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Abstract Brain stimulation modulates the excitability of neural circuits and drives neuroplasticity.

While the local effects of stimulation have been an active area of investigation, the effects on large-

scale networks remain largely unexplored. We studied stimulation-induced changes in network

dynamics in two macaques. A large-scale optogenetic interface enabled simultaneous stimulation of

excitatory neurons and electrocorticographic recording across primary somatosensory (S1) and

motor (M1) cortex (Yazdan-Shahmorad et al., 2016). We tracked two measures of network

connectivity, the network response to focal stimulation and the baseline coherence between pairs

of electrodes; these were strongly correlated before stimulation. Within minutes, stimulation in S1

or M1 significantly strengthened the gross functional connectivity between these areas. At a finer

scale, stimulation led to heterogeneous connectivity changes across the network. These changes

reflected the correlations introduced by stimulation-evoked activity, consistent with Hebbian

plasticity models. This work extends Hebbian plasticity models to large-scale circuits, with

significant implications for stimulation-based neurorehabilitation.

DOI: https://doi.org/10.7554/eLife.31034.001

Introduction
Many neurological and psychiatric disorders arise from dysfunctional neural dynamics at the network

level, which in turn stem from aberrant neural connectivity (Stam, 2014; Wu et al., 2016;

Edwardson et al., 2013; Yahata et al., 2016; DeSalvo et al., 2014; Skudlarski et al., 2010). The

brain shows marked plasticity across a variety of learning and memory tasks (Takeuchi et al., 2014;

Bliss et al., 2014) and during recovery after brain injury or stroke (Edwardson et al., 2013;

Hara, 2015; Murphy and Corbett, 2009), and many have proposed to take advantage of this innate

plasticity to treat neural disorders (Miller et al., 2010; Jackson et al., 2006; Lucas and Fetz, 2013;

Edwardson et al., 2013). In principle, brain stimulation protocols can be designed to leverage this

plasticity in order to rewire aberrant neural connectivity, potentially curing these disorders. Imple-

menting such treatments requires a better understanding of how stimulation-induced plasticity

drives changes in network connectivity and network dynamics.

The simple Hebbian model of plasticity (Donald, 1949) and spike-timing dependent versions of it

(Bi and Poo , 2001) explain a large body of data on activity-dependent plasticity, including both in

vitro (Massobrio et al., 2015; Abrahamsson et al., 2016), and in vivo (Andersen et al., 2017; Feld-

man, 2012; Shulz and Jacob, 2010) studies. Despite the extensive work studying Hebbian plasticity

at the cellular level, it remains unclear how synaptic plasticity leads to large-scale functional reorgani-

zation. Recently, several studies have shown large-scale plasticity following brain stimulation that is
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consistent with Hebbian mechanisms (Jackson et al., 2006; Lucas and Fetz, 2013; Seeman et al.,

2017; Nishimura et al., 2013; Rebesco and Miller, 2011; Rebesco et al., 2010; Song et al., 2013;

Lajoie et al., 2017). In particular, Fetz and colleagues implemented an activity-dependent stimula-

tion protocol, effectively introducing an artificial connection between two sites in the motor cortex

(Jackson et al., 2006; Lucas and Fetz, 2013). Continuous reinforcement of this artificial connection

led to a stable functional change in stimulation-evoked movements, indicating that stimulation indu-

ces large-scale plasticity. Recently these results were reproduced in a modeling work at the network

level (Lajoie et al., 2017). Similar results have been observed using open-loop stimulation protocols

to induce targeted plasticity between two cortical sites (Rebesco and Miller, 2011; Seeman et al.,

2017). Notably, these papers have reported off-target effects, but these were either interpreted as

global changes in excitability or were not explained. Although the results from closed-loop and

open-loop experiments suggest large-scale plasticity, the underlying neural network changes remain

unexplored.

Here, we measure connectivity across sensorimotor cortex and track changes in network connec-

tivity in response to open-loop stimulation. This work takes advantage of a large-scale optogenetic

interface (Yazdan-Shahmorad et al., 2016) that enables us to simultaneously stimulate populations

of excitatory neurons while recording large-scale m-electrocorticography (m-ECoG) activity across

two brain areas, S1 and M1. We first establish and compare two measures of functional connectivity

that provide complementary views of the mechanisms of plasticity. Next, we investigate how stimula-

tion impacts connectivity between and within cortical areas. We then test whether stimulation-

evoked activity drives large-scale network plasticity in a Hebbian manner. The goal of this work is to

investigate large-scale functional reorganization following stimulation, which will inform future neuro-

rehabilitation strategies.

Results
We performed optogenetic stimulation via laser illumination of the cortical surface while simulta-

neously recording surface potentials (mECoG) from about 1.5 cm2 of primary somatosensory (S1) and

eLife digest From riding a bike to reaching for a cup of coffee, all skilled actions rely on precise

connections between the sensory and motor areas of the brain. While sensory areas receive and

analyse input from the senses, motor areas plan and trigger muscle contractions. Precisely adjusting

the connections between these and other areas enables us to learn new skills, and it also helps us to

relearn skills lost as a result of brain injury or stroke.

About 70 years ago, a psychologist named Donald Hebb came up with an idea for how this

process might occur. He proposed that whenever two neurons are active at the same time, the

connection between them becomes stronger. This idea, that ‘cells that fire together, wire together’,

became known as Hebb’s rule. Many studies have since shown that Hebb’s rule can explain changes

in the strength of connections between pairs of neurons. But can it also explain how connections

between entire brain regions become stronger or weaker?

New results show that it can. The data were obtained using a technique called optogenetics, in

which viruses are used to introduce genes for light-sensitive proteins into neurons. Shining light onto

the brain will then activate any cells within that area that contain the resulting proteins. Yazdan-

Shahmorad, Silversmith et al. used this technique to activate small regions of either sensory or

motor brain tissue in live macaque monkeys. Doing so strengthened the overall connectivity

between the two areas. The effects were more variable at the level of smaller brain regions, with

some connections becoming weaker rather than stronger. However, Yazdan-Shahmorad, Silversmith

et al. show that Hebb’s rule explains most of the observed changes.

Many neurological and psychiatric disorders stem from abnormal brain connectivity. Simple forms

of brain stimulation are already used to treat certain neurological disorders, such as Parkinson’s

disease. Stimulating the brain to induce specific changes in connectivity may ultimately enable us to

leverage the brain’s natural learning mechanisms to cure, instead of just treat, these conditions.

DOI: https://doi.org/10.7554/eLife.31034.002
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motor (M1) cortices (Figure 1). The viral vector used to obtain opsin expression targeted excitatory

neurons (see supplementary material for details; Figure 1—figure supplement 1). These neurons

have strong projections within and between the two brain areas (Murray and Keller, 2011;

Kinnischtzke et al., 2014; Weiler et al., 2008). Activating these excitatory cells should increase the

excitability of the underlying network, improving the likelihood of neuroplastic change (Iriki et al.,

1989). In two macaque monkeys we explored stimulation-induced changes in network connectivity.

Two measures of functional connectivity between M1 and S1 show
strong correlation
We quantified inter-area functional connectivity between S1 and M1 using two different measures—

one based on the network response to optogenetic stimulation and the other based on spontaneous

neural activity.

The first measure focused on how the response to optical stimulation propagates through the

network. Optogenetic stimulation in S1 and M1 evoked responses across both cortical areas, and we

characterized these responses according to their amplitudes and delays (Figure 2A and E). The

delays exhibited a bimodal distribution with a 3–6 ms separation between the early and late

responses (Figure 2B and F). Classifying the responses across electrodes by delay recovers the spa-

tial separation between the two cortical areas—following a boundary along the central sulcus—with

shorter delays in the area being stimulated (S1 or M1; primary responses) and longer delays in the

other area (M1 or S1; secondary responses) (Figure 2C and G). The short delay of the secondary

responses suggests close functional connectivity between these areas. We quantified this connectiv-

ity with the stimulus-evoked response ratio (SERR). SERR was defined as the peak-to-trough ampli-

tude of the secondary responses (A2) normalized by the peak-to-trough amplitude of the primary

response (A1), with both responses measured in the high gamma (60–200 Hz) filtered signal (see

dashed-line inset boxes in Figure 2,A and E). The SERR is a measure of the connectivity between

the site of stimulation and sites in the other cortical area (see Figure 2D and H).

The second measure evaluates functional connectivity during spontaneous activity. We focused

on the coherence in field potential recordings between electrodes, a widely used measure of con-

nectivity that captures the degree of phase-locking between two signals (Lang et al., 2012;

Bastos and Schoffelen, 2015). We calculated the coherence between the site of stimulation and the

secondary sites across different frequency bands.

Because SERR and coherence are derived independently from recordings with and without simul-

taneous stimulation, they might reflect fundamentally different aspects of network connectivity.

Therefore, in each experiment we compared these two measures prior to conditioning stimulation.

Figure 3A shows two examples comparing SERR to coherence in the theta band (4–8 Hz). To quan-

tify the relationship between these measures, we performed linear regression between them across

channels (Figure 3B–C). An example showing a strong relationship between SERR and theta band

Laser 1

Laser 2

M1 S1

Laser 1

Laser 2

Figure 1. Stimulation and recording setup. Photo of the mECoG array placement over M1 and S1 in Monkey G

(left panel) and the placement of lasers on top of the array in two different configurations (middle panel: Monkey

G and right panel: Monkey J).

DOI: https://doi.org/10.7554/eLife.31034.003

The following figure supplement is available for figure 1:

Figure supplement 1. Opsin expression was observed only in pyramidal neurons.

DOI: https://doi.org/10.7554/eLife.31034.004
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coherence is shown in Figure 3B. This analysis was repeated for all coherence frequency bands and

for all experiments; the mean and standard error of the regression parameters are shown in

Figure 3C. The two measures of functional connectivity were highly correlated: across sessions, the

distribution of regression slopes was significantly different from 0 (t-test: p=3.73e-06), and 69 per-

cent of individual experiments showed significant linear regressions (p<0.05). This finding indicates

that at baseline, before any conditioning, the stimulation-evoked response reflects network dynamics

across the frequency spectrum.

Stimulation strengthens inter-area connectivity
We used a simple stimulation protocol—we delivered 5 ms laser light pulses at a frequency of 5 or 7

Hz at either one or two cortical sites (Figure 4A). For our initial analyses, and unless otherwise

noted, when stimulating at two cortical sites, we alternated stimulation between the two light sour-

ces to avoid any interference between the evoked responses from each light source. In each experi-

ment, conditioning stimulation was applied for 50 min, and we evaluated functional connectivity

every 10 min during blocks of passive baseline recording and active testing (100 light pulses deliv-

ered through each laser). We also conducted control sessions with the same passive recording and

testing blocks, but with no stimulation during the conditioning blocks.

A representative example experiment, shown in Figure 4B, shows that stimulation in M1 leads to

significant increases (paired t-test, p=3.88e�11) in mean SERR. Similar increases in SERR were

observed for a majority of experiments (14 out of 18 experiments) across both monkeys (Figure 4C).

The increases in connectivity were symmetric between the two cortical areas (Figure 4D). No signifi-

cant change in mean SERR was observed in control sessions without conditioning stimulation

(Figure 4D). Furthermore, the increase in SERR was significantly larger for stimulation sessions than

control sessions (unpaired t-test: p=0.0036)
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Figure 2. Using evoked responses to measure connectivity across M1 and S1. (A) Primary (blue) and secondary (orange) evoked responses to light

stimulation. The dark blue rectangle represents the duration of light stimulation. Shaded areas show standard error. The delays of evoked responses

are calculated as the time difference between the onset of stimulation and the time of the response trough (vertical lines at d1 and d2). (B) Distribution

of the delays color-coded based on the primary and secondary light-evoked responses. (C) Evoked responses across the array, color-coded based on

the delays. As shown here there is a spatial separation of primary and secondary responses that corresponds to the locations of M1 and S1. This

suggests that due to functional connectivity between M1 and S1, we see a delayed (secondary) response in S1 to light stimulation in M1. (D) S1

connectivity with the site of stimulation. The blue circle shows the location of stimulation in M1. The black line shows the location of central sulcus with

respect to the recording array. The size of the red circles represents the strength of connectivity between each site and the stimulation location for the

recording sites with secondary responses across S1. SERR Connectivity is defined as the peak-to-trough of filtered high gamma responses (60–200 Hz:

trace plots shown on the dashed rectangle on A) at each site (orange) normalized to the peak-to-trough of high gamma at the site of stimulation (blue).

(E–H) Same as A-D with the same array placement and S1 stimulation.

DOI: https://doi.org/10.7554/eLife.31034.005
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We next asked whether conditioning increased coherence-based measures of inter-area connec-

tivity. We did observe increases in mean theta band (4–8 Hz) coherence following conditioning, as

shown in Figure 4E for the same dataset used in Figure 4B (paired t-test, p=0.03). The increase in

theta coherence was significant for the majority of experiments (13 out of 20; Figure 4E), and the

effect was localized to the theta band (Figure 4G; paired t-test, p=0.017; Bonferroni correction for

multiple comparisons). We also looked for change in the theta-band power as a result of stimulation

and did not see any significant changes, supporting the conclusion that changes in coherence reflect

changes in functional connectivity (See Figure 4—figure supplement 2).

Stimulation weakens correlation between measures of functional
connectivity
We showed in Figure 3C above that SERR and coherence are correlated measures of functional con-

nectivity in the baseline condition. Here we ask how this relationship is changed by stimulation.

Figure 4H (black lines) replicates the baseline data from Figure 3C, along with new data showing

the correlation between these measures at the end of each experiment (green lines) and between

their conditioning-induced changes (yellow lines). After conditioning, the cross-channel correlation

between these measures significantly decreased (paired t-test, p=6.3e-10), and the changes in con-

nectivity were uncorrelated (t-test on distribution of regression slopes, p=0.85). This suggests that

the stimulation affects the two measures differently.

To further address this, we replicated this analysis for our control (no stimulation) sessions. In this

case, we did not see a significant decrease in the correlation between measures after control ses-

sions (paired t-test, p=0.36; see Figure 4—figure supplement 1). Additionally, a direct comparison

between the median decrease in the correlation for stimulation versus control sessions showed a sig-

nificant difference when all frequencies were considered (p=0.0025), though the difference was not

significant when only compared in the theta band. Together, these results show that the stimulation-

induced changes in these two measures of connectivity do not correlate with each other at a fine-

scale. This may reflect the fact that the two measures are not functionally equivalent, despite their

correlation, i.e., they capture related, but not identical, aspects of connectivity.
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Figure 3. Coherence measure of inter-area connectivity correlates with SERR. (A) S1 (Top panel) and M1 (bottom panel) theta coherence and SERR

connectivity with the site of stimulation in monkey G. The blue circle shows the location of stimulation. The black line shows the location of central

sulcus with respect to the recording array. The size of the red and white circles represents the strength of connectivity between each secondary site and

the stimulation location. (B) An example session showing relationship between SERR and theta coherence. The black line shows the linear regression fit.

(C) Linear relationship between evoked response and coherence across different frequencies. Summary data showing the mean and standard error

(shaded region) of regression parameters (shown in B) across frequencies.

DOI: https://doi.org/10.7554/eLife.31034.006

The following source data and source codes are available for figure 3:

Source code 1. Comparing SERR and coherence measurements for example session and across sessions.

DOI: https://doi.org/10.7554/eLife.31034.007

Source data 1. SERR and coherence across channels for example session and across sessions.

DOI: https://doi.org/10.7554/eLife.31034.008
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Figure 4. Single site and long-latency stimulation increase the functional connectivity between M1 and S1. (A)

Experimental protocol. Conditioning stimulation was interrupted by periodic connectivity measurements including

passive recording and active testing. Either one or two non-interfering lasers were used. (B) Examples of changes
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Figure 4 continued on next page
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Stimulation drives increases in inter-area connectivity within 10 min
blocks
As shown in Figure 1B, our stimulation protocol included 5 repetitions of baseline recording, test-

ing, and conditioning. This design allowed us to track connectivity changes across time, after each

10 min increment of conditioning. Additionally, since neural activity was recorded throughout the

experiment, we were able to measure changes in SERR during conditioning blocks. Figure 5A shows

the evolution of mean inter-area connectivity for both measures in an example session. To account

for differences in network connectivity across monkeys and sessions, we also analyzed the changes

in each measure with respect to the baseline pre-conditioning measurements (Figure 5B). For this

example session (Figure 5A), and on average across all sessions (Figure 5B), there is a trend of

increasing connectivity across the session that starts within the first 10 min conditioning block. These

increases in inter-area connectivity measured with SERR and coherence (Figure 5B) were correlated

across time (Pearson correlation coefficient = 0.26). Additionally, the rate of strengthening was con-

sistent across conditioning blocks; we detected a significant increase in SERR (p<0.05) at ~ 4.5 min

of stimulation in 4 out of 5 conditioning blocks (see Figure 5—figure supplement 1 for comparison

with control sessions).

Figure 4 continued

connectivity after 50 min. of conditioning. (C) Summary of SERR changes across all experiments. Each symbol

represents the connectivity averaged over all secondary channels for one experiment. Filled markers show

significant changes (paired t-test; p<0.05, the p-values for each experiment are listed in the supplementary

spreadsheet). (D) Changes in SERR when stimulating in either S1 or M1 in comparison to control. Error bars

represent standard error and asterisks show significant changes (paired t-test; Control: p=0.8, laser in S1: p=0.01,

laser in M1: p=1.6e-04). (E) Examples of changes in theta (4–8 Hz) coherence across the recording array. (F)

Summary of theta coherence changes across all experiments. Each marker represents the connectivity averaged

over all channels for one experiment. Filled markers show significant changes (paired t-test; p<0.05, the p-values

for each experiment are listed in the supplementary spreadsheet). (G) Change in coherence across different

frequency bands in comparison to controls. Asterisk show significant difference between the two groups (unpaired

t-test, Bonferroni corrected; p<0.05, the p-values are listed in the supplementary spreadsheet). (H) Linear

relationship between SERR and coherence across different frequencies for pre-stim, post-stim and the change in

both measures. Summary data showing the mean and standard error (shaded region) of regression slope and r2 as

a function of coherence frequency (see the example regression for the theta-band in Figure 3B).

DOI: https://doi.org/10.7554/eLife.31034.009

The following source data, source code and figure supplements are available for figure 4:

Source code 1. Comparing SERR and coherence measurements across channels for example session and for all

sessions broken down by experimental condition.

DOI: https://doi.org/10.7554/eLife.31034.016

Source data 1. SERR and coherence measurements across channels for example session and for all sessions bro-

ken down by experimental condition.

DOI: https://doi.org/10.7554/eLife.31034.017

Figure supplement 1. Linear relationship between SERR and coherence across different frequencies for control

sessions.

DOI: https://doi.org/10.7554/eLife.31034.010

Figure supplement 1—source code 1. SERR and coherence relationship across different frequencies for control

sessions.

DOI: https://doi.org/10.7554/eLife.31034.011

Figure supplement 1—source data 1. SERR and coherence measurements acrossdifferent frequencies and chan-

nels for control sessions.

DOI: https://doi.org/10.7554/eLife.31034.012

Figure supplement 2. Change in power following stimulation.

DOI: https://doi.org/10.7554/eLife.31034.013

Figure supplement 2—source code 1. Comparison of power measurements between control and stimulation

data across different frequency bands.

DOI: https://doi.org/10.7554/eLife.31034.014

Figure supplement 2—source data 1. Power measurementsacross different frequency bands for each session.

DOI: https://doi.org/10.7554/eLife.31034.015
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Note that the stimulation-induced plasticity was not reinforced during baseline recording blocks.

Given the length of the conditioning (10 min) and baseline recording (5 min in most experiments)

blocks, one might expect that stimulation-induced changes would revert back to baseline. We did

observe a significant decrease (paired t-test, p=2.9e-05) in the SERR between the last 100 pulses of

the conditioning block and the following test block, indicating some unlearning of the stimulation-

induced connectivity changes.

Stimulation drives fine-scale changes across the network that are
consistent with Hebbian learning
We next evaluated the fine-scale effects of conditioning across the entire network. Since SERR is

restricted to connectivity from the stimulation site, this analysis was conducted using only changes in

pairwise coherence. Figure 6A shows data from an example session, with connectivity changes rep-

resented as a set of heatmaps: the heatmap at each recording site represents the change in pairwise
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Figure 5. Stimulation induces an increase in inter-area connectivity across time. (A) An example of the dynamics of

mean inter-area SERR and coherence in an experiment. Black lines show linear regression to each conditioning

block. (B) Dynamics of change in SERR and theta coherence with respect to baseline connectivity across all

experiments (shaded area show standard error).

DOI: https://doi.org/10.7554/eLife.31034.018

The following source data, source code and figure supplements are available for figure 5:

Source code 1. Change in SERR and coherence measurements for example session and summary over stimulation

sessions.

DOI: https://doi.org/10.7554/eLife.31034.022

Source data 1. SERR and coherence measurements for stimulation sessions.

DOI: https://doi.org/10.7554/eLife.31034.023

Figure supplement 1. Dynamics of changes in connectivity for control sessions.

DOI: https://doi.org/10.7554/eLife.31034.019

Figure supplement 1—source code 1. Change in SERR and coherence measurements for control sessions across

time.

DOI: https://doi.org/10.7554/eLife.31034.020

Figure supplement 1—source data 1. SERR and coherence measurements for control sessions across time.

DOI: https://doi.org/10.7554/eLife.31034.021
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coherence between that electrode and all of the other electrodes. A magnified example heatmap is

shown in Figure 6A, right; top panel. This example shows heterogeneous changes in connectivity

across the network.

We next asked whether such heterogeneous changes are to be expected. A Hebbian plasticity

model suggests that the fine-scale changes in connectivity should reflect the statistics of plasticity-

inducing activity. In this case, we predicted that correlated stimulation-evoked activity between two

cortical sites would strengthen the functional connectivity between them, while uncorrelated or anti-

correlated stimulation-evoked activity would weaken their functional connectivity. We quantified

stimulation-induced correlations by measuring the pairwise coherence during the conditioning block

and subtracting out the coherence calculated during baseline recording (thought to be representa-

tive of initial connectivity). We refer to this difference as the stimulus-evoked coherence. Indeed, in

the example session of Figure 6A, one can see a similarity between the pattern of changes in base-

line coherence across the array (left panel) with the stimulus-evoked coherence (middle panel).

To quantify this similarity, we used linear regression to predict changes in baseline coherence

across sites based on the stimulus-evoked coherence. Importantly, both of these quantities use the

initial baseline coherence as a reference. So to avoid spurious correlations introduced by subtracting

the same data from the two regression variables, we split the baseline recording blocks into two

intervals and used the data from only one interval for each regressor (See Materials and Methods for

more details). Data from the example session in Figure 6A is shown as a scatter plot in Figure 6B,

along with the calculated regression parameters. The plot shows a strong correlation between the

stimulus-evoked coherence and changes in baseline coherence. This relationship was consistent
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Figure 6. Hebbian plasticity models explain stimulation-induced fine-scale network connectivity changes. (A) An example session highlighting the

similarity between the stimulus-evoked coherence (middle panel) and the change in baseline coherence (left panel) across the array in Monkey J. At

each recording site across the array, a heatmap represents the respective coherence between that location with all other recording sites. Enlarged

examples for a single location are compared in the right panel. The black line shows the location of central sulcus on the array and rectangles show the

location of the magnified examples. The average value across the array was subtracted for visualization. (B) Linear regression between stimulus-evoked

coherence and the change in baseline coherence for the example session shown in A. (C) Summary of regression parameters across single-site and

non-interference experiments. Errorbars show standard error.

DOI: https://doi.org/10.7554/eLife.31034.024

The following source data and source codes are available for figure 6:

Source code 1. Comparing pairwise coherence measurements for example session and summary of regression parameters for stimulation sessions.

DOI: https://doi.org/10.7554/eLife.31034.025

Source data 1. Pairwise coherence measurements for example session and regression parameters for all sessions by experimental condition.

DOI: https://doi.org/10.7554/eLife.31034.026
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across our data (Figure 6C): the distribution of linear regression slopes across experimental sessions

and monkeys was significant (paired t-test: p=2.41e-19; 101 out of 105 experimental blocks had sig-

nificant (p<0.05) linear regression models). These results support a Hebbian model for network-wide

changes in connectivity.

To further test this model, we conducted some experimental sessions using a more complex spa-

tio-temporal pattern of optical stimulation. Specifically, by reducing the latency between the two

light sources to either 10 or 30 ms (Figure 7A), we introduce interference between evoked

responses from the two light sources (Figure 7B). We repeated the analysis of mean inter-area

coherence changes (c.f. Figure 4F) for these sessions, and we did not see a consistent increase in

mean inter-area connectivity (Figure 7C). Nevertheless, we found that stimulus-evoked coherence

continued to predict changes in baseline coherence (paired t-test on the distribution of regression

slopes: p=1.37e-28; linear regression slopes with p<0.05: 160 out 170 blocks; Figure 7D, see Fig-

ure 7—figure supplement 1 for an example session). Furthermore, the regression parameters were

similar to those obtained with the simple stimulation patterns (Figure 6C), and both simple and com-

plex stimulation experiments yielded regression slopes that were significantly larger than those

obtained from control sessions (long-latency vs. control sessions, ranksum test: p=0.048; short-

latency vs. control sessions, ranksum test: p=0.037; see Figure 7—figure supplement 2).

These results demonstrate a robust relationship between stimulus-evoked correlations and

changes in baseline connectivity across the network. These findings are well explained by a Hebbian

model of large-scale stimulation-induced plasticity.

Discussion
In this study we investigated how the functional connectivity between and across sensory and motor

areas changes in response to stimulation. With optogenetics, we selectively manipulated local popu-

lations of excitatory neurons within this sensorimotor network. We compared two different methods

to measure functional connectivity at both gross- and fine-scales, and demonstrated how these

measures change in response to conditioning stimulation. We showed that these changes are consis-

tent with Hebbian synaptic plasticity rules, extending Hebbian models of stimulation-driven plasticity

to large-scale networks. This work demonstrates the feasibility of driving targeted plasticity with

optogenetic stimulation. This framework is a starting point for designing principled approaches to

large-scale neuroplasticity and stimulation-based therapies for neurological and neuropsychiatric

disorders.

Measures of Functional connectivity between M1 and S1
Functional connectivity between M1 and S1 has been demonstrated in fMRI (Matsui et al., 2011;

McGregor and Gribble, 2015), electrophysiology (Iriki et al., 1989; Yazdan-Shahmorad et al.,

2016; Prsa et al., 2017), and anatomical studies (Kosar et al., 1985; Petrof et al., 2015). To evalu-

ate stimulation-induced changes across these areas we investigated two measures of functional con-

nectivity, one based on stimulation and one based on natural neural processing. Variants of SERR

(Seeman et al., 2017; Feldmeyer and Sakmann, 2000; Klinshov et al., 2014) and coherence

(Bastos and Schoffelen, 2015; Lang et al., 2012) have been used previously to evaluate functional

connectivity. However, to our knowledge they have never been used in combination or compared.

In principle, these two measures reflect different aspects of functional connectivity. SERR is a

more direct measure of the projections from the stimulation site. Importantly, stimulation likely

evokes activity from both terminals and cell bodies located at the stimulation site, though C1V1

does not express well down at the axon (Rajasethupathy et al., 2015). Secondary responses arise

from a combination of synaptic, antridromic, and indirect (network) effects. That said, based on the

timing of the evoked responses and the limited expression of C1V1 in axon terminals, we expect the

amplitude of secondary responses normalized to primary response amplitudes to reflect synaptic

connectivity. Coherence, on the other hand, measures the broader effects of network-wide

dynamics.

Despite these differences, we saw that the measures are robustly correlated across channels at

the beginning of our experiments. This would be expected in a network where stability was main-

tained with a Hebbian mechanism. In other words, direct connectivity, as reflected in SERR, drives

correlated activity, which is reflected in coherence; conversely, correlated activity drives changes in

Yazdan-Shahmorad et al. eLife 2018;7:e31034. DOI: https://doi.org/10.7554/eLife.31034 10 of 21

Research article Neuroscience

https://doi.org/10.7554/eLife.31034


A

1
0
 u

V

5 mSec

D

Laser 1 Laser 2

B

0 0.5 1
Pre Stim

0

0.5

1

P
o
s
t 
S

ti
m

Monkey G
Monkey J

C

Laser 2
Laser 1

Record Test Condition: 10 minutes Record Test

Latency

140 or 200 ms

Laser 2

Laser 1

.  .  .

x  5

{ {Baseline Baseline

0

0.25

0.5

0.75

S
lo

p
e

1−>2 2−>3 3−>4 4−>5 5−>6
0

0.1

0.2

0.3

0.4

Blocks

r2

Figure 7. Hebbian plasticity models explain fine-scale network connectivity changes driven by complex spatio-

temporal stimulation patterns. (A) Same stimulation protocol as described in 4A. However, here we reduced the

latency between to the two lasers to 10 ms or 30 ms, creating a more complicated pattern of stimulation. (B) An

example of the stimulus-evoked activity across the array from Monkey G. Blue circles show the locations of

stimulation. The inset shows the enlarged pattern of evoked response at the framed electrode, which is located

close to both lasers. (C) Summary of inter-area theta coherence changes for all interference experiments across

both monkeys. (D) Summary of regression parameters across all interference experiments. Errorbars show standard

error.

Figure 7 continued on next page
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connectivity (see Network effects). These coupled mechanisms lead the network to a stable, steady

state (Fox and Stryker, 2017; Toyoizumi et al., 2014; Zenke and Gerstner, 2017).

Notably, however, our conditioning protocol caused the two measures of connectivity to become

less correlated across electrodes. This might seem surprising given that conditioning led to a signifi-

cant mean increase in connectivity between S1 and M1 for both measures and that the changes in

coherence were robustly predicted by the stimulus-evoked coherence. However, this decrease in the

correlation between the measures after conditioning seems to be limited to high frequencies and

may reflect a transient instability of the network due to the stimulation-induced perturbations in

connectivity.

Stimulation changes the functional connectivity between M1 and S1
Previous work has demonstrated that either activity dependent (Jackson et al., 2006; Lucas and

Fetz, 2013; Nishimura et al., 2013; Rebesco et al., 2010; Song et al., 2013) or paired electrical

stimulation (Rebesco and Miller, 2011; Seeman et al., 2017) can lead to plastic changes in both pri-

mate and rodent cortex. Here we demonstrated that optogenetic stimulation at even a single loca-

tion strengthens inter-area functional connectivity between brain areas. A similar observation was

reported for one session of single-site electrical stimulation (Seeman et al., 2017). This result is con-

sistent with spike-timing dependent plasticity (STDP) rules (Bi and Poo , 2001). In particular, since

the time difference between the activation of the primary (pre-synaptic) and secondary (post-synap-

tic) responses to optical stimulation is about 3–6 ms, repetitive stimulation should strengthen the

connectivity from the site of stimulation to the other area. While stimulation-induced long-term

potentiation (LTP) and STDP have been observed within local circuits (Iriki et al., 1989; Feld-

man, 2012; Shulz and Jacob, 2010), and have been posited as the mechanism of stimulation-

induced plasticity within M1 (Lajoie et al., 2017) this is the first study explaining large-scale changes

across cortical networks. Notably, conditioning drove increases in coherence between S1 and M1

only in the theta band (4–8 Hz). This result is difficult to interpret because the conditioning stimula-

tion frequency (5 or 7 Hz) itself lies within the range of the theta band. It is possible that Hebbian

mechanisms are selectively enhancing connectivity at the conditioning frequency. It’s also possible

that theta band coherence best reflects the plastic connections between these areas. Since we did

not vary stimulation frequency outside of this range, no strong conclusions can be drawn.

Figure 7 continued

DOI: https://doi.org/10.7554/eLife.31034.027

The following source data, source code and figure supplements are available for figure 7:

Source code 1. Coherence measurements and regression parameters for short-latency stimulation sessions.

DOI: https://doi.org/10.7554/eLife.31034.034

Source data 1. Coherence measurements and regression parameters for short-latency stimulation sessions.

DOI: https://doi.org/10.7554/eLife.31034.035

Figure supplement 1. Short-latency example showing the relationship between input coherence and change in

baseline coherence.

DOI: https://doi.org/10.7554/eLife.31034.028

Figure supplement 1—source code 1. Comparing pairwise coherence measurements for example session and

regression parameters for all sessions by experimental condition.

DOI: https://doi.org/10.7554/eLife.31034.029

Figure supplement 1—source data 1. Pairwise coherence measurements for example session and regression

parameters for all sessions by experimental condition.

DOI: https://doi.org/10.7554/eLife.31034.030

Figure supplement 2. Comparing the effects of stimulation on network connectivity between stimulation and

controls.

DOI: https://doi.org/10.7554/eLife.31034.031

Figure supplement 2—source code 1. Plot regression parameters for all sessions by experimental condition.

DOI: https://doi.org/10.7554/eLife.31034.032

Figure supplement 2—source data 1. Regression parameters for all sessions by experimental condition.

DOI: https://doi.org/10.7554/eLife.31034.033
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Dynamics of connectivity changes
The temporal dynamics of both measures reveal a trend of increasing inter-area connectivity

throughout the experiment. This trend suggests that neuroplastic changes start almost immediately

after the start of stimulation. Interestingly, we observed unlearning of the stimulation-induced

changes during passive recording, though some of the stimulation-induced changes persisted. Previ-

ous studies have shown that longer conditioning sessions (3–48 hr) result in changes that are stable

over timescales comparable to the length of conditioning (Jackson et al., 2006; Lucas and Fetz,

2013; Seeman et al., 2017; Nishimura et al., 2013; Rebesco and Miller, 2011). Further experi-

ments are required to estimate the stability of plasticity following optogenetic stimulation over lon-

ger time scales.

Network effects
Given that Hebbian rules have been used extensively to explain synaptic plasticity, we wanted to

explore the idea that large-scale stimulation-induced changes are consistent with Hebbian plasticity.

The strongest test of the Hebbian model is to compare the correlations directly induced by stimula-

tion with the changes in network correlations observed after conditioning. Our ability to record arti-

fact-free signals during stimulation allowed us to perform this test. We did find a predictive linear

relationship between stimulus-evoked coherence and the changes in baseline coherence after condi-

tioning. Furthermore, the model held for both simple and complex spatiotemporal patterns of stimu-

lation-evoked activity.

Comparison with previous sensory cortical plasticity literature
There is a large body of research on sensory cortical plasticity (Merzenich et al., 1983; Qi et al.,

2011). This study differs in two key dimensions. First, previous work has largely focused on how

changes in the statistics of sensory input and/or motor output affect the cortical representation in

sensory cortex. In contrast, we have directly manipulated cortical circuits, without a detailed knowl-

edge of the somatotopic map. Also, earlier work studied plasticity on the time scale of days to

months, while we are studying changes across minutes. Despite these differences, both appear to

support a key role for Hebbian learning in sensorimotor cortical plasticity. Still, a deeper understand-

ing of the relationship between these bodies of work would require a study of intermediate time-

frames as well, along with detailed cortical mapping. These are important questions for future work.

Limitations of the setup
The large-scale interface used in this study enabled robust estimation of functional connectivity and

stimulation-evoked correlations. However, there are several limitations in our experimental setup.

First, surface stimulation combined with high blue light absorption and scattering in tissue limits the

depth of light penetration (Yizhar et al., 2011). The ability to target specific cortical layers would

help us understand the anatomical basis of the plasticity we observed. Second, surface mECoG

recordings reflect a summation of nearby neural activity, making comparisons to explicit synaptic

learning rules difficult. Depth recordings would reveal more detailed information about spike timing,

the role of different cortical layers, and the relationship between synaptic and large-scale plasticity.

Lastly, the mECoG arrays were placed acutely for each experiment. To investigate the long-term

effects of stimulation we need stable, chronic recordings.

Clinical applications
Our results offer a proof-of-concept that optogenetic stimulation can drive predictable changes in

network-scale connectivity. The success of optogenetics in NHP represents an important step for-

ward for translational use (Doroudchi et al., 2011; Han, 2012). The continued rapid progress in the

field has the potential to bring cell-type specific neuromodulation therapies to the clinic. However,

even where therapeutic approaches ultimately wind up using electrical stimulation, the advantages

of optogenetics make it a powerful tool for better understanding the underlying mechanisms of plas-

ticity and, thus, for the development of therapeutic applications of neuromodulation. This framework

also provides scientific insight into the mechanisms of neural plasticity. Future efforts should focus

on linking the plasticity results presented here with improvements in motor function or sensory per-

ception, which will have important implications for stimulation-based therapies.
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Materials and Methods
Two adult male rhesus monkeys (monkey G: 8 years old, 17.5 Kg; monkey J: 7 years old, 16.5 Kg)

were used in this study. We used the same animals and interface published in (Yazdan-

Shahmorad et al., 2016). All procedures were performed under the approval of the University of

California, San Francisco Institutional Animal Care and Use Committee and were compliant with the

Guide for the Care and Use of Laboratory Animals.

Optogenetic Interface
Here, we give a brief summary of our large-scale optogenetic interface (details in (Yazdan-

Shahmorad et al., 2016). We combined three existing techniques to implement a practical, large-

scale interface for both manipulation and recording from the surface of the brain in two rhesus

macaque monkeys. We used an efficient technique for infusion of the optogenetics viral vector

(AAV5.CamKIIa.C1V1(E122T/E162T).TS.eYFP.WPRE.hGH, 2.5 � 1012 virus molecules/ml; Penn Vec-

tor Core, University of Pennsylvania, PA, USA, Addgene number: 35499) into primary somatosensory

(S1) and motor (M1) cortices based on convection-enhanced delivery (CED). We infused 200 mL of

virus in four sites (two in M1 and two in S1) in monkey G and 250 mL in five sites (two in M1 and three

in S1) of monkey J. Infusion rate started at 1 ml/min and was increased to 5 ml/min. Following infusion

we used an artificial dura to protect the brain while maintaining optical access. We verified expres-

sion with epifluorescent imaging. To record the evoked responses in both M1 and S1, we used either

one or two 96 channel micro-electrocorticography (m-ECoG) arrays that were designed to allow mini-

mally-attenuated (Ledochowitsch et al., 2015) optical access. In both animals, we observed reliable

light evoked neural responses from the large channel-expressing areas.

Data acquisition
Optical stimulation was applied using a fiber optic (core/cladding diameter: 62.5/125 um, Fiber Sys-

tems, TX, USA) that was connected to a 488 nm laser (PhoxX 488–60, Omicron-Laserage, Germany)

and was positioned above the array (Figure 1). We used a Tucker-Davis Technologies system (FL,

USA) for m-ECoG recording and to control the laser stimulus.

We chose the locations of stimulation based on the results of our epifluorescent imaging (see

(Yazdan-Shahmorad et al., 2016)) and whether we got a physiological response to light stimulation.

Based on detailed histological and electrophysiological analyses, (see (Yazdan-Shahmorad et al.,

2016)) we estimate that there was a uniform distribution of expression around our infusion sites and

at the locations that we chose to stimulate.

The monkeys were awake sitting in primate chairs for the duration of experiments. To ensure that

the monkey remained awake, we provided random reward as well as audio and visual stimuli (dis-

playing a cartoon). In addition, we visually monitored the animal throughout the experiment.

Stimulation and recording protocol
Our stimulation and recording paradigms consisted of baseline recording, testing and conditioning

blocks (Figure 4A). During baseline recording blocks we collected 5 min or 30 s of baseline activity.

In test blocks we delivered 100 light pulses (five msec duration at 5 Hz) to each laser; pulses were

alternated between laser sites in blocks of 10 pulses each in order to reduce the effects of habitua-

tion. For the conditioning blocks we stimulated through one or two lasers at a frequency of 5 or 7

Hz for 10 min. We repeated this protocol five times for each experiment. Our experiments consisted

of single- and two-site stimulation with different laser configurations: i) one or two lasers in M1, ii)

one or two lasers in S1 and iii) one laser in M1 and one laser in S1. For two-site stimulation, the delay

between the two lasers was 10, 30, 70 or 100 ms. We also included control sessions in which we

kept the structure of passive recording and active testing blocks, but did not stimulate during the

conditioning blocks.

Quantification and Statistical Analysis
Preprocessing
All processing and statistical analyses were performed using custom MATLAB (MA, USA) code. After

signal acquisition, broadband surface potentials (sampled at 24 kHz) were visually inspected, and

faulty recording sites were removed from further analysis. Next, stimulation-triggered responses
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were visually inspected for photoelectric artifacts (characterized by their timing, and amplitude; see

(Yazdan-Shahmorad et al., 2016; Ledochowitsch et al., 2015)), and removed from analysis. Next,

two measures of connectivity were defined to quantify the strength of functional connectivity

between M1 and S1.

Stimulus-Evoked Response Ratio
During test blocks, we delivered 100 stimulus pulses at 5 Hz through each laser. To capture high-

fidelity timing of the signal and avoid significant phase distortions we acausally band-pass filtered

[0.1–500 Hz] the broadband signal. We first calculated the delay between the onset of the stimulus

pulse and the response measured at each electrode. We calculated the delay from an average wave-

form across the distribution of evoked responses (bootstrapped 1000 times). This bootstrapped

averaging was less susceptible to artifacts and noise that could dominate the signal on individual tri-

als. The average evoked response lasted no longer than 30 ms with the trough of the response

occurring in the first 5–15 ms. We defined the delay of the evoked response as the time of the

trough within 20 ms of stimulation onset (Figure 2A and E). The distribution of delays across record-

ing sites (Figure 2B and F) was bimodal with a delay greater than 1.5 ms between the modes. We

manually set a threshold based on this delay distribution to distinguish between ‘primary’ and ‘sec-

ondary’ sites, i.e. those in the same area as the stimulation site and those in the other area. Sessions

without a secondary response were excluded from further analysis (see Table 1 for details).

Next, we calculated the amplitude of each evoked response. We downsampled the raw surface

field potentials to 1 kHz (after applying a lowpass Chebychev filter for anti-aliasing) and applied an

acausal band-pass filter to capture high gamma activity (60–200 Hz)), which is known to be represen-

tative of neural activity of local cortical columns (Suzuki and Larkum, 2017; Yazdan-

Shahmorad et al., 2013). The peak (maximum) and trough (minimum) of the evoked waveform were

identified within a 20 ms window after each laser pulse (Figure 2AE, in dashed inset boxes) and the

peak-to-trough difference was computed. The SERR was then defined as the average (across 100

repeated laser pulses) of the ratio of two peak-to-trough amplitudes, the one for the secondary site

over the one for the stimulation site. We considered other measures for calculating SERR, including

commonly used measures such as the amplitude or slope of the broadband stimulus-evoked

response (see Table 2). High gamma peak-to-trough amplitude yielded the most robust results.

Changes in SERR were calculated by taking the difference in SERR between the initial and final

testing blocks for each secondary site. A paired, two-sided t-test was used to determine whether

SERR changes were significant across secondary recording sites. Similarly, a paired, two-sided t-test

was applied to determine significance across sessions separately for controls (in which no stimulation

was applied during conditioning), stimulation in M1, and stimulation in S1. Unpaired, two-sided

t-tests were used to directly compare the change in SERR between all stimulation sessions and all

control sessions. P-values less than. 05 were considered significant.

Coherence
First, broadband surface potentials were downsampled to 1 kHz (after applying a lowpass Cheby-

chev filter for anti-aliasing). Then pairwise coherences were calculated in 10 s Hamming windows in 4

Hz frequency bands. The coherence between channels x and y is defined as:

Table 1. Summary of the sessions for both monkeys.

The data was collected in two to three week periods for each animal. Depending on the health of the

animal and the quality of the neural recordings one to four experiments were performed per day.

Monkey G Monkey J

Number of sessions 37 33

Number of sessions analyzed 29 15

Number of control sessions 3 2

Number of single-site and long latency sessions 6 9

Number of short-latency sessions 20 4

DOI: https://doi.org/10.7554/eLife.31034.036
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Cxy fð Þ ¼
jGxy fð Þj2

Gxx fð ÞGyy fð Þ

where Gxx and Gyy refer to power spectral density of channels x and y respectively, and Gxy refers to

their cross-spectral density. For simplicity, in future equations we refer to the coherence between

channels x and y as C. Coherence in the theta band (4–8 Hz) was used in all analyses, unless other-

wise specified.

Changes in inter-area coherence were calculated by taking the difference in coherence between

the initial and final recording blocks. Significant changes after individual sessions were detected with

a paired, two-sided t-test across secondary sites. Across sessions, changes in inter-area coherence in

each frequency band were compared between stimulation sessions and control sessions with an

unpaired, two-sided t-test, applying the Bonferroni correction for multiple comparisons.

Connectivity Dynamics
Both the SERR and inter-area theta coherence were measured for each baseline recording and each

test block during the experiment. To measure connectivity during the conditioning block, the block

was sectioned into 100-pulse segments, and the SERR was calculated for each of these segments.

To understand the connectivity trends, we pooled experiments together and calculated the average

connectivity measures. To account for initial differences in connectivity across sessions and monkeys,

we calculated the average changes in each connectivity measure with respect to its initial value and

computed their Pearson correlation across sessions and blocks.

Table 2. Comparison between different measures for calculating SERR.

We decided a priori to calculate the SERR using the high gamma peak to trough as a response metric, since high gamma potentials

are thought to represent the population activity of local cortical columns (Yazdan-Shahmorad et al., 2013; Suzuki and Larkum,

2017). Post-hoc, we performed further analysis to investigate whether the other measures (listed in the above table) show similar

effects to the high-gamma peak to trough. As shown here, all of the measures show a significant increase following stimulation (second

column) whereas they do not show a significant change after control sessions in which there is no stimulation applied (first column).

However, other measures are more variable and do not show increases relative to the control sessions (third column). Furthermore,

only high-gamma peak to trough and broadband amplitude are significantly correlated with coherence in the baseline condition

(fourth column). Overall, this suggests that the amplitude of the high-gamma signal is the best of these metrics for estimating connec-

tivity. All effect sizes in this table reflect the median change in connectivity across sessions for each measure; p-values reflect the out-

put of signrank (columns 1 and 2) and ranksum (column 3) statistical tests.

Evoked
Response
Measure

Change in
Connectivity during
Control Sessions

Change in Connectivity
during Long Latency Stim
Sessions

Change in Connectivity in Control
Sessions Vs. Change in Connectivity in
Stim Sessions

Correlation Between Coherence (Across
Freqs) and Evoked Response
Connectivity Measure

high-gamma
peak to trough
(SERR)

eff_size = 0.018
p=1.0

eff_size = 0.118
p=1.6e-04

eff_size = 0.100
p=6.6e-03

avg_slope = 0.57
p=3.7e-06

high-gamma
energy

eff_size = 0.09
p=0.38

eff_size = 0.86
p=3.3e-03

eff_size = 0.77
p=0.184

avg_slope = 0.037
p=0.144

broadband
energy

eff_size = 0.28
p=0.22

eff_size = 0.39
p=5.4e-04

eff_size = 0.12
p=0.386

avg_slope = �0.02
p=0.652

broadband
amplitude

eff_size = 0.21
p=0.30

eff_size = 0.23
p=4.6e-04

eff_size = 0.01
p=0.184

avg_slope = 0.183
p=0.002

broadband
slope

eff_size = 0.09
p=0.22

eff_size = 0.23
p=4.6e-04

eff_size = 0.13
p=0.184

avg_slope = 0.028
p=0.318

DOI: https://doi.org/10.7554/eLife.31034.037

The following source data available for Table 2:

Source code 1. Statistics of SERR and other connectivity measures for each session in each experimental condition.

DOI: https://doi.org/10.7554/eLife.31034.038

Source data 1. SERR and other connectivity measures for each session in each experimental condition.

DOI: https://doi.org/10.7554/eLife.31034.039
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Network Analysis
Since stimulation evokes a network-wide pattern of activity, the coherence during conditioning

blocks (Cc) is different than the coherence calculated during baseline recording blocks (Cr). This dif-

ference, or ‘stimulus-evoked coherence’ captures the correlations introduced through stimulation.

We propose that these correlations drive plasticity in a Hebbian manner, so that the change in base-

line coherence between pre- and post-conditioning reflects the stimulus-evoked coherence. There-

fore, we assessed how well the change in recording coherence is predicted, across blocks and

electrode pairs, by the stimulus-evoked coherence using linear regression,

Cc�Cr;pre

� �

¼ B̂ � Cr;post �Cr;pre

� �

;

where B are the fit regression parameters. However, this simple regression analysis is biased, since

the same Cr is used on the left and right side of this equation. To avoid the spurious correlations

that would therefore arise, we split the recording blocks into 5s non-overlapping windows and calcu-

lated the coherence separately for the odd (a) and even (b) windows. We then averaged the coher-

ence for each set of windows (Cr,a and Cr,b) and used these as independent measures of baseline

coherence for the regression,

Cc�Cr;pre;a

� �

¼ B̂ � Cr;post;a �Cr;pre;b

� �

:

Histology analysis
Monkeys were deeply sedated (per above Surgical procedures) and perfused transcardially with hep-

arinized phosphate buffered saline (PBS) followed by cold 4% paraformaldehyde in phosphate

buffer. The brain was extracted and post-fixed in the same fixative for 24 hr at 4˚C and then dis-

sected into twelve 6 mm-thick coronal blocks using a custom matrix. After 7–10 days incubation in

30% sucrose, blocks were frozen and cut on a cryostat (Microm, Germany) into 50 mm thick sections.

Representative sections were selected from each block and processed for EYFP immunocytochemis-

try using a free-floating technique. Sections were initially washed in PBS, incubated in 3% hydrogen

peroxide in PBS for 10 min to quench endogenous peroxidase activity, then rinsed in two changes of

50% ethanol followed by three changes of PBS for 5 min each. Next we incubated the sections in 5%

normal donkey serum in PBS for 1 hr to block non-specific binding. Primary rabbit polyclonal anti-

GFP antibody (Abcam, RRID: AB_303395) was diluted 1:15,000 in PBS containing 0.01% Triton

X-100 and was applied to the tissue for 48 hr at 4˚C. Sections were then rinsed in PBS, incubated in

biotinylated donkey anti-rabbit antibody, (1:2,000, Jackson Immunoresearch) for 12 hr at 4˚C, rinsed
and incubated in ExtrAvidin (Sigma-Aldrich, 1:5,000) for 5–6 hr in room temperature. Peroxidase was

detected using a diaminobenzidine (DAB) chromogenic reagent (Sigma-Aldrich). Sections were

rinsed in PBS, mounted on gelatin-coated slides, air dried, dehydrated in graded alcohols, cleared in

xylene and coverslipped with D.P.X. mounting media (Sigma-Aldrich). Additional adjacent sections

were stained with cresyl violet (Nissl) using standard techniques, to reveal cortical cytoarchitecture.

Double immunofluorescence was performed using the similar to above approach although using

combinations of primary antibodies from different host species for GFP and for the interneuron

markers. Primary antibodies were: rabbit polyclonal anti-GFP antibody (1:10,000, Abcam, GFP

ab290); goat polyclonal anti-GFP antibody (1:1,000, Abcam, ab5450). These were paired with one of

the following primary antibodies: mouse monoclonal antibody for parvalbumin, (1:1,000, Sigma-

Aldrich P3088); mouse monoclonal antibody for calbindin (1:800 Sigma-Aldrich CB-955); rat mono-

clonal antibody for somatostatin (1:200, Millipore MAP354); rabbit polyclonal anti-GAD65/67 (1:500,

Millipore AB1511); a cocktail of mouse monoclonal antibody for GAD67 (1:500, Millipore MAB5406)

and mouse monoclonal antibody for GAD65 (1:1,000, Sigma-Aldrich G1166). Sections were blocked

using normal donkey serum and processed for 4–6 hr in a mix of matching secondary antibodies; all

of which were raised in donkey (Thermo Fisher Scientific, 1:300): anti-rabbit Alexa Fluor 488, anti-

goat Alexa Fluor 488 (both for GFP). Interneuron markers were visualized using anti-mouse Alexa

Fluor 594, anti-rat Alexa Fluor 594; anti-rabbit Alexa Fluor 594. Sections were mounted using Vecta-

shield (Vector Labs) and imaged using Zeiss LSM510 Meta confocal microscope (Zeiss, Germany)

and 90i imaging system equipped with a CCD camera (Nikon, Japan).
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