
UCLA
UCLA Electronic Theses and Dissertations

Title
Comparison of Traditional Image Quality Metrics with Human Observer Detection 
Performance in Ultrasound

Permalink
https://escholarship.org/uc/item/5dj167kn

Author
Mathew, Vineet Thomas

Publication Date
2020
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5dj167kn
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA 

Los Angeles 

 

Comparison of Traditional Image Quality Metrics  

with Human Observer Detection Performance in Ultrasound 

 

A thesis submitted in partial satisfaction  

of the requirements for the degree of Master of Science 

 in Bioinformatics 

 

by 

 

Vineet Thomas Mathew 

 

 

 

 

 



© Copyright by 

Vineet Thomas Mathew 

2020 



ii 

 

ABSTRACT OF THE THESIS 

 

Comparison of Traditional Image Quality Metrics  

with Human Observer Detection Performance in Ultrasound 

 

by 

 

Vineet Thomas Mathew 

 

Master of Science in Bioinformatics 

University of California, Los Angeles, 2020 

Professor Van Maurice Savage, Chair 

 

Given the critical role ultrasound imaging plays in medicine, it is important to have a 

reliable way to measure the quality of an ultrasound image. Image quality measurements allow 

engineers to design ultrasound imaging systems with configurations that allow users to perform 

the clinical tasks and diagnoses with the best accuracy, and also allow objective comparisons to 

be made between different ultrasound machines. The most meaningful way to measure image 

quality is to conduct a study on how well humans are able to perform the clinical task they will 
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be using the images for, but this is a resource intensive task. Therefore, in practice, ultrasound 

image quality is generally measured using basic mathematical metrics known as traditional 

image quality metrics. In this thesis, I explore how these metrics relate to human performance on 

a clinical task, and study whether human performance can be predicted from these metrics. To do 

so, I created a visual assessment which tests the ability of participants to detect artificial veins in 

an ultrasound image, at varying levels of noise and varying levels of undersampling (reduction in 

spatial resolution). I then compute the values of various traditional image quality metrics for the 

same ultrasound images and examine whether the trends of these traditional image quality metric 

values mirror the trends of human performance on our assessment, across varying levels of noise 

and undersampling. The results found that traditional image quality metrics had a relatively 

simple relationship with human performance across varying levels of noise, but a more complex 

relationship across varying levels of undersampling. In addition, I created regression models that 

were able to predict human performance from traditional image metrics for the cases studied. 

This work demonstrates a first step towards examining the relationship between traditional image 

quality metrics and task-based image quality assessments in the context of ultrasound images. 
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Comparison of Traditional Image Quality Metrics with Human 

Observer Detection Performance in Ultrasound 

1. Introduction 

Ultrasound imaging has grown to become the second most frequently used imaging 

modality in medicine1. Given its nonionizing nature, ability to provide real-time imaging and 

relative cost effectiveness, it has evolved into an indispensable tool for medical practitioners for 

a wide array of both diagnostic and therapeutic procedures2. 

Recent advances in technology have allowed for the development of portable ultrasound 

devices that can fit into a practitioner’s pocket. This rise in ultrasound device accessibility, 

paired with the increasing realization of the benefit of routine and rapid ultrasound imaging in 

patient care, has contributed to the growth of point-of-care ultrasound (POCUS). POCUS 

involves the physician ‘bringing ultrasound’ to the patient, so that images are acquired and 

interpreted at the point-of-care. This differs from many traditional uses of ultrasound where a 

physician must first examine a patient, place an order for an ultrasound exam to be done by the 

radiology or imaging department, wait until the exam is complete, and then have the image 

interpreted by a specialized physician before treating the patient accordingly. On the other hand, 

POCUS is used by health care professionals to swiftly seek imaging information in order to 

guide immediate clinical decision making and treatment plans for the patient3. POCUS has 

already become adopted by fields such as emergency medicine and obstetrics and has shown to 

be effective in providing faster and more accurate diagnoses, as well as potential cost savings for 

patients4,5,6. One study showed that with just 18 hours of training, first year medical students 
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without any clinical experience were able to correctly identify 75% of cardiac pathologies when 

utilizing POCUS, compared to board-certified cardiologists who were only able to correctly 

identify 49% of the pathologies when using the standard practice bedside cardiovascular physical 

exam instead7. These benefits have begun to push POCUS into the general medical practice as a 

whole, leading to its growing adoption by primary care physicians in fields like family medicine 

and internal medicine4. As POCUS continues to become more accessible and its benefits become 

more evident, some physicians are calling for it to be added as another ‘pillar’ in the everyday 

standard practice of the bedside physical exam8. 

Given the growing importance of ultrasound imaging, it is critical that ultrasound devices 

produce images that are of high quality. Assurance of image quality becomes increasingly 

important as new POCUS ultrasound devices such as standalone portable probes that plug into a 

smartphone begin to enter the clinical space; these probes need to be able to produce images 

comparable to, if not better than, standard practice machines. To ensure this, the design and 

evaluation of ultrasound imaging devices require that image quality be measured in a reliable and 

quantitative fashion. Image quality assessments help guide initial optimizations of imaging 

system designs, and also demonstrate the performance of those designs in comparison to other 

ultrasound systems seen as the ‘gold standard’9. 

In the field of image and signal processing, simple mathematical relationships are used to 

measure the ‘quality’ of an image or signal, such as Mean Squared Error (MSE) and Structural 

Similarity Index10,11,12. We will refer to these as “traditional image quality metrics”. Traditional 

image quality metrics typically reflect some measure of correspondence between a measured 

image and a desired image (for example, a noisy image and a noise-free image). Ultrasound 

imaging engineers often use these traditional image quality metrics to guide device design and 
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measure the quality of captured images. However, in the medical community, there has been a 

recognition that a more fundamental definition of ‘quality’ is best. Specifically, “How effectively 

can the image be used for the clinical evaluation for which the image was acquired?”13 Thus, the 

best measure of medical image quality is the user’s performance on carrying out clinical tasks 

with the image, such as locating and distinguishing various anatomical structures. 

Naturally, the most accurate way to measure quality in this way would be to have a series 

of physicians (or human-observers) take a ‘test’ and go through sets of images (e.g. images 

acquired by two competing devices). The ability to correctly diagnose disease or locate target 

anatomical structures would then be compared between both sets. However, this kind of task is 

costly in terms of time, money and logistics14. A simpler way would be to create a computerized 

method that is able to predict how well humans would perform on the test. 

In the broader medical imaging field, especially in X-ray CT and nuclear medicine, 

computer algorithms known as model observers have been developed and have become an 

important tool in quantifying image quality15. These model observers act as a surrogate for 

human observers and perform the tasks human observers would do during an image quality 

evaluation test as described in the previous paragraph (say, locating an anatomical structure in an 

image), but do so in a way that the model observer’s performance statistics mimic that of the 

human observers16. Good model observers can thus provide insight and predictions on how 

human observers would perform on the task used to evaluate image quality17. The efficacy of 

model observers in predicting human observer performance has had preliminary investigation in 

ultrasound as well18. But model observers have not found use in the ultrasound community, in 

spite of success in other communities, and further investigation in this direction would be 

worthwhile. 



4 

 

However, instead of creating a computerized model observer to predict human 

performance, we asked the following question: Since traditional imaging metrics are used as 

standard practice in the ultrasound field, what if we could simply use these traditional image 

metrics as a way to understand human-observer performance? Though engineers use traditional 

image metrics when optimizing and designing ultrasound imaging systems, the relationship 

between these metrics and quality defined by human clinical task performance does not appear to 

have been studied previously in the context of ultrasound.  

As a first step towards understanding this relationship, I explore the following questions in 

this thesis:  

• What is the relationship between various traditional image quality metrics and 

human-observer performance in a defined clinical task?  

•  Can traditional image quality metrics be used to predict human-observer 

performance? 

Specifically, I evaluate the extent to which traditional image quality metrics can be used to 

understand and predict human-observer performance in identifying anatomical objects within 

images subject to various levels of degradation. 

To study this relationship, I created a visual detection task by simulating anatomical 

structures consisting of image signals inserted artificially into clinical ultrasound images which 

were subject to varying levels of degradation. To assess human performance in detecting these 

signals, I recruited a group of volunteers to view these images and measured their accuracy in 

detecting the signals (simulated artificial blood vessels). Participants in such a study are known 

as readers. The readers viewed a series of pairs of ultrasound images in which one of the images 
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in each pair contained the inserted artificial blood vessel. Individuals would then make a binary 

choice as to which image in the pair they thought had the inserted artificial vessel, and their 

detection accuracy was computed. In other words, the assessment was measuring how visible 

these artificial vessels were to humans, at ten different levels of image degradation. Then, I 

calculated a collection of traditional image quality metrics for the images at these ten levels of 

image degradation, and examined whether these traditional image quality metric values followed 

patterns across these degradation levels that were similar to the patterns that human task 

performance followed across the degradation levels. 

Human performance on this task was defined by the area under the receiver operating 

characteristic (ROC) curve (AUC), a well-established method of characterizing the accuracy of a 

binary decision-making agent19. In other words, the AUC measured how visible an artificial 

vessel was to a human, and the goal was to measure whether simple mathematical metrics 

(traditional image quality metrics) are actually predictive of AUC (Fig. 1). 
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Figure 1: An image with artificial vessel inserted (left) at two levels of simulated degradation (right). 

(Top right) Image A: This image is a degraded version of its original version (left). It has a Mean Squared Error (MSE) of 69.6 

compared to its original version.  

(Bottom right) Image B: This image is slightly degraded version of its original version (left). It has a Mean Squared Error (MSE) 

of 24.5 compared to its original version. 

MSE is a traditional image quality metrics used to guide ultrasound imaging system design. However, are MSE values indicative 

of how well humans would be able to correctly detect the presence of the simulated blood vessel (located at the center of the 

crosshairs)? Since Image A has an MSE nearly three times higher than Image B, does this mean that humans will be three times 

less likely to correctly detect the presence of the simulated blood vessel in Image A than in Image B? This thesis seeks to 

identify the relationship between traditional image quality metrics and quality measured by human-observer detection 

performance. 

2. Methods 

2.1 Baseline image dataset 

To measure the detection performance of humans in a clinical task it is necessary to have 

access to the ground truth for each image. It is common in medical imaging detection studies to 

use hybrid images, in which real clinical images are augmented with simulated anatomical 

Image A 

Image B 

Original 



7 

 

structures, with the presence and characteristics of these structures providing the ground truth20. 

It is also common in medical imaging studies to simulate anatomical structures with relatively 

simple structures, such as circular disks. Thus, I based my experiments on vascular ultrasound 

images, because veins and arteries (vessels) are in reality well approximated by dark circular 

disks within surrounding tissue.  

A set of 20 vascular ultrasound images obtained by imaging with a Philips Lumify linear 

imaging probe formed the base dataset for the experiments. Each of these images was then 

modified by artificially introducing one dark circular disk at a location selected to appear 

visually realistic and not easy to detect. We will refer to these disks as simulated “vessels”.  The 

“vessel” location was chosen individually for each of the 20 images, so that no two were alike. 

Each image containing a “vessel” was further modified by inserting crosshairs indicating 

the location of the “vessel”.  Crosshairs were also inserted at the same location in the 

corresponding original image (prior to insertion of the “vessel”) to indicate the position where 

the “vessel” would be located if it were it to be present.  We will refer to the images with and 

without a “vessel” as “object-present” and “object-absent” respectively. Thus, we had 20 object-

absent/object-present pairs. Let us call these set of images in our baseline dataset �. Therefore, 

� = {(��, �����), (��, �����), . . . , (���, ������)} 

where ����� is the object-present version of ��. The vessels that were inserted in each object-

present image had one of three different radii (small:7 pixels, medium:10 pixels, large: 13 

pixels), and one of three intensities (light: 90% brightness, medium: 86% brightness, and dark: 

82% brightness) (Fig. 2). In a pilot study, these radius and intensity values were chosen such that 

any combination of radius and intensity would create a vessel that yielded approximately 90% 
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detection accuracy, so that once image degradations are added, the accuracy would drop into the 

range of “challenging” cases. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Examples of object-present/object-absent images in S 

Crosshairs highlight the region of interest in the image in which an artificial vessel was inserted in the object present version 

of the image. Only one image in each pair contains an artificial vessel in the crosshairs. Participants’ detection performance 

was evaluated based on their ability in correctly identifying which image in each pair contained the artificial vessel, on 

degraded versions of these pairs. 

(Top) Here, the right side image is the object present image, since it contains the dark object at the center of the region with 

the crosshairs, unlike the left side image. The artificial vessel has a ‘medium’ intensity and a ‘large’ radius 

(Bottom) Here, the left side image is the object present image, since it contains the dark object at the center of the region 

with the crosshairs, unlike the left side image. The artificial vessel has a ‘dark’ intensity and a ‘small’ radius 
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For each pair in �, I then created ten different versions of the pair, each at one of ten 

simulated levels of image degradation. I simulated five different levels of noise degradation, and 

five different levels of “undersampling” degradation (loss of information that occurs when 

insufficient imaging information is captured from the ultrasound probe, resulting in a lack of 

spatial resolution). These degradations will be more thoroughly explained in the following 

section.  

Thus, I created five noised groups, noise_1, noise_2, noise_3, noise_4, and noise_5, and 

five undersampled groups, undersample_1, undersample_2, undersample_3, undersample_4, 

and undersample_5. Each group consisted of the 20 image pairs in �, subject to the group’s 

given level of noise or undersampling degradation.  

The 20 pairs of images in � at ten different levels of degradation yielded 200 images in 

the final dataset, which was used in the visual detection assessment. The following section 

explains the basis in which these degradation groups were created. 

2.2 Simulated Image Degradation Groups: Noise and Undersampling 

An important use of image quality metrics in ultrasound is to measure the effect of 

various imaging parameters on the performance of an imaging device or algorithm. This can be 

used, for example, to evaluate various design choices. Therefore, it is important to understand 

how these design choices affect the image quality metrics and—as I study in this thesis—to 

understand how these choices affect the performance of the user in conducting clinical tasks, 

which reflects the true real-world impact. 

The imaging parameters that are most important to aspects of image quality are those that 

affect noise and spatial resolution.  Noise level is a function of many factors, including the 
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manner of data acquisition and various characteristics of the imaging hardware. Spatial 

resolution is affected by various aspects of the data acquisition scheme as well, with an important 

parameter being the number of scanlines acquired to produce the image.  Thus, to simulate the 

effect of imaging parameter choices that could lead to progressively greater levels of image 

degradation, I modified the original images by either introducing artificial noise or reducing the 

number of scanlines (undersampling).  

Noise 

During ultrasound image capture, the signal can encounter thermal noise, which obeys a 

Rician distribution (complex magnitude of i.i.d. Gaussian noise in real and imaginary parts of the 

signal)21. The captured signal is then transformed by a logarithmic transformation (log 

compression) to compress to greyscale values for purposes of improved visualization. 

Thus, in order to insert simulated noise into the object-present and object-absent images, 

it was necessary to emulate a process of inserting the noise to the preprocessed ultrasound image 

information, prior to log compression. 

The relationship between log compressed ultrasound image that is displayed, and the 

preprocessed image data is given by the following: 

���� = �ln( ���) + " 

where ���� is the pixel in the ith row and jth column of the displayed image ��, and  ��� is the 

pixel in the ith row and jth column of the preprocessed image. � and " are constants (in this 

project I used �=18.147 and " =0), which were inferred from the baseline image dataset by 

using the methodology described in a work by Paskaš 22. 
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The pre-compression values  ���can be written in terms of ���� as follows: 

 ��� = $(����/&)'(
 

The pre-processed pixel data  ��� was modified to create noisy data  ̃���, as follows 

  ̃��� = *+ ��� + ,-)� + ( ��� + ,.)� 

with ,-, ,. ∼ 0(�, 1.), which yielded the following after log compression: 

�̃��� = �ln + ̃���2 + ". 

So for a given object-absent / object-present image pair in �, (��, �����), I chose a value 

for 1 and calculated the noisy version of each of the pixels, resulting in the noisy image pair 

(�̃� , �̃�
���). Note that for a set of corresponding pixels in a given object-absent and object-

present image pair (���� , ����
���), the same noise values are used for each pair of  ̃��� and   ̃���

���
.  

Using the noise simulation scheme above, I created five ‘noise’ groups, noise_1, noise_2, 

noise_3, noise_4, and noise_5. Each group consisted of noisy versions of all 20 pairs of object-

present and object-absent images in �, according to Table 1. 
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More specifically, 

 noise_k = {(�� 34567_9 , �� 34567_9
��� ), (�� 34567_9 , �� 34567_9

��� ), . . . , (��� 34567_3 , ��� 34567_9
��� )} 

where (�� 34567_9 , �� 34567_9
��� ) refers to the nth object present/object-absent image pair in �, subject 

to the noise level as indicated by k as described in the above table. 

Using the process described above, images became increasingly noisy moving from 

noise_1 to noise_5 (Fig. 3). Since each of the 20 object-absent/object-present image pairs were 

noised in each of the five groups at the groups respective noise level, a total of 100 noised object 

absent/object present image pairs were created. 

 

Group Name Value of 1 for ,-, ,. ∼ 0(�, 1.) 

noise_1 1 

noise_2 $. 

noise_3 $: 

noise_4 $; 

noise_5 $< 

Table 1:Values of the standard deviation of the random noise components added to the preprocessed 

version of the images in each noise group. 
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Undersampling 

Ultrasound images are formed by having multiple transducer elements capture analog 

acoustic echo signals that reflect off of tissues in the body from various directions. The analog 

signals captured by each transducer element are sampled at discrete spatial and temporal 

intervals to digitize the signal. The spatial sampling yields a collection of scanlines which depict 

reflections along a ray passing through the object23. In linear-mode ultrasound, which was the 

type of ultrasound used to capture the images in this study, the scanlines are displayed as 

columns of pixels in the image. If the acoustic signals are sampled at the Nyquist rate, a 

sufficient number of scanlines will be generated to fully characterize the signal24. However, if the 

signal is sampled below the Nyquist rate, fewer scanlines are generated, leading to a loss of 

visual information and reduced spatial resolution. This is called “undersampling.” 

Figure 3: Examples of an object-present image �����, with different levels of noise 

Note: When displayed to the readers these images would never appear side by side during the visual assessment, but 

would rather appear side by side with their respective object-absent versions 

(Left): �� 34567_�
���

, the noise_1 version of the image =�4>?.  

(Right): �� 34567_@
���

, the noise_3 version of the image =�4>?. 
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The images acquired in this study were captured at the display resolution of 458 × 470 

(width × height); however, much of the information in the horizontal direction is redundant. This 

is because the actual image information is determined not by the display resolution, but by the 

number of scanlines in the data before it is upsampled (stretched) to produce the geometrically 

correct aspect ratio which depicts the tissue in a geometrically correct way. Hardware 

manufacturers do not typically publish the number of scanlines acquired by the system, so I 

inferred this number empirically. I accomplished this by downsampling the display resolution of 

the images at increasingly lower rates, followed by upsampling back to the display resolution, 

until I obtained results that were just noticeably different than the original images. From this I 

inferred that the number of original scanlines is approximately 153. 

Next, to emulate undersampling (diminished horizontal spatial resolution due to reducing 

the number of ultrasound scanlines), I downsampled each image to A′ × 470, and then upscaled 

the image back to 458 × 470 to retain the original aspect ratio. Here, A′ was a number less than 

153, the number of original scanlines that I estimated to be in the image. By doing this 

downsampling followed by upscaling, the images became more blurry, because the original 

image was attempted to be reconstructed by an ‘undersampled’ version.  

Thus, in a given object-absent / object-present image pair (��, �����), prior to 

downsampling, each image in the pair represented an image sampled at the Nyquist rate that led 

to 153 ultrasound beams that were used to form the original 470 × 458   image.  Using the 

undersampling simulation scheme above, I created five ‘undersampling’ groups, undersample_1, 

undersample_2, undersample_3, undersample_4, and undersample_5. Each group consisted of 

undersampled versions of all 20 pairs of object-present/object-absent images, according to the 

following scheme in Table 2. 
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Table 2: Values of  B′ for images in each undersample group. Each image was downsampled to A′ × 470 and then upscaled 

back to 458 × 470  to simulate the effect of various levels of undersampling. 

 

Group Name A′  
undersample_1 143 

undersample_2 109 

undersample_3 75 

undersample_4 41 

undersample_5 7 

 

More specifically,  

undersample_k = {(�� 6CDEF7_9 , ��6CDEF7_9
��� ), (�� 6CDEF7_9 , �� 6CDEF7_9

��� ), . . . , (��� 6CDEF7_9 , ���6CDEF7_9
��� )} 

where (�� 6CDEF7_9 , �� 6CDEF7_9
��� ) ) refers to the nth object present/object-absent image pair in �, 

subject to the undersampling level as indicated by k as described in the above table . 
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With this scheme, images became increasingly blurry moving from undersample_1 to 

undersample_5 (Fig. 4). Since each of the 20 object absent/object present image pairs had 

undersampled versions made in each of the five groups, a total of 100 undersampled object-

absent/object-present image pairs were created.  

 

 

In these undersampling groups, no simulated noise was introduced. Thus, our visual 

assessment consisted of two separate experiments: one to study only noise effects, and one to 

study only undersampling effects.  Cross effects would be worthy of study, but would require a 

much larger-scale effort on the part of the participating readers. 

Combining all noise and undersampling groups, our final dataset consisted of 200 

images: 100 noisy pairs, and 100 undersampled pairs. 

Figure 4: Examples of an object-present image =�4>?with different levels of undersampling 

Note: When displayed to the readers these images would never appear side by side during the visual assessment, but 

would rather appear side by side with their respective object--absent versions. 

(Left): The undersample_1 version of the image, �� 6CDEF7_�
���

.  

(Right): The undersample_3 version of the image �� 6CDEF7_@
���

. 
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2.3 Visual Detection Assessment Overview 

A classic approach to quantifying binary classification (detection) task-performance is the 

receiver-operating characteristic (ROC) curve, which depicts the trade-off of detection 

probability versus false alarm probability over a range of detection thresholds. To summarize this 

curve with a single numeric metric, it is common to use the area under the ROC curve, 

abbreviated as AUC.   

One can measure the AUC in practice by first estimating the ROC curve from 

participants’ reported confidence in the presence or absence of an object for each of a group of 

individual images presented to them (some object-present, some object-absent), and then 

calculating the true-positive and false-positive fractions. However, a more convenient approach 

that is mathematically equivalent is the two-alternative forced-choice (2AFC) test, in which 

participants are sequentially presented with matched pairs of images that are identical except that 

one contains the object and the other does not. A reader’s ensemble average accuracy when 

guessing which of the two images they believe contains the object forms an estimate of the AUC 

value for that individual and image group22.  The 2AFC is called two-alternative because the 

reader chooses which image contains the object; the term forced-choice refers to the fact the 

reader must choose one of the two images, even if they are unable to perceive the object in either 

of the two images.  
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In the literature of visual interpretation of medical images, participants in an experiment 

are known as readers or human observers. To measure human performance through AUC as 

described above, I recruited 13 readers and created a visual detection assessment measuring their 

performance in detecting simulated ‘vessels’ digitally embedded within genuine vascular 

ultrasound images. The assessment consisted of 200 2AFC tasks: readers were shown each of the 

200 image pairs in our final dataset and were instructed to select which of the two images in the 

pair they perceived to contain the artificial vessel (Fig. 5), even if they were unsure. The 200 

pairs were presented to the readers in random order to avoid ordering effects. For consistency, 

the readers performed the assessments under the following conditions, which were uniform 

across the readers. All readers were shown a small tutorial with examples of object present and 

object absent pairs before the test began. Readers were seated so that their eyes were 50cm away 

from the computer screen. Screen display was set to maximum brightness with a 90% zoom level 

on Google Chrome. All participants took the assessment on an HP Spectre 2-in-1 x360 laptop. 

No time limit was given. 

Figure 5: Example of 2AFC task 

Readers had to choose which image in the pair they perceived to contain the object.. Here, the right image in 

the pair is the object present image, since it contains the dark object at the center of the region with the 

crosshairs, unlike the left side image. 
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2.4 Comparing Human Observer Performance with Traditional Metrics 

After all visual assessments were complete, I then computed the average values of 

traditional image metrics within each noise and undersampling group and compared graphs of 

these metrics with graphs of AUC across noise and undersampling groups. AUC for each 

participant within each degradation group was calculated based on the percent of correct 

responses in that degradation group. In other words, for each set of 20 images in each of the 10 

degradation groups, I calculated various traditional metric values (each averaged across all the 

images in a given degradation group), and compared it with each participant’s percent of correct 

responses in that degradation group (AUC). I then used a resampling-based train/test machine-

learning paradigm to develop a simple prediction model to predict human performance from the 

image metrics that had the simplest relationship to AUC. In this study, I compared the results of 

using linear, quadratic, and cubic polynomial models in predicting AUC for the noise and 

undersampling groups. In each iteration of the resampling scheme, 7 readers were randomly 

selected for training, and the remaining 6 readers for testing.  Within each iteration, I performed 

a regression to minimize sum of squared errors between the prediction model and the AUC 

scores of all 7 readers, and then measured mean absolute error (MAE) and root mean square 

error (RMSE) with our models predictions and the average AUC for the 6 readers in the test. I 

then averaged the RMSE and MAE across 100 iterations as measures of generalization error (to 

measure generalizability of the model to unseen readers). 

The following section will provide more detail on the creation of the dataset and the 

traditional image metrics that were calculated. 
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2.5 Metrics 

 Using the following traditional image quality metrics, I calculated average metric values 

across the images within each of the five noise groups, and each of the five undersampling 

groups. I then compared each metric’s average value within each degradation group to the 

average AUC in each degradation group. 

MSE (Mean Squared Error) 

Given two G × H images � and �̂, the mean squared error is computed as follows: 

J�K(�, �̂) = 1
GH M M(��� − �̂��).

�O
 

where ��� and �̂�� refer to the pixel in the Pth row and Qth column of each image respectively. 

The MSE was computed between each degraded object present image and the original object-

present counterpart. 

MAE (Mean Absolute Error) 

Given two G × H images � and �̂, the mean squared error is computed as follows: 

J,K(�, �̂) = 1
GH M M |��� − �̂�� |

�O
 

where ��� and �̂�� refer to the pixel in the Pth row and Qth column of each image respectivley. 

The MAE was computed between each degraded object present image and the original object-

present counterpart. 
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CNR (Contrast to Noise Ratio) 

The contrast to noise ratio (CNR) of an ultrasound image is given by 

CNR = |VWXYZ[\ − V]^__W^`ab`c \b]]^Z|
*1WXYZ[\. + 1]^__W^`ab`c \b]]^Z.

 

where VWXYZ[\ and 1WXYZ[\.  refer to the mean and variance of pixel values of the object within an 

image region of interest (in our case, an artificial ‘vein’) and V]^__W^`ab`c \b]]^Z and 

1]^__W^`ab`c \b]]^Z.  refer to the mean and variance of pixel values in the concentric annulus 

surrounding the ‘vein’ that has the same area as the ‘vein’. 

CNR was measured on each object-present image and was then divided by the CNR 

values of each corresponding original object-present image (the version of the image before 

noise or undersampling degradation was added). This was done to measure CNR of the images 

relative to their degradation-free versions. 

Contrast 

The contrast of an ultrasound image is simply the numerator of the CNR expression, 

namely |VWXYZ[\ − V]^__W^`ab`c \b]]^Z|. 

Contrast was measured on each object-present and was then divided by the Contrast of each 

corresponding original object-present image (the version of the image before noise or 

undersampling degradation was added). This was done to measure Contrast of the images 

relative to their degradation-free versions. 

 



22 

 

SSIM 

The Structural Similarity Index Measure defines the similarity between two images 

�and �̂ as a function of comparisons between their similarities in luminance, contrast, and 

structure. In general, 

��fJ(�, �̂) = g(h(�, �̂), i(�, �̂ , j(�, �̂)) 

where h, i, and j are functions that calculate the similarities between the luminance, contrast, and 

structure of the images respectively. More details of the function can be found in the paper by 

Wang et. al11. SSIM was measured on each object-present relative to each corresponding original 

object-present image (the version of the image before noise or undersampling degradation was 

added). 

3. Results 

 This thesis sought to explore the following questions: 

• What is the relationship between various traditional image quality metrics and 

human-observer performance in a defined clinical task?  

•  Can traditional image quality metrics be used to predict human-observer 

performance well? 

To answer these, we will look at the results from the methods in four steps: 

1. How does human detection performance respond to various levels of image degradation? 

2. How do traditional image quality metrics respond to various levels of image degradation? 
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3. How do the traditional image metrics vary with respect to the AUC value (at each level of 

image degradation)? 

4. How do regression-based machine learning models perform in predicting human AUC 

from the most-promising of the traditional image metrics? 

 

3.1 Human Detection Performance Patterns 

The detection performance of the readers at the noise and undersampling levels is 

summarized in the following graphs. Conducting an assessment like this is the most direct and 

accurate way to measure true image quality as we described in the introduction, though is 

resource intensive.  
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Figure 6: Plotted values of each participant’s AUCs across all five levels of noise (Top) and all five levels of 

undersampling (Bottom). 

Note: for the horizontal axis, group ‘1’ refers to noise_1 and undersample_1 for each graph respectively, group ‘2’ refers to 

noise_2 and undersample_2, and so on. Standard errors for the mean are depicted on the graph. 
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From these graphs, the first thing we observe is that human performance seems to 

steadily decrease as the amount of noise increases. However, human performance remains fairly 

steady across the first three undersampling levels, and then dips afterwards. If an ultrasound 

design team were able to directly measure human AUC by conducting an experiment as done in 

this study, and wanted to choose the image system parameters that would lead to the best AUC, 

they would choose the settings of noise_1, though it would likely be the most resource intensive 

of all five noise configurations (it is the one that captures the least amount of noise in the signal). 

For a sampling setting, they would choose undersample_3, as it provides similar AUC 

performance as undersample_1 and undersample_2, but is able to do so more efficiently due to 

its lower sampling rate as compared to undersample_1 and undersample_2. In fact, the readers 

exhibited a slightly higher AUC for detecting the vessels in undersample_3, but this anomaly is 

likely due to inherent randomness in the readers’ scores. 

3.2 Traditional Image Quality Metric Patterns 

If we accept that human AUC is the true measure of image quality, then traditional 

metrics may be able to approximate this, potentially offering the benefit of estimating the true 

assessment of image quality without the expensive and time-consuming step of conducting a 

reader study with human participants. But if a traditional image quality metric is to be used as a 

guide to design an imaging system or algorithm, it should ideally respond to the factors that 

degrade image quality in the same way as AUC responds to be useful 

In this section, I compare the patterns of each of the traditional metrics with AUC 

patterns, as a function of levels of the different levels of noise and undersampling degradation. If 

the metrics and human AUC respond identically (up to a constant factor), this would imply that 



26 

 

human performance can be trivially predicted with these metrics. But as we can see, although 

some metrics show similar behavior to AUC, none of the metrics responds identically. The 

metric patterns for the noise groups are summarized in the graphs below and are shown along 

with the human AUC data for comparison where each point is the average (metric or AUC) value 

for images in the indicated noise level. Standard errors are also indicated on the graphs. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Plots of the average values of MSE and MAE across each noise group, compared to the average AUC 

values of participants 

The blue points across each graph are identical because they are the trend of average AUC values in the noise groups, but 

the orange dots are different across each graph as they represents the trend of a specific image metric: average MSE (Top), 

and average MAE (Bottom). Standard errors are also denoted on the graphs. 
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Figure 8: Plots of the average values of CNR, Contrast and SSIM across each noise group, compared to the 

average AUC values of participants 

The blue points across each graph are identical because they are the trend of average AUC values in the noise groups, 

but the orange dots are different across each graph as they represents the trend of a specific image metric: average 

CNR (Top), and average Contrast (Middle) and average SSIM (Bottom). Standard errors are also denoted on the 

graphs. 
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The metric patterns for undersampling groups are summarized in the graphs below and 

are shown along with the human AUC data for comparison, where each point is the average 

(metric or AUC) value for images in the indicated undersampling group. Standard errors are also 

indicated on the graphs. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Plots of the average values of MSE and MAE across each undersampling group, compared to the 

average AUC values of participants 

The red points across each graph are identical because they are the trend of average AUC values in the sampling 

groups, but the orange dots are different across each graph as they represents the trend of a specific image metric: 

average MSE (Top), and average MAE (Bottom). Standard errors are also denoted on the graphs. 
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Figure 10: Plots of the average values of CNR, Contrast and SSIM across each undersampling group, compared 

to the average AUC values of participants 

The red points across each graph are identical because they are the trend of average AUC values in the sampling groups, 

but the orange dots are different across each graph as they represents the trend of a specific image metric: average CNR 

(Top), and average Contrast (Middle) and average SSIM (Bottom). Standard errors are also denoted on the graphs. 
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When we study the metric patterns for the noise groups in Fig. 7 and Fig.8, we see that all 

of them decrease at each increasing noise level, similar to the human AUC pattern. Thus, if an 

ultrasound design team were to use these metrics as a measure of human AUC, they would make 

the choice of image system parameters of noise_1, since it provides the best metric scores. And 

in doing this, they would make the correct choice, since we saw from the human experiment that 

noise_1 indeed led to the best human AUC. All the metrics capture the decreasing pattern of 

human AUC performance across noise levels, albeit with varying complexity of relationship than 

others.   

When we study the metric patterns for the undersampling groups in Fig. 9 and Fig. 10, 

we see a slightly different story. Though the AUC points remain flat and only begin dropping 

after the third undersampling group, the points for MSE, CNR, and SSIM remain relatively flat 

up through the fourth undersampling group. But the other two metrics (MAE and Contrast) 

instead of remaining flat, steadily decrease through the fourth undersampling group. All metrics 

show a relatively large dip between the fourth and fifth undersampling group.  If an ultrasound 

design team were to consider all these metrics to gauge human AUC, they may be inclined make 

the choice of image system parameters of undersample_4, since it provides metric scores very 

similar to undersample_1, undersample_2, undersample_3, and undersample_4 but with a 

more efficient sampling rate. Yet in doing this, they would make a misguided choice, since we 

saw from the human experiment that it was undersample_3 that led to the best human AUC in 

terms of efficiency of sampling. Due to the differences in the metric patterns and AUC patterns 

for undersampling groups, we would expect that conclusions about the pattern of human 

performance from traditional image quality metrics may be a more difficult task than in the noise 

case, and that these metrics may misguide us at certain undersampling levels.     
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3.3 Comparing Traditional Image Quality Metrics Against Human AUC 

A more direct way to compare the patterns of traditional image quality metrics and 

human-observer AUC is to plot them against one another. These give us a better idea if any of 

the metrics can be used to predict the AUC value at the different degradation levels.  Below are 

the trends of AUC vs the various metrics, at various levels of noise (blue points) and 

undersampling (red points). 

 

 

 

Figure 11: Plots of the average AUC values vs. average metric values of MSE (top row) and MAE (bottom row) 

metrics, across the noise (left column) and undersampling groups (right column) 

Note: The number label next to each point represents the respective noise or undersampling group number, such as 

noise_1, undersampling_1, etc. 
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When examining the trends of AUC verses the individual metrics, and comparing across 

noise and undersampling groups, we observe that all the trends for the noise groups are 

monotonic. In addition, for the noise groups, the AUC trends across three of the metrics (CNR, 

Contrast, and SSIM) look nearly linear. For MSE and MAE, the AUC trend for the noise groups 

Figure 12: Plots of the average AUC values vs. average metric values of CNR (top row), Contrast (middle row) and 

SSIM (bottom row)metrics, across the noise (left column) and undersampling groups (right column) 

Note: The number label next to each point represents the respective noise or undersampling group number, such as noise_1, 

undersampling_1, etc. 
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looks somewhat exponential. However, in the AUC vs metric graph for the undersampling 

groups, none of the trends are monotonic, and the relationships look rather complex. From 

exploring these patterns, we would expect that predicting AUC from image metrics from noise 

groups may be possible with a simple model, but for undersampling groups, a more complex 

model may be needed.  

3.4 Predicting Human AUC from Traditional Image Metrics 

 To explore whether or not a traditional image metric could be used to predict AUC well, I 

chose one metric for the noise groups and one metric for the undersampling groups that I 

expected to give the best prediction results using regression models, based on our graphs above. 

After inspecting Figures 9 and 10, I decided that the metrics with the most straightforward 

relationships with AUC (and thus were most likely to result in successful prediction models) 

were CNR for the noise groups, and Contrast for the undersampling groups. These metrics were 

used to predict human AUC within each group across 100 resampling iterations as described in 

the methods section. The results of linear, quadratic, and cubic models are given in Table 3. 
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Table 3: Average performance of regression models in predicting AUC across 100 train/test split iterations 

(Top): Results of various models using CNR to predict AUC across noise groups. Here, the linear model showed the best 

performance. 

(Bottom): Results of various models using Contrast to predict AUC across undersampling groups. Here, the cubic model showed 

best performance 

 

 

  

A linear model performed best on the noise groups, with an average test set MAE and 

RMSE of 0.038 and 0.044 respectively. The cubic polynomial performed best on the 

undersampling groups, with an average test set MAE and RMSE of 0.048 and 0.057 respectively. 

Both of these MAE values are less than 5% of the total range of values AUC can take (0-1). 

These prediction errors are small enough to draw useful conclusions about the effect of noise and 

sampling on human observer performance. 

4. Discussion 

 This study showed that for ultrasound images, traditional image metrics have a variety of 

relationships with human performance, depending on each metric, and the type of degradation 

the image is subject to. For most metrics, there seems to be a liner relationship between the 

metric value and human performance in noise groups. However, all metrics have nonlinear 

relationships with human performance with respect to undersampling. 

Models for Noise Groups Average MAE Average RMSE

Linear 0.038 0.044

Quadratic 0.04 0.047

Cubic 0.044 0.052

Models for Undersampling Groups Average MAE Average RMSE

Linear 0.05 0.06

Quadratic 0.053 0.064

Cubic 0.048 0.057
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 Predictions of human performance can be made from metrics with limited accuracy. In 

this study, I chose to predict AUC in the noise and undersampling groups with CNR and 

Contrast respectively. This was based on the fact that in Figures 9 and 10, these metrics seemed 

to exhibit the simplest relationship with AUC amongst other metrics. However, further study is 

needed to see if other metrics can be used to predict AUC with comparable or increased 

performance. 

 Because the dataset and number of participates was rather limited, this study’s results 

need to be interpreted with caution. More data collection through testing more readers, as well as 

including more noise and undersampling groups (such as 10 groups of noise and undersampling 

each, rather than 5) will likely give a more accurate picture of the relationship between these 

metrics and human performance. In addition, since prediction models were fit on a limited 

dataset, the degree to which the results generalize to other undersampling rates or noise levels is 

unknown. 

Further model optimizations should also be done, such as combining multiple metrics to 

predict AUC, or using more sophisticated models. For example, neural networks might be able to 

capture the nonlinearities shown in the relationship between metrics and human performance on 

undersampling groups. In addition, this thesis studied the effect of noise and undersampling on 

human AUC in isolation, though in the real world, images may be subject to both noise and 

undersampling. A further study should be done to examine these cross effects, and whether or 

not the relationships between the traditional image metrics and human-observor AUC that was 

found when varying noise and undersampling carry over when varying noise and sampling 

together., The methods and results of this thesis prove to be a first step towards a potentially 
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simpler way of predicting human observer performance – through traditional image metrics 

rather than model observers.  
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