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Abstract

A Data-Driven Framework for Assisting Geo-Ontology Engineering Using a

Discrepancy Index
by

Bo Yan

Geo-ontologies play significant roles in formalizing concepts and relationships in ge-
ography as well as in fostering publication, retrieval, reuse, and integration of geographic
data within and across domains. The status quo of geo-ontology engineering is that a
group of domain experts collaboratively formalize the key concepts and their relation-
ships. On one hand this centralized top-down ontology engineering approach can take
into account invaluable expert knowledge and capture our perception of the world cor-
rectly in most cases; on the other it might yield biased geo-ontologies and misrepresent
some important concepts or the interplay between different concepts due to the fact that
such top-down ontology engineering strategy hardly takes into consideration the existing
dataset. With an increasing number of Linked Data on the Web, we are able to use such
data to assist the traditional geo-ontology engineering process. However, the quality of
Linked Data also imposes challenges to this task. This research proposes a framework by
modeling the hierarchical structure using a series of data mining algorithms and eventu-
ally quantifies the difference between the original ontology and the data mining one with
the proposed Discrepancy Index. The Discrepancy Index can help geo-ontology engineers
identify as well as quantify potential ontological modeling issues and Linked Data quality

issues, thus closing the gap in the dynamic process of geo-ontology engineering.
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Chapter 1

Introduction

Ontology, originally a philosophical term dealing with the nature of being, has been
borrowed by information scientists as a means of computationally modelling a particular
domain of interest in knowledge representation tasks. It has since become one of the
pillars of the Semantic Web and has been applied to various domain areas. This chapter
discusses the context and motivation upon which the research is based, describes the

status quo of geo-ontology in particular, and raises research questions to be answered.

1.1 Context and Motivation

In 2001, an article written by Tim Berners-Lee, James Hendler and Ora Lassila was
published in the Scientific American magazine, envisioning an evolutionary transforma-
tion from the existing Web to the Semantic Web. Semantic Web, as the name implies,
is the Web that has meaning. Unlike the traditional Web of Documents, Semantic Web
is a Web of Data in that everything, even conceptual things, can be stored, accessed
and utilized, fostering data exchange across diverse domains and enabling new types of

applications on the Web.
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This simple but innovative idea seemed far-fetched at that time, just like what it
was when Tim Berners-Lee first coined the term World Wide Web or simply known as
the Web. But in the short 25 years of its invention, the Web has become ubiquitous
and indispensable in our daily life. No one could ever imagine a world without the
Web. Although it’s less likely that the development speed of Semantic Web is able to be
comparable to that of its predecessor, which grew exponentially within the first few years,
as of now, a significant fraction of the pages on the Web contain Semantic Web markup
[1]. For instance, Knowledge Graph is a service provided by Google that is empowered by
Semantic Web technologies. The Knowledge Graph provides users with structured and
detailed information in addition to the search results on certain topics, powering richer
and more interactive user experience. It is rooted in public sources such as CIA World
Factbook, Freebase and Wikipedia, containing more than 500 million objects, and more
than 3.5 billion facts about and relationships between these different objects [2]. Other
services such as Microsoft Bing has also integrated Semantic Web technologies into their
search engines, further exploiting the potential of the next generation web. The Semantic
Web markup is now of the same order of magnitude as the Web itself [3].

The underpinning technologies that make this transition possible include Linked Data
and ontologies. In order to realize the Semantic Web or the Web of Data, a huge amount
of data as well as their relationships need to be readily available in a structured format
in order to be read and managed by Semantic Web applications. This collection of
interrelated datasets on the Web are referred to as Linked Data [4]. An example of the
dataset is DBpedia, which is a structured version of Wikipedia. DBpedia also integrates
links to other Linked Data on the Web, acting as a huge data silo. Each dataset in the
Linked Data cloud has its own vocabularies to define concepts and relationships in an area
of concern. These vocabularies are essentially what we refer to as ontologies. Ontology,

from an information science perspective, is a formal representation of concepts and their
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relationships within a domain. It is a form of knowledge representation, which provides
reasoning support within a domain as well as vocabulary support for knowledge-sharing
among different domains. Thus, ontology has become a core technology to foster the
publication, retrieval, reuse, and integration of data within and across domains.
Ontology has played a significant role in the development of Linked Data and Semantic
Web. To make this statement more convincing, take Schema.org ontology as an example.
Schema.org is a collaborative, community activity sponsored by Google, Microsoft, Yahoo
and Yandex with a mission to create, maintain, and promote schemas for structured data
on the Internet [5]. It provides a single vocabulary across a wide range of domains. The
benefit of this initiative is that it makes sure the vocabulary can be widely used and is
consistent across the Web, thus webmasters are more willing to add Schema.org markups
in their webpages. Many well-known websites such as nytimes.com, bbc.co.uk, imdb.com,
youtube.com, and yelp.com use Schema.org ontology. The adoption rate of Schema.org
ontology is 31.3% in a sample of 10 billion pages from a combination of the Google
index and Web Data Commons according to [3]. This has a profound impact on the
exposure and the publicity of structured data on the Web in general, further enhancing

the development of Semantic Web.

1.2 Geo-ontology

From a domain scientist’s perspective, ontology is also important to Geographic In-
formation Science (GIScience). Due to the diverse and eclectic nature of geographic
information, its data usually comes from different sources and formats. This hetero-
geneity creates a barrier for GIScientists to take full advantage of the data to do more
comprehensive spatial analysis. Geo-ontology provides a way to flexibly integrate ge-

ographic information based on its semantics regardless of its representation. Another
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inherent feature that distinguishes GIScience or geography in general from other dis-
ciplines is that many geographic concepts are vague and ambiguous. For instance, the
concept place is subjective, cognitive, culturally situated, and often time-variant [6]. The
concept town has no formalized definition in terms of area or population size because cul-
tural and historical aspects may play a role, for example, Bloomsburg is the only town
in Pennsylvania. While geo-ontology is not able to solve the vagueness of geographic
concepts, the Open World Assumption provides a way to deal with the vagueness to a
certain degree. The Open World Assumption embraces the idea that no single agent
has a complete knowledge of the world, therefore each observer can have their own in-
terpretation of concepts and the corresponding relationships. With this assumption,
geo-ontology is able to model the geographic world based on the interpretation of do-
main experts. This approach of formalization fosters integration of geographic data. For
these reasons, geo-ontologies have been active research areas over the last 20 years and
the geospatial semantics community has been among the early adopters of the Semantic
Web, contributing methods, ontologies, use cases, and datasets [7].

The status quo of the design pattern of geo-ontology and, in fact, all other ontologies
is that a handful of domain experts gather together to decide on the important concepts
and relationships for the domain and the task in which the ontology will be applied.
Competency questions are usually raised as starting points. Discussions around these
questions stimulate the formation of axioms in the ontology. This top-down practice
is efficient and proven to be sufficient for usage in most cases. The challenge with this
engineering artifact is that the ontology created by the top-down approach has a life cycle
and soon becomes obsolete as the actual dataset or use case that populates the ontology
is evolving constantly, then a new ontology design pattern will be needed to revise the
original ontology. This centralized, expert-dominated way of designing ontology is labor

intensive. Some Linked Data providers such as DBpedia has offered another way to
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decentralize the ontology design. It allows the community to edit the ontology classes
and properties if any community member finds a discrepancy between the ontology and
the dataset or simply prefers a particular class or property to another. The issue with this
practice is that this ontology editor from the community might be able to spot a particular
problem in the ontology, but he/she might not be familiar with the good designing
practices of ontology, thus it might be hard for him/her to use the ontology designing tools
supported by DBpedia, making the ontology editing practice meaningless. Moreover, as
typical users are not well-trained to have a holistic view of the entire ontology, especially
a cross-domain ontology like DBpedia ontology, more often than not, they are just adding
noise to the original ontology, making the situation even worse.

One promising way to alleviate the situation is to implement a data-driven approach.
By taking a closer look at the dataset, we are able to detect the gap between the real
world scenario and the corresponding ontology. This approach is especially helpful for

domains that have many inherently fuzzy and ambiguous concepts and relationships, e.g.

geography.

1.3 Research Questions

Ontology engineering is a dynamic process, namely it requires constant revision and
refinement based on the dynamics of knowledge within and across domains. Bottom-
up approaches are frequently implemented to change the common top-down ontology
engineering status quo, such as using Linked Data to learn new geographic concepts
and enrich the top-down geo-ontologies [8]. This research is inspired by such school of
thought [9] as well as some observations on the current DBpedia geo-ontology and its
corresponding Linked Dataset.

In the current version (DBpedia 2015-10) of DBpedia ontology, the class Canal is clas-
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sified as a sibling class of River, which makes them both the subclass of BodyOfWater.
This seems to be a rational classification at first glance since canals are usually channels
of water. However, BodyOfWater is a subclass of NaturalPlace. Because of the tran-
sitivity of rdfs:subClassOf relationship, this makes Canal the subclass of NaturalPlace.
The definition of Canal from Oxford dictionary will be helpful if this misclassification is
still not conspicuous. In Oxford dictionary, Canal is defined as “an artificial waterway
constructed to allow the passage of boats or ships inland or to convey water for irri-
gation”. The question then lies in finding the correct classification of the class Canal.
The definition gives us some hint. The word “artificial” and “constructed” make it a
man-made geographic feature that could be group into the Infrastructure category. The
word “waterway”, “passage” and “convey” make it a RouteOfTransportation. By closely
examining the classes in the DBpedia geo-ontology, we are able to find that RouteOf-
Transportation has a subclass WaterwayTunnel. Canal should be the sibling class of
Waterway Tunnel under Infrastructure rather than be the sibling class of River under
NaturalPlace. Apparently, this process demands quite a lot of domain knowledge and is
tedious and time-consuming.

On the other hand, due to the nature of the provenance of most Linked Datasets, the
quality concerns should also be incorporated into this dynamic geo-ontology engineering
process. Although some best practices for Linked Data creation and reuse, such as using
standard RDF tools and libraries, as well as some approaches for Linked Data validation
and cleansing have been proposed [10], these approaches usually only detect and cor-
rect syntactical errors. Comparing the ontology and the corresponding Linked Dataset
might lead to some insight about the intended meaning behind the data. Again, take
DBpedia Linked Dataset as an example. Much of the structured information in DBpedia
dataset comes from Wikipedia infoboxes. Direct transformation of these infoboxes into

structure data results in noisy data and inconsistent nomenclature of the properties. The
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DBpedia community is well aware of this issue, so with the DBpedia 3.2 release, they
adopted a new infobox extraction approach that took into consideration a newly created
DBpedia ontology. In this case, DBpedia can provide users with much cleaner and better
structured mapping-based datasets. For instance, instead of using both dbp:headquarter
and dbp:headquarters because they are used interchangeably in the original Wikipedia
infoboxes, in the mapping-based dataset, DBpedia uses dbo:headquarter to unify these
semantically identical but syntactically different properties based on the manually pre-
defined properties in DBpedia ontology. This canonical example illustrates how data
could be cleansed and refined by ontologies. Similar to the previous example, this hand-
generated mapping from raw Wikipedia infobox templates to predefined ontologies is an
ad hoc strategy that is hard to be generalized. It is also important to note that, although
this strategy provides cleaner data, it does not provide a complete coverage of the original
properties and types from the infoboxes, thus introducing data bias if users only use the
mapping-based dataset.

The above mentioned two examples originate from two common issues in the course of
geo-ontology engineering or ontology engineering in general: ontological modeling issue
and Linked Data quality issue. Conventional approaches treat these two issues separately
and on a case-by-case basis because experts in tackling these two issues do not speak the
same language and the subtle interplay of these issues has not been well-recognized. In an
effort to solve this problem and provide ontology engineers with more general approaches,
in this research, we aim to find answers to the following questions.

Research Questions: How can we discover the mismatch between a particular geo-
ontology and its corresponding Linked Dataset? How can we quantify the mismatch?
Based upon the mismatch, what can we learn in terms of ontological modeling and
Linked Data quality?

As the research tasks point out, this work attempts to solve the problem in two
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directions. One direction is to investigate the role of Linked Dataset in informing and
detecting potential geo-ontology modeling issues (such as misclassification); the other is
to identify and highlight the role of geo-ontology in helping ontology engineers discover
potential Linked Data quality issues (such as nomenclature issues and data bias). We
realize that these two components are integral parts of geo-ontology engineering and
should be incorporated into the process as a whole. In light of this, we also propose a
general framework /workflow for geo-ontology engineers to follow. The mismatch here is a
relatively neutral term because the cause of the mismatch could either be an ontological
modeling issue or a Linked Data quality issue. Geo-ontology engineers should be aware
of both possibilities and make decisions accordingly. If it’s an ontological modeling issue,
geo-ontology engineers can revise the geo-ontology; if it’s a Linked Data quality issue,
data cleansing can be applied to remedy the issue.

The primary contribution of this research lies in finding measurements that help
identify and quantify the difference in geo-ontology and the corresponding Linked Dataset
within a systematic framework, so that ontology engineers can further look into the issues
concerning both ontological modeling and Linked Data quality more easily and more
efficiently. The scope of this research, in terms of domain areas, is limited to the field of
geography while this research framework and workflow can be easily applied to a variety
of other domains of expertise; in terms of dataset, is limited to DBpedia because it
contains a large amount of geographic data and its ontology and instances that filled the

ontology are publicly accessible, but likewise, it can be applied to other Linked Datasets.

1.4 Methods

Numerous methods have been used in collecting and analyzing the data and ontology.

This section outlines the main methods that are employed.

8
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While some simple statistics can be used to describe the data, it is usually better
to visually present the information. In this case, a network visualization is adopted to
illustrate the hierarchical relationships of the ontology. The relative size of the nodes
represents the number of instances in each class while the edge represents the superclass-
subclass relationships. The network makes it easier to identify the community clusters
and the hubs in the ontology.

The main part of this framework is an unsupervised learning task. It starts from
choosing suitable feature spaces. In order to reduce the dimensionality of the data, Mul-
tidimensional Scaling (MDS) is adopted. To build the concept hierarchy based on the
instance data in DBpedia, hierarchical clustering algorithm is implemented. The advan-
tage of hierarchical clustering is that the cluster number does not need to be specified and
it’s suitable for hierarchically structured dataset. The derived hierarchical structure will
be compared with the original ontology hierarchy. The is done by adopting the semantic
similarity measure proposed in [IT]. This semantic similarity measure is exploited as the
basis of the similarity measures for different concepts within the ontology. The detailed

explanation is presented in the corresponding chapter.

1.5 Outline

The remainder of this thesis is outlined and summarized as follows. Chapter 2 reviews
some related work and unsolved issues on the data-driven ontology methods, pointing
out the importance of this research. Chapter 3 introduces the workflow and explains in
detail the methodologies proposed in the research. Chapter 4 presents the experiment
using DBpedia geo-ontology and Linked Dataset. Chapter 5 gives conclusions about the

research and provides direction for future work.



Chapter 2

Related Work

This chapter reviews the existing research on ontology learning and ontology evaluation.
Approaches for ontology learning can be classified into three categories: ontology learn-
ing from unstructured data, ontology learning from semi-structured data, and ontology
learning from structured data. While unstructured data is the most challenging source
of ontology learning, structured data gives researcher more hint on how the ontology
should be like. Linguistic methods, machine learning, data mining, and an integration
of them are exploited for all three categories. Ontology evaluation can be categorized
as gold standard-based evaluation, user-based evaluation, application-based evaluation,

and data-driven evaluation.

2.1 Approaches for Ontology Learning

Ontology learning, coined by Maedche and Staab, aims at facilitating the construction
of ontologies using unstructured, semi-structured and fully structured data [12]. This
automatic or semi-automatic ontology engineering process includes extraction, refinement

and evaluation. Normally, ontology construction is a tedious and time-consuming task
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in that it requires an in-depth understanding of the domain and domain experts have
to come to terms with each other and agree upon different interpretations of certain
concepts. In most cases, the results could be incomplete and inaccurate [13]. Ontology
learning is a way of dealing with these problems.

During the last decade, researchers have proposed several ontology learning meth-
ods and frameworks to help engineers in building the ontology. The methods cover a
wide range of fields such as natural language processing, artificial intelligence, machine
learning, information retrieval and knowledge acquisition [I3]. There are many ways
to categorize ontology learning approaches. Many works tend to summarize ontology
learning techniques based on the types of input from which the ontology is constructed
[13, 14} [15 [16] This review follows this categorization. There are three types of input
from which the ontology can be learned and all these data types have been studied and
the corresponding methods proposed. These three types are unstructured data input,
semi-structured data input and structured data input. Examples of unstructured data
include free text. Semi-structured data include sources that have predefined structure
such as XML files. Structured data includes databases, existing ontologies, knowledge

bases, and dictionaries.

2.1.1 Ontology Learning from Unstructured Data

Unstructured data is the most difficult type of input and needs an extra layer of
processing because of the noise and the lack of structure. The unstructured data usually
comes from natural language text extracted from a corpus or a web content. Many of
the methods in ontology learning from unstructured data are inspired by previous work
in computational linguistics [16]. Approaches using unstructured data to learn ontology

frequently take advantage of statistical analysis, natural language processing techniques
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and the combination of both [13].

Aussenac-Gilles et al. [I7] propose a methodological framework independent of the
language used in text. Their method consists of four levels: corpus constitution, linguistic
analysis, normalization and formalization. In the corpus constitution step, designers
select the available technical documentations based on the requirements and description
of the application. Then the corpus is digitized so that natural language processing tools
can be applied to select the terms and lexical relations during the linguistic analysis
stage. Since the result of the linguistic analysis is still coarse, normalization is necessary.
In the normalization step, designers have to manually filter out less important terms and
relations based on their significance both in the domain and for the application. After the
refinement, a semantic network of hierarchical relations is composed by normalizing the
terms and relations into concepts and semantic relations. During the final phase, semantic
concepts and relations are formalized and inserted in the ontology. The disadvantage of
this framework is that in the linguistic analysis part and the normalization part, the
selection of important terms and relations are subjective and largely dependent on the
designer?s interpretation of the domain and application description. The whole process
is very tedious and time-consuming, thus it?s not an efficient and cost-effective way to
learn ontologies from text.

Cimiano et al. [I§] propose an automatic approach to acquire concept hierarchies
from a text corpus using Formal Concept Analysis (FCA). FCA is a method used to
derive implicit relationships, e.g. concept hierarchies, from a collection of objects and
their properties [19]. The linguistic analysis is implemented at the first stage. A lin-
guistic parser is used to acquire the context of a certain terms from the corpus based on
distributional hypothesis described in [20]. After lemmatization and smoothing, FCA is
applied to produce a lattice and the lattice is transformed into a partial order constitut-

ing a concept hierarchy. The evaluation result shows that the FCA-based approach is
12
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comparable to, or even better than, similarity-based clustering methods [18]. The dis-
advantage of this method is that the lattice size is likely to increase exponentially which
leads to an exponential time complexity.

Khan et al. [21] present a mechanism to construct ontologies automatically from text
using clustering approaches. A modified Self-Organizing Tree Algorithm (SOTA) [22]
is proposed and WordNet [23] is used for identifying concepts and sub-concepts. The
approach can be split into two steps. The first step is to use the clustering algorithm,
the modified SOTA to cluster a set of documents in to a multi-level hierarchy. The
second step is to assign a concept from WordNet for each node in the hierarchy. The
classical Rocchio algorithm [24], supervised Self-Organizing Maps (SOM) algorithm [25]
and cosine similarity measures are used to determine the topic for each document. For
keywords associated with multiple concepts, concept sense disambiguation is performed
using cosine similarity technique. Their evaluation shows that the modified SOTA renders

better results than Hierarchical Agglomerative Clustering (HAC) [26].

2.1.2 Ontology Learning from Semi-Structured Data

Semi-structured data includes sources that have predefined structure, such as XML
files. Ontology learning from semi-structured data frequency uses data mining techniques.

Papatheodorou et al. [27] describe a data mining process that adopts the Cluster
Mining approach [28] to construct hierarchies from XML/RDF metadata. The entire
data mining process includes data collection and pre-processing, pattern discovery, and
pattern post-processing and evaluation. The objective of the data collection and pre-
processing part is to select the appropriate keywords from the metadata that facilitates
the discovery of similarities among documents. For this purpose, stop words are filtered

out. Then WordNet [23] is used to extract word roots. During the pattern discovery
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stage, the Cluster Mining approach is used to discover and build clusters of similar
documents. In order to examine the clusters from the last stage, they use some simple
statistical indicators, such as the difference between the keyword frequency in the entire
dataset and the cluster, to measure descriptiveness of the clusters.

Karoui et al. [29] use HTML pages to extract ontologies with the assistance of
clustering methods. Initially, they exploit the HTML page tags to generate concepts.
Then they apply approaches described in [I7] to generate candidate terms as well as
normalize and formalize them. Next, they build a data table whose fields contain the
word, the labeled word, the grammatical type of the word (noun, adjective, etc.), the
style of the word (title, bold, etc.), a number representing how many times the style
appears in the document and the number of document that locate the word. They use
this table and the help of a divisive clustering method to generate a hierarchy of clusters
of words. Concepts are generated by the user based on the clusters of words.

Zarrad et al. [30] aim to extract the taxonomy of concepts in a given field by analyzing
the text structure of web documents. Their approach can be divided into the following
steps: corpus pretreatment, concepts extraction, and taxonomic links extraction. During
the corpus pretreatment step, a Tree Tagger [31] is used to associate each word with its
grammatical type (noun, adjective, etc.) and its canonical form. Then a parser is used to
extract information from the tags of the HTML documents. Stop words are removed in
this step. Candidate terms selected using syntactic approach (analyzing the grammatical
role of words in text) and statistical approach (analyzing the frequency of the words in
text). This step is similar to the preprocessing step in [27]. In the concept extraction
step, they propose Corpus Relevance (CR) and Inverse Corpus Frequency (ICF) as the
measurements to extract concept. CR corresponds to the relevance of a candidate term
in all the documents of the corpus. ICF indicates the opposite frequency of the corpus.

In the end, taxonomic links are extracted using linguistic methods, projection of lexico-

14
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syntactic patterns, and analysis of titles’ hierarchy in documents.

2.1.3 Ontology Learning from Structured Data

Structured data includes databases, existing ontologies, knowledge bases, and dictio-
naries. The most common one is to extract ontology from relational databases.

Johannesson [32] presents a method that translate a schema in a traditional data
model into a conceptual schema. The first step of this method transform relational
schemas into a form appropriate for identifying object structures. Certain cycles of
inclusion dependencies are removed and certain relation schemes are split. Then the
relational schema is mapped into a conceptual schema. Each relation scheme gives rise
to an object type, and the inclusion dependencies give rise to either attributes or gen-
eralization constraints, depending on the structure of the keys in each relations scheme.
Four different transformations have been used in this work: candidate key splitting, in-
clusion dependency splitting, folding, and schema mapping. The candidate key splitting
is used when the relation scheme in the third normal form corresponds to several object
types. The inclusion dependency splitting is applied when a single relation corresponds
to several object types. Folding is used when several relation schemes correspond to a
single object type. Schema mapping is applied to map a relational scheme to an object
type. The first three steps are implemented repeatedly before a user decides the final
conceptual schema in the schema mapping stage.

Kashyap [33] proposes an approach for designing on ontology for information retrieval
based on the schemas of the databases and a collection of queries that are of interest
to the users. The whole process is two-fold: the first step is to construct ontology
from database schemas, the second step is to refine the constructed ontology based on

user queries. The first step is essentially a database schema reverse engineering work,
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which entails abstracting the local data-specific details in the underlying schemas and
reverse engineering an Entity-Relation model from the underlying schema elements such
as tables, columns, etc. After detail abstraction, information is grouped from multiple
tables, relationships are identified, and mappings between elements of the ontology and
schema are defined. After the development of the ontology from the database schema,
users are expected to run some queries to help revise the ontology. The basic idea of
this revision is that, some attributes, relationships and class-subclass relationships may
be overlooked in the ontology construction step while become obvious on perusal of the
queries.

Williams et al. [34] describe an approach for identifying candidate relations between
expressive, diverse ontologies using concept cluster integration. Their approach includes
several steps: concept representation and learning, concept interpretation and verifica-
tion, and concept cluster integration. In the concept representation and learning stage,
a concept vector is made by a vector of ones and zeroes corresponding to the presence or
absence of a toke (word and HTML tag from the web page) in a web page. The agents
use supervised inductive learning to learn the individual ontologies. The output of this
ontology learning is semantic concept descriptions (SCD) in the form of interpretation
rules. For each of these SCD rules, an associated certainty value is determined during the
learning process. Agents then use concept-based queries (CBQ) to communicate their
requests for concepts related to the query. After sending out CBQ), agents will receive
response indicating whether the other agent knows a similar or related concept. After the
interpretation and verification, agents will apply concept cluster integration algorithm
to look for candidate relations between ontologies. Their approach does not identify the
specific type of relationship in the ontologies but assumes they consist of general is-a

(class-subclass) relations.
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2.2 Approaches for Ontology Evaluation

Another strand of research concerning ontology that is related to the work in this
thesis is ontology evaluation. Ontology evaluation primarily focuses on two important
aspects of ontologies: correctness and quality [35]. Ontology quality emphasizes on the
internal attributes of the ontology and the influences of these attributes on external
quality attributes, whereas, on the ontology correctness perspective, ontology is an ap-
proximation of a domain and ontology correctness is concerned with the distance between
this approximation and the real world. Recent research [35, [36, 37] classifies ontology
evaluation methodologies based upon gold standard-based evaluation, user-based evalua-
tion, application-based evaluation, and data-driven evaluation. The levels on which these
above mentioned types of ontology evaluation methods can perform on includes: lexical,
vocabulary, concept, and data level; hierarchy and taxonomy level; other semantic rela-
tion level; context and application level; syntactic level; and structure, architecture, and
design level [35].

For the gold standard-based evaluation, the gold standard can be a well-constructed
ontology or prepared by a domain expert. The gold standard evaluation of the ontology
focuses on lexical, conceptual level, hierarchy level, other semantic relations level, and
syntactic level. It is usually based on precision and recall measures [38]. While Maedche
et al. [38] measures the similarity of ontologies on the conceptual and lexical level based
on the extent to which one ontology is covered by the other, Brank et al. [39] focuses
on the hierarchy and taxonomy level of the ontology as well as the instance arrangement
by comparing two ontologies constructed using the same set of instance. The major
downside of the gold standard methodology is that the quality of the gold standard is
difficult to measure and it requires a lot of manual labor.

User-based evaluation is normally done by humans and is based upon human as-
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sessment of the degree to which the ontology meets the requirements set by human?s
perspective. Supekar [40] proposes a user-based evaluation method that allows the user
to provide qualitative ratings on the ontology content. The method takes advantage of
metadata elements and develops an ontology model that captures the quality features of
an ontology. Users then can associate these elements to the ontology and evaluate the
ontology. The conspicuous drawback of this type of evaluation is that user experience is
relatively subjective, so the objectivity of the standards is hard to establish [35].
Application-based evaluation typically assesses the the ontology with respect to an
application scenario. Porzel et al. [41] present an evaluation method that allows to
measure the performance of different ontologies on specific tasks. They use a well-defined
benchmark task to measure the ontology-dependent part of the performance, then test
and incrementally augment the ontologies. The main issue with this type of evaluation
approach is that the result of the evaluation is application or task-specific, meaning the
evaluation result is heavily based on the application context and is hard to generalize.
Data-driven evaluation takes the populating data of the ontology into consideration.
Brewster et al. [36] measures the fit between the ontology and a domain of knowledge
based on the corpus. The method compares the ontologies with text from the corpus and
implements a probabilistic approach to find the best fit for the corpus. The limitations
of the type of evaluation is that currently the dynamics of the domain is not taken into

account.
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Chapter 3

Method

This chapter elaborates on the data mining algorithms and approaches adopted in the
research. A systematic workflow is illustrated, followed by detailed explanations of the
methodologies within the workflow. The data mining methods adopted in this research
aim to render a hierarchical structure based upon the feature space derived from the
Linked Dataset. This data mining hierarchy is compared with the original hierarchy and
a discrepancy indez is proposed for the purpose of assisting ontlogy engineers in refining

the ontology.

3.1 Workflow

The objective of outlining the workflow is to provide a concise and systematic demon-
stration of all the procedures and algorithms implemented in this research and propose a
framework for applying our approaches to other ontologies. Figure|3.1|shows an overview
of the workflow in this research. Since ontology engineering is a dynamic process, this
workflow illustrates that some procedures in this ontology engineering assistance system

are recursive, which means that they can be applied repeatedly in order to refine the
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ontology based on previous results.

Refine
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Figure 3.1: An overview of the workflow

This workflow consists of two parallel processes. The first process originates from the
top-down geo-ontologies which are constructed manually by expert with their domain
knowledge. The second thread of this workflow comes from Linked Datasets that are
transformed from unstructured data, such as Wikipedia pages. This thread focuses on
the bottom-up part.

Let’s proceed on the bottom-up part first. Similar to the idea of generating features
from Linked Open Data using data mining algorithms [42], from a monolithic Linked
Dataset, we use SPARQL queries to select instances and properties concerning the specific
classes in the top-down ontology. These instances and properties are then act as input
for our three-stage data-driven approach. The first stage in the data-driven approach
is to construct a raw feature space based on the input data. Because of the nature of
the dataset, the raw feature space will be of high dimension and will be very sparse.
We transform our raw feature space into a lower dimensional space using dimensionality

reduction methods in exchange of computational efficiency and efficacy. In the last
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stage of the data-driven approach, we use hierarchical clustering algorithms to obtain
the hierarchies derived from the dataset. In the next step, semantic similarity measures
are implemented to compute the pairwise similarity between each pair of classes in the
derived ontology hierarchy. Meanwhile, the original ontology hierarchy is extracted from
the top-down ontology. Semantic similarity measures are also applied on this hierarchy
to obtain a similarity matrix of the original ontology. In order to evaluate whether the
derived hierarchy correlates with the original one, we run a Mantel test [43] to check
the significance of their correlation. If their correlation is not significant, we go back
to the first stage in the data-driven approach to modify our feature space and rerun
our algorithms in order to obtain a significant correlation. After we find a hierarchy
derived from the feature space that is significantly correlated with the original hierarchy,
we calculate the discrepancy index, which provides guidelines to refine the original top-
down ontology. For the purpose of simplicity, we elaborate on each of the methods
and algorithms in the context of DBpedia place ontology and its dataset. However,
these methods and algorithms, together with the workflow and framework, can easily be

applied to general use cases.

3.2 Ontology

Most Linked Datasets are bundled with their corresponding ontologies, usually in a
OWL file. Because we only need the hierarchy of the classes within the ontology, we
can use SPARQL queries to find the subclasses of a class recursively and extract the
hierarchical structure in the ontology. Here is an example of SPARQL query to extract

all the subclasses of a class:

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

PREFIX owl: <http://www.w3.o0rg/2002/07/owl#>
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SELECT DISTINCT 7class
WHERE {
7?7class rdfs:subClass0Of*x :SomeClass

7class a owl:Class

3.3 Instance and Property Extraction

In order to apply data mining algorithms to the dataset, we have to find a feature
space for our data. The features should be representative of the difference between classes
and should be related with the instance data. Class property satisfies both criteria. A
collection of properties in each class reveals the fundamental characteristics in that these
properties act as relationship links between each class and another entity. Different
classes will have different collections of properties. While a class by definition can have
various properties, each instance in this class does not have to have all these properties.
This variation between the class definition and the populating instance is the basis for
the data mining algorithms.

With the help of the SPARQL query, we are able to retrieve the features. Let P be
the set of features, so P = { P, P», Ps, ..., P, }. Each one of the instances is defined as a
row vector I; = [Pin Pi2 Pi3 --- Pin] in the instance set I. We use SPARQL queries
to check each instance and assign values to the instance vector based on whether or not
it has any of the features as described in Equation After constructing the instance
vectors, we aggregate the instances into classes, i.e. grouping instances of the same class
together. Let C be the set of classes, so C = {Cy,C>,Cs,...,Cj }. If I; is an instance

of class C;, we say I; € C;. We define the class vector Cy, = [pf pk pk ... pF] as the
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sum of instance vectors that belong to the class Cf, as formalized in Equation

1 3R
Pit = (3.1)
0 AR

pf = Z Dji (3.2)

I;€Cy,

Using the above mentioned definitions and equations, we can convert the raw instance
and property data into a set of class vectors. Each class vector has values representing
the frequency of the features across all instances within the class. In order to show
the relative distribution of the features, we normalize the frequency count by the total
number of instances in each class. Following this process, we can obtain a feature space

that is able to be used in the next step.

3.4 Dimensionality Reduction

The properties in the ontology are usually very diverse and, in most cases, particular
classes will only cover a small fragment of all the properties, making the feature space
sparse and high-dimensional. The potential issue with high dimensional dataset is that
much of the information is redundant and sparse. It is also very hard to understand and
analyze such data. Apart from these, the computational efficiency of performing data
mining and machine learning algorithms on such dataset is not optimistic. The term
curse of the dimensionality, coined by Bellman [44], refers to the fact that the size of the
data needed to estimate the function to several variables to a certain degree of accuracy
increases exponentially as the dimensionality increases [45]. It is practically infeasible as

well as computationally implausible to obtain such tremendous amount of data and run

23



Method Chapter 3

data mining algorithms on it. Moreover, high dimensionality indicates sparser feature
space which adversely influences the efficiency and efficacy of many commonly used data
organization strategies. So reducing the dimensionality of these feature set is a necessary
step before diving into deeper and more complicated analysis. We choose MDS as our
dimensionality reduction algorithm because it 1) preserves the distance between data
points and 2) provides various loss functions for better fitting the data points.

The MDS approach takes a distance matrix as its input, so we need to convert the
raw feature sets into distance matrices. Because the frequency ranges of the same feature
for different classes vary greatly, normalization of the class vectors is necessary. After
normalization, all features are scaled to have standard deviation one and mean zero. In
order to construct the distance matrices, we use Euclidean distance d(C;, C;) described
in Equation to calculate the pairwise distance between classes within the feature set,
where n is the number of features in the respective feature set. In this way, we can obtain

the distance matrix D.

d(Ci, Cy) = | > (0} — ph)? (3.3)

k=1
The idea of MDS is to find configuration points 1, xs,...,x, € R in such a way
that the given distances d(C;, C;) are well-approximated by the distances || ; — «; ||
[46]. Practically, a loss function is adopted to measure the the goodness of fit between
the given distances d(C;, C;) and the approximation distances || &; — «; ||. The goal of
solving a MDS problem is to minimize the loss function. Since we are using the Euclidean

distance, the method we are going to implement is the classical MDS, which uses the loss

function defined in [3.4]

Strainp = » _(d*(C;,Cy) — || @i — x; |°) (3.4)

ij=1
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In order to find the number of dimensions to retain with minimum loss of information
from the original feature sets, we adopts Kaiser criterion [47], namely retaining dimen-
sions with eigenvalues greater than 1. Essentially, we only ignore dimensions that extract
information less than the equivalent of one original feature. This criterion is one of the

most widely adopted. We will use these results as the input for clustering algorithms.

3.5 Hierarchical Clustering

Because the class-subclass relationship is essentially a hierarchical relationship, the
intuitive approach to cluster the data based on the above constructed feature space
is hierarchical clustering. The advantage of using hierarchical clustering is three-fold:
firstly the result is a set of nested clusters organized as a hierarchical tree so that it
correspond to meaningful taxonomies; secondly this clustering algorithm does not require
the specification of the number of clusters; finally the clustering result can be visualized
in a dendrogram (a tree based representation) and can be compared with the original
ontology network visualization.

The hierarchical clustering algorithm described in this research refers to the agglomer-
ative hierarchical clustering, which is the most popular one. The hierarchical clustering
algorithm [48] starts by defining a similarity/dissimilarity measure between each pair
of observations, which can be calculated using Equation [3.3] Each of the n classes is
regarded as its own cluster in the beginning. The hierarchical clustering algorithm con-
tinues by joining the two clusters that are most similar iteratively at each stage until
only a single cluster remains.

After constructing the distance matrices, we need to choose the linkage for our hier-
archical clustering algorithm. A linkage is defined as the disimilarity between two groups

of classes. The most common types of linkage include: single linkage, complete linkage,
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average linkage and Ward’s method. Here we use Ward’s method as the linkage for cal-
culating the distance between two clusters because it has the advantage of being less
susceptible to noise and outliers and it is appropriate for quantitative variables. Ward’s
method defines the distance/disimilarity between two clusters as the extent to which the
sum of squared distance will increase if we merge them. So it is a method that aims to
minimize the increase in total intra-cluster variance after merging. Whether or not two

clusters should be merged is determined by the merging cost A defined in Equation [3.5]

— — 2 — — 2 — — 2
AAB) = Y 7= vl = 317 = all = S 17 = ]
1€EAUB €A i€B (35)

= A i — i |
nag+ng

where m; is the center of cluster ¢ and n; is the number of points in the cluster i. A is
called the merging cost of combining cluster A and cluster B. It reveals the trade off
between separation and balance. For clusters that are the same distance away, smaller

ones will be merged according to this formula.

3.6 Validation

At this point, we have successfully constructed the hierarchical structure based on
the feature space extracted from the Linked Dataset. We need to verify whether the
derived hierarchy correlates with the original ontology before proceeding to the next
step. In order to achieve this task, we divide it into two subtasks. First, we compute
the pairwise semantic similarity between classes within the same hierarchy with regard
to the structure of the hierarchy; second, we use Mantel test [43] to test the correlation
between hierarchies using the similarity matrices.

Similarity measures originate from psychological studies on determining and under-
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standing how individuals are grouped into categories [49]. Semantic similarity measures
have been developed under the influence as well as giving rise to the existence of struc-
tured knowledge representations offered by ontologies [50]. Previous work has been inves-
tigating semantic similarity measures as quality indicators in ontology engineering [51].
Semantic similarity measurements can be classified into four main categories: structure-
based measures, information content-based measures, feature-based measures, and hybrid
measures.

In this work, we choose an information content-based semantic similarity measure

proposed by Jiang et al. [I1]. Jiang uses semantic distance to obtain semantic similarity:

DiSt(Cl, 02) = ]C(Cl) + [O(Cg) — 2X]C(L5up6’f‘(01, Cg)) (36)

where IC(Cy) and IC(Cy) are the information content of class C; and class Cy respec-
tively. LSuper(Cy,Cy) denotes the most specific super class of class C and class Cs.

The information content is proposed in [52] and defined by Equation

|leaves(C)|

lewes@L
1C(C) = —1 |subsumers(C)|
(©) og( max_leaves + 1

(3.7)

where |leaves(C')| is the number of leave classes corresponding to class C, |subsumers(C)|
is the number of superclasses (including class C) of class C, and max_leaves represents
the number of leaves with respect to the root class of the hierarchy.

In order to get the similarity, we use the inverse distance measure in Equation [3.8]
We use Dist(Cy,Cy)+ 1 to avoid 0 in the denominator. In this case, similarity values are
in range [0, 1]. After computing the pairwise similarities between concept classes within

the same hierarchy, we construct similarity matrices for each hierarchy. These similarity
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matrices will be the input for the Mantel test.

In order to examine the correlation between the derived hierarchical structures and
the original one, we will need to apply regression models on them. However, doing a
single regression will violate the notion of independence since we computed the pairwise
similarities for each hierarchy. We will need to randomize our data and run Monte-Carlo
tests to compare the regression slope from our data with randomized results to check
whether it is significant or not. In order to do this, we implemented the Mantel test.

The Mantel test is a method that has been widely used to test the linear or monotonic
independence of the elements in two proximity matrices [53]. Our null hypothesis for the
Mantel test is that the pairwise semantic similarity between concept classes in the man
made ontology is unrelated with the pairwise semantic similarity bewteen concept classes
derived from our data-driven approaches. If the p-value is less than 0.05, there is a strong
evidence against our null hypothesis, meaning the derived hierarchy correlates with the
original hierarchy. We can continue our next steps in this case, otherwise we need to go
back to our initial selection of feature space step and redo the whole data mining process
until we find a feature space that can yield a hierarchical structure that is well-correlated

with the original one.

3.7 Discrepancy Index

In many scientific disciplines including geography, we tend to adopt descriptive statis-
tics to make sense of and summarize the dataset. For example, data scientists use mean

and median to describe the central tendency as well as variance and standard deviation

28



Method Chapter 3

» Discrepancy Index

Figure 3.2: An overview of the Discrepancy Index

to describe the variability and dispersion of the given dataset. Geographers use Moran’s
I to measure spatial autocorrelation. In demography, researchers use health indicators to
quantify the characteristics of a population in order to describe the health of a popula-
tion. Following this train of thought, we would like to devise an index that can summarize
the implicit mismatch between the geo-ontology and the corresponding Linked Dataset.
In this case, we can abstract away from the intricate hierarchy of the geo-ontology as
well as the large volume of Linked Dataset (see Figure . This index will also provide
potential criteria basis for geo-ontology or geospatial Linked Data consumers to choose
the most suitable ontology or Linked Dataset for their needs.

We propose a Discrepancy Index that can be used to assist ontology engineers to
quantify the difference between the ontology and the dataset. Equation shows the
definition of Discrepancy Index Matrix. This matrix gives us all the combinations of Dis-
crepancy Indices for the ontology and dataset. In the definition below, SimM atrizoriginal
is the similarity matrix representing the pairwise semantic similarity calculated from the

hierarchical structure in the original ontology, likewise, Sim M atrix ge,iveq is the similarity
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matrix for the derived hierarchy. By subtracting SimM atri® jeyiveq from SimMatrizriginai,
each element in the resulting matrix Index M atrix represents the difference between the

similarity of each pair of classes in the original ontology hierarchy and the derived one.

IndexMatriz = SimMatriz origing — SIMM atritgerived (3.9)

The value range for each element in IndexMatriz, that is the Discrepancy Indices,
is [—1,1]. If IndexMatriz(i,j) > 0, it implies that class i and j are less similar in the
derived hierarchy; whereas if IndexMatriz(i, ) < 0, it tells us that class i and j are more
similar in the derived ontology. The value of |IndexMatrixz(i, j)| gives us the information
about the extent to which the similarity in two hierarchies differ from each other. This
Discrepancy Index is useful in assisting ontology engineers to refine and further develop
the ontology in that it gives guidance on correcting the potential modeling bias (such as

misclassification) and/or spotting the intrinsic data bias (such as missing data).
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Experiment

This chapter presents the experiment conducted in this research using DBpedia geo-
ontology and its corresponding Linked Dataset. After applying the workflow, we revisit
our observations described in the introduction chapter and examine the Discrepancy
Index between Canal and River. We also provide two more examples in this experiment

to showcase the usefulness of our methods.

4.1 Data Source

Among the various different types of ontologies, we narrow down into three candidate
ontologies — DBpedia ontology, Schema.org ontology and GeoNames ontology. In the
end, we choose DBpedia place ontology as our base ontology and its corresponding data
as our data source. Schema.org ontology is a widely-used cross-domain ontology that
is primarily managed and maintained by big commercial IT companies such as Google
and Microsoft. GeoNames ontology is a domain-specific ontology. Although the first two
are cross-main ontologies, they provides a specific place class that covers geo-ontologies.

Schema.org ontology does not natively come with an OWL (Web Ontology Language)
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formatted ontology, because it’s primarily used in enhancing search results on the web, it
uses RDFa format which is a markup for HTML pages. The data from which Schema.org
ontology is extracted originated from multiple sources and millions of webpages, which
makes obtaining and analyzing the data less practical and time-consuming. GeoNames
ontology specializes on geospatial semantic information and the ontology is extracted
from the gazetteer files which is organized by countries, resulting in a shallow hierarchy
of the concepts in the ontology. This is a relatively distinct organization of dataset com-
paring with DBpedia and Schema.org. DBpedia is a multilingual cross-domain knowledge
base that has various classes clustered into a hierarchical order and numerous properties
describing the classes and their instances [54]. As shown in Figure DBpedia is also
the hub of the Linked Data cloud as of August 2014 [55]. In light of the above compari-
son, we choose a subset of DBpedia ontology as it provides the standard OWL formatted

ontology and readily available data dumps.

Linked Datasets as of August 2014

Figure 4.1: The Linked Data cloud network visualization as of August 2014
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4.2 Feature Selection

Since DBpedia ontology is manually created based on the infoboxes in Wikipedia, the
changes in Wikipedia pages will be reflected in DBpedia ontology. This intrinsic dynamics
of ontologies is called Ontology Evolution [56].DBpedia provides these snapshots that
reflect the timely adaptation of ontology to the changes in the domain. These snapshots
are provided as releases by the DBpedia community. The community endeavor has
refined and enhanced the ontology across different releases. We assume the ontology has
become cleaner in the newest release in spite of the fact that the number of classes in
the ontology has increased dramatically (see Figure , so we choose the newest release
DBpedia 2015-10 ontology. DBpedia 2015-10 ontology, referred to as DBpedia ontology

in the rest of this thesis, has 739 classes in total and 168 of which are subclasses of place.
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Figure 4.2: The number of classes in different releases of DBpedia ontology

The OWL file provided by DBpedia contains the entire hierarchy of the ontology, of

which geo-ontology is only a portion, so we need to extract geo-ontology from the entire
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ontology manually. This is accomplished by executing SPARQL queries on DBpedia
endpoint with the support of Apache Jena Java libraries. Since we need the entire
hierarchy of the class-subclass relationships in the place class, the transitivity feature
of the property rdfs:subClassOf is taken advantage of. The following SPARQL query is

used to extract geo-ontology classes from DBpedia ontology.

PREFIX rdfs: <http://www.w3.o0rg/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.o0rg/2002/07/owl#>
PREFIX dbo: <http://dbpedia.org/ontology/Place>
SELECT DISTINCT 7class
WHERE {

?class rdfs:subClass0f* dbo:Place

7?7class a owl:Class

The query will only return a flat list of all the subclasses of the place class. In order to
obtain a hierarchical clustering of the ontology, each class should be queried individually
about its subclasses. The final result of the class hierarchy is visualized as a network
(see Figure . Each node represents a class and each edge represents the class-subclass
relationship between two classes with the direction from subclass to superclass. The size
of the node is proportional to the number of the instances within each class. The color
scheme helps to differentiate between classes on the second level of the hierarchy, meaning
the direct subclasses of place. Classes with no instances are represented in faded color.

In the feature extraction stage, we focus on features based on properties in each class.
The properties here in DBpedia Linked Dataset are analogous to attributes in different
place types. The rationale behind it is that similar place types share similar attributes

while distinct place types have distinct attributes. For example, place type City and
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Figure 4.3: The network of place ontology in DBpedia

Town are similar and they have similar attributes (properties) such as populationOf
and totalAreaOf. But City and Mountain are very different from each other because
a mountain can have elevation whereas a city usually does not. Based on this train of
thought, we build a feature set that shows the relative frequency of each property in
each class. We use the following query to extract our feature set from DBpedia Linked
Dataset. The result of this query is normalized by the total number of instances of each
class to obtain the relative frequency.

SELECT ?p (COUNT(?p) AS ?cnt)
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FROM <http://dbpedia.org>

WHERE {
?s a :SomeClass
?s ?p 7o
FILTERS(contains (str(?p), ’dbpedia’))

} GROUP BY 7p

In pursuance of comparing the results of our data-driven approach, we also consider
different variations of the feature set. We take into account four variables in our feature
selection. They are filler, specificity, literal and uniformity. All of them are boolean
variables. Table gives a detailed explanation of each variable. The variable filler
decides whether we use {property, object type} pairs or property alone to count the
frequency. The variable specificity takes into consideration the hierarchical structure of
object types. The variable literal acknowledges the fact that, in RDF, object and literal
have different typing schemes, namely object type and data type. The object type is
defined by rdf:type whereas the data type is defined by an annotation at the end of the
literal string. The variable uniformity considers the cases in which the literal of the same
property has different data types because the original Wikipedia page does not define
a uniform data type for each infobox entry. For example, a city may have a property
population, but the literal value for this property may be of type integer or double or
even string. In a nutshell, filler and literal decide whether we incorporate object type
and literal type into our feature extraction; specificity and wuniformity deals with the
granularity and accuracy of object type and literal type respectively.

Considering all the variables listed here, we have seven feature sets. This whole
process of feature selection can be viewed as a decision making process, visualized in a

decision tree shown in Figure[£.4. We make a boolean decision on one of the four variables
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Table 4.1: Definition for four variables
True False

Filler Include object types Do not include object types
Include only the most

Specificity specific object types Include all object types
Literal Include literal types Do not include literal types
Uniformity Unify literal types Do not unify literal types

described above at each internal node. Each internal node branches into two sub-nodes
which are the outcomes of the two decisions based on each of the four variables in our
feature selection process. The seven leaf nodes are the final outcomes of the decision tree,

which are also the seven feature sets.

Feature Set A

Specificity-

Specificity+

Literal+

Literal+

Feature Set C Feature Set B

Uniformity+

Uniformity+

Uniformity-

Feature Set D

Feature Set F Feature Set G Feature Set E

Figure 4.4: The tree structure of feature sets

After analyzing the class vector data, we find that many class vectors have zero
frequency for all features, due to the fact that many classes have no populating instances.
It makes no sense to include these empty classes in the algorithm since they don’t have any

data associated with them. In addition, due to the nature of the hierarchical clustering
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algorithms we are going to use later, we removed non-leaf classes, otherwise superclasses
will be in the same hierarchy with their subclasses. Table shows the dimensions
of each feature set. Table shows the dimensions of each feature set after applying
dimensionality reduction algorithms. For example, Feature Set E originally has 68 classes
and each class has 47532 features, so the original dimension for Feature Set E is 68 by
47532. After dimensionality reduction, there are only 63 features, so the dimension is 68

by 63. We will use these results as the inputs for clustering algorithms.

Table 4.2: Feature set statistics

# of Classes x # of Features
Feature Set A 68 x 15918
Feature Set B 68 x 25009
Feature Set C 68 x 13802
Feature Set D 68 x 40284
Feature Set E 68 X 47532
Feature Set F 68 x 29077
Feature Set G 68 x 36328

Table 4.3: Dimensions after MDS

# of Classes x # of Features
Feature Set A 68 x 62
Feature Set B 68 x 46
Feature Set C 68 x 37
Feature Set D 68 x 64
Feature Set E 68 x 63
Feature Set F 68 x 63
Feature Set G 68 x 62

4.3 Experiment Procedure

In order to apply clustering algorithms, we need to transform the original feature
sets into distance matrices. Figure - show the distance matrices for some of the

classes from Feature Set A to Feature Set G respectively.
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Figure 4.5: Distance matrix from Fea- Figure 4.6: Distance matrix from Fea-
ture Set A ture Set B
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Valley - = ro Valley - = r9
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City Town Mountain River Valley Hotel City Town Mountain River Valley Hotel
Figure 4.7: Distance matrix from Fea- Figure 4.8: Distance matrix from Fea-
ture Set C ture Set D

From the matrices we can tell that natural features are quite distinct from human
settlements such as city and town regardless of the types of features choosen. Feature
Set C makes the classes more homogeneous in terms of the distance in feature space
while Feature Set D makes them more heterogeneous. Although the distance matrices
has already revealed some of the information within the dataset and conform with human
interpretation of these classes to a certain degree, it’s hard to derive any fruitful result

from the matrices alone since a 68 by 68 matrix visualization is far from ideal for human
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Figure 4.9: Distance matrix from Fea- Figure 4.10: Distance matrix from
ture Set K Feature Set F
rT12
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Figure 4.11: Distance matrix from Feature Set G

analysis.

The results of the hierarchical clustering of the 68 classes using Euclidean distance
and Ward’s method are shown from Figure to Figure |4.18

At this moment, we have constructed seven different class hierarchies from seven
different feature sets using data-driven approaches. In hope of further investigate the
extent to which our proposed data-driven approaches can correlate with the original

labor-intensive man made ontology, we need to apply our validation procedure. Our null
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Figure 4.13: Dendrogram for Feature Set B
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hypothesis is that there is no correlation between the derived hierarchy and the original
hierarchy.

Figure [4.19| shows the p-value and correlation coefficient obtained after running the
Mantel test between the original ontology hierarchy and the hierarchies derived from
the seven different feature sets. Based upon the p-value resutls, we can reject the null
hypothesis for the last six feature sets. There are positive relationships between the
derived hierarchical structures using our approaches and the original one. Moreover, the
result from Feature Set E has a slightly higher correlation compared with others. Thus,
in the rest of this chapter, we focus on Feature Set E.

These hierarchies are very similar to the original hierarchy in the geo-ontology, but,
instead of grouping them based on domain knowledge, classes are grouped together based
on their properties. Classes clustered together have similar properties in the Linked
Dataset. Visually comparing these hierarchies with the original one can give us some
information about the difference between the ontology and the Linked Dataset, but we
still need some formalized metrics to quantify and measure the difference. In this case, it
is necessary for us to find a method to compare different hierarchical clusterings. Previous
work [57, 58] has been focusing on defining simple statistics for comparing hierarchical
clusterings. However, a simple statistic or index is not useful in terms of measuring the
mismatch between individual classes in the geo-ontology. In order to achieve this, we
need to preserve the hierarchy and derive useful information for individual classes from
different hierarchal structures, instead of converting the hierarchical difference into less
informative statistics directly. We transform the hierarchies into similarity matrices and
compare the difference between similarity matrices. In this way, we are able to compare

individual classes and their differences.
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Mantel Test
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Figure 4.19: Mantel test results for seven feature sets

4.4 Case Studies

In this section, we demonstrate the broad applicability of our data-driven framework
and the discrepancy index by looking at three examples. The first two examples (Section
and Section illustrate the ontological modeling issue while the last example
illustrates the Linked Data quality issue (Section . We will show how ontology

engineers could identify both issues with the help of our methods.

4.4.1 Are Canals Natural Places?

Previously, we discovered that Canal should not be classified as the subclass of Nat-
uralPlace based on its definition. In order to further verify it, we can check if DBpe-
dia Linked Dataset supports our observation. Browsing through the DBpedia page of

Panama Canal, one of the seven wonders of modern world listed by the American Society
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of Civil Engineers, we found properties such as dbo:principalEngineer, dbp:dateUse and
dbp:company (see Figure 4.20)). It is really unreasonable for an instance of NaturalPlace
to have principal engineers, to have the date of first use, and to be originally owned by

a company.

dbr:George_Washington_Goethals

dbr:John_Findley_Wallace

dbo:principalEngineer

dbo:NaturalPlace - c'\Pa‘
Panama dbo"pﬂ“ dbr:John_Frank_Stevens
Canal

dbp:dateUse

dbp:company

"1914-08-15"~"~xsd:date

"La Société internationale du Canal"@en

Figure 4.20: Some properties of the instance Panama Canal in DBpedia

It shows that we do see a mismatch between the Linked Data and the geo-ontology
in DBpedia by manual inspection. Now let us see how our methods can detect such
mismatch and quantify it in order to help geo-ontology engineers in identifying potential
ontological modeling issues. We use Canal to demonstrate it.

We approach this by comparing the semantic similarity between Canal and its sibling
classes, in this case, River. We would assume that since City and River are sibling classes,

their are semantically very similar to each other.
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We first plot the bar graphs for Canal and River. The bar graph uses information
from the feature space after dimensionality reduction. The reason we use the transformed
feature space is two-fold. First, the original feature space contains numerous features
which are hard to visualize and plot in a graph. Moreover, the original feature space is
very sparse, making it difficult to analyze the results in a plotted graph. Second, some of
the features are dependent on each other, making some of the information redundant and
unreliable. The transformed feature space for Feature Set E only contains 63 features
and all of the features are independent from each other.

Figure and Figure show the bar graphs of these two classes. We call these
bar graphs the signatures of these two classes. The x axis represents the features for
each class in the same order while the y axis is the value for each feature. From the
signatures, we can easily tell that Canal has a distinct signature from River. However,
the signatures are unable to quantify the difference between these classes. Moreover, it
is also impossible to obtain the same kind of graphs using the original hierarchy in the
ontology. Thus, these signatures can’t inform us the direction of ontology refinement and

the extent to which we need to modify the ontology.

P L L L L L L p L L L L L L
0 10 20 30 40 50 60 70 0 10 20 20 40 50 60 70

Figure 4.21: Canal Figure 4.22: River

In this case, we can use the proposed Discrepancy Index to help us. After looking up

the similarity matrices for the original hierarchy and the derived hierarchy, we find that
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the similarity between Canal and River is 0.84 and 0.23 respectively. The Discrepancy
Index for (Canal, River) is 0.61. This index implies that Canal is less similar to River
in the derived hierarchy and leads to further investigation, which in this case is the
ontological modeling issue. This result corresponds to our observation in the DBpedia

geo-ontology.

4.4.2 City, Town or Village

Now let’s look at a more interesting case. In DBpedia place ontology, City, Town and
Village are classified as sibling classes, meaning they are very similar to each other. The
signatures for City, Town and Village in Figure [4.23] Figure and Figure show
a different picture. To further investigate this, we use the Discrepancy Index proposed

in this research.

Figure 4.23: City Figure 4.24: Town Figure 4.25: Village

Table shows the pairwise semantic similarities for City, Town and Village from
the original ontology hierarchy. They are all 0.75, which implies that City, Town and
Village are equally similar to each other in the original geo-ontology. Table [4.5| shows
the pairwise semantic similarities for City, Town and Village from the derived ontology
hierarchy. The similarity between City and Town drops from 0.75 to 0.62. The similarity
between City and Village and the similarity between Town and Village both drop from

0.75 to 0.49.
52



Experiment

Chapter 4

Table 4.4: Pairwise similarities from the original ontology hierarchy

City | Town | Village
City 1 0.75 0.75
Town | 0.75 1 0.75
Village | 0.75 | 0.75 1

Table 4.5: Pairwise similarities from the derived ontology hierarchy

City | Town | Village
City 1 0.62 0.49
Town | 0.62 1 0.49
Village | 0.49 | 0.49 1

Table 4.6: Discrepancy Indices for City, Town and Village

City | Town | Village
City 0 0.13 0.26
Town | 0.13 0 0.26
Village | 0.26 | 0.26 0

Table shows the Discrepancy Indices for City, Town and Village. It shows that
City and Town are less similar in the derived geo-ontology hierarchy. (Town, Village)
and (City, Village) are also less similar and to a greater degree. This result reveals some
ontological modeling issues and can lead to some interesting discussion about City, Town
and Village.

When it comes to the difference among City, Town and Village, there never is an
unanimous conclusion. Different countries and regions define them differently based on
local law or tradition. Even within the United States, they are treated differently in
different states. For instance, in California and Maryland, City and Town are legally the
same, whereas, in Utah and Alabama, City and Town are used differently based upon
population. In this sense, they are different because of the population size. The subtlety
in the mismatch between the ontology and the Linked Dataset also signifies that, to a

certain degree, City and Town are more similar with each other than with Village.
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4.4.3 Hotel in DBpedia

In the original ontology hierarchy, Hotel is classified as the sibling class of Restau-
rant, Museum and ShoppingMall under the superclass Building. This is a reasonable

classification and corresponds to our perception of these concepts.

15
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Figure 4.26: Hotel Figure 4.27: Restaurant

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

Figure 4.28: Museum Figure 4.29: Shopping Mall

Table 4.7: Similarity in original and derived hierarchy
Restaurant | Museum | ShoppingMall
Original 0.58 0.58 0.58
Derived 0.14 0.29 0.73

The semantic similarities in the original ontology hierarchy and the derived hierarchy

with respect to Hotel are shown in Table [£.7] It shows that the similarity between Hotel

54



Experiment Chapter 4

and Restaurant drops from 0.58 to 0.14, the similarity between Hotel and Museum drops
from 0.58 to 0.29, and the similarity between Hotel and ShoppingMall increases from
0.58 to 0.73. The Discrepancy Index for (Hotel, Restaurant) is 0.44. The Discrepancy
Index for (Hotel, Museum) is 0.29. The Discrepancy Index for (Hotel, ShoppingMall) is
-0.15. These discrepancies, though insignificant, draw our attention and demand some
investigation into the cause. By querying these classes we are able to find that these
discrepancies may be caused by data bias in DBpedia Linked Dataset because Hotel

surprisingly only has 1237 instances.
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Conclusions and Future Work

This research provides a workflow of an ontology engineering assistance system based
upon the fact that ontology engineering is a systematic and dynamic cycle of multiple
processes. This chapter synthesize the experiment results and conclude on the contribu-
tions and rationale behind this research. Directions for future areas of research are also

presented in this chapter.

5.1 Conclusions

The current ontology construction procedure depends heavily on the knowledge of do-
main experts. The potential pitfall to this routine is that the resulting ontology maybe
biased and sometimes is not representative of our perception of the world. Furthermore,
this practice is tedious and time-consuming. DBpedia initiated a community-based en-
deavor to distribute the labor-intensive ontology construction task to general users. This
initiative is helpful in terms of mitigating the current difficulty in ontology engineering
by crowd-sourcing the effort of modeling our world. However, due to the complexity

and subtlety of ontology engineering, general users are frequently intimidated by the
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formidable jargons and rules in this task. Furthermore, this distributed way of ontology
engineering does not provide solutions to the inherent modeling bias.

In addition, Linked Data quality issue is also a significant factor that is usually
neglected by geo-ontology engineers while creating the geo-ontology. We use an example
from DBpedia that takes advantage of its ontology to cleanse the Linked Dataset and
provide users with cleaner and better structured data to show that ontology itself can
indeed help identify and even deal with Linked Data quality issue.

The state of the art of geo-ontology engineering separates Linked Data from the
process. Some recent research incorporate the corresponding Linked Dataset to enrich
the top-down ontology. We take a step further and argue that the top-down ontology
can also help improve the corresponding Linked Dataset. Considering the two common
issues above, namely the ontological modeling issue and Linked Data quality issue, we
close the gap in geo-ontology engineering by proposing a data-driven framework that can
assist geo-ontology engineers.

By closely examining the Linked Dataset corresponding to the ontology, we build sev-
eral feature spaces that are representative of the properties and instances in the classes
based on four variables, namely filler, specificity, literal and uniformity. We then use
thess feature spaces to derive the data-driven hierarchical structures. Instead of com-
paring the hierarchies directly using simple statistics, we transform the hierarchies into
similarity matrices. Each similarity matrix contains pairwise similarity between differ-
ent classes. After verifying the correlations between the data-driven hierarchies and the
original hierarchy in the ontology using Mantel test, we select the most correlated one.
We use Discrepancy Indices to quantify the discrepancy between the data and the orig-
inal ontology. These indices can give guidance on correcting the potential ontological
modeling issues (such as misclassification) and/or spotting the Linked Data quality issue

(such as missing data). We use three examples to showcase the usefulness of our frame-
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work. Two of the examples are used to show how this framework can be implemented
to detect potential ontological modeling issues. One example is used to show that this
framework can also help identify potential Linked Data quality issue. The experiment
result is consistent with our initial observation of DBpedia place ontology and Linked
Dataset.

Since ontology engineering is a dynamic process, this assistance framework can be
implemented throughout the life cycle of ontology engineering, making it an invaluable
tool. The performance of the proposed workflow depends on the quality of the training
dataset. So data cleaning and noise reduction are important. It is also important to point
out that, although the workflow described in this research is applied using DBpedia geo-
ontology and its Linked Dataset, it is also viable when applied to other ontologies and
Linked Dataset, such as GeoNames and LinkedGeoData.

In this work, we have explored different combinations of feature extraction strategies.
The Mantel test results show that the correlation coefficient does not increase mono-
tonically as we move from Feature Set A to Feature Set B. It decreases first and then
increases. This finding is different from our expectations in that we intuitively think that
as we move from simple to complex feature combinations, the correlations will increase
monotonically. The reason for the result perhaps lies in the way the geo-ontology is
constructed in the first place: rather than adopt an increasingly sophisticated definition
for each class, domain experts may have made efforts in striking the right balance be-
tween complexity and simplicity of the selected concepts and attributes. We may be able
to render hierarchies that have even higher correlation with the original geo-ontology

hierarchy if we extract features other than properties.

o8



Conclusions and Future Work Chapter 5

5.2 Future Work

This research can be extended in several aspects. First of all, our experiment so
far focuses on a particular ontology and dataset. With a wide range of availability of
Linked Data and ontologies on the Web, we can test our framework using difference
data sources to further justify the usefulness of our approach. The challenge of applying
this framework to other geo-ontologies and geospatial Linked Dataset is that we need to
transform them into a standard format that is ready to be used in the framework. For
example, Schema.org ontology does not provide a standard OWL file for the ontology
and it is generated from a large number of webpages and resource that are hard to be
processed in a single database. Moreover, some Linked Dataset is so huge that it poses
a burden the triple store and querying them efficiently has become an important task
to accomplish. The efficiency of SPARQL and GeoSPARQL queries has been an active
research area. Future research will likely benefit from the progress in this area.

Second, the current workflow only helps in detecting the discrepancy between the
ontology and the dataset, but it does not provide candidate solutions. For instance,
after detecting the misclassification of Canal, it will be useful if the ontology engineer-
ing assistance system can provide some candidate classes, such as WaterwayTunnel, for
suggestions. The challenge for providing candidates is that this task is mainly subjec-
tive and require a lot of domain knowledge. In order to provide reasonable candidates,
the framework will need to be adjusted to allow more comprehensive feature selection
criteria.

Third, there is still development on the feature selection step in order to find more
suitable feature sets for the data mining algorithms used in this work. For example, in
addition to the four variables considered in this work, the hierarchy of properties can also

be taken into consideration, e.g. dbo:isPartOfRoute is a subproperty of dbo:isPartOf.
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Furthermore, instead of focusing exclusively on the attributes of place classes, future
research could also extract implicit topological relationships among different place entities
and classes. In this way, we can enrich our features and these new features can help us
detect more information regarding the Linkeda Dataset and the corresponding ontology.
The challenge of adopting a richer set of features also lies in improving the efficiency of
SPARQL queries.

Fourth, the current workflow in this research cannot differentiate whether the dis-
crepancy is due to the ontology modeling bias or the bias in the Linked Dataset. For
the simple reason that both issues coexist in current Linked Data and ontology, differ-
entiating them based purely on data-driven approaches requires certain ground truth.
Such ground truth can be surveys on people’s perception of the classes and relation-
ships in question. The challenge is that, since these perceptions are largely subjective,
there might not be a meaningful agreement on certain issues. Future work can further

investigate in this direction to make the assistance system more intelligent.
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