMC, the coefficients on the other predictor variables all increased, and
the significance of the variables was unchanged. This suggests that in the absence of SMC,
the model accounts for temporal changes in FMC primarily by increasing the sensitivity to
VPD (since percentage canopy is static). The summary of the linear model fit without SMC
is provided in Appendix A.2.

The piecewise regression used to explore predictions of 10-hr FMC in response to research
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question 2 is reported in Table 2.3. In Table 2.3, p-values are based on robust standard errors.
AIC was minimized (AIC=206) by situating the regression break-point at 20.9% SMC. We
interpret this value as a degree of soil wetness required to enable hydraulic continuity between
soil and fuels, as shown in Figure 2.2. Within this model, SMC does not significantly influence
FMC below the break-point, but significantly influences FMC for wet soils. The break-point
also introduces a large increase in the SMC coefficient, from 0.26 for dry soils (implying
that a +1% increase in SMC increases FMC by +0.18%), to 0.85 above the break-point
(implying that a +1% increase in SMC increases FMC by +0.58%). By comparison, the
VPD coefficient is -0.15 (implying that a 1 kPa increase in VPD, decreases FMC by -1.6%).
As postulated, this model suggests that SMC is not an important control of FMC under dry
soil conditions, but is an important - in fact, the most important predictor of FMC under
wet soil conditions.

The piecewise model with SMC was compared to a model that fit linear regressions on
the other variables separately below and above 20.9% SMC. Under dry soil conditions, the
scaled VPD coefficient was -0.15 (implying that a 1 kPa decrease in VPD decreases FMC
by -1.6%) and at higher SMC, the scaled VPD coefficient was -0.42 (implying that a 1 kPa
decrease in VPD decreases FMC by -4.4%). A full summary of the linear models fit without
SMC is provided in Appendix A.2.

Overall, removing SMC as a predictor of 1-hr FMC, decreased RMSE from 2.53% to
2.49%. Removing SMC as a predictor of 10-hr FMC, decreased RMSE from 2.18% to 0.70%
for data below SMC of 20.9% and from 9.77 to 4.32% for data above SMC of 20.9%.

In summary, during dry conditions, inclusion/exclusion has little impact on 10-hr FMC
predictions, and VPD, which is the main FMC driver, remains unchanged. Under wet condi-
tions, however, excluding SMC means the model relies more heavily on VPD to approximate
the changes in FMC. However, since the correlation coefficient, r, between scaled SMC and
VPD under wet soil conditions is 0.38, this worsens the model fit relative to incorporating
SMC directly.
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Table 2.3: Scaled regression coefficients for 10-hr piecewise FMC regression with a break-
point (b) at scaled SMC value f 0.29 (or non-scaled 20.1%). Upper and lower bound estimates
provide a 95% confidence interval for the slope coefficients. Confidence intervals are calcu-
lated using robust standard errors which can be trusted in the presence of heteroscedasticity
in the residuals. Significance level of each coefficient is based on p-values. Model performance
is assessed by AIC.

Coefficient (β) Estimate p-Value Significance
α<b -0.016 0.024 *
α≥b -0.868 0.010 *

SMC<b 0.263 0.089 .
SMC≥b 0.835 0.006 **

VPD -0.153 0.004 **
C 0.431 0.000 ***
SE 0.102 0.058 .
W -0.121 0.72

AIC=206 RMSE=0.63
SW: p-value=4.8e−8 BP: p-value=3.8e−7 E[ε]=0.00

Significance Level: ·0.1, ∗0.05, ∗ ∗ 0.01, ∗ ∗ ∗0.001

The effects of including/excluding SMC as a predictor of FMC based on observational
data from the Upper Providence CZO are summarized in Figure 2.3. Panels A-F of this
figure show predicted 1-hr (left-hand column) and 10-hr (right-hand column) FMC time-
series using 1) daily observed SMC (A, D), 2) season-averaged SMC (B,E) where the average
was taken over the snow-free period within which the fire season could feasibly occur, and 3)
regressions excluding SMC (C,F). At this site, SMC is >20.9% for approximately 8.3% of the
data record, and these wet conditions are responsible for the elevated predictions of 10-hr
fuel moisture at the beginning and end of the snow-free period. We note that the high FMC
predictions in the Fall are subject to an assumption of stationarity in the fitted SMC-FMC
relationship under drying conditions (when measurements were made) compared to wetting
conditions (when first winter rains arrive on a dry landscape), and may overestimate FMC
during these periods.

For both 1-hr and 10-hr fuels, inclusion of the daily SMC increases the variability in
predicted FMC, although this is much more pronounced for 10-hr than 1-hr fuels. Comparing
Panels F and E in Figure 2.3 shows that where soil moisture is included but held constant, the
other variables produce little FMC variability. Because seasonally averaged SMC is <20.9%,
only the dry-soil regression values are being used to predict 10-hr FMC. Unsurprisingly,
this means that the predictions do not indicate increases in 10-hr FMC during early spring
and late fall. Comparing Panels D and F indicates that when daily SMC is included, both
the predicted peak FMC and the within-season variability in predicted FMC is greater.
Additionally, the predicted decline in early season FMC, and increase (where present) in
late season FMC is less dramatic for the model including SMC (panel F) vs the one that



CHAPTER 2. SOIL MOISTURE INFLUENCES ON SIERRA NEVADA DEAD FUEL
MOISTURE CONTENT AND FIRE RISKS 27

Figure 2.2: Relationship between field sampled SMC and FMC of 10-hr fuels. Piecewise
regression fit between SMC and FMC is shown as a blue line, 95% confidence interval around
SMC/FMC slope coefficients is shown in gray.

excludes FMC (panel D).
We conclude that the use of SMC in FMC predictions marginally improves model fit

using the Blodgett Forest data and marginally increases predictions of peak FMC and within-
season FMC variability for 1-hr fuels, relative to models that omit SMC when fitting, or that
hold SMC constant. The use of SMC in FMC predictions for 10-hr fuels has a large impact
on the model fit of Blodgett Forest data, and increases predicted FMC peaks in spring and
fall based on the 10-year Providence Creek CZO data.

Research Question 3: What are the practical implications of
inclusion or exclusion of soil moisture on the timing of fire season
and spatial variation in fire risk?

Temporal Effects of including Soil Moisture on predicted Fire Season timing

First, we consider the implications of SMC variations on the the yearly timing of the season
when ignition probabilities are > 0.3 for each fuel type. In our results we refer to this
as the ‘fire season’, recognizing that this is somewhat arbitrary, but is useful for analysis.
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Associating a ‘fire season’ with 1-hr and 10-hr FMC reflects their high surface area to volume
ratio, which promotes ignition, fire spread and propagation (Bennett et al., 2010; Gould,
2003).

Figure 2.3-G illustrates how the dates associated with the start and end of the fire season
varied in 2009 depending on the use of daily SMC, or season-averaged SMC, or the complete
exclusion of SMC from the FMC model. As illustrated, the higher FMC in the early spring
and late fall greatly curtail the period of time of elevated ignition probabilities for the 10-hr
fuels. Meanwhile the predictions based solely on weather/topographic variables or season-
averaged soil moisture only, tend to predict lower FMC during these times, and thus earlier
starts and later ends to this fire season. Notice, however, that during the height of the fire
season (August - October), the predicted FMC is actually lowest in the daily SMC model,
illustrating the potential for FMC predictions based on SMC inclusion to also be lower than
those that exclude SMC as a predictor variable. If dry conditions arrive in the early spring
or late fall, it is possible that SMC based predictions could extend the fire season relative to
predictions that fix or neglect SMC.

Indeed, as summarized in box-and-whisker plots for both 1-hr and 10-hr fuels in Figure
2.4, the shrinking of the fire season is not universal; the inclusion of soil moisture barely
alters the timing of the fire season for 1-hr fuels (which starts 4 days later and ends 2 days
earlier if SMC is considered in the regression, compared to the other models), but tends
to significantly delaying the onset of the fire season and the timing of its end for the 10-hr
fuels. In particular, dry soil conditions may prolong the fire season, even when meteorological
conditions suggest fire risks are lower (whisker on the end of fire season changing soil moisture
plot extends beyond the whiskers on the other models). At this site, snowmelt saturates
spring soils and retains wet soil conditions well into the warm season, accounting for soil
moisture significantly delays the predicted timing of the season start, by approximately 35
days. Although there is more variation at the end of the dry season, accounting for soil
moisture increases FMC enough to lower ignition probabilities some 2-3 weeks earlier than
predictions based on average or lack of SMC. The total length of the predicted fire season
in any specific year, however, can be greater or lesser when SMC is included in predicting
FMC (data not shown). Furthermore, the predicted fire season may also change depending
on the probability of the ignition threshold chosen to represent fire risk conditions.
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Figure 2.3: 1-hr FMC at Upper CZO Providence site from 2008-2018 predicted by: A) a
linear regressions trained on data without SMC; E) OLS regression with season-averaged
SMC values, and F) OLS regression with daily soil moisture values. 10-hr FMC at Upper
CZO Providence site from 2008-2018 predicted by: D) two linear regressions trained on
data points below and above fuel moisture content of 20.9%, but excluding soil moisture;
E) segmented linear regression with season average soil moisture values, and F) segmented
linear regression with daily soil moisture values. G) Ten-hour FMC, SMC, start, and end of
the 2009 fire season (vertical lines) are shown in dark blue based on changing soil moisture
model, blue for average soil moisture model, and light blue for the model that excludes soil
moisture. Start of the fire season was determined as the 5th percentile of days of the year
with the recorded probability of ignition of 30% or greater. End of the fire season corresponds
to the 95th percentile.
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Figure 2.4: Box-and-whisker plot of the start and end of the fire season based on 1-hr
(top) and 10-hr (bottom) FMC. The min and max of the start and end of the fire season
are summarized as vertical lines, 25th and 75th percentiles as boxes, and mean as vertical
white line with a numerical summary above. Fire season was calculated as a function of air
temperature, shading, and fuel moisture. The beginning and end of the fire season is defined
as the 10th and 90th percentiles of the number of days since January 1st of each year where
probability of ignition is greater or equal to 30%.
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Spatial Effects of including Soil Moisture on predicted ignition probabilities

Spatially distributed probability of ignition maps for the Illilouette Creek Basin were derived
for 10-hr fuels in the spring and fall of 2017 using the changing soil moisture FMC model and
the no SMC model (see Appendix A.3). Differences in the resulting predicted probability
of ignition for both periods are shown in Figure 2.5. In this map, red colors indicate that
probability of ignition is higher at a given location if the model accounts for SMC, and blue
colors mean that the probability of ignition is lower if the model accounts for SMC (Figure
2.5).

During spring conditions, including SMC in predictions tends to reduce predicted ignition
probability in mid elevations of the basin, particularly along the riparian areas, meadows
and creeks. Even during spring, however, low elevation areas in the basin, particularly
those with no shading, and some higher-elevation locations with high slope gradients, had
sufficiently low soil moisture and/or warm temperatures, that the model including SMC
predicted high ignition probability than SMC-excluding models. In the fall, areas predicting
lower probability of ignition if SMC is included expand around riparian corridors which retain
elevated soil moisture conditions into the fall. Though the difference between fire ignition
probabilities (with SMC and without SMC) is less drastic than in the spring. Some high
elevation and steep-slope areas predict higher probability of ignition when SMC is accounted
for.

These temporal (Providence Creek) and spatial (Illilouette Creek) analyses indicate that
including SMC variability in FMC predictions can have large impacts on how models might
predict the probability of ignition through time and space, in response to heterogeneous soil
moisture conditions.
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Figure 2.5: Difference in the probability of ignition between regression model trained with
soil moisture and model that was trained without soil moisture. VPD (one of the FMC
predictors) is calculated using temperature lapse rate of -0.007oC/m. Temporal weather
station (yellow dot) record was used to calculate VPD. Soil Moisture was calculated based
on Boisramé et al. (2017). Canopy cover was obtained from LANDFIRE for year 2016
(USGS, 2016) .

2.4 Discussion

The data from Blodgett Forest suggest that both 1-hr and 10-hr fuel moisture contents vary
with soil moisture, but with different sensitivities which we attribute to differences in the
rate at which these fuels dry out via evaporation. In this interpretation, the relatively weak
response of 1-hr fuels to SMC reflects the larger surface-to-volume area of these finer fuels,
which enables rapid loss of water in response to increasing atmospheric water demand. The
flow of water from wet soils to fuels is expected to be comparatively slow, meaning that
atmospheric and radiative conditions impose a stronger influence on the variation in FMC
than does the soil water - that is, FMC in the 1-hr fuels appears to be mostly controlled by
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the ‘demand’ for evaporation. By contrast, the smaller surface-to-volume area of coarser fuels
slows the rate of drying due to evaporation (R. M. Nelson, 2000; Matthews, 2014), reducing
the sensitivity of 10-hr FMC to atmospheric and radiative conditions, and increasing the
importance of slower and more consistent water fluxes provided by soil moisture. FMC in
the coarser fuels therefore seems to be more controlled by water ‘supply’ than demand. A
dependence on supply would be consistent with the observed increase in sensitivity of FMC
to SMC under wet soil conditions, which would tend to increase the rate of supply.

The sensitivity of 10-hr FMC to wet soil conditions is likely to be important under a va-
riety of conditions. In the snow-driven Mediterranean climates of the Sierra Nevada, wet soil
conditions following spring snowmelt can co-exist with other-wise fire-prone atmospheric con-
ditions. Excluding soil moisture from FMC predictions could result in an under-estimation
of FMC and over-estimation of fire risk at these times. Similar effects could take place follow-
ing fall rainfall. That said, it must be recognised that the measurements made in this study
took place in the context of a wet landscape that was drying in the spring. There is a poten-
tial for the SMC-FMC relationships to be hysteretic (to differ under wetting versus drying
conditions), which may alter the non-linearity or strength of the SMC-FMC relationship.
Further field and laboratory experimentation to better characterise SMC-FMC relationship
in drying versus wetting conditions would be useful to resolve this issue. It would also be
valuable to increase the observations made in wet soil conditions from the n=22 obtained in
this analysis.

The time-series analysis of the SMC and meteorological data from the Upper Providence
CZO suggests that changes in the inferred fire season attributable to inclusion of SMC were
greatest under drying conditions in the spring. Unsurprisingly, the impacts of SMC inclusion
on FMC predictions were minimal for 1-hr fuels (shortening the fire season by 6 days overall).
However, for the 10-hr fuels, the greatest impact was to shorten the fire season on average
by 39 days. Impacts in the fall were smaller, with the fire season predicted to end 21 days
earlier - assuming that the association between FMC and SMC was the same under wetting
conditions in the fall as it was under drying conditions in the spring. While it is difficult to
anticipate how much the FMC-SMC relationship might change when fuels and soils were both
originally dry, we would expect originally dry conditions to weaken the relationship between
FMC and SMC, so that the regression model would overestimate the reduction in fire season
length in fall. However, even discounting the SMC-FMC behavior in fall, inclusion of SMC in
the models increases FMC and is likely to reduce ignition probability in the shoulder seasons.
The specifics of how much ignition probabilities change are specific to the minimum FMC
used to scale the time-series of FMC from the regression model predictions. If local FMC
observations were lower than the minimum observed during field observations at Blodgett,
predicted FMC would be lower overall, and the inclusion of SMC would result in a less
dramatic change in ignition probabilities.

Spatially, SMC influences the distribution of 10-hr FMC as well. Inclusion of SMC in
the models caused both increases and decreases of the probability of ignition relative to a
model that excludes SMC completely. In the spring, there are areas that predict much lower
probability of ignition (relatively to models that exclude changing SMC) around riparian
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areas due to heightened SMC. These wet areas may be crucial as fire-breaks by preventing
extensive fire spread throughout the landscape, an inference supported by observations that
early spring prescribed fires in the Sierra Nevada produced only patchy fuel consumption
(Knapp et al., 2005). However, in mid summer when soil moisture is at its lowest, these dry
soils tend to lower FMC predictions, increasing the predicted probability of ignition in some
areas of the landscape.

While this study suggests that there is potential to improve the understanding of the spa-
tial and temporal variations in fire risk by incorporating observations/predictions of SMC
into FMC predictions, many challenges remain before SMC-FMC relations could be gen-
eralised for the purpose of such predictions. These challenges include: (i) characterising
SMC-FMC relations across different soil types, which are expected to influence the strength
and non-linearity of the SMC-FMC relation, (ii) characterising SMC-FMC relationships for
other fine fuel types, notably litter, which often comprises the bulk of fuel loads (Burrows
et al., 2006) and could have a different dependence on soil moisture than fine woody fuels
(Keith et al., 2010; Raaflaub & Valeo, 2009). In the present study, sampling was confined to
locations with low litter content. However, in areas with heavy litterfall and accumulation,
it is likely that soils, litter and woody fuels could interact to modify evaporation and water
fluxes, and consequently litter and fuel moisture content (Mahdavi et al., 2017; Matthews,
2005). Additionally, (iii) the physical processes associated with movement of water from
wet soils to woody fuels remain poorly characterised, and could be productively explored
in a laboratory settings. Potentially, such process characterisation could enable physical
modeling of the water and energy balance of the surface soil, litter and fuel layers, which
could be helpful for generalising relationships across distinct soil and vegetation conditions.
Finally, (iv), one of the most powerful avenues for incorporating SMC into FMC predic-
tions at landscape scales is the growing number of satellite remote sensing products that are
sensitive to soil moisture (i.e. SMAP, SMOS, MWRI, AMSR-E, AMSR2 and many others
Kim et al., 2019). However, the spatial resolution of these products is considerably coarser
than the point measurements used to derive the current relationship. Resolving these scale
mismatches for the purpose of FMC and fire risk prediction could usefully draw on recent
advances in scaling of soil moisture observations (Montzka et al., 2018; Peng et al., 2017;
Guevara & Vargas, 2019), but the optimal scale for FMC prediction, and how to inform such
predictions with satellite SMC observation, remain essentially open questions.

2.5 Conclusion

This study demonstrated that under soil, weather and vegetation conditions broadly repre-
sentative of Sierra Nevada mixed conifer forests, fuel moisture covaries meaningfully with soil
moisture, and that this covariation is particularly strong for 10-hr fuels under wet soil condi-
tions. Neglecting the relationship between soil moisture and fuel moisture when predicting
fire risk is likely to over-estimate ignition probabilities under wet soil conditions, particu-
larly in the spring, and to mis-characterise spatial patterns in ignition risk. More research
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is required to understand fuel moisture relations to soil moisture under: wet soil conditions
specifically, wetting and drying conditions separately, different soil types, and in the pres-
ence of leaf litter layers. Such observational studies would be usefully complemented and
informed by a better characterisation of the physical processes governing water and energy
balances at the soil surface and between mineral soil, litter and fuel layers. Nevertheless, the
results, albeit preliminary, indicate that resolving the effects of soil moisture on fuel moisture
could meaningfully improve fuel moisture predictions relative to the status quo of neglecting
soil moisture variations. These improvements are most likely to arise under situations where
soil moisture variations are not well correlated with variations in fire weather conditions
- for instance in transitions between seasons, following snowmelt, and in wet locations in
heterogeneous landscapes. With fire and water cycles both changing rapidly in mountainous
areas like the Sierra Nevada, better characterising and understanding their influences on
each other will be helpful for predicting and responding to changing risk profiles.
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Chapter 3

Freeze-Thaw Processes Degrade
Post-Fire Water Repellency in Wet
Soils

The contents of this chapter were originally published in Horological Processes Journal in
2020, as an article titled “Freeze-Thaw Processes Degrade Post-Fire Water Repellency in
Wet Soils”, DOI: 10.1002/hyp.13931. Sally Thompson is the co-author.

3.1 Introduction

A century-long policy of fire suppression in California’s Sierra Nevada Mountains, like much
of the rest of the Western United States, has favored the growth of dense forests with high
fuel loads that lead to more frequent catastrophic fires (Collins et al., 2011; Collins, 2014;
J. Miller et al., 2009). Catastrophic fires are large in extent and also include large areas of
high severity burn, (Keyser & Westerling, 2017; Schweizer et al., 2020), which dramatically
changes landscapes, soils and hydrological processes (Robinne et al., 2016; Martin, 2016).
Increased runoff generation and elevated erosion rates are well known consequences of severe
fire (Tiedemann, 1979; Burch et al., 1989; Kinoshita & Hogue, 2015; Moody & Martin, 2001b,
e.g.). For example, fires are responsible for up to 60% of long-term sediment production
rates in some regions (Robichaud, 2000). In the Sierra Nevada, up to 3 orders of magnitude
increases in annual sediment yield (up to 120 tonnes ha−1 per year) have been reported
following fires (Moody & Martin, 2009). Post-fire debris flows can be immediate and acute,
moving rapidly over large areas, threatening lives and costing hundreds of millions of (US)
dollars (e.g. the 2018 Thomas Fire in coastal CA, Cui et al., 2018). Extensive infrastructure
damage due to sediment mobilization into water systems is also reported. For example, the
2002 Hayman Fire in the Rocky Mountains deposited ≈ 765, 000 m3 of sediment into water
supply reservoirs, requiring $30 million worth of dredging (Bladon et al., 2014). Post-fire
erosion impacts can also be chronic; in the 1996 Buffalo Creek wildfire in Colorado, the
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immediate sediment input into reservoirs was only a fraction of the total sediment load from
the fire, 67% of which was deposited in stream beds and is expected to be exported gradually
over a 300-year period (Moody & Martin, 2001a).

Both vegetation loss and physicochemical changes in topsoil after fires contribute to
elevated runoff and erosion rates (Keeley, 2009; Mataix-Solera et al., 2011; Stoof et al., 2011;
Caon et al., 2014; Stoof et al., 2015). Vegetation canopies, roots, litter, and duff mitigate
runoff and erosion by reducing throughfall volumes via canopy interception (e.g. Ahlgren,
1981), maintaining higher infiltration rates by protecting the soil surface from rain splash
and soil seal formation (Assouline & Mualem, 1997), mechanically increasing soil cohesion
(Gyssels et al., 2005), and slowing flow and trapping suspended sediments (Stoof et al., 2015).
Loss of vegetation cover thus contributes to increased runoff and erosion through multiple
pathways (Larsen et al., 2009b). The impacts of these process changes are enhanced when fire
also produces physiochemical changes to topsoils, including inducing soil water repellency
(DeBano, 2000). Soil water repellency is attributed to the volatilization and subsequent
condensation of organic chemical species on soil grains (DeBano & Krammes, 1966), which
are derived from the complex humic fraction of the soil (S. H. Doerr et al., 2000; DeBano,
2000). The deposition of these chemicals coats on soil grains results in a mixture of nonpolar
(insoluble in water) and amphiphilic (partially soluble in water) compounds that tend to
inhibit infiltration. By cementing soil grains together, decreasing porosity and increasing
the stability of soil aggregates (coherent units formed by chemically or physically bound soil
particles, Nimmo, 2005; Giovannini et al., 1983; Kořenková & Matúš, 2015), hydrophobic
compounds can further inhibit water entry into soil. Hydrophobicity usually manifests as a
spatially heterogeneous water repellent layer within the top 8 cm of the soil (DeBano et al.,
1970; Ebel & Moody, 2020), with its precise depth and extent depending on the vegetation
type and properties of the fire (DeBano, 2000; DeBano et al., 1970). Many techniques are
available to measure hydrophobicity, all of which assess the physics of water interaction with
soils (e.g. the time taken to infiltrate a droplet of water (Letey, 1969), the contact angle
of water on the soil surface (Bachmann et al., 2000), or the extent of capillary rise within
the soil (Letey et al., 1962)). In this study, hydrophobicity was measured with Molarity
of Ethanol Test (MED), which relates soil hydrophobicity to an ethanol concentration of a
water drop used to infiltrate soil over a set time (King, 1981).

Post-fire soil hydrophobicity is not a permanent soil property, but decreases at a variable
rate, typically returning to pre-fire levels within 1 to 6 years (Shakesby, 2011; Leelamanie
& Karube, 2007). There are some clear associations between hydrophobicity levels and the
environmental conditions experienced by soil, including temporary increases in wettability
with increasing soil moisture content (S. H. Doerr et al., 2000), more permanent increases
following repeated cycles of wetting and drying (Quyum et al., 2002; S. H. Doerr et al., 2000),
and increases in wettability following soil agitation (Horne & McIntosh, 2000; Mashum &
Farmer, 1985; King, 1981). The underlying mechanisms responsible for degradation via these
environmental drivers remain unclear, with chemical leaching (S. Doerr & Thomas, 2003),
chemical transformation of hydrophobic compounds (Simkovic et al., 2008), destruction of
aggregates (Horne & McIntosh, 2000; Mashum & Farmer, 1985; King, 1981), and creation of
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preferential flow paths all finding inconsistent support across studies (Leelamanie & Karube,
2007; Jordan et al., 2017). Additionally, several studies suggest that complex surface chem-
ical processes, such as changes in isomer configuration or ion exchange states could cause
reversible changes to hydrophobicity (S. H. Doerr et al., 2000; Horne & McIntosh, 2000;
Kleber et al., 2007).

In the Sierra Nevada (and much of the western US), the fire season is followed by a cold,
wet winter. In these environments, the wet-dry cycling that is linked to the reduction of soil
hydrophobicity also involves freeze-thaw cycles at the soil surface. Freeze-thaw processes in
soils are known to generate a range of physical (Ferrick & Gatto, 2005; Fitzhugh et al., 2001,
e.g. frost heave), chemical (DeLuca et al., 1992; Herrmann & Witter, 2002, e.g. enhanced
mineralization), and biological (Yanai et al., 2004, e.g. depression of enzyme reaction kinetics
and degradation rates) changes (Marion, 1995; Henry, 2007). In particular, freeze-thaw
cycles have been repeatedly shown to reduce soil aggregate stability (Oztas & Fayetorbay,
2003; Kværnø & Øygarden, 2006; Zhang et al., 2016), a reduction often associated with
the degradation of soil hydrophobicity (Giovannini et al., 1983; Kořenková & Matúš, 2015;
Horne & McIntosh, 2000; Mashum & Farmer, 1985; King, 1981). To date, however, there
is almost no information measuring how soil hydrophobicity degrades following exposure
to freeze-thaw cycling, and how this degradation compares to that induced by the better
known process of soil wetting and drying. One study reported that freeze-drying converted a
severely water-repellent soil into a readily wettable soil, although rewetting and oven drying
restored water repellency (Mashum & Farmer, 1985). No in situ or laboratory studies have
been undertaken to explore freeze-thaw cycling effects on hydrophobicity in contexts similar
to those in the field (e.g. repeated freezing, thawing, wetting, and drying processes).

To begin to fill this knowledge gap, we tested the effects of freeze-thaw cycles on the
degradation of heat induced soil hydrophobicity in a laboratory study. Hydrophobicity was
measured using MED on soil samples subjected to repeated and varied combinations of wet-
dry and freeze-thaw cycles. To constrain potential degradation mechanisms, the soil samples
were characterized chemically, physically, and at the granular level (via electron microscopy)
under contrasting MED conditions. The relationships obtained between soil hydrophobicity
and soil exposure to different freeze-thaw and wet-day cycles were then used to estimate the
timescale over which post-fire hydrophobicity would decay in the field under Sierra Nevada
climate conditions, and to assess the significance of freeze-thaw processes for recovery of soil
wettability in this area.

3.2 Methods

Soil Preparation

Soil samples were obtained from the Jennie Lakes Wilderness (36.71403◦N, -118.75708◦E)
located in the Californian Sierra Nevada at an elevation of 2530 m. Soils were sampled from
beneath a canopy mix of Jeffrey pine (Pinus jeffreyi), lodgepole pine (Pinus contorta), white
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fir (Abies concolor), and red fir (Abies magnifica). No fires were recorded in the sampling
location since local records for the Sequoia Kings Canyon National Park began in 1910 (see
fire perimeter data at https://frap.fire.ca.gov/mapping/gis-data). Soil samples were taken
from the top 5 cm of mineral soil after first removing the surface litter layer, which consisted
of pine needles and duff. Approximately 5 gallons of soil were collected, and air dried at room
temperature (25 ◦C) in a laboratory at UC Berkeley, until the soil weight stabilized. The
dry soil was sieved at 2 mm and homogenized (Figure 3.1-A). In previous studies, sieving
had no significant impacts on soil hydrophobicity (Bad́ıa et al., 2013; King, 1981). The soil
was sandy (75% sand, 6% clay, and 19% silt).

The MED test was used to assess the hydrophobicity of soil. The test identifies the
molarity of ethanol in water needed for a drop of the solution to infiltrate into the soil in
a fixed 10 second time period (King, 1981; Watson & Letey, 1970). We implemented MED
tests using ethanol solutions ranging from 0% to 22% molarity, in increments of 0.5%. Soil
is deemed moderately hydrophobic above 5.5% (King, 1981). The MED of the field sampled
soil was 6.5%, indicating that a low level of hydrophobicity was present in the native soil.
Even in the absence of wildfires, hydrophobicity is observed in many sandy soils, especially
under Pinus species (S. Doerr et al., 2009; Zavala et al., 2014).

To determine optimal heating conditions, soil sub-samples were held in a furnace at tem-
peratures ranging from 150 to 285 ◦C for 15 and 20 min. Once cooled, their hydrophobicity
was assessed with the MED test. The highest MED value of 16% (‘very hydrophobic’) was
achieved for soils that were heated for 15 minutes at 260◦C (data not shown). Then, sixty
aluminum baking trays, each containing 6 separate pans, were filled with 8-12 g of soil in
each pan. Each tray was heated once for 15 minutes at 260◦C (3.1-B). Throughout heating,
the furnace (Fisher Scientific Isotemp Muffle Furnace 650-14 ) fluctuated ±1◦C. The soil
was cooled before any further treatments were applied.

Reference samples of both hydrophobic and hydrophilic soils were also prepared. We
considered two kinds of hydrophilic soils: the original, sieved and homogenized field soils,
which are referred to as ‘non-heated’ soils, and hydrophilic soils prepared by heating the soil
until soil hydrophobicity was minimized, referred to as ‘heated hydrophilic’ soils. Heated
hydrophilic soil was prepared by heating field soil at 2600C until smoke was generated and
for at least 20 min. The MED for these soils was 0% with pure water droplets infiltrating
instantly. Finally, reference samples of heated hydrophobic soils were also prepared, similarly
to the treatment soils, by holding field-collected soil (homogenized and sieved) at 2600C for
15 min.

Experimental Treatments

The hydrophobic soils were subjected to different treatments (Figure 3.1-C), comprising dif-
ferent, physically plausible, combinations of wet-dry and freeze-thaw cycling. These treat-
ments are:

• repeated wet/dry cycles (WD)
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• repeated wet/freeze/thaw/dry cycles (WFTD)

• repeated wet/dry/freeze/thaw (WDFT)

• repeated freeze/thaw cycles on dry soils (DFT)

• repeated freeze/thaw on wet soils (WFT).

To wet the soil (as required in the WD, WFTD, WDFT, WFT cycles), de-ionized water
was applied using a misting spray bottle. The mist application was selected to minimize the
impact of drop splash on the soil surface. Water was sprayed onto the surface until free water
ponded to a depth of approximately 1 cm on the soil surface, after which the sample was
left undisturbed for 12 hours. Perforation in the aluminum baking pans allowed for water
to drain if it fully infiltrated the soil column. Any remaining ponded water was removed
from the soil surface with a pipette after 12 hours. This situation often occurred in the first
treatment cycles while soils were highly hydrophobic. For the WFT treatment, soil samples
were wetted once and the trays with soil were stored in sealed plastic bags to prevent drying.
Each sample was allowed to dry once only, immediately before the MED measurement. To
dry the soil (as required to measure MED for the WFT treatment, and as part of the regular
treatment cycle for the WD, WFTD, WDFT, DFT treatments), soil samples sat for twelve
hours at room temperature (∼ 250C). To freeze the soil (as required for the WFTD, WDFT,
DFT, WFT treatments), soil samples were placed in a temperature stable freezer at −200C
for at least 6 hours. To thaw the soil, frozen soil samples were left at room temperature for
at least 6 hours. The time periods used were determined following experimental pilots which
found that the soil samples dried (to the point where no further weight change was recorded
with further drying) after 12 hours, and that water without soil would freeze and thaw in
the freezer and at room temperature within 6 hours.

Each treatment was applied to 12 separate soil samples (i.e. 2 of the aluminum trays).
For each treatment, one sample was used to measure MED after induction of hydrophobicity
and before treatment application. The remaining 11 samples were subject to between 1 and
11 repeated treatment applications referred to as “cycles” (Figure 3.1-C). Each treatment
was replicated six times. After each treatment cycle, MED was measured for one sample.
The location of the samples used for each cycle was randomized across all treatments to avoid
any systematic biases associated with location within the trays. Figure 3.1-B illustrates this
schematically for one treatment.
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Figure 3.1: All soil was first air dried at room temperature until its weight stopped changing,
then sieved with a 2 mm sieve, and homogenized through mixing (A). Prior to heating, soil
was divided between treatment trays. There were 2 trays per treatment with space for 12
samples. Each sample represented one cycle of a given treatment and was assigned a random
location within the treatment trays. Each set of treatment trays was heated once at 260
◦C for 15 min (B). Five different treatments cycles were then applied 11 times, and MED
measurements made between each cycle (C).
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Total Organic Carbon

Three replicas from each cycle and treatment were used to assess changes in total organic car-
bon content via the Walkley-Black test according to a standard protocol following D. W. Nel-
son & Sommers (1965) at UC Davis Analytical Laboratory (https://anlab.ucdavis.edu/).
The Walkley-Black method was chosen because it is accurate on soils with low total organic
matter (<15%). The entire soil sample was analysed in each case. In total, 180 samples
were measured, including 20 duplicates used to check reproducibility.

Scanning Electron Microscopy

Scanning Electron Microscopy (SEM) was used to visualise the surface topography of non-
heated soil, heated hydrophobic soil, and heated hydrophilic soil. We also made one oppor-
tunistic measurement of a soil sample that went through seven cycles of wet/dry/freeze/thaw
(WDFT): this was the only undisturbed treated sample available for SEM scanning. Un-
treated soil samples were evenly sprinkled on a mount while surface soil from the WDFT
sample was carefully removed and placed on a mount: the SEM imagery of the WDFT soil
therefore imaged the undisturbed soil surface.

All samples were sputter coated with a thin gold/palladium film. Subsequently, samples
were examined with a Hitachi TM4000 microscope. Imagery of samples was taken using
backscattered electrons (BSE), second electrons (SE), and Mix (mixture of SE and BSE)
detection modes with an acceleration potential of 15 kV at resolutions of 100, 300, 400, 500,
and 1000 times. We present images at ×100 resolution in the BSE mode, in which individual
aggregates are most distinguishable. In this analysis, aggregates are identified as individual
particles, or collections of particles clumped together and including not only the mineral
substrate but also the organic matter.

Using ImageJ software (Rasband & Ferreira, 2012), aggregate size analysis was performed
for ×100 BSE and Mix images of non-heated, heated hydrophobic, heated hydrophilic, and
7th cycle of WDFT soil samples. First, each image was binarized into aggregates and void
space using a grayscale threshold (image intensity value from a range of 0-256). All void
pixels enclosed within aggregate pixels were reclassified as aggregate pixels using the “Fill
Holes” tool. The “Watershed” tool was used to separate individual aggregates. The tool
successfully separated adjacent particles, but in some cases erroneously broke down aggre-
gates into smaller pieces. We manually examined all images and removed watershed lines
that incorrectly separated parts of an aggregate, focusing on the largest aggregates. Finally,
the “Particle Size Analysis” tool was used to calculate an area for individual aggregates and
generate the cumulative aggregate size curve, showing the percentage of aggregates smaller
than a given area.

Following this methodology, the aggregate area is sensitive to the threshold used to
binarize the image. To standardize, we selected thresholds as the 40%, 50%, and 60%
percentiles of the grayscale intensity distribution of each image. Although we did not have
multiple images to compare the analysis across, we tested for sampling bias and variability
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by repeating the analysis (with the 50% threshold level) on three random, non-overlapping
sub-samples of each image. We report both the cumulative aggregate size distribution curves
and the percentage the largest ten particles occupy out of the total aggregate area based on
the analysis of the four ×100 BSE images using 50% threshold.

Time frame of hydrophobicity decay in the Sierra Nevada

The laboratory experiment relates changes in MED to the application of successive treatment
cycles. To relate these cycles to an estimate of time-since-fire, we used a nine year climate
and soil moisture record (October 1, 2008 through October 1, 2017) from the Providence
Critical Zone Observatory (CZO) site located in the Southern Sierra (Bales, Hopmans, et
al., 2011). We obtained air temperature, snowpack depth, and shallow soil moisture mea-
surements at 10 cm depth from the Upper Providence sensor node located on flat aspect
and having open canopy (elevation: 1982 meters, lat: 37.0626N, lon: -119.1823E, data:
https://eng.ucmerced.edu/snsjho/files/MHWG/ Field/SouthernSierraCZOKREW). The re-
ported soil texture at this site is very similar to the soil collected for the main experiment
at Jennie Lakes Wilderness, with 79% sand, 6% silt, and 15% clay (Bales, Hopmans, et al.,
2011). Vegetation around the Providence CZO instrumentation site is also very similar to
our soil sampling location, with 76-99% of the Providence watershed cover comprising of
mixed-conifer forest of white fir (Abies concolor), ponderosa pine (Pinus ponderosa), Jef-
frey pine (Pinus jeffreyi), sugar pine (Pinus lambertiana), and incense cedar (Calocedrus
decurrens) (Bales, Hopmans, et al., 2011).

Daily precipitation data were obtained from the neighboring (within 40 m) Upper Provi-
dence Weather Station (data: https://www.fs.usda.gov/rds/archive/catalog/RDS-2018-0028).
Missing air temperature records (≈ 10%) were gap filled from the neighboring weather sta-
tion, and remaining gaps (< 0.2% of the record) were linearly interpolated. Hourly air
temperature data were averaged to a 6 hour resolution to correspond to the timescales of
freeze/thaw used in the laboratory cycles. The hourly soil moisture record was smoothed
using a cubic smoothing spline function (smooth.spline in R) to generate a 6 hour record.

We classified the smoothed soil moisture data, identifying drying events when the volu-
metric water content fell below 6%, and wetting events when the volumetric water content
rose above 6%. The 6% cutoff is based both on the CZO time-series at 10 cm depth of mini-
mum soil moisture threshold and studies stating that the critical soil moisture for a transition
between hydrophobic and hydrophilic soil state can range anywhere between 2-28% at surface
(Dekker et al., 2001; S. Doerr & Thomas, 2003; S. H. Doerr et al., 2000).

Where smoothed soil moisture at 10 cm was < 6% but a precipitation event of > 1cm
was recorded, we assumed that the surface soil was wetted and then dried, but that the
wetting fronts had not reached the sensor at 10cm. We assumed, however, that these events
represented a wet-dry cycle at the soil surface that would impact hydrophobicity. If dry
conditions were maintained through repeated days of precipitation, these were treated as a
single wet/dry event. Precipitation events were assumed not to contribute to wet/dry cycles
when the snowpack was over 10 cm, regardless of the soil condition.
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To account for the effect of the thermal insulating properties of snowpack, we assumed
that no freeze-thaw cycles could be induced in the soil when the snowpack depths exceeded
10 cm. Above this depth, snowpack acts as an insulator that de-couples air temperature
from soil surface temperature (K. L. Thompson et al., 2018; Zhao et al., 2018; J. Chang et
al., 2014). Provided snow depth was < 10cm, then a freeze event was identified when air
temperature dropped below 0◦C (on 6 hour timescales). Thaw events occurred when sub-
zero temperatures then rose above 0◦C. Dry freeze/thaw cycles were identified as freeze-thaw
cycles occurring when the soil was dry (soil moisture at 10 cm below 6%). Wet freeze/thaw
cycles required either a wet soil or a freeze/thaw cycle that occurred within 24 hours of a
precipitation event on dry soil.

For the nine year data record (2008-2017), we calculated the time taken for each cycle
to occur following a hypothetical fire that stopped burning on October 1st. The final hy-
pothetical fire ended in October 2015; this was the last date for which sufficient climate
data were available to resolve all 11 cycles. Finally, the different cycles were converted into
an estimate of hydrophobicity decline, with drops in hydrophobicity estimated based on
the different rates of decline (and the uncertainties in these rates across the experimental
replicates) associated with each of the different kinds of wetting-drying or freeze-thaw cycles
experienced.

3.3 Results

Soil Water Repellency Degradation Mechanisms

After heating soil at 2600C for 20 min, the mean MED for the soil samples was 16.6% (cycle 0
in Figure 3.2), classified as very severely hydrophobic (King, 1981). Hydrophobicity remained
the same after one cycle of treatments that included a freeze/thaw component of wet soil
(WFT, WFTD), and increased by 1.6% MED for cycles with a wet/dry component (WD
and WDFT). After 3 cycles of treatment, the MED of the treated samples other than the
DFT treatment all declined below a reference condition given by the ‘heated hydrophobic’
soil. The MED values of the DFT treatment were statistically indistinguishable from the
‘heated hydrophobic’ reference across all treatment cycles. Freeze-thaw cycles applied to
wet soil, however, lead to declines in hydrophobicity, whether or not the soil was allowed
to dry between the freeze-thaw cycles. All cycles containing a wetting component lead to
similar rates of hydrophobicity decline. However, the wet/freeze/thaw cycles exhibit greater
MED variability across replications than the other cycles involving a wet soil phase (standard
deviation of 3.1% MED vs 1.7% MED respectively). The soil water repellency returned to
conditions similar to the non-heated hydrophobic native soils (MED=6.5%) after the 6th
cycle for all treatments other than DFT. By the end of the 11th cycle, the mean MED across
treatments (other than DFT) dropped to 1.9%, much lower than the MED of the non-heated
soil from the field.
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Figure 3.2: Box and whisker plots of hydrophobicity as measured by the MED test for eleven
cycles of five treatments, each replicated six times; the treatments are dry/freeze/thaw
(DFT), wet/freeze/thaw (WFT), wet/dry (WD), wet/dry/freeze/thaw (WDFT), and
wet/freeze/thaw/dry (WFTD). MED of heated, but not treated soils is shown by Cycle
0. Average MED of non-burned soil is indicated by a gray dash line. Average MED for a
reference soil that was burned but without treatment application measured throughout the
experiment is indicated by a black dashed line.

As multiple treatment cycles progressed, the soil surface became visually different. Pho-
tographs of the soil surface for one of the replicas of the wet/freeze/thaw cycles are shown
in Figure 3.3. Small fissures that appeared in the soil surface following treatment are high-
lighted in white. Fissures developed after 2 cycles, and their number and length increased
as treatment applications increased. Similar patterns were observed in all treatments that
involved a wetting component. No fissures formed on the soil surface of dry/freeze/thaw
cycles (images not shown).
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Figure 3.3: Images of eleven cycles of wet/freeze/thaw treatment. Cycle “0” is heated but
untreated soil sample. Each image is of a different soil sample that went through an assigned
number of cycles within one replica of the WFT treatment. Visible racking on soil surface
is highlighted in white.
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Soil Organic Matter

Soil organic matter (SOM) measured for all cycles and treatments with three replicas is
presented in Figure 3.4. Prior to treatment applications, the mean SOM (cycle 0) was
10.9%±0.68 (1.2%±0.54); here, the standard deviation across treatments is shown in brack-
ets, and errors are based on the differences between 20 replicate samples. By the 11th cycle,
SOM had decreased by 1.8% SOM which is significantly different from the pre-treatment
(cycle 0) SOM, based on a 2-sided Kolmogorov-Smirnov test. The overall change, however,
is small. There is a weak correlation of 0.27 (data not shown) between treatments’ SOM
content and measured MED. There is no significant difference in SOM between treatment
types. Potentially these SOM results were diluted by measuring SOM for the whole soil
sample, rather than the soil surface only. We estimate that the soil surface represents ∼ 10%
of the entire soil sample.
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Figure 3.4: Box plot of the total organic matter as determined by Walkley-Black test for
eleven cycles of five treatments, each with three replicas; the treatments are dry/freeze/thaw
(DFT), wet/freeze/thaw (WFT), wet/dry (WD), wet/dry/freeze/thaw (WDFT), and
wet/freeze/thaw/dry (WFTD). Cycle 0 is SOM of heated, but untreated soil samples. The
variability in Cycle 0 measurements encompasses both measurement error and potential
variability of SOM in soil.

Scanning Electron Microscopy

The SEM images in Figure 3.5 did not reveal any differences in the organic matter matrix
that has been reported by others (Jiménez-Morillo et al., 2017). This may be due to the
organic coating being too thin for the SEM to detect (S. H. Doerr et al., 2000). Though at
×100 resolution, there were differences in aggregate size distribution between soils of different
MED (Figure 3.6).
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Figure 3.5: Scanning Electron Microscopy images at x100 magnification and BSE mode of
soil surface of non-heated (A), heated hydrophobic (B), cycle 7 of WDFT (C), and heated
hydrophilic (D) soil samples. A, B, and D were prepared by sprinkling soil samples on a
mount, while C by placing an undisturbed portion of soil crust on a mount. Mean soil
aggregate size from smallest to largest is D, A, B, C.
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Based on the aggregate size distribution curves, the ten largest aggregates make up 58% of
the total aggregate area for cycle 7 of WDFT, followed by 44% for the heated hydrophobic
soil, 33% for the non-heated soil, and 21% for the heated hydrophilic soil samples. The
aggregate size below which 50% of the aggregates are finer is 2.9, 0.9, 0.5, and 0.3 cm2 for
the 7th WDFT cycle, heated hydrophobic, non-heated hydrophobic, and heated hydrophilic
respectively. Based on these two metrics, there is a positive correlation between MED and
aggregate size among non treated samples. However, this relationship does not hold when
the treated (7th cycle of WDFT) sample is included; even though its MED of 4% is relatively
low, cycle 7 of WDFT treatment has larger aggregates among all of the samples.

Analysis using different grayscale thresholds and image sub-sampling (data not shown)
produced aggregate size distribution curves with the same relative relationship as in Figure
3.6, making our analysis robust.
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Figure 3.6: Aggregate size (area) distribution curve of heated hydrophobic, heated hy-
drophilic, non-heated, and cycle 7 of WDFT soil samples. Aggregate sizes were calculated
from SEM images at x100 resolution and BSE detection mode. Minimum particle size was
cutoff at 0.005 cm2

Sierra Nevada Climate and Hydrophobicity Decay

Fifty-nine freeze-thaw events and 38 wet-dry events were identified in the nine year climate
and soil moisture record from Upper Providence CZO, as shown in Figure 3.7-A,C. The
identification of these events for the 2013 water year is shown in Figure 3.7-B and -D.

Figure 3.8-A shows the timing of the first eleven successive WFT, WDFT, or WD cycle
relative to October 1st over the eight analysed years. In Figure 3.8-B, the hydrophobicity
distribution associated with each cycle is shown as a function of the median number of days
since October 1st when that cycle occurred. Seventy-one percent of the first eleven cycles
over eight years were wet/freeze/thaw cycles. The most rapid reduction of hydrophobicity
during the analysed period was for winter 2011-2012, when all eleven cycles occurred in 79
days and were primarily wet freeze/thaw cycles. The longest duration of hydrophobicity
was associated with the severe warm California drought from 2014-2015: hydrophobic soils
induced prior to that winter would have persisted for 562 days. On average, the eleven
cycles considered occurred within 350 days. Hydrophobicity was typically reduced to the
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Figure 3.7: Soil moisture at 6 hour resolution and precipitation at daily resolution time
series for the entire nine year record (A), and October-April 2013-2014 (B). Shading in the
the zoomed-in soil moisture and precipitation time series shows occurrence of wet and dry
periods; each vertical bar represents a wet/dry cycle (B). Air temperature time series at 6
hour resolution for the entire nine year record (C), and October-April 2013-2014 (D). Purple
shading in the zoomed-in in events shows freezing events when snowpack is below 10 cm.
Periods of time when snowpack is above 10 cm is shaded in gray (D).
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Figure 3.8: Box-and whisker plot of the number of days after October 1st that each cycle
occurs over an eight year climate and soil moisture time series (A). Soil MED distribution
for each cycle as a function of median number of days since October 1st (B) The MED dis-
tribution is based on the type of cycles recorded and the replicas of the MED measurements
for each cycle.

‘non-heated hydrophobic’ reference condition within six cycles, requiring a mean of 144 days.

3.4 Discussion

The experimental results indicate that freeze-thaw cycling on wet soils resulted in a simi-
lar magnitude and rate of hydrophobicity reduction as did more conventionally considered
wet-dry cycling, or wet-dry cycling combined with freeze-thaw cycling; suggesting the poten-
tial for freeze-thaw processes to be important mechanisms of soil physico-chemical recovery
following fire.

Analysis of climate and soil moisture data to identify the occurrence of freeze/thaw and
wet/dry cycles in surface soils of a well-monitored mid-elevation Sierra Nevada site confirmed
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that freeze-thaw processes are likely to have pragmatic importance in post-fire soil recovery.
Most of the area burned by fires in the Sierra Nevada burns in the period from October
to December (A. P. Williams et al., 2019); these late-season wildfires occur under low fuel
and soil moisture conditions, which are conducive to soil heating and the generation of
hydrophobic soil layers. It is the arrival of winter rain and low temperatures that typically
ends the Sierra Nevada fire season: as represented in this analysis by a hypothetical October
1st end-of-fire date. Over the eight-years of data analysed, hydrophobic soils generated by
this hypothetical fire would return to pre-fire wettability conditions over a mean period
of 144 days. This relatively rapid rate of degradation of hydrophobicity would be mostly
attributed to freeze-thaw cycling, representing approximately 80% of the soil changes that
contributed to hydrophobicity reduction. Thus, it is likely that freeze-thaw cycling is of
practical importance in regulating the recovery of soils from post-fire hydrophobicity in the
Sierra Nevada.

The experimental results do not clearly identify the mechanisms by which soil hydropho-
bicity is lost as repeated wetting, drying, freeze and thaw cycles are imposed on the soil.
They do, however, constrain some of the possibilities. First, it is clear that degradation is
not simply a function of time, given that no change in hydrophobicity of the dry freeze-thaw
samples was observed. Second, it seems unlikely that removal of hydrophobic compounds
via leaching was the main mechanism responsible. Two strands of evidence contradict this.
Firstly, although leaching was possible in treatment cycles that involved repeated wetting
and drying, it was not possible in the freeze-thaw cycles applied to a wet soil. Yet the de-
cay in hydrophobicity in the wet freeze-thaw cycling was comparable, if more variable across
replicates, to that in other treatment cycles involving repeated wetting and drying. Secondly,
although soil organic matter declined in all treatments, this decline was modest in magnitude
(less than 2 percentage points decline relative to an initial mean SOM of 10.9%), only weakly
correlated to MED, and not statistically different between the hydrophobic samples from the
dry freeze/thaw cycle (MED=16.9%) and the hydrophilic samples across all samples follow-
ing eleven treatment cycles (MED=1.9%). Third, there is suggestive if inconclusive evidence
that physical changes in the soil structure at macro- and micro-scales. Fissure length and
number increased as MED decreased over repeated wet/dry (or wet freeze/thaw) cycles.
In the absence of chemical changes, these fissures may have provided flow pathways that
were less influenced by surface hydrophobicity (e.g. due to smaller surface area to volume
ratios) than the original soil pores. Similarly, the SEM images indicated that soil surfaces
with distinct MED patterns were also distinguished by different aggregate sizes. Amongst
untreated soils, there was a clear trend towards increasing MED and hydrophobicity with
aggregate size. The opportunistic measurement made on the treated soil sample suggests
that its distribution of surface aggregate sizes was also distinct from the untreated soils.
However, due to its different treatment history, and the fact that this sample was an intact
soil surface rather than a homogenised soil sample, makes a direct comparison of aggregate
size distributions between the untreated and treated soils impossible. It is, however, again
suggestive that differences in soil wettability were, to some extent, reflected in differences in
soil aggregate structures at the microscopic level.
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Therefore, based on the preliminary evidence collected here, it seems likely that the
degradation of hydrophobicity is associated with similar processes amongst the wet/dry and
wet freeze/thaw cycles. These processes depend upon water, and may have a physical com-
ponent, potentially associated with macroscopic and microscopic changes to soil structure
induced by drying of wet soil (e.g. shrink-swell behavior) or by expansion of frozen water
(e.g. frost-heave processes). From a soil physics perspective, freezing and thawing cycles are
physically similar to drying and wetting cycles since both cycles eliminate liquid water from
the soil. It is also possible that other chemical mechanisms, not tested here, could be associ-
ated with changing hydrophobicity. For example, changes in the orientation of amphipathic
(partially polar) molecules could be induced by varying environmental conditions, leading
to changes in hydrophobicity that do not require changes in bulk soil chemistry (Horne &
McIntosh, 2000; Kleber et al., 2007; Mao et al., 2018).

Regardless of the microscopic mechanisms involved, the significance of freeze/thaw cy-
cling for post-fire soil hydrophobicity in the Sierra Nevada and other montane or seasonally
frozen environments suggests the potential for complex feedbacks between fire and hydrolog-
ical processes subject to climatic warming. As climate warms, the duration and mean depth
of snowpack will decline, as will the length of the season in which freeze-thaw cycling occurs.
This is likely to have confounding effects on freeze/thaw cycling, which may be more frequent
with a shallower snowpack (Decker et al., 2003): in the dataset analysed here, freeze thaw
cycles would increase in importance for degrading hydrophobicity (from 79% of cycles to 91%
of cycles) in the absence of a snowpack. However, the shorter snow season would tend to
reduce the number of such events. The effect of climatic warming will also alter the elevation
of the snowline: currently moving upward from its current elevation between 800 and 2800
m across the Sierra Nevada (Lundquist et al., 2008) by as much as 72 m/yr (Hatchett et al.,
2017). Below the snowline, warmer temperatures would tend to reduce freeze-thaw cycling.
Near the snowline, warmer mean temperatures might be expected to increase the frequency
with which air temperatures fluctuate around 0◦C while reducing the insulating effect of
the snowpack itself (Templer et al., 2017). While well above the snowline, climate warming
will probably not greatly alter the frequency of freeze/thaw events. The loss of snowpack
and freeze-thaw dynamics along with the increased fire risk anticipated with warming and
drying at low elevations may also exacerbate the risks to soil and water quality degradation
following fires, due to the loss of freeze/thaw mechanisms to restore soil wettability. Other
energy drivers, such as slope, aspect, and canopy shading may also influence the post-fire
rate of hydrophobicity decay.

Unfortunately, we have been unable to identify field studies documenting the timescales
of hydrophobicity reduction after fires in the Sierra Nevada. Field studies that do document
hydrophobicity reductions do not generally report wet-dry and freeze-thaw cycle occurrences
in enough detail to determine if a geographic signal of freeze-thaw processes on hydropho-
bicity reduction can be found. There is a general pattern of more rapid reductions of hy-
drophobicity in cooler and wetter regions - e.g. significant declines post-fire occurred within
a year in Michigan (Reeder & Jurgensen, 1979), less than two winter months in southern
California’s San Gabriel Mountains, and less than 13 months in a temperate pine forest in
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Poland (Hewelke et al., 2018); compared to persistence of hydrophobicity at least 15 months
after fire in Spain (Rodŕıguez-Alleres et al., 2012), and over two-year timescales in South-
eastern Australia (S. Doerr et al., 2006). However, this pattern is not universal, and despite
the Bobcat and Crosier Mountain Fires occurring near each other in the Colorado Front
Range (Huffman et al., 2001), at one of these sites hydrophobicity was negligible after a
year (MacDonald & Huffman, 2004), but persisted for over 22 months at the other (Huffman
et al., 2001). Thus, field studies that can separate freeze-thaw and wet-dry cycles (rather
than solely using precipitation as a climate descriptor) would be useful to determine the
importance of the different hydrophobicity reduction mechanisms in the field.

We conclude that freeze-thaw cycling could be an important factor mitigating against
long-term water quality, erosion, and flood risks from fire in the Sierra Nevada. These cycles,
which do not in themselves produce risks of erosion or flood exacerbation, appear to enable
substantial soil wettability recovery in the first winter after late summer fires. Of course,
this mechanism does not prevent flooding and erosion impacts from fire in the Sierra Nevada
and other Western US montane watersheds, as the effects of vegetation loss remain (Berg &
Azuma, 2010; Larsen et al., 2009b). The potential relevance of freeze-thaw cycles for post-
fire soil recovery merits further investigation, both to resolve the underlying mechanisms by
which hydrophobicity is degraded, and to quantify the importance of freeze/thaw processes
in situ for recovery of soil hydraulic properties post fire. The latter may be particularly
important to an improved understanding of fire impacts in the Sierra Nevada and similar
mountain ecosystems as climate continue to warm.
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Chapter 4

Forest Vegetation Change and Its
Impacts on Soil Water Following 47
Years of Managed Wildfire

The contents of this chapter were originally published in Ecosystems in 2020, as an arti-
cle titled “Forest Vegetation Change and Its Impacts on Soil Water Following 47 Years of
Managed Wildfire,” DOI: 10.1007/s10021-020-00489-5. The co-authors are Jens Stevens,
Gabrielle Boisramé, Sally Thompson, Brandon Collins, and Scott Stephens.

4.1 Introduction

Many forests in California’s Sierra Nevada, like other dry mixed-conifer forests of the western
United States, have experienced fire exclusion since the end of the 1800s, and were managed
under an active policy of fire suppression throughout the Twentieth Century (McKelvey et
al., 1996). The consequences of fire exclusion for the vegetation of the Sierra Nevada are
well known and include increases in forested area, increases in forest stem density and uni-
formity of stands, and reductions in landscape heterogeneity (Collins et al., 2011; Safford
and Stevens, 2017). By creating large connected patches of dense fuels, fire exclusion and
suppression have also set the stage for a dramatic escalation in the frequency and extent of se-
vere fires (Westerling and Swetnam, 2003; Stephens et al., 2013; North et al., 2015; Stephens
et al., 2016) – for example, five of the ten largest and most destructive fires in California
(as of fall 2018), occurred after 2010 (CalFire, 2018a, 2018b). The scale of fire-caused tree
mortality in these and many other contemporary fires is well outside the historical range of
variability in Sierra Nevada forests (Collins et al., 2011; Safford and Stevens, 2017). Recent
large-scale stand-replacing fire effects, combined with the densification and homogenization
brought about by widespread fire suppression, have negatively impacted some animal taxa,
water resources and forest resilience (Grant et al., 2013; Ponisio et al., 2016). Such negative
impacts have motivated the adoption of a broad suite of forest management practices ranging
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from mechanical forest thinning to prescribed fire (Stephens et al., 2016) to restore a forest
structure resilient to future fires. An additional forest restoration strategy, managed wildfire,
is drawing increased attention (North et al., 2012; Boisramé et al., 2017a). Managed wildfire
involves allowing naturally ignited wildfires to burn unimpeded unless specific predefined
criteria (for example relating to hazard or air quality) are met and trigger intervention. In
the Sierra Nevada, two wilderness areas, the Illilouette Creek and Sugarloaf Creek Basins -
in Yosemite and Sequoia-Kings Canyon National Parks, respectively - have used managed
wildfire for nearly 50 years. The resulting wildfire regime in these basins has near-historical
fire frequencies for at least a portion of the past 50 years (Collins and Stephens, 2007). In
addition, the emergence of non-overlapping fire extents in these basins suggests self-limiting
behavior as the fuel distribution becomes more fragmented in space (Collins et al., 2007;
Collins et al., 2009; Collins et al., 2011; Parks et al., 2015; Collins et al., 2016). While these
outcomes suggest that managed wildfire has had a positive effect in restoring historical fire
regimes and mitigating fire hazard, its co-benefits on other ecosystem services remain less
certain. The influence of managed wildfire on water supply, given the importance of these
forests for water resources in California and the western US more generally, is of particular
interest. Although there is a well-established literature in fire hydrology (e.g., Stoof et al.,
2012; Ebel, 2013; Wine and Cadol, 2016; Atchley et al., 2018), studies that explore longer-
term hydrological responses (e.g. over decadal scales) are rare (but see Kinoshita and Hogue,
2015). The sites in question here allow the investigation of not only a longer-term set of
hydrological responses to fire, but more interestingly again, the responses to a change in fire
regime and the imposition of multiple disturbance events on a catchment. In the Illilou-
ette Creek Basin (ICB), the imposition of managed wildfire led to large (24%) decreases
in forested area and the replacement of forests with new areas of shrubland, grassland and
dense meadows/wetlands (Boisramé et al., 2017b). Field measurements in ICB showed that
vegetation type is a strong predictor of soil moisture: for example dense meadows indicate
wet soil conditions, in comparison to the dry soils conditions associated with shrublands or
sparse meadows (Boisramé et al., 2018). With sufficient information relating soil moisture,
vegetation cover and other landscape predictors of soil moisture, statistical models can be
trained to predict soil moisture based on mapped vegetation (Boisramé et al., 2018). Such
models suggest that the fire-induced changes to vegetation cover in ICB (less forest cover,
but more meadows and shrublands) are associated with an overall increase in water stor-
age and plant available water resources (Boisramé et al., 2018). This finding is consistent
with comparisons to similar but fire-suppressed Sierra Nevada river basins (Boisramé et al.,
2017a), and with mechanistic ecohydrological modeling of ICB (Boisramé et al., 2019), which
suggest that soil moisture and streamflow have increased, and plant water stress decreased,
in response to the changed fire regime. Model results showed that these hydrologic changes
could be explained by reductions in forest cover causing a combination of reduced inter-
ception, reduced transpiration, and deeper peak snowpacks (Boisramé et al., 2019). These
results suggest a promising co-benefit for water resources associated with restoration of a
near-natural fire regime in the ICB. However, it is unclear how the effects of managed wildfire
will play out in other Sierra Nevada forests. ICB is a relatively wet, mid-elevation watershed



CHAPTER 4. FOREST VEGETATION CHANGE AND ITS IMPACTS ON SOIL
WATER FOLLOWING 47 YEARS OF MANAGED WILDFIRE 59

containing productive forests. Basins with different climates, soils or vegetation types found
at other elevations and locations in the Sierra Nevada could exhibit different responses to a
changed fire regime, as could subtle differences in how a managed wildfire regime is oper-
ated. Sugarloaf Creek Basin (SCB) in Sequoia-Kings Canyon National Park offers a chance
to explore the impact of managed wildfire beginning in 1973 in a slightly less productive,
drier, and less-frequently burned watershed than ICB. In this study, we draw on historical
(1970) and contemporary forest plot surveys, historical (1973) and contemporary aerial pho-
tography and vegetation classifications, and contemporary soil moisture and meteorological
observations within SCB to address four questions:

1. How has forest composition and structure at the survey plot scale changed from 1970-
present, and how are these changes associated with fire?

2. Has vegetation cover changed in the SCB from 1973-present at the landscape scale,
and if so, how are these changes associated with fire? Are different vegetation cover
types in the SCB associated with differences in soil moisture, and what does this imply
about hydrologic response to wildfire in the SCB?, and finally

3. How do changes in landscape vegetation cover (2) and soil moisture (3) compare with
those previously described in the Illilouette Creek Basin, a wetter and more productive
basin that has burned more frequently over the same period?

4.2 Methods

Study site and climate

The Sugarloaf Creek Basin (SCB) covers 125 km2, spanning elevation ranges of 2000 – 3200
m in Sequoia and Kings Canyon National Parks. Average daily temperatures range from
10o C to 31o C, with the annual average being 14.5o C (Global Historical Climate Network,
station USR0000CSUG). Vegetation in this region varies with elevation, topography, and soil
type (Stephenson, 1998; Caprio and Graber, 2000). The dominant tree species found in SCB
are Jeffrey pine (Pinus jeffreyi), lodgepole pine (Pinus contorta), white fir (Abies concolor),
and red fir (Abies magnifica), which occur interspersed with meadows and shrublands. There
is no evidence of logging in SCB. Based on fire scar reconstructions, fire was common in this
area prior to 1900, with a mean fire interval of 9 years for the period 1700-1900 (Collins
and Stephens, 2007). Fire exclusion and suppression appears to have started in SCB shortly
before 1900, resulting in an anomalously long fire-free period lasting until the early 1970’s
(Collins and Stephens, 2007).

In 1968 the National Park Service changed its fire policy and began to use prescribed fires
and managed lightning fires to meet ecological goals; previously all fires had been suppressed
(van Wagtendonk, 2007). Yosemite National Park (including the 150 km2 ICB) is the only
other place in the Sierra Nevada that has had a policy of allowing lightning-ignited wildfires
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to burn for as long as Kings Canyon National Park (van Wagtendonk, 2007). The first
notable fire in SCB under the fire use policy was the Ball Dome Fire in 1971, which burned
nearly 100 ha. In total, 10 fires over 40 ha in size burned partially or completely in SCB
between 1970 and 2016, the largest of which was over 4000 ha (Appendix A, Table A.1). For
comparison, ICB had 27 fires >40 ha between 1970 and 2016 (Collins et al., 2016).

We obtained fire perimeters for all SCB fires between 1952 and 2016 from a statewide
database maintained by the California Department of Forestry and Fire Protection (FRAP,
2017). These perimeters were corroborated with those maintained by park staff (personal
communication, A. Caprio, Sequoia and Kings Canyon National Park). Because our histor-
ical imagery dates to 1973 (see below), we removed four small (<100 ha) fires that burned
between 1952-1972 from our imagery analyses (Figure 4.1; Table A1). Our historical forestry
plots date to 1970 (see below), but none were located within the perimeters of these four
fires (Figure 4.1). We also removed two fires, from 2004 and 2006, that were both <5 ha and
located on the margins of the watershed (not shown in Figure 4.1). Of the 12 fires included
for analysis, the mean fire size was 830 ha (median 248 ha).
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Figure 4.1: Sugarloaf Creek Basin (SCB) shown in red (and in panel a). Base layer DEM
ranges from 1480 m (black) to 3375 m (white; Data source: ASTER GDEM, a product of
METI and NASA). Overlapping fire perimeters since 1973 shown in transparent red. Inset
(b) shows composite of overlapping fires from 1973-2003, with colors indicating number of
times burned, over the extent represented by the 1973 aerial imagery. Green points in main
figure indicate main vegetation (forestry) plots installed in 1970, a subset of which (blue)
were re-sampled in 2017. The pink point is the approximate location of the Kings River
streamflow gage near Cedar Grove; USGS gage 11212500 (exact coordinates given in Table
A2).
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In addition to the increased fire frequency at ICB compared to SCB since 1970 (27 com-
pared to 10 large fires), differences in water balance and site productivity between the basins
may influence vegetation response to the reintroduction of fire. ICB and SCB have similar
mean elevation (2500 m and 2700 m respectively) and forest types (Collins et al., 2016),
but three lines of evidence suggest that ICB is the wetter and more productive basin. First,
temporary weather stations (Appendix B.2) at both sites showed greater precipitation (Fig-
ure 4.1) at ICB than SCB for the duration of our field data collection (2016-2018). Second,
specific discharge (total streamflow divided by watershed area) measured downstream of ICB
is greater (0.65-0.66 m/yr) than that measured downstream of SCB (0.48-0.55 m/yr) over a
time period through the 1950’s where data from both basins were available (Table A2).

Third, these differences in water inputs are reflected in slightly higher productivity in ICB
than SCB (Figure 4.2). To assess productivity, we used the LANDSAT-derived Normalized
Difference Vegetation Index (NDVI) product during the early-mid growing season at both
basins, available at https://ndvi.ntsg.umt.edu/ (Robinson et al., 2017). To minimize the
effect of recent fires on productivity estimates, we used the earliest available data from 1984
and 1985, prior to the 1985 Sugarloaf Fire (Table A1), and at least 3 years after the most
recent fire in either basin. We filtered out any region of either watershed that was likely
granite or water (NDVI <0.15) or cloud cover (filtered out during image processing), and
only compared the vegetated portions of each watershed that had data for every image date.
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Figure 4.2: Normalized Difference Vegetation Index (NDVI; averaged across a given basin
for a given date), a proxy for productivity, was consistently higher in Illilouette Creek Basin
(ICB; Boisramé et al. 2017a) than Sugarloaf Creek Basin (SCB; this study). Curves with
error bands represent loess smoothing estimates of mean NDVI across the two years.

Question 1: Forest composition and structural change

In areas of SCB that did not convert to alternative vegetation patches (Question 2 below),
we explored the question of how forest structure has changed over time in response to fire
by resampling a historic forest plot dataset. Forest surveys were conducted in Sugarloaf
Creek Basin in July 1970 by Hammond, Jensen Wallen Mapping and Forestry Services,
Oakland CA. Surveyors measured 25 plots (Figure 4.1), which consisted of five 0.2 ac (0.08
ha) subplots each. Each subplot was surveyed for conifer trees (stems > 7.6 cm DBH),
saplings (stems 0.6 m tall up to 7.6 cm DBH, where DBH was not recorded), and seedlings
(stems <0.6 m tall). The surveyors estimated representative tree heights and woody (shrub)
ground cover within the plots. All shrubs and trees were identified to species level. Subplots
were arranged along linear transects with generally 40 m spacing between them, from an
anchor point and a given transect azimuth that was described in the field notes. We re-
surveyed 12 of these plots in 2017 (Figure 4.1) following the same methods, leading to a
total of 57 subplots sampled in both 1970 and 2017, which constituted our sample size for
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analysis.
For each subplot, we used the collection of fire perimeters from Sugarloaf Creek Basin to

identify the number of times each subplot had burned since fire was reintroduced in 1973 (0,
1, or 2-4). We calculated density of all trees (>7.6 cm DBH), medium trees (>15.2 cm DBH),
large trees (>61 cm DBH), and very large trees (>100 cm DBH), and calculated basal area
of each of these size classes by species as well. For each size class we compared the change in
density and basal area over time, using linear mixed-effects models that assigned a random
intercept to subplot ID, accounting for repeated sampling of the same plots over time by
allowing a given plot to have higher or lower overall values of the response variables, using
the R package lme4 (Bates et al., 2015). We evaluated the significance of these trends using
the Kenward-Rodgers approximation to estimate degrees of freedom in the mixed-effects
models, via the R package pbkrtest pbkrtest.

Question 2: Vegetation cover change

In order to assess potential impacts of vegetation change on soil moisture (Question 3 below),
we mapped the change in larger vegetation patches in SCB since the first large fire in 1973.
We created these maps by classifying aerial photographs into granite (exposed rock), water,
sparse meadows (areas dominated by bare ground, with sparse shrub and/or herbaceous
cover), dense meadows (wetlands and other areas of dense herbaceous cover), conifer forest,
and shrublands, following the methods used by Boisramé et al. (2017b). We obtained
the earliest set of aerial photographs available for the region from Sequoia Kings Canyon
National Park. These black and white photos were dated to 1973, prior to the first large
fires occurring in SCB, scanned at 600 dpi, and covered 10,120 ha (81%) of the 12,500-ha
watershed (Figure 4.1). Contemporary cover was represented by color imagery from the 2014
National Agriculture Imagery Program, and clipped to the same extent as the 1973 imagery.
The 1973 images were orthorectified using ERDAS IMAGINE software, using approximately
15-20 control points per image. We used the eCognition object-oriented software package
(produced by Trimble, www.ecognition.com) to classify the images into objects of similar
color band values, texture and shape (Blaschke et al., 2014). Our supervised classification
approach produced objects in the following categories: mixed-conifer forest, shrub, sparse
meadow, dense meadow, rock and open water. Following classification, the 1973 images
(representing approximately 16.7 km2 each) were mosaicked together in ArcGIS, as were the
2014 images (representing approximately 39 km2 each).

During post-processing, the vector-object layers produced by eCognition were converted
to raster layers in ArcGIS, with a 40-m pixel resolution, ensuring alignment of the 1973
and 2014 rasters to enable a change detection analysis. Because the rasterization process
created single isolated pixels of a given class derived from polygon slivers, we smoothed
the resulting raster surface using the adjacent function in the R library raster (Hijmans
and van Etten 2014). We removed isolated pixels surrounded by other vegetation in the
four cardinal directions, changing the pixel in question to the most common vegetation type
surrounding it. We used the spatial layers from 1973 and 2014 to determine the direction
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and proportionality of vegetation change in the intervening 41 years. We then analyzed the
relationship between these changes and the number of times each pixel had burned. We
overlaid the fire perimeter polygons on the two vegetation raster layers to extract a “times
burned” attribute for each pixel. Due to subsequent chi-squared tests not converging for
analyses of pixels burned 3 times (218 ha) and 4 times (15 ha), we combined these categories
into a single “2-4 times burned” category, in addition to analyses conducted for once-burned
pixels, unburned pixels, and the entire mapped area. We excluded pixels classified as granite
or water from this analysis, leaving four vegetation classes which could transition from one to
another: shrubs, sparse meadow, mixed conifer and dense meadow. We assessed which types
of vegetation transitions were overrepresented relative to a null expectation of no difference
in transition types, for the entire watershed and based on number of times burned, using
a chi-squared analysis (Appendix B.3). As a basis for comparing the post-fire vegetation
landscapes at SCB and ICB (Question 4), we assessed landscape metrics (Appendix B.3) to
describe the heterogeneity of the landscape and spatial distribution of individual vegetation
classes in SCB, in both 1973 and 2014, using FRAGSTATS (McGarigal et al., 2012), and
compared these to values calculated for ICB (Boisram’e et al., 2017b). At the landscape level,
these metrics included the evenness index and the aggregation index, and at the vegetation
class level they included mean, standard deviation, and maximum of patch area, and mean
patch fractal dimension.

Question 3: Soil moisture variability

Spatially-distributed soil moisture measurements

To assess the drivers of spatial variability in shallow soil moisture, we sampled soil moisture
in the field at 40 sites in 2016, 2017, and 2018, which included three sites where we installed
temporary weather stations (see below). We measured soil moisture in the top 12 cm of soil
using Hydrosense 2 Time-Domain Reflectometer (TDR) probes (campbellsci.com/hs2). We
measured most of these sites in both early and late summer of 2016 and 2017. Twenty-nine of
these sites were re-measured in June of 2018. In most sites, 25 evenly-spaced measurements
of soil moisture were made within a 30m by 30m grid, with additional measurements made in
heterogeneous sites in order to better capture variability. One-meter spaced measurements
were made across a 30 m transect in sites with obvious strong gradients in soil moisture (e.g.
wetland sites bordered by dry uplands).

At each site, we categorized the vegetation of the site into one of the four classes used
in our imagery analysis (n = 3 plots for shrub only, 1 plot for sparse meadow only, 2 plots
for dense meadow only, 28 plots for mixed-conifer only, 2 plots split between sparse meadow
and dense meadow, and 4 plots split between mixed-conifer and dense meadow). We also
quantified slope, aspect, and recorded the presence of burned snags or fire-scarred trees.
Sites were georeferenced using handheld Garmin GPSMAP 62st and 64st devices (horizontal
accuracy 3–10 m). We used these geographic positions to extract additional topographic
variables that could predict soil moisture (below) from raster grids created using a digital
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elevation model (DEM) in ArcMap. These variables include topographic position index (TPI;
a continuous variable ranging from concave to convex), upslope area (i.e. area contributing
drainage to the plot), and topographic wetness index (TWI; ln[upslope area / tan[slope]]). In
order to aggregate the 25-30 point moisture measurements made within a sampling site to a
scale more consistent with our DEM-created maps of topographic variables, we grouped the
within-site measurements for a given sampling date and vegetation cover type, and calculated
the mean values within each group. These aggregated means were used for all data training
and validation, so there is only one measured soil moisture value for any unique combination
of site, vegetation, and date.

We analyzed how soil moisture varied across SCB among sampling dates, vegetation
types, and other environmental variables, using a random forest model implemented in the
R package RandomForest (Liaw and Wiener, 2002). Specifically, we created the model to
predict continuous soil moisture using the following site characteristics: 2014 vegetation
type, 1973 vegetation type, measurement year, day of year, elevation, slope, aspect, TPI,
upslope area, TWI, year since fire, number of times burned since 1973, maximum fire severity
(only available for fires after 1984, from the US Forest Service Pacific Southwest Region Fire
Severity Mapping Program) (J. D. Miller et al., 2009), and distance from nearest stream.
This model used the same methods as Boisramé et al. (2018). The drivers of soil moisture
distribution vary with time since precipitation, with certain local topographic and soil texture
factors being more important predictors under dry conditions compared to wet (Grayson et
al., 1997; Famiglietti et al., 1998). Accordingly, our method includes a variety of local (e.g.,
vegetation cover, slope, aspect) and nonlocal (e.g. distance from nearest stream, upslope
area) controls, and the use of the day of year as a predictor allows the model to account for
late-summer changes in dominant controls, as suggested by Grayson et al. (1997).

While information on soil type may have increased this model’s accuracy (Famiglietti et
al., 1998), we did not include soil properties since we did not have verifiable basin-wide soils
data that would have allowed us to upscale the measurements to the rest of the watershed.
Since random forest is a statistical model, rather than a physically-based model, it does not
require information about physical soil parameters in order to represent soil moisture, as
long as the covariates used are correlated with soil moisture state. Statistical models such as
random forest provide multiple benefits, including their ability to fit nonlinear relationships
without needing to make (potentially erroneous) assumptions about the relationship between
a predictor and the modeled variable (Grömping, 2009). However, the model may not
perform well when being used to infer conditions outside the range of observations, since
there is no guarantee that the fitted relationships hold true for predictor values not included
in the model fitting. While it was not possible to capture the complete range of predictors
and their combinations present throughout the watershed, we selected our measurement
sites in order to cover as broad a range of conditions as possible (in terms of fire history,
vegetation type, water year type, and topography) in order to make the model validation
applicable to a wide range of conditions. We cross-validated the model by selecting a subset
of measured sites as training data and using the resulting model to predict soil moisture
at the remaining measured sites. To compare the drivers of soil moisture at SCB and ICB



CHAPTER 4. FOREST VEGETATION CHANGE AND ITS IMPACTS ON SOIL
WATER FOLLOWING 47 YEARS OF MANAGED WILDFIRE 67

(Question 4), we examined the ability of a similar soil moisture model trained on ICB data
(Boisramé et al., 2018) to explain soil moisture variation observed at SCB. We also used the
random forest model to extrapolate our soil moisture measurements to unmeasured areas
of the watershed and estimate soil moisture changes due to fire changes. We modeled soil
moisture on a 40m grid across the entire area of the watershed where vegetation was mapped.
At each grid point, we used our vegetation maps, fire maps, and the DEM to extract the
needed covariates to run the model. To estimate soil moisture levels in the absence of fire,
we modeled soil moisture on the same 40m grid, with the same covariates, except that we
set times burned and fire severity to zero, time since fire to 100 years, and replaced 2014
vegetation cover with 1973 vegetation (since this vegetation represents the watershed’s state
after years of fire suppression). We then compared these two modeled soil moisture datasets
- one with “unburned” conditions and one using contemporary vegetation and fire histories
– in order to quantify the change in soil moisture due to fire. This technique assumes that
only a negligible amount of vegetation change between 1973 and the present is due to causes
other than fire, which is supported by the fact that the largest patches of changed vegetation
occur in burned areas (Figure 4.5d). This method also assumes that our model is able
to capture pre-fire conditions accurately, despite the observational data being from burned
areas. Although we could not access any completely unburned areas of the watershed for
measuring soil moisture, we measured sites that had not burned since 1974 and/or burned
only at very low severity; we believe such sites provide reasonable proxies for unburned areas
and are therefore appropriate for fitting a model that is meant to simulate both burned and
unburned conditions.

Continuous soil moisture measurements

In addition to low-frequency, spatially-distributed moisture sampling described above, we
addressed Question 3 by measuring in-situ, continuous soil moisture dynamics in soils at
three weather stations installed in September 2016. The three weather stations are located
within 250m of each other, in an area that was burned once since 1973, by the Williams
fire in 2003 (Figure 4.1), with one weather station each in dense meadow, mixed conifer
regeneration and shrubs, and mature mixed conifer vegetation types (see details and visuals
in Appendix B.2). For simplicity, the dense meadow site is referred to as the “wetland”, the
shrub/conifer regeneration site as the “shrub” site, and the mixed conifer site as the “forest”
site hereafter.

At these weather stations, we collected data on soil moisture, soil texture, and pre-
cipitation (Appendix B.2). The precipitation record includes rainfall and snowmelt, but
not solid-phase snow. Therefore, we augmented our information on snowpack dynamics by
recording four visual images of the stations and surrounding area per day using time-lapse
cameras (Brinno TLC200), allowing us to estimate snow depth at each station and derive
equivalent water depth (Appendix B.2). The weather station soil moisture record is sub-
stantially complete for the period September 2016-September 2018, with no more than 1.3%
of data points missing for a given weather station. However, up to 32% of the precipitation
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time series was missing in the 2016-2018 period, due to a combination of snowmelt run-off
outside of the precipitation gauge, a frozen tipping mechanism, and/or external damage to
the tipping bucket and associated wiring from wildlife and extreme weather. To gap-fill
missing precipitation data, we used multiple imputation via predictive mean matching (Lit-
tle, 1988) on precipitation observations from the neighboring stations (Appendix B.2). We
also calculated cumulative shallow soil moisture gain between 12 and 60 cm using depth-
and time-integrated soil moisture timeseries (Appendix B.2). Cumulative soil moisture is
a useful metric to gauge how much water shallow soils have received, and to approximate
precipitation amounts in unsaturated soils (in combination with snowmelt estimates; Ap-
pendix B.2) when the tipping bucket record is missing or not reliable. However, in saturated
wetland sites and during periods of steady-state infiltration, cumulative water gain cannot
be calculated.

The weather station soil moisture record provides important context for interpreting
the spatially-distributed soil moisture measurements. Specifically, it allows us to explore
relationships between soil moisture at very shallow depths (the top 12 cm as measured in
our spatially-distributed measurements) and soil moisture throughout the top 1m. Since
soil moisture could behave idiosyncratically across the depth profile (Bales et al., 2011),
this comparison helped determine whether the spatially-distributed measurements across
the watershed are reasonable proxies for soil moisture storage and plant available water at
greater soil depths. Furthermore, these stations were built and sited in a similar manner
to three weather stations at ICB (Table B3) and provide an additional point of comparison
between the two basins (Question 4).

4.3 Results

Question 1: Forest composition and structural change

Within the 10,120 ha of the SCB watershed where we classified vegetation via remote sensing
imagery, 1,240 ha (12%) burned 2-4 times, 3,173 ha (31%) burned once, and 5,707 ha (57%)
did not burn between 1973 and 2014 (Figure 4.1 inset). Among our 57 forestry subplots,
18 (32%) burned 2-4 times, 27 (47%) burned once, and 12 (21%) did not burn. Increased
fire occurrence did not lead to decreases in basal area or density in most size classes (Figure
4.3). Only for large trees >61 cm DBH was there a significant influence of fire frequency,
where density and basal area decreased from 1970 to 2017 only when burned 2 or more times
(Figure 4.3 g, h). This effect of number of times burned was likely driven by trees in the 61-
100 cm size class, because for very large trees >100 cm DBH, there was a significant decrease
in density and basal area regardless of fire occurrence (Figure 4.3 j, k). Furthermore, even
in plots that had burned twice, total tree density increased, possibly due to post-fire density
increases of the fire-intolerant Pinus contorta, which increased in basal area over the 47 years
(Figure 4.3c).

The number of times a plot burned was not independent of the forest species composi-
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tion: even prior to the reintroduction of large managed wildfires in 1973, plots that would
eventually burn twice were located in predominantly Pinus jeffreyi forest. Plots that would
eventually burn once were located in mixed-conifer forest with comparable proportions of
P. jeffreyi, P. contorta, Abies magnifica and A. concolor. Finally, plots that did not burn
in the 47 years were located in A. magnifica-dominated forest (Figure 4.3c). There was also
a strong difference in initial abundance of shrubs in the different forest types, with shrubs
being absent in 1970 from all subplots in A. magnifica forest that did not burn in the subse-
quent 47 years, but present in about 50% of the plots that eventually burned (Figure 4.4).
The reintroduction of even a single wildfire was sufficient to increase shrub abundance to
80% of subplots in 2017 (Figure 4.4).
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Figure 4.3: Change in forest structure based on forestry plots. Column 1 shows changes in
density, column 2 shows changes in basal area, and column 3 shows changes in composition
of the four most common species by basal area fraction (the minor presence of additional
species in some plots accounts for the minor height differences between columns 2 and 3).
Row 1 is for all trees >7.6 cm, row 2 is for trees>15.2 cm, row 3 is for trees >61 cm, and
row 4 is for trees >100 cm. Asterisks in columns 1 and 2 indicate significant differences in
the response variable between 1970 (gold) and 2017 (blue). Note the different axis scaling
in panels (g) and (j).
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Figure 4.4: Change in the proportion of subplots where shrubs were detected, from 1970 to
2017, by number of times burned. These data apply to all plots across vegetation type, as
in Figure 4.3.

Question 2: Vegetation cover change

The dominant types of vegetation transitions we observed in the watershed were generally
observed similarly across all three burn classes (0, 1, and 2-4 times burned; Figure 4.5). In
particular, transitions from shrub to sparse meadow, mixed-conifer to sparse meadow, and
mixed-conifer to shrub were overrepresented compared to the null expectation of no change,
both in the watershed as a whole (X2 = 236, df = 15, P <0.001) and in unburned, once-
burned and 2-4 times burned areas (X2 = 47, 272, and 88 respectively; all df = 15, all P
<0.001). However, transitions towards earlier-seral vegetation types, particularly shrub to
sparse meadow and mixed conifer to sparse meadow, were more strongly overrepresented in
the burned areas than in the unburned areas (Figure C1c-d). Dense meadows did not show
a consistent response to fire but in general there was limited dense meadow area to begin
with and limited expansion or contraction of this vegetation type in absolute terms (Figure
C1).

The magnitude of vegetation type change in SCB was much less than in ICB over a
similar period of time (Figure 4.6). Over roughly four decades, net cover of mixed-conifer at
SCB only decreased from 83% to 82%, while at ICB it decreased from 81% to 62% (Figure
4.6). Landscape-scale indices of heterogeneity increased slightly in 2014 compared to 1973,
though the changes were much less pronounced than those that occurred in the ICB over
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a similar time period of repeated wildfires (Appendix B.3). The major differences in land
cover patterns for SCB were that the mean size of conifer patches decreased from 15ha to
13ha (Figure C5a), and sparse meadows experienced small increases in mean patch size (0.38
ha to 0.52 ha; Figure C5c).
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Figure 4.5: Comparison of classified aerial images from 1973 (a) and 2014 (b) in Sugarloaf
Creek Basin. Perimeters of fires that burned between 1973 and 2014 are shown, aggregated
by number of times burned. Four vegetation classes (shrub, sparse meadow, mixed conifer
(MC), and dense meadow) are shown, along with granite and water. Transitions from non-
forest to MC (c) and from MC to non-forest (d) are highlighted.
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Figure 4.6: Percent of the total vegetated area covered by each vegetation class for both
Illilouette Creek Basin (ICB) and Sugarloaf Creek Basin (SCB).

Question 3: Soil moisture variability

There was variability in spatially-distributed soil moisture measurements in SCB, both
among vegetation types and to a lesser degree among site visits (Figure 4.7). Specifically,
soil moisture in dense meadows was over 3 times higher than in the other vegetation types
(Figure 4.7). Furthermore, soil moisture in 2017 was higher than in 2016 or in 2018 across
all vegetation types (Figures 7, 9), consistent with measurements that 2017 was the wettest
year of the three at our study site and in the southern Sierra Nevada in general (Tables 1,
B3).
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Figure 4.7: Distribution of modeled soil moisture (in terms of volumetric water content)
for each site-date-vegetation class combination, based on the random forests model but not
controlling for site-specific variation in topography and other covariates which also influence
these modeled values (see Figure D3). Modeled values are binned by date (either June or
July of each measurement year) as well as by vegetation class: dense meadow (n=9), conifer
(n=32), shrub (n=3), and sparse meadow (n=3). Within each box, the dark horizontal bar
denotes the median while the box spans the 25th to the 75th percentile and dotted bars
show the full range of the data. Circles show outliers, black squares show the mean within
each bin.
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Table 4.1: Weather station data from Sugarloaf Creek Basin (SCB) and Illilouette Creek
Basin (ICB). Gap-filled precipitation totals measured by rain gauge; cumulative shallow soil
water gain was calculated from shallow soil moisture timeseries (Appendix B.2). End of
water year (WY) deep soil moisture (Volumetric Water Content [VWC]) and number of
saturation days were based on the 100 cm soil moisture probe record. Pearson’s correlation
coefficient was calculated between daily average 12 cm and 100 cm soil moisture for months
of June - August.

Weather
Station

Vegetation
Type

Total
precipitation

[mm]

Cumulative
shallow

(12-60 cm)
soil water gain

[mm]

End of WY
VWC [%] at

100 cm

Days
Saturated
at 100 cm

Correlation
coeff. between
12 & 100 cm

VWC for
Jun-Aug

WY: 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018
SCB

Wetland
680 429 477 469 34 14 155 81 0.85 0.97

ICB 1067 537 56 30 43 43 365* 365 0.88 0.54
SCB

Shrub
842 546 362 287 16 10 88 0 0.93 0.67

ICB 1137 590 940 378 10 5.6 86* 0 0.87 0.84
SCB

Forest
577 397 834 184 4.7 3.4 56 0 0.99 0.97

ICB 769 450 776 334 3.5 3.4 31* 0 0.90 0.87
* Approximated due to missing data as a result of the 2017 Empire Fire
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A random forest model fit to the measured soil moisture (expressed as % volumetric water
content; VWC) was able to predict the data with an RMSE of 3.6% VWC and a Pearson
correlation coefficient of 0.98. We tested the model’s ability to extrapolate beyond training
data: on average, when the model was trained on only 70% of the measured locations, it
was able to predict soil moisture at the remaining 30% of locations with an RMSE of 10
and a correlation of 0.82. The relationship between soil moisture and site properties was
similar for ICB and SCB, but not identical. In both watersheds, current vegetation type was
the most important predictor of soil moisture (Appendix B.4; Figure B.10). The random
forest model trained on ICB measurements fit the SCB soil moisture measurements with a
correlation coefficient of 0.82, whereas the model fit to SCB data was able to predict them
with a correlation of 0.98 (Figures B.13, B.14).

The random forest model showed small, but generally positive, changes in modeled June
soil moisture as a result of fire in SCB (Figure 4.8). These results did not vary with year, but
changes were slightly greater earlier in June compared to July or August (data not shown).
The largest modeled changes in volumetric water content were less than 5 percentage points
(Figure 4.8 inset), whereas in ICB a similar model predicted fire-related changes of up to 30
percentage points (Figure D6). Figure 4.8 also suggests that all areas that transitioned from
conifer to dense meadow already had relatively high soil moisture prior to fire, and areas
where forests encroached on meadows were relatively dry areas of meadow.
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Figure 4.8: Modeled actual soil moisture (current vegetation cover and fire history) compared
to modeled soil moisture assuming the same climatology (date set to early June) but no fire
or vegetation change since 1973. The inset shows a histogram of the point-wise differences
between these two sets of modeled values. Only locations where vegetation type changed
between 1973 and 2014 are shown (see Figure 4.5). Locations that transitioned from conifer
to dense meadow (mdw.) are shown as blue squares, conifer to sparse meadow as grey circles,
conifer to shrub as red diamonds, and dense meadow to conifer as green triangles. Other
types of transitions are rare (open black circles). Points above the dashed one-to-one line
represent locations where the model predicts soil moisture is higher than it would have been
without fire (positive numbers in the inset histogram).
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Consistent with the data from spatially-distributed soil moisture measurements (Figure
4.7), continuous weather station records (Figure 4.9; Appendix B.2) indicated that the wet-
land site was associated with the highest soil moisture among the three weather stations,
followed by the shrub and forest sites, at all three soil depths measured (12, 60, and 100 cm).
All sites experienced greater and more persistent soil moisture during the 2017 WY than the
2018 WY, as a result of large precipitation differences (SCB weather stations were installed
in September 2016 at the end of the 2016 WY, so data were not available for that period).
The forest stations tended to measure the least amount of precipitation (Figure 4.1) and
experience the earliest snowmelt (Figure B3), and had the greatest interannual soil moisture
differences (Figure 4.9). Cumulative shallow soil water gain showed idiosyncratic trends
among sites and years (Figure 4.1), although soil type and texture were generally similar
between ICB and SCB for each vegetation type (Appendix B.2). Cumulative soil water gain
reflects any detectable increase in VWC of shallow soil, however it does not always reflect
change in storage or availability of water for vegetation uptake. At SCB, cumulative soil
moisture gain was greatest at the forest site in 2017 but greatest at the wetland site in 2018
(Figure 4.1). Soil moisture gain at the forest site may be explained by rapid wetting and
drying during the snowmelt period in 2017 (Figure 4.9), possibly due to relatively shallow
snowpack (compared to the shrub and wetland sites) experiencing diurnal fluctuations in
freezing and thawing. Low values of cumulative soil moisture gain may also be attributable
to saturation and/or steady-state infiltration at certain sites, as such conditions preclude ad-
ditional moisture gains. During the wet 2017 WY, all sites were saturated at 1-meter depth
for some period of the year, yet during the drier 2018 WY, only soils at wetland stations
experienced saturation. In ICB, the wetland site remained fully saturated for both 2017
and 2018 WYs, while in SCB the wetland site was saturated only for a portion of each year
(Figure 4.1). In general, deeper soils contained more water and were saturated longer than
shallow soils, while shallow soil moisture was more responsive to precipitation, though water
input pulses were apparent at 60 and 100 cm depths as well (Figure 4.9). Very shallow (12
cm) soil moisture was positively correlated with deep (100 cm) soil moisture across sites and
years (Figure 4.1).
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Figure 4.9: Volumetric water content [%] in shallow (12 cm), mid (60 cm), and deep (100
cm) soils as measured by weather stations located in dense meadow (a), shrub (b), and
forest (c) sites. Data were measured at 10 minute intervals for 2017 and 2018 water years.
Vertical bars at top of panels indicate daily water inputs in the form of rain and snow melt.
Grey regions represent periods of time when snow is present around the base of the weather
station (at the shrub station camera data were not available in spring 2017, shown by grey
hatching). Water year (WY) summaries are also provided for total water inputs recorded at
each station. Refer to Appendix B.2 for visuals of each site.
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4.4 Discussion

Fire-driven changes in dominant vegetation type (from aerial imagery analysis; Figure 4.5)
and forest structure (from forestry plot data; Figure 4.3) were minimal at Sugarloaf Creek
Basin (SCB), despite over 40 years of managed wildfire and ten fires greater than 40 ha
over that time period in the basin. The minimal changes are a notable contrast from the
nearby Illilouette Creek Basin (ICB; Fig. 6), which had a similar duration of a restored
semi-natural fire regime yet saw much greater vegetation turnover (even within the first
20 years), heterogeneity of vegetation patches, and soil moisture response (Boisramé et al.,
2017a; Boisramé et al., 2017b; Boisramé et al., 2018). A number of potential explanations
for this discrepancy exist, including differences in the fire history of the two basins, and
differences in water balance and vegetation productivity between the two basins.

Approximately 5,500 ha (44%) of the 12,500 ha SCB watershed burned at least once and
approximately 1,300 ha (10%) of the watershed burned 2-4 times since 1973. Fires were more
active in ICB, with 52% of the ICB burning at least once in the same period, and 25% burning
2-4 times. The number of fires >40 ha from 1973 to 2016 was also much higher in ICB (n=27)
than SCB (n=10), and particularly in recent decades, with ICB experiencing 12 fires >40 ha
after 1985 (https://frap.fire.ca.gov/mapping/gis-data/) and SCB only experiencing 4 (Table
A1). Despite a marked increase over the fire exclusion and suppression period (Mallek et
al., 2013), this comparison with ICB demonstrates that the amount of fire activity in SCB
since 1970 may represent a relative lack of fire compared to an expected historical fire return
interval (and what is possible under a managed fire regime) over this period, since both ICB
and SCB had pre-suppression fire return intervals <10 years (Collins and Stephens, 2007).
This low fire return interval may partially reflect recent changes in how the managed wildfire
policy has been applied: only 1 ha has burned in the SCB between 2004 and 2017, with 59%
of active ignitions suppressed, compared with 7,289 ha burned and only 23% of ignitions
suppressed between 1969 and 2003 (Table A1; A. Caprio, personal communication).

The greater emphasis on fire suppression in recent years suggests that additional changes
in vegetation cover and forest structure might have been observed had a historical fire return
interval been more closely approximated. This is especially true given that the last large
fires across the central and eastern portions of SCB were in 1977 and 1985. While the 2003
fire reburned a portion of the 1985 fire, much of the area affected by the 1985 and 1977
fires has not reburned. This means there is considerable area for which the time since last
fire exceeds the historical fire return interval by 3- to 4-fold. In addition, the proportion of
area burned at high severity (since 1984) is quite small at only 2% of burned area or 69 ha
total (Table A1). For comparison ICB had 1129 ha of area burned at high severity (13% of
burned area) from 1984-2016 (B. Collins, unpublished data). Taken together these points all
demonstrate that fires in SCB had much less potential to manipulate vegetation structure
and composition relative to ICB.

The predominantly low-severity fires that burned in SCB by definition caused relatively
little conversion to alternative vegetation patches (Figures 3, 6), due in part to the range
of acceptable fire management conditions. Two of the most recent fires in SCB, the 1997
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Sugarloaf Fire and the 2003 Williams Fire, were responsible for the bulk of the larger patches
of overstory tree mortality that we detected in our vegetation change analysis (Figure 4.5;
Table A1). These two fires are also in a database of fire weather indices that enable compar-
ison to 475 other fires across California in similar mixed-conifer and fir forest (Stevens et al.,
2017). For maximum high temperature during the burn window, which was the number one
climatic predictor of burn severity in this database (Stevens et al. 2017), the Williams Fire
was in the 9th percentile (23.4oC) and the Sugarloaf Fire was in the 4th percentile (21.7oC),
indicating mild fire weather conditions.

While weather conditions for many SCB fires may have been mild, it is also possible that
there was reduced fuel accumulation in SCB relative to ICB in the fire-suppression period,
potentially due to lower precipitation and productivity in SCB. Three lines of evidence sup-
port wetter and more productive conditions in ICB vs SCB: first, in-situ weather station
data (Figure 4.1) and interpolated PRISM data (Table B3) show higher annual precipitation
in ICB; second, streamflow per watershed area is greater in ICB and its encompassing water-
sheds (Table A2); third, remote sensing analysis revealed greater vegetation productivity in
ICB compared with SCB (Figure 4.2), which is generally correlated with fuel accumulation
(Collins et al., 2016).

Climatically-driven reductions in fuel accumulation rates in SCB could explain differ-
ences in alternative vegetation patch sizes post-fire (Appendix C.3) if tree densities were
reduced and less continuous in the drier SCB (e.g., Stephens et al., 2018). Although sim-
ilar proportions of both basins were dominated by conifers prior to the reintroduction of
managed wildfire (Figure 4.6), our analysis did not account for potential differences in for-
est density. Forest densities in the more productive ICB may have increased more during
fire exclusion than in SCB, which could have led to larger patches of alternative vegetation
once fire was reintroduced. Besides reducing productivity, drier conditions may make the
SCB less hydrologically-responsive to wildfire-induced changes (Saksa et al., 2020). This is
because any additional water that becomes available in a water-limited forest (e.g., due to
fire-caused tree mortality reducing canopy interception and competition for soil water) is
likely to be taken up by the remaining water-stressed vegetation rather than contributing
to increased streamflow or soil moisture. For example, Roche et al. (2018) found that the
Kings Watershed had less post-fire reductions in ET than the American River Watershed,
which had higher precipitation and greater post-fire basal area.

While it is not possible from this study to disentangle the relative contributions of low fire
frequency and low productivity to the minimal changes observed in SCB relative to ICB, we
found clear evidence of those minimal ecosystem changes from our vegetation patch analysis,
our forestry plot analysis, and our soil moisture analysis in response to the restoration of
managed wildfire to SCB. With respect to the vegetation patch analysis, the proportional
area (Figure 4.6) and the maximum patch size of areas (Figure C4) converted from forest
to non-forest was higher in ICB. For larger high-severity patches to develop, there needs to
be a confluence of topography, weather and fuels sufficient to cause complete tree mortality
(Collins et al., 2007). Relatively small patches of alternative vegetation are one of the
primary goals of managed wildfire (Hessburg et al., 2016), so in that respect the fires within
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SCB may have met some management objectives with respect to the fine-scale heterogeneity
on the landscape to improve resilience to future fires.

With respect to the forestry plot analysis, we did not observe the changes in forest
structure from our re-measurement of forestry plots (Figure 4.3) that we would have expected
under managed wildfire (Larson et al., 2013). For instance, we observed a uniform decrease
in large (>61 cm) and very large (>100 cm) trees, even in unburned red fir forest (Figure
4.3). This is consistent with long-term trends that have been observed across the western
US (van Mantgem & Stephenson, 2007; van Mantgem et al., 2009; Das et al., 2016), and
may be indicative of climate or pest/pathogen influences in addition to fire, which we would
not expect to disproportionately target large fire-resistant trees in low-severity burns.

While large tree density in the forestry plots decreased over time, we observed a slight
increase in small (7.6 – 15.2 cm dbh) tree density regardless of number of times burned
(Figure 4a). One of the objectives of managed wildfire is the removal of smaller understory
trees, particularly of fire-sensitive species (North et al., 2012; North et al., 2015), an outcome
that has been observed with managed wildfire in other wilderness areas (Larson et al., 2013).
However in SCB in twice-burned plots, we saw an increase in species more easily killed by
fire (e.g. Pinus contorta) in smaller size classes (Figure 4.3c). The four plots that burned
twice (Figure 4.1) were all classified as low to moderate burn severity in the second fire (the
initial fire in each case pre-dated remotely sensed burn severity maps). Given the absence
of recent fire in the watershed discussed above (Table A1), the regeneration we observed in
the smallest size class (Figure 4.3a) may have filled in since the fires of the 1980’s and late
1990’s even if those fires did consume much of the previous regeneration layer, highlighting
the importance of repeated fires to continue to regulate fuels and the spatial heterogeneity of
fire-prone forests (North et al., 2012). The increase in shrubs at all burn frequencies (Figure
4.4) was expected, as the dominant shrub species of Arctostaphylos and Ceanothus in this
system have fire-cued seed germination (Safford and Stevens 2017).

With respect to the soil moisture analysis, the lack of a strong watershed-wide signal of
changing soil moisture is primarily due to 1) minimal detectable differences between forest,
shrub, and dry meadow soil moisture profiles when accounting for other moisture drivers
(Figure D3c), and 2) the relatively low initial abundance and minimal post-fire expansion of
the dense meadow vegetation class (the vegetation type associated with the highest soil mois-
ture; Figures 7, D3c). Both of these factors could be attributable to soil and topographic
properties of the watershed as well as precipitation and productivity effects as discussed
above. In contrast, within the more productive ICB (Appendix B.2), pronounced increases
in the dense meadow vegetation type were observed following fire (Boisramé et al., 2017a;
Boisramé et al., 2017b). In ICB, there may have been a greater encroachment of trees, par-
ticularly Pinus contorta, into meadows during the late 19th century fire exclusion period.
This higher encroachment could be due to the ICB’s higher productivity relative to SCB,
greater consistency in soil saturation of the SCB meadows (this limiting conifer growth),
or a combination of both. Alternatively, climate, topography and soil type may be con-
straining meadow locations at SCB more than at ICB, as we observed little dense meadow
encroachment into the margins of existing dense meadows on the rare occasions where those
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meadow margins burned (Figure 4.3). It is possible that fire might have greater impacts on
soil moisture at shorter time scales; our hydrologic data collection all took place at least a
decade following the most recent fire, which could be sufficient time for ET processes (which
impact soil moisture) to recover to pre-fire conditions (Roche et al. 2018) and highlights the
need for repeated fires to truly restore fire-adapted forests.

High correlations between shallow and deep soil moisture during summer months (Figure
4.1) suggest that our spatially-distributed soil moisture measurements can reflect conditions
in deeper soils. However, this correlation only captures relative changes over time, not
absolute values. In late summer, there was a greater difference between deep and shallow
soil moisture at the shrub and wetland stations than there was at the forest station (Figure
4.9). Therefore, it is possible that transitions from mature forest to more open vegetation
cover might lead to greater increases in deeper soil moisture than would be suggested by
shallow soil moisture. This could mean that the modeled surface soil moisture changes in
Figure 4.8 may underestimate the total change in plant-available moisture. Findings from the
ICB also suggested that the soil moisture impact of forest removal might be larger in deeper
soils (Boisramé et al., 2018). However, there is high uncertainty regarding the changes to
deeper soil water storage, since we cannot determine how broadly these relationships between
deep and shallow soils extent beyond the weather station locations.

Similarities in the random forest models trained on ICB and SCB moisture data show that
certain variables are consistently strong predictors of soil moisture. For example, vegetation
cover type and TWI were within the top 4 most important predictors of soil moisture for both
ICB and SCB, with years since fire, times burned, and year of measurement being the least
important predictors in both watersheds (Figure D1). However, the relatively poor ability of
the ICB-trained model to predict SCB moisture values indicates that the relative importance
of these factors for controlling summer soil moisture varies between the watersheds. The
extent to which this variation should be attributed to physical and ecological factors in the
watershed, and the extent to which it reflects features of the random forest methodology, is
not clear given the information available.

Conclusion

Our characterization of vegetation change and the hydrological response following the imple-
mentation of a natural fire program in SCB demonstrates the contextual nature of landscape-
level fire-ecosystem interactions. While the nearby ICB is similar to SCB in size, elevation,
forest types, and time since establishment of a managed wildland fire policy, assuming sim-
ilar fire-related changes in SCB would have overestimated fire-driven change in vegetation
and in water availability. This discrepancy highlights the importance of the place-based field
and imagery datasets that we used in our analysis here. While the direction of change and
predictors of soil moisture were similar for the two watersheds, the magnitude of change
was much lower in SCB, likely due to the interaction between watershed-level productivity
and fire effects. In SCB, the lower overall productivity, the reduced fire frequency, and the
lesser proportions of high severity fire effects relative to ICB led to greater stability in vege-
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tation over time and a more muted hydrological response to managed wildfire in SCB. More
landscape-level experimentation in other watersheds, including lower elevation sites more
productive than ICB, would further clarify the range of possible landscape and hydrologic
responses to natural fire regimes.
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Chapter 5

Hydrological Benefits of Restoring
Wildfire Regimes in the Sierra
Nevada Persist in a Warming Climate

The contents of this chapter are accepted to the Journal of Hydrology in 2020, as an article
titled “Hydrological Benefits of Restoring Wildfire Regimes in the Sierra Nevada Persist
in a Warming Climate”, Gabrielle Boisramé, Scott Stephens, and Sally Thompson is the
co-author. The article is going through the publishing process.

5.1 Introduction

Mountain watersheds represent a locus of environmental change and vulnerability in the
Western US. The Sierra Nevada, for example, produce 9-30% of California’s electricity, and
60-90% of California’s water supply (Madani & Lund, 2009), “provisioning” ecosystem ser-
vices (Stephens et al., 2020) that supply water to 30 million of the state’s residents and
support agricultural industries with an estimated value of $50 billion/year (Klausmeyer &
Fitzgerald, 2012; California Department of Food and Agriculture, 2019). These watersheds,
however, experience a naturally volatile climate, are expected to warm and dry due to cli-
mate change, and are at increasing risk of disturbance, particularly from wildfire, which is
also expected to increase in severity and frequency in a warmer climate (Goulden & Bales,
2019; Westerling & Bryant, 2008). This volatility, warming, drying, and increase in fire risk
present significant risks to power production (Tarroja et al., 2016), water supply (Dahm et
al., 2015; Writer et al., 2014), human lives (CalFire, 2019b), health and infrastructure (Cal-
Fire, 2019c), biodiversity (Richter et al., 2019), ecosystem services (Wood & Jones, 2019;
Stephens et al., 2020), and amenity of the montane landscape (Millar & Stephenson, 2015).
Conventional management approaches are unlikely to be able to address these joint threats:
for example, the costs of fire suppression and firefighting in California are growing expo-
nentially, reaching $950 million USD in 2018 (CalFire, 2019a) with reparation costs in the
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billions of dollars (Thomas et al., 2017).
Consequently, foresters and catchment managers are seeking alternative management

paradigms for fire-prone montane forests (Stephens et al., 2020). One option is to adopt a
“fire use” policy, also known as “managed wildfire”, for watershed management. Fire use
policies allow lightning-ignited wildfires to burn, subject to a strict management policy that
calls for intervention to suppress fire when air quality, structures, or people are placed at
risk (van Wagtendonk, 2007). In part, this policy attempts to restore the natural fire-regime
in Western US forests, reversing the more than one hundred years of fire suppression in
the region. Fire suppression has altered contemporary forests relative to their pre-European
settlement condition, such that fuel loads, the prevalence of shade-tolerant and fire-intolerant
species, and density of forest vegetation have all increased relative to historical baselines
(Collins & Stephens, 2007; van Wagtendonk et al., 2012; Scholl & Taylor, 2010; Stephens
et al., 2015). Although interest in adopting fire use strategies is growing (Stephens et al.,
2016), there have been relatively few locations where they have been implemented for long
enough to assess their effects. Within the Sierra Nevada, the Illilouette Creek Basin (ICB) in
Yosemite National Park, CA (Collins & Stephens, 2007), has experienced 29 fires larger than
40 ha since 1972, when 100 years of fire exclusion and suppression in the Basin ended (van
Wagtendonk et al., 2012). ICB is located in proximity to long-term weather stations and is
gauged shortly downstream of its confluence with the Upper Merced River. These unique
characteristics have made it the subject of ongoing research to establish the ecological and
hydrological effects of fire use policies (e.g. Collins & Stephens, 2007; Ponisio et al., 2016;
Boisramé et al., 2017; Boisramé et al., 2018; Boisramé et al., 2019a).

Hydrologically, the impact of fire use strategies in the ICB has been to increase streamflow
production and expand wet environments (Boisramé et al., 2017, Boisramé et al., 2019a).
Changes to the water balance of the basin inferred using the Regional Hydro-Ecological
Simulation System (RHESSys) suggest that annual transpiration has decreased by up to 30
mm, peak snowpack depth increased by up to 10 mm of snow water equivalent (SWE), annual
discharge has increased by up to 40 mm/year in the fire-affected section of the watershed or
approximately 5% (25 mm/year) overall, and storage of water in the soil and groundwater
(referred to as subsurface storage hereafter) has increased by an average of 60 mm (Boisramé
et al., 2019a). These changes, although modest, are comparable to inference of increased
streamflow, subsurface storage and snowpack, and decreased evapotranspiration, following
wildfires in the Consumnes Watershed in the Sierra Nevada (Maina & Siirila-Woodburn,
2019). Such post-fire wetting occurs against a background of warming and drying in the
Sierra Nevada, and could represent a positive hydrological co-benefit relevant to the social
and economic case for fire-use policies (c.f. González-Sanchis et al., 2019).

Expanding wildland fire use policies to other locations involves confronting the long
timescales on which the forests adjust to changed fire regimes (Stevens, Boisramé, et al.,
2020). These timescales mean that changes in fire management policy implemented in the
near future would impact forests and their hydrology during the mid-21st century, in com-
parison to the late 20th century when most of the changes occurred in the ICB. Thus, before
attempting to use the hydrological insights gained from the ICB to inform contemporary
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forest management decisions, it is pertinent to ask whether the hydrological outcomes of
wildland fire use are sensitive to the changes in climate expected by the mid-21st century.
Although assessments of the hydrological impact of climatic extremes on watersheds in the
Western US suggest that the increases in streamflow due to wildfire dwarf the reductions pre-
dicted due to climate change by 2050 (Wine et al., 2018), many uncertainties surround these
predictions, including variable effects of post-fire vegetation growth rates and the impact
of different fire regimes on water balance (Tague et al., 2019), poorly understood post-fire
vegetation successional trajectories in a changed climate, and uncertainties surrounding the
future fire regime itself.

By the mid-21st Century, the Sierra Nevada region is projected to be warmer, to expe-
rience similar or slightly elevated precipitation inputs (Dettinger, 2005; Pierce et al., 2013),
and more frequent fires than in the 1972-present period (Westerling & Bryant, 2008; Yue
et al., 2013; Geos Institute, 2013). Multiple studies agree that warmer conditions will dry
fuels and increase fire frequency, severity, and extent (e.g. Westerling & Bryant, 2008; West-
erling, 2018; Littell et al., 2009), but recent re-appraisals of this work in the Sierra Nevada
suggest that fire frequency in future climates is over-estimated because projections have ig-
nored the effects of fuel limitation (Hurteau et al., 2019). Additional complexities, including
non-stationary relationships between drought and fire occurrence across climate gradients
(McKenzie & Littell, 2017), and feedbacks between fire extent, vegetation dynamics and
distributions (Syphard et al., 2018), mean there is considerable uncertainty regarding the
future fire regime; so much that Syphard et al. (2018) concluded that there was “no way to
ascertain which projections of fire are most feasible”.

Compounding uncertainties about future fire regimes is the hard-to-predict successional
trajectory of vegetation post-fire, and the interaction of these trajectories with a non-
stationary climate (Lenihan et al., 2003; Steel et al., 2015; Cornwell et al., 2012; Batllori
et al., 2015). Rapid vegetation transitions from conifer forests to shrubland are associated
with the loss of tree seed banks, which limits forest regeneration within large patches of high
severity fire (Meng et al., 2015; Young et al., 2019), and with arid post-fire conditions that
create unfavorable growth conditions for many forest species (Davis et al., 2019). Shrublands
regenerate rapidly after a fire and have a greater tolerance for arid conditions (Lauvaux et
al., 2016; Serra-Diaz et al., 2018; Baudena et al., 2019). In the absence of high severity fires,
forest succession occurs on timescales of multiple decades (Halofsky et al., 2018; Liang et
al., 2016), and fire excluded forests are hypothesized to lie near tipping points where dis-
turbances could cause significant changes in vegetation composition (Batllori et al., 2018).
This literature suggests that the potential range of post-fire vegetation transitions is poorly
bounded.

Fully predicting the effects of wildland fire use on hydrologic regimes under future cli-
mates would require unraveling these uncertain processes to specify the feedbacks between
vegetation, water, fire risk and successional dynamics, a highly challenging problem (Brotons
& Duane, 2019; Riley et al., 2019). We therefore do not directly address this problem for
the specific case of the ICB, but instead adopt a set of simplifying assumptions which are
further developed and justified in the methods section: (i) we use standard approaches to
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predicting future climate in ICB by downscaling and bias correction of an ensemble of global
circulation models (Lanzante et al., 2019; Luo et al., 2018), (ii) we assume that the charac-
teristics of the fire regime that would arise if applied to fire-suppressed forests in 2030-2070
are well represented by the severity - area distribution of the historical fires that occurred in
ICB from 1972-2010, and we allow for the frequency of these fires to increase across a set of
scenarios drawn from the literature and considering climate impacts on frequency only (see
Section 5.2 for details). Specifically, the assumptions keep severity and fire area constant,
and therefore do not account for possible feedbacks between these aspects of fire, climate,
and vegetation. Finally (iii) we assess the hydrological implications of climate change on fire
impacts under two vegetation scenarios: one in which post-fire vegetation transitions match
those which occurred in the historical period (a scenario which might arise if, for example,
topography and geological context primarily drive vegetation community types), and one
“bounding case” scenario in which we force all post-fire vegetation regeneration to occur as
a single plant type (conifers, shrublands, or wet meadows), assuming that reality would lie
in between these extreme limits of vegetation change. With these assumptions, we use an
existing RHESSys model parameterization for the ICB (Boisramé et al., 2019a) to answer
three questions:

i) How would the hydrology of the ICB respond to climate change in the absence of the
fire use policy, where vegetation remains in a fire excluded state?

ii) How do the hydrological outcomes of fire use strategies in ICB differ under future
climate conditions (2030-2070; RCP 4.5 and RCP 8.5), relative to those outcomes under the
observed climate (1970-2010)?

and
iii) How sensitive are the hydrological outcomes of fire use strategies for the 2030-2070

period to potential increases in fire frequency?

5.2 Methods

Study Site

Illilouette Creek Basin (ICB) is located within Yosemite National Park, California, USA
(Figure 5.1). The 150 km2 basin spans an elevation range of 1,270-3,600 meters, with a
mean elevation of 2,500 meters. About 41% of the ICB is forested with Pinus jeffreyi,
Abies concolor, Abies magnifica, and Pinus contorta, interspersed with meadows (16%) and
shrubland (9%). About 34% of the basin is high elevation granite, which acts to confine fires
to the basin (Boisramé et al., 2017; Collins et al., 2009).

ICB experiences a Mediterranean climate with warm dry summers and cool wet winters.
The nearest weather station is located in Yosemite Valley (1,240 meters, 37.74 lat, -119.59
lon, CDEC station YYV), and has operated since 1926. Over 1970-2010, this station recorded
a mean annual precipitation of 92.0 cm, mean daily minimum January temperature of -2
◦C and mean daily maximum July temperature of 27◦C. The ICB has similar precipitation
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Figure 5.1: Study site location: Illilouette Creek Basin (A), within Yosemite National Park
(B), California (C). Stream gauging station (Happy Isles) and weather station are displayed
along with major rivers and tributaries.

totals to Yosemite Valley, but is approximately 7 oC cooler (January 2015 to December 2017,
Appendix Figure C.1), leading to a greater fraction of precipitation falling as snowfall. While
streamflow data for the ICB itself are limited, the basin comprises 33% of the Upper Merced
River Basin, which has a century-long streamflow record at the Happy Isles gauge located
downstream of the confluence of the Illilouette Creek with the Upper Merced River (Figure
5.1; Boisramé et al., 2019a). The mean flow at Happy Isles was 10 m3/sec (71 cm/year) for
1970-2010 (USGS gauge # 11264500, data from waterdata.usgs.gov).

During the period from 1700-1900, prior to fire suppression, ICB had a fire return interval
of 6.3 years. Following the initiation of fire use strategies, the fire return interval was 6.8
years (from 1972-2005), similar to the pre-exclusion era (Collins & Stephens, 2007). From
1972 to 2019, there were 29 fires greater than 40 ha in ICB, of which 1 was human caused
(1986, burned 291 ha), 1 was prescribed (1999, 54 ha), and the other 27 fires were lightning
ignited (van Wagtendonk et al., 2012). Of the 8187 ha burned in ICB (75% of the watershed’s
vegetated area), 4463 ha (55%) burned twice, 767 ha (9%) three times, 72 ha (1%) four times,
and 4 ha (<1%) five times (Figure 5.1). As shown in Figure 5.2, this high wildfire activity in
ICB has doubled the area of dense and sparse meadows in the basin (Boisramé et al., 2017,
Boisramé et al., 2018), increased landscape heterogeneity and habitat for multiple plant and
animal species, and is associated with increased biodiversity (Ponisio et al., 2016; Campos
et al., 2017; Stephens et al., 2019).
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Figure 5.2: Vegetation classification of ICB based on satellite imagery for 1969 (left) and
2012 (right). 1969 landscape signifies over 100 years of fire suppression, while 2012 represents
40 years of fire use strategies.

The contemporary (1972-present) fire regime in the ICB has been relatively stationary
(Figure 5.3). Following the initiation of fire use strategies, the fires were relatively small in
area with low to moderate burn severities, as assessed by Landsat-derived indices, where the
Relative difference Normalized Vegetation Index (RdNDVI) was used prior to 1984, and the
Relative difference Normalized Burn Ratio (RdNBR) post 1984 (Collins et al., 2009). Both
burn severities (Figure 5.3-A) and burn areas (Figure 5.3-B) in the ICB are more stable
in the contemporary period than in the surrounding Sierra Nevada, where fire severity and
area have both increased. Fire perimeters in the ICB indicate that fires in the basin are
self-limiting (Collins et al., 2009).
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Figure 5.3: Burn severity for fires that occurred within ICB (red in C) and the surrounding
Sierra Nevada (SN) region (SN fires are dark gray in C) were assessed using Landsat-derived
RdNBR index for years after 1983 and RdNDVI prior to 1983 (A). For the SN, a 90%
confidence interval is provided along with the average fire size for the years 1984-2018. Fire
severity in ICB is shown as a box and whisker plot in red, where the range is the 5th
through 95th percentile, and the average is shown as a horizontal dash. In B, mean and 90th
percentile fire size from 1974-2018 is shown for fires in the SN (gray colors). Red dots in B
are fire areas within the ICB only, and black dots are full fire perimeters of which at least a
portion was within the ICB. The maximum fire size within ICB (vegetated area of ICB) is
shown as a horizontal red line. Fires less than 40 hectares were excluded from both the SN
and ICB analyses.
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RHESSys Model

The Regional Hydro-Ecological Simulation System (RHESSys, version 5.20.1) is a spatially
distributed ecohydrological model that simulates water, energy, and vegetation growth pro-
cesses. It represents landscapes through a hierarchy of spatial units: small areas of uniform
soil and vegetation are represented as patches, water is routed between patches within hill-
slopes, and basin-scale processes arise from water fluxes and stores aggregated across hill-
slopes. The ability of RHESSys to simulate climatic, hydrological and vegetation growth
processes at a basin scale makes it well suited to simulating the effects of disturbance (such
as fire) on water balance.

At the patch scale, RHESSys resolves a detailed vertical energy and water balance. The
energy balance is forced by shortwave radiation inputs, varied to account for slope, aspect,
topographic shading, and seasonality. Other energy flux terms, and wind speeds, are attenu-
ated through vegetation canopies as a function of leaf area index (LAI), which itself changes
dynamically as the vegetation grows. Incoming precipitation is intercepted by canopy and
litter layers, and is partitioned between infiltration (via Green & Ampt, 1911) and surface
detention storage (which contributes to runoff if sufficiently large) at the soil surface. Vapor
fluxes include evaporation or sublimation from all vertical layers, and transpiration separately
computed from sunlit and shaded canopy layers, all computed using the Penman-Monteith
approach (Monteith, 1965). Infiltrated water is routed between a root zone, an unsaturated
and saturated zone based on Darcy relationships and soil parameters, and lateral fluxes of
water between spatially explicit patches are resolved based on surface topography and cal-
ibrated drainage parameters. In addition to specifying LAI growth rates, species-specific
plant properties control maximum stomatal conductance values and their response to chang-
ing soil water. A more detailed description of the RHESSys model is provided in Tague &
Band (2004).

Boisramé et al. (2019a) implemented RHESSys in the ICB, drawing on LiDAR elevation
data at 10m resolution (Kane et al., 2015), a vegetation analysis (Boisramé et al., 2017)
that used aerial photos and the Yosemite National Park vegetation mapping to delineate
six cover types, daily weather data from the Yosemite Headquarters Weather Station, and
flow records at Happy Isles Gauge and a short flow record within the Illilouette Creek. The
six cover types are conifer forest, aspen (Populus tremuloides), shrub (primarily Ceanothus
cordulatus), wet meadow (dense grasses and forbs), dry grassland (sparsely vegetated areas
dominated by grasses), or unvegetated (exposed rock or sand). The model was calibrated
to identify behavioral parameter ensembles consisting of (i) temperature and precipitation
lapse rates (ii) decay of hydraulic conductivity with depth, (iii) saturated hydraulic conduc-
tivity at the land surface, (iv) depth of hydrologically active water storage across soil and
saprolite layers, (v) the proportion of saturated soil water routed directly (via preferential
flow paths) to deeper groundwater stores below plant root access, and (vi) the proportion of
these deeper groundwater stores draining to the stream each day. RHESSys captures spatial
variations in subsurface properties across soil types by scaling them using mapped soil cat-
egories for the ICB. Calibration was performed against Happy Isles flow data and identified
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an ensemble of 93 behavioral parameter sets (assessed across a multi-objective set of criteria
aiming to capture volume and timing of streamflow on monthly, seasonal and annual scales)
that were used to constrain model uncertainty using the Generalized Likelihood Uncertainty
Estimation (GLUE) approach (K. Beven & Binley, 1992). More details regarding the param-
eterization, calibration, and validation of RHESSys for the ICB are provided in Boisramé et
al. (2019a).

Modeling the Effect of an Individual Fire

Individual fires in RHESSys were defined based on fire perimeter and severity maps. Fires
were treated as having an instantaneous effect on vegetation biomass, on the thickness of
the litter layer, and on the species-specific properties of the vegetation (to represent post-fire
vegetation transitions): these factors drive subsequent hydrological responses in RHESSys.
Wildfires can, however, have other hydrologically-relevant effects that were omitted from the
model, including reduced albedo from charred surfaces (Burles & Boon, 2011, Gleason et
al., 2013, Gleason et al., 2019), changes in the size and distribution of canopy gaps (Stevens,
2017; Kostadinov et al., 2019; Lundquist et al., 2013), reduced soil infiltration capacity due
to ash clogging or soil hydrophobicity (Neary et al., 2005; Ebel & Moody, 2020; S. Doerr
et al., 2006), and increased erosion rates (Larsen et al., 2009a). In the ICB, low-moderate
severity fires are most common (rather than the high severity fires that generate persistent
changes in soil properties S. Doerr et al., 2006), and water quality monitoring at the Happy
Isles’ gauge indicates no increases in turbidity or flow peaks post-fire (results not shown).
The reliance of our modeling on spatially uniform daily precipitation, although necessary
given lack of more resolved precipitation data for the Merced River Basin (Henn et al., 2018)
would likely prevent the model from resolving surface-flow events that might arise due to soil
changes. Consequently, the model, which was calibrated to optimize long timescale water
balance predictions, may under-estimate peak flow occurrences, particularly immediately
post-fire.

Fire severity was used to determine the degree of biomass and litter loss in each fire-
affected patch. The threshold approach of J. D. Miller & Thode (2007) was used to relate
RdNDVI/RdNBR observations to fire severity in ICB following Collins et al. (2009). We
considered three classes of change: (i) for RdNBR and RdNDVI values between 69 and 315
(low severity), only litter stores were removed; (ii) for values between 315 and 640 (moderate
severity), in addition to litter removal, plant carbon stores were reduced 50%; (iii) for values
greater than 640 (high severity), all carbon and litter layers were removed within the fire
perimeter. Additionally, if analysis of aerial photos indicated a change in vegetation cover
type following a fire, we mapped these patches also as high severity burn areas.

Where high severity fire occurred, all above-ground vegetation carbon and litter stores
were set to zero and modeled vegetation was allowed to immediately regrow dynamically.
To account for the possibility of a post-fire cover-type transition, we reset the vegetation
parameters in these patches to represent one of two scenarios. In one scenario, individual
pixels followed the observed historical successional trajectory that occurred in the 1972-2010
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setting. In the other scenario, pixels that burned at high severity were forced to regenerate
with a single vegetation type: all forest, all shrub, or all wetland. This “bounding cases”
scenario was used to constrain the uncertainty in the hydrological projections that arises due
to unknown patterns of future post-fire regeneration, under the assumption that enforcing
a single vegetation type provides a limiting case. The bounding case scenarios were run for
the historical fire regime only.

Using 1972-2010 Fire Data to Define Potential Future Fire
Regimes

The characteristics of the fire regime that has prevailed in ICB since 1972 are illustrated in
Figure 5.3 which shows RdNDVI and RdNBR distributions, fire return interval, and area
of all fires over 40 ha. Note that the most recent fire, the Empire Fire of 2017 (the only
fire after 2010) is not shown on this figure. It was omitted from this study due to a lack of
data about post-fire vegetation type and condition. However, as illustrated in the Appendix
Section C.3, the Empire Fire was similar to previous fires in size and severity. These data
are suggestive of a relatively stable fire regime, consistent with the self-limiting behavior of
fire in the ICB.

Defining the spatial, temporal, and severity characteristics of potential future fire regime
is, as the literature reviewed in the introduction suggests, inherently uncertain. In light of
these uncertainties and the stability of the fire regime in the ICB over five decades of climatic
and vegetation change, we use the observed fire perimeters and severity maps to define
potential future fire areas and severities. With the historical fire perimeters providing some
control on fuel limitation, warmer temperatures are expected to increase the probability of
ignition by decreasing fuel moisture, leading to increased fire occurrence (Riley & Loehman,
2016; Westerling & Bryant, 2008; Lauvaux et al., 2016). To explore the effects of changing
fire frequency, we shortened the time interval (in days) between historical fires by 30% and
60% in line with predictions for the Sierra Nevada based on climatic warming (Riley &
Loehman, 2016; Westerling & Bryant, 2008; Lauvaux et al., 2016). This had the effect of
some fire perimeter/severity combinations being imposed twice in the modeled record – for
the 30% increase in fire frequency scenario(“+30%”), these were the fires from 1974 and
1978; for the 60% scenario, the fires from 1974, 1978, 1980, 1981, 1986, 1988, and 1990 were
imposed twice. As can be seen visually in Figure 5.3, these fires are broadly representative
of the range of fires in the ICB (i.e. we did not repeat extreme cases). We checked if these
increases were reasonable in light of the minimum time needed to allow fuel to build up
and reburn in the ICB - estimated as approximately 9 years (Collins et al., 2009). For a
60% increase in fire frequency scenario (“+60%”), the average interval between reusing a
given fire perimeter is 24 years, and the average interval between pixels reburning is 7 years,
suggesting that this increase represents a reasonable fuel-limited maximum for the basin.

Using a historical fire occurrence record as a basis for increasing fire frequency can lead
to a situation where a fire is predicted to occur outside the fire season (historically observed
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to be June-September in the ICB). If this projected timing was such that the fire occurred
in the window of April 1st to October 31st (a period that we confirmed is snow-free in all
modeled future climate scenarios), we allowed the fire to burn on that projected date, in line
with the expected lengthening of the regional fire season (Yue et al., 2013). If, however, the
projected fire date lay outside this seasonal range, it was assigned a random date from the
nearest fire season.

The approach of using historical fire perimeters to define the future fire regime omits
exploration of other future fire scenarios - for example, scenarios in which the severity/area
of fires changes dramatically. Using historical fire perimeters does not allow a fully compre-
hensive analysis of the uncertainty in hydrological predictions associated with the specific
sequence of fires. It does not explore a situation in which fire frequency is reduced in the
basin relative to historical conditions; although the fact that three fires were suppressed
during the California Drought (2011-2016, this is likely responsible for the large fire-free
interval before the Empire Fire in 2017) suggests that reduced fire frequency regime could
be a possible outcome within the future climate. Given these limitations our goal is not
to be predictive, but rather to determine if the hydrological responses to this sequence of
historically managed fires, or to a “sped up” version of this sequence of fires, are the same
as they were under historical climate conditions.

Future Climate Data and Bias Correction

Ensembles of climate model predictions are widely recognized as being essential to char-
acterize the uncertainty surrounding future climates (Pierce et al., 2009; Hagedorn et al.,
2005; P. D. Thompson, 1977). Since too few regional climate models are available over the
ICB to generate such an ensemble, we downscaled the minimum and maximum tempera-
ture and precipitation output of 10 GCMs, using data from the cell (ranging from 0.75-2.8
degrees latitude and longitude) containing the ICB, for the 2030-2070 period. In select-
ing 10 models, we followed the recommendations of Pierce et al. (2009), who suggested
that climate ensembles became stable after 5 or more models are included. The GCMs
we selected were: ACCESS1.3, CanESM2, CMCC-CM, CSIRO-Mk3.6.0, GFDL-ESM2M,
INM-CM4, IPSL-CM5A-MR, MIROC5, MRI-CGCM3, and NorESM1-M (Appendix Figure
C.2 provides additional descriptions of each model). These models were chosen to max-
imize model skill and model independence as computed by Sanderson et al. (2017), and
to cover a range of predicted future climate extremes (i.e. to include models that predict
both cooler/wetter futures in the region, and those that predict hotter/drier conditions).
All model data were obtained from the Coupled Model Intercomparison Project Phase 5,
CMIP5 (https:/esgf-node.llnl.gov/projects/cmip5), and have the same initializations, real-
izations, and parameterization states (abbreviated as “r1i1p1” in CMIP5). We obtained
future climate timeseries from both RCP 4.5 and RCP 8.5 climate scenarios, where RCP
4.5 scenario represents a decline in greenhouse emissions around year 2040 and RCP 8.5 is a
“business-as-usual” scenario with a continuous rise in greenhouse emissions. Both scenarios
predict a global rise in temperature.
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Choosing temperature and precipitation data of the single GCM grid point containing
ICB, we used quantile delta mapping (QDM) (“MBC” package in R) to bias correct the GCM
data and downscale it to the location of the Yosemite Headquarters weather station. QDM
is a non-parametric method to correct systematic modeled biases with respect to observed
values while preserving model-projected relative changes in precipitation and temperature
quantiles (Cannon et al., 2015). In addition to modeled, observed, and future climate time-
series, QDM requires observed climate observations, which we obtained from the Yosemite
Headquarters weather station and gap filled via multivariate imputation (‘MICE’ package in
R) and data from adjacent weather stations (see Appendix Section C.2). We bias-corrected
the daily precipitation and the daily maximum and minimum temperatures for 2030-2070,
treating the historical period (1970-2010) as static. During a static period, the distribution
of climatic variables does not change significantly for any decade. QDM was then used to
superimpose the modeled quantile trends (“delta changes”) onto the observed static period.
The delta changes were applied multiplicatively to the precipitation correction and addi-
tively to the temperature corrections (Cannon et al., 2015). The resulting bias-corrected
model timeseries form the climate ensemble were used to drive RHESSys modeling. The
timeseries were summarized in terms of rainfall, temperature, snowfall, and snow season
statistics across the ensemble: these quantities are important determinants of the length of
the fire season and basin hydrology.

Although CO2 concentrations are predicted to rise in the future climate, due to model
limitations, they are held constant across all model simulations.

Model Experiments

The model experiments were set up to answer the Research Questions. Prior to conducting
the model experiments, RHESSys was initialized with the 1969 fire-excluded vegetation map,
which was spun-up for a few hundred years using observed historical climate (repeated time-
series), starting from no carbon stores, and until LAI reached a steady-state (Boisramé et al.,
2019a). Then, prior to the future climate simulations (2030-2070), for each RCP scenario, the
1969 fire-excluded and spun-up vegetation was further spun-up using the 2020-2030 climate.

Research Question (i) asks how changing climate would alter the hydrology of the fire-
excluded ICB, assuming vegetation was initialized in the same state as was observed in 1969.
To answer this question, we held vegetation type constant and ran RHESSys for 40 years
using the observed 1970-2010 climate, and for the RCP 4.5 and 8.5 future 2030-2070 climates
(see Figure 5.4). Differences in the predictions can be interpreted as the impact of climate
on vegetation and hydrology in the absence of changes imposed by fire.

Research Question (ii) addresses the differences in how wildland fire use affects ICB
hydrology under future versus observed climates. To answer this question we ran RHESSys
for a 40 year period using the observed 1970-2010 climate, and for the future climate ensemble
for the period 2030-2070 under RCP 4.5 and RCP 8.5 scenarios.

For each of these climates we ran a control model representing fire excluded conditions
based on the 1969 vegetation map (Figure 5.2-A) with no fire disturbance imposed (“fire ex-
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Figure 5.4: Historical modeling time period from 1970 to 2010 (A), denoting observed 40
years since the end of fire exclusion policies in the ICB. Future modeling time period from
2030 to 2070 (B) is compared to the historical one. An ensemble of 10 different CMIP5
general circulation models (GCMs) was used as future climate inputs for two different repre-
sentative concentration scenarios (RCP 4.5 and RCP 8.5). Blue vertical lines denote histor-
ical frequency fire events. Orange vertical lines denote 30% increase in fire frequency from
historical observations, and dark red vertical lines denote 60% increase in fire frequency.

cluded”). We also ran a treatment model in which fire disturbance was imposed based on the
observed historical (1970-2010) fire regime (“historical frequency”) and updated vegetation
maps after fires (using both the observed post-fire vegetation transitions and the bounding
cases where all vegetation transitions to specific cover types). The differences in hydrological
predictions between control and treatment models can be attributed to the effects of fire on
vegetation and litter. The differences in these differences (sensu Angrist & Pischke, 2008)
can be attributed to the role of different climates interacting with the fires.

Research Question (iii) is addressed by repeating this analysis using the higher frequency
fire regimes in combination with the future climate scenarios (Figure 5.4), however, in this
case, only historical vegetation transitions were modeled. Again, the fire excluded land-
scape was modeled across all climate regimes as a control. Differences between control and
treatment can again be attributed to the role of fire.

RHESSys output was generated on daily timescales at the scale of the entire Illilouette
Creek Basin. The analysis focuses on streamflow, vertically aggregated depth of saturated
and unsaturated groundwater storage (“subsurface storage”), snow water equivalent (SWE),
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snow sublimation, LAI, evaporation, and transpiration. These variables were aggregated to
water year to visualise long-term fire effects. All results were reported as a depth of water,
with basin-scale fluxes normalized by the basin area (150 km2). However, in interpreting
these results, it is important to recall that all changes in basin-scale hydrology were derived
from fire-induced changes that occurred in at most 75% (112 km2) of the watershed. If
considering how the observed changes in ICB might play out in other watersheds, it may be
more appropriate to weigh these changes by fire-affected area in each basin. Heterogeneity
in hydrological processes should also be considered: for example, only approximately 52%
of the streamflow in ICB is generated in the area that burned (and the remaining 48%
is generated on high elevation rock and is largely uninfluenced by downgradient vegetation
condition). Snowpack dynamics are also highly spatially variable, with these spatial patterns
shifting greatly between climate scenarios. These variations are masked in the whole-of-basin
averaging used to present hydrological change in this study, but analysis of heterogeneity in
hydrological response to fire is beyond the scope of this manuscript.

Uncertainty Analysis

Recognizing that the scenarios modeled do not fully bound the range of possible fire-climate-
vegetation interactions, our uncertainty analysis follows the GLUE approach to constrain the
combination of uncertainty due to climate projections and hydrological parameter uncer-
tainty. Each hydrological model experiment consisted of running the 93 highest performing
calibration parameter ensembles, in conjunction with the 10 climate model ensemble mem-
bers. Thus each combination of a future climate scenario (RCP 4.5 or RCP 8.5) and a
fire scenario (exclusion, observed historical, +30%, or +60%) generated an ensemble of 930
modeled timeseries for each variable (93 RHESSys model parameterizations times 10 cli-
mate models). This ensemble formed the basis for uncertainty analyses. In general, the
question we were asking was related to the significance (relative to parameter and climate
model uncertainty) of differences in predicted values of any hydrological variable between
two scenarios. To compute this significance, we differenced model output from equivalent
ensemble members (having the same combination of driving climate model and RHESSys
model parameters) from the two scenarios of interest. This generated a set of 930 differences
(except in the case where fire scenarios were compared for the observed climate, when 93 dif-
ferences result). The 95% confidence interval was then specified as the interval between the
2.5 and 97.5 percentiles for these 930 differences. If this interval excluded zero, the difference
was considered significant at the 95% confidence level. See Appendix D for a mathematical
formulation of how the ensemble of differences was calculated.



CHAPTER 5. HYDROLOGICAL BENEFITS OF RESTORING WILDFIRE REGIMES
IN THE SIERRA NEVADA PERSIST IN A WARMING CLIMATE 100

5.3 Results

Future Climate

Table 5.1 shows climate statistics aggregated by decade for the 4 decades of simulation,
where decades 1, 2, 3, and 4 correspond to the historical time periods of 1971-1980, 1981-
1990, 1991-2000, 2001-2010, and future time periods of 2031-2040, 2041-2050, 2051-2060,
2061-2070 respectively. By considering output on this decadal basis, we can better compare
between climates based on the common time since first fire (first fire occurs in 1974 for
the historical modeling and 2034 for future model scenarios). Each decadal value shown
is based on the average of the 10 GCM models following downscaling and bias correction.
All results discussed below refer to comparisons between 1970-2010 historical averages, and
2030-2070 future climate simulations. By 2060-2070, ICB will warm by 2.2◦C under RCP
4.5 and by 3.1◦C under RCP 8.5 climate scenarios. Predicted annual precipitation totals in
both scenarios are slightly wetter than the historically observed record. The 2030-2070 RCP
4.5 climate, on average, receives 159 mm more precipitation per year than the 1970-2010
period, while RCP 8.5 receives 32 mm more. The historically observed precipitation lies
within the 95% uncertainty bounds of both future climate ensembles, meaning that some
models predict a drier and others a wetter future climate. Ensemble-averaged precipitation
under both RCP 4.5 and 8.5 scenarios exhibits much less inter-annual variability than do
historical observations (see Appendix Figure C.3-A), which is a result of averaging over the
ensemble. The RCP 8.5 climate ensemble distributions of daily precipitation show an increase
in extreme events when compared to the historically observed precipitation distribution (see
Appendix Figure C.4). Higher average temperatures, with similar total precipitation, result
in a shorter snow season. On average, by 2060-2070, the snow season length drops by 26 days
for RCP 4.5 and 43 days for RCP 8.5 climates. Additionally, and again due to the warmer
temperatures, the snow fraction of precipitation (% precipitation falling as snow) declines
for future climates. Historically, 60-70% of precipitation in ICB occurred as snowfall, and
this percentage falls to 49% (RCP 4.5) and 42% (RCP 8.5) by 2060-2070.

Table 5.1: Bias-corrected yearly average temperature data and precipitation yearly sums are
averaged decadaly and presented as an average of all 10 GCM models for both RCP 4.5 and
RCP 8.5 scenarios. Decades 1, 2, 3, and 4 refer to the historical time periods of 1971-1980,
1981-1990, 1991-2000, 2001-2010, and future time periods of 2031-2040, 2041-2050, 2051-
2060, 2061-2070 respectively. Temperature and precipitation data were used as RHESSys
model inputs while maximum snow depth, snow season length, and % of precipitation as
snow are based on RHESSys fire excluded model outputs. Gray shading indicates that the
variable in the future climate scenario is statistically different from the observed climate
scenario at the 95% confidence level.

Decade
Climate 1 2 3 4

Temperature [◦C]
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Decade
Climate 1 2 3 4

Observed 12.0 12.3 12.4 12.3
RCP 4.5 13.7 14.0 14.4 14.5
RCP 8.5 14.0 14.3 14.9 15.4

Precipitation [mm]
Observed 929 937 1071 745
RCP 4.5 1125 1026 1059 1106
RCP 8.5 914 987 976 933

Snow Season Length [days]
Observed 213 213 212 208
RCP 4.5 182 174 173 176
RCP 8.5 180 180 171 158

% Precipitation as Snow
Observed 66 63 67 70
RCP 4.5 54 54 48 48
RCP 8.5 54 49 45 42

Hydrological Outcomes of Wildfires

To understand the hydrological outcomes of wildfire, we considered multiple hydrological
variables at the annual scale (transpiration, evaporation, streamflow, subsurface storage,
and maximum snow water equivalent) and their mean values across all model parameter
sets and climate ensemble members. We averaged the value of these variables on decadal
timescales, and Table 5.2 shows these decadal averages for the observed, RCP 4.5, and
RCP 8.5 climate scenarios for the four fire regimes: fire excluded, historical fire frequency,
and +30% and +60% fire frequency. The analysis of the results is broken down based on
the model scenarios, showing the changes in hydrology due to: 1) climate only, 2) climate
in combination with the historical wildland fire use regime, and 3) climate combined with
hypothetical, higher-frequency fire regimes.

Climate Only

Answering Research Question (i) isolates the influence of climate on hydrology if vegetation
was to remain in a fire-excluded state. Overall, other than expected but statistically non-
significant decreases in snowpack, the different climate scenarios cause only minimal changes
in predicted ICB hydrology at annual timescales. To discuss these changes we focus on
the final decade of simulation (i.e. 2000-2010 and 2060-2070). Trends in all water balance
components across the climate scenarios are shown in Figure 5.5-A as a fraction of annual
precipitation. Streamflow is always the largest component of the water balance, representing
83.4% (observed), 86.1% (RCP 4.5) and 86.7% (RCP 8.5) of precipitation. Independent of the
climate scenario, transpiration represents 6% of annual precipitation, meaning it increased
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in absolute terms in the slightly wetter climate projections (by 19 mm for RCP 4.5 and 10
mm for RCP 8.5). The small projected increases in streamflow as a fraction of the water
balance in RCP 4.5 and 8.5 can be attributed to reduced evaporation (litter, canopy, and
soil evaporation, excluding transpiration, plus snow sublimation), which declines from 10.4%
of precipitation (observed climate) to 7.7% (RCP 4.5), and 6.8% (RCP 8.5), almost entirely
due to lower snowpack - and thus sublimation - in the warmer climates. Unsurprisingly,
the maximum basin-averaged snow water equivalent decreases in future climates, by 42 mm
(RCP 4.5) and 146 mm (RCP 8.5) relative to observed climate conditions (“Fire Excluded”
in Table 5.2). Lower snowfall and snowpack also reduce the fraction of streamflow derived
from snowmelt and move the month of peak streamflow earlier. For example, peak snowmelt
occurs in May for 2000-2010, but in April for 2060-2070, in both RCP 4.5 and RCP 8.5
scenarios. In this peak snowmelt month, the proportion of streamflow derived from snowmelt
declines from a historical maximum of 95% (2000-2010), to 83% and 79% (2060-2070, RCP
4.5 and RCP 8.5 respectively, see Appendix Figure C.8-A and B). Notably, in this final
decade there are no observed trends in subsurface storage (∆S in Figure 5.5-A, where ∆S is
the net change in storage over one water year, is near zero). This means that the differences
in water balance across the climate scenarios are exogenously driven, rather than arising
from non-stationarity associated with interannual trends of wetting or drying of the basin.

Lastly, the only significant changes in future climate when compared to the observed
climate (gray shading in Table 5.2) is a 19 mm/year increase in transpiration (RCP 4.5
climate) and a 18 mm/year decrease in evaporation (RCP 8.5). This lack of significance is
associated with high uncertainty of both climate models and hydrological parameters which
is a common phenomenon in hydrological models (Her et al., 2019; Najafi et al., 2011).
Even if they are not statistically significant, there are clear trends in hydrological variables
across climate scenarios; particularly there is higher transpiration, increased streamflow, and
decreased maximum snow water equivalent for RCP 4.5 and 8.5 climate scenarios compared
to the historical baseline (Table 5.2).

Climate + Historical Fire regime

This section addresses Research Question (ii), which asks how the hydrological outcomes
of fire use strategies in ICB would differ under future climate conditions (2030-2070, RCP
4.5 and RCP 8.5), relative to those outcomes under the observed climate (1970-2010). An-
swering this question repeats the analysis above, but including fire under the “historical
frequency” model scenario, enabling us to compare the differences in hydrology associated
with fire between different climate scenarios. These model runs were conducted for both the
observed post-fire vegetation succession and for bounding cases where all post-fire vegeta-
tion in high severity burn areas was forced to transition to a single vegetation type. These
“bounding” cases suggest that the hydrological changes predicted have low sensitivity to
the type of vegetation regrowing in high severity burn areas (Figure 5.2). Subsurface stor-
age and streamflow were almost entirely insensitive to the vegetation transitions prescribed,
regardless of the future climate scenario, and variations in the predicted change in other hy-
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drological variables across vegetation types were on the order of < 10%, being largest where
vegetation was forced to regenerate as conifers. A more detailed analysis of the uncertainty
due to the prescribed successional trajectories is provided in Appendix C.6, but considering
this limited sensitivity, we focus here on the models using the observed vegetation transitions
only.

Detailed results, showing water balance components for each scenario, are provided in
Table 5.2. Timeseries results showing how the historical fire regime influenced the trajectory
of hydrological variables in the different climates are shown in the first column of Figure 5.6.
Again we focus the discussion here on the final simulated decade and discuss the magnitude
of the differences in the fire-induced changes that arise in the different components of the
water balance across the climate scenarios for this decade.

Similarly to the fire-excluded condition described in Section 5.3, there are few statisti-
cally significant differences between future climate conditions and observed climate under a
historical fire regime; comparing future climate of 2060-2070 to observed climate of 2000-
2010, the only statistically significant differences (gray shading in “Historical Frequency”
rows in Table 5.2) were observed for RCP 4.5 transpiration (16 mm/year greater than ob-
served climate) and RCP 8.5 evaporation (18 mm/year decrease). In this paragraph we
compare ICB’s hydrology under historical fire frequency to ICB’s hydrology under fire ex-
cluded conditions. Though there is little significant difference across climate regimes in a
basin experiencing historical fire frequency, many changes induced by fire - compared to a
fire excluded scenario - are significant (asterisks in Table 5.2). For RCP 4.5, by the final
decade of simulation, statistically significant declines in transpiration (15 mm/year) and
evaporation (9 mm/year) are associated with a statistically significant increase in subsurface
water storage (34 mm/year), a statistically-significant but small increase in peak snow water
equivalent (3.2 mm/year), and a non-significant 23 mm/year increase in streamflow. For
RCP 8.5, historical frequency fire regime results in statistically significant decreases in tran-
spiration (15 mm/year) and evaporation (6 mm/year), increases in subsurface water storage
(35 mm/year) and peak snow water equivalent (2.9 mm/year), and a non-significant increase
in streamflow (19 mm/year). The results do suggest that fire management could slow the
climatically driven loss of snowpack in the ICB; although climate warming reduces snowpack,
there is more snowpack in a given future climate in the context of wildfire compared to fire
exclusion (Table 5.2).

The overall effect of the historical frequency fire regime across all climates is to decrease
the relative importance of transpiration and evaporation, where transpiration declines by
1.4%, 1.2%, and 1.5% and evaporation declines by 0.7%, 0.8%, and 0.6% for observed,
RCP 4.5, and RCP 8.5 climates respectively (Figure 5.5-B). The decline in precipitation-
normalized evaporation and transpiration results in an increase of the runoff ratio by 1.91%,
1.85%, and 1.82% for observed, RCP 4.5, and RCP 8.5 climates respectively. Fire-induced
change in annual soil storage gain/loss is <1% across all climates.

Other indicators of hydrological function in the basin are also similar across the climate
scenarios - for example, most streamflow increases due to fire occur during peak snowmelt,
regardless of climate scenario (see Appendix Figure C.8). The increases in peak snow water
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equivalent due to the imposition of fire use are caused by decreases in sublimation and canopy
interception (see Appendix Figures C.9 and C.6), again mostly independently of the climate
scenario. Fire use causes snowmelt to become less important as a driver of streamflow;
snowmelt explains at most 38%, 47%, and 31% of the fire-induced change in streamflow for
observed, RCP 4.5, and RCP 8.5 climates, respectively, by 2060-2070 (see Appendix Figure
C.8-D,E,F).

The impacts of fire use policies on hydrology are more apparent amongst climate scenarios
when considering intra-annual responses. Under the observed climate, wildfire use causes the
greatest change to streamflow (relative to fire exclusion) during the peak snowmelt months
of March through May. However, wildfire use under future climates significantly increases
streamflow relative to fire excluded conditions for the period of October through May (for
the final decade of simulation). Little change in streamflow is modeled during the summer
months (June-September) in any fire/climate scenario (Appendix Figure C.8-D,E,F). The
maximum change in transpiration due to fire occurs one month earlier (June) under the RCP
4.5 and RCP 8.5 climate scenarios than it does under observed climate (see Appendix Figure
C.7).

Overall, these results suggest that the changes associated with fire use in the ICB during
the 1970-2010 period are highly comparable to those that would be predicted if the same
set of fires and vegetation changes occurred under future climate conditions. This is visually
evident in the right-hand column of Figure 5.6, where trajectories of hydrological change
and its confidence interval under different climate scenarios track each other closely for most
variables.

Climate + Changing Fire Regimes

Research Question (iii) asks how sensitive the hydrological outcomes of fire use strategies for
the 2030-2070 period were to potential increases in fire frequency. Again, we focus on the
results for the observed vegetation transitions only. Detailed results, showing water balance
components for each scenario, are provided in Table 5.2. Different fire regimes influence
the trajectory of hydrological variables in the different climates as shown in the left hand
columns of Figure 5.6. These plots show that the most dramatic effect of the increasing
fire frequency is to reduce the time needed to approach a pseudo-steady condition, which
itself is very similar across the climate scenarios. Since the first wildfire occurrence, it takes
approximately 13, 22, and 30 years to observe maximum changes in most water balance com-
ponents under the +60%, +30%, and historical fire frequency scenarios respectively. These
distinctions in timing are most easily observed in the subsurface storage and streamflow plots
of Figure 5.6. Increasing fire frequency increases the maximum observed changes slightly in
the hydrological variables, where +60% fire frequency scenario generally results in greatest
hydrological change across climate scenarios.

With the exception of streamflow, all water balance variables experience significant
change due to fire, across all climate and fire regimes, by the final simulated decade. Stream-
flow increases relative to fire excluded conditions under all scenarios, although the increases
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are significant only for certain climate and fire scenarios: for the RCP 4.5 climate scenario
streamflow is significantly higher in the final simulated decade of the +30% fire frequency
scenario and the last two decades of the +60% fire frequency scenario, and in the RCP
8.5 climate scenario streamflow increase is only significant in the third decade (2050-2060)
of the +60% fire frequency scenario. The decades with significant increases in streamflow
due to fire correspond to decades with greater precipitation and decades in which many fire
events occur. Averaging across the final simulated decade, the greatest changes between
fire scenarios compared to the fire excluded scenario for the same climate are: an 18 mm
decrease in transpiration (RCP 4.5, +30%), and 11 mm decrease in evaporation (RCP 4.5,
+30%), a 29 mm increase in streamflow (RCP 4.5, +30%), a 44 mm increase in subsurface
storage (RCP 4.5, +60%), and a 4.1 mm increase in maximum snow water equivalent (RCP
4.5, +30%). With the exception of maximum snowpack, the historical fire regime always
produced the smallest changes in hydrological variables for each climate type (Figure 5.2).
The different pace of change across the scenarios is closely related to the rate of change of
LAI: more frequent fires cause a more rapid decline in LAI (see Appendix Figure C.6). In
the final simulated decade, LAI had declined by 0.07 and 0.08 for RCP 8.5 and 4.5 climate
scenarios respectively (historical fire regime), by 0.10 and 0.11 (30% increase), and 0.08 and
0.09 (+60%), relative to the fire excluded cases (see Appendix Table C.2).

One possible risk associated with fire use strategies is that by removing vegetation from
the ICB, the peak flow and flood risks might increase. Noting that the model calibration was
not optimized to predict peak flows (Boisramé et al., 2019a), we nonetheless examined the
largest daily streamflows for each year, and how these varied with fire regime and climate
forcing. The maximum daily flow increased by about 3.2% due to fire in the final simulated
decade - an increase that did not vary across the different climate and wildfire scenarios, and
which was not statistically significant relative to model uncertainty (see Appendix Figure
C.10).

Table 5.2: Hydrological variables averaged decadally for all climate and fire scenarios.
Decades 1, 2, 3, and 4 refer to the time periods 1971-1980, 1981-1990, 1991-2000, and
2001-2010 for the observed climate, while for future climate scenarios (RCP 4.5 and 8.5)
these decades refer to 2031-2040, 2041-2050, 2051-2060, and 2060-2070 respectively. Grey
highlighting indicates a significant difference between modeled variables in the future cli-
mate and the historically observed climate (Using Equation C.2). An asterisk indicates
that wildfires significantly affected the modeled hydrological variable (Using Equation C.1).
Change is reported as significant if the 95% confidence interval for the difference between
two fire-climate model scenarios does not include zero.

Scenario Decade
Fire Climate 1 2 3 4

Transpiration [mm/year]
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Scenario Decade
Fire Climate 1 2 3 4

Observed 59 60 65 53
RCP 4.5 71 67 70 72

Fire
Excluded

RCP 8.5 60 62 63 63
Observed 58* 57* 59* 41*
RCP 4.5 70 65 64* 57*

Historical
Frequency

RCP 8.5 59* 59 56* 48*
RCP 4.5 70 62* 57* 54*

+30%
RCP 8.5 59 56* 49* 45*
RCP 4.5 69* 56* 54* 54*

+60%
RCP 8.5 59* 50* 45* 45*

Evaporation [mm/year]
Observed 88 79 76 81
RCP 4.5 89 89 87 89

Fire
Excluded

RCP 8.5 70 68 66 63
Observed 87* 78* 74* 75*
RCP 4.5 89* 88* 84* 80*

Historical
Frequency

RCP 8.5 69* 67* 64* 57*
RCP 4.5 89* 86* 79* 78*

+30%
RCP 8.5 69* 66* 60* 56*
RCP 4.5 88* 82* 78* 79*

+60%
RCP 8.5 69* 64* 59* 56*

Streamflow [mm/year]
Observed 957 974 1133 752
RCP 4.5 1162 1072 1111 1181

Fire
Excluded

RCP 8.5 963 1012 1024 991
Observed 957 977 1141 769
RCP 4.5 1164 1075 1120 1204

Historical
Frequency

RCP 8.5 964 1016 1033 1010
RCP 4.5 1164 1080 1130 1210*

+30%
RCP 8.5 964 1020 1042 1016
RCP 4.5 1164 1088 1136* 1209*

+60%
RCP 8.5 964 1027 1048* 1015

Subsurface Storage [mm]
Observed 1711 1708 1700 1707
RCP 4.5 1701 1700 1700 1694

Fire
Excluded

RCP 8.5 1708 1705 1706 1705
Observed 1712 1714 1713* 1740*
RCP 4.5 1702 1707 1716* 1730*

Historical
Frequency

RCP 8.5 1709 1712 1722* 1740*
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Scenario Decade
Fire Climate 1 2 3 4

RCP 4.5 1702 1712 1732* 1737*
+30%

RCP 8.5 1709 1717* 1737* 1746*
RCP 4.5 1703 1726* 1742* 1738*

+60%
RCP 8.5 1710 1730* 1747* 1748*

Max Snow Water Equivalent [mm]
Observed 600.1 572.9 743.5 513.6
RCP 4.5 569.3 523.9 463 471.8

Fire
Excluded

RCP 8.5 491.1 458.3 415.4 367.8
Observed 600.2* 573.4* 744.4* 517.1*
RCP 4.5 569.4 524.3 463.8 475.0*

Historical
Frequency

RCP 8.5 491.2 458.6 416.1 369.7*
RCP 4.5 569.5 525.2* 465.6 475.9*

+30%
RCP 8.5 491.2 459.3 417.4* 370.0
RCP 4.5 569.6 526.4 466.2* 475.3*

+60%
RCP 8.5 491.2 460.0 418.0* 370.1

* : Difference between burned and fire excluded scenarios is statistically significant at
5% level
Grey Shading : Future fire-climate scenario is statistically different from observed fire-climate
scenario at 5% level
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Figure 5.5: A: Water balance for the fire-excluded scenario. Subsurface storage change (∆S;
the change in subsurface water storage from one water year to the next), transpiration,
evaporation, and streamflow are normalized to precipitation. B: Modeled average change in
water balance variables due to fires normalized to precipitation. In both A and B, results
are shown for the final simulated decade (resulting in most change). Historically observed
fire frequency scenario is used for the difference in B. Error bars represent 95% confidence
interval across all climate scenarios, parameter sets, and years within the final simulated
decade.
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Figure 5.6: All plots show the difference between the burned and fire excluded ICB. Plots
in blue have constant climate (RCP 4.5 in left panel and RCP 8.5 in middle panel), but
vary the fire frequency scenario. Plots in red keep the fire frequency constant (historical),
but vary the climate scenario. Vertical orange lines in the right panel indicate a historical
fire occurrence. Shading indicates 95% confidence interval of the 93 observed climate or
930 future climate model runs (93 parameter sets for each of the 10 GCMs or 1 observed
climate), while thick lines represent average difference. Vertical axis has the same scale for
each hydrological variable. Decade 0, 1, 2, 3, and 4 refer to years 1970, 1980, 1990, 2000,
and 2010 for observed climate and years 2030, 2040, 2050, 2060, and 2070 for RCP 4.5 and
RCP 8.5 climates.
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5.4 Discussion

Impacts of Fire Use on ICB Hydrology Under Future Climates

The modeling efforts presented here suggest that fire use strategies will have a similar im-
pact on the hydrology of the ICB under future climates to that which occurred due to the
historical fire management from 1972 - present - namely modest increases in streamflow,
driven primarily by reductions in vapor fluxes, particularly sublimation and evaporation
(see Boisramé et al. (2019a) for additional detail on fire-induced decreases in evaporation),
and increased subsurface water storage. The broad similarity in these outcomes is perhaps
unsurprising given the modest changes in water balance predicted for fixed, fire-suppressed,
vegetation cover when climate change alone is considered. These differences may be increased
in models that are able to consider variation in CO2 concentration across the future climate
scenarios, unlike the present model which held CO2 constant in all scenarios.

Initiating a fire use strategy in 2030 is predicted to increase streamflow by an average of
19-29 mm/year by 2070, relative to maintaining fire exclusion (c.f. a 17 mm/year historical
increase). Although the predicted streamflow increases are not always statistically significant
given the uncertainties associated with future climate and the hydrological model parame-
ters, the drivers of this increase - greater snowpack and subsurface storage and reductions in
evaporation and transpiration due to fire use relative to fire suppressed conditions, are signif-
icant in all climate and fire frequency scenarios. Future applications of fire use strategies in
the ICB would therefore be likely to increase natural water storage in the basin, and may re-
sult in increased streamflow. Increasing fire frequency, while maintaining similar spatial fire
severity distributions to the historical period, has the primary effect of speeding up the rate
of change, without altering the final hydrological state of the basin greatly. The final hydro-
logical state predicted for the ICB was largely robust to changes in the post-fire vegetation
transitions used in the model; model scenarios in which highly burned regions transitioned
to coniferous forests, shrublands or wetlands diverged minimally from each other.

We did not quantitatively explore the robustness of these final states to our modeling
decision to use historical fire areas and severities to represent these elements of future climate,
but the consequences of these decisions can be qualitatively explored. For example, the
similarity in the final hydrological state of the basin across fire frequency scenarios may
be partly attributable to the re-use of the same fire perimeters in all scenarios - all cases
converged on a similar basin-averaged LAI independently of the fire frequency. These fire
perimeters do, however, cover 75% of the vegetated area of ICB, so that the modeled fires
affected most of the area of the ICB that can burn. However, by preventing fire from
burning into areas that did not experience a fire in 1970-2010, the modeled fire perimeters
may under-estimate the maximum vegetation changes which could be induced in ICB, thus
also underestimating the extremes of vegetation and hydrological changes that could be
induced by fire. On the other hand, a scenario where the historical perimeters over-estimate
fire extent and severity seems probable due to additional fuel reductions. Consideration of
this fuel limitation means the use of historical fire severity in the models is likely an upper
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bound on future fire severity. Therefore, it is likely that uncertainties in the future fire
regime associated with our fire modeling choices are opposite in sign and likely to mitigate
each other.

Our work has focused on representing known fire impacts of a frequently-burned wa-
tershed rather than modeling them and thus introducing additional uncertainty. However,
there is promising work being done coupling RHESSys to a fire spread model (WMFire)
which uses RHESSys fuel loads and water deficits to model fire spread for a given location
(Kennedy et al., 2017; Bart et al., 2020). Both studies have demonstrated that such coupling
can re-produce realistic historical fire regime characteristics across different eco-systems and
stand-ages without being specifically tuned to do so. Further validation of this coupled
model is needed, especially its representation of the sensitivity of fire-vegetation feedbacks
to a changing climate. Future work will explore the potential of RHESSys-WMFire to study
fire-hydrology-vegetation feedbacks in ICB.

While the eco-hydrological model used in this study has been successfully validated using
a number of streamflow metrics, it was not configured to capture high flow events (important
for flood and erosion management) due to the lack of high-resolution precipitation and
streamflow observations. The model also ignores post-fire changes to soil properties which
could lead to greater overland and streamflow from heightened soil water repellency. Within
these limitations, modeling suggests that fire use in the ICB would increase peak streamflow
by at most 3.2% from fire excluded conditions for all climate and fire regime scenarios. This
increase is likely under-predicted.

In spite of the limitations on the modeling, which mean that results should not be in-
terpreted as a forecast of absolute hydrological behavior in fire-affected watersheds like the
ICB, it is important to recognise that the limitations also affect the historical baseline esti-
mates of hydrological change from 1970-2010 similarly to future modeled scenarios. Thus,
we can conclude that fire use policies implemented in fire-suppressed basins similar to ICB
and generating similar or more frequent fire regimes, would generate similar hydrological
co-benefits to those experienced to date.

Management Implications

These hydrological co-benefits may be an essential component of building an economic case
for forest management, because the economic investment needed to implement forest man-
agement strategies remains an impediment to their uptake (González-Sanchis et al., 2019).
For instance, although the streamflow gains predicted from ICB to date are modest on a
per-area basis in the watershed, the additional streamflow gains from ICB alone could pro-
duce $1.5-2.3 million of hydropower revenue per year, and represent a volume equivalent to
approximately 5.1% of the city of San Francisco’s annual water use, which itself is worth
approximately $6.0-9.2 million in water sales from the San Francisco Public Utility Com-
mission (detailed calculations in Appendix-C.7). Although the ICB does not directly feed
the Hetch Hetchy reservoir that forms San Francisco’s water supply, these figures provide
an indication of the potential economic value of even modest local changes in water balance,
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which could be driven by fire use policies. Of course, this value would be offset by the costs
of the negative impacts of wildfire on watersheds, such as increased erosion and declines in
water quality (Tiedemann, 1979; Smith et al., 2011), which should also form part of any eco-
nomic analysis of wildfire use policies. To date, there is no evidence of extensive erosion or
downstream water quality declines in response to ICB wildfires, but work to better establish
the potential scope of such problems remains needed.

The ICB remains a unique long term experiment on the effects of fire restoration on forests
and water balance, but policy is shifting to extend fire restoration across the Sierra Nevada.
For example, current revisions to the Land and Resource Management Plans for National
Forests (NF) in the southern Sierra Nevada emphasize fire use for resource benefit over some
69 to 84% of National Forest land. Boisramé et al. (2017) estimated that approximately
19,100 km2 of the Sierra Nevada region is topographically and climatically similar to ICB,
and may be suitable for similar fire use strategies. However, to achieve similar hydrological
outcomes as in ICB, fire use in other basins would also need to achieve the substantial changes
in forest cover that occurred in that Basin. In the only other basin in the Sierra Nevada with
a multi-decadal history of fire use policies, Sugarloaf Creek Basin in Sequoia-Kings Canyon
National Park, greater fire suppression activity in the recent decades and lower productivity
forests have led to a much more modest impact of fire on vegetation than observed in ICB
(Stevens, Boisramé, et al., 2020). The relatively limited sensitivity of predicted hydrological
outcomes to climate, however, suggests that extension of the fire use policy beyond ICB
to other productive and topographically suitable forests could produce modest but valuable
increases in streamflow.

5.5 Conclusion

Downscaling and bias correction of climate projections for ICB and their use in the RHESSys
hydrological model suggest that the modest increases in streamflow estimated to have oc-
curred due to fire use policies in the late 20th - early 21st Century are likely to be robust to
the warmer future climate. Although the timing and provenance of streamflow shifts earlier
in the year and towards rainfall rather than snowmelt, these changes are not projected to
result in large alterations in annual water balance partitioning. To summarize our response
to the posed questions:

i) In the absence of fire use policy, hydrology of the ICB is relatively similar during RCP
4.5 and RCP 8.5 2030-2070 climates and under the observed historical climate of 1970-2010
(in terms of annual volumes of various fluxes). One notable difference is the reduction of
snowpack which leads to lower total evaporation (due to a reduction in sublimation) in the
future climate scenarios.

ii) The hydrological outcomes of fire use strategies in ICB under future climate con-
ditions are similar to those under observed climate. The historical fire frequency regime
produces similar reductions in evaporation and transpiration and gains in streamflow across
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all climates. Fire-induced increase in snowpack partially counteracts climate change induced
reductions in snowpack.

iii) Considering fuel-limited conditions in ICB, anticipated increases in fire frequency (due
to ignitions and not fuel availability) in the future climate of 2030-2070 will lead to similar
hydrologic changes as historic fires, but in a shorter timeframe.

Though we provide a broad range of possible fire regime outcomes, future work should
focus on fully coupling post-fire vegetation transitions to climate and hydrology and con-
sequent fire-regime. More advanced modeling of fire effects on hydrology may be needed
as well; in addition to wildfire impacts on vegetation removal, changes to soil properties
are needed to accurately model high intensity precipitation events that have an impact on
erosion, flooding, and water quality.

Rising temperatures and a naturally volatile hydroclimatic setting present ongoing chal-
lenges to California’s water supply security and forest resilience. This study suggests that
where self-limiting fire behavior, as per ICB, can be anticipated, the hydrological co-benefits
should be considered as part of future fire policy development and cost-benefit analysis.
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Chapter 6

Conclusion

6.1 Summary of Findings

Wildfire activity in California and worldwide is increasing as a consequence of fire suppression
legacy and the warming climate. This increase is occurring in tandem with a social change, in
which wildfires are increasingly appreciated as a natural disturbance agent and a potential
tool for managing healthy forests. Both the benefits and risks of fires require improved
understanding across spatial and temporal scales and in the context of their feedbacks to
vegetation and water cycling.

This dissertation has contributed to such understanding by revealing the importance of
interactions between fire and hydrological processes. I showed that the negative consequences
of fires in promoting flooding and erosion, in part through causing water repellency in soils,
are not necessarily long-lived or problematic for wildfire management in the middle and
high elevation zones in the Sierra Nevada. In these regions, freeze-thaw processes, a novel
mechanism for degradation of water repellency, mean that soils would largely recover their
hydraulic properties within six months of most fires. This suggests that the negative impacts
of wildfires on hydrology may be short-lived in climates that experience frequent freeze/thaw
events. This is an important consideration for cost-benefit analysis of wildfire management
decisions, and supports greater use of fire in the Sierra Nevada.

I also showed that soil moisture variation influences the risk of fire through a coupling
between soil water content and dead fuel moisture content. Although fuel-moisture values
are integral to fire modeling and risk forecasting, to date no studies explored the impact of
soil moisture on dead fuel moisture. My field observations and statistical analysis showed
that soil moisture had a small but significant effect on fuel moisture across all sampled
conditions, and was greatest for wet soil conditions and 10-hr fuels. Incorporating soil
moisture into predictions of fuel moisture based on a nine-year weather and soil moisture
timeseries from a Sierra Nevada observatory increased fuel moisture predictions in the spring
and fall shoulder seasons, and reduced periods in which fuels had a high probability of ignition
by 60 days for 10-hr fuels and 6 days for 1-hr fuels. Similarly, inclusion of soil moisture into
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spatially-distributed fuel moisture predictions in Illilouette Creek Basin produced a more
heterogeneous distribution of probability of ignition through space, compared with similar
models that did not incorporate soil moisture information. These findings are important
as they suggest that fire management decisions could be sensitive to the inclusion of soil
moisture information in modeling - which itself is becoming increasingly feasible with the
availability of remotely sensed soil moisture datasets.

Feedbacks between fire, water and vegetation can lead to distinct outcomes for different
basins. Comparing fire management within basins is generally difficult given the prevalence
of fire suppressed conditions in the Western US. Using Illilouette Creek and Sugarloaf Creek
Basins as case studies, I was able to show that distinct outcomes can arise depending on how
dramatically wildfires impact dominant vegetation cover. In Illilouette Creek Basin, large
changes in vegetation cover were associated with meaningful increases in Basin wetness and
streamflow. Conversely, in Sugarloaf Creek basin, the 47-year period of wildfire management
lead to minimal vegetation cover conversion, and a relatively subdued change in soil moisture.
In Sugarloaf Creek basin, fire occurrence was limited to drier mixed-conifer sites, with small
patches of overstory tree mortality. This had little effect on removing mid- and lower strata
trees. Few dense meadow areas were created by fire, with most forest conversion leading to
sparse meadow and shrub areas, which had similar soil moisture profiles to nearby mixed-
conifer vegetation. These findings are important as they suggest that a range of hydrological
responses to wildfire restoration should be expected, mediated by the extent of tree cover
conversion, and potentially also by the environmental properties of treated basins.

Conversely, my final chapter demonstrated that wildfire management hydrological out-
comes may be relatively insensitive to projected climate change in the Sierra Nevada. Using a
distributed ecohydrological model and a statistically downscaled climate ensemble, I showed
that the hydrological impacts of fire use are comparable under observed climate and projected
future climates through year 2070, and are largely insensitive to the significant uncertainties
regarding post-fire successional trajectories for vegetation. While expected increases in fire
frequency cause minor changes in the basin hydrology, the main impact of more frequent
fires is to cause the basin to reach peak hydrological change more rapidly. These findings
are important because they offer managers confidence that co-benefits of wildfire restoration
activities are likely to persist even in the face of the changes expected in the 21st century.

6.2 Future Work

There appears to be considerable scope for productive future work exploring the coupling
of fire, water and vegetation and its implications of modeling and watershed management.
In particular, there is a need to confront methods for upscaling the relationship I uncovered
between fuel and soil moisture so that it can be applied at scales relevant for fire forecasting,
there is a need to improve the representation of fire within ecohydrological models so that
simulation of coupled fire, vegetation and water regimes can be undertaken. Finally, as
the benefits and negatives associated with managed wildfire become more clearly delineated
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scientifically, the time is becoming ripe for an economic analysis to explore the costs and
benefits of different wildfire management policies in the Sierra Nevada.

Upscaling and Generalizing Findings

My plot scale measurements of fuel moisture and soil moisture demonstrated that there is
a link between hydrological and fire processes. However, the study can only be understood
as an initial exploration of these links. It will be essential to further characterise these
relationships across multiple soil types, and under wetting and drying conditions. With
an improved understanding of the functional form of such relationships, satellite imagery
that is sensitive to soil moisture can be interpreted in terms of likely fuel moisture states,
and current fuel moisture models can incorporate soil moisture information. Linking updated
models with satellite inference of fuel/soil moisture offers the potential for estimation (or data
assimilation) to map fuel moisture and fire risk at continental scales. Similarly, characterizing
post-fire hydrophobicity decay for other soil types and organic matter will allow for a better
inference of post-fire flooding and erosion hazards in other ecosystems.

Modeling Feedbacks

RHESSys ecohydrological model was used in Chapter 5 to assess the impacts of wildfires on
basin ecohydrology. There were many limitations imposed by the model, with the main one
being RHESSYs’ inability to directly couple wildfire processes to vegetation and hydrology.
Through recent advances coupling VMFire, a fire spread model of intermediate complexity,
to RHESSYs, it is now becoming possible to simulate a fire regime based on hydrological
and vegetation states (Kennedy et al., 2017; Bart et al., 2020). However, RHESSys-VMFire
does not account for post-fire vegetation transitions, which themselves have an important
role on watershed fire risks and hydrological states. As climate change is expected to speed-
up vegetation transitions, especially after disturbance, modeling this relationship is urgently
needed.

The findings from Chapter 2 and 3 could be incorporated into fire-water-vegetation mod-
eling frameworks. In Chapter 3, I related soil moisture to fuel moisture and fire risks. Since
RHESSys models subsurface water stores and vapor pressure deficit along with fuel produc-
tion, it is possible to further couple hydrological fluxes to fire risk by incorporating the effect
of soil moisture on fuel moisture. Currently VMFire relies only on vapor pressure deficit to
model probability of ignition.

Similarly, at present, RHESSys cannot account for transient changes in soil properties
such as those observed post fire. This could be readily changed, allowing better approxima-
tions of post-fire overland flow and subsurface water stores. RHESSys downscales temper-
ature and precipitation to modeled topography and can identify wetting/drying and freez-
ing/thawing events. Using hydrophobicity decay curves from Chapter 3 can improve the
representation of post-fire hydrological processes in RHESSys.
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Economic Analysis

To date, the economic assessment of wildfire use as a management strategy has been limited.
Yet sufficient information is now available to address - at least for Illilouette Creek Basin
- the net economic costs and benefits of implementing wildfire management on hydropower
production, water yield, timber and carbon stocks, flooding and erosion damage, water
quality, air pollution, and recreation. With most indicators suggesting significant benefits
and relatively minimal negatives, such an assessment has the potential to shift policy and
increase funding towards increased wildfire management programs. Not all areas within
Sierra Nevada will be able to support a safe implementation of wildfire management policy
due to vegetation structure, proximity to structures, and topography. A comprehensive
suitability analysis that identifies such areas and accounts for a changing climate can inform
the distribution of areas suitable for wildfire management strategy. With both a spatial
and economic case in hand, this dissertation, the science it builds on, and the science that
will build on it, has the potential to meaningfully shift the management practice of western
montane forested watersheds, hopefully to the benefit of both people and the environment.
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González-Sanchis, M., Ruiz-Pérez, G., Campo, A. D. D., Garcia-Prats, A.,
Francés, F., & Lull, C. (2019, February). Managing low productive forests
at catchment scale: Considering water, biomass and fire risk to achieve eco-
nomic feasibility. Journal of Environmental Management , 231 , 653–665.
Retrieved from https://doi.org/10.1016/j.jenvman.2018.10.078 doi:
10.1016/j.jenvman.2018.10.078

Gould, J. (2003). Fire behavior: integrating science
and management. CSIRO Publishing. Retrieved from
https://ebooks.publish.csiro.au/content/9780643090965/9780643090965 doi:
10.1071/9780643090965



REFERENCES 129

Goulden, M., & Bales, R. (2019, 07). California forest die-off linked to multi-year deep soil
drying in 2012–2015 drought. Nature Geoscience, 1. doi: 10.1038/s41561-019-0388-5

Graham, R. T., & McCaffrey, S. (2003). Influence of forest structure on wildfire behavior
and the severity of its effects.

Grayson, R. B., Western, A. W., Chiew, F. H. S., & Blöschl, G. (1997, December). Preferred
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Mataix-Solera, J. (2014, August). Natural soil water repellency in differ-
ent types of mediterranean woodlands. Geoderma, 226-227 , 170–178. Re-
trieved from https://doi.org/10.1016/j.geoderma.2014.02.009 doi:
10.1016/j.geoderma.2014.02.009

Zhang, Z., Ma, W., Feng, W., Xiao, D., & Hou, X. (2016, April). Reconstruction of soil par-
ticle composition during freeze-thaw cycling: A review. Pedosphere, 26 (2), 167–179. Re-
trieved from https://doi.org/10.1016/s1002-0160(15)60033-9 doi: 10.1016/s1002-
0160(15)60033-9

Zhao, J., Chen, J., Wu, Q., & Hou, X. (2018, December). Snow cover influ-
ences the thermal regime of active layer in urumqi river source, tianshan moun-
tains, china. Journal of Mountain Science, 15 (12), 2622–2636. Retrieved from
https://doi.org/10.1007/s11629-018-4856-y doi: 10.1007/s11629-018-4856-y



152

Appendix A

Supporting Information for Chapter
2

Introduction

This Supplementary Information provides additional detail on sampling site, modeling
analysis, and alternative models presented in Chapter 2.

A.1 Blodgett Research Forest Sampling Locations

All fuel sampling was collected at Blodgett Research Station which is a a 4,270 acre
property of University of California, Berkeley and supports different research objectives.
The forest is generally divided into 110 main compartments of which some are ecological
reserves that have no management objectives, young-growth reserves, even age reserves,
and uneven age reserves (Blodgett Forest Research Station, 2012). Excluding young-growth
compartments, we have sampled across 15 compartments with a mix of reserve types (Table
A.1 and Figure A.1). However our sampling location was focused on compartments that
did not have a recently prescribed burn and where soil was not disturbed wither by fire
or equipment. To get a soil moisture and fuel moisture gradient, we have sampled in
topographical transects throughout compartments and along the Gaddis Creek. Due to
different age of vegetation across compartments, we were also focused our sampling to
include arange of canopy cover above collected fuels. Figure A.1 shows the 100 sampling
locations along with the compartments. Satellite imagery clearly shows different vegetation
structure across the compartments.
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Figure A.1: One hundred and one sampling locations of 1-hr and 10-hr fuels in Blodgett
Research Forest in the foothills of Sierra Nevada. Forest research compartments are shown
as white perimeters along with the compartment numbers. Gaddis Creek is the main year-
round creek at Blodgett
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Table A.1: Blodgett compartment numbers along with the number of samples taken of 1-hr
and 10-hr fuels within each compartment, and the designated compartment forest treatment.
As the names imply, an even-age is comprised of trees of the same age/size and in uneven-
age group, tree age/size varies across the compartment. Young-growth forests undergo full
regeneration every 90 years. Compartment 520 is a reserve and is left unmanaged. Refer to
Blodgett Forest Research Station (2012) for detailed explanation of management objectives
and methodologies.

Compartment
Number

Number
of Samples

Treatment
Type

20 12 young-growth
40 2 young-growth
70 12 even-age
100 4 uneven-age
410 6 uneven-age
440 3 even-age
441 6 even-age
500 19 uneven-age
520 2 no management
550 3 even-age
551 2 even-age
552 4 even-age
581 5 even-age
640 16 even-age
660 5 young-growth
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A.2 Model Selection

In this section, we provide additional detail on the relationship of all collected and derived
variables that were used to explain variation in FMC. Once variables were selected for the
final regression forms for 1-hr and 10-hr fuels, we provide the model fit of these regressions

Variable Correlations

Before fitting different regressions to data, we looked at correlations among the collected
variables. Figure A.2 shows a correlation coefficient matrix among all the variables, both
collected in the field and derived from topographical information.

Figure A.2: Correlation coefficient matrix among variables collected in the field and derived
from topographical information (marked with an asterisk) Positive correlation is in blue and
negative correlation in red. Strength of the correlation is represented by the size of the circle,
where the bigger the circle, the stronger is the correlation
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Both 1-hr and 10-hr FMC is strongly correlated to (r=0.68 and 0.61 respectively) to above
fuel percent canopy. There is also a strong positive correlation between shade (binary
value signifying fuels being in the shade at the time of collection) and FMC for both fuel
categories, though its more string for finer 1-hr fuels. Unsurprisingly, shade and percent
canopy variables are also correlated. Both fuel categories are also somewhat responsive
to atmospheric conditions by having weak correlation to relative humidity (1-hr r=0.42
and 10-hr r=0.34 ) and vapor pressure deficit (1-hr r=-0.34 and 10-hr r=-0.29). Some
topographic/geographic variables weakly correlated to FMC as well; elevation, distance to
stream were weakly correlated to both fuels, and TWI also weakly correlated to 1-hr fuels,
but the relationship was weaker with 10-hr fuels. We do not believe that elevation itself
is a meaningful predictor of FMC and instead it correlates to percent canopy cover and
soil moisture, where low elevations generally drain more water and have more vegetation
that provides shading for fuels. Both 1-hr and 10-hr FMC have a positive correlation to
SMC of 0.34 and 0.49 respectively. Interestingly, SMC and TWI are poorly correlated
(r=0.25), meaning that TWI is not a good proxy for SMC at the scales measured at
Blodgett Research Station.
As described in the Methods Section of Chapter 2, we have used backward stepwise se-
lection to eliminate variables from model formulation. For 1-hr fuels, the final form of the
model took the form of ordinary least squares (OLS) regression, however for 10-hr fuels,
we fitted data using weighted least squares regression since non-weighted OLS had het-
eroscedasticity and non-linearity in the residuals. In addition to tabular model fit statistics
presented in Results Section, Figure ?? provides a visual of the model fit by plotting fitted
values vs studentized residuals and showing a quantile-quantile plot.
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Figure A.3: Linear regression fit for 1-hr FMC (top) and weighted linear regression for 10-hr
FMC (bottom). Plots on the left show fitted values against studentized residuals (circles).
The orange area represents the 97.5th percentile of the studentized residuals. The more
rectangular this area is, the more homoscedastic are the residuals. The dashed line shows
the smoothed mean of the studentized residuals. The closer this line is to zero, the more
linear is the model fit. Quantile-quantile plots are shown on the right. The closer the points
are to the 1:1 blue line), the more normal is the distribution of the model residuals
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Both fuel models have relatively equal variance in the residuals. Each model has a number
of predicted values with very high absolute residuals (filled circles in Figure A.2), these
data points were not removed from model formulation, because we do not believe that there
was an error in the measurement. Both models have approximately normal distributions
since residual quantiles match normal distribution quantiles. Though it appears that the
10-hr model is somewhat biased at low fuel moisture values since it tends to under-predict
low fuel moisture contents, as seen by a below zero mean of the studentized residuals
(dashed line in Figure A.2).

Models Without Soil Moisture

As described in detail in Section 2.2, in addition to fitting models using SMC as a predictor
for both 1-hr and 10-hr FMC, we have also fitted regressions to predict 1-hr and 10-hr FMC
in the absence of SMC. For 1-hr fuels, the regression is fitted on the dataset spanning the
entire measured SMC range; model coefficients for 1-hr OLS without SMC are described
in Table A.2.
Unlike the 1-hr OLS that excludes SMC, the 10-hr model without SMC was broken into
two regression. The first regression was fit on data observations below SMC of 20.9% (A
in Table A.2) and the second regression was fit on observations above SMC of 20.9% (B
in Table A.2).

Table A.2: Scaled regression coefficients for 1-hr FMC regression. Regression intercept is α
and regression residuals are represented by ε. Significance level of each coefficient is based on
robust p-values. Model performance is assessed by AIC and RMSE. P-values of homoscedas-
ticity test (BP) and residuals’ normality (SW) test are provided, where the null hypothesis
is the assumption of homoscedasticity and normality of the studentized residuals. Lastly,
expected value of studentized residuals is reported as E[ε]

Coefficient Estimate
Robust
p-value

Significance

FMC1−hr = α + βV PDV PD + βCC + βSESE + βWW + ε
α 0.000 1.000

V PD -0.345 0.000 ***
C 0.609 0.000 ***
SE 0.224 0.000 ***
W -0.100 0.108

AIC=202 RMSE=0.62
SW p-value=0.65 BP p-value= 0.50 E[ε]=0.00

Significance Level: · 0.1, * 0.05, ** 0.01, *** 0.001
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Table A.3: Scaled regression coefficients for 10-hr FMC regression fitted on data observations
below SMC of 20.9% (A) and on observations above SMC of 20.9% (B). Regression intercept
is α and regression residuals are represented by ε. Significance level of each coefficient is
based on robust p-values. Model performance is assessed by AIC and RMSE. P-values of
homoscedasticity test (BP) and residuals’ normality (SW) test are provided, where the null
hypothesis is the assumption of homoscedasticity and normality of the studentized residuals.
Lastly, expected value of studentized residuals is reported as E[ε].

Coefficient Estimate
Robust
p-value

Significance

FMC10−hr = α + βV PDV PD + βCC + βSESE + βWW + ε
A. Data corresponding to SMC < 20.9%

α -0.140 0.006 **
V PD -0.155 0.006 **
C 0.423 0.000 ***
SE 0.080 0.152
W -0.089 0.047 *

AIC=110 RMSE=0.76
SW p-value=0.02 BP p-value= 0.06 E[ε] = 0.00
B. Data corresponding to SMC ≥ 20.9%

α 0.240 0.331
V PD -0.422 0.008 **
C 0.627 0.001 **
SE 0.480 0.137
W -0.279 0.177

AIC=79.8 RMSE=0.85
SW p-value=0.01 BP p-value= 0.34 E[ε]=0.03

Significance Level: · 0.1, * 0.05, ** 0.01, *** 0.001

Alternative 10-Hr Regression Models

In Section X, we fitted WLS regression to quantify the effect of soil moisture on 10-hr
FMC. In this section we present other statistical models that quantify the effect of SMC
on FMC. Namely, these models are: OLS with robust errors, log-transformed FMC, and
polynomial

OLS with robust errors

When fitting OLS to 10-hr FMC data, the residuals were non-normally distributed and
heteroscedastic. Though the coefficients are unbiased in the presence of heteroscedasticity,
their standard errors cannot be estimated because OLS assumes equal variance of the
residuals. Heteroscedasticity consistent standard errors (HCE, aka standard errors) is a
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Table A.4: Scaled coefficients for 10-hr FMC OLS. Regression intercept is α and regression
residuals are represented by ε. Significance level of each coefficient is based on robust p-
values. Model performance is assessed by AIC and RMSE. P-values of homoscedasticity
test (BP) and residuals’ normality (SW) test are provided, where the null hypothesis is the
assumption of homoscedasticity and normality of the studentized residuals. Lastly, expected
value of studentized residuals is reported as E[ε]

Coefficient Estimate
Robust
p-value

Significance

α 0.000 1.000
SMC 0.380 0.000 ***
V PD -0.210 0.003 **
C 0.453 0.000 ***
SE 0.122 0.082 .
W -0.114 0.096 .

AIC=212 RMSE=0.645
SW p-value=0.00 BP p-value= 0.00 E[ε]=0.01

Significance Level: · 0.1, * 0.05, ** 0.01, *** 0.001

method to correct for the heteroscedasticity and to obtain error estimates, thus allowing
to test coefficients for their significance without changing their estimates (White, 1980).
Of course if the underlying model is not correct, than the coefficients cannot be trusted
in the first place. Table A.2 provides a summary of 10-hr OLS with robust errors. We can
see that the regression is heteroscedastic, since the BP test has a p-value of 0.00, where
the null hypothesis is that the residuals are homoscedastic. However, using robust errors,
we can conclude that SMC is a significant predictor of FMC, explaining larger variance
in FMC than VPD. Though canopy percentage remains the best predictor. Though, the
OLS model is not the most appropriate model to describe the SMC-FMC relationship,
because the residuals have big deviations from a normal distribution and are non-linear.

Log-transformed

If data analysis shows non-linear relationship between variables, variable transformation
may result in a better model fit. Both explanatory and response variables can be trans-
formed and there are different transformation functions that can be applied. In the fol-
lowing section we present log-transformed FMC model, where we fit a regression using
the same explanatory variables as described in the Methods Section X, however the re-
sponse variable, FMC, is log-transformed. Table A.2 provides a summary of 10-hr OLS
with log-transformed FMC. The model passes homoscedasticity, normality, and linearity
tests. In this model formulation, SMC is a significant predictor of FMC. The magnitude of
the SMC coefficient is slightly lower than that of the VPD, but overall canopy percentage
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Table A.5: Scaled coefficients for 10-hr log-transformed FMC OLS. Regression intercept
is α and regression residuals are represented by ε. Significance level of each coefficient is
based on robust p-values. Model performance is assessed by AIC and RMSE. P-values of
homoscedasticity test (BP) and residuals’ normality (SW) test are provided, where the null
hypothesis is the assumption of homoscedasticity and normality of the studentized residuals.
Lastly, expected value of studentized residuals is reported as E[ε]

Coefficient Estimate
Robust
p-value

Significance

log(FMC10−hr) = α + βSMCSMC + βV PDV PD + βCC + βSESE + βWW + ε
α 0 1.000

SMC 0.202 0.012 *
V PD -0.277 0.000 ***
C 0.564 0.000 ***
SE 0.166 0.010 *
W -0.157 0.010 *

AIC=195 RMSE=1.66
SW p-value=0.48 BP p-value= 0.19 E[ε]=0.00

Significance Level: · 0.1, * 0.05, ** 0.01, *** 0.001

explains the largest portion of variation in FMC. A disadvantage of transforming variables
is that it is difficult to interpret different model coefficients and some of the physical re-
lationships may become less clear, therefore this model was not selected by us to explain
the role of SMC on FMC in the main text. Nonetheless, log-transformed model supports
the conclusions made by the WLS regression.

Polynomial Regression

Since the relationship between 10-hr FMC and SMC appears to be non-linear (Figure XX),
we have fit a piecewise regression to describe the relationship between SMC and FMC in
the main text. This relationship is based on the discontinuous relationship between soil
moisture and soil evaporative flux. To assess other non-linear relationships, we have fit a
second order (quadratic) orthogonal polynomial regression to explain variation in FMC.
Orthogonal polynomials were selected over raw polynomials to reduce collinearity. The
regression coefficients are summarized in Table A.6. Since the quadratic term is insignifi-
cant, we do not expect a quadratic regression to be a good model to describe SMC-FMC
relationship.
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Table A.6: Scaled regression coefficients for 10-hr FMC orthogonal polynomial regression. Re-
gression intercept is α and regression residuals are represented by ε. P1(SMC) and P2(SMC)
are 1st and 2nd order orthogonal polynomials of SMC. Significance level of each coefficient
is based on robust p-values. Model performance is assessed by AIC and RMSE. P-values of
homoscedasticity test (BP) and residuals’ normality (SW) test are provided, where the null
hypothesis is the assumption of homoscedasticity and normality of the studentized residuals.
Lastly, expected value of studentized residuals is reported as E[ε]

Coefficient Estimate
Robust
p-value

Significance

FMC10−hr = α + βP1(SMC) + βP2(SMC) + βV PDV PD + βCC + βSESE + βWW + ε
α 0.000 1.000

P1(SMC) 3.930 0.003 **
P2(SMC) 1.715 0.113
V PD -0.177 0.001 ***
C 0.433 0.000 ***
SE 0.093 0.109
W -0.130 0.019 *

AIC=207 RMSE=0.62
SW p-value=0.00 BP p-value= 0.50 E[ε]=0.00

Significance Level: · 0.1, * 0.05, ** 0.01, *** 0.001

A.3 Spatial Soil Moisture and Ignition Probabilities

In Section 3.3.2, we discuss the spatial distribution of probability of ignition that is based
on 10-hr FMC. To derive probability of ignition across ICB, we relied on spatially dis-
tributed vegetation cover, soil moisture, temperature, and vapor pressure deficit maps.
Some of these are shown in Figure A.4. Both vapor pressure deficit and temperature
maps not shown) were spatially scaled from the temporary weather station location (lat
-119.57, lon 37.68, elevation 2,136 m) to the rest of the ICB using a temperature lapse rate
of -0.007oC/m (Boisramé et al., 2019b), where ICB elevation is shown in Figure A.4-A.
Percent canopy map used for ICB (Figure A.4-C) is based on LANDFIRE 2016 canopy
product. LANDFIRE reports percent canopy for both forest and shrubland vegetation.
In Figure A.4-B, we set all percent canopy for all shrubland cover types to 0%, since we
do not expect sufficient shading to affect fuel moisture. In reality, there is likely to be
an effect, but we assume that shading provided by the shrub cover is a lot lower than
the shading provided by forest cover type for an equivalent percent canopy value. Lastly,
used spatial soil moisture maps for ICB for spring (end of May) and fall (beginning of
August) of 2017 which were derived based on Boisramé et al. (2017) methodology. These
soil moisture maps are shown in Figure A.4-C and D).
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Figure A.4: Spatial variables that were used as inputs to calculate fuel moisture content
and associated probabilities of ignition. Digital elevation model (DEM) of the ICB (A) was
used to scale weather station temperature VPD measurements across the basin; percent
canopy maps were derived from LANDFIRE’s 2016 existing vegetation cover. All non-forest
vegetation canopy cover and exposed rock (white color) was set to zero; Volumetric soil
moisture content in the Illilouette Creek Basin representative of the spring (C) and fall (D)
conditions in 2017. The soil moisture maps are representative of the top 12 cm mineral soil
water content. Areas that do not have associated soil moisture values (white color) are either
exposed rock or bodies of water.

Probability of ignition maps for spring and fall of 2017 are based on 10-hr FMC (Figure
A.5). Two methods were used to derive spatial probability of ignition: 1) regression that
does not include SMC as a predictor (A.5-A and B), and 2) regression that uses SMC as
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a predictor (A.5-C and D).

Figure A.5: Probability of ignition maps based on 10-hr FMC are shown for spring and
fall of 2017. The top figures are derived based on regression that excludes SMC from FMC
predictions, and the bottom set of figures calculates FMC based on piecewise regression with
SMC as a predictor
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Supporting Information for Chapter
4

B.1 Sugarloaf Creek Basin Site Information
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Table B.1: All fires from FRAP (2017) perimeter database that burned within SCB. Percent
and area burned at high severity is based on the relative differenced normalized burn ratio
(RdNBR) using the threshold from Miller and Thode (2007). The satellite imagery used to
compute RdNBR is only available from 1984 on. RdNBR assessments were not available for
fires smaller than 20 ha.

Year Name
Report

date

Total
area
(ha)

Area of
watershed

burned
(ha)

Percent
high-

severity
(%)

Area
high-

severity
(ha)

Included
in

analyses?

1952 Sugarloaf 19-Jun 15 15 NA NA N
1964 Williams 2-Oct 5 5 NA NA N
1971 Ball Dome 13-Aug 99 99 NA NA N
1972 Sugar Valley 15-Sep 16 5 NA NA N
1973 So. Sentinel 28-Aug 1084 1038 NA NA Y
1974 Comanche 22-Jul 1219 1219 NA NA Y
1976 In Between 29-Jul 13 13 NA NA Y
1977 Sugarloaf 20-Jul 264 264 NA NA Y
1977 Ferguson 26-Jun 4219 1594 NA NA Y
1980 Roaring 1-Aug 170 72 NA NA Y
1985 Sugarloaf 28-Jul 1153 1152 1 12 Y
1988 Sugarbaby 20-Jun 3 3 NA NA Y
1992 Ellis Meadow 2-Jun 57 57 0 0 Y
1997 Sugarloaf 15-Aug 114 114 6 7 Y
1999 Williams 18-Sep 232 232 0 0 Y
2003 Williams 28-Jul 1429 1427 3 50 Y
2004 Ferguson 7-Jul 1 1 NA NA N
2006 Pond 13-Aug 5 0 NA NA N

TOTAL 10,098 7310 2 69
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Table B.2: Specific discharge (total streamflow volume divided by watershed area) from
the Merced Watershed (which contains ICB) and South Fork Kings River Watershed
(which contains SCB) illustrate drier conditions in the region including SCB. IRMA =
irma.nps.gov/AQWebPortal Large Watershed Sub-Watershed Measurement

Large
Watershed

Sub-Watershed
Measurement
Point

Gage or
Data

Source
Lat/Lon

Sub-
watershed

Area

Years
Used
for

Mean

Mean
Annual
Specific

Discharge
(Flow/Area)

South
Fork
Kings

SF Kings River
Near Cedar Grove,
CA1

USGS
11212500

36o48’25”N
118o44’55” W

1056
km2

1950-
1957

0.55
m/yr

South
Fork
Kings

Kings River
near Hume,
CA1

USGS
11213000

36o50’50” N
118o53’50” W

2160
km2

1921-
1958

0.4
m/yr

Merced
Illilouette Creek
at Ill. Falls Bridge

IRMA
37o42’43” N

119o33’35” W
150
km2

2011-
2017

0.8
m/yr

Merced
Illilouette Creek
at base of
Illilouette Falls

Modeled3 37o43’32” N
119o33’27” W

150
km2

1972-
2017

0.9
m/year

Merced
Merced River at
Happy Isles Bridge
nr Yosemite CA2

USGS
11264500

37o43’53” N
119o33’33” W

469
km2

1921-
1958

0.66
m/yr

Merced
Merced River at
Pohono Bridge
nr Yosemite CA1

USGS
11266500

37o43’01” N
119o39’55” W

831
km2

1921-
1958

0.65
m/yr

1: These two gages on the Merced River are located downstream of where flow from
ICB enters the Merced River (although they measure flow draining
2: These two gages on the Merced River are located downstream of where flow from
ICB enters the Merced River (although they measure flow draining
3: Model based on Boisramé et al. (2017)
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B.2 Sugarloaf Creek Basin and Illilouette Creek

Basin weather station sites

We installed three temporary weather stations in Sugarloaf Creek Basin (SCB) in Septem-
ber 2016, with one weather station each in dense meadow, shrub, and mature mixed conifer
vegetation types, and all sites located within 200m of each other at an elevation of approx-
imately 2400 m (Figure B.1). All stations are located at least 30 m from the nearest edge
of their respective vegetation patches. The dense meadow weather station site has dense
grass cover with some conifer regeneration, but no overstory above the weather station.
It is situated in an area that burned at high severity in 2003. The shrub weather sta-
tion consists of whitethorn ceanothus (Ceanothus cordulatus) interspersed with grasses,
some conifer regeneration, and no overstory above the station. The SCB shrub site also
burned at high severity in 2003. The mixed conifer site has little herbaceous vegetation,
and mature mixed conifers form the overstory. This site burned at low severity in 2003.
Fire severity characterizations are based on remote sensing, aerial photography and visual
observations of tree mortality at each site. Three similar weather stations were installed in
2015 at ICB (station elevation 2100 m; Figure B.2). The ICB wetland site contained less
conifer regeneration than SCB, and was predominantly vegetated with tall grasses. The
shrub site in ICB was comprised mostly of whitethorn ceanothus (Ceanothus cordulatus)
when weather stations were installed, but burned at high severity during the 2017 Empire
Fire, resulting in bare soil with little live vegetation during the 2018 WY. The SCB shrub
site by contrast contained a dense growth of young conifers with a mix of ceanothus and
grass. The forest sites in the two basins were similar in terms of tree density, tree species.
Topographic variables between the sites were also generally similar (Table B.3), and all
sites were forested prior to being burned.

Table B.3: Topographic attributes of each weather station, including slope, aspect, eleva-
tion and topographic wetness index (TWI). All of these values were calculated from digital
elevation models (obtained from Kane et al. (2015) for ICB, and USGS for SCB).

May 23rd, 2017 August 5th / 9th 2017
Wetland Forest Shrub Wetland Forest Shrub

Spatial
average

48%±13% 8.7%±2.3% 7.5%±1.8% 41%±14% 1.3%±1.2% 1.0%±0.6%

12cm
weather
station

49% 11% 10% 49% 2.2% 2.9%
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Figure B.1: Images of weather stations in Sugarloaf Creek Basin. These stations are located
in three nearby areas: one relatively wet site dominated by grasses and conifer recruitment
(A; referred to as “wetland” in the main text), one drier site with sparse conifer recruitment
and shrub growth (B; referred to as “shrub” in the main text), and one with an intact mature
conifer canopy (C; referred to as “forest” in the main text).
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Figure B.2: Images of weather stations in Illilouette Creek Basin. These sites are dominated
by wetland vegetation (A; “wetland”), shrubs and conifer recruitment (B; “shrub”), and a
mature conifer canopy (C; “forest”).
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Soil samples were collected during the installation of the sub-surface TDR probes, and
analyzed for soil texture properties at the UC Davis Analytical Laboratory (Davis, CA,
USA). Soils were loamy sand or sand at all sites and depths, with the wetland sites contain-
ing more silt and organic content (at shallow depth) than the others. Shallow wetland soils
(top 10cm) in both ICB and SCB had higher organic matter and silt content compared to
both deeper wetland soils and all shrub/forest soils, although soil texture at both SCB and
ICB did not vary greatly with depth. Precipitation at SCB was measured at 10-minute in-
tervals by a 0.1-inch Campbell Scientific TE525 tipping bucket rain gauge (6-inch diameter
orifice). The rain gauges were not heated, and the weather stations generated incomplete
precipitation records due to frozen tipping buckets, downtime for station maintenance,
and damage by wildlife. Where possible, we gap-filled precipitation at one station using
predictive mean matching (R package “MICE”) to perform multiple imputations of the
missing data. Predictive mean matching (Little, 1988) is an advantageous technique for
large datasets having non-normal distributions, and discrete values with physical bounds
(in our case precipitation cannot be less than zero). When all three stations were missing
precipitation data (only the case at SCB), we first identified periods of snowmelt using
increases in shallow soil moisture, and then gap-filled these periods using snowmelt (as
determined by a decrease in snow depth observed from field cameras). Snow depth was
converted to snow water equivalent (SWE) using snow density measurements taken at
Rowell Meadow (station RWM, cdec.water.ca.gov), a nearby snow course: 0.30 cm water
/ cm snow in January/February of 2017, and 0.52 in May/June of 2017 (the two periods
when precipitation gap-filling was necessary). All calculations were rounded to the nearest
0.1 inch (2.54 mm), the smallest increment in the rain gauge. Soil moisture was measured
at 10-min intervals by horizontally installed Campbell Scientific 300 mm two-prong TDR
probes (CS650) at 12, 60, and 100 cm depths. We compared soil moisture observations
from the weather stations to the average of a spatially-distributed grid of local measure-
ments made with the hand-held soil moisture meter (Table B.2). Spatial averages were
calculated from 25 measurements made in a 100 x 100 ft (30.48 m) grid centered on each
weather station site, and compared to the 12 cm deep TDR at the weather stations. The
consistency between the results indicates both that the weather stations were representa-
tive of their local area and that the mobile and in-situ instrumentation performed similarly.
The slightly wetter measurements found at the weather stations are due to the spatially-
distributed measurements averaging soil water content vertically from the surface 12 cm
depth, and the buried moisture probes averaging soil water content horizontally at a depth
of 12 cm. To investigate another metric of relative water balance differences between the
three vegetation sites, we calculated cumulative shallow soil moisture gain at each site,
defined as the cumulative increase in shallow soil moisture over the duration of the study.
We averaged the two soil moisture measurements at 12 cm and 60 cm depths (“shallow
soil”) at every 10-minute measurement interval, and then calculated a six-hour moving-
window average soil moisture for each measurement interval using all measurements on
three hours on either side of the target measurement interval to eliminate signal noise. An
increase between two consecutive 10-minute average soil moisture records was considered
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Table B.4: Comparison of spatially averaged (±1 standard deviation) shallow soil moisture
readings and the time averaged in-situ TDR soil moisture readings at 12cm at the SCB
weather stations. In the late summer campaign, wetland and forest sites were measured on
August 5th, and the shrub site on August 9th.

WY 2016 WY 2017 WY 2018
Weather Station, ICB 580 mm 1102 mm 563 mm
PRISM, ICB 1028 mm 2017 mm 797 mm
Weather Station, SCB NA 761 mm 487 mm
PRISM, SCB 843 mm 1491 mm 673 mm
ICB/SCB, Weather Stations. NA 1.45 1.16
ICB/SCB, PRISM 1.22 1.35 1.19
PRISM/Station, ICB 1.77 1.83 1.42
PRISM/Station, SCB NA 2.65 1.63

to be water gain in the shallow soil column. To convert percent volumetric water content
(VWC) measured by the probes to a depth of water accumulated at each time step, we
multiplied the increase in VWC between two measurements by 48 cm (the depth of the
shallow soil moisture column; decreases and zero values between intervals were ignored).
Cumulative soil moisture gain is thus the sum of soil moisture gains for each individual
10-minute timestep over the course of the recorded water year. Data are shown in Table
4.1.
The weather stations reported more precipitation in ICB than SCB (Table B.4), with the
differences being larger (1.3-1.6 times more precipitation in ICB than SCB) in 2017 (a
wet year) than 2018 (1.1-1.2 times more precipitation in ICB), a dry year. Precipitation
totals for ICB are conservative for 2017 WY because of the removal of the weather stations
prior to the Empire Fire (September through the end of November 2017). At least two
precipitation events occurred during this time. Comparing the weather station precipita-
tion estimates to PRISM data (http://www.prism.oregonstate.edu) at the same locations
shows the same general trends in space and time, giving us confidence in our estimates of
the relative differences in precipitation between the basins, even if the exact values do not
agree (Table B.4). PRISM precipitation is highly uncertain in the Sierra Nevada, and the
differences in annual total precipitation do not indicate that ICB/SCB measurements are
erroneous (Henn et al., 2018).
Table B.4. Annual precipitation estimates for water years (WY) 2016 through 2018.
Weather station estimates are averaged between the non-forest stations at each water-
shed (ICB and SCB) as these stations should not experience interception losses. The ratio
of precipitation between sites and between datasets show that for 2016-2018 ICB always
received more annual precipitation than SCB (regardless of dataset), and PRISM always
estimated higher precipitation than our weather stations.
Most precipitation in both basins is in the form of snow, and the basins had different
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snowpack depths (Figure B.3). Snow data in 2017 are incomplete for SCB because of
periods of time when the snowpack covered the cameras. Nonetheless, we estimate that
snow depth was similar between the two sites during the 2017 and 2018 WYs. In ICB
manual snow depth measurements were taken in a grid around each weather station in
March 2016, January and April 2017, and March 2018 (points and error bars on Figure
B.3 for ICB), but manual measurements were not made at SCB because the site was
inaccessible in the winter. For both locations and all water years, the wetland station had
the greatest snowpack depth and the latest melt date, and the forest station had the lowest
snowpack depth and earliest melt date.

Figure B.3: Snow depth (in mm) for Sugarloaf Creek Basin (top) and Illilouette Creek
Basin (bottom) as measured from images taken four times each day at wetland, shrub, and
forest weather station sites. Additionally, error bars (squares indicating mean, and bars
indicating standard deviation) are shown for manually measured snow depths in ICB. In
SCB, cameras were covered during peak snowpack for 2017-18 winter, and the shrub camera
stopped working before full snowmelt, resulting in missing data.
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B.3 Details of landscape changes

Methods

To assess vegetation transitions within SCB, we used our classified images from 1973 and
2014 to calculate the number of pixels that underwent each possible transition among
those four categories (including pixels that remained the same). Our null expectation of
vegetation change was that a transition between two vegetation types was equally likely
in each direction, with this transition probability estimated by summing the number of
pixels in each direction of change between a given pair of vegetation types, and divid-
ing by two. We then compared the distribution of pixels in each of the resulting sixteen
potential vegetation transition classes against an expected distribution (holding the num-
ber of unchanged pixels constant) using a chi-squared test. We determined the residual
proportion of expected change, compared to the null expectation, as a percentage (in-
crease or decrease) from the null expectation for a given transition class. To calculate
and compare vegetation patch metrics for ICB and SCB, we used FRAGSTATS software
( https://www.umass.edu/landeco/research/fragstats/fragstats.html) to analyze vegeta-
tion maps created from images taken in 1973 and 2014 (SCB) and from images taken
in 1969/70, 1987, 1997, 2005, and 2012 for ICB. For both watersheds, the first year of
imagery (either 1973 or 1969/70) coincided with the end of a long period of fire exclusion
and suppression, and represents vegetation before the first fire in the managed wildfire
era. The vegetation maps divided land cover into four vegetation classes: forest, shrub,
sparse meadow, and dense meadow. For SCB, areas south of the southernmost extent of
historical fires were removed from the landscape change analysis, since this area consisted
mostly of isolated patches of vegetation surrounded by rock and caused misleading values
(this was not necessary for ICB, which contained very little mapped vegetation in the
rocky high-elevation areas). Isolated pixels surrounded by different vegetation types were
removed from the maps before processing by merging them with the surrounding vegeta-
tion type, which minimized differences caused by small isolated patches that were likely
due to classification error or would be difficult to capture the same way using two sets of
imagery. Diversity indices describe heterogeneity by measuring how patches of vegetation
are distributed spatially across the landscape and capture fire-related landscape changes
well (Romme, 1982). We evaluated the following diversity metrics:

1. Shannon’s Evenness Index (SHEI) is the Shannon’s Diversity Index (calculated us-
ing information theory) divided by the maximum diversity given the number of cover
types present (McGarigal et al., 2012). An evenness index of 1 means that all vegeta-
tion types are equally represented in the landscape; higher evenness indicates greater
landscape diversity.

2. Simpson’s Evenness Index (SIEI) is similar, but is calculated using the probability
that any two cells selected at random would be different patch types (McGarigal et
al., 2012). Again, a value of 1 means all patch types cover an equal area, while a
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value near 0 means that one type dominated nearly all of the landscape. We include
both evenness indices in order to verify that the exact method of calculating evenness
does not affect our results.

3. Aggregation Index (AI) is a measure of how much each vegetation type is clumped
into a few large groups (high aggregation) or spread into many small groups (low
aggregation).

Patch properties describe local-scale heterogeneity and the size and shape of individual
vegetation patches. For this study, we used metrics which have been shown to be consistent
across many different landscapes (Cushman et al., 2008): 1. Largest patch percent area
(LPI) gives the percent of the total vegetated area taken up by the largest contiguous
vegetation patch within each vegetation class. This metric gives an idea of the maximum
area dominated by a single type of overstory. 2. Fractal dimension (FRAC) measures how
complex and plane-filling the shapes are by using the relationship between the area and
perimeter of a patch. As the dimension approaches 2, perimeter is maximized for a given
area of coverage, while for simple geometries such as squares or circles the dimension is
1 (McGarigal et al., 2012). For example: a vegetation class with a low fractal dimension
whose largest patch covers a large area indicates a spatially homogeneous region. On the
other hand, a high fractal dimension suggests an increase in the total length of boundaries
between patches of different types, thus increasing local heterogeneity. We also calculated
the mean and standard deviation of the areas of all patches within each vegetation class.
These measures help capture the changes in the distribution of patch sizes. All calculations
were made on a rasterized vegetation map with a spatial resolution of 5 meters. This spatial
resolution was chosen to match with calculations made on ICB vegetation (Boisramé et
al., 2017).

SCB Landscape Change Results

As described in the main text results, transitions from shrub and mixed-conifer to sparse
and to a lesser extent dense meadow were more strongly overrepresented in the burned
areas than in the unburned areas (Figure B.4 c,d). Dense meadow area is limited in this
watershed and saw limited expansion or contraction in absolute terms (Figure B.4).
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Figure B.4: Image change analysis. Colors indicated change in observed vegetation transi-
tions relative to a null expectation of equally likely change in each direction. Color scale the
proportion of the null expectation at which a given transition occurred, either more (blue)
or less (red) than expected. Cell numbers indicate the number of 0.16 ha pixels in each
transition category. Transitions occur from vegetation type in row (from 1973) to vegetation
type in column (from 2014).

Vegetation Patch Metrics Results

Sugarloaf Creek Basin (SCB) showed a much smaller degree of landscape change than
Illilouette Creek Basin (ICB). Diversity indices increased over time for both watersheds,
but the change was negligible for SCB, demonstrating that landscape diversity rose only
very slightly in response to fire (Figure B.5). The landscape-scale aggregation index in-
creased slightly over time in SCB, in contrast to a decrease in ICB (Figure B.6). This
could be due to fires creating larger areas of sparse meadow that are more aggregated
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than pre-burn meadow areas (Figure B.7 b). The size of the largest vegetation patches
did not vary appreciably in SCB between 1973 and 2014, with the exception of sparse
meadows (Figure B.7). The mean and standard deviation of patch sizes, however, showed
similar trends to ICB (Figure B.8). Most notably, conifer patches got smaller and less var-
ied in size following 4 decades of fire (Figure B.8). While fractal dimension increased for all
vegetation types in ICB, it remained flat or decreased slightly in SCB (Figure B.9). This
may partially be due to fires creating a small number of new fairly homogeneous patches
with simple geometries, but the small amount of change demonstrates that patch proper-
ties varied very little in response to fire in SCB. Relative proportions of each vegetation
type were similar between the two watersheds (Figure 4.6; note that these proportions
do not account for exposed rock). Both watersheds also had similar Shannon’s Evenness
Index values in their pre-fire/post-suppression states (Figure B.5). These similarities show
that, despite differences discussed in the main text, the large-scale land cover types and
distributions are comparable between these watersheds, making them useful to use as two
case studies demonstrating how fire affects two similar landscapes in areas with slightly
different climatology and geology.

Figure B.5: Shannon’s Evenness Index calculated for both ICB and SCB for each year that
we created vegetation maps from aerial imagery
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Figure B.6: Aggregation Index calculated for both ICB and SCB for each year that we
created vegetation maps from aerial imagery.
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Figure B.7: Largest patch index (LPI; the percent of the total area occupied by the largest
contiguous patch of vegetation) for each vegetation class for both ICB and SCB. Conifer (A)
is shown separately from the other vegetation classes (B) due to large differences in scale.
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Figure B.8: Mean (A,C) and standard deviation (B,D) of patch size for each vegetation class
for both ICB (dashed lines) and SCB (dotted lines). Conifer is shown separately (A,B) from
the other vegetation classes due to large differences in scale.
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Figure B.9: Mean area-weighted fractal dimension of patches for each vegetation class for
both ICB and SCB. 1997 is omitted due to small differences in mapping protocol affecting
patch fractal dimension.
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B.4 Detailed soil moisture model results

Figure B.10: Relative importance of each variable in predicting plot-level soil moisture for
Sugarloaf Creek Basin (A) and Illilouette Creek Basin (B). Variables include 2014 vegetation
(Current Veg), Distance from nearest stream, 1973 vegetation, topographic wetness index at
a 10m resolution (TWI), Upslope contributing area, topographic position index calculated
at a scale of 300m (TPI), aspect, elevation, slope, maximum fire severity, days since Jan-
uary 1 for the measurement (Day of Year), years since fire, times burned, and year of the
measurement. A higher importance value indicates that including the given variable in the
model leads to a larger reduction in model error (Liaw and Wiener, 2002).
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Figure B.11: Partial plots showing how the mean soil moisture (across all other possible
variable values) varies with each topographic variable. These plots were created using the
randomForest R package.
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Figure B.12: Partial plots showing how the mean soil moisture (across all other possible
variable values) varies with each non-topographic variable. Those variables treated as factors
rather than continuous values in the model are shown as bar plots. Number of fires varied
moisture by less than 0.4%, and is not shown. Current vegetation (C) is different from Figure
4.7 in the main text because Figure 4.7 modeled each measurement site explicitly, whereas
the means shown here are taken across the entire range of possible covariates from all sites,
regardless of whether a given site actually contained a given vegetation class. The difference
occurs because meadows are more likely to be found in sites that are topographically prone
to high moisture.
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Figure B.13: Modeled versus measured soil moisture in SCB (site means). Red points are
calculated using a model trained on ICB data; black points are from a model trained on
SCB data.
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Figure B.14: Errors in predicting SCB soil moisture using a model trained on SCB data
(grey) and on ICB data (red)
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Figure B.15: Model results for Illilouette Creek Basin (ICB) showing volumetric water con-
tent (VWC, as a proportion between 0 and 1) at many points across the watershed using
2014 vegetation (after 40+ years of wildfires) versus 1970 vegetation (after nearly a century
of fire suppression). Green points represent locations which were conifer-dominated in 1970
but converted to dense meadow by 2014. Black and blue represent locations which remained
conifer or meadow, respectively. These model results suggest a much greater impact of fires
on soil moisture in ICB compared to SCB (See Figure 4.8 in the main document). This figure
is reproduced from Boisrame2018.
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Appendix C

Supporting Information for Chapter
5

Introduction

This Supplementary Information provides additional detail on modeling results, including
modeling assumptions, climate data, model uncertainty, post-fire vegetation transitions,
and water supply and hydropower revenue calculations

C.1 Assumptions

The following table provides a summary of fire regime characteristics. We have considered
how these can be affected in future climates and provided justifications for each charac-
teristic.

Fire regime characteristics Are future changes accounted for?

Individual fire area
No change expected in ICB
Collins & Stephens (2007)

Individual fire severity proportions
No change expected in ICB

Collins et al. (2009); Kolden et al. (2015)

Fire frequency
Historical and 2 future scenarios addressed

Westerling & Bryant (2008)
Batllori et al. (2013)

Post fire regeneration vegetation type Provided uncertainty bounds (Section C.6)
Post fire rate of vegetation regeneration RHESSys accounts for this
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C.2 Climate Data

The minimum requirements for RHESSys inputs are precipitation and maximum and
minimum temperature time series. The following section provides additional details about
climate data used in historical and future climate modeling.

Weather Stations

Precipitation and temperature data from the Yosemite Headquarters (CDEC station YHQ;
http://cdec.water.ca.gov/) weather station were used for historical modeling and to bias-
correct future climate ensemble. Station YHQ has been operating at daily resolution since
1926 (elevation 1,225 m), however it has some missing records and gap filling was nec-
essary. From January 1926 to October 2017, HQ station was missing 7.8% of its record.
These gaps are largely covered by data recorded at adjacent stations (CDEC stations SEY
at 1560 m, TUM at 2620 m, YOW at 1510 m, and GML at 2790 m). Only 0.1% of the total
length of record is missing at all stations. Using the MICE package in R, precipitation and
temperature data were gap-filled using the predictive mean matching algorithm in MICE
(Little, 1988). Predictive mean matching works well with non-normally distributed data
and draws from observed data, avoiding non-realistic values (such as negative precipita-
tion).
RHESSys uses temperature and precipitation lapse rates to spatially distribute singular
weather station inputs to the entire basin based on elevation. Boisramé et al. (2019a) pro-
vides details of how lapse rates were calculated. In addition to weather stations operated
by the US National Park Service that are located at different elevations and have a long
operating record, there are also temporary weather stations installed directly in ICB that
have measured temperature and precipitation since the fall of 2015. Figure C.1 provides
a comparison between the temperature profile recorded by station YHQ and one of the
temporary weather stations installed in ICB (elevation 2,136 m). On average, the temper-
ature in ICB is 7◦C cooler than in Yosemite Valley, which is 911 m lower in elevation than
the temporary weather station in ICB.

Global Circulation Models

Global circulation models (GCMs) were selected to represent possible future climates
based on the criteria of having enough models to produce a range of possible hydrological
outcomes in the future of ICB. Due to the high computational cost of including all of
the available models in CMIP5, we sub-selected ten GCMs (step 1 in Figure C.2). The
sub-selection process followed work by Knutti et al. (2013), which created a ”family tree”
of CMIP5 GCM models based on the pairwise distance of precipitation and temperature
fields. The models were also color coded based on their similarity in code. We focused our
model selection on those that were from different institutions and had dissimilar underlying
atmospheric models while having high prediction skill. Table C.1 presents a summary of
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Figure C.1: Yosemite Valley weather station (YHQ) was used for both bias-correction of
Global Circulation Models and for historical model simulation. Average daily temperature
recorded by Yosemite Valley station is on average 7◦C warmer than the temperature recorded
by the temporary weather station that was installed in ICB in 2015 in a shrubland vegetation
cover. RHESSys spatially downscales YHQ’s climatic inputs to sub-units within ICB using
lapse rates.

the 10 GCMs that were used in our modeling for both RCP 4.5 and RCP 8.5 climate
scenarios.
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Figure C.2: A subset of 10 models (each model is represented pictorially as a stick person)
is chosen based on skill and independence from all CMIP5 models with daily resolution for
both RCP 4.5 and 8.5 scenarios (step 1), bias-correction is performed via quantile delta map-
ping (step 2), and the bias-corrected climate timeseries are individually used as inputs into
RHESSys (step 3). The output from individual model runs is then averaged and confidence
bounds obtained associated with both model parameter sets and the climate ensemble.
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Table C.1: List of 10 GCMs used in the ICB climate ensemble, showing the modeling
agency that produced each GCM, and the grid resolution available from the CMIP5 ensemble
(Gregory Flato, 2013)

Model Country Organisation Resolution
(Lat x Lon)

ACCESS 1-3 Australia Commonwealth Scientific and In-
dustrial Research Organization
(CSIRO) and Bureau of Meteo-
rology (BOM)

1.25◦ x 1.875◦

CanESM2 Canada Canadian Center for Climate
Modelling and Analysis

2.8◦ x 2.8◦

CMCC-CM Italy The Centro Euro-Mediterraneo
sui Cambiamenti Climatici

0.75◦ x 0.75◦

CSIRO Mk3.6 Australia Queensland Climate Change Cen-
tre of Excellence and Common-
wealth Scientific and Industrial
Research Organisation

1.875◦ x 1.875◦

GFDL-ESM2M USA NOAA Geophysical Fluid Dy-
namics Laboratory

2◦ x 2.5◦

inmcm4 Russia Russian Institute for Numerical
Mathematics

1.5◦ x 2.0◦

IPSL-CM5A-MR France Institut Pierre Simon Laplace 2.5◦ x 1.25◦

MIROC5 Japan University of Tokyo, National
Institute for Environmental
Studies, and Japan Agency
for Marine-Earth Science and
Technology

1.4◦ x 1.4◦

MRI-CGM3 Japan Meteorological Research Institute 1.1◦ x 1.1◦

NorESM1-M Norway Norwegian Climate Centre 2.5◦ x 1.9◦
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Temperature and precipitation data series from the GCMs shown in Table C.1 were ex-
tracted for the GCM cell containing the Yosemite Headquarters weather station. These
data series were bias-corrected to the datasets described in Section C.2 using the quantile
delta mapping approach (Cannon et al. (2015), step 2 in Figure C.2). Yearly sums and
means of bias-corrected precipitation and air temperature averaged across 10 GCMs along
with the historical record are shown in Figure C.3

Figure C.3: Timeseries of yearly precipitation sums [mm] (A) and average daily temperatures
[0C] (B) for historical, RCP 4.5 and RCP 8.5 for the Yosemite Head Quaters location. Mean
and 95th percentile of 10 GCMs is shown. Basin averaged historical precipitation timeseries
is shown in dashed black. The x axis shows the decades from 1970-2010 for the historical
data and 2030-2070 for the future climate scenarios.

Mean daily temperature is consistently greater for both future climate scenarios when
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compared to the historical record, with the highest temperatures observed for the RCP
8.5 climate scenario. The historical climate data do not show obvious trends in time, but
the RCP 4.5 and RCP 8.5 climate scenarios have a continuously rising temperature record
(Figure C.3-B). The means of the daily precipitation for the RCP 4.5 climate scenario are
similar to the mean of the daily precipitation for the observed historical climate C.4-A. For
the RCP 8.5 climate scenario, the shape of the distributions varies vastly among climate
models and when compared to the observed historical distribution. There are many peaks
at the high end of the precipitation totals, suggesting an occurrence of extreme events
(Figure C.4-B).

Figure C.4: Distribution of downscaled (to the location of Yosemite Headquarters weather
station) daily precipitation [mm] for RCP 4.5 (A) and RCP 8.5 (B) climate scenarios for 10
GCM models (2030-2070) and the observed historical climate (1970-2010). Vertical dashes
are means of the distribution
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C.3 Wildfire Effects on Recent Vegetation and

Streamflow

Wildfires burning with increasing high severity fractions could result from hotter and
drier conditions in future climate. In turn, vegetation burning at high severity can have
post-fire transition to vegetation prone to continue burning at high severity (i.e. shrubs)
(Cornwell et al., 2012; Serra-Diaz et al., 2018). Fire severity and fire size have not been
increasing throughout the wildfire management period (1972-2017) in ICB (Figure 3); we
examine potential severity changes in more detail by comparing the re-burn severities
of the Empire Fire of 2017 (most recent wildfire in ICB), to the Meadow Fire of 2004
(Figure C.5). The two fires have an overlapping burn area of 515 ha in ICB. Based on the
Landsat-derived RdNBR maps, within the overlapping fire area, Meadow Fire on average
burned at RdNBR of 585 while Empire Fire burned at a lower average of 466 RdNBR.
Within the overlapping fire area, 26% of high severity (>650 RdNBR) fire area re-burned
at low to moderate severity (<650 RdNBR), 14% of high severity also re-burned at high
severity, and only 8% of low to moderate severity area re-burned at high severity in 2017.
The non-overlapping RdNBR distribution for both fires was very similar (RdNBR of 252
Empire vs 272 Meadow).
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Figure C.5: The two most recent fires, Meadow in 2004, and Empire in 2017, had an over-
lapping fire area of 515 ha in ICB. RdNBR distribution for both the overlapping (A) and
non-overlapping fire area (B) shows that the re-burned area in 2017 experienced lower sever-
ity than in 2004. Within the fire overlap area re-burn severity generally decreased from 2004
to 2017 (C). Pixels with an RdNBR<640 are classified as low/moderate severity, and pix-
els with RdNBR>640 are classified as high severity. Median of the RdNBR distributions is
shown as a vertical line.

Even though there were multiple drought years and record high temperatures in the Sierra
Nevada in the in the 2010’s, based on Figure C.5, the high severity areas are not increasing
in size and the fuel limiting fire behavior is apparent with lower re-burn severities.

C.4 Uncertainty Analysis

In this section we present a mathematical representation of how uncertainty was calculated
for the differences between climate and fire scenarios.
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In order to determine whether a modeled fire scenario had a significant impact on a given
output variable (e.g., streamflow) compared to the fire exclusion scenario, the difference
(D) between the scenarios would be given by:

Di,j = f(pi, cj, firef )− f(pi, cj, fires) for i = 1, ..., 93, j = 1, ..., 10 (C.1)

where D is the difference between two RHESSys model scenarios and f(p, c, fire) rep-
resents the RHESSys model output created using one of the 93 parameter sets (pi), one
of the 10 climate models (cj), and a fire regime scenario (firef for representing either
historical frequency or a frequency increase of 30% or 60%, and fires representing the
scenario without fires). The climate scenario (observed, RCP 4.5, or RCP 8.5) would be
held constant. A 95% confidence interval of the difference between fire scenarios would
then be calculated by finding the middle 95% range of these 930 D values. Note that for
the unique case of comparing fire scenarios under observed climate, there are only 93 D
values in the ensemble since there is only one historical climate timeseries (c) rather than
ten.
Similarly, in order to determine whether a future climate scenario (RCP 4.5 or RCP 8.5)
combined with a given future fire scenario would cause a significant change compared to
the observed climate and fire frequency, we would determine whether the 95% confidence
interval of the following following 930 differences encompass zero:

Di,j = f(pi, cj, firef )− f(pi, cobs, fireh) for i = 1, ..., 93, j = 1, ..., 10 (C.2)

where cobs is the observed climate, cj is the future climate from one of the 10 climate mod-
els, and firef refers to a potential future fire frequency. When firef represents fire exclu-
sion, then fireh is the excluded scenario; if firef is historical, 30% increased frequency,
or 60% increased frequency then fireh instead refers to the historical fire frequency in
order to better compare the impact of future fire-climate scenarios versus actual observed
scenarios.

C.5 RHESSys Outputs

This section provides additional RHESSys outputs and analysis of the different climate and
fire regime scenarios that are useful for understanding the change observed in the water
balance. This section discusses LAI, seasonality of water balance variables and snowpack,
and changes in the maximum streamflow.
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Table C.2: Decadally-averaged LAI (leaf area per ground area; dimensionless) for the four fire
scenarios: fire excluded, historical frequency, 30% increase, and 60% increase in fire frequency
and three climate scenarios: historical, RCP 4.5, and RCP 8.5 climate scenarios. Decades 1,
2, 3, and 4 refer to the time periods 1971-1980, 1981-1990, 1991-2000, and2001-2010 for the
observed climate, while for future climate scenarios (RCP 4.5 and 8.5) these decades refer to
2031-2040, 2041-2050, 2051-2060, and 2061-2070 respectively. Grey highlighting indicates a
significant difference between modeled LAI in the future climate and the historically observed
climate (Using Equation C.2). An asterisk indicates that wildfires significantly affected the
modeled LAI (Using Equation C.1).

Scenario Decade
Fire Climate 1 2 3 4

LAI
Observed 0.4 0.42 0.41 0.38
RCP 4.5 0.52 0.48 0.49 0.5

Fire
Excluded

RCP 8.5 0.41 0.43 0.43 0.45
Observed 0.4* 0.41 0.4* 0.32*
RCP 4.5 0.51* 0.48 0.47* 0.43*

Historical
Frequency

RCP 8.5 0.41* 0.42* 0.41* 0.37*
RCP 4.5 0.51* 0.44* 0.43* 0.4*

30% Increase
RCP 8.5 0.41* 0.38* 0.36* 0.34*
RCP 4.5 0.51* 0.43* 0.42* 0.42*

60% Increase
RCP 8.5 0.41* 0.37* 0.35* 0.35*

LAI

Leaf Area Index (LAI) is a proxy for the amount of canopy present in the basin, and
places important constraints on the land surface energy budget and how vapor fluxes are
partitioned between transpiration and evaporation. As fires remove vegetation, they reduce
the total basin LAI and its distribution through the ICB. However, RHESSYs will model
canopy growth and recovery and associated changes to LAI. Table C.2 shows LAI change
under fire excluded, historical fire use and 30% and 60% future fire frequency scenarios
for each climate case. In the fire excluded scenarios, LAI is maximal under RCP 4.5. The
CO2 levels are constant throughout all scenarios, therefore, precipitation and temperature
differences are the drivers of the observed increase.
The response of LAI to changing climate and fire frequency is shown graphically in Figure
C.6. The right hand-side plot (red colors) shows the effect of the historical wildfire use
scenario for each climate. The greatest change in LAI due to fire the historical fire regime
is observed for RCP 8.5 climate scenario, followed by RCP 4.5, and historical climate.
This can be explained by the post-fire recovery rate of LAI, where LAI recovers faster in
the historical climate.
Looking at the effects of the varying fire regimes (historical, 30%, and 60%) for both future
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climate scenarios (RCP 4.5 and RCP 8.5) in the two left hand-side plots (blue colors) in
Figure C.6, we observe that the more frequent fire regimes (30% and 60% increase in fire
frequency) increases observed change in LAI by the final simulated decade and decrease
the amount of time it takes to observe maximum change. Though by the final simulated
decade, LAI does not change much due to fire because the carbon stores for the re-burn
areas are sufficiently low (data not shown).

Figure C.6: Change in LAI due to fires for different climates and fire regimes (blues) and
climate and historical fire regime only (reds). Vertical orange lines represent occurance of
fires in the historical fire regime.

Seasonal Change in Water Balance

The seasonality of changes in the water balance due to fire activity is important to the
ecology of the ICB and of Illilouette Creek itself. Figure C.7 shows the seasonality of
observed changes due to the historical fire regime for the last modeling decade. Streamflow
gain represents the largest change in the water balance and is concentrated around winter
months under historical climates, and broadens throughout the fall - spring for RCP 4.5
and RCP 8.5. Transpiration change is the greatest around July for the historical climate,
and June for RCP 4.5 and RCP 8.5 climates. Evaporation decreases slightly and near-
uniformly from October to March. Soil storage change is highly uncertain (expected, since
subsurface routing parameters formed the calibration parameters for RHESSys in this
modeling exercise) and generally increases slightly during winter months.
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Figure C.7: Seasonality of the change in streamflow, transpiration, evaporation, and change
in soil storage due to the historically observed fire frequency regime for the historical (A),
RCP 4.5 (B) and RCP 8.5 (C) climate scenarios for the final simulated decade. Shading
indicates 95 percentiles.

Snowpack

Snowmelt is a big contributor to streamflow in snow-dominated basins, such as the ICB.
Hotter climates will decrease snowpack and that has implications on both seasonality of
streamflow and streamflow amounts. In the absence of fires, snowmelt represents 95% of the
peak streamflow volume. This number decreases to 83% and 75% for RCP 4.5 and RCP 8.5
climate scenarios, respectively (Figure C.8-A,B,C). Adding the effect of the historical fire
regime, the maximum change in streamflow coincides with the timing of maximum change
in snowmelt. Though there is a relatively larger change in streamflow than in snowmelt;
the change in snowmelt is 47%, 31%, and 38% of the change in streamflow at the time peak
streamflow (Figure C.8-D,E,F). This indicates that snowmelt is an important contributor
to the total streamflow volume, though this contribution is less in the future climate.
Canopy sublimation accounts for 23-70% (average 48%) of total basin sublimation. Wild-
fires reduce canopy storage, causing snow sublimation to decrease across all climate and
fire regime scenarios (Figure C.9). Changing sublimation affects both the evaporative bud-
get (Figure 6 of the main text) and total snowpack. Change in sublimation depends largely
on precipitation, temperature, and LAI. Even though there is more overall snowpack his-
torically in 2000-2010 (517 mm SWE) vs 514 mm SWE (RCP 4.5) and 472 mm SWE
(RCP 8.5) in 2060-2070, sublimation change due to the historical fire regime is greatest
for RCP 4.5 climate scenario and lowest for RCP 8.5 climate scenario. Increasing fire fre-
quency (blue plots in Figure C.9), decreases the time it takes to observe maximum change
in sublimation due to fire.
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Figure C.8: Mean monthly total streamflow and snowmelt for fire excluded conditions for
historical (A), RCP 4.5 (B) and RCP 8.5 (C) climate scenarios. Mean monthly total stream-
flow and snowmelt change due to the historical fire regime for historical (D), RCP 4.5 (E)
and RCP 8.5 (F) climate scenarios for years 2000-2010 (A and D) and 2060-2070 (B,C,E,
and F). Shading indicates 95-percentile of all years and parameter sets
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Figure C.9: Change in annual snow sublimation as a result of different climate and fire regime
scenarios. Shading indicates a 95% confidence interval, vertical orange lines are observed
historical fires.
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Peak Streamflow

Any benefits associated with increasing streamflow could be offset if peak streamflow - i.e.
flood casuing flows - are also increased. If wildfires increase high flows, dams might reach
capacity faster and floods can be more likely, more dangerous and more extensive. To
investigate the effects of wildfires on peak streamflow, we looked at maximum streamflow
event of the year for all climate scenarios and compared it to the same day in the fire
excluded ICB. Wildfire management causes on average a 1.1 mm, or a 3.2% increase in
the volume of the maximum streamflow event by the final simulated decade. The increase
is modest, but is not statistically significant across all fire and climate scenarios (Figure
C.10). Due to the lack of high spatial resolution data over the ICB domain, RHESSys was
not calibrated well to extreme streamflow events, however, so these findings are preliminary
in nature.

Figure C.10: Change in maximum streamflow of the water year as a results of different
climate and fire regime scenarios.Vertical lines indicate occurrence of the historical fires.
Shading indicates a 95% confidence interval.

C.6 Hydrological Modeling with Different Post-fire

Vegetation Transitions

Wildfires in future climate are expected to cause different vegetation transitions from
the observed historical transitions (see Appendix F). The model setup used here includes
spatially-varying transitions to either new forest, shrubland, or meadow following high
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severity fire, based on observed past transitions. However, in reality drier/hotter climates
mean that vegetation is more likely to transition to shrubs (Cornwell et al., 2012). While we
cannot couple post-fire vegetation transitions to climate within the RHESSys framework,
we did perform additional analysis to determine the magnitude of uncertainty that the
different vegetation transitions would impose on the hydrology of ICB. For this analysis, we
compared model results from the historically observed post-fire vegetation transitions to
the results from hypothetical situations in which every high severity fire patch transitioned
entirely to either 1) shrub, 2) forest, or 3) wetland. Specifically, we compare hydrological
outputs for the historical fire frequency regime to the fire excluded ICB hydrology for
the RCP 4.5 and RCP 8.5 future climate ensembles. Though these vegetation transitions
are not realistic in the future climate, they do provide additional bounds of uncertainty
around the effects of the fire regime in the future climate.
All vegetation transitions resulted in similar hydrological outcomes as the historically
observed vegetation transitions, though the magnitudes of change have some deviations
(Figure C.11). Streamflow and subsurface storage are insensitive to the different vegetation
transitions with little deviation from the mean and 95% confidence interval of the histor-
ical vegetation transition. Transpiration, evaporation, and maximum snowpack are more
sensitive to the type of vegetation transition, though the difference between vegetation
scenarios remains small.
The largest deviation from historical transitions was observed for vegetation conversion to
all forest cover type, which is the least likely vegetation transition given climate change
predictions. Forest LAI declined most rapidly and approached the LAI of wetland cover
types, indicating that trees are not re-growing after disturbance under modeled future
climates (likely due to higher water stress). On the other hand, shrubland cover types
have the quickest post fire recovery rates.
In summary, our model results are not highly sensitive to the fact that we are not able
to couple post-fire vegetation transitions to climate, given an extreme range of possible
vegetation transitions. Modeling suggests that the hydrological outcomes of wildfire man-
agement in future climate will be similar to the historically observed outcomes for a given
fire regime even if post-fire vegetation types shift. However, we want to acknowledge that
post-fire vegetation transitions can in turn influence the fire regime itself (Syphard et al.,
2018), thereby creating feedbacks that cause the fire regime to shift. Such vegetation-fire
feedbacks are beyond the scope of the current study, but will be explored in future work.
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Figure C.11: All plots show the difference between the historical and excluded fire scenarios
in ICB. Post-fire vegetation scenarios are shown with different dashed lines for transitions
to all forest, wetland, and shrubland. Historically observed post-fire vegetation scenario is
shown as a solid line. Hydrological outputs are representative of the RCP 4.5 and RCP
8.5 climates in the left and right column respectively. Thin lines indicate 95% confidence
interval of the 930 model runs (93 parameter sets for each of the 10 GCMs), while thick lines
represent average difference.
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C.7 Hydropower and Water Supply Calculations

The following section provides supporting calculations for the revenue from water sales
and hydropower generation.

Water Supply

Low-high bounds of modeled streamflow gain from ICB under the historical fire scenario
are 19-29 mm of additional streamflow per year when compared to fire excluded ICB
(Table 2 and Figure 5). The following calculation corresponds to ICB’s entire area of 150
km2. Using 2017 water year reports for the city of San Francisco, the cost of water for
single-family residency for the first tier was 6$ per ccf (one-hundred cubic-feet) of water
delivered (San Francisco Public Utilities Commission, 2014). This is the most conservative
estimate of water use, and actual prices charged are higher for higher water use tiers
and multi-family residential categories. Based on the above data, the cost of additional
streamflow gain in ICB translated to San Francisco water sales is:

Water Sales =

19 to 29 mm ∗ 10−6 km

mm
∗ 150 km2 ∗ 6 $

ccf
∗ ccf

2.83149 m3
∗ m3

10−9 km3

=6.0− 9.2 million $/year

Considering a proposed price of 9.6 $/ccf for 2020 WY (San Francisco Public Utilities
Commission, 2018), the income from ICB’s water gain will increase to 9.6 -14.7 million$
(an additional 3.6-5.5 million $/year). In 2017 WY, on average 36 million gallons per day
(MGD) of water were delivered to residential customers (San Francisco Public Utilities
Commission, 2017). ICB’s additional water gain is:

ICB streamflow gain =

19 to 29 mm ∗
10−6 km

mm
∗ 150 km2 ∗ 1

1MGD

3.78541178× 10−6 km3

36 MGD/day ∗ 365 days/year
∗ 100%

= 5.7− 8.7% of annual San Francisco residential water consumption

Hydro Power

O’Shaughnessy Dam releases water from Hetch Hetchy reservoir and channels it into
Canyon Power Tunnel, which is one of the forks that connects with the Hetch Hetchy
Aqueduct. Kirkwood power station is the first power station below O’Shaughnessy Dam
which generated 524 million KWh in 2017 from the flow from Canyon Power Tunnel (Cal-
ifornia Energy Commission, 2019a). Water flows into Mountain Tunnel and Moccassin
power station below generating 324 million kWh in 2017 (California Energy Commission,
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2019b). Therefore total power generation in 2017 from the flow coming directly from Hetch
Hetchy reservoir was 849 million kWh. The flow through the Hetch Hetchy aqueduct is
relatively stable year to year, equalling 265,000 acre feet per year (Aquafornia, 2008).
Average residential electricity cost was .204 dollars per kWh in 2017 (Bureau of Labor
Statistics, 2018). Using these numbers, the potential hydropower revenue from an increase
in streamflow equal to that seen in ICB:

Hydropower revenue =

19− 29 mm ∗ 150 km2 ∗ 10−6 km

mm
∗ 849 million kWh

265, 000 acre feet

∗ acre foot

1.23× 10−6 km3
∗ 0.204 $

kWh

= 1.5 - 2.3 million $/year




