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Abstract

Randomized Pivoting and Spectrum-Revealing Bounds in Numerical Linear Algebra

by

Christopher Blake Melgaard

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Ming Gu, Chair

In the first part of this dissertation, we explore a novel randomized pivoting strategy to
efficiently improve the reliability and quality of the LU factorization. Gaussian elimination
with partial pivoting (GEPP) has long been among the most widely used methods for com-
puting the LU factorization of a given matrix. However, this method is also known to fail
for matrices that induce large element growth during the factorization process. We propose
a new scheme, Gaussian elimination with randomized complete pivoting (GERCP) for the
efficient and reliable LU factorization of a given matrix. GERCP satisfies GECP (Gaussian
elimination with complete pivoting) style element growth bounds with high probability, yet
costs only marginally more than GEPP in terms of algorithmic complexity and run-time.
Our numerical experimental results strongly suggest that GERCP is as reliable as GECP
and as efficient as GEPP for computing the LU factorization.

In the second part, this dissertation provides tighter and simplified analyses of various
popular low-rank matrix approximation algorithms included randomized subspace iteration
and column/row selection based methods. We derive new bounds and unify them with other
existing bounds under the title Spectrum-Revealing Bounds. These bounds demonstrate how
certain structure in the decay of the spectrum of a matrix help to “reveal” an increasingly
accurate estimate to the low-rank matrix approximation. We provide real world applications
that demonstrate the qualitative value of our bounds for anyone using low-rank matrix
approximations. In the case of randomized subspace iteration, we also dramatically improve
and simplify the probabilistic analysis from previous works [50, 47] using intuitive and concise
techniques.

Lastly, we apply the idea of efficient low-rank matrix approximation in the presence
of spectral decay to help speed up sparse principle components analysis (SPCA). We also
develop novel lower bounds on the variance captured by each sparse principle component
obtained after deflation.
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Chapter 1

Introduction and Motivation

Solving linear systems of equations

Ax = b, (1.1)

where A ∈ Rn×n and x,b ∈ Rn, is a fundamental problem in numerical linear algebra
and scientific computing. Gaussian Elimination with Partial Pivoting (GEPP) solves this
problem by computing the LU factorization of A and is typically efficient and reliable. Over
the years, GEPP has been repeatedly re-designed and re-implemented for better performance,
and is the backbone for generations of mathematical software packages, including LINPACK
[30], LAPACK [8], PLAPACK [5], SCALAPACK [24], PLASMA [3] and MAGMA [3]. GEPP
routines in today’s mathematical software libraries such as the Intel mkl [58] are capable of
solving linear systems of equations with tens of thousands of variables at or near the peak
of the machine’s speed.

Efficiency aside, an equally important consideration is numerical reliability. While algo-
rithms for solving eigenvalue problems have become significantly more stable over the years,
GEPP was known to be, and remains, a method that is mostly stable in practice but un-
stable for many well-known matrices including some from common integral equations and
differential equations applications [38, 100].

Pivoting plays a crucial role in the reliability of Gaussian elimination (GE), which is
tied to element growth within the LU factorization process. The most naive version of GE,
Gaussian elimination without pivoting (GENP), does not perform any pivoting and only
requires 2

3
n3 +O(n2) floating point operations with no entry comparisons [28]. However, this

method can suffer from uncontrolled element growth and is only known to be reliable in a
few instances like diagonally dominant matrices among others. The most popular version
of GE is GEPP, which limits element growth to at most exponential by swapping the rows
of A (i.e., partial pivoting) during elimination, and is numerically stable on average. The
additional cost, about 1

2
n2 entry comparisons and the associated data movement, is typically

a small fraction of the total GE cost. The most reliable version of GE is Gaussian elimination
with complete pivoting (GECP), which swaps both rows and columns for sub-exponential
element growth [97] and is universally believed to be always backward stable in practice [28].
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However, GECP is prohibitively slow with 1
3
n3 + O(n2) entry comparisons and relatively

little memory reuse [28, 51].
Rook pivoting [39, 80, 84] is an attempt to speedup complete pivoting while maintaining

the guarantee of sub-exponential element growth. Rook pivoting is part of the LUSOL pack-
age [40] for sparse LU factorization. Despite having better performance in the “average”
case, there are many matrices that still require O(n3) entry comparisons in the worst case,
providing a negligible speedup over complete pivoting [51].

In this thesis, we propose a novel pivoting scheme called Gaussian elimination with ran-
domized complete pivoting (GERCP). We show that GERCP satisfies a stability condition
similar to that of complete pivoting, suggesting that these methods share similar stability
properties. Yet, we also demonstrate that the cost of GERCP is comparable to GEPP in
terms of the total number of floating point operations and comparisons. Our numerical ex-
perimental results strongly suggest that GERCP is a numerically stable and computationally
efficient alternative to GEPP.

Randomization has been used to fix the numerical instability of GEPP in the literature,
through GE on the product of random matrices and A to avoid catastrophically bad pivots.
These methods are known to work well in practice in general, but they still lack effective
control on element growth, and can be much less accurate than GEPP.

In Section 2, we introduce the necessary notation and background for the first part of
the thesis. In Section 3, we introduce GERCP and state/prove some important properties.
In section 4, we talk about numerical experiments and implementations of GERCP. The
appendix has results needed by the proofs in section 3.
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Chapter 2

The Setup and Background

In this thesis, we consider Gaussian elimination on an invertible square matrix A ∈
Rn×n, although our algorithms and analysis carry over to the cases of singular matrices and
rectangular matrices with few modifications.

2.1 Notation

We will follow the familiar slight abuse of notation from scientific computing and numer-
ical linear algebra, mimicking the way that LAPACK overwrites the input matrix with the
L and U factors. The diagonal of A becomes the diagonal of U because the diagonal of L is
always 1 and thus does not need to be stored.

Algorithm 1 Classical Gaussian Elimination in Matlab Notation
Inputs: n× n matrix A
Outputs: lower triangular L with unit diagonal, upper triangular U , row permutation Πr,

column permutation Πc such that ΠrAΠT
c = LU .

1: set A = A
2: for k = 1, · · · , n− 1 do (i.e. called kth stage of LU)
3: select column pivot (INSERT PIVOTING RULE).
4: swap (UPDATE A AND Πc WITH PIVOT DECISION).
5: select row pivot (INSERT PIVOTING RULE).
6: swap (UPDATE A AND Πr WITH PIVOT DECISION).
7: compute A(k + 1 : n, k) = A(k + 1 : n, k)/A(k, k);
8: compute A(k+1 : n, k+1 : n) = A(k+1 : n, k+1 : n)−A(k+1 : n, k)∗A(k, k+1 : n);
9: end for

Remark 2.1.1. While the working matrix A has been overwritten in Algorithm 2.1, in our
subsequent discussions we will refer L and U as the triangular matrices stored in A and still
refer A as the original input matrix. We will use Ak ∈ Rn×n to refer explicitly to the working
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matrix before the kth stage of the outer most loop. Thus, An refers to the working matrix
after the algorithm terminates, i.e. after the (n− 1)th stage of the outer loop.

Remark 2.1.2. For ease of discussion, we have written Algorithm 2.1 in such a way that,
for each k, it performs possible column pivoting before any possible row pivoting. GENP,
GEPP, GECP and rook pivoting can all be written in this form.

For any appropriate dimension m, we denote ei ∈ Rm to be the ith standard basis vector,
i.e. a vector with all entries equal to 0 except for the ith entry which equals 1; we also denote
e ∈ Rm to be the vector with all entries equal to 1. Any permutation matrix Π ∈ Rn×n is
a square matrix with exactly one entry equal to 1 in each row and column, and all other
entries equal to 0. We refer to the permutation induced by Π as π : {1, · · · , n} → {1, · · · , n}
in the sense that π(i) = j if and only if Πei = ej. We will commonly make use of the swap
or 2-cycle permutation given by π(i,j) or Π(i,j) in matrix form defined by

π(i,j)(i) = j, π(i,j)(j) = i and π(i,j)(k) = k, for all k 6= i, j

We denote the final row and column permutations of an algorithm as Πr and Πc respectively.
At the kth stage of LU, Algorithm 2.1 will swap the kth column with the αthk column and the
kth row with the βthk row. As a result, we can write

Πc = Π(n−1,αn−1) · · ·Π(2,α2)Π(1,α1), Πr = Π(n−1,βn−1) · · ·Π(2,β2)Π(1,β1)

as a product of the individual column/row swaps. Furthermore, we define the next
notation to give us the first k − 1 swaps and the last n− k swaps

Πc,k = Π(k−1,αk−1) · · ·Π(2,α2)Π(1,α1)

Πc,−k = Π(n−1,αn−1) · · ·Π(k+1,αk+1)Π(k,αk)

Also, we will use the analogous definition for Πr,k and Πr,−k.
In Figure 2.1, we describe the use of the MATLAB colon notation in combination with the

permutations above to explain our row and column reorderings of a matrix and its selected
submatrices.

Let πc and πr be the permutation of columns and rows performed by LU respectively.
We use the following notation to refer to matrices with the final pivoting applied apriori

AΠc = ΠrAΠT
c = A(πr(:), πc(:))

AΠc
k = Πr,−kAΠT

c,−k = Ak(πr,−k(:), πc,−k(:))

We do this because all of the pivoting methods discussed in this thesis are top-heavy as
defined in Definition 3. The row pivots πr of a top-heavy pivoting strategy are deterministic
given the column pivots πc applied to A by the LU factorization because each row pivot
must satisfy equation (2.8). Therefore, when writing AΠc , it is understood that the row
pivots are the unique set of top-heavy row pivots.
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Common examples of Matlab notation for 1≤ i≤p≤m and 1≤j ≤q≤n
Notation Pivoted Notation Dimensions Description
B(:, :) B(π1(:), π2(:)) Rn×n Entire matrix B or Π1BΠT

2

resp.
B(i, :) B(π1(i), π2(:)) row vector in Rn ith row of B or Π1BΠT

2 resp.
B(:, j) B(π1(:), π2(j)) column vector in

Rn

jth column of B or Π1BΠT
2

resp.
B(i, j : q) B(π1(i), π2(j : q)) row vector in

Rq−j+1

jth through qth entries of ith

row of B or Π1BΠT
2 resp.

B(i : p, j) B(π1(i : p), π2(j)) column vector in
Rp−i+1

ith through pth entries of jth

column of B or Π1BΠT
2 resp.

B(i : p, j : q) B(π1(i : p), π2(j : q)) R(p−i+1)×(q−j+1) Submatrix from intersection
ith through pth rows and jth

through qth columns of B or
Π1BΠT

2 resp.

Figure 2.1: Table of Matlab notations

Schur complements form a crucial role in Gaussian elimination. We establish notation for
Schur complements as Sk ∈ R(k:n)×(k:n). Notice the use of Matlab notation (k : n) × (k : n)
instead of (n − k + 1) × (n − k + 1). The Schur complement Sk will act like a normal
(n − k + 1) × (n − k + 1) matrix for most operations like matrix multiplication, matrix
addition and ect. However, when using the Matlab notation in Figure 2.1 to access entries
of Sk, we impose the abuse of notation that rows and columns are enumerated from k to n,
instead of 1 to n− k + 1. For example,

• top left entry of Sk is denoted as Sk(k, k), but NOT Sk(1, 1).

• submatrix of last two columns of Sk is denoted by Sk(:, n−1 : n), but NOT Sk(:, n−k :
n− k + 1).

This makes our analysis much cleaner and more straightforward because it synchronizes
the enumeration of columns/rows between the kth working matrix Ak and the kth Schur
complement Sk which is a submatrix for Ak, i.e. Sk(k : n, k : n) = Ak(k : n, k : n). Given
this notation for Schur complements, we formally define the working Schur complement at
the kth stage Sk and the fully pivoted kth Schur complement SΠc

k

Sk(k : n, k : n) = Ak(k : n, k : n)

SΠc
k (k : n, k : n) = AΠc

k (k : n, k : n)

where Ak ∈ Rn×n is the working matrix at the kth stage. This implies that SΠc
k (k : n, k :

n) = Sk(Πr,−k(k : n),Πc,−k(k : n)), i.e. Sk has the pivots only up to the kth step and SΠ
k is

already pivoted into the final permutation so that no further pivots are required.
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Different A,L and U notations
Notation Dimensions Description Algorithm Pivots
A, A1, S1 Rn×n Unadulterated input matrix None

AΠc ,AΠc
1 , SΠc

1 Rn×n Pivoted input matrix All pivots applied
apriori

A Rn×n Current working matrix. Over-
write triangular L,U factors
and Schur complement in place

Pivots applied as de-
termined by algorithm

Ak Rn×n Working matrix at kth stage.
Overwrite triangular Lk, Uk
factors and Schur complement
Sk in place

Pivots applied as de-
termined by algorithm

AΠc
k Rn×n Working matrix at kth stage,

i.e. Πr,−kAkΠ
T
c,−k

All pivots applied
apriori

Sk R(k:n)×(k:n) kth Schur Complement of
Πr,kAΠT

c,k

Pivots applied as de-
termined by algorithm

SΠc
k R(k:n)×(k:n) kth Schur Complement of

ΠrAΠT
c

All pivots applied
apriori

Figure 2.2: Table of Notations

The unit lower triangular matrix Lk+1 ∈ Rn×k and the upper triangular matrix Uk+1 ∈
Rk×n relate to the working matrices Ak+1

Uk+1 =


Ak+1(1, 1) Ak+1(1, 2) · · · Ak+1(1, k) · · · Ak+1(1, n)

Ak+1(2, 2) · · · Ak+1(2, k) · · · Ak+1(2, n)
. . .

... · · · ...
Ak+1(k, k) · · · Ak+1(k, n)



Lk+1 =



1
Ak+1(2, 1) 1

...
...

. . .

Ak+1(k, 1) Ak+1(k, 2) · · · 1
Ak+1(k+1, 1) Ak+1(k+1, 2) · · · Ak+1(k+1, k)

...
...

...
...

Ak+1(n, 1) Ak+1(n, 2) · · · Ak+1(n, k)


for 1 < k ≤ n. Remember that L = Ln+1 ∈ Rn×n and U = Un+1 ∈ Rn×n.



CHAPTER 2. THE SETUP AND BACKGROUND 8

2.2 Useful Preliminary Tools

2.2.1 Tools from Matrix Analysis

In finite dimensions, it is well known that all normed vector spaces are topologically
equivalent. The following lemma gives the equivalence between the ‖ · ‖2 and ‖ · ‖∞ vector
norms, which is easily proven from the definitions of the norms. This result can also be seen
as a trivial application of the Fritz John Ellipsoid Theorem [59] for convex regions that are
symmetric about the origin.

Lemma 1 (Equivalence of `2 and `∞ in finite dimensions). Let x ∈ Rd. Then

1√
d
‖x‖2 ≤ ‖x‖∞ ≤ ‖x‖2

Definition 1 (Subordinate matrix norms [51, 53]). Let 1 ≤ p, q ≤ ∞ and let B ∈ Rm×n. A
subordinate matrix norm is a matrix norm of the form

‖B‖q,p = sup
06=x∈Rn

‖Bx‖p
‖x‖q

= max
‖x‖q=1

‖Bx‖p

Note that for normal matrix operator norms, we have that ‖B‖p = ‖B‖p,p. We make use
of a little known subordinate matrix norm by setting q = 1 in the above as in exercise 6.11
of [51].

Lemma 2 (Maximum `p column norm ‖·‖1,p). Let B ∈ Rm×n. Then, we have

‖B‖1,p = max
1≤i≤n

‖Bei‖p = max
1≤i≤n

‖B(:, i)‖p

Proof. Let 0 6= x =

 x1
...
xn

 ∈ Rn. Then

‖Bx‖p =

∥∥∥∥∥
n∑
i=1

xiB(:, i)

∥∥∥∥∥
p

≤
n∑
i=1

|xi| ‖B(:, i)‖p ≤
(

max
j
‖B(:, j)‖p

)
‖x‖1

Dividing both sides by ‖x‖1 and taking a supremum, we arrive at

‖B‖1,p

def
= sup

06=x∈Rn

‖Bx‖p
‖x‖1

≤ max
j
‖B(:, j)‖p

Also, let j∗ = arg maxj ‖B(:, j)‖p and we arrive at our conclusion by observing

max
j
‖B(:, j)‖p =

‖Bej∗‖p
‖ej∗‖1

≤ sup
06=x∈Rn

‖Bx‖p
‖x‖1

def
= ‖B‖1,p
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In particular, we make frequent use of the two following subordinate matrix norms:

‖B‖1,∞ = max
1≤j≤n

‖Bej‖∞ = max
1≤i,j≤n

|B(i, j)| (Maximum entry norm) (2.1)

‖B‖1,2 = max
1≤i≤n

‖Bej‖2 = max
1≤j≤n

‖B(:, j)‖2 (Maximum `2 column norm) (2.2)

The next lemma, from line (6.19) in chapter 6.3 of [51], will allow us to control each
operator norm ‖ · ‖p for 1 ≤ p ≤ ∞ of our residual error via the largest absolute column and
row sum of the residual error.

Theorem 1 (Special case of Riesz-Thorin theorem [51]). Let B ∈ Rm×n and let 1 ≤ p ≤ ∞.
Then

‖B‖p ≤ ‖B‖
1
p

1 ‖B‖
1− 1

p
∞

Setting p = 2 in the above theorem, we get a bound on the spectral norm of B. The
volume of a parallelepiped (parallelotope) formed from the columns of a matrix B is given
by the absolute value of the determinant of B. A rectangle is formed by forcing the paral-
lelepiped to have only right angles between each of its vectors. The next result states that
the volume of parallelepiped (parallelotope) is bounded above by that of the corresponding
rectangle (hyperrectangle). This result is crucial to deriving element and column growth
factors.

Theorem 2 (Hadamard’s Inequality [53]). Let B ∈ Rm×m. Then, we have that

|det(B)| ≤
m∏
j=1

‖B(:, j)‖2

2.2.2 Tools from Probability Theory

The union bound is a basic yet important result whose proof is typically left as an exercise
in most introductory probability textbooks. We will make use of it in combination with the
famous De Morgan laws to consider the probability of an intersection of highly coupled events
in the analysis of GERCP.

Lemma 3 (Union Bound or Boole’s Inequality). For events E1, E2, ..., Em, we have that

P

(
m⋃
i=1

Ei

)
≤

m∑
i=1

P (Ei)

As GERCP is a randomized algorithm, the factorization it produces will be random. The
Law of Total Probability below is the basis on which we analyze the reliability of GERCP
regardless of the column and row permutations chosen by GERCP.
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Theorem 3 (Law of Total Probability). Given m mutually exclusive events E1, · · · , Em
whose probabilities sum to unity, then

P (B) =
m∑
i=1

P (B|Ei)P (Ei) ,

where B is an arbitrary event, and P (B|Ei) is the conditional probability of B assuming Ei.

Next, we present a useful generalization to the Johnson-Lindenstrauss concentration of
measure. This will allow us to cheaply estimate the Frobenious norm of various matrices
within our algorithm.

Theorem 4. Let A ∈ Rr1×m and B ∈ Rn×r2 be fixed matrices, along with the matrix Ω ∈
Rm×n with iid Gaussian N (0, 1) entries. Then, for any fixed ε > 0, we have the tail bounds

P
(
‖AΩB‖2

F ≥ (1 + ε)‖A‖2
F‖B‖2

F

)
≤ exp

(
−
(
ε2

4
− ε3

6

)
‖A‖2

F

‖A‖2
2

‖B‖2
F

‖B‖2
2

)
(2.3)

and

P
(
‖AΩB‖2

F ≤ (1− ε)‖A‖2
F‖B‖2

F

)
≤ exp

(
−
(
ε2

4
+
ε3

6

)
‖A‖2

F

‖A‖2
2

‖B‖2
F

‖B‖2
2

)
(2.4)

Proof. See section 5.1 for the proof

The matrix generalization will be of particular use in Section 4.4 and in proving Theorem
9, but most applications of the above concentration of measure will be in the form of the
vector-version, which is commonly used to prove the Johnson-Lindenstrauss Theorem on
randomized embeddings from probability theory and theoretical computer science. Theo-
rem 5 has been the main theoretical foundation in the recent development of randomized
algorithms in numerical linear algebra and data analysis.

Theorem 5 (Random Projection Method (Johnson-Lindenstrauss) [92]). Let x ∈ Rd and
ε > 0. Assume that the entries in Ω ∈ Rr×d are sampled independently from N (0, 1). Then

P

(∥∥∥∥ 1√
r

Ωx

∥∥∥∥2

2

≥ (1 + ε) ‖x‖2
2

)
≤ exp

(
−(ε2 − ε3)r

4

)

P

(∥∥∥∥ 1√
r

Ωx

∥∥∥∥2

2

≤ (1− ε) ‖x‖2
2

)
≤ exp

(
−(ε2 + ε3)r

4

)
and

P

(
(1− ε) ‖x‖2

2 ≤
∥∥∥∥ 1√

r
Ωx

∥∥∥∥2

2

≤ (1 + ε) ‖x‖2
2

)
≥ 1− 2 exp

(
−(ε2 − ε3)r

4

)
. (2.5)
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Proof. Let A = Ir ∈ Rr×r be an identity matrix and B = x ∈ Rd×1 be the vector. See that

‖Im‖2
F

‖Im‖2
2

= r and
‖x‖2

F

‖x‖2
2

= 1

Then applying Theorem 4 gives the desired result.

Due to the central importance of Theorem 5 in GERCP, we make the next definition

Definition 2. A given vector x ∈ Rd satisfies the ε−JL condition under random mapping
Ω if

√
1− ε ‖x‖2 ≤

∥∥∥∥ 1√
r

Ωx

∥∥∥∥
2

≤
√

1 + ε ‖x‖2.

Remark 2.2.1. Despite its simplicity, Theorem 5 asserts the surprisingly strong norm-
preserving abilities under a random projection. For any given ∆ ∈ (0, 1), x satisfies the
ε−JL condition under random mapping Ω with probability at least 1−∆ for any

r ≥ 4

ε2 − ε3
log

(
2

∆

)
. (2.6)

In particular, for ε = 1
2

and ∆ = 10−5, r = 400 satisfies equation (2.6), regardless of d. In
practice, however, one can typically choose a much smaller value of r for x to satisfy ε−JL
condition.

2.3 Numerical Error and Stability of LU Factorization

Computers make use of a set of real numbers known as floating point numbers [28] based
off of scientific notation in that they are made up of a (i) sign, a (ii) mantissa, a (iii) base
and an (iv) exponent, as shown by the example

2.7183 = +︸︷︷︸
(i)

0.27183︸ ︷︷ ︸
(ii)

× 10︸︷︷︸
(iii)

(iv)︷︸︸︷
1

The prolific IEEE standard for binary arithmetic, which includes a single precision with 32
bits and a double precision with 64 bits, provides our computers a way to represent floating
point numbers with base 2. When we approximating a real number x by a floating point
number fl(x) or x̂, we either get a relative rounding approximation error within machine
precision εmach > 0, i.e.

fl(x) = x (1 + δ) for some |δ| ≤ εmach

or we get underflow or overflow when |x| is smaller or larger than the minimum or maximum
positive floating point number, respectively. Single precision floating point numbers have
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εmach ≈ 10−8 and double precision floating point numbers have εmach ≈ 10−16. Refer to [28]
for more on floating point numbers. With computer roundoff, Theorem 9.3 of [51] gives us
that our computed LU factorization obeys the relationship A + E = LU such that

|Ejk| ≤
nεmach

1− nεmach
(|L| · |U |)jk ,

where E ∈ Rn×n and |·| denotes taking the absolute value of each entry of a matrix. For
linear systems LUx = b, the backwards stability of forward/backward substitution tells us
that our computer will calculate x̂ which satisfies the following approximation

(L+ δL) (U + δU) x̂ = b

Thus, Gaussian elimination for the linear system is backwards stable if we can provide a
tight bound on δA such that (A+ δA)x̂ = b where

δA = δLU + LδU + δLδU + E

Theorem 9.4 of [51] tells us that δA must satisfy

|δA| ≤ 3nεmach
1− 3nεmach

|L| |U | (2.7)

Therefore, in order to bound δA, we need to simply bound L and U of our computed
factorization. Next, we define a property that some pivoting strategies enjoy.

Definition 3 (Top-Heavy Pivoting Strategies). A pivoting strategy for Gaussian elimination
or the LU decomposition is called top-heavy if the pivoting strategy leaves the first entry
of the leading column of each Schur complement to be the entry with largest modulus in the
leading column. In other words,∣∣SΠc

k (k, k)
∣∣ = max

k≤i≤n

∣∣SΠc
k (i, k)

∣∣ (2.8)

or, in other words ∣∣SΠc
k (k, k)

∣∣ = ‖SΠc
k (:, k)‖∞

for all 1 ≤ k ≤ n.

All of the methods discussed in this thesis (partial, complete, rook, `2 complete and
randomized complete pivoting) are top-heavy pivoting strategies. Therefore, all of these
strategies enjoy the following property

Lemma 4. Let A ∈ Rn×n and let the lower triangular matrix L be obtained by the LU
algorithm above with a top-heavy pivoting strategy. Then, we have

‖L‖p ≤ n

where 1 ≤ p ≤ ∞.
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Proof. First, note that top-heaviness gives us that

|ljk| =
|Sk(j, k)|
|Sk(k, k)|

≤ 1

for k ≤ j. Thus,

‖L‖1 ≤ n, ‖L‖∞ ≤ n and ‖L‖p ≤ ‖L‖
1
p

1 ‖L‖
1− 1

p
∞ ≤ n

where the last inequality was established by Theorem 1.

It is easy to see that all top-heavy strategies enjoy the bound ‖L‖p ≤ n for 1 ≤ p ≤ ∞
because all the entries below the diagonal in L will be between −1 and 1 in addition to
Lemma 1. Bounding U is a little trickier and historically, the element growth factor has
been used to do it.

Definition 4 (Element Growth Factor). Let n > 0 and A ∈ Rn×n

ρelem (A)
def
=

maxk ‖Sk‖1,∞

‖A‖1,∞
=

maxi,j,k |Sk(i, j)|
maxi,j |A(i, j)|

In addition to the classical element growth factor, we define the new column growth
factor which will be central to our analysis.

Definition 5 (Column Growth Factor). Let n > 0 and A ∈ Rn×n

ρcol (A)
def
=

maxk ‖Sk‖1,2

‖A‖1,2

=
maxj,k ‖Sk(:, j)‖2

maxj ‖A(:, j)‖2

These two definitions of the growth factor are related by the following lemma. It is
important to note that the column growth factor commonly attains the lower bound of

1√
n
ρelem as we will see with partial and complete pivoting, making ρcol a more informative

quantity to control than ρelem by a factor of
√
n.

Lemma 5. Let n > 0 and A ∈ Rn×n, then

1√
n
ρelem (A) ≤ ρcol (A) ≤

√
nρelem (A)

Proof. Easy consequence of Lemma 1.

Using the definition of element growth, we can bound U in the ‖ · ‖1 and ‖ · ‖∞ norms as

‖U‖η ≤ nρelem (A) ‖A‖1,∞ for η = 1,∞

Plugging both of these estimates into Theorem 1, we get that

‖U‖p ≤ nρelem (A) ‖A‖1,∞ for 1 ≤ p ≤ ∞

This gives us the following classical result



CHAPTER 2. THE SETUP AND BACKGROUND 14

Theorem 6 (Wilkinson [28, 51]). Let A ∈ Rn×n and let E and δA be given above, then for
any top-heavy pivoting strategy, we have

‖δA‖p ≤
3nεmach

1− 3nεmach
n2ρelem (A) ‖A‖1,∞

‖E‖η ≤
nεmach

1− nεmach
n2ρelem (A) ‖A‖1,∞

where 1 ≤ p ≤ ∞.

The proof of the above is similar to the proof of the corresponding result for the column
growth factor.

Theorem 7 (Column growth control on backward error). Let A ∈ Rn×n and let E and δA
be given above, then for any top-heavy pivoting strategy, we have

‖δA‖p ≤
3nεmach

1− 3nεmach
n2ρcol (A) ‖A‖1,2

‖E‖p ≤
nεmach

1− nεmach
n2ρcol (A) ‖A‖1,2

where 1 ≤ p ≤ ∞.

Proof. First, Lemma 5 gives use the desired bound on ‖L‖p. Next, please note that by the
definition of the LU algorithm, we have U(m,m : n) = Sm(βm, π(m,αm)(m : n)). Next, we
tackle the U matrix with ρcol.

‖U‖∞ = max
1≤m≤n

‖U(m, :)‖1 ≤
√
n max

1≤m≤n
‖U(m, :)‖2 =

√
n max

1≤m≤n
‖Sm(βm, :)‖2

=
√
n max

1≤m≤n
‖Sm‖F ≤ n max

1≤m≤n
max
m≤j≤n

‖Sm(:, j)‖2 = n max
1≤m≤n

‖Sm‖1,2

and

‖U‖1 = max
1≤j≤n

‖U(:, j)‖1 ≤ n max
1≤j≤n

‖U(:, j)‖∞ = n max
1≤j≤n

max
1≤m≤j

|U(m, j)|

= n max
1≤m≤n

max
m≤j≤n

|Sm(m, j)| ≤ n max
1≤m≤n

max
m≤j≤n

‖Sm(:, j)‖2 = n max
1≤m≤n

‖Sm‖1,2

Thus, Theorem 1 gives us

‖U‖p ≤ ‖U‖
1
p

1 ‖U‖
1− 1

p
∞ ≤ n max

1≤m≤n
‖Sm‖1,2

for all 1 ≤ p ≤ ∞. Note that

max
1≤m≤n

‖Sm‖1,2 =
max1≤m≤n ‖Sm‖1,2

‖A‖1,2

‖A‖1,2 = ρcol (A) ‖A‖1,2

We arrive at our conclusion by combining this with equation (2.7).
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2.4 Popular Pivoting Strategies

2.4.1 No Pivoting or Static Pivoting

The easiest and most computationally efficient strategy is not to pivot at all, which we
call Gaussian elimination with no pivoting (GENP). However, this method is not numerically
stable for a general A ∈ Rn×n. To demonstrate this, we use an example from [51]

A =

[
δ −1
1 1

]
=

[
1 0
δ−1 1

] [
δ −1
0 1 + δ−1

]
= LU

where δ < εmach and εmach is machine epsilon. However, in floating point arithmetic, we have
fl (1 + δ−1) = δ−1 where fl(·) represents evaluation in floating point arithmetic. Thus,

fl (LU) = fl (L) fl (U) =

[
1 0
δ−1 1

] [
δ −1
0 δ−1

]
=

[
δ −1
1 0

]
6= A

which is the wrong computed LU factorization with backward error ‖A− fl(L)fl(U)‖∞ = 1.
On the other hand, if A ∈ Rn×n is

• Totally nonnegative, i.e. the determinant of every square submatrix is nonnegative,

• Row or column diagonally dominant,

• Symmetric positive definite,

then it is proved in [51] that no pivoting is required for a stable computation. In fact, all of
these matrices have element growth ρn = O(1).

2.4.2 Partial Pivoting

The most common version of LU is Gaussian elimination with partial pivoting (GEPP)
because it provides some stability at relatively cheap overhead. It is backward stable “in
practice” [28], meaning that this method provides a stable LU factorization for most but not
all matrices. For partial pivoting, please place the following pivoting rule in Algorithm 1:
At the kth stage, the kth row is swapped with the βthk row, where

βk = arg max
k≤i≤n

|Sk(i, k)|

This method requires a number of entry comparisons in addition to the floating point oper-
ations required by Gaussian elimination without pivoting. Specifically, it requires

n∑
k=1

(n− k) =
n(n− 1)

2
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comparisons in total, which is one order less asymptotically than the 2
3
n3 + O(n2) flops in

GENP. Each row swap requires n individual entry swaps, so the total number of entry swaps
required is bounded above by

n−1∑
k=1

n = n(n− 1)

The element growth for partial pivoting is bounded by

ρgeppelem (A) ≤ 2n−1

It is also easy to show that the column growth for partial pivoting is bounded by

ρgeppcol (A) ≤ 1√
n

2n−1

Both of these bounds are attained by the Wilkinson matrix

1 0 0 · · · 0 1
−1 1 0 · · · 0 1
−1 −1 1 · · · 0 1
...

...
...

. . .
...

...
−1 −1 −1 · · · 1 1
−1 −1 −1 · · · −1 1


=



1 0 0 · · · 0 0
−1 1 0 · · · 0 0
−1 −1 1 · · · 0 0
...

...
...

. . .
...

...
−1 −1 −1 · · · 1 0
−1 −1 −1 · · · −1 1





1 0 0 · · · 0 1
0 1 0 · · · 0 2
0 0 1 · · · 0 22

...
...

...
. . .

...
...

0 0 0 · · · 1 2n−2

0 0 0 · · · 0 2n−1


=LU

where we see that the element growth in U is 2n−1 and the column growth
‖2n−1‖`2(R1)
‖e‖`2(Rn)

= 2n−1
√
n

.

Large element growth and unstable LU factorizations with partial pivoting also occur in
many applications. Wright [100] describes a family of two-point boundary value problems
that cause GEPP to fail via exponential element growth when attempting to solve the ODE
by discretizing it into matrix form. Liu and Russell [68] experience the same phenomenon
when attempting to solve the discretized Kuramoto-Sivashinsky PDE, which is used to model
laminar flame front propagation, phase dynamics in reaction-diffusion systems, fluctuations
in fluid films and instabilities in plasma physics [56, 64]. Foster [38] applies the Newton-
Cotes quadrature to discretize the Volterra Integral equation from many areas of applied
mathematics including actuarial science, viscoelastic materials and probability theory. This
reduces the Volterra Integral equation into a matrix equation that makes GEPP fail. As we
will discuss later, the Volterra example is among the most diabolical examples that break
GEPP because it induces passive aggressive element growth, i.e. barely enough element
growth to cause GEPP to fail.

The remainder of the partial pivoting section is spent discussing the generalized Wilkinson
Matrix, which is a more general class of matrices that can cause exponential element growth
in GEPP.
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Example 2.4.1. [Generalized Wilkinson Matrices GW [62]] For any integer r ≥ 1, consider
a matrix A of the following form

A = L+


1
...
1
0

( 0 . . . 0 1
)
,

where L is a lower triangular matrix with

Li,i = 1, and Li,j = −uTi Wi+1 · · ·Wj−1vj, for any i > j,

with ui, vj ∈ Rr being any vectors and Wi ∈ Rr×r being square matrices. The matrix A
reduces to the Wilkinson matrix for the special case r = 1, ui = vj = Wi = 1 for all i and j.
It is straightforward to verify that L−1 is a lower triangular matrix with(

L−1
)
i,i

= 1, and
(
L−1

)
i,j

= uTi Ŵi+1 · · · Ŵj−1vj, for any i > j,

where Ŵi = Wi + viu
T
i . Now we choose the vectors {ui}ni=2, {vj}n−1

j=1 and matrices {Wi}n−1
i=2

to contain only positive entries and have 2-norm at most 1. This implies that

|Li,j| = |uTi Wi+1 · · ·Wj−1vj| ≤ 1 for any i > j.

Consequently LU-factorizing A with GEPP will incur no row exchanges, and the resulting
matrix factorization has the form

A = L U, where U = I +

L−1


1
...
1
0


( 0 · · · 0 1

)
.

This typically implies exponential element growth in U if the inequality ‖Ŵi‖2 > 1 holds for

most matrices Ŵi.

In our numerical experiments, we use this to create a random matrix ensemble that causes
GEPP to fail with high probability.

2.4.3 Complete Pivoting

The most reliable version is Gaussian elimination with complete pivoting (GECP). Von
Neumann and Goldstine [94] referred to this as the “customary procedure.” For complete
pivoting, please place the following pivoting rule in Algorithm 1: At the kth stage, the kth

row and kth column are swapped with the βthk row and αthk column respectively, where

(βk, αk) = arg max
(i,j)∈N2

k≤i,j≤n

|Sk(i, j)|
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Next, we consider the overhead of complete pivoting, which is broken into entry comparisons
and data movement. The number of overall entry comparisons is

n∑
k=1

(
k2 − 1

)
=
n(n+ 1)(2n+ 1)

6
− n =

1

3
n3 +

1

2
n2 − 5

6
n

In the worst case, the number of entry swaps (or data movement) is

n−1∑
k=1

2n = 2n(n− 1)

Therefore, despite the fact that each entry swap is more expensive on modern computers
than each entry comparison, the entry comparisons will form the bulk of the overhead when
n is large. This is different than partial pivoting because the total number of comparisons
in complete pivoting is O(n3) instead of the O(n2) comparisons in partial pivoting. In his
seminal work, Wilkinson [97] proves that the element growth in complete pivoting is bounded
above by

ρgecpelem(A) ≤
√
n
(

2 · 3
1
2 · · ·n

1
n−1

)1/2

∼ cn1/2n
1
4

ln(n)

Our proof of Theorem 8 can be easily adapted to show that the column growth for complete
pivoting is bounded above by

ρgecpcol (A) ≤
(

2 · 3
1
2 · · ·n

1
n−1

)1/2

∼ cn
1
4

ln(n)

These bounds are provably unattainable for n ≥ 3 [97] because of their proof’s reliance
on Hadamard’s inequality of Theorem 2. It was incorrectly conjectured that ρgecpelem(A) ≤ n
[35, 45]. Nonetheless, it is widely believed that the above element growth bound is wildly
pessimistic. However, this bound proves that exponential element growth is impossible as
nlog(n) is sub-exponential. Because of this, we call GECP backwards stable.

2.4.4 Rook Pivoting

An important attempt to speed up complete pivoting was introduced by Neal and Poole
[80] as Gaussian elimination with rook pivoting (GERP). Basically, one alternates between
partial pivoting on the rows and the columns until arriving at a Nash-equilibrium of sorts.
For rook pivoting, place the following pivoting rule in Algorithm 1: At kth stage, initialize
βk = k and αk = k. First, choose a new βk from (2.9) while holding αk constant, and then
choose αk from (2.10) while holding βk constant. Repeat (2.9) and (2.10) until the current
choice (βk, αk) make (2.9) and (2.10) hold simultaneously.

βk = arg max
k≤i≤n

|Sk (i, αk)| (2.9)

αk = arg max
k≤j≤n

|Sk (βk, j)| (2.10)
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The number of entry comparisons required by rook pivoting depends on the matrix. For
example, a diagonally dominant matrix will require no swaps, which causes rook pivoting to
only check (2.9) once. This example gives

∑n
k=1(n− k) = n(n−1)

2
= O(n2) entry comparisons

just like partial pivoting. In fact, there are a few probabilistic arguments [39, 84] that claim
for the “average” input matrix A, the user would expect to perform O(n2) entry comparisons
in total. However, the worst case needs a total of O(n3) entry comparisons (just as bad as
complete pivoting) as exemplified by any matrix of the form [51]

θ1 θ2

θ3 θ4

. . . . . .

θ2n−3 θ2n−2

θ2n−1

 , |θ1| < |θ2| < · · · < |θ2n−1|

The worst case data movement in terms of entry-wise swaps is the same as GECP at O(n2)
because both rows and columns are also being swapped here. It is not clear whether compar-
isons or swaps are to be considered the dominant overhead cost as it will depend on whether
the input matrix requires O(n3) or O(n2) comparisons. Foster [39] proves that rook pivoting
element growth must obey

ρgerpelem(A) ≤ 3

2
n

3
4

ln(n)

and he also shows that the bound is unattainable for n ≥ 3. This suggests that this method
has similar stability properties to complete pivoting and should be considered as a less
expensive “cousin.”

2.4.5 Prior attempts at randomizing Gaussian elimination

Randomization in the context of Gaussian elimination based direct solvers has been
attempted in the past as a way to avoid pivoting altogether [81, 82, 12, 11]. It is important
to keep in mind that these methods serve a different purpose than our method GERCP. In
other words, prior attempts to randomize Gaussian elimination are meant to be faster that
partial pivoting, while our method GERCP is meant to produce high quality solutions that
partial pivoting at a marginal expense in run time. These methods pre/post multiply our
input matrix A by random matrices before applying Gaussian elimination without pivoting.
This can either be used to solve a linear system or compute the inverse of A. Unfortunately,
there are no theoretical guarantees of small backwards error. In fact, many examples cause
these methods to produce a large backwards error relative to partial pivoting from rounding
errors as shown in the numerical experiments section of [82]. One such linear system Ax = b
is given as

aij =

(
i+ j − 2
j − 1

)
and bi = 1
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gives the exact solution x = e1. This matrix has a condition number of 24n is spectral norm,
so any linear solver will eventually have problems when this system as n → ∞. However,
GEPP is able to maintain accuracy for larger n as the performance of the randomized scheme
deteriorates almost immediately due to round off error as shown in the numerical experiments
section of [82].
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Chapter 3

Algorithm GERCP and Main Results

In this section, we first introduce Algorithm 3.1, a deterministic complete pivoting scheme
based on the `2 norm; we then evolve Algorithm 3.1 into GERCP by significantly speeding
it up with randomization.

3.1 Deterministic `2-norm Complete Pivoting

To help motivate our randomized strategy, we propose an intermediate deterministic
strategy called Gaussian elimination with `2 complete pivoting (GE2CP).

Algorithm 2 Gaussian Elimination with `2 norm Complete Pivoting (GE2CP)

Inputs: n× n matrix A
Outputs: lower triangular L with unit diagonal, upper triangular U , row permutation Πr,

column permutation Πc.
1: for k = 1, · · · , n− 1 do
2: compute α = argmaxk≤j≤n ‖A(k : n, j)‖2

2.
3: swap columns k and α of A.
4: compute β = argmaxk≤j≤n |A(j, k)|.
5: swap rows k and β of A.
6: compute A(k + 1 : n, k) = A(k + 1 : n, k)/A(k, k);
7: compute A(k+1 : n, k+1 : n) = A(k+1 : n, k+1 : n)−A(k+1 : n, k)∗A(k, k+1 : n);
8: end for

Pivoting is done in two steps in Algorithm 3.1 for each k: Step 1 swaps the αth column of
the trailing matrix A(k : n, k : n) with the kth, where A(k : n, α) has the largest column 2-
norm among all columns of A(k : n, k : n); whereas Step 2 swaps the βth row of A(k : n, k : n)
with the kth, where A(β, k) is the largest in absolute value among all entries of A(k : n, k).
Step 1 controls potentially harmful column norm growth in A through column interchanges,
and Step 2 performs standard partial pivoting to control potentially harmful element growth
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in the k-column A(k : n, k) through row interchanges. Step 2 makes the `2 norm Complete
Pivoting strategy (GE2CP) in Algorithm 3.1 a top-heavy pivoting strategy, which allows us
to apply Theorem 7 to bound the LU backward error.

In this method, the number of comparisons is reduced in favor of additional floating point
operations. The total amount of comparisons for this method is

n∑
k=1

2(n− k) = n(n− 1) = O(n2).

The total additional floating point operations required to directly compute the 2-norms in
Step 1 of Algorithm 3.1 is about

n−1∑
k=1

2(n− k + 1)(n− k + 1) =
n(n+ 1)(2n+ 1)

3
− 2 =

2

3
n3.

The worst case for entry swaps in GE2CP is the same as in GECP at O(n2). The `2 norm
complete pivoting strategy (GE2CP) in Algorithm 3.1 enjoys similar element/column growth
bounds to complete pivoting and rook pivoting. One of the main results of this thesis is an
upper bound on the element growth of our randomized pivoting algorithm in Theorem 8.
By omitting references and applications of Lemma 7 from the proof of Theorem 8, one can
easily show that

ρge2cpcol ≤ n
√
e(n+ 1)n

1
2

ln(n)

The O(n3) flop overhead makes Algorithm 3.1 an impractical alternative to GEPP. In Section
3.2, we develop GERCP by randomizing Algorithm 3.1 to choose columns with sufficiently
large column norms at significantly lowered overhead costs. Furthermore, we will derive a
GECP style element growth upper bound for GERCP that holds with an arbitrary user-
defined probability δ ∈ (0, 1) of failure.

3.2 Gaussian Elimination with Randomized Complete

Pivoting (GERCP)

Our randomized Gaussian Elimination algorithm, GERCP, is based, in principle, on
Algorithm 3.1. However, the key difference is we will replace the column pivoting step, Step
1, by a randomized alternative to significantly reduce its cost. At its core, GERCP relies
on a fast random projection scheme to reliably estimate the column norms of each observed
Schur complement required by line 1 of Algorithm 3.1, based on Theorem 5.

3.2.1 Successive Schur Sketching

We adapt the idea of a sketching matrix [99] in this section to speed up the column
selection procedure in GE2CP Algorithm 3.1. Let our sampling matrix Ω ∈ Rr×n be a
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random matrix with iid standard normal N (0, 1) entries where r � n, and let Ψ = ΩA be
our first sketching matrix. We refer to the number r ∈ N as the sampling dimension. One
can also make use of a Fast Johnson-Lindenstrauss-like sampling matrix [4] as a sampling
matrix. However, we will stick with a Gaussian sampling matrix in this thesis for simplicity
of presentation. By Theorem 5, the column norms of A can be reliably estimated via those
of Ψ for a large enough choice of r. In other words, we can perform Step 1 of Algorithm 3.1
for k = 1 by looking for the column with the largest column norm in Ψ.

However, Step 1 of Algorithm 3.1 must be performed for every value of k. From the
single random matrix Ω, below we will construct a collection of matrices {Ψk}nk=1 known as
the Schur sketching matrices, where Ψk ∈ Rr×(n−k+1). These matrices are constructed as

Ψk
def
= Ω (:, πr,k(k : n)) Sk, for all 1 < k ≤ n. (3.1)

Remark 3.2.1. For randomized complete pivoting, the choice of the kth pivot column will
be based on column norms in the Schur sketching matrix Ψk. Since all Schur sketching
matrices are based on the same random matrix Ω, the Schur complement Sk ∈ R(k:n)×(k:n)

for 1 < k ≤ n will not be a deterministic matrix. Indeed, the observed Schur complement
Sk is determined by the randomized column pivoting decisions α1, · · · , αk−1 of GERCP from
the previous stages. Given that there are only a finite number of pivot decisions, we conclude
that Sk must be a discrete random variable.

To efficiently continue with all other column pivoting work in Algorithm 3.1, we induc-
tively devise a scheme to use our current Schur sketching matrix Ψ to produce our next Schur
sketching matrix Ψ̂. Suppose that we have chosen p > 0 rows/columns from the remaining
Schur complement Sk ∈ R(n−k+1)×(n−k+1)

Sk =

(
S11 S12

S21 S22

)
=

(
L11

L21 I

)(
U11 U12

Ŝ22

)
,

where S11, L11, U11 ∈ Rp×p, with L11 lower triangular and U11 upper triangular, respectively;
S21, L21 ∈ R(n−k+p+1)×p; S12, U12 ∈ Rp×(n−k−p+1); and S22, Ŝ22 ∈ R(n−k−p+1)×(n−k−p+1) with

Ŝ22 = S22 − S21S
−1
11 S12 = S22 − L21U12

being the Schur complement. We call p > 0 the pivot-block size, namely the number of
row/column pivots performed before each update to the Schur sketching matrix Ψ. With

the notation established above, we have Ŝ22 = Sn−k−p+1.

Step 1 of Algorithm 3.1 requires that we perform column pivoting on Ŝ22. To do this
work, we need to multiply Ŝ22 by a random matrix. Instead of generating a new random
matrix, we introduce a simple and efficient procedure, Successive Schur Sketching (SSS).
We partition Ω and Ψ accordingly as Ω =

(
ΩP ΩR

)
and

Ψ =
(

ΨP ΨR

)
=
(

ΩP ΩR

)( S11 S12

S21 S22

)
=

(
ΩPS11 + ΩRS21 ΩPS12 + ΩRS22

)
.



CHAPTER 3. ALGORITHM GERCP AND MAIN RESULTS 24

Now we compute the next Schur sketching matrix Ψ̂ for the Schur complement Ŝ22 as

Ψ̂
def
= ΩRŜ22 = ΩR (S22 − L21U12) = (ΩPS12 + ΩRS22)− (ΩPS12 + ΩRL21U12)

= ΨR − (ΩPL11 + ΩRL21)U12. (3.2)

Thus, in SSS we use ΩR, a submatrix of Ω, for the new sample matrix Ψ̂. If done
directly, it would take 2r(n − k − p + 1)2 flops to compute Ψ̂ as a matrix-matrix product

ΩRŜ22. However, since ΨR is part of Ψ and was computed in the previous steps, Ψ̂ can
instead be computed via equation (3.2) in about 4rp(n − k + 1) flops, a very large savings
for p� n. Indeed, this random matrix reuse will prove critically important in reducing the
overall cost of computing all sample matrices by Algorithm GERCP. Later on we will further
show that Algorithm GERCP will be as reliable as sampling the Schur matrices Ŝ22 without
random matrix reuse.

Given Ψ, the new sample matrix Ψ̂ can be updated in about 4rp(n−k+1) flops with the
above formula, which is much cheaper than the O(rn2) flops required for a direct computa-
tion. It costs another 2r(n − k + 1) flops to select a column with sufficiently large column
norm. If we perform a column pivot once every block elimination step, the total overhead
due to column pivoting includes the computation of the initial sampling matrix, its update
at every column pivot, and column selection based on the column norms of the updated
sample matrix. These costs add up to

4rn2 +

n/p∑
j=1

(4rp+ 2r) (n− (j − 1)p) ≈ (6r + r/p)n2

flops, which is much smaller than the O(n3) additional flops required by GE2CP. One can
perform a floating point error analysis to show that successively updating Ψ at each stage
via equation (3.2) as follows.

Lemma 6. Suppose equation (3.2) is continuously used to produce each sketching matrix
Ψk. Then, each sketching matrix in floating point arithmetic is close to the corresponding
sketching matrix in real arithmetic as given by∣∣fl(Ψ̂k+1

)
− Ψ̂k+1

∣∣
≤ εmach (1 + εmach)

k

(
k∑
i=1

|Ψi (:, (k + 1)p : n)|+ 5 |Ω|
∣∣L(k+1)p

∣∣ ∣∣U(k+1)p(:, (k + 1)p : n)
∣∣)

Remark 3.2.2. Later in the thesis, we will provide a probabilistic analysis of this lemma to
get rid of the randomness originating from the sampling matrix Ω.

Proof. A brief floating point analysis proceeds as follows∣∣fl((ΩPL11 + ΩRL21)U12

)
− (ΩPL11 + ΩRL21)U12

∣∣ ≤ 4εmach(|ΩP | |L11|+ |ΩR| |L21|) |U12|

= 4εmach
(
|ΩP | |ΩR|

)( |L11|
|L21|

)
|U12|
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Place this together with equation (3.2) in floating point arithmetic to arrive at∣∣fl(Ψ̂k+1

)
− Ψ̂k+1

∣∣
≤
∣∣fl(Ψk,R

)
−Ψk,R

∣∣︸ ︷︷ ︸
past update errors

(1 + εmach) + εmach |Ψk,R|+ 5εmach
(
|ΩP | |ΩR|

)( |L11|
|L21|

)
|U12|

Applying a simple induction argument to the inequality above gives the desired result.

Remark 3.2.3. This rounding error analysis applies equally well to the L and U factors
computed in finite precision arithmetic. We did not make the distinction to avoid introducing
yet more notation.

When U11 is well-conditioned, Ψ̂ can be updated by the more efficient formula

Ψ̂
def
= ΩRŜ22 = ΩR (S22 − L21U12) = (ΩPS12 + ΩRS22)− (ΩPS11 + ΩRS21)S−1

11 S12

= ΨR −
(
ΨPU

−1
11

)
U12, (3.3)

which costs about 2rp(n− k + 1) + 2r(n− k + 1) flops.

3.2.2 Column pivot quality and column growth factor for
GERCP

We present classical Gaussian elimination with randomized complete pivoting (GERCP)
below as Algorithm 3.2.2. The section is primarily focused with the development of GERCP
from a theoretical perspective, while Chapter 4 will be focused on issues of practical im-
plementation. Provided that the sampling dimension r is large enough, we show that, with
high probability, each GERCP pivot column has an `2 length within a constant factor of
the largest column, i.e. the GE2CP pivot column. Using this property, we then prove a sub
exponential upper bound on the column growth factor for GERCP that holds with proba-
bility not less than 1− δ for any user-defined quantity δ > 0. For the sake of simplicity and
theoretical guarantees, we will focus on the case with pivot-block size p = 1 for the rest of
the thesis. In line

For ease of notation, we consider a scalar version of GERCP where column pivoting
and row pivoting are done one column/one row at a time. Later, in Section 4, we write
this algorithm into a blocked version in Algorithm 4 in order to increase the amount of
locality in BLAS-3 operation. The column pivots Πc are chosen from randomized column
pivoting. The row pivots Πr are also random, but if we fix the column pivots Πc then the
row pivots are deterministic and are uniquely determined by the top-heavy property (2.8).
Let SΠc

k ∈ R(k:n)×(k:n) be the Schur complement after the first k − 1 steps of column and
row pivoting and Gaussian elimination, and let ΩΠc

k = Ω(:, πr(k : n)) ∈ Rr×(n−k+1) be the
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Algorithm 3 Gaussian Elimination with Randomized Complete Pivoting

Inputs: n×n matrix A, sampling dimension r > 0, an optional column threshold 0 < g ≤ 1
Outputs: lower triangular L with unit diagonal, upper triangular U , row permutation Πr,

column permutation Πc

1: sample Ω(i, j) ∼ N (0, 1) for all 1 ≤ i ≤ r and 1 ≤ j ≤ n.
2: compute Ψ = ΩA.
3: for k = 1, · · · , n− 1 do
4: compute ` = arg max

k≤j≤n
‖Ψ(:, j)‖2

2

5: set α =

{
k , if ‖Ψ(:, k)‖2

2 ≥ g2 ‖Ψ(:, `)‖2
2

` , otherwise
.

6: swap columns k and α of A and Ψ.
7: compute β = arg max

k≤i≤n
|A(i, k)|.

8: swap rows k and β of A.
9: compute A(k + 1 : n, k) = A(k + 1 : n, k)/A(k, k)
10: compute A(k+1 : n, k+1 : n) = A(k+1 : n, k+1 : n)−A(k+1 : n, k)∗A(k, k+1 : n)
11: update Ψ(:, k : n) with either (3.2) or (3.3)
12: end for

submatrix of Ω whose columns correspond to the rows of SΠc
k . We now define the following

events for 1 ≤ k ≤ i ≤ n:

C
Πc
i,k =

{∥∥∥∥ 1√
r

ΩΠc
k S

Πc
k (:, i)

∥∥∥∥
2

≤
√

1 + ε
∥∥SΠc

k (:, i)
∥∥

2

}
(3.4)

CΠc
i,k =

{√
1− ε

∥∥SΠc
k (:, i)

∥∥
2
≤
∥∥∥∥ 1√

r
ΩΠc
k S

Πc
k (:, i)

∥∥∥∥
2

}
(3.5)

CΠc
i,k =

{√
1− ε

∥∥SΠc
k (:, i)

∥∥
2
≤
∥∥∥∥ 1√

r
ΩΠc
k S

Πc
k (:, i)

∥∥∥∥
2

≤
√

1 + ε
∥∥SΠc

k (:, i)
∥∥

2

}
(3.6)

= C
Πc
i,k

⋂
CΠc
i,k (3.7)

By Definition 2, CΠc
i,k describes the event where the ith column of the kth Schur complement

SΠc
k satisfies the ε−JL condition under random mapping ΩΠc

k . We also define for each k

DΠc
k,k =

{∥∥ΩΠc
k S

Πc
k (:, k)

∥∥
2
≥ g

∥∥ΩΠc
k S

Πc
k

∥∥
1,2

}
.

which describes the event where no column is swapped under randomized column pivoting
at step k with column threshold 0 < g ≤ 1. Remember if g = 1 there is no thresholding,
which makes α = ` from line 4 and 5 of Algorithm 3.2.2. We further define for k < i and

γk
def
=
∥∥ΩΠc

k S
Πc
k

∥∥
1,2

,

DΠc
i,k =

{∥∥ΩΠc
k S

Πc
k (:, k)

∥∥
2
< gγk,

∥∥ΩΠc
k S

Πc
k (:, j)

∥∥
2
< γk, k<j<i≤n,

∥∥ΩΠc
k S

Πc
k (:, i)

∥∥
2
=γk.

}
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Thus, DΠc
i,k is the event where columns k and i are swapped. Thus the event

D (Πc)
def
=

⋂
1≤k≤n

DΠc
αk,k

(3.8a)

uniquely defines the column permutation Πc and by extension, row permutation Πr, and the
event

C (Πc)
def
=

⋂
1≤k≤n


 ⋂
k≤j≤n
j 6=αk

CΠc
j,k

⋂C
Πc
αk,k

 (3.8b)

defines the Gaussian elimination process where every column in every Schur complement
satisfies the ε−JL condition for the column permutation Πc; and the event

C def
=
⋃
Πc

(
C (Πc)

⋂
D (Πc)

)
(3.8c)

defines set of Gaussian elimination processes where every column in each Schur complement
produced by the algorithm satisfies the ε−JL condition during the factorization process.
Note that event C describes the randomized Gaussian elimination process, whereas event
C(Πc) describes a particular incidence of C conditional on a particular column permutation
Πc.

Since GERCP performs partial pivoting at every step of elimination, it will successfully
compute an LU factorization of any given matrix. Additionally, the events D(Πc) over the
set of permutations are mutually exclusive by definition. In other words,

P

(⋃
Πc

D (Πc)

)
=
∑
Πc

P (D (Πc)) = 1, (3.9)

where the set union is over all possible permutations Πc. Lemma 7 below shows that with
large probability, in GERCP every column in every Schur complement satisfies the ε−JL
condition during the elimination process regardless of which permutation Πc is chosen.

Lemma 7 (Randomized norm preservation). Given ε, δ ∈ (0, 1) and g ∈ (0, 1]. Let Ψ be

defined by equation (3.1). Choose r >
4

ε2 − ε3
ln

(
n(n+ 1)

2δ

)
. Then we must have

‖Sk‖1,2 ≤
1

g

√
1 + ε

1− ε
‖Sk(:, αk)‖2 (3.10)

for all 1 ≤ k ≤ n with probability no less than 1− δ.

Remark 3.2.4. The question of choosing ε is a balancing act. If ε → 0, then r ≥ 4/(ε2 −
ε3) log(...) → ∞. But, on the other hand, if ε → 1, the upper bound in (3.10) also becomes
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vacuous. For all practical purposes, we can think of ε ∈ [1/4, 3/4]. Also, this lemma tells

us that the factor
√

1−ε
1+ε

plays a similar role to the column thresholding factor g as the

two factors appear multiplied together in the same part of the above inequality. Therefore,

it is fruitful to view and label the term
√

1−ε
1+ε

from Johnson-Lindenstrauss as the artificial

column thresholding factor.

Proof. By equations (3.8), the event

⋃
Πc

(
C (Πc)

⋂
D (Πc)

)
⊆

{
‖Sk‖1,2 ≤

1

g

√
1 + ε

1− ε
‖Sk(:, αk)‖2 , for all 1 ≤ k ≤ n

}

defines a superset of the set of outcomes that satisfies our desired result. To show this take

any fixed choice of column pivots Πc. It is trivial to get ‖Sk(:, αk)‖ ≤ 1
g

√
1+ε
1−ε ‖Sk(:, αk)‖2

always. If our outcome is in both C (Πc) and D (Πc), then for any 1 ≤ k ≤ j ≤ n and j 6= αk

(1− ε) ‖Sk(:, j)‖2
2 ≤

∥∥∥∥ 1√
r

Ψk(:, j)

∥∥∥∥2

2

(by event CΠc
j,k)

≤ 1

g2

∥∥∥∥ 1√
r

Ψk(:, αk)

∥∥∥∥2

2

(by event D(Πc))

≤ 1

g2
(1 + ε) ‖Sk(:, αk)‖2

2 (by event C
Πc
αk,k

)

Choosing j = arg maxk≤j≤n ‖Sk(:, j)‖2 gives us line (3.10) and our desired set containment.
Next, we must bound the probability of success from below. It follows from the definition of
conditional probability that

P

(⋃
Πc

(C (Πc) ∩ D (Πc))

)
=

∑
Πc

P (C (Πc) ∩ D (Πc))

=
∑
Πc

P (C (Πc) |D (Πc)) P (D (Πc)) (3.11)

Below we derive a lower bound on the right hand side of equation (3.11). Consider
any given event D (Πc) for which P (D (Πc)) > 0. This implies that the permutation Πc is
given. As before, for each 1 ≤ k ≤ n − 1, let SΠc

k ∈ R(k:n)×(k:n) be the Schur complement
after the first k − 1 steps of column and row pivoting and Gaussian elimination, and let
ΩΠc
k = Ω(:,Πr(k : n)) ∈ Rr×(n−k+1) be the submatrix of Ω whose columns correspond to the
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rows of SΠc
k . With this notation, we can write

P (C (Πc) |D (Πc)) = P

 ⋂
1≤k≤n


 ⋂
k≤j≤n
j 6=αk

CΠc
j,k

⋂C
Πc
αk,k




= 1− P

 ⋃
1≤k≤n


 ⋃
k≤j≤n
j 6=αk

(
CΠc
j,k

)c
⋃(

C
Πc
αk,k

)c


≥ 1−
n∑
k=1

 n∑
j=k
j 6=αk

P
((

CΠc
j,k

)c)
+ P

((
C

Πc
αk,k

)c)
≥ 1−

n∑
k=1

(n− k + 1) exp

(
−(ε2 − ε3)r

4

)
= 1− n(n+ 1)

2
exp

(
−(ε2 − ε3)r

4

)

where the third line comes from Lemma 3 and the fourth line is from the application of
Lemma 5. Plugging this into line (3.11), we have that

P

(⋃
Πc

(C (Πc) ∩ D (Πc))

)
≥
(

1− n(n+ 1)

2
exp

(
−(ε2 − ε3)r

4

))∑
Πc

P (D (Πc))

= 1− n(n+ 1)

2
exp

(
−(ε2 − ε3)r

4

)
where the last line is achieved by line (3.9). In order to bound the last line from below by

1− δ, we require the r >
4

ε2 − ε3
ln

(
n(n+ 1)

2δ

)
.

Below is our main theoretical result on column growth upper bound for GERCP.

Theorem 8 (Column Growth Factor for GERCP). Choose ε, δ ∈ (0, 1) and g ∈ (0, 1]. If

r >
4

ε2 − ε3
ln

(
n(n+ 1)

2δ

)
, then the pivot growth factor of Algorithm 1.2 satisfies

ρgercpcol (A) ≤ 1

g2

1 + ε

1− ε
√
e(n+ 1)n

1+ln
(
g
√

1+ε
1−ε

)
n

1
2

ln(n)
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with probability greater than 1− δ, otherwise

ρgercpcol (A) ≤ 1√
n

2n−1

Remark 3.2.5. What happens if we are extremely unlucky? There is a chance, not exceeding
the user-chosen positive probability δ, that at least one column in some Schur complement
is not well-preserved. In this case, GERCP could end up picking the wrong column pivot.
This, however, is far from a disaster as we still perform the deterministic partial pivoting at
every step. Therefore, we can view these randomized column swaps as an “insurance policy”
against large element growth because with high probability we will attain the growth bounds
in Theorem 8, but we will definitely attain GEPP growth bounds.

Proof. At the kth stage of randomized complete pivoting, our column pivot choice is given
by

`k = arg max
k≤j≤n

‖Ψk(:, j)‖2
2

αk =

{
`k if g ‖Ψk(:, αk)‖2 ≥ ‖Ψk(:, k)‖2

k otherwise

Then the row pivot at the kth stage is given as βk where

βk = arg max
k≤i≤n

|Sk(i, αk)| (3.12)

At this point, we proceed in a fashion similar to Wilkinson’s element growth proof for
complete pivoting [97]. Let pk = |Sk(βk, αk)| be the modulus of the pivot element of Sk.
Also, let ck = ‖Sk(:, αk)‖2 be the `2-norm of the pivot column of Sk. It is important to note
that (3.12) along with Lemma 1 implies that ck ≤

√
n− k + 1pk (i.e. the last line works

because pk = U(k, k) from our a priori pivoting so pk is an entry of SΠc
k .) Then, we have

that ∣∣det
(
SΠc
k (k : m, k : m)

)∣∣ =
m∏
j=k

pj ≥
m∏
j=k

1√
n− j + 1

cj (3.13)

which holds from the LU decomposition of SΠc
k since the L factor is unit diagonal and the U

factor has the pj’s as its diagonal. We can also apply Theorem 2 (Hadamard’s Inequality)
to the determinant of SΠc

k (k : m, k : m) to get

∣∣det
(
SΠc
k (k : m, k : m)

)∣∣ ≤ m∏
j=k

∥∥SΠc
k (k : m, j)

∥∥
2
≤

m∏
j=k

∥∥SΠc
k (:, j)

∥∥
2

≤

(
1

g

√
1 + ε

1− ε

)m−k

‖Sk(:, αk)‖m−k+1
2 =

(
1

g

√
1 + ε

1− ε

)m−k

cm−k+1
k

(3.14)
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where the last expression of the first line is achieved by taking the `2 norm of the entire jth

column instead of the first few entries of the jth column. Also, the second line of the above
is achieved from Theorem 7 by applying (3.10) for each j 6= αk. Combining our inequalities
(3.13) and (3.14) for |det (Sk(k : m, k : m))|, we get(

1

g

√
1 + ε

1− ε

)m−k√
(n− k + 1)!

(n−m)!
cm−k+1
k ≥

m∏
j=k

cj

for all 1 ≤ k ≤ m ≤ n. Define qk = ln(ck). Canceling one ck on both sides and taking
logarithms on both sides, we get

(m− k) ln

(
1

g

√
1 + ε

1− ε

)
+

m∑
j=k

ln
√
n− j + 1 + (m− k) qk ≥

m∑
j=k+1

qj

Dividing by m− k, moving each term with any qj for k ≤ j < m to one side and everything
else to the other,

qk −
1

m− k

m−1∑
j=k+1

qj ≥
1

m− k
qm −

1

m− k

m∑
j=k

ln
√
n− j + 1− ln

(
1

g

√
1 + ε

1− ε

)

Next, we combine all the inequalities for each k between 1 ≤ k < m to get

1 − 1
m−1
− 1
m−1
· · · − 1

m−1
− 1
m−1

0 1 − 1
m−2
· · · − 1

m−2
− 1
m−2

0 0 1 · · · − 1
m−3
− 1
m−3

...
...

...
. . .

...
...

0 0 0 · · · 1 −1
2

0 0 0 · · · 0 1





q1

q2

q3

...

qm−2

qm−1


≥



1
m−1

qm

1
m−2

qm

1
m−3

qm
...

1
2
qm

qm


−



1
m−1

ln
√

n!
(n−m)!

1
m−2

ln
√

(n−1)!
(n−m)!

1
m−3

ln
√

(n−2)!
(n−m)!

...
1
2

ln
√

(n−m+3)!
(n−m)!

ln
√

(n−m+2)!
(n−m)!


−



ln
(

1
g

√
1+ε
1−ε

)
ln
(

1
g

√
1+ε
1−ε

)
ln
(

1
g

√
1+ε
1−ε

)
...

ln
(

1
g

√
1+ε
1−ε

)
ln
(

1
g

√
1+ε
1−ε

)


and we express the above matrix inequality as

B q
def

≥ v1 − v2 − v3

Lemma 13 gives us a closed form expression for B−1, which happens to be a non-negative
matrix. Since B−1 only has non-negative entries, the vector inequality above is preserved
after multiplying B−1 on both sides. To complete this proof, we only need the top row of
this vector inequality. Since q1 is the first entry of q, we also apply eT1 to both sides of the
inequality to reduce it to a scalar inequality

q1 = eT1 q ≥ eT1B
−1v1 − eT1B

−1v2 − eT1B
−1v3 (3.15)
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Lemma 13 also tells us that the first row of B−1 is

e1
TB−1 =

[
1 1

m−1
1

m−2
· · · 1

3
1
2

]
which we now use to compute/bound eT1B

−1v1, eT1B
−1v2 and eT1B

−1v3:

eT1B
−1v1 = qm

(
1

m− 1
+

m−2∑
j=1

1

(j + 1)j

)
= qm

where the last equality was achieved by Lemma 12. Next, we compute eT1B
−1v2 which we

call the Wilkinson term

eT1B
−1v2 =

1

m− 1

m∑
j=1

ln
√
n−m+ j +

m−2∑
k=1

1

(k + 1)k

k+1∑
j=1

ln
√
n−m+ j

=
1

m− 1

m∑
j=1

ln
√
n−m+ j +

m−1∑
j=1

m−2∑
k=max{j−1,1}

1

(k + 1)k
ln
√
n−m+ j

=
1

m− 1
ln
√
n+

m−1∑
j=1

 1

m− 1
+

m−2∑
k=max{j−1,1}

1

(k + 1)k

 ln
√
n−m+ j

=
1

m− 1
ln
√
n+

m−1∑
j=1

1

max{j − 1, 1}
ln
√
n−m+ j (Lemma 12)

= ln
√
n−m+ 1 +

m∑
j=2

1

j − 1
ln
√
n−m+ j

def
= ln

√
n−m+ 1 + ln f(m,n−m)

where we define the generalized Wilkinson function to be

f(m, t)
def
=

√
(2 + t)1(3 + t)

1
2 (4 + t)

1
3 · · · (m+ t)

1
m−1

Next comes eT1B
−1v3 or the thresholding term

eT1B
−1v3 = ln

(
1

g

√
1 + ε

1− ε

)
m−1∑
j=1

1

j
≤ (1 + ln(m− 1)) ln

(
1

g

√
1 + ε

1− ε

)

Plugging all of this into (3.15), we have

q1 ≥ qm − ln
√
n−m+ 1− ln f(m,n−m)− (1 + ln(m− 1)) ln

(
1

g

√
1 + ε

1− ε

)
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Taking the exponential of both sides and rearranging terms, we have that for all 1 ≤ m ≤ n

cm
c1

≤
√
n−m+ 1f(m,n−m)

1

g

√
1 + ε

1− ε
(m− 1)

ln
(

1
g

√
1+ε
1−ε

)
(3.16)

Next, we need to relate the ratio ck
c1

to ρgercpcol

ρgercpcol =
maxk ‖Sk‖1,2

‖S1‖1,2

≤ 1

g

√
1 + ε

1− ε
max
k

‖Sk(:, αk)‖2

‖S1(:, α1)‖2

(Lemma 7)

=
1

g

√
1 + ε

1− ε
max
k

ck
c1

≤ 1

g2

1 + ε

1− ε
max
m

√
n−m+ 1f(m,n−m)(m− 1)

ln
(

1
g

√
1+ε
1−ε

)
(Eqn (3.16))

≤ 1

g2

1 + ε

1− ε
max
m

√
e(n−m+ 2)(n−m+ 1)(m− 1)

ln
(

1
g

√
1+ε
1−ε

)

m
1
4

ln(n)m
1
4

ln( nm)(n−m+ 1)
1
4

ln(n−m+1)

≤ 1

g2

1 + ε

1− ε
max
m

(√
e(n−m+ 2)(n−m+ 1)(m− 1)

ln
(

1
g

√
1+ε
1−ε

))
max
m

(
m

1
4

ln(n)m
1
4

ln( nm)
)

max
m

(n−m+ 1)
1
4

ln(n−m+1) (Lemma 14)

≤ 1

g2

1 + ε

1− ε
√
e(n+ 1)n

1+ln
(

1
g

√
1+ε
1−ε

)
max
m

(
m

1
4

ln(n)m
1
4

ln( nm)
)
n

1
4

ln(n)

where the third to last line is from Lemma 14. Examining the following derivative

d

dm
ln
(
m

1
4

ln(n)m
1
4

ln( nm)
)

=
ln(n)

m
− ln (m)

m

which equals zero only when m = n, and given the concavity, this point attains the max.
Thus, we plug this point in to get

ρgercpcol ≤
1

g2

1 + ε

1− ε
√
e(n+ 1)n

1+ln
(

1
g

√
1+ε
1−ε

)
n

1
2

ln(n)

to get our desired result.

Next, we slightly add to the statement of the last theorem to add a probabilistic guarantee
on the floating point error of the sampling matrix Ψ under the sampling update formula (3.2).
The floating error analysis of the sampling matrix must be done under the objective that
rounding errors cannot corrupt the column lengths by too much, which is suggested by the
following result under small probability of failure. This shows that the floating point error
cannot grow quickly or exponentially under the given update scheme.
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Theorem 9 (Stability of unconditionally stable sampling update formula). For Gaussian
Elimination with Randomized Complete Pivoting, we have the two guarantees

ρgercpcol (A) ≤ 1

g2

1 + εJL
1− εJL

√
e(n+ 1)n

1+ln

(
1
g

√
1+εJL
1−εJL

)
n

1
2

ln(n)

and ∥∥∥fl(Ψ̂k+1

)
−Ψ̂k+1

∥∥∥
1,2
≤ εmach(1+εmach)

k
√
kr(1+εJL)

(√
k+5n2

)
ρgercpcol (A)‖A‖1,2

with probability at least 1− n(n+1)
2

exp
(
− (ε2JL−ε

3
JL)r

4

)
− exp

(
− (ε2JL−ε

3
JL)nr

4

)
Proof. First, we apply the relevant norm to both sides to get∥∥fl(Ψ̂k+1

)
− Ψ̂k+1

∥∥
1,2

(3.17)

≤ εmach (1 + εmach)
k

(
k∑
i=1

‖Ψi (:, (k + 1) : n)‖1,2 + 5 ‖|Ω| |Lk+1|‖2 ‖|Uk+1(:, (k + 1) : n)|‖1,2

)

≤ εmach (1 + εmach)
k

(
k∑
i=1

‖Ψi (:, (k + 1) : n)‖1,2 + 5 ‖Ω‖F ‖Lk+1‖F ‖Uk+1(:, (k + 1) : n)‖1,2

)

where we bound the 2-norm of the entrywise absolute value by the frobenius norm to get

the last line. Next, Theorem 8 and the definition of the event C
Πc
αk,k

from (3.4) give us both
our desired bound on ρgercpcol (A) and

‖Ψk‖1,2 = ‖Ψk(:, αk)‖2 ≤
√
r(1 + εJL) ‖Sk‖1,2 ≤

√
r(1 + εJL)ρgercpcol (A) ‖A‖1,2 (3.18)

with probability of failure bounded above by n(n+1)
2

exp
(
− (ε2JL−ε

3
JL)r

4

)
. Since GERCP is a

top-heavy method from Definition 3, we have ‖Lk+1‖F ≤
√
kn because Lk+1 is a n × k

matrix with each entry bounded above by 1 in absolute value. Also, Theorem 7 gives us that
‖Uk+1‖1,2 ≤ nρgercpcol (A) ‖A‖1,2. Finally, use Theorem 4 to control the quantity ‖Ω‖F via

P
{
‖Ω‖2

F ≥ nr (1 + εJL)
}
≤ exp

(
−(ε2JL − ε3JL)nr

4

)
Then plug this and the inequality (3.18) into the first inequality (3.17) to arrive at our
desired conclusion with a union bound.
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Chapter 4

Numerical Experiments

4.1 Block GERCP

Algorithm 3.2.2 was presented in a form for ease of presentation of Theorem 8. For effi-
cient numerical implementation, we need to develop a block version of GERCP in Algorithm
3.2.2 to increase locality and memory/cache re-use with more BLAS-3 calls. Algorithm 4
below is styled after dgetf2.f and dgetrf.f for block GEPP in LAPACK with double precision
floating point numbers. Instead of increasing the pivot-block size from p = 1, we introduce
a loop-blocksize parameter b ≥ 1. It repeatedly performs b steps of randomized column
pivoting and partial pivoting followed by a blocksize b Schur complement update.

When evaluating the norms to make the column pivoting decisions, it is not necessary
to take the square root after computing the sum of squares. The motivation for using the
2-norm to make the column pivoting decisions comes from the use of a Gaussian sampling
matrix in combination with the Johnson-Lindenstrauss Lemma. As pointed out by Prof.
James Demmel, computing the 2-norm is more involved than computing the 1-norm (i.e.
sum of absolute values) in order to avoid overflow in floating point arithmetic with the
BLAS-1 function snrm2 [16]. This is an interesting direction for future research. For the
2-norm, one follow the example of snrm2 without the final square root in order to obtain
maximum reliability. However, given that we use r = 4 for all of our examples, we are able
to unroll the loops present in snrm2 in order to improve the algorithm runtime as done in
our code.

The main work of Algorithm 4 is in the last step, the repeated computation of the matrix
A(k+1 : n, k+1 : n). The outer loop for k is similar to the main loop in dgetrf.f, while the
inner loop for k is similar to the main loop in dgetf2.f. The main modifications occur on
lines 7, 8 and the BLAS-3 Schur complement update after the end of the inner loop. Line 7
updates the U factor so that we can use it to update the sketching matrix on line 8. As in
dgetf2.f, the inner loop for k is designed to work on a tall-skinny matrix, whereas the outer
loop for k performs fast BLAS-3 updates on the rest of the matrix. For practical reasons,
we stop using the sampling matrix once the dimensions of the Schur complement become
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Figure 4.1: Comparing the run times of GERCP and GEPP Fortran code each averaged
over 10 different trials

less than or equal to the sampling dimension r > 0. It is important to note that the proof
of Theorems 8 and 9 is easily modified to apply to this versions of the algorithm with the
exact same guarantees on element growth. We present the procedure for updating the Schur
sampling matrix Ψ.

Remark 4.1.1. The first updating formula in Algorithm 5 is slightly more efficient than the
second one. While we have not observed it in our numerical computations, it potentially could
lead to inaccurate column selections for some highly ill-conditioned matrices in pathological
cases. Our numerical experiments also suggest that the execution time of Algorithm 5 is
typically a small fraction of the total execution time of of GERCP. Thus, one might use the
second updating formula in Algorithm 5 for a more robust numerical implementation.

4.2 Numerical Results

We ran our experiments on two different machines. The runtime results were performed
on a single node of NERSC’s Carver machine with two quad-core Intel Xeon X5550 2.67 GHz
processors and 24 GB of RAM. This compute resource was courtesy of the National Energy
Research Scientific Computing Center, a DOE Office of Science User Facility supported by
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Algorithm 4 Block GERCP

Inputs: n× n matrix A, sampling dimension r > 0, block size b
Outputs: lower triangular L with unit diagonal, upper triangular U , row permutation Πr,

column permutation Πc.
1: sample Ω(i, j) ∼ N (0, 1) for all 1 ≤ i ≤ r and 1 ≤ j ≤ n
2: compute Ψ = ΩA
3: for k = 1 : b : n− 1 do
4: set k = k + min{b, n− k + 1} − 1
5: for k = k : k do

6: compute α =

{
arg maxk≤j≤n ‖Ψ(:, j)‖2

2 if n− k ≥ r

arg maxk≤j≤n ‖A(k : n, j)‖2
2 otherwise

.

7: swap columns k and α of A, Ψ and Ω (*).
8: compute β = arg max

k≤i≤n
|A(i, k)|.

9: swap rows k and β of A (*).
10: compute A(k+1:n, k) = A(k+1:n, k)/A(k, k);
11: compute A(k+1:n, k+1:k) = A(k+1:n, k+1:k)−A(k+1:n, k) ∗A(k, k+1:k);
12: compute A(k, k+1:n) = A(k, k+1:n)− A(k, k :k−1) ∗ A(k :k−1, k+1:n);
13: update Ψ(:, k :n) with Algorithm 5
14: end for
15: compute A(k+1:n, k+1:n) = A(k+1:n, k+1:n)−A(k+1:n, k :k) ∗A(k :k, k+1:n);
16: end for

Algorithm 5 Update procedure for Schur sampling matrix Ψ

Inputs: r × n matrix Ψ, n× n working matrix A, r × n random matrix Ω
Outputs: r ×m matrix Ψ
1: if pivot |A(k, k)| ≥ √εmach ‖Ψ1‖1,2 then apply Eqn (3.3) with then

2: Ψ(:,(k+1):n)←−Ψ(:, (k+1):n)− Ψ(:, k)A(k, (k+1):n)

A(k, k)
3: else apply Eqn (3.2) with
4: Ψ(:,(k+1):n)←−Ψ(:,(k+1):n)−[Ω(:,k)+Ω(:,(k+1):n)A((k+1):n,k)]A(k,(k+1):n)
5: end if
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N 3000 5000 7000 9000 11000
trcp (secs) 2.250 9.623 25.506 53.607 96.662
tpp (secs) 2.006 8.902 24.066 50.934 91.967
trcp−tpp
tpp

12.20% 8.10% 6.00% 5.20% 5.10%

Table 4.1: Average run times of GERCP and GEPP over 10 separate trials.

the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. The rest of the numbers are generated on a laptop with an Intel i7-3632QM
CPU and 8GB of RAM. All of the code here was run using the Intel MKL BLAS [16, 58]
version 11.0.1 with Intel Fortran compiler version 13.0.1. We used the open source Netlib
3.3.1 version of LAPACK GEPP [9]. Our version of GERCP was obtained by modifying the
Netlib GEPP Fortran code. This allows for an easy and fair comparison between GEPP and
GERCP by insuring that the version of GEPP used to compare against has similar cache
optimizations. It is worth noting that the Intel MKL version of GEPP is much faster than
both Netlib GEPP and GERCP because of superior cache optimizations. Figure 4.1 from
our runtime experiments shows that as the matrix size increases, the percent difference in
runtime decreases to a negligible amount. This agrees with our theory, which tells us the
O(n2) operations required to maintain the sampling matrix and pivot columns does not grow
as quickly as the O(n3) operations required to actually factor the matrix A. Even when the
relative time difference is high, the absolute time difference is a fraction of a second for a
single factorization as shown in by the run times for N = 3000 in Table 4.1 below.

In section 2.4.2, we reviewed stability issues associated with to most commonly used
Gaussian elimination pivoting strategy, partial pivoting. Now, we produce numerical exper-
iments showing the improved stability properties of GERCP. As described in section 2.3,
two metrics for judging the quality of an LU factorization are backwards error and element
growth , given as ∥∥ΠcAΠT

r − LU
∥∥
∞ and ρelem (A) =

maxi,j,k |Sk(i, j)|
maxi,j |A(i, j)|

The Wilkinson, Generalized Wilkinson and Volterra matrices that we use in Figures 4.2
and 4.3 are as described in Section 2.4.2. The Wilkinson-type matrices serve as the worst
case matrix for GEPP instability with entries that grow exponentially, where the standard
Wilkinson matrix has the quickest exponential growth with a base of 2. This is exemplified
by the dashed blue and red lines in the log-log plots of element growth and backwards error
of GEPP in Figures 4.2 and 4.3. However, GERCP fixes this by impeding element growth
with column pivots to leave the backwards error near machine precision. As far as Gaussian
elimination goes, the most pathological examples, that we characterize as passive aggressive
element growth, include the Volterra matrix. These matrices exhibit just enough element
growth, but no more, to cause an unacceptable level of backwards error. In contrast, the
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element/column growth for the Wilkinson-type matrices is so massive that the problem is
trivial to detect and fix for any GE algorithm with both row and column pivots to correct.
This case too is effortlessly corrected by GERCP as shown by our experiments.

Figure 4.2: Element growth for diabolical matrices with GERCP and GEPP Fortran code

4.3 Backward error for random linear systems

Suppose we wish to solve the linear system Ax = b where A ∈ Rn×n iid N (0, 1) standard
normal and b ∈ Rn iidN (0, 1) standard normal. This system is known to be well conditioned
[23] and the LU factorization is stable under partial pivoting and complete pivoting [90]. We
measure the accuracy of a linear solve with the relative residual

‖Ax̂− b‖∞
‖A‖∞ ‖x̂‖∞

In Figure 4.4, we plot the relative residual error for GERCP with different sampling param-
eters r > 0, along with competing methods like GEPP, GECP, GERP (rook) and GE2CP.
While complete pivoting consistently obtained the smallest residual, GERCP, GERP and
GE2CP all produced similar relative residuals which were clearly better than GEPP and not
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Figure 4.3: Backwards error for diabolical matrices with GERCP and GEPP Fortran code

much worse than that of GECP. This shows that GERCP produces a better quality solution
than GEPP even when GEPP is given a well-conditioned system. The Figure 4.4 suggests
that the relative residual for the random normal linear system is improved by almost a factor
of 2. This savings becomes more important when you work with smaller precision floating
point numbers like single or half precision floating point numbers. These smaller precision
floating point numbers are becoming commonly used on co-processor platforms like GPGPUs
as result in dramatic run time improvements. Also, for different linear systems this improve-
ment in the relative residual can be much higher as in the case of the Wilkinson-type and
Volterra matrices.

We also look at the element growth within the LU factors for different pivoting strategies.
In [90], Trefethen and Schreiber study the element growth factors for GEPP and GECP
on standard normal matrices. They conjecture that E (ρgeppn ) ≈ O

(
n2/3

)
and E (ρgecpn ) ≈

O
(
n1/2

)
. We plot the element growth for GEPP and GECP along with the element growth

for GERP (rook), GE2CP and GERCP with different values of the sampling parameter r > 0
in Figure 4.5.
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Figure 4.4: Average Relative Residual over 10 trials. This suggests that GERCP should
improve the relative residual of a linear solve over GEPP by at least half the improvement
that GECP would provide.

4.4 Incomplete LU with Randomized Complete

Pivoting

We can also rewrite our GERCP algorithm into a form that makes it more amenable for
low-rank incomplete LU factorizations. This actually allows us to use GERCP to produce
CUR-style decompositions [31], which are popular in machine learning and randomized nu-
merical linear algebra, as discussed in Part II of this dissertation. The pivoting decisions
of GERCP are used to select relevant rows and columns of A. Suppose we wish to per-
form ` steps of LU to form a low-rank approximation AΠc,` ≈ L`U`. In machine learning,
researchers [27, 37, 13] have produced efficient algorithms for a similar problem in the con-
text of the incomplete Cholesky factorization for a symmetric n × n input matrix. The
incomplete Cholesky factorization enjoys an impressive complexity of O(n`2), i.e. linear in
n. They provide a version where the user stipulates a fixed desired ` parameter and an
adaptive version that chooses ` to be the first number that causes the residual to drop below
a user defined tolerance τ , i.e. ‖AΠc,` − L`U`‖F ≤ τ . In order to make our provably stable
GERCP algorithm competitive for this purpose, we must produce a left-looking version [87]
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Figure 4.5: Average element growth of iid standard Normal random matrix over 10 trials.

of GERCP as in Algorithm 6. Left-looking Gaussian elimination attempts to leave the Schur
complement untouched until it is absolutely needed. Lines 8− 10 of Algorithm 6 are used to
update the borders of the Schur complement from scratch. Line 10 is especially needed to
update the sampling matrix Ψ for the next stage. The complexity of Left-Looking GERCP
is O (6n`2 + 2nr`). If we strictly follow the requirements of Theorem 9 or Theorem 8, then
this becomes O(n log(n)`). However, if we let r = O(1) as done in the numerical experiments
then we also have complexity O(n`2). For the adaptive version, it is crucial complexity-wise
that we make us of the compressed r× (n−k+ 1) Schur sketching matrix instead of a larger
(n−k+1)×(n−k+1) matrix, otherwise we would need to replace an r term with an n term
in the above complexity. To further justify the use of ‖Ψ(:, k :n)‖F in line 3 of Algorithm 6

AΠc,k =

( k n− k

k A11 A12

m− k A21 A22

)
=

( k m− k

k L11 0
m− k L21 I

) ( k n− k

U11 U12

0 S`

)
= LkUk +

( k n− k

0 0
0 Sk

)
The application of Frobenious norms then gives ‖AΠc,k −LkUk‖F = ‖Sk‖F . At this point, it
is useful to recall equation 3.1 that Ψ` = Ω (:, πr,k(k : n))Sk where Ω has iid standard normal
entries. This allows us to apply Theorem 4 to get

Corollary 1 (Scaled Frobenious norm of Schur Sketching Matrix approximates Frobenious
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Algorithm 6 Left-Looking GERCP

Inputs: n× n matrix A, sampling dimension r ≥ 1 and either ` > 0 or tolerance τ > 0
Outputs: lower triangular L with unit diagonal, upper triangular U , row permutation Πr,

column permutation Πc

1: sample Ω(i, j) ∼ N (0, 1) for all 1 ≤ i ≤ r and 1 ≤ j ≤ n
2: compute Ψ = ΩA
3: while k ≤ ` or ‖Ψ(:, k :n)‖F ≤ τ do
4: compute α = arg max

k≤j≤n
‖Ψ(:, j)‖2.

5: swap columns k and α of A and Ψ.
6: compute β = arg max

k≤i≤n
|A(i, k)|.

7: swap rows k and β of A.
8: compute A(k :n, k) = A(k :n, k)− A(k :n, 1 : k − 1) ∗ A(1 : k − 1, k);
9: compute A(k+1:n, k) = A(k+1:n, k)/A(k, k);
10: compute A(k, k+1:n) = A(k, k+1:n)− A(k, 1:k−1) ∗ A(1 :k−1, k+1:n);
11: update Ψ(:, k :n) with Algorithm 5
12: end while

norm of Schur complements). For each LU stage 1 ≤ k ≤ n we have that the Frobenious
norm of 1√

r
Ψk approximates the Frobenious norm of the corresponding Schur complement Sk

P
(

(1− εJL)‖Sk‖2
F ≥ ‖

1√
r

Ψk‖2
F

)
≤ exp

(
−r ε

2
JL + ε3JL

4

‖Sk‖2
F

‖Sk‖2
2

)
P
(

(1 + εJL)‖Sk‖2
F ≤ ‖

1√
r

Ψk‖2
F

)
≤ exp

(
−r ε

2
JL − ε3JL

4

‖Sk‖2
F

‖Sk‖2
2

)
There are a few interesting observations here. The probability of failure does not depend

upon the dimension n of the original matrix! This is because we did not do any union
bounding of column norm estimates to arrive at this. Also, these bounds suggest that a
larger numerical rank of Sk provides for a more accurate estimate. Even more surprising is
that if our adaptive algorithm terminates after ` steps, then we know that 1√

r
Ψk provided

accurate approximations to the Frobenious norm of the Schur complement all ` required
steps with probability at least

P
(

(1−εJL)‖Sk‖2
F ≤‖

1√
r

Ψk‖2
F ≤(1+εJL)‖Sk‖2

F ,∀1≤k≤`
)
≥ 1−2` exp

(
−r ε

2
JL−ε3JL

4

‖Sk‖2
F

‖Sk‖2
2

)
This means that the ability to accurately estimate the Frobenious norm for ` stages only re-
quires the sampling dimension r to be O(log(`)) instead of O(log(n)). We test this estimation
technique of the Frobenious norm of the Schur complement at each step of an imcomplete
LU factorization for the KOS blog dataset from the UCI Machine Learning Repository [67].
This dataset gives the standard term-document matrix with rows that represent documents
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Figure 4.6: One trial incomplete factorization for each value of the sampling dimension r

and columns that represent the number of times a particular word was used in a document.
This dataset has 3430 documents and a vocabulary of 6906 words. We run incomplete LU
factorizations for 250 steps and Figure 4.6 shows how well the randomized Schur complement

norm estimate in terms of the ratio
‖ 1√

r
Ψk‖2F

‖Sk‖2F
for different values of r.

Future Work. One direction is to study and provide guarantees for variants of GERCP
that allow for a large pivot-block size p > 1. We believe that such a method could be much
faster due to an increase in BLAS-3 operations, and could also provide rank-revealing style
guarantees for low-rank approximations generated by incomplete LU factorizations [77]. It
will also be important to develop a cache optimized version if this code to be competitive to
Intel MKL LAPACK GEPP. Another important avenue for future research is to use these
techniques to make communication avoiding tournament pivoting LU (CALU) more stable
by adding randomized column pivots [29, 46].

Acknowledgments. I thank my adviser and co-author Prof. Ming Gu for helping
me with this work and for give me permission to include this co-authored material in my
thesis. We also wish to thank James Demmel and Laura Grigori for many helpful and fruitful
discussions.



45

Chapter 5

Additional Lemmas and Proofs

5.1 Matrix version of Johnson-Lindenstrauss

Concentration of Measure

Let A ∈ Rr1×m and B ∈ Rn×r2 be fixed deterministic matrices, where r1 < m and r2 < n.
Let Ω ∈ Rm×n have iid entries distributed standard normal N (0, 1). In this section, we will
derive a general concentration of measure result for the random quantity

‖AΩB‖2
F

which not only generalizes the Johnson-Lindenstrauss concentration of measure result, but
is proved using similar methods. First, we start by specifying the SVD for A = U1ΣV T

1 and
B = U2ΘV T

2 where

Σ =


σ1

σ2

. . .

σr1

 and Θ =


θ1

θ2

. . .

θr2


Lemma 8 (Rotational invariance and Orthogonality). We have that

‖AΩB‖2
F
dist
=

r1∑
i=1

r2∑
j=1

σ2
i θ

2
jω

2
i,j

where
dist
= denotes equality in distribution and where each ωi,j is independent and identically

distributed as ωi,j ∼ N (0, 1) for all 1 ≤ i ≤ r1 and 1 ≤ j ≤ r2.

Proof.

‖AΩB‖2
F = ‖U1ΣV T

1 ΩU2ΘV T
2 ‖2

F

= ‖ΣV T
1 ΩU2Θ‖2

F (Unitary invariance of F-norm)

= ‖ΣΩ̂Θ‖2
F
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where Ω̂ = V T
1 ΩU2 is also distributed iid N (0, 1) by the rotational invariance of that random

matrix. Let ωi,j denote the entry of Ω̂ in the ith row and jth column. Computing the triple
product in the Frobenious norm on the last line and applying the entrywise orthogonality of
the Frobenious norm, we arrive at our result

‖AΩB‖2
F =

r1∑
i=1

r2∑
j=1

σ2
i θ

2
jω

2
i,j

To produce our tail bounds, we will rely on Chernoff’s inequality, which comes from
applying Markov’s inequality on the exponentiated version of our random variable. To do
this, it is useful to define the moment generating function of a random variable.

Definition 6 (Moment Generating Function). Let X ∈ R be a random variable. Then, we
define the moment generating function to be

MX (t) = EX
[
etX
]

Lemma 9 (MGF for linear combinations of independent RVs). Let a, b ∈ R be constants
and let X, Y ∈ R be two independent random variables with MX(t) and MY (t) as moment
generating functions respectively. Then we have that the moment generating function of
Z = aX + bY is given as

MZ(t) = MX(at)MY (bt)

Next, we compute the moment generating functionod a squared standard normal random
variable

Lemma 10 (MGF for squared standard normal RV). Let ω be a N (0, 1) random variable.
Then the moment generation function for ω2 is given as

Mω2(t) =

(
1

1− 2t

) 1
2

for all t < 1
2

Proof. We have that ω2 ∝ X 2
1 is chi-squared distributed with the PDF fω2(x) = 1√

2πx
e−

1
2
x.

With this, we compute the moment generating function

Mω2(t) =

∫ ∞
0

etx
1√
2πx

e−
1
2
xdx =

√
1

1− 2t

(√
2

π

∫ ∞
0

e−
1
2
y2dy

)
=

√
1

1− 2t

where y > 0 is the change of variables such that y2 = (1− 2t)x.

Before continuing, we need to prove the following technical lemma
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Lemma 11. Let 0 ≤ γ ≤ 1 and let |t| < 1
2
. Then, we have(

1

1− 2γt

)1/2

≤
(

1

1− 2t

)γ/2
Proof. Fix γ and let us Taylor expand the following function around t0 = 0

(1− 2t)γ = 1− 2γ (1− 2t0)γ−1 t+

∫ t

x=t0

(t− x)γ (γ − 1) (1− 2x)γ−2 dx

= 1− 2γt+ γ (γ − 1)

∫ t

x=t0

(t− x) (1− 2x)γ−2 dx (non-positive integral)

≤ 1− 2γt

By division, we can rewrite this as 1
1−2γt

≤
(

1
1−2t

)γ
. We arrive at our result by taking

square-roots on both sides.

Now, we can present the proof of the generalization of Johnson-Lindenstrauss concen-
tration of measure. We wish to prove the following statement of Theorem 4. For any fixed
ε > 0, we want the tail bounds

P
(
‖AΩB‖2

F ≥ (1 + ε)‖A‖2
F‖B‖2

F

)
≤ exp

(
−
(
ε2

4
− ε3

6

)
‖A‖2

F

‖A‖2
2

‖B‖2
F

‖B‖2
2

)
(5.1)

and

P
(
‖AΩB‖2

F ≤ (1− ε)‖A‖2
F‖B‖2

F

)
≤ exp

(
−
(
ε2

4
+
ε3

6

)
‖A‖2

F

‖A‖2
2

‖B‖2
F

‖B‖2
2

)
(5.2)

Proof of Theorem 4. Lets consider the probability

P
(
‖AΩB‖2

F ≥ (1 + ε)‖A‖2
F‖B‖2

F

)
= P

(
‖AΩB‖2

F

‖A‖2
F‖B‖2

F

≥ 1 + ε

)
= P

(
r1∑
i=1

r2∑
j=1

σ2
i

‖A‖2
F

θ2
j

‖B‖2
F

ω2
i,j ≥ 1 + ε

)

For convenince, we refer to Z =
∑r1

i=1

∑r2
j=1 λiµjω

2
i,j, where λi =

σ2
i

‖A‖2F
and µj =

θ2j
‖B‖2F

.

Proceding with the standard Chernoff inequality trick to get a moment generating function
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for Z via Markov’s inequality, we get

P (Z ≥ 1 + ε) = P
(
etZ ≥ e(1+ε)t

)
≤

E
[
etZ
]

e(1+ε)t

= e−(1+ε)tMZ(t)

= e−(1+ε)t

r1∏
i=1

r2∏
j=1

Mω2
i,j

(λiµjt) (Lemma 9)

= e−(1+ε)t

r1∏
i=1

r2∏
j=1

(
1

1− 2λiµjt

) 1
2

(Lemma 10)

where λ1µ1t <
1
2
. Let s = λ1µ1t and replace t with s.

P (Z ≥ 1 + ε) ≤ e
− (1+ε)
λ1µ1

s
r1∏
i=1

r2∏
j=1

(
1

1− 2 λi
λ1

µj
µ1
s

) 1
2

≤ e
− (1+ε)
λ1µ1

s
r1∏
i=1

r2∏
j=1

(
1

1− 2s

) 1
2

λi
λ1

µj
µ1

(Lemma 11)

= e
− (1+ε)
λ1µ1

s

(
1

1− 2s

) 1
2

∑r1
i=1

λi
λ1

∑r2
j=1

µj
µ1

= e
− (1+ε)
λ1µ1

s

(
1

1− 2s

) 1
2

1
λ1µ1

Next, we optimize in s by setting the logarithmic derivative in s of the above line to zero.
Preforming this calculation, we get s = ε

2(1+ε)
. Plugging this in to the above line along with

the definitions of λ1 and µ1 yields

P (Z ≥ 1 + ε) ≤
(√

(1 + ε)e−ε
) ‖A‖2F
‖A‖22

‖B‖2F
‖B‖22

=
(
e−ε/2+ln(1+ε)/2

) ‖A‖2F
‖A‖22

‖B‖2F
‖B‖22

A Taylor expansion gives us that ln(1 + x) ≤ x − x2

2
+ x3

3
for all |x| < 1 because its an

alternating series when x > 0 and each additional term is negative when x < 0. Plugging
this in to the above, we get

P (Z ≥ 1 + ε) ≤ exp

(
−
(
ε2

4
− ε3

6

)
‖A‖2

F

‖A‖2
2

‖B‖2
F

‖B‖2
2

)
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A similar argument gives

P
(
‖AΩB‖2

F ≤ (1− ε)‖A‖2
F‖B‖2

F

)
= P (Z ≤ 1− ε)
= P

(
e−tZ ≥ e−(1−ε)t)

≤ e(1−ε)t
r1∏
i=1

r2∏
j=1

(
1

1 + 2λiµjt

) 1
2

where the last line comes from Markov’s inequality in combination with Lemmas 10 and 9.
As before, we apply the transformation of variables s = λ1µ1t along with Lemma 11 to get

P (Z ≤ 1− ε) ≤ e
(1−ε)
λ1µ1

s

(
1

1 + 2s

) 1
2

1
λ1µ1

Then, we minimize the upper bound by setting the logarithmic derivative to zero, which
gives s = ε

2(1−ε) . Plug this in to get

P (Z ≤ 1− ε) ≤
(
e+ε/2+ln(1−ε)/2) ‖A‖2F‖A‖22

‖B‖2F
‖B‖22 ≤ exp

(
−
(
ε2

4
+
ε3

6

)
‖A‖2

F

‖A‖2
2

‖B‖2
F

‖B‖2
2

)
where the last line makes use of the Taylor expansion of ln(1 + ε) from above.

5.2 Generalized Wilkinson Function

Lemma 12 (Partial fraction telescoping sum). Let q > r > 0 be positive integers. Then we
have

1

r
=

1

q
+

q−1∑
j=r

1

(j + 1)j

Proof. Let s ∈ N such that r ≤ s < q. We use common denominators to subtract the two
following fractions

1

s
− 1

s+ 1
=

1

s(s+ 1)

Then we take the telescoping sum to arrive at our result

1

r
− 1

q
=

q−1∑
s=r

1

s
− 1

s+ 1
=

q−1∑
s=r

1

s(s+ 1)
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Lemma 13 (Special Matrix Inverse). Let B = (bij)1≤i,j≤n ∈ Rn×n be an upper triangular
matrix given by

bij =


0 if i > j
1 if i = j
−1

i
if i < j

or in other words

B =



1 − 1
n
− 1
n
· · · − 1

n
− 1
n

0 1 − 1
n−1

· · · − 1
n−1

− 1
n−1

0 0 1 · · · − 1
n−2

− 1
n−2

...
...

...
. . .

...
...

0 0 0 · · · 1 −1
2

0 0 0 · · · 0 1


Then the inverse B−1 = (cij)1≤i,j≤n ∈ Rn×n is given by

cij =


0 if i > j
1 if i = j
1

n−j+2
if i < j

or

B−1 =



1 1
n

1
n−1

· · · 1
3

1
2

0 1 1
n−1

· · · 1
3

1
2

0 0 1 · · · 1
3

1
2

...
...

...
. . .

...
...

0 0 0 · · · 1 1
2

0 0 0 · · · 0 1


Proof. Rewrite B into the product of elementary matrices or atomic triangular matrices

B =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −1

2

0 0 0 · · · 0 1


· · ·



1 0 0 · · · 0 0
0 1 − 1

n−1
· · · − 1

n−1
− 1
n−1

0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1





1 − 1
n
− 1
n
· · · − 1

n
− 1
n

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1


def
= M2 · · · Mn−1 Mn
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Taking the inverse, we see that

B−1 = M−1
n M−1

n−1 · · · M−1
2

=



1 1
n

1
n
· · · 1

n
1
n

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1





1 0 0 · · · 0 0
0 1 1

n−1
· · · 1

n−1
1

n−1

0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1


· · ·



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 1

2

0 0 0 · · · 0 1


We leave computing this product as an exercise to the reader. Lemma 12 will be useful.

Lemma 14 (Generalized Wilkinson function bound). Let the generalized Wilkinson function

be given as f(m, t) :=

√
(2 + t)(3 + t)

1
2 · · · (m+ t)

1
m−1 . Then, we have

f(m, t) ≤
√
e(t+ 2)(t+ 1)m

1
4

ln(m+t)m
1
4

ln(m+t
m )(t+ 1)

1
4

ln(t+1) (5.3)

Proof. We have

ln
(
f 2(m, t)

)
=

m∑
k=2

1

k − 1
ln (t+ k) =

m−1∑
k=1

1

k
ln (t+ k + 1)

Observe the identity 1
k
− 1

k+t+1
= t+1

k(k+t+1)
and note that the function 1

k
ln (t+ k + 1) is

decreasing in k. We use the integral approximation along with integration by parts to get
our desired result

ln
(
f 2(m, t)

)
= ln(t+2)+

m−1∑
k=2

1

k
ln (k+t+1)

≤ ln(t+2)+

∫ m−1

1

1

x
ln (x+t+1) dx

= ln(t+2)+ln(x) ln(t+x+1)

∣∣∣∣m−1

1

−
∫ m−1

1

1

x+t+1
ln (x) dx

= ln(t+2)+ln(x) ln(t+x+1)

∣∣∣∣m−1

1

−
∫ m−1

1

1

x
ln (x) dx+

∫ m−1

1

t+1

x(x+t+1)
ln(x)dx

= ln(t+2)+ln(m+1) ln(m+t)− 1

2
ln2 (m+1) +

∫ m−1

1

t+1

x(x+t+1)
ln(x)dx

≤ ln(t+2)+ln(m) ln(m+t)− 1

2
ln2 (m) +

∫ ∞
1

t+1

x(x+t+1)
ln(x)dx

= ln(t+2)+
1

2
ln(m) ln(m+t) +

1

2
ln (m) ln

(
m+t

m

)
+

∫ ∞
1

t+ 1

x(x+t+1)
ln(x)dx
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where the second to last line follows from the fact that

d

dx
ln(x) ln(m+ t)− 1

2
ln2 (x) =

ln(m+ t)

x
− ln (x)

x
≥ 0

for all x ≤ m+ t. The inequality (5.3) follows from lemma 15.

Lemma 15 (Useful inequality for improper integral). We have the following inequality∫ ∞
1

t+ 1

x(x+ c)
ln (x) dx ≤ 1

2
ln2 (c) + ln (c) + 1 (5.4)

Proof. ∫ ∞
1

c

x(x+ c)
ln (x) dx =

∫ c

1

c

x(x+ c)
ln (x) dx+

∫ ∞
c

c

x(x+ c)
ln (x) dx

≤
∫ c

1

1

x
ln (x) dx+

∫ ∞
c

c

x2
ln (x) dx

=
1

2
ln2 (x)

∣∣∣∣c
1

− c

x
(ln (x) + 1)

∣∣∣∣∞
c

=
1

2
ln2 (c) + ln (c) + 1
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Part II

Spectrum Revealing Bounds
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Chapter 6

Introduction

The efficient approximation a matrix by another matrix of lower rank is a fundamental
problem of numerical linear algebra and matrix computations with applications in machine
learning and computer science. Applications include principle components analysis in statis-
tics [60], eigenfaces for facial recognition [91], speeding up support vector machines [98]
and speeding up PDE and integral equation solvers [75, 85]. In addition to the large num-
ber of applications, there are many different algorithms for performing a low-rank matrix
approximation. One’s choice of method is extremely important given the application and
the user’s constraints on speed, accuracy, cache space and amount of computer memory
(RAM). Among the methods that we will study in this thesis are (i) Gaussian randomized
subspace iteration, (2) Column/row selection based methods like CX decompositions, CUR
decompositions and the Nyström method.

Let A ∈ Rm×n be our input matrix and let k � min{m,n} be the target rank. We

write the Singular Value Decomposition (SVD) of A = UΣV T =
∑min{m,n}

j=1 σjujv
T
j . where

the singular values σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n} ≥ 0 are in decreasing order such that
Σ = diag

(
σ1, σ2, · · · , σmin{m,n}

)
and the vectors uj and vj are the columns of U and V ,

respectively. We define the rank-k truncated SVD of a matrix (A)k =
∑k

j=1 σjujv
T
j , which

satisfy the optimal rank-k approximation condition under the two following norms:

Theorem 10 (Eckart-Young Theorem [34]). Let A ∈ Rm×n be any matrix and let 1 ≤ k ≤
min(m,n). Then, the rank-k truncated SVD Ak attains the minimum of the following two
problems

min
rank(B)≤k

‖A−B‖F = ‖A−Ak‖F =

√√√√min(m,n)∑
j=k+1

σ2
j (A)

min
rank(B)≤k

‖A−B‖2 = ‖A−Ak‖2 = σk+1 (A)

Computationally, in order to attain a residual error similar to the optimal Eckart-Young
error for the rank-k approximation, we allow our fast-approximation algorithms a little wiggle
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room in the form of oversampling. This means that our algorithms will produce a slightly
larger rank-` matrix Ã ∈ Rm×n, but will still be judged relative the the quality of the
optimal rank-k Eckart-Young Truncated SVD. Specifically, we refer to oversampling as the
difference ` − k ≥ 0. While condoning a small amount of oversampling, the accuracy of
our approximation when compared against the best rank-k improves dramatically as we can
prove.

We present powerful spectrum revealing bounds for low-rank matrix approximation
algorithms. These bounds show that increased amounts of spectral decay help these algo-
rithms to “reveal” the true spectral structure of the rank-k truncated SVD. Let Ã be a
candidate low-rank approximation to our input matrix A ∈ Rm×n. We can evaluate the
residual error of our approximation in two ways: (i) the weak-form residual error and (ii)
the strong-form residual error

(i)
∥∥∥A− Ã

∥∥∥2

ξ
≤
(
1 +O(τ 2)

)
‖A−Ak‖2

ξ (6.1)

(ii)
∥∥∥A− (Ã

)
k

∥∥∥2

ξ
≤
(
1 +O(τ 2)

)
‖A−Ak‖2

ξ (6.2)

respectively with ξ = 2, F . In addition, we also evaluate the accuracy of the weak and strong
form problems with singular value lower bounds as in [47] to guarantee that capturing at
least a fraction of the directions of largest variance as in

σj

(
Ã
)
≥ σj (A)√

1 +O(τ 2)
for j ≤ k (6.3)

where k is the user’s target rank and τ is a quantity that depends on the rate of singular
value decay in A between the target rank k and oversampling parameter ` ≥ k. Much work
has been done on error bounds that depend solely on the dimensionality of the problem–
avoiding the incorporation of spectral decay entirely [18, 32, 50]. Most of these bounds lead
to the conclusion that the amount of required oversampling scales with the target rank k and
the matrix dimensions m and n. However, the spectrum-revealing bounds show that only a
constant amount of oversampling ` − k = O(1) is needed for matrices with a small enough
spectral decay parameter τ � 1. We will produce results of this type for various low-rank
approximation algorithms and then show these results in data science type applications.

The main contributions of this part of the thesis are (i) improved rates of spectral decay τ
for the residual-type error bounds, (ii) a simplified and tighter analysis of subspace iteration
removing annoying logarithms from the required amount of oversampling in [50, 47] and
(iii) applying these spectrum revealing bounds to a broader class of algorithms involving
column/row selection based algorithms.
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Chapter 7

Randomized Subspace Iteration

7.1 Basic Setup

First, we fix the desired target rank k � min{m,n} and the amount of oversampling
`− k ≥ 0. Next, we define a parameter p that varies between 0 ≤ p ≤ `− k. This parameter
p is not known to or involved in the execution of these algorithms–it is merely for the benefit
of analysis. We let Ω ∈ Rn×` be the starting sampling matrix and we let Ω̂ = V TΩ ∈ Rn×`

denote the starting sampling matrix rotated by the right singular values V T of A. In order
to state our results, we need the following partition of our rotated starting matrix and our
singular values

Ω̂
def
= V TΩ

def
=

( `

`− p Ω̂1

n− `+ p Ω̂2

)
(7.1)

and

Σ
def
=

( `− p n− `+ p

`− p ΣT

n− `+ p ΣB

)
(7.2)

where

ΣT =

( k `− p− k

k Σ1

`− p− k Σ2

)
and ΣB =

( k n− `+ p− k

k Σ3

n− `+ p− k Σ4

)
(7.3)

here, we refer to ΣT as the top singular values and ΣB as the bottom singular values. With
regards to the partition of ΣB, we will make use of the matrix Σ↓1 = diag(σk, σk−1, · · · , σ1)
which is Σ1 = diag(σ1, σ2, · · · , σk) except with the singular values in reverse or ascending
order.
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Figure 7.1: The visualization of singular value decay along with our partitions. The entire
Σ1 and Σ3 components in green of the spectrum contribute to the accelerated decay rate
τ

(4q)
F as opposed to τ 4q

k where only two singular values σk and σ`−p+1 contribute

Next, we introduce the iteration parameter q ≥ 0. This parameter is only valid for
subspace iteration, where it controls the number of power iterations used to improve con-
vergence of the algorithm. All other algorithms must have q = 0 because they do not allow
this functionality. Then, define the following spectral decay rates

τj =
σ`−p+1

σj
for all 1 ≤ j ≤ k and τ

(4q)
F =

1

k

k∑
j=1

σ2
`−p+j

σ2
`−p+1

(
σ`−p+j
σk+1−j

)4q

(7.4)

where we have that

τ 4q
k =

(
σ`−p+1

σk

)4q

=

∥∥∥∥ 1

σ`−p+1

(
Σ↓1

)−2q

Σ2q+1
3

∥∥∥∥2

2

≥ 1

k

∥∥∥∥ 1

σ`−p+1

(
Σ↓1

)−2q

Σ2q+1
3

∥∥∥∥2

F

= τ
(4q)
F

The reason that τ
(4q)
F is less that τ 4q

k has to do with a pigeonhole principle for singular value
triplets (σi,ui,vi) called Lidskii’s Theorem as stated in Theorem 17. Essentially, it states
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that each singular value triplet is only allowed to occupy one direction or dimension. In the
circumstance of the residual error, the spectral decay is a bound of the decay of error over
a rank-k space. Thus, a pigenhole principle would tell us that the slowest decay rate

σ`−p+1

σk
can only occupy one of the k dimensions, while the rest of the directions will enjoy faster
rates

σ`−p+j
σ`k+1−j

for each direction 1 ≤ j ≤ k.

To exemplify this, consider the synthetic experiment of geometric singular value decay.
Let σj = αγj where α > 0 is a fixed constant and 0 ≤ γ ≤ 1 is the geometric decay rate.

τ
(4q)
F =

1

k

k∑
j=1

σ2
`−p+j

σ2
`−p+1

(
σ`−p+j
σk+1−j

)4q

=
1

k
γ4q(`−p−k+1)

k−1∑
j=0

γ(8q+2)j

= τ 4q
k

1

k

(
1 + γ(8q+2) 1− γ(8q+2)(k−1)

1− γ(8q+2)

)
≤ τ 4q

k

(
1

k
+
k − 1

k
γ(8q+2)

)
k large
≈ τ 4q

k γ
(8q+2)

Thus, using the accelerated spectral decay rate τ
(4q)
F is less than the spectral decay rate τ 4q

k

from previous works by a significant amount. If γ = 0.75, q = 1 and k = 11, τ
(4)
F would be

less than τ 4
k by an order of magnitude with τ

(
F4) ≈ 0.0964τ 4

k independent of the users choice
of ` and p.

When it comes to the rotated starting matrix Ω̂ ∈ Rn×`, the bounds for matrix approx-
imation algorithms also depend on the spectral norm of the so-called sketching interaction

matrix, i.e. Ω̂2Ω̂†1. It can be shown that this quantity
∥∥∥Ω̂2Ω̂†1

∥∥∥
2

= tan (Ω, V1) is the tangent

of the largest principle angle between the column space of Ω and V1 =
[

v1 v2 · · · v`−p
]

as done by Gittens et. al [42]. Typically, we try to bound this quantity by the surrogate

interaction quantity
∥∥∥Ω̂2

∥∥∥
2

∥∥∥Ω̂†1

∥∥∥
2
.

7.2 Algorithm: Randomized Subspace Iteration

Orthogonal iteration or Subspace Iteration is a popular algorithm for low-rank matrix
approximation [44, 50, 47]. In Randomized Subspace Iteration, we sample the entries of
the starting matrix Ω as standard normal N (0, 1) random variables and we perform power
iterations on it. The algorithm is presented as follows

When computing Y and Q in steps 2 and 3 of the above Algorithm 7 in floating point
arithmetic, we want to use the following procedure in Algorithm 8 to orthonormalize Y at
each application of A or AT as mentioned in [50]. If we do not use Algorithm 8, then all of

the singular values σj below a certain level (about ε
1/(2q+1)
mach σ1) can be totally corrupted by

floating point rounding errors.
The rotation invariance of random matrices with iid standard normal N (0, 1) entries [50]

gives us that Ω̂ = V TΩ, as defined in (7.1), is also distributed as random matrix with iid
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Algorithm 7 : Randomized Subspace Iteration

Inputs: m× n matrix A with n ≤ m, integers k > 0 and ` ≥ k.
Outputs: a rank-k approximation.
1: Draw a random n× ` test matrix Ω with iid N (0, 1) entries.
2: Compute Y =

(
AAT

)q
AΩ.

3: Compute an orthogonal column basis Q for Y .
4: Return QQTA.

Algorithm 8 : Orthorgonalization with QR

Inputs: m× n matrix A, n× ` start matrix Ω, and integer q ≥ 0.
Outputs: Q ∈ Rm×` with orthonormal columns.
1: compute Y = AΩ, and QR factorize QR = Y .
2: for i = 1, · · · , q do
3: Y = AT Q; QR factorize QR = Y ;
4: Y = AQ; QR factorize QR = Y .
5: end for
6: return Q and QTA

standard normal entries. One of the main contributions of this thesis for Randomized Sub-
space Iteration is the simplified tail bound for the surrogate sketching iteration in Theorem
29

P

(∥∥∥Ω̂2

∥∥∥
2

∥∥∥Ω̂†1

∥∥∥
2
≥ B
√
` E

p+ 1
t

)
≤ t−(p+1)

where E =
√
n− `+ p+

√
` is a function of p < ` < n and B ≤ 3.0237 is a universal constant.

This random variable has a large tail especially when p is small. As discussed in Section

7.6, prior works [47, 50] use a long analysis with separate tail bounds for
∥∥∥Ω̂2

∥∥∥
2

and
∥∥∥Ω̂†1

∥∥∥
2

instead of taking advantage of the natural independence between the two variables.
It is important to keep in mind that the the strong-form residual error will always be

larger than the weak-form residual error, i.e.∥∥A−QQTA
∥∥2

ξ
≤
∥∥A−Q (QTA

)
k

∥∥2

ξ

because of Lemma 16 and Theorem 19. To make use of our new spectral decay rate, we

introduce the following new structural result from Corollary 5 with α2
F =

σ2
`−p+1

1
k
‖Σ1‖2F

∥∥A−Q (QTA
)
k

∥∥2

ξ
≤ ‖A− Ak‖2

ξ + kσ2
`−p+1

τ
(4q)
F

∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1

∥∥∥2

2

1 + α2
F τ

(4q)
F

∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1

∥∥∥2

2
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which is tighter than competing bounds [47] due to the small spectral decay rate τ
(4q)
F ≤ τ 4q

k .

We will show in numerical experiments, both from synthetic and real data, that τ
(4q)
F is often

much smaller than τ 4q
k .

Theorem 11 (Large Deviation: Normed Residual Errors and Singular Value Lower Bounds).
Let the SVD of A and the sampling matrix Ω be given as above. Also, let 0 ≤ p ≤ `. Let the
spectral decay rates τk and τ

(4q)
F be as defined in Equation (7.4). In real arithmetic, the output

of Randomized Subspace Iteration in Algorithm 7 must also satisfy the following bounds

∥∥A−QQTA
∥∥2

ξ
≤
∥∥A−Q (QTA

)
k

∥∥2

ξ
≤ ‖A− Ak‖2

ξ + k
τ

(4q)
F K2

∆

1 + α2
F τ

(4q)
F K2

∆

σ2
`−p+1 (7.5)

where either ξ = 2, F and

∥∥A−QQTA
∥∥2

2
≤ σ2

k+1 +
τ 4q
k K2

∆

1 + α2
2τ

4q
k K2

∆

σ2
`−p+1 (7.6)

as well as,

σj
(
QQTA

)
≥ σj√

1 + τ 4q+2
j K2

∆

for 1 ≤ j ≤ k (7.7)

with probability 1−∆ where K∆ = B
√
`E
p

(
1
∆

)p+1
with E =

√
n− `+ p+

√
` and the universal

constant B ≤ 3.0237, and where α2
F =

σ2
`−p+1

1
k
‖Σ1‖2F

and α2
2 =

σ2
`−p+1

σ2
1

.

Proof. Apply Theorem 29 to Corollary 5, Lemma 20 and Theorem 21, respectively.

Due to the large tail of ‖Ω̂2‖2‖Ω̂†1‖2 from Theorem 29, the expected residual errors and
singular lower bounds become loose and complicated to calculate when p = 0, 1. The work
of Gu [47] shows that tractable bounds do exist for p < 2 and the smaller spectral decay

rate τ
(4q)
F can also be applied in this case. However, we choose not to go into this here for

simplicity. Instead, we present the bounds in expectation for p ≥ 2 as follows

Theorem 12 (Expectation: Normed Residual Errors and Singular value lower bounds).
Let the SVD of A and the sampling matrix Ω be given as above. Also, let 2 ≤ p ≤ `. Let
the spectral decay rates τk and τ

(4q)
F be as defined in Equation (7.4). In real arithmetic, the

output of Randomized Subspace Iteration in Algorithm 7 must satisfy

E
∥∥A−QQTA

∥∥2

ξ
≤ E

∥∥A−Q (QTA
)
k

∥∥2

ξ
≤ ‖A− Ak‖2

ξ + k
τ

(4q)
F K2

1 + α2
F τ

(4q)
F K2

σ2
`−p+1 (7.8)

where either ξ = 2, F and

E
∥∥A−QQTA

∥∥2

2
≤ σ2

k+1 +
τ 4q
k K2

1 + α2
2τ

4q
k K2

σ2
`−p+1 (7.9)



CHAPTER 7. RANDOMIZED SUBSPACE ITERATION 61

Figure 7.2: This figure shows some example faces from the test set and some example
approximate eigenfaces produced from using Algorithm 8 with ` = 150 and q = 3 on the
training set

as well as,

Eσj
(
QQTA

)
≥ σj√

1 + τ 4q+2
j K2

for 1 ≤ j ≤ k (7.10)

in expectation, where K = B
√
`E√

(p+1)(p−1)
with E =

√
n− `+ p+

√
` and the universal constant

B ≤ 3.0237, and where α2
F =

σ2
`−p+1

1
k
‖Σ1‖2F

and α2
2 =

σ2
`−p+1

σ2
1

.

Proof. For bounds (7.8) and (7.9), apply Lemma 23 to Corollary 5 and Lemma 20, respec-
tively. For the lower bound (7.10), use Lemma 24 on Theorem 21.

7.3 Experiment

In this section, we make use of the dataset Labeled Faces in the Wild (LFW) [55] by
selecting all the images of people with at least 60 images in the LFW dataset. This gives
1, 348 different images of 8 different people. Each image has 1, 850 grey-style degrees of
freedom. We made use of Python’s scikit-learn package [83] to efficiently and conveniently
load and work with the LFW data. They also provided interesting examples of using LFW
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Figure 7.3: The log-spectrum of the data matrix X of images

data that was useful. The typical goal for a data scientist using this dataset is to produce a
classifier for the identities of the people in each picture. The novelty of this dataset comes
from the fact that it was automatically produced from webscraping images and running
the Viola-Jones face detector. Practically speaking, this means that we have no guarantee
that our faces will be centered and such for a classification algorithm, as one can see by
looking at the pictures in Figure 7.2. Therefore, this will require more sophisticated methods
than those proposed in [91]. As per the example implemented in the scikit-learn library, an
efficient way to produce accurate classifications on the identity of images is to use randomized
subspace iteration –RandomizedPCA and/or TruncatedSVD functions in scikit-learn – to
reduce dimensions before using a Radial Basis Function (RBF) Kernel SVM to perform the
classification. We are interested in the performance of the randomized subspace iteration
step in this context. Let X ∈ R1,850×1,348 be the data matrix of images where each column
represents the pixels of a particular image. The true eigenfaces are given by the columns
of the matrix U , where X = UΣV T is the SVD of X. Figure 7.3 gives the log spectrum
diag (log10(Σ)) of this matrix. LetX ≈ QQTX be the result of Algorithm 8. Taking the SVD

of the short fat matrix QTX = ŨΣ̃Ṽ T , we set the approximate eigenfaces to be the columns
of QŨ ∈ R1,850×`. Figure 7.2 gives some approximate eigenfaces from the LFW dataset. In
this example, we are interested in demonstrating that our new matrix approximation bound
involving the accelerated spectral decay rate τ

(4q)
F is a significant improvement in practice.

Table 7.1 shows that this new spectal decay rate τ
(4q)
F can be more than an order of magnitude

better than the rate τ 4q
k used in prior works [47].
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τ 0
k τ

(0)
F τ 4

k τ
(4)
F τ 8

k τ
(8)
F τ 12

k τ
(12)
F

k = 10, l = 15 1.0 0.87412 0.35983 0.10788 0.12948 0.02542 0.04659 0.00719
k = 10, l = 20 1.0 0.88187 0.19464 0.05950 0.03789 0.00761 0.00737 0.00116
k = 20, l = 25 1.0 0.82198 0.55295 0.12188 0.30576 0.04148 0.16907 0.01768
k = 20, l = 30 1.0 0.86206 0.32015 0.07995 0.10249 0.01590 0.03281 0.00386
k = 40, l = 45 1.0 0.82446 0.74128 0.15004 0.54950 0.06601 0.40733 0.03611
k = 40, l = 50 1.0 0.83360 0.58878 0.12187 0.34666 0.04293 0.20411 0.01883
k = 40, l = 55 1.0 0.84104 0.47417 0.09890 0.22484 0.02751 0.10661 0.00952
k = 60, l = 65 1.0 0.80158 0.81309 0.15845 0.66111 0.07474 0.53754 0.04376
k = 60, l = 70 1.0 0.80498 0.68826 0.13490 0.47370 0.05386 0.32603 0.02672
k = 60, l = 80 1.0 0.81785 0.48473 0.09900 0.23496 0.02826 0.11389 0.00997

Table 7.1: Comparison of spectral decay rates τ 4q
k and τ

(4q)
F for 0 ≤ q ≤ 3 on the Labeled

Faces in the Wild (LFW) dataset.

7.4 The Setup

Let A = UΣV T ∈ Rm×n be the SVD where m ≥ n. Suppose you want a rank-k
approximation to A for k ≤ n. Instead of calculating the Eckart-Young solution, you want
a quicker/faster approximation. So choose an oversampling parameter ` > k. Then let
Ω ∈ Rn×` be the starting sampling matrix. We repeat the following partitions for ease of
presentation

Ω̂
def
= V TΩ

def
=

( `

`− p Ω̂1

n− `+ p Ω̂2

)
(7.11)

and

Σ
def
=

( `− p n− `+ p

`− p ΣT

n− `+ p ΣB

)
(7.12)

where

ΣT =

( k `− p− k

k Σ1

`− p− k Σ2

)
and ΣB =

( k n− `+ p− k

k Σ3

n− `+ p− k Σ4

)
(7.13)
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here, we refer to ΣT as the top singular values and ΣB as the bottom singular values. Let
0 ≤ q ∈ Z. We are interested in the column space of

(
AAT

)q
AΩ = U

(
Σ2q+1
T Ω̂1

Σ2q+1
B Ω̂2

)
= U


(

Σ1

Σ2

)2q+1

Ω̂1(
Σ3

Σ4

)2q+1

Ω̂2

 (7.14)

As done in [47], we define a matrix X ∈ R`×`

X =
(

Ω̂†1Σ
−(2q+1)
T X̂

)
=

(
Ω̂†1

(
Σ
−(2q+1)
1

0

)
Ω̂†1

(
0

Σ
−(2q+1)
2

)
X̂

)
where X̂ ∈ R`×`−p satisfies Ω̂1X̂ = 0. This allows us to represent the column space of(
AAT

)q
AΩ as the span of the following columns

(
AAT

)q
AΩX = U

 I 0 0
0 I 0
H1 H2 H3


where

H1 = Σ2q+1
B Ω̂2Ω̂†1

(
Σ
−(2q+1)
1

0

)
H2 = Σ2q+1

B Ω̂2Ω̂†1

(
0

Σ
−(2q+1)
2

)
H3 = Σ2q+1

B Ω̂2Ω̂†1X̂

We can also apply the QR factorization to (AAT )qAΩX = Q̂R̂ in order to produce a column

orthogonal matrix Q̂ that spans the column space of (AAT )qAΩ

U

 I 0 0
0 I 0
H1 H2 H3

 = Q̂R̂ =
(
Q̂1 Q̂2 Q̂3

) R̂11 R̂12 R̂13

0 R̂22 R̂23

0 0 R̂33


which allows us to represent the span of the first k columns of (AAT )qAΩX by the column

orthogonal matrix Q̂1, i.e.

Q̂1R̂11 = U

 I
0
H1


There is also a lesser known matrix decomposition that can also fulfill this purpose called
the Polar Decomposition, which is given as
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Theorem 13 (Polar Decomposition [54] Theorem 7.3.1 pg.449). Let A ∈ Rm×n with m ≥ n.
Then, there exists a column orthonormal matrix U ∈ Rm×n and a positive semidefinite matrix
P ∈ Rn×n such that A = UP . Also, the matrix P is unique and is given by

P = (A∗A)1/2 = V ΣV T

where the SVD of A = UΣV T .

Now, we use the polar decomposition to produce another column-orthogonal representa-
tion Q̃1 of the first k columns of (AAT )qAΩX

Q̃1

(
I +HT

1 H1

) 1
2 = U

 I
0
H1

 , where Q̃1 = U

 I
0
H1

(I +HT
1 H1

)− 1
2

7.5 Preliminaries

In this section, we review technical results that will be crucial in our analysis of subspace
iteration. For the most part, these preliminaries are rooted in the studies of either random
Gaussian matrices or deterministic matrix analysis. Our plan of attack will be to (1) apply
results from matrix analysis to get tractable bounds in terms of our random start matrix.
Then, (2), we will apply results about Gaussian random matrices to arrive at tractable
bounds.

7.5.1 Preliminaries from Matrix analysis

7.5.1.1 Inequalities

The singular value version of the Cauchy interlacing theorem shows us that the jth sin-
gular value of a projected or “compressed” matrix QQTA must lie between two different
singular values of the original matrix A.

Theorem 14 (Singular Value Interlacing). Let A ∈ Rm×n be a symmetric matrix, and let
Q ∈ Rm×(m−k) be column orthogonal. Then

σj (A) ≥ σj
(
QTA

)
≥ σj+k (A)

Proof. Immediate consequence of applying the Cauchy Interlacing theorem (Corollary III.1.5
of [14]) to the symmetric matrix ATA. This is also given as Theorem 3.1 of [47].

Next, we cover two different singular value bounds which allow us to bound the singular
values of sums and products of matrices that appear in our analysis.
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Theorem 15 (Weyl’s Inequality and sub-multiplicativity for Singular Values (Problem
III.6.5 of [14])). For any two matrices A,B ∈ Rm×n and any two indices i, j such that
i+ j ≤ min(m,n) + 1, we have

σi+j−1 (A+B) ≤ σi (A) + σj (B)

σi+j−1 (AB) ≤ σi (A)σj (B)

The following theorem allows to bound the difference in singular values between two
different matrices A,B ∈ Rn×n by the Frobenious norm of their difference, which is usually
easier to bound.

Theorem 16 (Hoffman-Weilandt [52]). For any two matrices A,B ∈ Rm×n, we have

min(m,n)∑
i=1

(σi (A)− σi (B))2 ≤ ‖A−B‖2
F

The following version of Weyl’s Inequality for Hermitian matrices is frequently used to
control individual eigenvalues of A+B in terms of eigenvalues of A and B

λj(A) + λn(B) ≤ λj(A+B) ≤ λj(A) + λ1(B)

for A and B Hermitian. If we wanted to bound the sum of different eigenvalues of A + B,
we could apply this result multiple times to get

k∑
j=1

λj(A) + kλn(B) ≤
k∑
j=1

λj(A+B) ≤
k∑
j=1

λj(A) + kλ1(B)

However, a deep result from matrix analysis states that one does not need to reuse the same
λ1(B) and λn(B) for each term in the sum.

Theorem 17 (Lidskii’s Theorem (Theorem III.4.1 of [14] pg.69)). Let A,B ∈ Cn×n be
Hermitian matrices and let 1 ≤ k ≤ n. Then for any choice of indices 1 ≤ i1 < i2 < · · · <
ik ≤ n, we have

k∑
j=1

λij (A) + λn−j+1 (B) ≤
k∑
j=1

λij (A+B) ≤
k∑
j=1

λij (A) + λj (B)

If the eigenvalues B of rapidly decaying (i.e. λ1(B) � λ2(B) � · · · � λk(B) and so
on), then Lidskii’s theorem is a huge improvement over blindly reapplying Weyl’s Theorem
k times. We will exploit this observation to great effect in the development of our spectrum
revealing bounds. In the same way that Lidskii’s theorem improves the analysis of sums of
multiple eigenvalues of A+B, the following trace inequality of John von Neumann improves
the analysis of sums of multiple eigenvalues of AB over the repeated application of the
submultiplicativity of singular values in Theorem 15.
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Theorem 18 (John von Neumann’s trace inequality [78]). Let A,B ∈ Cn×n be square
matrices. Then, we have that

|tr (AB)| ≤ sup
U,V
|tr (AUBV )| =

n∑
j=1

σj (A)σj (B)

where U, V ∈ Cn×n vary over the set of Unitary matrices.

A orthogonal projection matrix P ∈ Rn×n is a symmetric matrix that satisfies the equa-
tion P 2 = P . This implies that the eigenvalues of P must be λ = 0, 1, or in other words,
satisfy the equation λ2 = λ. Therefore, by the spectral theorem for Hermitian matrices [10],
if P has 0 ≤ k ≤ n unit eigenvalues then the orthogonal projection matrix can be represented
by

P = QPQ
T
P

where QP ∈ Rn×k is a column-orthonormal matrix. The following Lemma will be useful in
analyzing orthogonal projection matrices that show up in the analysis.

Lemma 16 (Orthogonal Projector Lemma (Proposition 8.5 of [50])). Let P1, P2 ∈ Rn×n be
orthogonal projection matrices. Suppose range(P1) ⊂ range(P2). Then, for each matrix A,
it holds that

‖P1A‖ξ ≤ ‖P2A‖ξ
‖(I − P2)A‖ξ ≤ ‖(I − P1)A‖ξ

for both the spectral norm ξ = 2 and the Frobenius norm ξ = F

Next, we review a clever generalization of Theorem 10 due to Ming Gu [47]. Suppose we
want to restrict the range of our rank-k approximation to live within a particular subspace
spanned by the orthonormal columns of Q ∈ Rm×`. In other words, we want the best
approximation A ≈ QB, where B ∈ R`×n is a rank-k matrix. Then, the following theorem
tells us that the best choice is given by B =

(
QTA

)
k

under the Frobenious norm measurement
of approximation error. This theorem also comes with a tractable bound on the optimal
choice of the matrix B

Theorem 19 (Generalized Eckart-Young Theorem (Theorem 3.5 of [47])). Given any matrix
A ∈ Rm×n and any column-orthonormal matrix Q ∈ Rm×`, let Bk ∈ R`×n be the rank-k
truncated SVD of QTA. Then Bk is an optimal solution to the following problem

min
rank(B)≤k

‖A−QB‖F = ‖A−QBk‖F

In addition, we also have

‖A−QBk‖2
F ≤

n∑
j=k+1

σ2
j +

∥∥(I −QQT
)
Ak
∥∥2

F
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Another result of Ming Gu is the Reverse Eckart-Young Theorem. This allows us to take
the bound from the last theorem and extends it to the spectral norm.

Theorem 20 (Reverse Eckart-Young (Theorem 3.4 of [47])). Assume that B is a rank-k
approximation to A satisfying

‖A−B‖2
F ≤

n∑
j=k+1

σ2
j + η2

for some η ≥ 0. Then we must have

‖A−B‖2
2 ≤ σ2

k+1 + η2

k∑
j=1

(σj − σj(B))2 ≤ η2

The last inequality comes from a clever application of the Hoffman-Weilandt Theorem
16. Next, we present the singular value lower bounds from [47], which guarantee that we
capture at least a fraction of the true singular values.

Theorem 21 (Gu’s Deterministic Singular Value Lower Bound [47]). Let 2 ≤ p ≤ ` and
let Q ∈ Rm×` be an orthogonal matrix with the same column space as above. Then, for all
1 ≤ j ≤ `− p, we have

σj
(
QQTA

)
≥ σj(A)√

1 +
∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1

∥∥∥2

2

(
σ`−p+1

σj

)4q+2

7.5.1.2 Basics of Majorisation and Doubly Stochastic Matrices

This introduction to majorisation and double stochastic matrices is presented in a similar
fashion to [14]. Let x =

(
x1, x2, · · · , xn

)
denote a vector in Rn. Define x↓ ∈ Rn to be the

x vector with the coordinates permuted so that x↓1 ≥ x↓2 ≥ · · · ≥ x↓n.

Definition 7 (Majorisation). Let x,y ∈ Rn. We say that x is majorised by y, or x ≺ y in
symbols, if we have that

k∑
j=1

x↓j ≤
k∑
j=1

y↓j for all 1 ≤ k ≤ n.

and
n∑
j=1

xj =
n∑
j=1

yj

are both satisfied.
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It is important to note that if x ≺ y the definition above implies the following about the
smaller coordinates of these vectors

n∑
j=k

x↓j ≥
n∑
j=k

y↓j for all 1 ≤ k ≤ n.

Definition 8 (Doubly Stochastic Matrix). Let S ∈ Rn×n. We call S a doubly stochastic
matrix if

sij ≥ 0 for all 1 ≤ i, j ≤ n (7.15)
n∑
i=1

sij = 1 for all 1 ≤ i ≤ n (7.16)

n∑
j=1

sij = 1 for all 1 ≤ j ≤ n (7.17)

The concepts of majorisation and doubly stochastic matrices are related by the next
result from Theorem II.1.10 of Bhatia [14]

Theorem 22 (Doubly stochastic characterization of majorisation [14]). For any x,y ∈ Rn.
We have x ≺ y if and only if x = Sy for some doubly stochastic matrix S ∈ Rn×n.

We end this discussion of doubly stochastic matrices with a deep and powerful charac-
terization of double stochastic matrices as the convex combination of permutation matrices
from Theorem II.2.3 of [14]

Theorem 23 (Birkhoff’s Theorem [14]). The set of n × n doubly stochastic matrices is a
convex set whose extreme points are the permutation matrices. In other words, any doubly
stochastic matrix S ∈ Rn×n can be written as a convex combination of the n×n permutation
matrices.

Let A,B ∈ Cn×n be Hermitian matrices and let λ(A), λ(B), λ(A + B) ∈ Rn be n-
dimensional real vectors of A,B and A + B, respectively. Each λ vector is in Rn instead of
Cn by the spectral theorem for Hermitian matrices. Here, we restate Lidskii’s theorem in
terms of our new notation and tools.

Corollary 2 (Lidskii’s theorem [14]). We have that

λ↓(A) + λ↑(B) ≺ λ (A+B) ≺ λ↓(A) + λ↓(B)

In other words, there exists two doubly stochastic matrices S1, S2 ∈ Rn×n such that

λ↓(A) + λ↑(B) = S1λ (A+B)

λ (A+B) = S2

(
λ↓(A) + λ↓(B)

)
Proof. The first line comes from applying Lidskii’s Theorem 17 with ij = j. The last two
lines come from applying Theorem 22.
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7.5.2 Useful probability results

The probabilistic analysis of randomized subspace iteration depends largely on two ran-

dom variables:
∥∥∥Ω†1

∥∥∥
2

and ‖Ω2‖2. We will use the following preliminary results to control

these random variables.

Theorem 24 (Density function bound for smallest singular value of Gaussian matrix [23]).
Let G ∈ Rm×n be a standard Gaussian random matrix with n ≥ m and let fσ2

min
(x) denote

the probability density function of σ2
min (G) =

∥∥G†∥∥−2

2
, then fσ2

min
(x) satisfies

Lm,ne
−mx

2 x
1
2

(n−m−1) ≤ fσ2
min

(x) ≤ Lm,ne
−x

2x
1
2

(n−m−1) (7.18)

where

Lm,n =
2
n−m−1

2 Γ
(
n+1

2

)
Γ
(
m
2

)
Γ (n−m+ 1)

(7.19)

Next, we introduce the framework use to bound the variable ‖Ω2‖2 in our randomized
subspace iteration analysis.

Theorem 25 (Concentration of measure for Lipschitz functions of a Gaussian matrix [65]).
Suppose that f(x) is a Lipschitz function on matrices:

|f(A)− f(B)| ≤ Lf ‖A−B‖F for all A,B ∈ Rm×n

Sample a matrix G ∈ Rm×n with independent standard Gaussian N (0, 1) entries. Then, for
all t ≥ 0,

P {f (G) ≥ E [f (G)] + Lf t} ≤ e−
t2

2

P {f (G) ≤ E [f (G)]− Lf t} ≤ e−
t2

2

The Lipschitz maps of interest for our analysis will be the singular values of a matrix–
most importantly the largest singular value ‖Ω2‖2. Next, we produce a concentration of
measure for matrix singular values.

Corollary 3 (Concentration of measure for singular values of a Gaussian matrix). Sample a
matrix G ∈ Rm×n with independent standard Gaussian N (0, 1) entries. Then, for all t ≥ 0,
we have

P {σj (G) ≥ E [σj (G)] + t} ≤ e−
t2

2

P {σj (G) ≤ E [σj (G)]− t} ≤ e−
t2

2

for each 1 ≤ j ≤ min(m,n).
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Proof. The Hoffman-Weilandt theorem 16 gives us

|σj (A)− σj (B)| ≤

√√√√min(m,n)∑
i=1

|σi (A)− σi (B)|2 ≤ ‖A−B‖F

for each 1 ≤ j ≤ min(m,n). As a result, we have that each map σj(A) is Lipschitz with
constant Lf = 1. Thus, we apply Theorem 25 to get the desired result.

In order to make use of the above concentration of measure, we need to bound the
expectation E ‖Ω2‖ as follows

Theorem 26 (Expected value of norms of scaled Gaussian matrix [50]). Let A ∈ Rm×r,
B ∈ Rs×n be fixed matrices and let Ω ∈ Rr×s be an iid Gaussian matrix. Then, we have

E ‖AΩB‖2 ≤ ‖A‖F ‖B‖2 + ‖A‖2 ‖B‖F(
E ‖AΩB‖2

F

) 1
2 = ‖A‖F ‖B‖F

Next, we introduce a fundamental result from probability theory and machine learning in-
volving taking the expectation of convex or concave functions. We will make use of it to both
simplify our analysis and to improve the rate of convergence of our low-rank approximation
methods.

Theorem 27 (Jensen’s Inequality). Let X be a random variable. If φ : Rn → R is a concave
function, then we have

E [φ (X)] ≤ φ (E [X])

Also, if ψ : Rn → R is a convex function, then we get

ψ (E [X]) ≤ E [ψ (X)]

An important application of Jensen’s Inequality in this work is towards passing discrete
arithmetic averages inside concave/convex functions. This will help give spectral decay an
even larger impact in our error bounds. This scenario will be handled by the following
corollary of Jensen’s inequality for the discrete uniform probability measure over a finite
outcome space.

Corollary 4. Let xj ∈ Rn be a fixed number for each 1 ≤ j ≤ k. If φ : Rn → R is a concave
function, then we have that

1

k

k∑
j=1

φ (xj) ≤ φ

(
1

k

k∑
j=1

xj

)
Also, if ψ : Rn → R is a convex function, then we have that

ψ

(
1

k

k∑
j=1

xj

)
≤ 1

k

k∑
j=1

ψ (xj)
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Proof. Define the uniform random variable X ∈ R such that P (X = xj) = 1
k

for each
1 ≤ j ≤ k. Then apply Jensen’s inequality 27 to arrive at the result. Another common proof
would be to recursively apply the standard definition for concave/convex function for two
points.

7.5.3 Miscellaneous

Lemma 17 (Gamma function identities and inequalities). Let Γ(x) =
∫∞

0
e−ttx−1dt be the

Gamma function where x > 0 then we have that

Γ(x+ 1) = xΓ(x) (7.20)

along with the following inequalities

Γ

(
x+

1

2

)
≤
√
xΓ(x) and

√
2πxx+ 1

2 e−x < Γ (x+ 1) <
√

2πxx+ 1
2 e−x+ 1

12x (7.21)

7.5.4 Matrix Approximation Error Bounds

We consider the Generalized Eckart-Young Theorem 19 in combination with the Reverse
Eckart-Young Theorem 20 [47], which gives the bound∥∥A−Q (QTA

)
k

∥∥2

ξ
≤ ‖A− Ak‖2

ξ +
∥∥(I −QQT

)
Ak
∥∥2

F

where ξ = 2, F . Therefore, controlling the magnitude of
∥∥(I −QQT

)
Ak
∥∥2

F
is a rigourous

way of bounding the error of low-rank matrix approximation algorithms. Before proceeding

to study the term
∥∥(I −QQT

)
Ak
∥∥2

F
, we prove this important technical lemma

Lemma 18. Let A,B ∈ Rk×k be symmetric positive definite (PD) matrices. Then, we have
that

tr
((
A−1 +B−1

)−1
)
≤

k∑
j=1

λj(A)λj(B)

λj(A) + λj(B)

Proof. Corollary 2 gives us that there exists a doubly stochastic matrix S ∈ Rn×n such that

λ↓
(
A−1 +B−1

)
= S

(
λ↓(A−1) + λ↓(B−1)

)
By definition, the row sums of a doubly stochastic matrix all equal one and each entry of a
doubly stochastic matrix satisfies 0 ≤ sij ≤ 1. Thus, by matrix-vector multiplication, the
above line gives that the ith largest eigenvalue of A+B is given as

λi(A
−1 +B−1) =

n∑
j=1

sij
(
λj(A

−1) + λj(B
−1)
)
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a convex combination of the entries of the vector
(
λ↓(A) + λ↓(B)

)
. Next, we note that the

function f(t) = 1
t

is convex for t > 0, which is seen easily by inspecting the second derivative.
Therefore, we have

tr
((
A−1 +B−1

)−1
)

=
n∑
i=1

λi

((
A−1 +B−1

)−1
)

=
n∑
i=1

1

λi (A−1 +B−1)

=
n∑
i=1

1∑n
j=1 sij (λj (A−1) + λj (B−1))

≤
n∑
i=1

n∑
j=1

sij
1

(λj (A−1) + λj (B−1))

=
n∑
j=1

1(
1

λj(A)
+ 1

λj(B)

)
where the last line is acheived by the fact that the column sums of a doubly stochastic matrix
equal one, i.e.

∑n
i=1 sij = 1.

Now, this lemma allows us to get a strong control on the quantity
∥∥(I −QQT

)
Ak
∥∥
F

.

Theorem 28. Given the setup described in Section 7.4, we have that∥∥A−Q (QTA
)
k

∥∥2

ξ
≤ ‖A− Ak‖2

ξ +
‖Σ1‖2

F ‖H1Σ1‖2
F

‖Σ1‖2
F + ‖H1Σ1‖2

F

(7.22)

Proof. First, apply Lemma 16 to get∥∥(I −QQT
)
Ak
∥∥2

F
≤
∥∥(I −Q1Q

T
1

)
Ak
∥∥2

F

=

∥∥∥∥∥∥∥
I −

 I
0
H1

(I +HT
1 H1

)−1

 I
0
H1

T

 Σ1

0
0


∥∥∥∥∥∥∥

2

F

=

∥∥∥∥∥∥
 HT

1

(
I +H1H

T
1

)−1
H1 0 −HT

1

(
I +H1H

T
1

)−1

0 I 0

−
(
I +H1H

T
1

)−1
H1 0

(
I +H1H

T
1

)−1

 Σ1

0
0

∥∥∥∥∥∥
2

F

= tr
(

Σ1H
T
1

(
I +H1H

T
1

)−1
H1Σ1

)
Massaging the expression within the trace gives

Σ1H
T
1

(
I +H1H

T
1

)−1
H1Σ1 = Σ1

((
HT

1 H1

)−1
+I
)−1

Σ1 =

((
(H1Σ1)T (H1Σ1)

)−1

+Σ−2
1

)−1
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Combine this with the trace expression and apply Lemma 18 to get

∥∥(I −QQT
)
Ak
∥∥2

F
≤ tr

(((
(H1Σ1)T (H1Σ1)

)−1

+ Σ−2
1

)−1
)

≤
k∑
j=1

σ2
j (Σ1)σ2

j (H1Σ1)

σ2
j (Σ1) + σ2

j (H1Σ1)

def
=

k∑
j=1

f
(
σ2
j , σ

2
j (H1Σ1)

)
where the function f : R2

+ → R is defined as

f(x, y) =
xy

x+ y
. (7.23)

This function is concave and monotonically increasing in both variables. This is seen by
inspecting the first derivatives of f(x, y)

∂f

∂x
(x, y) =

y2

(x+ y)2
> 0 and

∂f

∂y
(x, y) =

x2

(x+ y)2
> 0

to get monotonicity and by looking at the second derivative Hessian

H =

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

)
= − 2

(x+ y)3

(
y2 xy
xy x2

)
= −2(x2+y2)

(x+ y)3

 y√
x2+y2

x√
x2+y2

[ y√
x2+y2

x√
x2+y2

]
to see that it has a zero eigenvalue and another non-positive eigenvalue. Next, we apply
Jensen’s inequality 4 to get

∥∥(I−QQT
)
Ak
∥∥2

F
≤k

k∑
j=1

1

k

σ2
j (Σ1)σ2

j (H1Σ1)

σ2
j (Σ1)+σ2

j (H1Σ1)
≤k

1
k
‖Σ1‖2

F
1
k
‖H1Σ1‖2

F

1
k
‖Σ1‖2

F + 1
k
‖H1Σ1‖2

F

=
‖Σ1‖2

F ‖H1Σ1‖2
F

‖Σ1‖2
F +‖H1Σ1‖2

F

Remark 7.5.1. Given the monotonicity of f(x, y) in equation (7.23) and the fact that
‖C‖2

F ≤ k ‖C‖2
2 for all C ∈ Rk×k, the above result implies

∥∥(I −QQT
)
Ak
∥∥2

F
≤ k

(
1
k
‖Σ1‖2

F

) (
1
k
‖H1Σ1‖2

F

)
1
k
‖Σ1‖2

F + 1
k
‖H1Σ1‖2

F

= kf

(
1

k
‖Σ1‖2

F ,
1

k
‖H1Σ1‖2

F

)
≤ kf

(
σ2

1, ‖H1Σ1‖2
2

)
=

kσ2
1 ‖H1Σ1‖2

2

σ2
1 + ‖H1Σ1‖2

2

where the last expression is equal to the bound in Theorem 4.4 of [47].
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In addition to being tighter than previous work in the literature, this result also implies
a tractable and easy to understand bound

Corollary 5.

∥∥A−Q (QTA
)
k

∥∥2

ξ
≤ ‖A− Ak‖2

ξ + kσ2
`−p+1

τ 2
∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1

∥∥∥2

2

1 + α2τ 2

∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1

∥∥∥2

2

(7.24)

where τ 2
F = 1

k

∑k
j=1

σ2
`−p+j
σ2
`−p+1

(
σ`−p+j
σk+1−j

)4q

is the spectral decay rate and where α2 =
σ2
`−p+1

1
k
‖Σ1‖2F

Proof. Observe that H1Σ1 has the structure H1Σ1 = Σ2q+1
B Ω̂2Ω̂†1

(
Σ−2q

1

0

)
. Therefore, we

employ the cyclic permutation invariance of the trace (a.k.a. “trace trick”) and John von
Neumann’s trace inequality from Theorem 18 to get

‖H1Σ1‖2
F = tr

(
Σ1H

T
1 H1Σ1

)
= tr

([
Ω̂T

2 Σ4q+2
B Ω̂2

] [
Ω̂†1

(
Σ−4q

1 0
0 0

)(
Ω̂†1

)T])
≤

k∑
j=1

σ2
j

(
Σ2q+1
B Ω̂2

)
σ2
j

(
Ω̂†1

(
Σ−2q

1

0

))

≤
k∑
j=1

σ2
`−p+j

(
σ`−p+j
σk+1−j

)4q ∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1

∥∥∥2

2

In the case of the 2-norm non-truncated matrix approximation error, we can produce a
tighter bound using the following lemma, which is similar to the Matrix Pythagoras result
of [25].

Lemma 19 (Quasi-Polarization Inequality for Spectral Norm). Let A,B ∈ Rm×n be any two
matrices, then

‖A+B‖2
2 ≤ ‖A‖

2
2 + 2 min

{∥∥BTA
∥∥

2
,
∥∥BAT∥∥

2

}
+ ‖B‖2

2 (7.25)

Proof. Theorem 15 gives us that

‖A+B‖2
2 = σ1

(
(A+B)T (A+B)

)
= σ1

(
ATA+ ATB +BTA+BTB

)
≤ σ1

(
ATA

)
+ σ1

(
ATB

)
+ σ1

(
BTA

)
+ σ1

(
BTB

)
= ‖A‖2

2 + 2
∥∥BTA

∥∥
2

+ ‖B‖2
2
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A similar argument gives

‖A+B‖2
2 = σ1

(
(A+B) (A+B)T

)
≤ ‖A‖2

2 + 2
∥∥BAT∥∥

2
+ ‖B‖2

2

For the weak-form low rank approximation problem in the 2-norm, we can remove the
factor of k in the last term of inequality (7.24) at the expense of a slower spectral decay rate
by the following result.

Lemma 20 (Deterministic Non-Truncation Structural Result for Spectral Norm). Given the
setup described in Section 7.4, we have that

∥∥A−QQTA
∥∥2

2
≤ σ2

k+1 +
‖H1Σ1‖2

2 σ
2
1

σ2
1 + ‖H1Σ1‖2

2

≤ σ2
k+1 +

τ 4q
k

∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1

∥∥∥2

2

1 + α2
2τ

4q
k

∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1

∥∥∥2

2

σ2
`−p+1

where τk =
σ`−p+1

σk
and α2 =

σ`−p+1

σ1
.

Proof. By Lemma 19, we have that∥∥A−QQTA
∥∥2

2
=
∥∥(I −QQT

)
(A− Ak) +

(
I −QQT

)
Ak
∥∥2

2

≤
∥∥(I−QQT

)
(A−Ak)

∥∥2

2
+ 2

∥∥∥(I−QQT
)
Ak(A−Ak)T

(
I−QQT

)∥∥∥
2

+
∥∥(I−QQT

)
Ak
∥∥2

2

=
∥∥(I −QQT

)
(A− Ak)

∥∥2

2
+
∥∥(I −QQT

)
Ak
∥∥2

2

where the last line is achieved by the fact that Ak (A− Ak)T = 0 from the properties of the
SVD. Next, we apply Lemma 16 twice to arrive at∥∥(I −QQT

)
A
∥∥2

2
≤ ‖A− Ak‖2

2 +
∥∥(I −Q1Q

T
1

)
Ak
∥∥2

2
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Then, we bound the last term of the above

∥∥(I −Q1Q
T
1

)
Ak
∥∥2

2
=

∥∥∥∥∥∥∥
I −

 I
0
H1

(I +HT
1 H1

)−1

 I
0
H1

T

 Σ1

0
0


∥∥∥∥∥∥∥

2

2

=

∥∥∥∥∥∥
 HT

1

(
I +H1H

T
1

)−1
H1 0 −HT

1

(
I +H1H

T
1

)−1

0 I 0

−
(
I +H1H

T
1

)−1
H1 0

(
I +H1H

T
1

)−1

 Σ1

0
0

∥∥∥∥∥∥
2

2

=
∥∥∥Σ1H

T
1

(
I +H1H

T
1

)−1
H1Σ1

∥∥∥
2

≤ ‖H1Σ1‖2
2 σ

2
1

σ2
1 + ‖H1Σ1‖2

2

Putting this all together, we arrive at our result.

7.6 Revised Probabilistic Analysis of Subspace

iteration: Independence is King

Controlling the magnitude of ‖Ω̂2‖2 and ‖Ω̂†1‖2 is a critical part of the analysis of random-
ized subspace iteration as in the seminal work of Halko, Martinsson, Tropp [50] as well as the

seminal work of Gu [47]. Both of these works bound the size of ‖Ω̂2‖2 and ‖Ω̂†1‖2 individually

as two separate random variables. First, conditioned on ‖Ω̂†1‖2, both works apply Corollary

3 to bound ‖Ω̂2‖2 either in expectation or large deviation. Then, they apply the following

result to bound the remaining terms with ‖Ω̂†1‖2.

Lemma 21 (Large deviation for pseudo-inverted Gaussian matrix [23, 50, 47]). Let G be an
(`− p)×` Gaussian matrix where p ≥ 0 and `−p ≥ 2. Then G has full rank with probability
1 and we have that for all t ≥ 1,

P

{∥∥G†∥∥
2
≥ e
√
`

p+ 1
t

}
≤ t−(p+1)

But, why do all of this? All that truly matters for randomized subspace iteration is
the product of these two independent factors. The work of Chen and Dongarra [23] produce
results for a similar random variable, the condition number ‖Ω‖2‖Ω†‖2 of a Gaussian random
matrix Ω ∈ Rm×n, which is a similar product–except that the two matrices are the same,
thereby inducing a natural coupling between the two terms of the product (i.e. the condition
number of Ω). In a way, the case that we are faced with is much easier and more tractable

because the two terms of the product ‖Ω̂2‖2‖Ω̂†1‖2 are independent of each other. The works
of Halko et. al. [50] and Gu [47] do not take full advantage of this fact by making excessive
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and unnecessary usage of union bounds and conditioning instead of exploiting the inherent
structure between these two random variables.

Theorem 29. Let Ω1 ∈ R(`−p)×` and Ω2 ∈ R(n−`+p)×` be independent random matrices, each
with iid standard Gaussian N (0, 1) entries. Then, we have that

P

(∥∥∥Ω̂2

∥∥∥
2

∥∥∥Ω̂†1

∥∥∥
2
≥ B
√
` E

p+ 1
t

)
≤ t−(p+1)

where E =
√
n− `+ p +

√
` is a function of p < ` < n and B ≤ 3.0237 is a universal

constant.

Proof.

P
(∥∥∥Ω̂2

∥∥∥
2

∥∥∥Ω̂†1

∥∥∥
2
≥ t
)

= P
(∥∥∥Ω̂2

∥∥∥2

2
≥ t2σ2

min

(
Ω̂1

))
=

∫ ∞
0

∫ ∞
t2z

fσ2
min(Ω̂1) (z) fσ2

max(Ω̂2) (y) dydz

=

∫ ∞
0

fσ2
min(Ω̂1) (z)P

(∥∥∥Ω̂2

∥∥∥2

2
≥ t2z

)
dz

=

∫ ∞
0

2xfσ2
min(Ω̂1)

(
x2
)
P
(∥∥∥Ω̂2

∥∥∥2

2
≥ t2x2

)
dx

where the 2x in the integrand comes from the Jacobian for the change of variables z = x2.
Next, we apply Theorem 24 to upper bound the probability density function fσ2

min
from

above.

P
(∥∥∥Ω̂2

∥∥∥
2

∥∥∥Ω̂†1

∥∥∥
2
≥ t
)
≤ 2L −̀p,

∫̀ ∞
0

e−
x2

2 xpP
(∥∥∥Ω̂2

∥∥∥2

2
≥ t2x2

)
dx where L`−p,`=

2
p−1
2 Γ
(
`+1

2

)
Γ
(
`−p

2

)
Γ (p+1)

(7.26)

Next, we employ Theorem 25 in order to bound the tail distribution for
∥∥∥Ω̂2

∥∥∥
2
. To be able

to use this, we rely on Theorem 26 to bound the expected value of

E
∥∥∥Ω̂2

∥∥∥
2

= E
∥∥∥In−`+pΩ̂2I`

∥∥∥
2
≤ ‖In−`+p‖F‖I`‖2 + ‖In−`+p‖2‖I`‖F =

√
n− `+ p+

√
`
def
= E

so that we can actually use the tail bound from Theorem 25. The spectral norm is a Lipschitz
map with Lipschitz constant equal to 1. Thus, Theorem 25 gives

P
{∥∥∥Ω̂2

∥∥∥
2
≥ E + u

}
≤ P

{∥∥∥Ω̂2

∥∥∥
2
≥ E

∥∥∥Ω̂2

∥∥∥
2

+ u
}
≤ e−

u2

2

for all u ≥ 0. Using this result, we construct the following upper bound to the entire tail
distribution

P
(∥∥∥Ω̂2

∥∥∥
2
≥ tx

)
≤

{
exp

(
− (tx−E)2

2

)
, if x ≥ C E

t

1 , otherwise



CHAPTER 7. RANDOMIZED SUBSPACE ITERATION 79

where C ≥ 1 is a constant to be determined later. We now apply this to equation (7.26) to
get

P
(∥∥∥Ω̂2

∥∥∥
2

∥∥∥Ω̂†1

∥∥∥
2
≥ t
)
≤ 2L`−p,`


∫ C E

t

0

e−
x2

2 xpdx︸ ︷︷ ︸
I1

+

∫ ∞
C E
t

e−
x2

2 xp exp

(
−t

2

2

(
x−E

t

)2
)
dx︸ ︷︷ ︸

I2

 (7.27)

First, we tackle the first integral

I1 =

∫ CE
t

0

e−
x2

2 xpdx ≤
∫ CE

t

0

xpdx ≤ 1

p+ 1

(
CE
t

)p+1

Next, comes a delicate computation for the second integral, which effectively reduces to
bounding a truncated moment of a Gaussian random variable.

I2 ≤
∫ ∞
CE
t

xp exp

(
−(tx− E)2

2

)
dx =

(
1

t

)p+1 ∫ ∞
CE

xp exp

(
−(x− E)2

2

)
dx (7.28)

Now, we employ a technique from [26] to bound this integral. Consider the following in-
equality

xp = ep ln(x) = (CE)p exp
(
p ln

( x

CE

))
≤ (CE)p exp

(
p
x

CE
− p
)

where we use the first order condition for a concave function [19] to get that ln
(
x
CE

)
≤ x
CE −1.

Applying this to equation (7.28), we see that the new integral is more malleable

I2 ≤
(

1

t

)p+1

(CE)p
∫ ∞
CE

exp

(
−(x− E)2

2
+ p

x

CE
− p

)
dx

=

(
1

t

)p+1

(CE)p
∫ ∞
CE

exp

(
−
(
x− E − p

CE

)2

2
+
p

C
− p+

p2

2C2E2

)
dx

=

(
1

t

)p+1

(CE)p exp

(
p

C
− p+

p2

2C2E2

)∫ ∞
CE−E− p

CE

e
−x2
2 dx

≤
√

2π

CE

(
CE
t

)p+1

exp

(
p

C
− p+

p2

2C2E2

)
≤
√

2π

CE

(
CE
t

)p+1

exp

(
p

C2

[
C − C2 +

1

8

])
where the second to last line was achieved by using the identity

∫∞
−∞ e

−x
2

2 dx =
√

2π and

the last line comes from applying E =
√
n− `+ p +

√
` ≥ 2

√
p. By applying the quadratic
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equation, we deduce that if C =
√

2+
√

3
2
√

2
≤ 1.1124 then C − C2 + 1

8
= 0, which results in

I2 ≤
√

2π

CE

(
CE
t

)p+1

Placing this together with equation (7.27) followed by equation (7.19), we get

P
(∥∥∥Ω̂2

∥∥∥
2

∥∥∥Ω̂†1

∥∥∥
2
≥ t
)
≤ 2L`−p,`

(
1

p+ 1
+
√

2π
1

CE

)(
CE
t

)p+1

=
2
p+1
2 Γ

(
`+1

2

)
Γ
(
`−p

2

)
Γ (p+ 2)

(
1 +
√

2π
p+ 1

CE

)(
CE
t

)p+1

where we use the Gamma function identity xΓ(x) = Γ(x+ 1) of Lemma 17 on the last line.
Next, we employ the inequalities (7.21) from Lemma 17 to get

P
(∥∥∥Ω̂2

∥∥∥
2

∥∥∥Ω̂†1

∥∥∥
2
≥ t
)
≤

2
p+1
2

(
`
2

) p+1
2

Γ (p+ 2)

(
1 +
√

2π
p+ 1

CE

)(
CE
t

)p+1

≤

(
1√

2π(p+ 1)
+

√
p+ 1

CE

)[
eC
√
`E

p+ 1

]p+1(
1

t

)p+1

≤

(
1√

2π(p+ 1)
+

1

2C

)[
eC
√
`E

p+ 1

]p+1(
1

t

)p+1

≤

[
eC
√
`E

p+ 1

]p+1(
1

t

)p+1

In the line above, we use the strict inequality assumption between p < ` < n to get that
n− ` ≥ 1 and `− p ≥ 1, permitting us to bound

E =
√
n− `+ p+

√
(`− p) + p ≥ 2

√
p+ 1

We define B = eC ≤ 3.0237 to arrive at our conclusion

P
(∥∥∥Ω̂2

∥∥∥
2

∥∥∥Ω̂†1

∥∥∥
2
≥ t
)
≤

[
B
√
`E

p+ 1

]p+1(
1

t

)p+1

7.6.1 Average Case Error Bounds for Subspace Iteration

We develop a fundamental lemma for the analysis of normed residual matrix approxima-
tion bounds and singular value lower bounds, which is to bound the second moment of the

random variable
∥∥∥Ω̂2

∥∥∥
2

∥∥∥Ω̂†1

∥∥∥
2

in Lemma 29
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Lemma 22. Let Ω̂1 ∈ R(`−p)×` and Ω̂2 ∈ R(n−`+p)×` be two independent random matrices
each with iid N (0, 1) standard normal entries. Also, let ` > p ≥ 2. Define

K def
= β

√
`E2

(p+ 1)(p− 1)

where β ≤ 3.0237 is a universal constant. Then, we have the bound on the second moment

E
∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1

∥∥∥2

2
≤ β2`E2

(p+ 1)(p− 1)

def
= K2

Proof. Apply the law of the unconscious statistician with an arbitrary fixed constant c ∈ R+

to get

E
∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1

∥∥∥2

2
=

∫ ∞
0

2xP
{∥∥∥Ω̂2

∥∥∥
2

∥∥∥Ω̂†1

∥∥∥
2
≥ x

}
dx

≤
∫ c

0

2xdx+

∫ ∞
c

2x

(
p+ 1

β
√
`E
x

)−(p+1)

= c2

1 +
2

p− 1

(
β
√
`E

p+ 1

)p+1

c−(p+1)


Let c = β

√
`E

p+1
and proceed

E
∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1

∥∥∥2

2
≤ β2`E2

(p+ 1)2

(
p+ 1

p− 1

)
=

β2`E2

(p+ 1)(p− 1)
= K2

Let us define two functions g : R+ → R+ and h : R+ → R+

g(x) =
x

1 + d2x

g′(x) =
1

(1 + d2x)2

g′′(x) = − 2d2

(1 + d2x)3

and

h(x) =
1√

1 + d2x

h′(x) = − d2

2 (1 + d2x)(3/2)

h′′(x) =
3d4

4 (1 + d2x)(5/2)

(7.29)

with d > 0 fixed. From the above, we conclude that g(·) and h(·) are monotonically increasing
and decreasing, respectively, by the first derivative test. Also, we deduce that g(·) and h(·)
are concave and convex, respectively, by the second derivative test. The function g(·) is
important in the analysis of normed residual matrix approximation bounds, while h(·) is
fundamental to the analysis of singular value lower bounds. The identity d2g(x) +h2(x) = 1
is important to understanding the trigonometric structure and relationship between normed
residual matrix approximation bounds and singular value lower bounds.
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Lemma 23. Let b, d ≥ 0 and let Ω̂1 ∈ R(`−p)×` and Ω̂2 ∈ R(n−`+p)×` be two independent
random matrices each with iid N (0, 1) standard normal entries. Let ` > p ≥ 2 from the
Setup section, then we have

E
b2
∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1

∥∥∥2

2

1 + d2

∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω†1

∥∥∥2

2

≤ b2K2

1 + d2K2

where K = β
√

`E2
(p+1)(p−1)

and β ≤ 3.0237 is a universal constant.

Proof. Note that g(·) from equation (7.29) is concave, which allows us to apply Jensen’s
inequality to get

E
b2
∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1

∥∥∥2

2

1 + d2

∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1

∥∥∥2

2

= Eb2g

(∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1

∥∥∥2

2

)
≤ b2g

(
E
∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1

∥∥∥2

2

)
≤ b2g

(
K2
)

where the last inequality comes from the monotonicity of g(·) and the application of Lemma
22.

Lemma 24. Let d ≥ 0 and let Ω̂1 ∈ R(`−p)×` and Ω̂2 ∈ R(n−`+p)×` be two independent
random matrices each with iid N (0, 1) standard normal entries. Let ` > p ≥ 2 from the
Setup section, then we have

E
1√

1 + d2

∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1

∥∥∥2

2

≥ 1

1 + d2K2

where K = β
√

`E2
(p+1)(p−1)

and β ≤ 3.0237 is a universal constant.

Proof. We start by applying Jensen’s inequality of Theorem 27 to the convex function h(·)
from equation (7.29) under the random variable of interest to get

E
1√

1 + d2

∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1

∥∥∥2

2

= Eh
(∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1

∥∥∥2

2

)
≥ h

(
E
∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1

∥∥∥2

2

)
≥ h

(
K2
)

where lemma 22 is invoked along with the monotonicity of h(·) from equation (7.29) to arrive
at the last inequality.
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Chapter 8

Spectrum Revealing Bounds for
Column/Row Selection Based
Methods

8.1 Introduction

This work originates from a collaboration with Dave Anderson, Simon S. Du, Kunming
Wu, Michael W. Mahoney and Ming Gu [6]. We credit them for their contributions to
this work and thank them for allowing us to publish this work in this dissertation. The
CUR matrix decomposition approximates an arbitrary data matrix by selecting a subset
of columns and a subset of rows to form a low-rank approximation [32, 72]. This method
overcomes a fundamental drawback of standard PCA analysis: that the principal components
and the loading vectors are dense. Dense components and loadings suffer from two main
disadvantages: a loss of sparsity and reduced interpretability. The CUR decomposition is a
product of three matrices: two (C and RT with c sampled columns and r sampled rows of
A respectively) are tall and skinny and preserve the sparsity of the data matrix, while the
third (U) is a relatively small dense matrix. Thus the CUR approximation is cheaper to
work with and to store.

Notable applications of CUR include bioinformatics, document classification, image and
video processing, securities trading, and web graphs [15, 72, 74, 89, 96]. The Nyström method
is a special case of CUR decomposition for symmetric matrices where R = CT so that the
same rows and columns are selected. The Nyström method approximates large kernel ma-
trices that are used for kernel methods, manifold learning, and dimension reduction [31, 96,
95, 98, 103, 104]. In particular, the recent work of [42] introduced an efficient leverage-based
random sampling algorithm for Nyström approximation that is analyzed simultaneously for
both the spectral and Frobenius norms, while other recent work requires separate algorithms
depending on the choice of norm. CUR is also a natural extension of the CX decomposition,
which selects either columns or rows, but not both, of the data matrix, and which has been
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studied in [17, 48]. The CX decomposition is formed by selecting a subset of columns c to
form a tall-skinny matrix C and forming a short fat matrix X to get A ≈ CX. In general,
these works seek to obtain improved multiplicative error bounds, which are of the form

‖A−CUR‖ξ ≤ f (m,n, k, c, r) ‖A−Ak‖ξ,

where ξ ∈ {2, F}, and where f is a polynomial function and Ak is an optimal rank-k
approximation to a given A ∈ Rm×n. When f does not depend on m and n, these bounds
are called constant factor bounds [71]. Recent works have also established relative error
bounds, where f ≈ 1 + ε for a selection of roughly O(k/ε) rows and columns [18, 32, 42, 71,
96, 95].

Regardless of the form of the guarantee, there are two main drawbacks to the practical
use of these existing approaches to column/row selection methods: choosing ` & O(k/ε)
columns/rows is often not practical, and thus one typically chooses ` = k+O(1), i.e., many
fewer columns/rows than the sufficient conditions required by the worst-case theory; and,
additionally, no known results adapt these methods specifically to matrices with rapidly
decaying singular values. Because most data matrices to which CUR decompositions have
been applied have decaying singular values, and because a decaying spectrum facilitates
better approximations, CUR decompositions would greatly benefit from analysis comparing
the quality of the approximation to the rate of spectral decay.

In this thesis, we introduce powerful spectrum revealing error bounds that solve these two
related problems. This method performs a more refined analysis based on the spectrum of
the input data, and it can achieve bounds of the form

‖A−CUR‖2
ξ ≤

(
1 +O

(
τ 2
))
‖A−Ak‖2

ξ ,

for ξ ∈ {2, F}, where k is the target rank and τ is a quantity that depends on the singular
value rate of decay of A and the amount of oversampling. For matrices with rapidly decaying
singular values, and as a function of the amount of oversampling, τ � 1. Thus, unlike
previous work, our error bounds are near-optimal for matrices with rapidly decaying spectra,
and the approximations achieve optimality in the limit as the rate of decay of the spectra
increase. (Such a result is a natural requirement for a good approximation method, but none
have proved this.) These bounds also help explain why it is acceptable to use a constant
O(1) amount of oversampling, i.e., why, given a desired rank k, one can sample c = k+O(1)
columns and/or r = k +O(1) rows.

We also show that CUR can be unstable, and we develop a novel algorithm, StableCUR,
that completely avoids this instability. This algorithm accepts any C and R matrices from
any row and column selection algorithm, and avoids calculating U, which we show can be
ill-conditioned. We apply the column selection algorithm from [7] to determine C and R, and
then we apply our algorithm to compute a CUR decomposition in a stable form. Also, we
compare the performance of the combination of these two algorithms to existing randomized
CUR algorithms. We also provide a brief empirical illustration of how deterministic and
randomized CUR decompositions perform as a function of the oversampling parameter for
matrices for which the spectrum decays quickly, as well as when it decays slowly.
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8.2 Preliminaries

In this section we review previous results and important theorems to be used in our main
results.

8.2.1 The CUR, CX and Nyström Decompositions

Given a matrix A ∈ Rm×n with rank ρ and a target rank k, we choose a subset of columns
C ∈ Rm×c, a subset of of rows R ∈ Rr×n and compute a matrix U ∈ Rc×r to form the CUR
decomposition Ã = CUR that approximates A, where k < c � n and k < r � m. Thus
only C, U, and R need to be stored, which are much smaller than the original matrix A.
Additionally, C and R retain the sparsity of the original matrix.

We could also take the subset of columns C ∈ Rm×c and compute a short-fat matrix
X ∈ Rc×n to form the CX decomposition Ã = CX that approximates A, where k < c� n.
The CX decomposition can also be formed using the subset of rows instead of columns. When
the input matrix A ∈ Rn×n is symmetric, the Nyström method is formed by Ã = CUCT

where C = RT and where U ∈ Rc×c is a matrix chosen to make Ã ≈ A.

8.2.2 Notation

In this chapter, we adopt slightly different notation than the previous Chapter 7 in order
to present results easier. The main difference is the parameter p which serves a similar
purpose as before, but now varies between k ≤ p ≤ `. This parameter p can also be an
input variable into some subset selection algorithms. We also consider the possibility of a
low rank input matrix with rank ρ ≤ min{m,n} as it improves the guarantees given by some
column/row selection methods. As before, we exploit the potential decay in the singular
values of A for better computational efficiency and decomposition reliability. Consider a
parameter p such that k ≤ p < min(c, r). In the SVD of A = UΣVT , we partition U and
V as

U =
( p ρ− p

m U1 U2

)
, V =

( p ρ− p

n V1 V2

)
. (8.1)

Let Σ = diag(σ1, · · · , σρ), σ1 ≥ · · · ≥ σρ > 0 with

Σ =

( p ρ− p

p ΣT

ρ− p ΣB

)
, ΣT =

( k p− k

k Σ1

p− k Σ2

)
.

We can also use Figure 7.1 to visualize this partition in the singular values.
In equation (8.1), U1 and V1 comprise p orthonormal columns spanning the leading p-

dimensional row space and column space respectively. The largest k singular values of A
are contained in the diagonal matrix Σ1, which in turn is contained in ΣT ; the (p + 1)-th
through the ρ-th singular values of A are contained in ΣB. The value of p is chosen to
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create a “spectrum gap” between the kth and (p + 1)th singular values of A. To the best
of our knowledge, such a partition was first introduced in [47]. Section 8.3 will show that if
this gap is large, then the rank-k CUR approximation differs from the best possible rank-k
approximation by a negligible amount.

Based on the SVD, the row statistical leverage scores and the row coherence relative to
the best rank-p approximation to A are defined through the p leading left singular vectors
in U1:

lrj = ||U1(j, :)||2 , µr =
m

p
× max

j∈{1,...m}
lri (8.2)

Similarly, the column statistical leverage scores and the column coherence relative to the
best rank-p approximation to A are defined through the p leading right singular vectors in
V1:

lcj = ||V1(j, :)||2 , µc =
n

p
× max

j∈{1,...n}
lci (8.3)

The Moore-Penrose inverse of A is denoted by A† = VΣ−1UT .
Finally, we discuss the time complexities of the matrix operations. For A ∈ Rm×n(assume

m > n) it takes O(mn2) flops to compute the full SVD and QR decomposition and O(mnk)
to compute the truncated SVD of rank-k. Computation of A† takes O(mn2). Leverage
scores can be computed in approximately O(mn lnn)[33].

8.2.3 The Sketching Model

Let Πr ∈ Rm×r and Πc ∈ Rn×c be row and column sketching matrices. Examples include
sampling matrices that select a subset of columns and rows of A and Gaussian matrices
which produce matrices C and R that are Gaussian mixtures of columns and rows of A.
Take C = AΠc and R = ΠT

r A and U = C†AR†. Then the CUR approximation is defined

as Ã = CUR, and Ãk = (CUR)k is an approximation to A with rank at most k. Following
[42], and for completeness, we formulate our main theoretical result in terms of arbitrary
“sketching” matrices.

Note that by equations (8.1)

Ψ1 := UT
1 Πr and Ψ2 := UT

2 Πr

capture the intersections of the space spanned by the columns of the left sketching matrix
with the top and bottom column spaces of A, respectively; and Ψ2Ψ†1 defines the tangents of
the angles between the spaces spanned by U1 and Πr [42]. These angles should be sufficiently
acute for Πr to be a good sketch matrix. Similarly,

Ω1 := VT
1 Πc and Ω2 := VT

2 Πc

capture the intersections of the space spanned by the columns of the right sketching matrix
with the top and bottom column spaces of AT , respectively; and Ω2Ω†1 defines the tangents
of the angles between the spaces spanned by V1 and Πc.
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When considering the modified Nyström method for positive semi-definite A instead of
the CUR approximation, we will only use Πc and Ω, and we set the other side by R = CT .
This sketching gives the Nyström method the approximation A ≈ CUCT where U =

C†A
(
CT
)†

. Theoretically, the CX decomposition is the same as letting R = In or R = A
in the CUR decomposition to get the desired sketching X = C†A for the approximation
A ≈ CX.

8.2.4 Deterministic Column-Selection

In this section we describe the deterministic Unweighted Column Selection (UCS) algo-
rithm of [7], which will be used in our main results. Applied to a given a matrix VT ∈ Rp×n

with orthonormal rows, this greedy algorithm attempts to choose a subset π of columns
to maximize σmin

(
VT (:, π)

)
. The previous column selection algorithm of [17] requires two

input matrices and outputs a weighted column selection, for which the weights could be ar-
bitrary. The algorithm of [7] requires a single, relatively small input matrix and outputs an
unweighted column selection, while also proving tighter error bounds. The fact that column
selection algorithm of [17] requires two matrices to work on makes it less efficient than UCS
in complexity and memory use. Consider the matrix VT

1 in equation (8.1). We refer to the
ith column of VT

1 as ~ui ∈ Rp. Then the UCS algorithm is summarized as follows: starting
with a p-by-p matrix B = 0 and a parameter T > 0, the UCS algorithm iteratively selects `
columns of VT

1 by iterating:

• solve for the unique λ < λmin(B) such that

tr (B − λI)−1 = T, (8.4)

• solve for the unique λ̂ < λk that satisfies

(
λ̂− λ

)n− r + p∑
j=1

1− λj
λj − λ


=

∑ 1−λj
(λj−λ)(λj−λ̂)∑

1

(λj−λ)(λj−λ̂)

, (8.5)

where λj is the jth eigenvalue of B,

• find an index i, not already selected, such that

tr
(
B − λ̂I + ~ui~u

T
i

)
≤ tr (B − λI)−1 (8.6)

• reset B := B + ~ui~u
T
i .
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Theorem 30. An index i /∈ Π can always be found to satisfy condition (8.6).

Carried out efficiently, each i can be computed in O(p2n) operations. We summarize the
above procedure in Algorithm 9. It can be shown that

λmin (B`) ≥
(
√
`−√p)2

(
√
n− p+

√
`)2 + (

√
`−√p)2

. (8.7)

Algorithm 9 Unweighted Column Selection (UCS)

Inputs: Row-orthonormal matrix VT
1 ∈ Rp×n, T ∈ R+, `, p ∈ N s.t. k ≤ p < `

Outputs: Index set Π and matrix B.
1: Set B0 = 0p×p, Π0 = φ
2: for t = 0, · · · , `− 1 do
3: Solve for λ using equation (8.4)

4: Calculate λ̂ using equation (8.5)
5: Find i 6∈ Π such that inequality (8.6) is satisfied with ~ui
6: Update Bt+1 := Bt + ~ui~u

T
i and Π := Π ∪ {i}.

7: end for

8.3 Theoretical Results

In this section, we present our StableCUR algorithm and our spectrum revealing error
bounds.

8.3.1 The StableCUR Algorithm

Directly computing Ã by multiplying C,U,R together is not numerically stable. Each
step of this procedure is numerically stable, and standard libraries exist for both QR and
SVD.

In Figure 8.1 we compare the naive procedure and our stable procedure on a synthesized
matrix whose ith singular value is 2−i. Note that we are evaluating these methods in the
weak-form of the low-rank approximation problem so that CUR is allowed to have a rank
larger than k, i.e. ‖A−CUR‖

‖A−Ak‖
→ 0 as c, r → ∞. The naive computations could lead to

inaccurate results because as the number of columns and rows in C and R increase, these
matrices capture a greater amount of the singular values of A, and so U = C†AR† can
be ill-conditioned. Although the algorithm above performs QR on both C and R, QR for
either C or R is all that is necessary to make it stable. We define both StableNyström and
StableCX in a similar manner.
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Algorithm 10 StableCUR

Inputs: A ∈ Rm×n, R ∈ Rr×n, C ∈ Rm×c, target rank k
Outputs: Ã ∈ Rm×n and Ãk ∈ Rm×n

1: Do QR factorization on RT to obtain a basis of rows of R, R = RrQr

2: Do QR factorization on C to obtain a basis of columns of C, C = QcRc

3: B = QT
c AQT

r

4: Ã = QcBQr

5: Do SV D on B to Compute Bk.
6: Ãk = QcBkQr
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Figure 8.1: Stability comparison of the naive CUR algorithm and our proposed stable sketch
algorithm for the weak-form residual error, i.e. CUR can have rank c ≥ k. Also, we use the
natural logarithm.

Algorithm 11 StableNyström

Inputs: A ∈ Rn×n symmetric positive semi-definite, C ∈ Rn×c, target rank k
Outputs: Ã ∈ Rn×n and Ãk ∈ Rn×n

1: Do QR factorization on C to obtain a basis of columns of C, C = QcRc

2: B = QT
c AQc

3: Ã = QcBQT
c

4: Do SV D on B to Compute Bk.
5: Ãk = QcBkQ

T
c

8.3.2 Deterministic Structural Results

Here, we introduce theorems about accuracy in the individual singular values and error
bounds in the spectral and Frobenius norms for the CUR sketching model. Theorems 31
and 32 below are stated in terms of the following upper bounds:

CΩ ≥
∣∣∣∣∣∣Ω2Ω†1

∣∣∣∣∣∣
2
, CΨ ≥

∣∣∣∣∣∣Ψ2Ψ†1

∣∣∣∣∣∣
2
. (8.8)
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Algorithm 12 StableCX

Inputs: A ∈ Rm×n , C ∈ Rm×c, target rank k
Outputs: Ã ∈ Rm×n and Ãk ∈ Rm×n

1: Do QR factorization on C to obtain a basis of columns of C, C = QcRc

2: B = QT
c A

3: Ã = QcB
4: Do SV D on B to Compute Bk.
5: Ãk = QcBk

We start by examining bounds on individual singular values of the low-rank matrix approx-
imations.

Theorem 31 (Singular Value Bounds). Let τj = σp+1/σj. Then, the output of the CUR
Algorithm 10 must satisfy

σj(CUR) ≥
σj
(
1− τ 3

j CΩ CΨ

)√
1 + τ 2

j C2
Ω

√
1 + τ 2

j C2
Ψ

, for all 1 ≤ j ≤ k.

Also, the output of the Nyström Algorithm 11 must satisfy

σj(CUCT ) ≥ σj
1 + τ 2

j C2
Ω

, for all 1 ≤ j ≤ k.

In addition the output of the CX Algorithm 12 must satisfy

σj(CX) ≥ σj√
1 + τ 2

j C2
Ω

, for all 1 ≤ j ≤ k.

Proof. For the CX Decomposition, the lower bound is a simple application of Theorem
21 from Chapter 7. The CUR and Nyström decomposition lower bounds result from an
application of Theorem 37.

Next, we present error bounds in the spectral and Frobenius norms. Remember that
‖Σ1‖2

F =
∑k

j=1 σ
2
j ≤ kσ2

1 = k ‖Σ1‖2
2 and ‖Σ3‖2

F =
∑k

j=1 σ
2
p+j ≤ kσ2

p+1 = k ‖Σ3‖2
2

Theorem 32 (Residual Error Bounds). Assume the notation setup above and let ξ = 2 or
F . The CUR Algorithm 10 must satisfy

‖A− (CUR)k‖
2
ξ ≤ ‖A−Ak‖2

ξ +

 CΩ√
1 +

‖Σ3‖2F
‖Σ1‖2F

C2
Ω

+
CΨ√

1 +
‖Σ3‖2F
‖Σ1‖2F

C2
Ψ


2

‖Σ3‖2
F
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Also, the Nyström Method in Algorithm 11 must satisfy

∥∥A− (CUCT)k
∥∥2

ξ
≤ ‖A−Ak‖2

ξ + 4

 C2
Ω

1 +
‖Σ3‖2F
‖Σ1‖2F

C2
Ω

 ‖Σ3‖2
F

In addition, the CX Algorithm 12 must satisfy

‖A− (CX)k‖
2
ξ ≤ ‖A−Ak‖2

ξ +

 C2
Ω

1 +
‖Σ3‖2F
‖Σ1‖2F

C2
Ω

 ‖Σ3‖2
F

Proof. We start with the structural result of Theorem 8.5.1 for the CUR and Nyström
Decompositions. We then use the work of Theorem 28 and Corollary 5 in order to bound∥∥(I −QcQ

T
c

)
Ak
∥∥
F

and
∥∥Ak (I −QrQ

T
r

)∥∥
F

in the desired way with q = 0 as column/row
selection based methods do not have the iteration feature of randomized subspace iteration.
The result for the CX decomposition is a straightforward application of Theorem 28 with
Qc and q = 0.

Discussion
A good CUR decomposition heavily depends on how the sketch matrices are chosen; The-
orems 31 and 32 point out the connection between sketch matrices and the quality of the
CUR decomposition through quantities CΩ and CΨ.

Theorems 31 and 32 also exhibit a surprisingly strong connection between the rate at
which the singular values of matrix A might decay and the quality of the CUR decomposition.
For the sake of argument assume for the moment that CΩ = O(1) and CΨ = O(1). When
singular values of A decay rapidly, as they often do in many large data matrices, we can
expect τj � 1 for a choice of p that is somewhat larger than k. Theorem 31 suggests that

the leading singular values of Ã, σj(Ã) for 1 ≤ j ≤ k, differ from the corresponding singular
values of A by a negligible relative amount. Similarly, since(

ρ∑
j=k+1

σ2
j

)
≥ σ2

k+1 � σ2
p+1

when singular values rapidly decay, Theorems 1 and 32 suggest that the approximation error
in Ã differs from that in Ak, the best rank-k approximation, by a negligible additional
amount in both the Frobenius norm and spectral norm.

In the remainder of this section, we show that the UCS algorithm from [7] and two sam-
pling algorithms are able to bring both CΩ and CΨ under effective control in their magnitude,
leading to high quality CUR decompositions. It is important to note that when using the
modified Nyström method, the above bounds still hold with CΨ := CΩ.
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8.3.3 Bounds of the Deterministic Unweighted Column Selection

We apply Theorems 31 and 32 to bound the singular value errors and the low-rank
approximation error in the spectral and Frobenius norms for the matrix constructed by
Algorithm 9.

Theorem 33. (Unweighted Column Selection)
Let Πr and Πc be constructed with Algorithm 9, then Theorems 31 and 32 hold with

C−1
Ω =

√
c−√p√

(
√
n− p+

√
c)2 + (

√
c−√p)2

,

C−1
Ψ =

√
r −√p√

(
√
m− p+

√
r)2 + (

√
r −√p)2

.

When applying the result above to the Nyström method (i.e. R := CT ), one simply
needs to ignore the discussion of sampling rows. Simple algebra reveals as c and r increase,
CΩ and CΨ will decrease as well. This suggests a tradeoff between controlling the C terms
and improving the spectral gap τk+1.

8.3.4 Stochastic Bounds of Sampling Based Algorithms

We apply Theorems 31 and 32 to bound errors in the random sampling methods. µr
and µc in Theorem 34 refer to the row coherence in equation (8.2) and column coherence in
equation (8.3). The failure probabilities below are squared for the CUR because the rows
and columns are sampled independently. When applying the two theorems below to the
Nyström method (i.e. R := CT ), one needs to ignore the discussion of sampling rows and
to take the square root of the failure probability by the point above.

Theorem 34. (Uniform Sampling) [41]. Let Πr ∈ Rr×m,Πc ∈ Rn×c be sketching matrices
corresponding to sampling rows and columns uniformly at random, respectively. Fix a failure
probability 0 < δ � 1 and an accuracy factor ε ∈ (0, 1). If

r ≥ 2ε−2µrp ln (p/δ) , c ≥ 2ε−2µcp ln (p/δ) ,

then Theorems 31 and 32 hold with

CΩ =

√
n

(1− ε) c
, CΨ =

√
m

(1− ε) r

with probability at least (1− δ)2.



CHAPTER 8. SPECTRUM REVEALING BOUNDS FOR COLUMN/ROW
SELECTION BASED METHODS 93

Theorem 35. (Leverage Score Sampling) [32] Let Πr ∈ Rr×m,Πc ∈ Rn×c be generated with
probability distributions based on the row leverage scores {lrj} in equation (8.2) and column
leverage scores {lcj} in equation (8.3):

prj =
lrj
p

and pcj =
lrj
p

for an accuracy factor ε ∈ (0, 1). If

r ≥ 400ε−2p ln (p) , c ≥ 400ε−2p ln (p) ,

then Theorems 31 and 32 hold with

CΩ =

√
1

1− ε
, CΨ =

√
1

1− ε

with probability at least 0.92 = 0.81.

8.4 Numerical Results

In this section, we provide a summary of our empirical evaluation. We start in Sec-
tion 8.4.1 with a description of our data sets and our evaluation metrics; then, in Sec-
tion 8.4.2, we show how oversampling affects reconstruction error for deterministic and ran-
domized CUR/Nyström on two data sets with different spectrum properties; and then, in
Section 8.4.3, we compare our Stable algorithms using input matrices determined by the
deterministic UCS algorithm with other related decompositions.

8.4.1 Data Sets

We used data sets from the recent analysis of [42]. The data sets include matrices con-
structed from bag-of-words data (Dexter) and dense matrices constructed from a Gaussian
Radial Basis Function (RBF) Kernel (Abalone). The description of data sets is presented
in Table 8.1. Here, m and n are numbers of columns and rows of the data matrix, %nnz is
the percentage of number of non-zero entries, k is the target rank, and µc and µr are the
coherence of the rows and columns of A respectively. Recall that, for a set of data points

x1, . . . ,xn ∈ Rd, the Gaussian RBF Kernel matrix Aσ is given by Aσ
ij = exp

(
−‖xi−xj‖22

σ2

)
.

These data matrices are chosen because of their different spectral decay properties. In
particular, by adjusting the σ in the Gaussian RBF Kernel, we can change the speed of
the decay in a controlled manner. Observe that σ2k(A)

σk(A)
increases from 0.156 to 0.801 as σ is

decreased from 5 to 0.1. In more detail, Figure 8.2 shows that for Abalone kernel matrix,
decreasing values of σ from 5 to 0.1 slows down the singular value decay, reducing the
domination by the top-k eigenspace; and Table 8.1 shows that when σ = 0.1, best rank-20
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Table 8.1: Dataset Summary.

Data Set m n %nnz k
‖A‖2F
‖A‖22

100 ‖A−Ak‖F
‖A‖F

µc µr
σ2k(A)
σk(A)

Abalone(σ = 5) 4177 4177 100 20 1.09 0.17 10.6 10.6 0.156
Abalone(σ = 2) 4177 4177 100 20 1.88 4.39 2.67 2.67 0.285
Abalone(σ = 0.2) 4177 4177 84.6 20 14.9 79.6 17.6 17.6 0.62
Abalone(σ = 0.1) 4177 4177 40.74 20 174.7 97.47 59.9 59.9 0.801
Dexter 2000 20000 0.48 10 7.16 88.6 197.2 1945 0.806

approximation is far from the original matrix (and thus low-rank approximation cannot be
expected to yield good results), while for σ = 5, the matrix is very well approximated by a
rank-20 matrix.

Since the RBF Kernel matrices are postive semi-definite, we apply StableNyström
to the Abalone data in kernel form. Next, we apply the StabelCUR algorithm to the
Dexter data as the data matrix takes the form of a general non-symmetric matrix. In our
empirical evaluation, we consider the following measures to compare different approximation
algorithms:

• σk(Ã)/σk(A), kth singular value ratio

• ‖A− Ã‖F/‖A−Ak‖F , weak-form Frobenius norm error

• ‖A− Ãk‖F/‖A−Ak‖F , strong-form rank-k Frobenius norm error

• ‖A− Ã‖2/‖A−Ak‖2, weak-form spectrum norm error

• ‖A− Ãk‖2/‖A−Ak‖2, strong-form rank-k spectrum norm error

In addition, the legends in the following plots correspond to the four CUR algorithms we
consider:

• RandLeverage: CUR/Nyström Decomposition of [32] constructed from Leverage
Score Sampling

• RandUniform: CUR/Nyström Decomposition constructed from Uniform Sampling

• NearOptimal: CUR/Nyström via the Near-Optimal Column Selection Algorithm
of [17, 96]

• DetUCS: Deterministic Unweighted Column Selection (UCS) algorithm of [7].



CHAPTER 8. SPECTRUM REVEALING BOUNDS FOR COLUMN/ROW
SELECTION BASED METHODS 95

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

p
σ

p
(A

)/
σ

k
(A

)

 

 

σ = 0.1

σ = 0.2

σ = 2

σ = 5

Figure 8.2: Singular value decay of Abalone kernel matrices with different σ’s. The reported
value is the ratio between σp and σk, where k = 20 and p varies from 20 to 40.

8.4.2 Oversampling Experiments

Here, we test how the spectrum gap can affect the performance of DetUCS and Ran-
dLeverage. Our main results are presented in Figures 8.3 and 8.4. We choose target rank
k = 20, c = r = 80 and vary p from k to 2k. Recall from our deterministic structural results
from Section 8.3 that increasing p will decrease σp+1 (A) and thus improve the approximation
accuracy. However, in Theorem 33 and 35, we showed that increasing p may increase CΩ and
CΨ. By our bounds, for matrices whose singular values decay rapidly, increase in p could be
beneficial.

Figure 8.3 shows the effects of different values of p on the Frobenius norm reconstruction
error. For Abalone kernel matrix with σ = 5, both DetUCS and RandLeverage behave
better as p increases. On the other hand, when σ = 0.1, the reconstruction error is much
larger and there is no systematic evident performance improvement as p increases.

Figure 8.4 shows the effects of different values of p on the spectral norm reconstruction
error. These plots are qualitatively similar to the Frobenius norm error: for Abalone kernel
matrix with σ = 5, increase in p reduces reconstruction error for both algorithms; while,
when σ = 0.1, increase in p would not improve DetUCS. Interestingly, however, for Ran-
dLeverage, increase in p may even decrease the reconstruction accuracy. The reason for
this is likely that we do not have control on CΩ and CΨ as we increase p.

8.4.3 Comparing Different CUR/Nyström Methods

We now compare the performance of different CUR/Nystrom algorithms (RandLeverage,
RandUniform, NearOptimal, and DetUCS) with same number of columns and rows.
To take advantage of the spectrum gap, we choose oversampling parameter p = k + 10 for
matrix (Figure 8.5) with rapid singular value decay. While for matrices (Figures 8.6 and 8.7)
with slow singular value decay, there is no need to oversample and to decrease CΩ and CΨ we
choose p = k.
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Figure 8.3: Reconstruction error in Frobenius norm for DetUCS and RandLeverage
running on Abalone kernel matrix with σ = 5 and 0.1. When σ = 5, both algorithms
perform better as we increase p. When σ = 0.1, the reconstruction errors are less consistent.
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Figure 8.4: Reconstruction error in spectral norm for DetUCS and RandLeverage run-
ning on Abalone kernel matrix with σ = 5 and 0.1. The results are very similar to figure
8.4.

Figure 8.5 shows the performance of different Nyström algorithms on Abalone matrix
with σ = 5, whose singular values decay rapidly. Since Ak contains most of the information,
low rank approximation is a reasonable model. The reconstruction matrix is able to capture
most singular values and the residual errors in both spectral and Frobenius norm decrease
rapidly as more columns and rows are sampled. Since the leverage scores are fairly uniform,
i.e., the coherence is fairly small, RandUniform performs well in this case, even though it
is still worse than other algorithms.

Figure 8.6 shows the performance of different Nyström algorithms on Abalone matrix
with σ = 0.1, whose singular values decay slowly. Since Ak only contains a small portion of
information of A, the curves are flatter in this case. Since the coherence is large, RandUni-
form performs poorly and RandLeverage performs best under most metrics. However,
sampling with more columns and rows only increases approximation accuracy marginally,
because the leverage score distribution is extremely imbalanced due to the high coherence
of the matrix.

Figure 8.7 shows the performance of different CUR algorithms on non-symmetric Dexter
data matrix. This data set is “worse” than Abalone kernel matrix with σ = 5, because of its
slow decay in singular values and large coherence, and our empirical results are consistent
with this.
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Figure 8.5: Results of algorithms comparison on RBF kernel(σ = 5) of the Abalone data set.
In this matrix, singular values decay very fast, which results in rapid decrease in residual
errors and rapid increase in singular value ratio for all algorithms.
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Figure 8.6: Results of algorithms comparison on RBF kernel(σ = 0.1) of the Abalone data
set. In this matrix, singular values decay very slowly. All curves are flatter than the ones in
Figure 8.5.
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Figure 8.7: Results of CUR algorithms comparison on Dexter data matrix. This is a non-
symmetric matrix with slow decay in its singular values. The performance of algorithms are
similar to the ones in Figure 8.6.

8.4.4 Experiments with CX Algorithm

We test our algorithms on the Jester Joke Data [43], a data matrix containing numeric
ratings from 24, 983 people for 100 jokes. Each row corresponds to a person; each column
a joke. We have removed its first column, which represents the number of jokes rated, and
we have changed any NA value, indicated by 99, to 0 (meaning neutral) in order to make
it consistent with other entries. Therefore, the size of the matrix is 24, 983 by 100, and the
entries are ratings ranging from −10.00 to 10.00. Positive ratings indicate the joke is favored,
while negative ratings indicate the opposite. Additionally we test on a second data matrix,
which comes from the Reuters bag of words data [21]. The matrix is modified into a sparse
matrix of size 8, 293 by 21, 578 with binary entries, with “1” meaning the word is present in
the document and “0” meaning the word is absent. For each target sparsity value, we let
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the number of selected columns, `, range from k + 1 to k + 20. In these experiments, we let
p = k and s = `.

Our tests exhibit rapid decay of the error ratio. Figure 8.9 shows heat maps of the

(a) Jester data spec-
trum

(b) Reuters data spec-
trum

(c) Jester data CX
residual error

(d) Reuters data CX
residual error

Figure 8.8: Real Data Matrices

Jester jokes data matrix A, and the columns subset C with l = 10, and the reconstruction
Ã = CX. Green corresponds to a positive rating, while red a negative rating. The map
in 8.9(a) shows the original data matrix, 8.9(b) shows the columns selected from this data,
and 8.9(c) shows the reconstruction Ã = CX. While the reconstruction loses some data as
expected, it preserves the structure and the pattern of the original matrix A. Also, the heat
maps suggest that the algorithm chose mutually independent and informative columns.

(a) Original Data Matrix (b) Selected Columns Subset (c) Reconstruction

Figure 8.9: Heat Maps of Jester Joke Data Matrix

8.5 Proofs

8.5.1 Preliminaries

First we prove a useful theorem, which is similar to [47] Theorem 3.5.
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Theorem 36. Let Qc be an m × c column-orthonormal matrix matrix. Let Qr be a n × r
column-orthonormal matrix. Let Bk be the rank-k truncated SVD of QT

c AQr. We have:

min
rank(B)≤k,B∈Rc×r

∥∥A−QcBQ
T
r

∥∥2

F
=
∥∥A−QcBkQ

T
r

∥∥2

F
(8.9)

In addition:∥∥A−QcBkQ
T
r

∥∥2

F
≤ ‖A− Ak‖2

F +
(∥∥(I −QcQ

T
c

)
Ak
∥∥
F

+
∥∥Ak (I −QrQ

T
r

)∥∥
F

)2
(8.10)

Proof. We start by taking column-orthogonal matrices of dimensions m×(m−c) and n×(n−
r) labeled Q̂c and Q̂r, respectively, so that

(
Qc Q̂c

)
and

(
Qr Q̂r

)
are both orthogonal

matrices. Then, the unitary invariance of the Frobenious norm and orthogonality give

∥∥A−QcBQ
T
r

∥∥2

F
=

∥∥∥∥(QT
c AQr −B QT

c AQ̂r

Q̂T
c AQr Q̂T

c AQ̂r

)∥∥∥∥2

F

=
∥∥A−Qc

(
QT
c AQr

)
QT
r

∥∥2

F
+
∥∥QT

c AQr −B
∥∥2

F

Thus, the last term in the expression above is minimized when B = Bk, which gives us (8.9).
Since Bk is the minimizer, we can replace it with QT

c AkQr to get the inequality

‖A−QcBkQ
T
r ‖2

F ≤ ‖A−Qc

(
QT
c AkQr

)
QT
r ‖2

F

= ‖A−QcQ
T
c Ak +QcQ

T
c Ak −Qc

(
QT
c AkQr

)
QT
r ‖2

F

= ‖A− Ak + Ak −QcQ
T
c Ak‖2

F + ‖QcQ
T
c

(
Ak − AkQrQ

T
r

)
‖2
F

+ 2tr
(

(A− Ak)T QcQ
T
c Ak

(
I −QrQ

T
r

))
= ‖A− Ak‖2

F + 2tr
(
(A− Ak)ATk (I −QcQ

T
c )
)

+
∥∥(I −QcQ

T
c

)
Ak
∥∥2

F
+ ‖QcQ

T
c

(
Ak − AkQrQ

T
r

)
‖2
F

+ 2tr
(

(A− Ak)T QcQ
T
c Ak

(
I −QrQ

T
r

))
≤ ‖A− Ak‖2

F + ‖
(
I −QcQ

T
c

)
Ak‖2

F + ‖Ak
(
I −QrQ

T
r

)
‖2
F

− 2tr
(

(A− Ak)T
(
I −QcQ

T
c

)
Ak
(
I −QrQ

T
r

))
,

which is (8.10). In the last inequality, we have used once the fact that QcQ
T
c is an orthogonal

projection and twice the fact that (A − Ak)A
T
k = 0 via the SVD. Now, use the identity
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AkA
†
kAk = Ak from the definition of the Moore-Penrose psuedo-inverse to get

tr
((
I−QcQ

T
c

)
Ak
(
I−QrQ

T
r

)
(A−Ak)T

)
=tr

((
I−QcQ

T
c

)
AkA

†
kAk

(
I−QrQ

T
r

)
(A−Ak)T

)
≤
∥∥(I −QcQ

T
c

)
Ak
∥∥
F

∥∥∥A†kAk (I −QrQ
T
r

)
(A− Ak)T

∥∥∥
F

≤
∥∥(I −QcQ

T
c

)
Ak
∥∥
F

∥∥Ak (I −QrQ
T
r

)∥∥
F

∥∥∥A†k∥∥∥
2
‖A− Ak‖2

=
∥∥(I −QcQ

T
c

)
Ak
∥∥
F

∥∥Ak (I −QrQ
T
r

)∥∥
F

σk+1

σk
≤
∥∥(I −QcQ

T
c

)
Ak
∥∥
F

∥∥Ak (I −QrQ
T
r

)∥∥
F

Putting everything together, we arrive at our desired result.

8.5.2 Deterministic Analysis

We begin with some notes about partitioning A by columns and rows. Let Πc ∈ Rn×c

and Πr ∈ Rm×r be matrices that represent the column and row choices, respectively, of our
algorithm such that

(
Πc Π⊥c

)
∈ Rn×n and

(
Πr Π⊥r

)
∈ Rm×m are a permutation matrices.

(
Πr Π⊥r

)T
A
(
Πc Π⊥c

)
=
(
Πr Π⊥r

)T
UΣV T

(
Πc Π⊥c

)
=

(
U11 U12

U21 U22

)( Σ1 0
0 Σ2

)
0

0 ΣB

(V T
11 V T

21

V T
12 V T

22

)

From this point on, we refer to

Ω=

(
Ω1

Ω2

)
def
=

(
V T

11

V T
12

)
Ψ=

(
Ψ1

Ψ2

)
def
=

(
UT

11

UT
12

)
We change notation at this point because these principles go far beyond column and row
selection. For example, if either Πc or Πr were an iid Gaussian matrix, the following results
will still hold.

By definition, the matrix C ∈ Rm×c produced by our algorithm is AΠc.

C = AΠc = U

(Σ1 0
0 Σ2

)
0

0 ΣB

(Ω1

Ω2

)

Now, we are interested in the matrix CX = CC†A In order to get a grip on the orthogonal
projector CC†, we will study the column space of C via post-multiplying by a judiciously
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chosen square invertible matrix Yc ∈ Rc×c (cf. [47].) This may change the matrix, but it
preserves the column space.

CYc := C

[
Ω†1

(
Σ1 0
0 Σ2

)−1

Zc

]

= U

(Σ1 0
0 Σ2

)
0

0 ΣB

(Ω1

Ω2

)[
(Ω1)†

(
Σ1 0
0 Σ2

)−1

Zc

]

= U

 Ik 0 0
0 Ip−k 0
H1 H2 H3


where we assume that Ω1 ∈ Rc×p is full rank and Zc ∈ Rc×(c−p) is a matrix such that
Ω1Zc = 0. This gives us that

H1 = ΣBΩ2Ω†1

(
Σ−1

1

0

)
, H2 = ΣBΩ2Ω†1

(
0

Σ−1
2

)
, H3 = ΣBΩ2Zc

By the same procedure we can select rows from A to form R = ΠT
r A. As before, there is an

invertible matrix Yr ∈ Rr×r such that

YrR =

 Ik 0 0
0 Ip−k 0
G1 G2 G3

T

V T

where

G1 = ΣBΨ2Ψ†1

(
Σ−1

1

0

)
, G2 = ΣBΨ2Ψ†1

(
0

Σ−1
2

)
, G3 = ΣBΨ2Zr

Following [47], we are interested in upper bounds on ||H1||2 and ||G1||2.

||H1||2 ≤
σp+1

σk

∣∣∣∣∣∣Ω2Ω†1

∣∣∣∣∣∣
2
, and

∣∣∣∣∣∣(I +HT
1 H1
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≥ 1√
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)2 ∣∣∣∣∣∣Ω2Ω†1

∣∣∣∣∣∣2
2

||G1||2 ≤
σp+1

σk

∣∣∣∣∣∣Ψ2Ψ†1

∣∣∣∣∣∣
2
, and

∣∣∣∣∣∣(I +GT
1G1

)−1/2
∣∣∣∣∣∣

2
≥ 1√

1 +
(
σp+1

σk

)2 ∣∣∣∣∣∣Ψ2Ψ†1

∣∣∣∣∣∣2
2

.
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To develop lower bounds on computed singular values, let

U

 Ik 0 0
0 Ip−k 0
H1 H2 H3

 =: Q̂R̂ =:
(
Q̂1 Q̂2 Q̂3

)R̂11 R̂12 R̂13

0 R̂22 R̂23

0 0 R̂33

 , (8.11)

V

 Ik 0 0
0 Ip−k 0
G1 G2 G3

 =: Q̃R̃ =:
(
Q̃1 Q̃2 Q̃3

)R̃11 R̃12 R̃13

0 R̃22 R̃23

0 0 R̃33

 . (8.12)

It follows from (cf. [47]) that

QcQ
T
c = Q̂Q̂T , QrQ

T
r = Q̃Q̃T .

Consider the first k columns of the above expression, i.e.

U

 I
0
H1

 = Q̂1R̂11

Since RT
11R11 = I + HT

1 H1, the polar decomposition tells us that R11 can be written in the
form

R̂11 = Wc

(
I +HT

1 H1

)1/2

for some orthogonal matrix Wc ∈ Rk×k. Thus, we can write

Q̂1 = U

 I
0
H1

(I +HT
1 H1

)−1/2
W T
c

By the same reasoning, we also have

Q̃1 = V

 I
0
G1

(I +GT
1G1

)−1/2
W T
r

for some orthogonal matrix Wr ∈ Rk×k.

Theorem 37 (Two-Sided Singular Value Lower Bounds). The CUR Algorithm 10 must
satisfy

σk (CUR) ≥
σk − σp+1

(
σp+1

σk

)2 ∣∣∣∣∣∣Ω2Ω†1

∣∣∣∣∣∣
2

∣∣∣∣∣∣Ψ2Ψ†1

∣∣∣∣∣∣
2√

1 +
(
σp+1

σk

)2 ∣∣∣∣∣∣Ω2Ω†1

∣∣∣∣∣∣2
2

√
1 +

(
σp+1

σk

)2 ∣∣∣∣∣∣Ψ2Ψ†1

∣∣∣∣∣∣2
2
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However, the Nyström Decomposition Algorithm 11 satisfies a slightly better guarantee due
to the symmetric positive semi-definite input and output

σk
(
CUCT

)
≥ σk

1 +
(
σp+1

σk

)2 ∣∣∣∣∣∣Ω2Ω†1

∣∣∣∣∣∣2
2

Proof. Next, by the interlacing theorem for singular values, we have

σk (CUR) = σk

(
Q̂TAQ̃

)
≥ σk

(
Q̂T

1AQ̃1

)
= σk

((
I +HT

1 H1

)−1/2 (
Σ1 +HT

1 Σ3G1

) (
I +G1G

T
1

)−1/2
)

≥
σk − σp+1

(
σp+1

σk

)2 ∣∣∣∣∣∣Ω2Ω†1

∣∣∣∣∣∣
2

∣∣∣∣∣∣Ψ2Ψ†1

∣∣∣∣∣∣
2√

1 +
(
σp+1

σk

)2 ∣∣∣∣∣∣Ω2Ω†1

∣∣∣∣∣∣2
2

√
1 +

(
σp+1

σk

)2 ∣∣∣∣∣∣Ψ2Ψ†1

∣∣∣∣∣∣2
2

.

However for the Nyström Decomposition we get

σk
(
CUCT

)
≥ σk

((
I +HT

1 H1

)−1/2 (
Σ1 +HT

1 Σ3H1

) (
I +H1H

T
1

)−1/2
)

= σk

((
I +HT

1 H1

)−1/2
Σ

1/2
1

(
I + Σ

−1/2
1 HT

1 Σ3H1Σ
−1/2
1

)
Σ

1/2
1

(
I +H1H

T
1

)−1/2
)

≥ σk

((
I +HT

1 H1

)−1/2
Σ1

(
I +H1H

T
1

)−1/2
)

where the last line is achieved by noting that the matrix Σ
−1/2
1 HT

1 Σ3H1Σ
−1/2
1 is symmetric

positive definite matrix, i.e.
(
I + Σ

−1/2
1 HT

1 Σ3H1Σ
−1/2
1

)
� I in the sense of Loewner ordering.

This gives the desired result.
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Chapter 9

Sparse PCA via Secular Backwards
Elimination

9.1 Background and Motivation

This work originated as a collaboration with Dave Anderson, Luming Wang and my
adviser Ming Gu. Principal Component Analysis (PCA) is widely used in many areas of
data analysis as an effective tool for dimensionality reduction. Performed via SVD, PCA
extracts orthogonal linear combinations of the data variables that best explain the variance in
the data. However, the principle components are typically dense, even when the data matrix
is sparse. For a high dimensional data set, a dense loading vector may not be sufficiently
informative to meet application needs. Motivated by this, sparse PCA algorithms impose
sparseness on the loading vectors so that the user can see which individual variables play a
role in principal directions of high variance and thus interpret data better. These directions
give an intuition as to which variables are principal variables [76].

Early work to promote sparsity includes [61], which suggested using rotations to facilitate
understanding of the principal components. A simple thresholding approach was discussed
in [20], whereby small elements of the loading vectors are set to 0. The idea of restrict-
ing the loadings to a small set of values, including 0, was discussed in [63, 93]. The CUR
decomposition is proposed in [73] to create sparsity by expressing the decomposition as a
combination of a small number of columns and rows of the data matrix. SCotTLASS was
introduced in [57] to enforce sparsity through a LASSO penalty function approach. Addi-
tional research into penalty functions to create sparsity includes sPCA-rSVD [86]. Sparse
PCA (SPCA), [49], finds sparse approximations of the loading vectors by reworking PCA
as a regression-type optimization problem. The Generalized Power Method [69] recasts the
optimization of a non-convex function as an optimization problem on a Euclidean sphere or
Stiefel manifold. The largest eigenvalues and corresponding eigenvectors are then calculated
by using a gradient-type scheme. Deflation algorithms for sparse PCA have been discussed
in [101, 102, 70].
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A seminal work on sparse PCA appears in [2], which formulated DSPCA, a convex
relaxation to convert the highly non-convex sparsity enforcing problem into a semi-definite
program. The resulting problem benefits from the well-researched area of interior point
methods, which can be used to solve the semi-definite program. More recently, a block
coordinate ascent variant of DSPCA algorithm has been developed in [105] to approximately
solve DSPCA much more efficiently. The authors of [1] additionally study forward-searching
greedy algorithms and provide optimality conditions. These greedy algorithms allow one
to build approximations of increasing rank, but the sequential nature of forward building
algorithms implies they will miss possible optimal combinations of the loading vectors. A
related work [79] suggested that backwards elimination algorithm has the ability to find
sparse approximations that the forward search may miss. By eliminating rows sequentially,
unobvious groups of loading vectors that are near-sparse will remain in consideration. But
it is also claimed that the computational complexity is O(n4), which makes the backward
algorithm prohibitively expensive for large n. Thus, that work focused on forward column
selection instead, where a simple implementation yields an O(n3) algorithm.

We propose an efficient backwards elimination algorithm which exploits accurate low rank
matrix approximations and secular equations for rank-1 updates to eigenvalue or singular
value problems. To further improve the performance, a root test is introduced to bypass
solving many unnecessary equations. We also provide theoretical bounds for explained vari-
ances (sparse singular values). A number of numerical tests show that compared with various
competing approaches, our method can efficiently generate local optima to effectively explain
the variances, often better than competing SPCA algorithms.

The rest of the chapter is organized as follows: Section 2 outlines notation and briefly
reviews linear algebra preliminaries. Section 3 presents our efficient backwards elimination
algorithm, along with theoretical bounds. The efficacy of the our algorithm is illustrated
with numerical tests in Section 4, using both artificial and real-world data sets.

9.2 Problem Formulation

9.2.1 Sparse PCA

We denote X ∈ Rm×n to be a given centered data matrix with m experiments and n
variables. The corresponding covariance matrix is A = XTX. Given a user defined degree
of sparsity `, the first sparse principal component or loading vector is commonly defined as
~v ∈ Rn such that

arg max~v∈Rn
~vTA~v
~vT~v

or equivalently arg max~v∈Rn
‖X~v‖2
‖~v‖

s.t. card (~v) ≤ `, s.t. card (~v) ≤ `.

where card(~v) is defined to be the number of non-zero entries in the vector ~v ∈ Rn. We can
use this to define the corresponding sparse singular value σs = ‖X~v‖2. Also, note that there
exists a unit vector ~u = 1

σs
X~v ∈ Rm such that ~uTX~v = ‖X~v‖2 := σs. After finding the first
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principal vector with X(1) = X, we then deflate X in the following way

X(i+1) = X(i) − σsiuvT

and solve the same maximization problem on the deflated data matrix X(2), X(3), and so
on. A systematic study of deflation schemes is done in [70]. The deflation method used in
this thesis is equivalent to projection deflation because we are deflating directly on the data
matrix. An advantage of this approach is that the covariance matrix A(i) = X(i)TX(i) is
always positive semi-definite.

9.2.2 Accurate Low Rank Truncation

There are many efficient SVD-based low-rank approximation methods [44, 50]. Perform-
ing a rank-k SVD truncation A ≈ Ak = UkΣkV

T
k will reduce the computational complexity

of backwards elimination algorithm by trying to sparsify ΣkV
T
k ∈ Rn×k instead of from a

potentially much larger matrix A ∈ Rm×n. We propose choosing k based upon the spectral
decay of the data matrix X, which is typically very rapid for real-world data. The following
theorem guarantees that the solution will keep almost the same accuracy with a judicious
choice of k.

Theorem 38. Let X = UΣV T be the SVD of our data matrix. Let 0 ≤ τ � 1 be a user
defined tolerance and ` a user defined sparsity. Now, select k such that

σk+1 ≤ τσ1

√
`

n
. (9.1)

Let Xsparse
k = σs~u~vT be the output of the greedy backwards elimination algorithm on Xk.

Then ∣∣‖X −Xsparse
k ‖2 − ‖Xk −Xsparse

k ‖2

∣∣ ≤ τ ‖Xsparse
k ‖2 .

Theorem 38 ensures that the additional error introduced from an accurate low-rank
matrix trunction on the data matrix can be negligible. However, this matrix truncation can
significantly speed up the work of backwards elimination. We will prove Theorem 38 at the
end of Section 9.3.

9.2.3 The Secular Equation

The secular equation is based on a formula for rank-1 updates of spectral problems,
which, in turn, relies on the well-known determinant formula in Lemma 25.

Lemma 25 (Determinant Lemma [28]).

det
(
A+ ρuvT

)
= det (A)

(
1 + ρvTA−1u

)
.
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Given the SVD of matrix X ∈ Rm×n, we are interested in the top singular value of the
matrix X with the jth column removed or zeroed out, i.e. X\j = X − xjeTj , where xj is the
jth column. Thus, we need the top eigenvalue of X\jX

T
\j = XXT − xjxTj . Its characteristic

polynomial satisfies

PX\j(σ
2) := det

(
XXT − xjxTj − σ2I

)
= det

(
XXT − σ2I

) (
1− xTj

(
XXT − σ2I

)−1
xj

)
.

By setting PX\j(σ
2) = 0, we arrive at the secular function

sj(σ
2) := 1− xTj

(
XXT − σ2I

)−1
xj = 1− (UTxj)

T
(
ΣΣT − σ2I

)−1
UTxj

= 1−
m∑
i=1

(UTxj)
2
i

σ2
i − σ2

= 0.

The roots of sj (σ2) give us each σk
(
X\j
)
, which is known to satisfy

σk+1 (X) ≤ σk
(
X\j
)
≤ σk (X) .

Many efficient solvers for the secular equations, such as ”The Middle Way” [66], dramatically
reduce the bottom line running time of our algorithm over naive solvers. An important
note about the secular equations is that sj (σ2) is increasing between the intervals and
asymptote off to −∞ and +∞. Therefore, by intermediate value theorem, we have that
for σk(X) > σ > σk+1(X),

sj
(
σ2
)
≤ 0 if and only if σ ≥ σk

(
X\j
)
.

This fact will be used in our algorithm to skip solving many secular equations when we try
to find

j∗ = arg max
j∈I

σ1

(
X\j
)
.

Roots of PX(σ2) correspond to eigenvalues that have not changed, and thus need not be
considered.

9.3 Algorithm and Main Results

The rank-k truncated SVD and the secular equations for rank-1 updates motivate Algo-
rithm 13.

9.3.1 Singular Value Bounds

Next, we talk about theoretical guarantees.
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Algorithm 13 SPCA via Secular Backwards Elimination (BEPCA)

Inputs: m× n data matrix X, sparsity `, τ tolerance
Outputs: Us,Σs and Vs s.t. UsΣsV

T
s ≈ X

1: Let I = {1, · · · , n}
2: Compute a rank-k truncated SVD s.t. UkΣkV

T
k ≈ A, with k chosen according to (9.1).

3: Set Wk ← ΣkV
T
k

4: for i = n : −1 : ` do

5: Find j∗ s.t. j∗ = arg maxj∈I σ1

(
(Wk)\j

)
(Note: each secular eqn solve costs O(k))

6: Set I ← I \ {j∗}
7: Zero out column j∗ of Wk, i.e. Vk(j

∗, :) = 0
8: end for
9: Solve for top singular value/vector pair of remaining matrix UkWk.

Theorem 39 (Existence of Special Sub-matrices). Let F ∈ Rm×n and F\j ∈ Rm×(n−1) be
the matrix F with the jth column removed. Then we have that for each i ∈ {1, · · · , n}

max
1≤j≤n

σ2
i

(
F\j
)
≥ n− i

n
σ2
i (F ) +

i

n
σ2
n (F )

A sketch of the proof is as follows.
Let uj denote the jth column of F . Using Lemma 25, we examine

det
(
F\jF

T
\j − σ2I

)
= det

(
FF T − σ2I

) (
1− uTj

(
FF T − σ2I

)−1
uj

)
= det

(
FF T − σ2I

)
fj
(
σ2
)
.

We look for the roots of fj, which correspond to eigenvalues that have changed. Using the
trace trick on fj, we average over j

favg
(
σ2
)

:=
1

n

n∑
j=1

fj
(
σ2
)

=
1

n
tr
(
I −

(
F TF − σ2I

)−1
F TF

)
= − 1

n

n∑
s=1

σ2

σ2
s − σ2

Now, let j∗ = arg max1≤j≤n σi
(
F\j
)
. By interlacing, we have σi+1 (F ) ≤ σi

(
F\j
)
≤ σi

(
F\j∗

)
≤

σi (F ). Thus, each secular equation has 0 = fj
(
σ2
i

(
F\j
))
≥ fj

(
σ2
i

(
F\j∗

))
. So averaging over

j yields

0 ≥ favg
(
σ2
i

(
F\j∗

))
= − 1

n

n∑
s=1

σ2

σ2
s − σ2

.

This implies

0 ≤ 1

n

n∑
s=i+1

σ2

σ2
s − σ2

+
1

n

i∑
s=1

σ2

σ2
s − σ2

≤ n− i
n

σ2

σ2
n − σ2

+
i

n

σ2

σ2
i − σ2

which simplifies to the desired result.
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Corollary 6. Let F ∈ Rm×n be a matrix. Let the set J∗ =
{
j∗1 , · · · , j∗n−`

}
⊂ {1, · · · , n} be

defined as the set of n− ` columns removed by Algorithm 13, i.e.

j∗i = arg max
1≤j≤n−i+1

σ1

(
F\{j∗1 ,··· ,j∗i−1}

)
.

Let F\J∗ ∈ Rm×` be the matrix with the columns removed. Then, we have that

σ1

(
F\J∗

)
= σ1

(
F\{j∗1 ,··· ,j∗n−`}

)
≥
√
`

n
σ1 (F ) .

Corollary 6 follows by applying Theorem 39 n − ` times with i = 1. Next, we highlight
an important tool before proceeding:

Theorem 40 (Weyl’s Inequality for Singular Values). Let Y, Z ∈ Rm×n be any matrices and
i, j ∈ N such that i+ j ≤ n+ 1. Then

σi+j−1 (Y + Z) ≤ σi (Y ) + σj (Z)

This is exercise III.6.5 in [14]. Theorem 40 will be used in our final Theorem concerning
sparse singular values. The following theorem is particularly important because it gives
us theoretical guarantees of using the orthogonal deflation process in [70] with backwards
elimination for the every sparse principle component instead of the simply the first one. To
the author’s knowledge, this is the first theoretical guarantee of its kind in the literature for
SPCA.

Theorem 41 (Sparse Singular Value Bounds). Let X ∈ Rm×n. Then, the rth sparse singular
value obeys the following inequality

σsr ≥
√
`

n
max
1≤j≤r

(
σj (X)−

r−1∑
i=j

σsi

)
.

Proof. We apply Corollary 6 to the sparse singular value found by Backwards Elimination

σsr = σ1

[X − r−1∑
t=1

σstutv
T
t

]
\J∗

 ≥√ `

n
σ1

(
X −

r−1∑
t=1

σstutv
T
t

)

The remainder of the proof will be done by induction on r. The base case of r = 1 is
immediate, i.e. σ1(X) = σ1(X). For the inductive step, we simply need to prove that

σ1

(
X −

r∑
t=1

σstutv
T
t

)
≥ max

(
σ1

(
X −

r−1∑
t=1

σstutv
T
t

)
− σsr , σr+1 (X)

)
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However, this is just two simple applications of Weyl’s Inequality. The first one set Y =
X −

∑r
t=1 σ

s
tutv

T
t and Z = σsrurv

T
r with i = j = 1 to get

σ1

(
X −

r∑
t=1

σstutv
T
t

)
= σ1 (Y ) ≥ σ1 (Y + Z)− σ1 (Z)

= σ1

(
X−

r−1∑
t=1

σstutv
T
t

)
−σ1

(
σsrurv

T
r

)
= σ1

(
X−

r−1∑
t=1

σstutv
T
t

)
−σsr

The second set Y = X −
∑r

t=1 σ
s
tutv

T
t and Z =

∑r
t=1 σ

s
tutv

T
t with i = 1 and j = r + 1

σ1

(
X −

r∑
t=1

σstutv
T
t

)
= σ1 (Y ) ≥ σr+1 (Y + Z)− σr+1 (Z)

= σr+1 (X)− σr+1

(
r∑
t=1

σstutv
T
t

)
= σr+1 (X)

Taking the maximum over the two lower bounds establishes the recursion.

An important corollary is the sparse singular values always capture at least a fraction of
the true ones.

Corollary 7 (Sparse σsr at least a fraction of true σr(X) ). Let X ∈ Rm×n. Then, the rth

sparse singular value obeys the following inequality

σsr ≥
√
`

n
σr (X) .

We are now ready to prove Theorem 38 as a Corollary of Theorem 41.

Proof of Theorem 38. Consider r = 1 in Theorem 41, we have

‖Xsparse
k ‖2 ≥ σs ≥

√
`

n
σ1 (X) .

It follows that

‖X −Xsparse
k ‖2 = ‖X −Xk +Xk −Xsparse

k ‖2 ≤ σk+1 + ‖Xk −Xsparse
k ‖2

≤ τσ1

√
`

n
+ ‖Xk −Xsparse

k ‖2 ≤ τ ‖Xsparse
k ‖2 + ‖Xk −Xsparse

k ‖2

Analogously,

‖Xk −Xsparse
k ‖2 ≤ τ ‖Xsparse

k ‖2 + ‖X −Xsparse
k ‖2 .
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9.4 Numerical Experiments

We compare our sparse PCA algorithm with four other popular methods: the DSPCA
algorithm (DSPCA) [2], the approximation greedy forward-search algorithm (FSPCA) [1],
and the single-unit generalized power methods with L0 (PowerL0) or L1 penalty terms (Pow-
erL1)[69]. Both DSPCA algorithm and approximation greedy search algorithm are imple-
mented by using the software package from http://www.di.ens.fr/~aspremon/software.

html. Given covariance matrices, we construct the artificial data matrix via Cholesky fac-
torization or the matrix square-root using eigenvalue decomposition.

Table 9.1: Results for synthetic test 4.1.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 Variance

BEPCA, PC1 0 0.4082 0 -0.4082 -0.4082 -0.4082 0 0 0.4082 0 0 0.4082 90

FSPCA, PC1 -0.6220 0 0 0.0399 -0.4295 -0.2487 -0.5595 0 0 0 -0.2284 0 88.68

DSPCA, PC1 -0.7706 0 0 0 -0.2310 -0.0856 -0.5878 -0.0001 0 0.0003 0 0 87.19

PowerL0, PC1 0.5774 0 0 0 0.2887 0.2887 0.5774 0.2887 0 -0.2887 0 0 90

PowerL1, PC1 0.5774 0 0 0 0.2887 0.2887 0.5774 0.2887 0 -0.2887 0 0 90

9.4.1 Synthetic Example with Dense Leading Eigenvectors

We choose 4 mutually orthonormal vectors {ṽ1, ṽ2, ṽ3, ṽ4} whose entries are either +1 or
−1 (i.e. rows of Hadamard matrix):

ṽ1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T , ṽ2 = (1,−1, 1,−1, 1, 1, 1,−1,−1,−1, 1,−1)T

ṽ3 = (1,−1,−1, 1,−1, 1, 1, 1,−1,−1,−1, 1)T , ṽ4 = (1, 1,−1,−1, 1,−1, 1, 1, 1,−1,−1,−1)T

We generate another 8 random vectors {ṽ5, ṽ6, . . . , ṽ12} whose entries are drawn from uni-
form distribution U(0, 1), and form a matrix Ṽ = {ṽ1, ṽ2, . . . , ṽ12} with full rank. Then, we
compute an orthonormal matrix V = {v1, v2, . . . , v12} by applying Gram-Schmidt orthogo-
nalization to Ṽ . Using columns of V as eigenvectors, we obtain the covariance matrix with
the eigenvalues as 90, 90, 90, 90, 80, 79, 70, 50, 20, 18, 15, 15.

We test all 5 methods by generating the primary loading vector with cardinality 6. Note
that all eigenvectors are dense in this test, but the linear combination of the first 4 eigen-
vectors is sparse. As the first 4 largest eigenvalues are all equal to 90, an ideal sparse PCA
algorithm should be able to detect the implicit sparsity and return a linear combination of
the first 4 eigenvectors.

In table 9.1, BEPCA and the generalized power methods with L0 penalty or L1 penalty
successfully identified the potential sparsity pattern and return the first loading vector as a
linear combination of {v1, v2, v3, v4} with explained variance 90 (e.g. the first loading vector
for BEPCA is actually

√
2(v3 − v2)). However, FSPCA and DSPCA fail to recognize the
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Table 9.2: Results for synthetic test 4.2.

First Loading Vector Second Loading Vector
Median
Angle(o)

Median
Variance(%) Correct(%) Incorrect(%)

Median
Angle(o)

Median
Variance(%) Correct(%) Incorrect(%)

Sample Size 50

BEPCA 4.89 47.55 98.75 0.83 13.34 24.48 84.0 10.67

FSPCA 5.17 47.51 93.25 4.50 13.75 24.44 76.5 15.67

PowerL0 4.98 47.55 96.75 2.17 13.53 24.48 79.75 13.50

PowerL1 4.99 47.55 96.25 2.50 13.37 24.48 79.63 13.58

Sample Size 200

BEPCA 2.36 47.86 100 0 5.11 23.86 94.87 3.42

FSPCA 2.48 47.86 96 2.67 5.33 23.86 91.50 5.67

PowerL0 2.44 47.86 98 1.33 5.35 23.86 92 5.33

PowerL1 2.44 47.86 97 2 5.32 23.86 92.63 4.92

linear combination over 4 different eigenvectors and produce a sparse loading vector with
the same cardinality but less variance.

If the leading eigenvectors are sparse, BEPCA and FSPCA can both recover the sparsity
pattern and output the same accurate solution. However, when the leading eigenvectors are
dense, FSPCA shows less accuracy than BEPCA. In this example, FSPCA looks for addi-
tional columns to maximize the leading eigenvalue of its selected sub-matrix and wrongly
chooses columns from the last 8 random eigenvectors–giving a sub-optimal explained vari-
ance. By eliminating columns iteratively, BEPCA retains the first 4 eigenvectors and then
achieves the largest possible eigenvalue. This illustrates that the backward elimination is
able to obtain more accuracy than forward selection.

9.4.2 Synthetic Example for Data Matrices

This test was proposed by [86], where two sparse eigenvectors were chosen as

v1 = (0.422, 0.422, 0.422, 0.422, 0, 0, 0, 0, 0.38, 0.38)T

v2 = (0, 0, 0, 0, 0.489, 0.489, 0.489, 0.489,−0.147,−0.147)T

and then use the same trick from last numerical test finding the 8 random vectors and obtain
an orthonormal matrix V = {v1, v2, v3, . . . , v10}. We choose covariance matrix Σ = V SV T

with 10 eigenvalues as 200, 100, 50, 50, 6, 5, 4, 3, 2, 1. We generate sample data matrices of
size 50 from the artificial covariance matrix above and calculate the first two sparse loading
vectors with cardinality 6. Such a test is simulated 200 times, and then we investigate the
medians of explained variance and the angles between the extracted loading vectors and the
corresponding real eigenvectors, as well as the percentage of correctly/incorrectly identified
zero loadings for loading vectors.
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We perform this test on all sparse PCA algorithms except for DSPCA because the penalty
parameter was unable to achieve a cardinality to 6 every time. Table 9.2 shows that BEPCA
returns the smallest median angles, the best percentage of correctly/incorrectly identified
zeros. We repeat the same test 100 times but with sample size 200 at each time, and the
results are significantly improved for every algorithm. BEPCA identifies the zeros perfectly
when recovering the first sparse eigenvectors. Based on this test, we can see that BEPCA
quickly figures out the sparsity pattern of loading vectors with much fewer samples than any
of the other methods.

9.4.3 Pit Props Data

Pit Props data is a classic benchmark example to test sparse PCA algorithms due to the
difficulty of interpreting principal components and lack of sparsity. It consists 180 observa-
tions and 13 measured variables. We apply all the candidate methods to extract the first 6
loading vectors with similar cardinality restriction.

Table 9.3 shows that compared with DSPCA and FSPCA, BEPCA explains the most
cumulative variance using the same number of sparse loading vectors and the same cardi-
nalities. As for generalized power methods, BEPCA can interpret nearly the same variance
for the first few loading vectors but with less cardinality. The cumulative explained variance
exceeds those of generalized power methods as more loading vectors are generated.

Table 9.3: Results for PitProps test.

Cumulative Cardinality Cumulative Explained Variance
1PC 2PCs 3PCs 4PCs 5PCs 6PCs 1PC 2PCs 3PCs 4PCs 5PCs 6PCs

BEPCA 6 8 11 12 13 14 29.01 43.48 56.12 63.81 71.50 79.19
FSPCA 6 8 11 12 13 14 29.01 39.23 54.10 61.79 69.48 77.18
DSPCA 6 8 11 12 13 14 26.60 41.08 54.23 61.92 69.61 77.30
PowerL0 7 8 10 13 14 15 30.74 38.43 52.91 63.63 71.32 79.02
PowerL1 7 9 12 13 14 15 30.74 45.22 55.94 63.63 71.32 79.02

9.4.4 Gene Expression Data

We examine our algorithm on a large gene expression data matrix obtained from Gene
Expression Omnibus with GEO accession number GSE10006 [36, 88]. The data was originally
used to study the effect of smoking on the gene expressions of the intestinal lactoferrin
receptor in a particular tissue of the human airway [22]. The matrix has 87 samples and
54, 675 measured variables. We test BEPCA by generating the first sparse loading vector
with cardinality 200, based on the truncated SVD with rank k = 10, 30, 50, 70 and 87 (i.e.
full SVD). For each k, the run-time and explained variance are compared in the left plot of
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Fig 9.1. As k decreases, the explained variance only gradually decays. The performance,
nevertheless, benefits remarkably from small values of k. This corroborates Theorem 38 and
allows us to apply BEPCA efficiently to large data.

We want sparse principle components that can explain the variance based on different
small groups of variables and avoid the appearance of collinearity and linear dependence
among loading vectors [69, 105]. Therefore, for the second part of this test, we extract the
first three loading vectors {v1, v2, v3} and the corresponding right singular vectors {u1, u2, u3}
based on BEPCA, and compute the angles between them. From table 9.4, we can clearly
see that both u’s and v’s are almost orthogonal with each other, which means that multiple
principal components can interpret the original data from different directions.

Table 9.4: Angles between singular vectors (degree)

1st vs 2nd 1st vs 3rd 2nd vs 3rd

Loading
Vectors v 89.7797 87.6663 87.3315

Right Singular
Vectors u 88.5587 86.4175 85.8174

Various tests suggested that PowerL1 turns out to be more efficient algorithms but suffers
from at least two shortcomings: first, penalty parameters in PowerL1 must be tuned to obtain
the desired cardinality of loading vectors, which reduces the performance by repeating the
program a number of times; second, as showed in most of tests, PowerL1 is less accurate
than BEPCA and BEPCA can select better variables (See the result of synthetic test 2).
Therefore, we can use PowerL1 as a preprocessor to zero out a fair amount of components and
continue to run BEPCA until achieving the desired degree of sparsity. By this, no parameter
tuning is required. We test this hybrid algorithm still by extracting the first loading vector
with cardinality 200. The right plot of 9.1 reports the run time and variance for different
sparsity levels induced by PowerL1. We can see from the plot that the hybrid algorithm is
able to explain more variances with almost no extra cost on time.

9.5 Conclusion

We have presented a sparse PCA algorithm using backwards column selection. Utilizing
a low rank truncated SVD and solving the secular equations for eigenvalues significantly im-
proves performance. Also, several singular value bounds were derived to guarantee accuracy.
Numerical experiments demonstrate that our algorithm is also able to extract more accu-
rate sparse loading vectors and explain more variances comparing with some other popular
techniques.
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