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Abstract

Text Detoxification in Natural Language Processing

by

Jing Qian

The rapid rise of social media has given individuals an easy platform to publicly

communicate with others. Unfortunately, this has also led to improper use of online

spaces, such as the propagation of toxic speech. Worse yet, user-generated toxic speech

can propagate beyond online social platforms. We recently observed toxic degeneration

and biased behavior in language models (LMs) pretrained on a web text corpus. In order

to create a healthy communication environment, developing text detoxification techniques

has attracted increasing attention from both the industry and academia. To achieve this

goal, detoxification methods need to handle both pre-existing toxic speech and LMs that

exhibit toxic degeneration.

In this dissertation, we investigate how to use Natural Language Processing techniques

for text detoxification in two directions. 1) for pre-existing toxic speech, we develop

automatic tools for post-processing, including detection, analysis, and intervention. 2)

for the model-generated toxic speech, another complementary solution to post-processing

is to detoxify the pretrained LMs by reducing the likelihood that the model will generate

toxic content.

In the first part, we focus on toxic speech, especially hate speech, that already exists.

We start by improving automated hate speech detection through intra-user and inter-

user representation learning. We then move beyond the standard binary hate speech

detection. We study fine-grained hate speech characterizing in both the isolated learning

setting and the lifelong learning setting. We also investigate how neural network models

viii



are able to decipher hate symbols. We then explore the intervention strategies for online

conversations that contain hate speech. As part of this work, we make publicly available

two fully-labeled hate speech datasets with human-written intervention responses.

In the next part, we focus on the not-yet-emergent toxic speech from LMs. We

begin by controlling pretrained LMs in the freeform text generation scenario. We then

further investigate LM detoxification in dialogue with contextualized stance control. Our

work effectively lowers the toxic content rate of the pretrained LMs while sacrificing less

linguistic quality.

Finally, we summarize the key findings of our work and discuss future research direc-

tions to push the boundaries of text detoxification.
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Chapter 1

Introduction

The rapid growth of social media has not only yielded a vast increase in information

accessibility but has also given individuals an easy platform on which to share their

beliefs and publicly communicate with others. Unfortunately, the growing popularity of

online interactions through social media has also led to nefarious uses of online spaces,

such as the propagation of toxic speech, which is impolite, rude or hurtful language. In

toxic speech, hate speech specifically refers to language that attacks others on the basis of

the protected characteristics, such as race and religion [1]. For a healthier communication

environment, we aim to detoxify text using Natural Language Processing techniques, as

shown in Figure 1.1.

Developing automated text detoxification techniques has realistic significance. Toxic

speech can cause psychological harm to its victims. Research in psychology finds that

being targeted by online hate speech leads to greater stress expression [2]. To reduce

the propagation of toxic speech, social media platforms such as Facebook hire content

moderators to review content, but it is shown that repeated exposure to these traumatiz-

ing posts has left some content moderators with mental health problems [3]. Therefore,

automatic text detoxification can not only reduce the exposure of the target people to

1



Introduction Chapter 1

Figure 1.1: Text Detoxification.

toxic speech but also reduce the content moderators’ exposure to it. Besides, hate speech

analysis may provide valuable information about real-life hate crimes. A recent study

has found a connection between the number of real-life racially motivated hate crimes

and the number of racist messages posted on Twitter in 100 different cities across the

United States [4].

In the first part of the dissertation, we apply post-processing to tackle toxic speech,

especially hate speech, that already exists. We begin with automatic hate speech detec-

tion, which differentiates hate speech content from normal content. Most previous work

on hate speech analysis using Natural Language Processing (NLP) techniques falls into

this category [5, 6, 1]. We then investigate fine-grained hate speech characterization,

which is necessary for fine-grained hate speech analysis. Different from hate speech de-

tection, the input data for hate speech characterization constitute hate speech only and

the output can be the target of hate speech, the likely spread of hate speech, etc. In this

work, we are particularly interested in analyzing hate groups and hate symbols. Towards

2
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Figure 1.2: Dissertation Overview.

the end goal of mitigating the problem of online toxic speech, we then explore methods

to automatically generate responses to intervene during online conversations containing

hate speech.

In the second part, we tackle the toxic degeneration problem of Language Models.

Language models pretrained on problematic web content are significantly at risk of pro-

ducing toxic content [7], which hinders the safe deployment of these powerful Natural

Language Generation (NLG) models. We propose novel control methods to alleviate

this problem in the freeform generation scenario as well as in a more complex scenario

involving dialogue contexts. Figure 1.2 shows an overview of the dissertation.

To conclude, we demonstrate that:

Countering toxic speech is a critical yet challenging task, but one which can be aided

by the use of Natural Language Processing techniques. We advance the state of the art in

automatic post-processing of hate speech and Language Model detoxification by leveraging

both Natural Language Understanding and Natural Language Generation techniques.

3
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Source Definition

European Union
Commission [8]

All conduct publicly inciting to violence or hatred directed
against a group of persons or a member of such a group de-
fined by reference to race, colour, religion, descent or national
or ethnic origin.

Nobata et al. [1] Language which attacks or demeans a group based on race,
ethnic origin, religion, disability, gender, age, or sexual orien-
tation/gender identity.

Twitter [9] You may not promote violence against or directly attack or
threaten other people on the basis of race, ethnicity, national
origin, sexual orientation, gender, gender identity, religious
affiliation, age, disability, or disease.

Table 1.1: Definitions of hate speech from different sources. The targets of hate
speech, the characteristics that hate speech is based on, and the intent of hate speech
are marked in different colors.

1.1 Hate Speech and Toxic Speech

As shown in Table 1.1, there are some nuances between definitions of hate speech

from different sources, but they converge on three dimensions: specific targets, specific

characteristics, and the intent to attack or incite violence. First, hate speech has specific

targets. It can be an individual or a group of people. Second, hate speech is based on

the protected characteristics of the target, such as race, ethnic origin, etc. Third, the

intent of hate speech is to attack or promote violence. Figure 1.3 shows two examples

of hate speech on social media. The first example targets people with a specific disease

while the second example targets a religious group.

Compare to hate speech, toxic speech is a more general term referring to impolite,

rude, or hurtful language. There does not exist a formal definition of the distinction

between hate speech and toxic speech but there is a consensus that hate speech targets

disadvantaged social groups or group members in a manner that is potentially harmful

to them while toxic speech may not [10, 11, 12]. In Computer Science research [10,

4
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Figure 1.3: Examples of hate speech based on disease (left) and hate speech based on
religion (right). The names of the disease and the religion are masked.

7, 1], the terms, toxic speech, offensive language, and abusive language, are often used

interchangeably. In the first part of the dissertation, we specifically focus on the issue of

hate speech. In the second part of the dissertation, we focus on the issue of more general

toxic speech.

1.2 Language Models

A language model is the core component of Natural Language Generation (NLG).

Given a text consisting of m tokens (x1, x2, . . . , xm), a language model assigns a proba-

bility P (x1:m) = P (x1, x2, . . . , xm) to the text. Typically, the joint probability P (x1:m)

is decomposed as
∏m

i=1 P (xi|x1:i−1) and a neural network model is used to estimate the

conditional probability P (xi|x1:i−1). Such neural network models are called neural lan-

guage models. As illustrated in Figure 1.4, the neural language model estimates the

probability distribution of the next word token given the text “The book is”. The next

token “well” is selected or sampled based on this estimated distribution, so now we have

the text “This book is well”. The above steps are repeated until we reach the end of

the sentence. Therefore, with a language model, natural language generation can be

carried out naturally, and the quality of the language model is critical to the quality of

the generated natural language text.

Recently, the advent of Transformer [13] enables large LMs and large-scale pretraining

5
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Figure 1.4: An example of Transformer-based Natural Language Generation Models.

[14, 15, 16]. Figure 1.4 shows the structure of GPT2 [14], a large Transformer-based

Language Model. It stacks multiple layers of the Transformer decoder, which consists

of a masked self-attention followed by a feed-forward layer. During pretraining, the

LM learns to estimate the conditional probability P (xi|x1:i−1) from a large unlabeled

corpus. Currently, the prevalent LMs are pretrained on large amounts of text from

the web, such as news, blogs, and so on. Large-scale pretraining enables these LMs to

achieve a good estimation of the next token probability, resulting in coherent, human-

like texts. However, relying on web text for pretraining also results in degeneration

and biased behavior. Previous research [7] shows that the language models pretrained

on problematic web content are significantly at risk of producing toxic content. These

pretrained LMs can easily degenerate into toxicity, even without explicitly toxic prompts.

This problem hinders the safe deployment of these powerful LMs for Natural Language

Generation.

6
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1.3 Text Detoxification

To tackle toxic speech from both online users and pretrained language models, one

solution is to do post-processing. A classifier can be trained to automatically filter out

the toxic content. An extensive body of work has focused on this field. Most of the

previous work focuses on binary classification [5, 6, 1, 17] or coarse-grained multi-class

classification [18, 19, 10]. In the case of user-generated toxic content, the detected content

can be removed and further analysis or intervention can be performed [20, 21, 22, 23].

In the case of model-generated toxic content, in addition to discarding the toxic content,

the NLG model needs to repeatedly do the generation until the classifier finds a safe

one. However, this strategy is inefficient and there exist cases where no safe choice exists

within a fixed number of generations. Previous research [24] finds a universal trigger

of hate speech for GPT2. The authors use this trigger to generate 100 samples from

GPT2 and manually analyze them. They find 98% are racial or offensive. In this case,

post-processing may not work effectively.

In order to circumvent this limitation, some research [25, 26, 27] has focused on

controlling the generation of these Transformer-based LMs from the source, where the

desired attributes are directly infused into the generation process. Detoxification can be

considered as an application of the control method to infuse the safe language attribute.

By controlling a generation model, we would like to achieve two goals. On one hand,

we would like the generations to have good attribute alignment. If the desired attribute

is non-toxic, the control method should guide the model to avoid toxic generations. On

the other hand, we would like to maintain good linguistic quality. As mentioned before,

a large pretrained language model can produce coherent texts. When it is augmented

with a control method, we do not want to sacrifice the linguistic quality too much. If the

control method causes the generation to be cluttered, the advantage of using the large

7
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pretrained language model is lost. Therefore, good attribute alignment and linguistic

quality should be achieved at the same time.

1.4 Contributions

In the first part of the dissertation, we focus on automatic post-processing of hate

speech. For hate speech detection, we provide a novel perspective on hate speech

detection by integrating target tweets, intra-user, and inter-user representations in a uni-

fied framework, which outperforms strong baselines [17]. For hate speech analysis, we

introduce the first work on fine-grained hate speech characterization that attributes hate

groups to each tweet, and our proposed Hierarchical Conditional VAE model improves

the Micro-F1 score by up to 10% over the baselines [20]. Based on this work, we further

introduce the first work on lifelong learning of fine-grained hate speech characterization

and propose a novel method that utilizes Variational Representation Learning along with

a memory module to alleviate catastrophic forgetting. Experimental results show that

our proposed method outperforms the state-of-the-art significantly on the average F1

scores [21]. In addition to the standard formulation of hate speech classification, we also

propose a novel task of learning to decipher hate symbols. We investigate sequence-to-

sequence neural network models along with a novel Variational Decipher and show how

they are able to crack the hate symbols [22]. For hate speech intervention, we in-

troduce the generative hate speech intervention task and provide two fully-labeled hate

speech datasets with human-written intervention responses. The released datasets and

our study on them provide a benchmark for future research in this field [23].

In the second part of the dissertation, we focus on language model detoxification.

For LM detoxification in freeform text generation, we propose a novel lightweight

control method that utilizes contrastive prefixes along with frozen LMs. We propose a

8
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supervised method and an unsupervised method with novel objectives for prefix training

and experimental results show that our methods can effectively detoxify the LMs while

keeping high linguistic quality [27]. Based on this work, for LM detoxification in

dialogue response generation, we further propose a novel control framework that

combines context-dependent and context-independent control by utilizing hierarchical

prefixes and novel contrastive training objectives. Experimental results show that our

proposed method can effectively learn the contextualized stance control while keeping a

low self-toxicity of the generation model.

With these efforts, we aim to reduce the spread of toxic speech and its harm to others

by developing automated text detoxification methods.
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Automatic Post-processing of Hate

Speech
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Chapter 2

Hate Speech Detection

In this chapter, we improve automated hate speech detection by presenting a novel model

that leverages intra-user and inter-user representation learning for robust hate speech

detection on Twitter. In addition to the target tweet, we collect and analyze the user’s

historical posts to model intra-user tweet representations. To suppress the noise in a

single tweet, we also model the similar tweets posted by all other users with reinforced

inter-user representation learning techniques. Experimentally, we show that leveraging

these two representations can significantly improve the F-score of a strong bidirectional

LSTM baseline model by 10.1%.

2.1 Introduction

Despite the existence of numerous studies dedicated to the development of NLP hate

speech detection approaches, the accuracy is still poor. The central problem is that social

media posts are short and noisy, and most existing hate speech detection solutions take

each post as an isolated input instance, which is likely to yield high false positive and

negative rates.
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Figure 2.1: Our hate speech classifier. In contrast to existing methods that focus on a
single target tweet as input (center), we incorporate intra-user (right) and inter-user
(left) representations to enhance performance.

In this paper, we focus on augmenting hate speech classification models by first per-

forming representation learning to model user history without supervision. The hy-

pothesis is that, by analyzing a corpus of the user’s past tweets, our system will better

understand the language and behavior of the user, leading to better hate speech detec-

tion accuracy. Another issue is that using a single tweet as input is often noisy for any

machine learning classifier. For example, the tweet “I’m not sexist but I can not stand

women commentators” is actually an instance of hate speech, even though the first half

is misleading. To minimize noise, we also consider semantically similar tweets posted

by other users. To do so, we propose a reinforced bidirectional long short-term memory

network (LSTM) [28] to interactively leverage the similar tweets from a large Twitter

dataset to enhance the performance of the hate speech classifier. An overview of our

approach is shown in Figure 2.1. The main contributions of our work are:

• We provide a novel perspective on hate speech detection by modeling intra-user

tweet representations.

12
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• To improve robustness, we leverage similar tweets from a large unlabeled corpus

with reinforced inter-user representations.

• We integrate target tweets, intra-user, and inter-user representations in a unified

framework, outperforming strong baselines.

2.2 Related Work

Most previous work in automated hate speech classification focuses on binary classifi-

cation, such as differentiating between anti-semitic or not [5] and differentiating between

abusive or not [6, 1]. In [29], the authors build a set of binary classifiers to detect hate

speech based on race, sexual orientation, or disability. Some research focuses on three-

way classification [18, 10]. In [18], the authors classify each input tweet as racist hate

speech, sexist hate speech, or neither, while in [10], a model is trained to differentiate

among three classes: containing hate speech, only offensive language, or neither. In

this chapter, we formulate the task as binary classification, differentiating between hate

speech or not.

A recent survey outlined eight categories of features used in hate speech detection [30]:

simple surface [5, 18], word generalization [5, 6], sentiment analysis [31], lexical resources

and linguistic features [29], knowledge-based features [32], meta-information [18], and

multi-modal information [6]. Closely related to our work is research that leverages user

attributes in the classification process such as the history of participation in hate speech

and usage of profanity [33, 34]. Both [33] and [34] collect user history to enhance detection

accuracy. In [33], the user history is required to be labeled instances. However, labeling

user history requires significant human effort. In [34], the authors model the user with

manually selected features. In contrast, our approach leverages unlabeled user history to

automatically model the user.
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Figure 2.2: The overview of our proposed model. t is the input target tweet, z
denotes intra-user tweets, and xa is the selected inter-user tweet. rie is the inter-user
representation, ria is the intra-user representation, and rta is the representation of
the target tweet. These three branches respectively correspond to the three branches
illustrated in Figure 2.1. yi is the prediction at the time step i and si is the state
input for the agent at the time step i.

2.3 Methods

Figure 2.2 illustrates the architecture of our model. It includes three branches, whose

details will be described in the following subsections.

2.3.1 Bidirectional LSTM

Given a target tweet, the baseline approach is to feed the embeddings of the tweet

into a bidirectional LSTM network [28, 35, 36] to obtain the prediction. This is shown in

the middle branch in Figure 2.1. However, this method is likely to fail when the target

tweet is noisy or the critical words for making predictions are out of vocabulary.
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2.3.2 Intra-User Representation

The baseline approach does not fully utilize available information, such as the user’s

historical tweets. In our approach, we collect the user’s historical posts through the

Twitter API. For a target tweet t, suppose we collect m tweets posted by this user: Zt =

{z1, z2, ..., zm}. These intra-user tweets are fed into a pre-trained model to obtain an intra-

user representation. The pre-trained model has the same structure as the baseline model.

This is shown in the right branch in Figures 2.1 and 2.2. The intra-user representation

is then combined with the baseline branch for the final prediction. The computation

process is:

ota(t) = fta(t,0) (2.1)

rta(t) = lta(σ(ota(t))) (2.2)

oia(zj) = fia(zj,0) (2.3)

ria(t) = σ(
m∑
j=1

lia(σ(oia(zj)))) (2.4)

where fta is the bi-LSTM of the baseline branch; ota is the output of the bi-LSTM; and

lta, lia are linear functions. Similarly, fia is the bi-LSTM of the intra-user branch and oia

is the output. rta is the output prediction of the baseline branch. ria is the intra-user

representation, and σ is the non-linear activation function.

2.3.3 Inter-User Representation

In addition to the user history, the tweets that are semantically similar to the target

tweet can also be utilized to suppress noise in the target tweet. We collect similar tweets

from large unlabeled tweet set U by Locality Sensitive Hashing (LSH) [37, 38]. Since the

space of all tweets is enormous, we use LSH to efficiently reduce the search space. For each
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target tweet t, we use LSH to collect n nearest neighbors of t in U : x1, x2, ..., xn. These

n tweets form the inter-user tweet set for t: Xt = {x1, x2, ..., xn}. Due to the size of this

set, a policy gradient-based deep reinforcement learning agent is trained to interactively

fetch inter-user tweets from Xt. The policy network consists of two layers as shown in

the middle part of Figure 2.2 and the policy network is trained by the REINFORCE

algorithm [39]. At each time step i, the action of the agent is to select one tweet xa from

Xt. xa is then fed into a bi-LSTM followed by a linear layer. The result is combined

with the intra-user representation and the baseline prediction (the right and the middle

branch in Figures 2.1 and 2.2) to get the prediction at time step i. At each time step, the

bi-LSTM layer that encodes the selected inter-user is initialized with the output hidden

state of the last time step. The number of time steps for each target tweet is set to be

a fixed number T so that the agent will terminate after T fetches. The final prediction

occurs at the last time step. The computation is shown by the following equations.

oie(xa)i,hie(xa)i = fie(xa, hie(xb)i−1) (2.5)

rie(xa)i = lie(σ(oie(xa)i)) (2.6)

y′(t) = σ(lc(rta(t) ⊕ ria(t))) (2.7)

y(t)i = σ(lc(rie(t) ⊕ rta(t) ⊕ ria(t))) (2.8)

where xa is the selected inter-user tweet at time step i−1. fie is the bi-LSTM of the inter-

user branch. oie and hie are the output and the hidden state. lc is a linear function. rie is

the inter-user representation. y′ is the prediction made without the inter-user branch and

y is the prediction made with the inter-user branch. The symbol ⊕ means concatenation.

The subscript i denotes time step i.

The state at each time step for the agent is the concatenation of encoded inter-user

tweets, the output of the Bi-LSTM in the inter-user branch and the baseline branch,
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together with the intra-user representation in the intra-user branch (the dotted arrows in

Figure 2.2). Each inter-user tweet xj in Xt is encoded by the bi-LSTM of the inter-user

branch (the dotted arrow through the Bi-LSTM of the inter-user branch).

b(xj) = fie(xj,0) (2.9)

s(t)i[j]=oie(xa)i ⊕ b(xj)⊕ ota(t)⊕ria(t) (2.10)

b is the output of the bi-LSTM of the inter-user branch. In order to differentiate with oie

mentioned above, we use b. s(t)i[j] is the jth row of the state at time step i.

By using reinforcement learning, the state for the agent is updated after each fetch

of the inter-user tweet. Thus, the agent can interactively make selections and update

the inter-user representations step by step. The reward vi for the agent at time step i

is based on the original prediction without the agent and the prediction at the last time

step with the agent. The computation is shown as:

q(t)i = e(y′(t), y∗) − e(y(t)T , y
∗) (2.11)

v(t)i =


α ∗ q(t)i if y′(t)! = y∗

q(t)i else if y(t)T ! = y∗

0 otherwise

(2.12)

where e is the loss function; q(t) is the basic reward; and v(t)i is the modified reward

at time step i. α is a positive number used to amplify the reward when the original

classification is incorrect. The intuition of this reward is to train the agent to be able to

correct the misclassified tweets. When the original prediction and the last prediction are

both correct, the reward is set to 0 to make the agent focus on the misclassified instances.

The complete training process is shown in Algorithm 1. Before the training, the intra-
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Algorithm 1 Training Algorithm
1: for t in training set do
2: collect Xt and Zt;
3: compute intra-user representation ria(t);
4: end for
5: initialize parameters θp of the policy network;
6: initialize parameters θe of the other nets;
7: for epoch = 1, E do
8: for t in training set do
9: compute ota(t), rta(t);
10: compute the raw prediction y′(t);
11: compute b(Xt);
12: xa = t;
13: compute oie(t);
14: initialize the state s(t)0;
15: for i = 1, T do
16: agent select action by ϵ− greedy;
17: update xa;
18: compute oie(t), rie(t);
19: compute y(t)i and s(t)i;
20: compute the reward vi(t);
21: end for
22: apply REINFORCE to update θp;
23: update θe on the loss L(θe) = e(y(t)T , y

∗);
24: end for
25: end for

user tweets and inter-user tweets are collected for each target tweet. Then intra-user rep-

resentations are computed, followed by the computation for initializing the environment

and state for the agent. Next, the agent’s actions, state updates, prediction, and reward

are computed. Finally, the parameters are updated.
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2.4 Experiments and Discussion

2.4.1 Experimental Settings

Data: We use the English hate speech dataset published in [18]. This dataset consists of

16,907 annotated tweets. The original dataset only contains the tweet ID and the label

for each tweet. We expand the dataset with the user ID and tweet text. After deleting

the tweets that are no longer accessible, the dataset we use contains 15,781 tweets from

1,808 users. In the published dataset, each tweet is manually labeled as racism, sexism,

and none. Since we consider a binary classification setting, we union the first two sets.

In the final dataset, 67% are labeled as non-hate speech, and 33% are labeled as hate

speech. 1000 tweets are randomly selected for testing and the remaining 14,781 tweets

are for training.

Measures: We use F1 scores for evaluation. The F1 score is defined as the harmonic

mean of precision and recall, so we also report the precision and recall scores achieved

by each method in the experiments.

Baseline: The baseline model is a bi-LSTM model. The input for the model is the word

embeddings of the target tweet. The word embedding is of size 200. The hidden size of

the LSTM is 64. The optimizer is Adam and we use mini-batches of size 25. The word

embedding model is pre-trained on a tweet corpus containing 3,433,513 tweets.

Intra-user Representation Learning: Based on the target tweet, we collect at most

400 tweets posted by the same user, with the target tweet removed. The baseline branch

and the intra-user branch are combined via a linear layer.

Combining with Inter-user Representation: The inter-user tweet set is collected

from the dataset via Locality Sensitive Hashing (LSH). In our experiments, we use a set

size of either 50, 100, or 200 tweets. At each time step, one tweet is selected from the

inter-user tweet set by the policy agent. We also experimented with a second setting, in
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Method Prec. Rec. F1
SVM .793 .656 .718
Logistic Regression .782 .611 .686
Bi-LSTM + attention .760 .665 .710
CNN-static .701 .707 .703
CNN-non-static .743 .699 .720
N-gram .729 .777 .739
Bi-LSTM .672 .737 .703
+ Intra. Rep. .772 .749 .760
+ Intra.+ Randomized Inter. Rep. .773 .764 .768
+ Intra.+ Reinforced Inter. Rep. .775 .773 .774

Table 2.1: Experimental results. Prec.: precision. Rec.: recall. F1: F measure.
Bi-LSTM: the baseline bidirectional LSTM model. Bi-LSTM + attention: an atten-
tional bidirectional LSTM model. The experimental settings of the last three rows
are illustrated in Section 2.4.1. + Intra. Rep.: the model consists of the target tweet
branch and the intra-user branch. + Intra. + Randomized Inter. Rep. incorporates
randomly selected inter-user tweets while + Intra. + Reinforced Inter. Rep. further
incorporates the reinforced inter-user branch. The best results are in bold.

which we replace the agent by random selection. At each time step, an inter-user tweet

is randomly selected from X and fed into the inter-user branch.

2.4.2 Results

We compare the above settings with six classification models: Support Vector Machine

(SVM) [40], Logistic Regression, attentional BI-LSTM, two CNN models [41], and an N-

gram model [18]. We evaluate these models on three metrics: precision, recall, and F1

score. The results are shown in Table 2.1. We report results for |U | = 100 in Table

2.1, as results with sizes 50 and 200 are similar. We find that leveraging the intra-user

information helps reduce false positives. The performance is further improved when

integrating our model with inter-user similarity learning. Our results show that selection

by the policy gradient agent is slightly better than random selection, and we hypothesize

the effect would be more salient when working with a larger unlabeled dataset. The
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McNemar’s test shows that our model gives significantly better (at p < 0.01) predictions

than the baseline bi-LSTM and attentional bi-LSTM.

2.4.3 Error Analysis

There are two types of hate speech that are misclassified. The first type contains rare

words and abbreviations, e.g. FK YOU KAT AND ANDRE! #mkr. Such intentional

misspellings or abbreviations are highly varied, making it difficult for the model to learn

the correct meaning. The second type of hate speech is satire or metaphor, e.g. Congrat-

ulations Kat. Reckon you may have the whole viewer population against you now #mkr.

Satire and metaphors are extremely difficult to recognize. In the above two cases, both

the baseline branch and the inter-user branch can be unreliable.

2.5 Conclusion

In this work, we propose a novel method for hate speech detection. We use bi-LSTM

as the baseline method. However, our framework can easily augment other baseline meth-

ods by incorporating intra-user and reinforced inter-user representations. In addition to

detecting potential hate speech, our method can be applied to help detect suspicious

social media accounts. Considering the relationship between online hate speech and real-

life hate actions, our solution has the potential to help analyze real-life extremists and

hate groups. Furthermore, intra-user and inter-user representation learning can be gen-

eralized to other text classification tasks, where either user history or a large collection

of unlabeled data is available.
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Chapter 3

Fine-grained Hate Speech

Characterization

Automated hate speech detection typically focuses on binary classification. In this chap-

ter and the next chapter, we focus on hate speech characterization, the goal of which is

to analyze hate speech instead of distinguishing hate speech from non-hate speech. We

propose a novel method for a fine-grained hate speech classification task, which focuses

on differentiating among hate groups of different hate group categories. We first explore

the Conditional Variational Autoencoder (CVAE) [42, 43] as a discriminative model and

then extend it to a hierarchical architecture to utilize the additional hate category infor-

mation for more accurate prediction. Experimentally, we show that our proposed model

outperforms commonly-used discriminative models.

3.1 Introduction

In response to the growth in online hate, there has been a trend of developing au-

tomatic hate speech detection models to alleviate online harassment [5, 18]. However, a
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Figure 3.1: A portion of the hate group map published by the Southern Poverty
Law Center. Each marker represents a hate group. The markers with the same
pattern indicate the corresponding hate groups share the same ideology. The white
box shows an example of a hate group in Auburn, Alabama under the category of
“White Nationalist”. The name of the group is masked.

common problem with these methods is that they focus on coarse-grained classifications

with only a small set of categories. To the best of our knowledge, the existing work on

hate speech detection formulates the task as a classification problem with no more than

seven classes. Building a model for more fine-grained multi-class classification is more

challenging since it requires the model to capture finer distinctions between each class.

Moreover, fine-grained classification is necessary for fine-grained hate speech analysis.

Figure 3.1 is a portion of the hate group map published by the Southern Poverty Law

Center (SPLC), where a hate group is defined as “an organization that – based on its

official statements or principles, the statements of its leaders, or its activities – has

beliefs or practices that attack or malign an entire class of people, typically for their

immutable characteristics.” The SPLC divides the 954 hate groups in the United States

into 17 categories according to their ideologies (e.g. Racist Skinhead, Anti-Immigrant,

and others). The SPLC monitors hate groups throughout the United States by a variety of

methodologies to determine the activities of groups and individuals: reviewing hate group
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publications and reports by citizens, law enforcement, field sources, and the news media,

and conducting their own investigations. Therefore, building automatic classification

models to differentiate between social media posts from different hate groups is both

challenging and of practical significance.

In this paper, we propose a fine-grained hate speech classification task that separates

tweets posted by 40 hate groups of 13 different hate group categories. Although CVAE

is commonly used as a generative model, we find it can achieve competitive results and

tends to be more robust when the size of the training dataset decreases, compared to the

commonly used discriminative neural network models. Based on this insight, we design

a Hierarchical CVAE model (HCVAE) for this task, which leverages the additional hate

group category (ideology) information for training. Our contributions are three-fold:

• This is the first work on fine-grained hate speech classification that attributes hate

groups to individual tweets.

• We propose a novel Hierarchical CVAE model for fine-grained tweet hate speech

classification.

• Our proposed model improves the Micro-F1 score by up to 10% over the baselines.

3.2 Background and Related Work

3.2.1 Text Classification

Among the previous work in automated hate speech classification, our work is most

closely related to [31], which focuses on fine-grained cyberbullying classification. How-

ever, this study only focuses on seven categories of cyberbullying while our dataset con-

sists of dozens of classes. Therefore, our classification task is much more fine-grained and

challenging.
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Our work is also related to fine-grained text classification. Convolutional Neural

Networks (CNN) have been successfully applied to the text classification task. In [41],

CNN is applied at the word level while in [44], CNN is applied at the character level.

In [45], the authors exploit the word order of text data with CNN for accurate text

categorization. The Recursive Neural Tensor Network is introduced for text classification

in previous work [46]. Recurrent Neural Networks (RNN) are also commonly used for

text classification [47, 48]. Previous work further combines RNN with CNN [49, 50]. The

hierarchical structure is previously exploited for document classification [51, 52]. In [51],

the model generates from the sentence representation to the document representation

while in [52], the model generates from the word-level attention to the sentence-level

attention. However, the division of the hierarchies in our HCVAE is according to semantic

levels, rather than according to document compositions. We generate from the category-

level representations to the group-level representations. Moreover, the most commonly

used datasets by these works (Yelp reviews, Yahoo answers, AGNews, IMDb reviews [53])

have no more than 10 classes.

3.2.2 Variational Autoencoder

Variational Autoencoder (VAE) [54] is a generative model composed of both an en-

coder and a decoder, but unlike a sequence-to-sequence model that directly encodes the

input into a latent space, VAE approximates the underlying probability distribution of

data. VAE has achieved competitive results in many complicated generation tasks, such

as handwritten digits [54, 55], faces [54, 56], and machine translation [57]. CVAE [42, 43]

is an extension of the original VAE framework that incorporates conditions during gen-

eration. In addition to image generation, CVAE has also been successfully applied to

several NLP tasks, such as dialog generation [58]. Although so far CVAE has always been
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used as a generative model, we explore the performance of the CVAE as a discriminative

model and further propose a hierarchical CVAE model, which exploits the hate group

category (ideology) information for training.

3.3 Data, Task, and Measures

We collect the data from 40 hate group Twitter accounts of 13 different hate ideologies,

e.g., white nationalist, anti-immigrant, racist skinhead, among others. The detailed

themes and core values behind each hate ideology are discussed in the SPLC ideology

section [59]. For each hate ideology, we collect a set of Twitter handles based on hate

groups identified by the SPLC [60]. For each hate ideology, we select the top three handles

in terms of the number of followers. Due to ties, there are four different groups in several

categories of our dataset. The dataset consists of all the content (tweets, retweets, and

replies) posted with each account from the group’s inception date, as early as 07-2009,

until 10-2017. Each instance in the dataset is a tuple of (tweet text, hate category label,

hate group label). The complete dataset consists of approximately 3.5 million tweets.

Note that due to the sensitive nature of the data, we anonymously reference the Twitter

handles for each hate group by using IDs throughout this paper. The distribution of the

data is illustrated in Figure 3.2.

As shown in Figure 3.2, the dataset is highly imbalanced, which causes problems for

training the above models. In order to alleviate this problem, we use a weighted random

sampler to sample instances from the training data. However, the testing dataset is not

sampled, so the distribution of the testing dataset remains the same as that of the original

dataset. This allows us to evaluate the models’ performance on the data with a realistic

distribution.

Given a tweet text, our goal is to predict which hate group out of the 40 it is from.
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Figure 3.2: The distribution of the data for 40 hate groups. The X-Axis is each hate
group. The Y-Axis is the number of tweets collected for each hate group.

The ground truth hate ideology of a tweet text is unavailable during testing, but can be

utilized during training. We use Macro-F1, Micro-F1, and Weighted-F1 to evaluate the

classification results.

3.4 CVAE Baseline

We formulate our classification task as the following equation:

Obj =
∑

(x,yg)∈X

log p(yg|x) (3.1)

where x, yg are the tweet text and hate group label respectively, X is the dataset. Instead

of directly parameterizing p(yg|x), it can be further written as the following equation:

p(yg|x) =

∫
z

p(yg|z, x)p(z|x)dz (3.2)
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where z is the latent variable. Since the integration over z is intractable, we instead try

to maximize the corresponding evidence lower bound (ELBO):

ELBO =E[log p(yg|z, x)]−

DKL[q(z|x, yg)||p(z|x)]

(3.3)

where DKL is the Kullback–Leibler (KL) divergence. p(yg|z, x) is the likelihood distribu-

tion, q(z|x, yg) is the posterior distribution, and p(z|x) is the prior distribution. These

three distributions are parameterized by pφ(yg|z, x), qα(z|x, yg), and pβ(z|x). Therefore,

the training loss function is:

L =LREC + LKL

=Ez∼pα(z|x,yg)[− log pφ(yg|z, x)]+

DKL[qα(z|x, yg)||pβ(z|x)]

(3.4)

The above loss function consists of two parts. The first part LREC is the reconstruction

loss. Optimizing LREC can push the predictions made by the posterior network and the

likelihood network closer to the ground truth labels. The second part LKL is the KL

divergence loss. Optimizing it can push the output distribution of the prior network

and that of the posterior network closer to each other, such that during testing, when

the ground truth label yg is no longer available, the prior network can still output a

reasonable probability distribution over z.

Figure 3.3 illustrates the structure of the CVAE model during training (the structure

used for testing is different). The likelihood network pφ(yg|z, x) is a Multilayer Perceptron

(MLP). The structure of both the posterior network qα(z|x, yg) and the prior network

pβ(z|x) is a bidirectional Long Short-Term Memory (Bi-LSTM) [28] layer followed by an

MLP. The Bi-LSTM is used to encode the tweet text. The only difference between the
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Figure 3.3: The structure of the baseline CVAE model during training. Bi-LSTM
is a bidirectional LSTM layer. MLP is a Multilayer Perceptron. x is the embedded
input text. yg is the ground truth hate group label. ŷg is the output prediction of
the hate group. p is the posterior distribution of the latent variable z while p′ is the
prior distribution of z. Note that this structure is used for training. During testing,
the posterior network is replaced by the prior network to compute ŷg and thus yg is
not available during testing.

posterior and the prior network is that for the posterior network the input for the MLP is

the encoded text concatenated with the group label while for the prior network only the

encoded text is fed forward. During testing, the posterior network will be replaced by

the prior network to generate the distribution over the latent variable (i.e. p′ will replace

p). Thus during testing, the ground truth labels will not be used to make predictions.

We assume the latent variable z has a multivariate Gaussian distribution: p =

N (µ,Σ) for the posterior network, and p′ = N (µ′,Σ′) for the prior network. The detailed
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computation process is as follows:

e = f(x) (3.5)

µ,Σ = s(yg ⊕ e) (3.6)

µ′,Σ′ = s′(f ′(x)) (3.7)

where f is the Bi-LSTM function and e is the output of the Bi-LSTM layer at the last

time step. s is the function of the MLP in the posterior network and s′ is that of the

MLP in the prior network. The notation ⊕ means concatenation. The latent variables z

and z′ are randomly sampled from N (µ,Σ) and N (µ′,Σ′), respectively. During training,

the input for the likelihood network is z:

ŷg = w(z) (3.8)

where w is the function of the MLP in the likelihood network. During testing, the prior

network will substitute for the posterior network. Thus for testing, the input for the

likelihood is z′ instead of z:

ŷg = w(z′) (3.9)

3.5 Hierarchical CVAE

One problem with the above CVAE method is that it utilizes the group label for

training, but ignores the available hate group category (ideology) information of the

hate speech. As mentioned in Section 3.1, hate groups can be divided into different

categories in terms of ideologies. Each hate group belongs to a specific hate group

category. Considering this hierarchical structure, the hate category information can

30



Fine-grained Hate Speech Characterization Chapter 3

potentially help the model to better capture the subtle differences between the hate

speech from different hate groups. Therefore, we extend the baseline CVAE model to

incorporate the category information. In this case, the objective function is as follows:

Obj=
∑

(x,yc,yg)∈X

log p(yc, yg|x)

=
∑

(x,yc,yg)∈X

log p(yc|x)+log p(yg|x, yc)
(3.10)

where yc is the hate group category label and

p(yc|x)=

∫
zc

p(yc|zc, x)p(zc|x)dzc (3.11)

p(yg|x, yc)=

∫
zg

p(yg|zg,x,yc)p(zg|x,yc)dzg (3.12)

where zc and zg are latent variables. Therefore, the ELBO of our method is the sum of

the ELBOs of log p(yc|x) and log p(yg|x, yc):

ELBO=E[log p(yc|zc, x)]−

DKL[q(zc|x, yc)||p(zc|x)]+

E[log p(yg|zg, x, yc)]−

DKL[q(zg|x, yc, yg)||p(zg|x, yc)]

(3.13)

During testing, the prior networks will substitute the posterior networks and the ground

truth labels yc and yg are not utilized. Hence the prior p(zg|x, yc) in the above equation

cannot be parametrized as a network that directly takes the ground truth label yc and

x as inputs. Instead, we parameterize it as shown in the right part of Figure 3.4. We

assume that u′ is trained to be a latent representation of yc, so we use u′ and x as inputs

for this prior network.
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According to the ELBO above, the corresponding loss function L is the combination

of the loss function for the category classification (Lc) and that for the group classification

(Lg).

L =Lc + Lg, where

Lc =Ezc∼qα(zc|x,yc)[− log pφ(yc|zc, x)]+

DKL[qα(zc|x, yc)||pβ(zc|x)], and

Lg =Ezg∼qη(zg |x,yc,yg)[− log pθ(yg|zg, x, yc)]+

DKL[qη(zg|x, yc, yg)||pγ(zg|x, u)]

(3.14)

Figure 3.4 shows the structure of our model for training. By assuming the latent variables

zc and zg have multivariate Gaussian distributions, the actual outputs of the posterior

and prior networks are the mean and variance: pc = N (µc,Σc), pg = N (µg,Σg) for the

two posterior networks, and p′c = N (µ′
c,Σ

′
c), p

′
g = N (µ′

g,Σ
′
g) for the two prior networks.

Note that in addition to these four distributions, there is another distribution px =

N (µx, σx) as shown in Figure 3.4. This distribution is generated only with the input

text x, so it provides the basic distribution (in order to avoid confusion, we call it the

basic distribution instead of the prior distribution) for both two posterior networks and

two prior networks. With this basic distribution, the two posterior networks only need

to capture the additional signals learned from x and labels. Similarly, the prior networks

only need to learn the additional signals learned by the posterior networks. The detailed

computation process during training is shown as the following equations:

32



Fine-grained Hate Speech Characterization Chapter 3

Figure 3.4: The structure of the HCVAE during training. x is the embedded input
text. yc and yg are the ground truth hate category label and hate group label. ŷc and
ŷg are the output predictions of the hate category and hate group. zc, zg, and z′c are
latent variables. In the left dotted box are two posterior networks. In the right dotted
box are two prior networks. Note that this structure is used for training. During
testing, the posterior networks will be substituted by the posterior networks (i.e. the
left dotted box will be substituted with the right one) to compute ŷc and ŷg. Thus yc
and yg are not available during testing.

e = f(x) (3.15)

µx,Σx = sx(e) (3.16)

µc,Σc = sc(yc ⊕ e) (3.17)

µg,Σg = sg(yc ⊕ yg ⊕ e) (3.18)

µ′
c,Σ

′
c = s′c(f

′
c(x)) (3.19)

where f is the Bi-LSTM function and e is the output of the Bi-LSTM layer at the last
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time step. sx, sc, sg, and s′c are the functions of four different MLPs. f ′
c is the Bi-

LSTM function in the prior network pβ(zc|x). The latent variables zx, zc, zg, and z′c

are randomly sampled from the Gaussian distributions N (µx,Σx), N (µc,Σc), N (µg,Σg),

and N (µ′
c,Σ

′
c) respectively. As mentioned above, px is the basic distribution while pc, pg,

p′c, and p′g are trained to capture the additional signals. Therefore, zx is added to zc and

z′c, then the results u and u′ are further added to zg and z′g, respectively, as shown in the

following equations:

u′ = zx + z′c (3.20)

µ′
g,Σ

′
g = s′g(u

′ ⊕ f ′
g(x)) (3.21)

u = zx + zc (3.22)

v = u + zg (3.23)

where f ′
g is the Bi-LSTM function and s′g is the function of the MLP in the prior net-

work pγ(zg|x, u). + is element-wise addition. During training, u and v are fed into the

likelihood networks:

ŷc = wc(e⊕ u) (3.24)

ŷg = wg(e⊕ v) (3.25)

where wc and wg are the functions of the MLPs in two likelihood networks. During

testing, the prior networks will substitute the posterior networks, so the latent variable

z′g is randomly sampled from the Gaussian distributions N (µ′
g,Σ

′
g), and the last four
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equations above (Equation 3.22 - 3.25) will be replaced by the following ones:

ŷc = wc(e⊕ u′) (3.26)

v′ = u′ + z′g (3.27)

ŷg = wg(e⊕ v′) (3.28)

Algorithm 2 and 3 illustrate the complete training and testing process. BCE refers to

Algorithm 2 Training Algorithm
1: function train(X)
2: randomly initialize network parameters;
3: for epoch = 1, E do
4: for (text, category, group) in X do
5: get embeddings x and one-hot vectors yc, yg;
6: compute e with the Bi-LSTM;
7: compute µx, Σx, µc, Σc, µg, Σg;
8: sample zx = reparameterize(µx,Σx);
9: sample zc = reparameterize(µc,Σc);
10: sample zg = reparameterize(µg,Σg);
11: u = zx + zc, v = u+ zg;
12: compute ŷc and ŷg according to Eq. 3.24- 3.25;
13: LREC = BCE(ŷc, yc) +BCE(ŷg, yg);
14: compute µ′

c, Σ
′
c;

15: sample z′c = reparameterize(µ′
c,Σ

′
c);

16: u′ = zx + z′c;
17: compute µ′

g, Σ
′
g;

18: LKL = DKL(pc||p′c) +DKL(pg||p′g);
19: L = LKL + LREC ;
20: update network parameters on L;
21: end for
22: end for
23: end function

the Binary Cross Entropy loss. Note that during training, the ground truth category

labels and group labels are fed to the posterior network to generate latent variables. But

during testing, the latent variables are generated by the prior network, which only utilizes

the texts as inputs.
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Algorithm 3 Testing Algorithm
1: function test(X)
2: for text in X do
3: get embeddings x;
4: compute e with the Bi-LSTM;
5: compute µx, Σx, µ

′
c, Σ

′
c;

6: sample zx = reparameterize(µx,Σx);
7: sample z′c = reparameterize(µ′

c,Σ
′
c);

8: u′ = zx + z′c;
9: compute µ′

g, Σ
′
g;

10: sample z′g = reparameterize(µ′
g,Σ

′
g);

11: v′ = u′ + z′g;
12: compute ŷc and ŷg according to Eq. 3.26- 3.28;
13: end for
14: end function

3.6 Experiments and Discussion

3.6.1 Experimental Settings

In addition to the discriminative CVAE model described in Section 3.4, we implement

other baseline methods and an upper bound model as follows.

Support Vector Machine (SVM): We implement an SVM model with linear kernels.

We use L2 regularization and the coefficient is 1. The input features are the Term Fre-

quency Inverse Document Frequency (TF-IDF) values of up to 2-grams.

Logistic Regression (LR): We implement the Logistic Regression model with L2 reg-

ularization. The penalty parameter C is set to 1. Similar to the SVM model, we use

TF-IDF values of up to 2-grams as features.

Character-level Convolutional Neural Network (Char-CNN): We implement the

character-level CNN model for text classification as described in [44]. It is 9 layers deep

with 6 convolutional layers and 3 fully-connected layers. The configurations of the con-

volutional layers are kept the same as those in [44].
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Bi-LSTM: The model consists of a bidirectional LSTM layer followed by a linear layer.

The embedded tweet text x is fed into the LSTM layer and the output at the last time

step is then fed into the linear layer to predict ŷg.

Upper Bound: The upper bound model also consists of a bidirectional LSTM layer

followed by a linear layer. The difference between this model and Bi-LSTM is that it

takes the tweet text x along with the ground truth category label yc as input during

both training and testing. The LSTM layer is used to encode x. The encoding result is

concatenated with the ground truth category label and then fed into the linear layer to

give the prediction of the hate group ŷg. Since it utilizes yc for prediction during testing,

this model sets an upper bound performance for our method.

For the baseline CVAE, Bi-LSTM, the upper bound model, and the HCVAE, we use

randomly initialized word embeddings with size 200. All the neural network models are

optimized by the Adam optimizer with a learning rate 1e-4. The batch size is 20. The

hidden size of all the LSTM layers in these models is 64 and all the MLPs are three-

layered with non-linear activation function Tanh. For the CVAE and the HCVAE, the

size of the latent variables is set to 256.

All the baseline models and our model are evaluated on two datasets. We first use

the complete dataset for training and testing. 90% of the instances are used for training

and the rest for testing. In order to evaluate the robustness of the baseline models and

our model, we also randomly selected a subset (10%) of the original dataset for training

while the testing dataset is fixed. Since the upper bound model is used to set an upper

bound on performance, we do not evaluate it on the smaller training dataset.
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Dataset Complete Subset
Metric Macro-F1 Micro-F1 Wei.-F1 Macro-F1 Micro-F1 Wei.-F1

upper bound .697 .904 .881 – – –

SVM + tf-idf .653 .834 .835 .521 .771 .772
LR + tf-idf .586 .787 .792 .494 .727 .736

Char-CNN .604 .840 .853 .457 .730 .744
Bi-LSTM .627 .767 .745 .353 .599 .570
CVAE .520 .799 .830 .453 .774 .784
HCVAE (our) .664 .844 .858 .469 .787 .799

Table 3.1: Experimental results. Complete: The performance achieved when 90% of
the entire dataset is used for training. Subset: The performance achieved when only
10% of the dataset is used for training. Wei.-F1: Weighted-F1. The best results are
in bold.

3.6.2 Experimental Results

The experimental results are shown in Table 3.1. The testing dataset keeps the

imbalanced distribution of the original data, so the Macro-F1 score of each method

is significantly lower than the Micro-F1 score and the Weighted-F1 score. Comparing

the performance of the Bi-LSTM model and that of the baseline CVAE model shows

that although CVAE is traditionally used as a generative model, it can also achieve

competitive performance as a discriminative model. All the methods achieve lower F1

scores when using the smaller training dataset. Due to the imbalanced distribution of our

dataset, half of the 40 groups have less than 1k tweets in the smaller training dataset,

which leads to a sharp decline in the Macro-F1 scores of all the methods. However,

the performance of both CVAE-based models degrades less than that of the other two

neural network models (the Bi-LSTM model and the Char-CNN model) according to the

Micro-F1 Weighted-F1 scores. These two CVAE-based models tend to be more robust

when the size of the training dataset is smaller. The difference between the CVAE-based

models and the other two models is that both the Bi-LSTM model and the Char-CNN

model directly compress the input text into a fixed-length latent variable while the CVAE
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Figure 3.5: This figure compares a subset (17 hate groups of 6 categories) of the
predictions made by the baseline CVAE and the HCVAE. The X and Y axes are
the index of each hate group. The hate groups of the same category are grouped
together as shown in the dashed squares. The color of the grid (i, j) is mapped from
rhcvae(i, j) − rcvae(i, j), where r(i, j) is the fraction of the group i’s instances among
the instances predicted as the group j. A higher difference value corresponds to a
lighter color. A grid darker than the background is mapped from a negative value
while a grid lighter than the background is mapped from a positive one.

model explicitly models the posterior and likelihood distributions over the latent variable.

The result is that, during testing, the inference strategy of the Bi-LSTM model and the

Char-CNN model is actually comparing the compressed text to the compressed instances

in the training dataset while the strategy of the CVAE-based models is to compare

the prior distributions over the latent variable. Compared with the compressed text,

prior distributions may capture higher-level semantic information and thus enable better

generalization.

By further utilizing the hate category label for training, the HCVAE outperforms

the baseline CVAE on all three metrics. Figure 3.5 illustrates the difference between

the predictions made by the HCVAE and the CVAE. As shown in the figure, most of

the lighter girds are in the dashed squares while most of the darker girds are outside.
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Figure 3.6: The F1 score achieved by our method on each hate group. The Y-axis is
the F1 score. The X-axis is the hate group sorted by the number of instances in the
dataset from larger to smaller. The dashed line shows the F1 scores and the solid line
is the corresponding trendline.

This indicates that the HCVAE model tends to correct the prediction of the CVAE’s

misclassified instances to be closer to the ground truth. In most cases, the misclassified

instances can be directly corrected to the ground truth (the diagonal). In other cases,

they are not corrected to the ground truth but are corrected to the hate groups of the

same categories as the ground truth (the dashed squares). This shows that additional

ideology information is useful for the model to better capture the subtle differences among

tweets posted by different hate groups.

Although our method outperforms the baseline methods, there is still a gap between

its performance and the upper bound performance. We analyze this in the following

section.

3.6.3 Error Analysis

As mentioned above, in some cases our model misclassified the tweet as a group under

the same category as the ground truth. Take, for instance, the tweet from Group1 : The

only good #muslim is a #dead #muslim. Our HCVAE model predicts it as from Group2.

But both Group1 and Group2 are under the category “neo nazi”. One possible reason for
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this kind of error is that the imbalance of the dataset adversely affects the performance

of our method. Figure 3.6 shows the F1 scores achieved by the HCVAE on each group.

The performance of the model tends to be much lower when the number of the group’s

training instances decreases. Although we use the weighted random sampler to alleviate

the problem of the imbalanced dataset, repeating the very limited data instances (less

than 3k) of a group during training cannot really help the posterior and prior networks

to give a reasonable distribution that can generalize well on unseen inputs. Therefore,

when the model comes into the instances in the testing dataset, the performance can be

less satisfactory. This is a common problem for all the methods, which is the cause of

the significantly lower Macro-F1 scores.

Another type of error is caused by the noisy dataset. Take, for instance, the tweet

from Group3 under the category “ku klux klan”: we must secure the existence of our

people and future for the White Children !! Our model classifies it as from Group4 under

the category “neo nazi”, which makes sense but is an error.

3.7 Conclusion

In this chapter, we explore the CVAE as a discriminative model and find that it can

achieve competitive results. In addition, the performance of the CVAE-based models

tends to be more stable than that of the others when the dataset gets smaller. We fur-

ther propose an extension of the basic discriminative CVAE model to incorporate the

hate group category (ideology) information for training. Our proposed model has a hier-

archical structure that mirrors the hierarchical structure of hate groups and ideologies.

We apply the HCVAE to the task of fine-grained hate speech classification, but this Hi-

erarchical CVAE framework can be easily applied to other tasks where the hierarchical

structure of the data can be utilized.
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Chapter 4

Lifelong Learning of Fine-grained

Hate Speech Characterization

In the previous chapter, we tackle the fine-grained hate speech characterization task in

the isolated learning setting, where the dataset is assumed to be static and the classifiers

are trained on the given training dataset. However, the amount of data in social media

increases every day, and the hot topics change rapidly, requiring the classifiers to be

able to continuously adapt to new data and accumulate knowledge without forgetting

what was previously learned. This ability, referred to as lifelong learning, is crucial for

the real-world application of hate speech classifiers in social media. In this chapter,

we propose lifelong learning of hate speech characterization on social media, and novel

methods to alleviate catastrophic forgetting. Experimentally, we show that our method

achieves better performance than the commonly-used lifelong learning techniques.
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Figure 4.1: An illustration of our proposed task. hgi: the ith hate group. The model is
trained on a sequence of sub-datasets, split by their hate ideologies, e.g., anti-Muslim
and Kuklux Klan. The task on each sub-dataset is to identify the hate group given
the tweet.

4.1 Introduction

Fine-grained classification is necessary for fine-grained hate speech analysis. The

Southern Poverty Law Center (SPLC) monitors hate groups throughout the United States

by a variety of methodologies to determine the activities of groups and individuals, in-

cluding reviewing hate group publications [59]. Therefore, in the previous chapter, we

propose a more fine-grained hate speech classification task that attributes hate groups

to individual tweets. However, a common limitation of all the research mentioned above

is that they assume the dataset to be static and train the classifiers on each isolated

dataset, i.e., isolated learning, ignoring the rapid increase of the amount of data in social

media and the rapid change of the hot topic.

A report from L1ght [61], a company that specializes in measuring online toxicity,

suggests that amid the growing threat of the coronavirus, there has been a 900% growth

in hate speech towards China and Chinese people on Twitter since February 2020. As a

result of the rapid change in social media content, hate speech classifiers are required to be

able to continuously learn and accumulate knowledge from a stream of data, i.e., lifelong
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learning. Learning on each portion of the data is considered as a task, so a stream of tasks

is joined to be trained sequentially. In this work, we propose a novel lifelong fine-grained

hate speech classification task, as illustrated in Figure 4.1. The models trained by isolated

learning tend to face catastrophic forgetting [62, 63, 64, 65] due to a non-stationary data

distribution in lifelong learning. To address this problem, an extensive body of work has

been proposed for various lifelong learning tasks. However, our experiments show that

the commonly-used lifelong learning methods still exhibit catastrophic forgetting in our

proposed tasks. One important difference between the Twitter hate group dataset and

the other image datasets commonly used in lifelong learning studies is that the similarity

among the different tasks is unstable and relatively low, as indicated by the low average

Jaccard Indexes of the topic words in Table 4.1. To alleviate this problem, we introduce

Variational Representation Learning (VRL) to distill the knowledge from each task into

a latent variable distribution. We also augment the model with a memory module and

adapt the clustering algorithm, LB-SOINN (Load-Balancing Self-Organizing Incremental

Neural Network), to select the most important samples from the training dataset of each

task. Our implementation is publicly available1.

Our contributions are three-fold:

• This is the first paper on lifelong learning of fine-grained hate speech classification.

• We propose a novel method that utilizes VRL along with an LB-SOINN memory

module to alleviate catastrophic forgetting resulted from a severe change in data

distribution.

• Experimental results show that our proposed method outperforms the state-of-the-

art significantly on the average F1 scores.

1The implementation is available here: https://www.aclweb.org/anthology/2021.naacl-main.1
83/
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Ideology Avg. JI Keywords
Christian Identity 0.019 Jesus, Yahuwshua
Radical Tr. Catholic 0.031 catholic, remnant
Neo Confederate 0.039 southern, Free Dixie
Anti Semitism 0.047 Israel, Trump
Anti Catholic 0.049 Texe Marrs, truth
Hate Music 0.049 death, radio
Anti Muslim 0.064 Muslim, Islam
Black Separatist 0.071 black, panther
Racist Skinhead 0.074 shirt, white
Anti Immigration 0.075 immigration, border
Holocaust Identity 0.078 Jewish, Trump
Neo Nazi 0.091 Hitler, white
Kuklux Klan 0.100 ni**a, f**king
Anti LGBTQ 0.100 family, marriage
White Nationalist 0.105 white, America

Table 4.1: Information about the 15 hate ideologies. Tr.: Traditional. Avg JI: the
average of the Jaccard Index between the topic words of one ideology and those of
another ideology. The topic words are extracted by Latent Dirichlet Allocation (LDA)
[66]. The top 2 most frequent topic words are selected as keywords.

4.2 Related Work

Most research on lifelong learning alleviates catastrophic forgetting in the following

three directions.

Regularization-based Methods: These methods impose constraints on the weight

update. The goal of the constraints is to minimize deviation from trained weights when

training on a new task. The constraints are generally modeled by additional regular-

ization terms [67, 68, 69, 70, 71]. Elastic Weight Consolidation (EWC) [67] alleviates

catastrophic forgetting by slowing down learning on the model parameters which are

important to the previous task. The importance of the parameters is estimated by the

Fisher information matrix. Instead of the Fisher information matrix, PathNet [69] uses

agents embedded in the neural network to determine which parameters of the neural

network can be reused for new tasks and the task-relevant pathways are frozen during
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training on new tasks.

Architecture-based Methods: The main idea of this approach is to change architec-

tural properties to dynamically accommodate new tasks, such as assigning a dedicated

capacity inside a model for each task. Progressive Neural Networks [72] expand the

model architecture by allocating a new column of neural network for each new task.

In [73, 74], Convolutional Neural Network is combined with LB-SOINN for incremental

online learning of object classes. Although they also use LB-SOINN in their work, the

usage of LB-SOINN in this work is completely different. They use LB-SOINN to predict

object class while our proposed method adapts the original LB-SOINN to calculate the

importance of the training samples without making any prediction on the class. A prob-

lem with the methods in this category is that the available computational resources are

limited in practice. As a result, the model expansion will be prohibited when the number

of tasks increases to a certain degree.

Data-based Methods: These methods alleviate catastrophic forgetting by utilizing

a memory module, which either stores a small number of real samples from previous

tasks or distills knowledge from previous tasks. The main feature of Gradient Episodic

Memory (GEM) [75] is the episodic memory, storing a subset of the samples from the

observed tasks. GEM computes the losses on the episodic memories and treats them as

inequality constraints, avoiding them to increase. Averaged GEM [76] is a more efficient

version of GEM. Later work proposes a lifelong language learning model using a key-

value memory module for sparse experience replay and local adaptation [77]. LAMOL

[78] formulates lifelong language learning as a language modeling task and replays the

generated pseudo-samples of previous tasks during training.

There are also studies combining multiple methods above. In [79], the architecture-

based method is combined with the data-based method. In [80], the regularization

method is combined with the data-based method for lifelong learning on relation ex-
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traction. Our proposed method is also a combination of the regularization method and

the data-based method but in a different way.

4.3 Data, Task, and Measures

We collect hate group data in the same way as in the previous chapter, where the tweet

handles are collected based on the hate groups identified by SPLC. SPLC categorizes

these hate groups according to their hate ideologies. For each hate ideology, the top

three Twitter handles are selected in terms of the number of followers. The dataset

includes all the content (tweets, retweets, and replies) posted with each Twitter account

from the group’s inception date, as early as 2009, until 2017. Altogether, the dataset

consists of 42 hate groups from 15 different ideologies. Table 4.1 shows the 15 ideologies.

Each instance in the dataset is a text tuple of (tweet, hate group name, hate ideology).

We separate the dataset by ideology. The reason is that various existing hate speech

datasets collect data using keywords or hashtags [18, 10, 81], which have a strong re-

lationship with hate ideologies or topics. We also observe that the hot spots of society

can lead to a significant shift of major hate speech topics or the emergence of new hate

ideologies on social media as mentioned in Section 4.1, indicating that the expansion of

the hate speech dataset may be accompanied by the emergence of new hate ideologies.

Therefore, we separate the collected data into a sequence of 15 subsets according to

their ideologies and sort them by the date of the first tweet post in each subset, from

the earliest to the latest. The task on each subset is to identify the hate group given the

tweet text. In the previous chapter, we propose a hierarchical Conditional Variational

Autoencoder model for the fine-grained hate speech classification task. The architecture

and the training process of their model require the number of classes to be pre-defined.

However, we do not pre-define the number of classes in this task since such kind of
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information is not available in the real-world application of lifelong learning. The model

should be able to incorporate emerging hate groups at any time of training. In order

to satisfy this condition, we formulate the task of identifying the group as a ranking

task, instead of a classification task. For each tweet, we provide the model with a set of

candidate groups, consisting of all the previously seen hate groups, including the ground

truth group. The model takes each combination of the tweet and the candidate group as

input and outputs a score. The corresponding loss function is:

Lr =
∑

(x,ys)∈D

∑
yi∈Y \{ys}

h(fθ(x, ys) − fθ(x, yi)) (4.1)

where x is the tweet text, and ys is the ground truth group of x. Y is the candidate

group set of x, which consists of all the seen hate groups until x is observed by the model,

including the ground truth group ys of x, so yi ∈ Y \{ys} is the negative candidate group

of x. fθ is the scoring model parameterized by θ. h(a) = max(0,m− a), m is the chosen

margin.

Same as in other lifelong learning studies, we consider learning on each of the hate

ideologies in the sequence as a task, so we have a sequence of 15 tasks. As mentioned

in Section 4.1, the similarity among our tasks is unstable and relatively low. Therefore,

when the model is continuously trained on the tasks, it may encounter a sudden change

in vocabulary, topic, and input data distribution. This makes our tasks more challenging

compared to the other lifelong learning tasks because the abrupt change can make the

catastrophic forgetting problem more severe. This is also the reason that some techniques

achieving significant improvement in the image classification tasks do not perform well

on our task (see Section 4.5).
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We use the average macro F1 score and average micro F1 score for evaluation.

Average F1: AvgF1(t) =
1

t

t∑
i=1

F1t,i (4.2)

where F1t,i is the F1 score, either macro F1 or micro F1, achieved by the model on the

ith task after being trained on the tth task. The larger this metric, the better the model.

4.4 Methods

As mentioned in Section 4.2, one way to alleviate catastrophic forgetting is to use

a memory module, storing a small number of real samples from previous tasks, and a

simple way to utilize the memorized samples is to replay the memory when training on a

new task, such as mixing them with the training samples from the current task. The idea

behind this approach is that the memorized samples should reflect the data distribution

so that the replay of the memory can help the model make invariant predictions on the

samples of the previous tasks. However, this approach may not work well when the size

of the memory is small. The reason is that when there is only a small amount of data

memorized, the memory is not able to reflect the data distribution of the previous task

and thus the model can easily overfit on the memorized samples instead of generalizing

to all the samples in the previous task.

We address this problem from two aspects. First, since the memory size is limited,

it is beneficial to select the most representative training samples in the previous tasks

to memorize. Second, simply storing the real training samples in the memory may not

be sufficient to represent the knowledge of the previous tasks, so we need a better way

to distill knowledge from the observed samples along with a method to utilize it when

training on a new task. We combine two techniques: Variational Representation Learning
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(VRL) and Load-Balancing Self-Organizing Incremental Neural Network (LB-SOINN) to

achieve these goals. We propose a supervised version of LB-SOINN to select the most

important training samples in the current task. VRL not only distills the knowledge

from the current training task but also provides an appropriate hidden representation as

input for the LB-SOINN, so we introduce VRL first.

4.4.1 Variational Representation Learning

The distilled knowledge of previous tasks can take various forms, but the key point is

that it should be related to the data distribution of the corresponding task so that it can

be utilized to alleviate catastrophic forgetting. Inspired by the Variational Autoencoder

(VAE) [54], we consider the distribution of the hidden representation of the input data

as the distilled knowledge.

The original VAE model is proposed for data generation, so the objective of the

original VAE is:

Obj =
∑
x∈X

log p(x) (4.3)

p(x) =

∫
z

p(x|z)p(z)dz (4.4)

z is the latent variable, i.e., the hidden representation of the input. Since the integration

over z is intractable, we instead try to maximize the corresponding evidence lower bound

(ELBO) and the corresponding loss function is as follows:

Lvae =
∑
x∈X

Ez∼pα(z|x)[− log pφ(x|z)]+

DKL[qα(z|x)||pβ(z)]

(4.5)

p(x|z), q(z|x), and p(z) are the likelihood distribution, posterior distribution, and prior
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distribution. α,φ, and β indicate parameterization. The loss function can be separated

into two parts. The first part E[− log p(x|z)] is the reconstruction loss, trying to recon-

struct the input text from the latent variable. It pushes z to reserve as much information

of the input as possible. This is consistent with our goal to learn knowledge of data

distribution. The second part is DKL[q(z|x)||p(z)], where DKL is the Kullback–Leibler

(KL) divergence. Minimizing it pushes the posterior and the prior distributions to be

close to each other. By assuming the posterior p(z|x) to be a multivariate Gaussian

distribution N (µz,Σz), the latent variable z is sampled from N (µz,Σz).

In the original VAE, p(z) is chosen to be a simple Gaussian distribution N (0, 1).

However, this is over-simplified in our task because different from the unsupervised gen-

eration task of the original VAE, our ranking task is supervised. Our task not only

requires z to contain information of the tweet text itself but also requires it to indicate

the group information of the tweet. In other words, the distilled distribution should be

conditioned on both the tweet and its group label to reflect the data distribution in a

supervised task. Setting the prior to be the same for all the hate groups pushes z or the

distribution of z to ignore the label information. Instead, the prior should be different

for each hate group, so we replace p(z) with p(u|ys), where ys is the group label of x and

u is the latent variable. p(u|ys) is assumed to be a multivariate Gaussian distribution

N (µu,Σu). Note that the replacement itself can not guarantee p(u|ys) to be different

for each hate group because the loss function in Equation 4.5 does not push p(u|ys) to

satisfy this condition. However, the ranking loss function 4.1 fills in the gap. Therefore,
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Figure 4.2: An illustration of our method. The dotted arrows indicate the computation
of the loss. The light-colored dashed arrows illustrate the update of the memory
module. Note that the layers in the rounded rectangle share parameter weight. There
is only one encoder for the group input, followed by two linear layers. We make a copy
of it in the figure for a clear illustration of loss computation. x̂: the reconstructed tweet
input. s1, s2: scores of (x, ys) and (x, yi) separately. µ∗

z and Σ∗
z are the previously

memorized distribution on the latent variable of x. Lrec is the reconstruction loss,
which is the first term in Equation 4.5.

our loss function on the current training task is a combination of these two.

Lcur =
∑

(x,ys)∈D

∑
yi∈Y \{ys}

h(fθ(x, ys)−fθ(x, yi))

+Ez∼pα(z|x)[− log pφ(x|z)]

+ DKL[qα(z|x)||pβ(u|ys)]

(4.6)

The right part of Figure 4.2 illustrates the computation process of VRL.

4.4.2 LB-SOINN Memory Module

VRL provides a way to summarize knowledge into latent variable distributions. How-

ever, we still need a method to utilize the learned distribution to alleviate catastrophic
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forgetting. We do this by incorporating a memory module Dmem to store a small subset

of important training samples along with their latent variable distributions, so each sam-

ple stored in the memory is a tuple of (x, yz, qα′(z|x)). Here qα′(z|x) is the distribution

computed when the model completes training on the task that (x, yz) belongs to. The

memorized samples are taken as anchor points when training on a new task. We intro-

duce a memory KL divergence loss to push qα(z|x) computed when training on a new

task to be close to the memorized distribution qα′(z|x)). Therefore, the complete loss

function is:

L = Lcur + DKLmem

= Lcur +
∑

(x,ys)∈Dmem

DKL[qα(z|x)||qα′(z|x))]
(4.7)

Since the size of the memory is limited, we introduce a supervised version of LB-

SOINN to select the most important training samples in the current task. The input

for the LB-SOINN is the hidden representation of the tweet text, which is z in the

case of Variational Representation Learning (see Figure 4.2). We refer readers to the

original work [82] for a detailed explanation of LB-SOINN. The original LB-SOINN is

an unsupervised clustering algorithm that clusters unlabeled data by topology learning.

We utilize the topology learning of LB-SOINN instead of clustering since our task is

supervised. Therefore, we make the following adjustments to the original LB-SOINN.

1) The criteria to add a new node: Add a new node to the node set if one of the following

conditions is satisfied: a) The distance between the input and the winner is larger than

the winner’s threshold. b) The distance between the input and the second winner is

larger than the second winner’s threshold. c) The label of the input sample is not the

same as the label of the winner.

2) Build connections between nodes: Connect the two nodes with an edge only if the

winner and the second winner belong to the same class.
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3) We disable the removal of edges whose ages are greater than a predefined parameter.

We disable the deleting of nodes and the algorithm of updating the subclass labels of

every node. The node label is the label of the instances assigned to it. Our adjusted

algorithm guarantees that each node will only be assigned the samples from one class.

LB-SOINN keeps track of the density of each node, which is defined as the mean

accumulated points of a node. A node gets points when there is an input sample assigned

to it. If the mean distance of the node from its neighbors is large, we give low points to

the node. In contrast, if the mean distance of the node from its neighbors is small, we

give high points to the node. Therefore, the density of the node reflects the number of

nodes close to it and also the number of samples assigned to it. We take the density of the

node as a measurement of the importance of the samples assigned to the node. After the

LB-SOINN finishes training on the samples from the current task, we sort the samples

according to the density of the node they are assigned to and the top K samples are

selected to write to the memory. We divide the memory equally for each of the previous

tasks, so K = M/t, where M is the total memory size and t is the number of observed

tasks, including the current task. The old memory consists of samples from the previous

t − 1 tasks and each task keeps M/(t − 1) samples in the old memory. For each of the

t − 1 tasks, the M/(t − 1) − M/t samples with the lowest node densities are deleted,

resulting in K empty slots in the memory, which are then rewritten by the selected K

samples in the current task.
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4.5 Experiments and Discussion

4.5.1 Experimental Settings

For each task, we randomly sample 5000 tweets from 80% of the collected data for

training, 10% of the collected data for testing, and the rest 10% for development. We

allow the model to make more than one pass over the training samples in the current

task or the current memory during training. We compare our methods with the following

methods:

Fine-tuning: The model contains two bidirectional LSTM encoders [28, 35, 36] to

encode the tweet and the group separately. The score of the group is calculated as the

cosine distance between the hidden state of the tweet encoder and that of the group

encoder. This model is also the backbone model of all the methods described below,

except Fine-tuning + BERT. The model is directly fine-tuned on the stream of tasks,

one after another, by the ranking loss function in 4.1.

Fine-tuning+BERT: The training framework is the same as above, but each encoder

is replaced by a pre-trained BERT model [15] followed by a linear layer. The linear layers

are fine-tuned during training.

Fine-tuning+RMR (RandomMemory Replay): We augment the fine-tuning method

with an additional memory module. Same as in Section 4.4.2, the memory is divided

equally for each task, but instead of using LB-SOINN, the K samples are randomly

sampled from the current training data and then rewrite K random slots in the old

memory.

EWC: EWC is a regularization-based method, adding a penalty term
∑

i
λ
2
Fi(θi − θ∗i )2

to the ranking loss function 4.1. Fi is the diagonal of the Fisher information matrix F ,

θ is the model parameter, and i labels each parameter. θ∗ is the model parameter when

the model finishes training on the previous task. λ is set to 2e6 in our experiments.
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GEM: We use the episodic memory in the original paper: the memory is populated with

m random samples from each task. m is a predefined size of the episodic memory. We

set m = 100 in our experiments, so each task can add 100 tweets to the memory. By the

end of the 15 tasks, the total memory of GEM contains 1500 tweets.

Multitask Learning: The tasks are trained simultaneously. We mix the training data

from multiple tasks to train the model. This setting does not follow the lifelong learning

setting where the tasks are trained sequentially. We add this setting in our experiments

to show the potential room for improvement concerning each lifelong learning method.

We do not compare our method with Support Vector Machine [40] or Logistic Regres-

sion, because they require the number of classes to be fixed and to be known in advance,

which is unrealistic in our tasks. We also do not experiment with the HCVAE method

introduced in the previous chapter since it also has this requirement, as mentioned in

Section 4.3.

In all our experiments, we use 1-layer bi-LSTM as encoders except for the fine-tuning

+ BERT setting and we use cosine distance to measure similarity. The input of the

group encoder is the concatenation of the group name and its hate ideology. We use

1-layer bidirectional GRU [83] as the decoder in VRL. The hidden size of the encoders

and the decoders is 64. The latent variable size in VRL is 128. We use 300-dimensional

randomly initialized word embeddings. All the neural networks are optimized by Adam

optimizer with the learning rate 1e-4. The batch size is 64. The loss margin m = 0.5.

The maximum number of training epochs for each task is set to 20. For LB-SOINN,

λ=1000, η=1.04. The memory size is limited to 1000 tweets for all the methods using a

memory module except GEM. We do not set episodic memory size for each task as GEM

because for lifelong hate speech classification, the number of tasks keeps increasing in

the real world, and assuming unlimited total memory is unrealistic.
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Number of observed tasks t=5 t=10 t=15
Avg F1 score (%) Macro Micro Macro Micro Macro Micro

Multitask 15.26 67.07 5.05 37.20 3.57 38.61

Fine-tuning 6.02 16.44 4.35 5.77 3.96 6.18
Fine-tuning + BERT 6.02 16.44 4.06 5.45 3.03 5.80
Fine-tuning + RMR 11.15 44.40 2.56 15.77 3.51 15.19
EWC 8.57 20.42 2.42 6.81 1.95 7.27
GEM 13.04 30.95 3.07 12.51 2.70 15.07
Ours 12.61 49.75 6.96 47.30 5.13 44.62

Table 4.2: Experimental results. RMR: random memory replay. The best results are in bold.

4.5.2 Experimental Results

The experimental results are shown in Table 4.2. We report the performance of each

method after the model finishes training on the first 5 tasks, the first 10 tasks, and all the

15 tasks. The average macro-F1 score is much lower than the average micro-F1 score due

to the imbalanced data of each task. The large performance gap between the multitask

training and fine-tuning shows that there exists severe catastrophic forgetting and that

the low average F1 scores in the fine-tuning setting are not due to the model capacity.

Replacing the bi-LSTM encoder with the pre-trained BERT encoder does not improve

the performance. This reconfirms that the low scores result from catastrophic forgetting,

not model capacity. Actually, fine-tuning and fine-tuning with BERT achieves the same

average F1 scores at t = 5 because both models completely forget the previous tasks

after converging on the fifth task, so both models achieve the same F1 scores on the

testing data of the fifth task while achieving 0 scores on the previous four tasks. Due

to the large model capacity of BERT, fine-tuning with BERT tends to overfit on the

training data more seriously, leading to a slight performance decline at t = 10 and t = 15

compared to using bi-LSTM encoders. Since model capacity is not the key factor to

solve catastrophic forgetting, we simply use bi-LSTM as encoders in our model instead

of BERT, considering the computational cost.
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Number of observed tasks t=5 t=10 t=15
Avg F1 score (%) Macro Micro Macro Micro Macro Micro
Full Model 12.61 49.75 6.96 47.30 5.13 44.62
w/o DKLmem 15.00 58.64 4.21 36.36 3.72 40.87
w/o VRL 11.05 35.03 4.53 13.69 3.65 11.28
w/o LB-SOINN 13.01 50.99 6.15 44.42 5.59 30.91

Table 4.3: Ablation study. w/o DKLmem: DKLmem in Equation 4.7 is removed. w/o
VRL: VRL is replaced by the model used in the fine-tuning setting, i.e., fine-tuning +
LB-SOINN memory replay. w/o LB-SOINN: LB-SOINN memory replay is replaced
by random memory replay, i.e., VRL + RMR. The best results are in bold.

Adding RMR to the fine-tuning setting achieves significant performance improve-

ment, even better than EWC or GEM. This is related to the characteristic of our tasks

mentioned in Section 4.3. EWC remembers previous tasks by slowing down the update

of the model parameters important to them, which is more suitable for the sequence of

tasks that are similar to each other. However, significant changes in vocabulary, topic,

or input data distribution are very common in our sequence of tasks, making memory

replay more efficient than EWC. The performance of GEM during the second half of the

training is close to that of fine-tuning with RMR, but there exists a gap in the first half.

The reason is that GEM sets an episodic memory for each task, of which the size is 100

in our experiments, so before the 10th task in the sequence, the size of the total memory

available for GEM is less than that of the memory module used in the fine-tuning with

RMR setting.

Although RMR improves performance, the average F1 scores still drop quickly when

the number of tasks increases. In the late stage of sequential training, each task can only

keep dozens of samples in the memory and the model is not able to generalize well based

on the memory. Our method solves this problem by combining VRL and LB-SOINN

memory replay. The performance of our model is better and more stable than the other

methods when the number of tasks increases. Our method achieves higher scores than
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multitask training in the last four columns of Table 4.3 because learning on one task is

easier than learning on a mix of tasks simultaneously. Every model in our sequential

training experiments can easily achieve high F1 scores on the current task, making a

large contribution to the average F1 scores. However, when doing multitask training, the

model loses this benefit.

To investigate the effect of our method, we conduct the ablation study as shown in

Table 4.3. Removing DKLmem from the final loss function in Equation 4.7 does not lower

the performance when the number of observed tasks is small (t=5) because each task can

store a few hundreds of samples in the memory at the early stage of sequential training,

which is sufficient for the model to learn the previous tasks. However, when the number

of tasks increases, DKLmem shows its effect on alleviating catastrophic forgetting.

Fine-tuning+LB-SOINN (Table 4.3) does not perform as well as fine-tuning+RMR

(Table 4.2), while VRL+LB-SOINN (i.e., full model) performs better than VRL+RMR

(Table 4.3). The reason lies in the input for LB-SOINN. Compared to the hidden rep-

resentations spread evenly in the hidden space, the hidden representations which are

well-organized in different group clusters make it easier for LB-SOINN to learn a reason-

able topology structure of the training samples. VRL achieves this by explicitly pushing

the hidden representation of tweets to follow a learned multivariate Gaussian distribu-

tion unique to each group. On the other hand, directly using the hidden state of the

tweet encoder does not exhibit such kind of characteristics. VRL not only distills task

knowledge but also provides an appropriate input for LB-SOINN, as stated in Section

4.4.

4.5.3 Error Analysis

Although our model achieves significant improvement over the baseline methods, we
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Figure 4.3: The testing results of the first 5 tasks in the sequence when our model is
trained on the first 10 tasks.

observe that our method does not perform well on the first task. As shown in Figure 4.3,

there exists a large gap between the performance on the first task and the other tasks,

and the micro-F1 score on the first task quickly drops to almost 0 when the number of

observed tasks increases. We find the same results after we change the order of tasks

in the sequence, so this is not the result of the task difficulty but is the result of our

method. We find this problem is due to the reconstruction loss, which is the first part in

Equation 4.5. The model observes a very limited number of tweets when training on the

first task, making it difficult to learn the language model and reconstruct the tweet. As a

result, the tweet representation learned on the first task may not contain the information

we require, resulting in a large performance gap. When the number of observed tasks

increases, this problem goes away quickly. We anticipate that pre-training the VAE in

our model (the left branch in Figure 4.2) on a large Twitter corpus can alleviate this

problem at the beginning of training.

4.6 Conclusion

In this paper, we introduce the lifelong hate speech classification task and propose

60



Lifelong Learning of Fine-grained Hate Speech Characterization Chapter 4

to use the VRL and LB-SOINN memory module to alleviate catastrophic forgetting.

Our proposed method has the potential to benefit other lifelong learning tasks where the

similarity between the contiguous tasks can be low. We make our implementation freely

available to facilitate more application and investigation of our method in the future.
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Chapter 5

Hate Symbol Deciphering

In the previous chapters, the computational models we discussed to understand hate

speech frame the problem as a classification task, ignoring the understanding of hate

symbols (e.g., 14 words, kigy) and their secret connotations. In this chapter, we propose

a novel task of deciphering hate symbols. To do this, we leverage the Urban Dictionary

and collected a new, symbol-rich Twitter corpus of hate speech. We investigate neural

network latent context models for deciphering hate symbols. More specifically, we study

Sequence-to-Sequence models and show how they are able to crack the ciphers based on

context. Furthermore, we propose a novel Variational Decipher and show how it can

generalize better to unseen hate symbols in a more challenging testing setting.

5.1 Introduction

The vast quantity of hate speech on social media can be analyzed to study online

abuse. In recent years, there has been a growing trend of developing computational

models of hate speech, the majority of which focus solely on modeling hate speech as a

binary or multiclass classification task [1, 29, 18, 10].

62



Hate Symbol Deciphering Chapter 5

Figure 5.1: An example tweet with hate symbols.

While developing new features for hate speech detection certainly has merits, we be-

lieve that understanding hate speech requires us to design computational models that

can decipher hate symbols that are commonly used by hate groups. Figure 5.1 shows an

example usage of hate symbols in an otherwise seemingly harmless tweet that promotes

hate. For example, Aryan Warrior is a longstanding racist prison gang based in the

Nevada prison system. WPWW is the acronym for White Pride World Wide. The hate

symbols 1488 and 2316 are more implicit. 14 symbolizes the 14 words: “WE MUST

SECURE THE EXISTENCE OF OUR PEOPLE AND A FUTURE FOR WHITE CHIL-

DREN”, spoken by members of the Order neo-Nazi movement. H is the 8th letter of the

alphabet, so 88=HH=Heil Hitler. Similarly, W is the 23rd and P is the 16th letter of

the alphabet, so 2316=WP=White Power.

In this work, we propose the first models for deciphering hate symbols. We investigate

two families of neural network approaches: the Sequence-to-Sequence models [84, 83]

and a novel Variational Decipher based on the Conditional Variational Autoencoders

[54, 43, 42]. We show how these neural network models are able to guess the meaning of

hate symbols based on context embeddings and even generalize to unseen hate symbols

during testing. Our contributions are three-fold:
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• We propose a novel task of learning to decipher hate symbols, which moves beyond

the standard formulation of hate speech classification settings.

• We introduce a new, symbol-rich tweet dataset for developing computational models

of hate speech analysis, leveraging the Urban Dictionary.

• We investigate a sequence-to-sequence neural network model and show how it is able

to encode context and crack hate symbols. We also introduce a novel Variational

Decipher, which generalizes better in a more challenging setting.

5.2 Related Work

5.2.1 Text Normalization in Social Media

The proposed task is related to text normalization focusing on the problems presented

by user-generated content in online sources, such as misspelling, rapidly changing out-of-

vocabulary slang, short-forms and acronyms, punctuation errors or omissions, etc. These

problems usually appear as out-of-vocabulary words. Extensive research has focused on

this task [85, 86, 87, 88]. However, our task is different from the general text normalization

in social media in that instead of the out-of-vocabulary words, we focus on the symbols

conveying hateful meaning. These hate symbols can go beyond lexical variants of the

vocabulary and thus are more challenging to understand.

5.2.2 Machine Translation

An extensive body of work has been dedicated to machine translation. In [89], the

authors study a number of natural language decipherment problems using unsupervised

learning. Later work further frames the task of machine translation as decipherment
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and tackles it without parallel training data [90]. Machine translation using deep learn-

ing (Neural Machine Translation) has been proposed in recent years and Sequence-to-

Sequence (Seq2Seq) learning with Recurrent Neural Networks (RNN) has been success-

fully applied to this field [83, 84]. The translation performance is further improved using

the attention mechanism [91]. Google’s Neural Machine Translation System (GNMT)

employs a deep attentional LSTM network with residual connections [92]. Recently,

machine translation techniques have been also applied to explain non-standard English

expressions [93]. However, our deciphering task is not the same as machine translation

in that hate symbols are short and cannot be modeled as language.

Our task is more closely related to [94] and [95]. In [94], the authors propose using

neural language embedding models to map the dictionary definitions to the word repre-

sentations, which is the inverse of our task. In [95], the authors propose the definition

modeling task. However, in their task, for each word to be defined, its pre-trained word

embedding is required as an input, which is actually the prior knowledge of the words.

However, such kind of prior knowledge is not available in our deciphering task. Therefore,

our task is more challenging and is not simply a definition modeling task.

5.2.3 Hate Speech Analysis

Closely related to our work are [96, 97]. In [96], the proposed RNN model sup-

plemented by an attention mechanism can highlight suspicious words for free, without

including highlighted words in the training data. In [97], the authors propose a weakly-

supervised approach that jointly trains a slur learner and a hate speech classifier. While

their work contributes to the automation of harmful content detection and the highlight-

ing of suspicious words, our work builds upon these contributions by providing a learning

mechanism that deciphers suspicious hate symbols used by communities of hate to bypass
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automated content moderation systems.

5.3 Data and Task

We first collect hate symbols and the corresponding definitions from the Urban Dictio-

nary. Each term with one of the following hashtags: #hate, #racism, #racist, #sexism,

#sexist, #nazi is selected as a candidate and added to the set S0. We collected a total

of 1,590 terms. Next, we expand this set by different surface forms using the Urban

Dictionary API. For each term si in set S0, we obtain a set of terms Ri that have the

same meaning as si but with different surface forms. For example, for the term brown

shirt, there are four terms with different surface forms: brown shirt, brown shirts, Brown-

shirts, brownshirt. Each term in Ri has its own definition in Urban Dictionary, but since

these terms have exactly the same meaning, we select a definition di with the maximum

upvote/downvote ratio for all the terms in Ri. For example, for each term in the set

Ri={brown shirt, brown shirts, Brownshirts, brownshirt}, the corresponding definition is

“Soldiers in Hitler’s storm trooper army, SA during the Nazi regime...” After expand-

ing, we obtain 2,105 distinct hate symbol terms and their corresponding definitions. On

average, each symbol consists of 9.9 characters, 1.5 words. Each definition consists of

96.8 characters, 17.0 words.

For each of the hate symbols, we collect all tweets from 2011-01-01 to 2017-12-31

that contain exactly the same surface form of hate symbol in the text. Since we only

focus on hate speech, we train an SVM [40] classifier to filter the collected tweets. The

SVM model is trained on the dataset published in [18]. Their original dataset contains

three labels: Sexism, Racism, and None. Since the SVM model is used to filter non-hate

speech, we merge the instances labeled as sexism and racism, then train the SVM model

to do binary classification. After filtering out all the tweets classified as non-hate, our
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final dataset consists of 18,667 (tweet, hate symbol, definition) tuples.

We formulate hate symbol deciphering as the following equation:

Obj =
∑

(u,s,d∗)∈X

log p(d∗|(u, s)) (5.1)

X is the dataset, (u, s, d∗) is the (tweet, symbol, definition) tuple in the dataset. The

inputs are the tweet and the hate symbol in this tweet. The output is the definition

of the symbol. Our objective is to maximize the probability of the definition given the

(tweet, symbol) pair.

5.4 Methods

This objective function (Eq. 5.1) is very similar to that of machine translation. So

we first try to tackle it based on the Sequence-to-Sequence model, which is commonly

used in machine translation.

5.4.1 Sequence-to-Sequence Model

We implement an RNN Encoder-Decoder model with an attention mechanism based

on [91]. We use GRU [83] for decoding. However, instead of also using GRU for encoding,

we found that LSTM [28] performs better on our task. Therefore, our Seq2Seq model

uses LSTM encoders and GRU decoders. An overview of our Seq2Seq model is shown in
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Figure 5.2: Our Seq2Seq model. u, and sw are the word embeddings of the tweet text
and hate symbol. sc is the character embedding of the symbol. cu is the encoded
tweet and h is the concatenated hidden states. d is the generated text.

Figure 5.2. The computation process is shown as the following equations:

cu, hu = fu(u) (5.2)

csw, hsw = fsw(sw) (5.3)

csc, hsc = fsc(sc) (5.4)

u is the word embedding of the tweet text, sw is the word embedding of the hate symbol,

sc is the character embedding of the symbol. fu, fsw, and fsc are LSTM functions. cu,

csw, csc are the outputs of the LSTMs at the last time step and hu, hsw, hsc are the

hidden states of the LSTMs at all time steps. We use two RNN encoders to encode the

symbol, one encodes at the word level and the other one encodes at the character level.

The character-level encoded hate symbol is used to provide the feature of the surface

form of the hate symbol while the word-level encoded hate symbol is used to provide the

semantic information of the hate symbol. The hidden states of the two RNN encoders
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for hate symbols are concatenated:

h = hsw ⊕ hsc (5.5)

cu is the vector of encoded tweet text. The tweet text is the context of the hate symbol,

which provides additional information during decoding. Therefore, the encoded tweet

text is also fed into the RNN decoder. The detailed attention mechanism and decoding

process at time step t are as follows:

wt = σ(lw(dt−1 ⊕ et−1)) (5.6)

at =
T∑
i=1

wtihi (5.7)

bt = σ(lc(dt−1 ⊕ at)) (5.8)

ot, et = k(cu ⊕ bt, et−1) (5.9)

p(dt|u, s) = σ(lo(ot)) (5.10)

wt is the attention weights at time step t and wti is the ith weight of wt. dt−1 is the

generated word at last time step and et−1 is the hidden state of the decoder at last time

step. hi is the ith time step segment of h. lw, lc, and lo are linear functions. σ is a nonlinear

activation function. k is the GRU function. ot is the output and et is the hidden state of

the GRU. p(dt|u, s) is the probability distribution of the vocabulary at time step t. The

attention weights wt are computed based on the decoder’s hidden state and the generated

word at time step t− 1. Then the computed weights are applied to the concatenated

hidden states h of encoders. The result at is the context vector for the decoder at time

step t. The context vector and the last generated word are combined by a linear function

lc followed by a nonlinear activation function. The result bt is concatenated with the
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encoded tweet context cu, and then fed into GRU together with the decoder’s last hidden

state et−1. Finally, the probability of each vocabulary word is computed from ot.

5.4.2 Variational Decipher

The Variational Decipher is based on the CVAE model, which is another model

that can be used to parametrize the conditional probability p(d∗|(u, s)) in the objective

function (Eq. 5.1). Unlike the Seq2Seq model, which directly parametrizes p(d∗|(u, s)),

our variational decipher formulates the task as follows:

Obj =
∑

(u,s,d∗)∈X

log p(d∗|(u, s))

=
∑

(u,s,d∗)∈X

log

∫
z

p(d∗|z)p(z|(u, s))dz
(5.11)

where z is the latent variable. p(d∗|(u, s) is written as the marginalization of the product

of two terms over the latent space. Since the integration over z is intractable, we instead

try to maximize the evidence lower bound (ELBO). Our variational lower bound objective

is in the following form:

Obj =E[log pφ(d∗|z, u, s)]−

DKL[pα(z|d∗, u, s)||pβ(z|u, s)]
(5.12)

where pφ(d∗|z, u, s) is the likelihood, pα(z|d∗, u, s) is the posterior, pβ(z|u, s) is the prior,

and DKL is the Kullback-Leibler (KL) divergence. We use three neural networks to

model these three probability distributions. An overview of our variational decipher is

shown in Figure 5.3. We first use four recurrent neural networks to encode the (tweet,

symbol, definition) pair in the dataset. Similar to what we do in the Seq2Seq model,

there are two encoders for the hate symbol. One is at the word level and the other is at
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Figure 5.3: The Variational Decipher. Note that this structure is used during training.
During testing, the structure is slightly different. d∗ is the word embeddings of the
definition. x is the encoded definition. c is the concatenation of the encoded tweet
and hate symbol. p and p′ are output distributions. z is the latent variable. The
definitions of other variables are the same as those in Figure 5.2.

the character level. The encoding of symbols and tweets are exactly the same as in our

Seq2Seq model (see Eq. 5.2-5.4). The difference is that we also need to encode definitions

for the Variational Decipher.

x, hd = fd(d
∗) (5.13)

Here, fd is the LSTM function. x is the output of the LSTM at the last time step and

hd is the hidden state of the LSTM at all time steps. The condition vector c is the
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concatenation of the encoded symbol words, symbol characters, and the tweet text:

c = cu ⊕ csw ⊕ csc (5.14)

We use multi-layer perceptrons (MLP) to model the posterior and the prior in the objec-

tive function. The posterior network and the prior network have the same structure and

both output a probability distribution of latent variable z. The only difference is that

the input of the posterior network is the concatenation of the encoded definition x and

the condition vector c while the input of the prior network is only the condition vector

c. Therefore, the output of the posterior network p = pα(z|d∗, u, s) and the output of

the prior network p′ = pβ(z|u, s). By assuming the latent variable z has a multivariate

Gaussian distribution, the actual outputs of the posterior and prior networks are the

mean and variance: (µ, Σ) for the posterior network and (µ′, Σ′) for the prior network.

µ,Σ = g(x⊕ c) (5.15)

µ′,Σ′ = g′(c) (5.16)

g is the MLP function of the posterior network and g′ is that of the prior network.

During training, the latent variable z is randomly sampled from the Gaussian distribution

N (µ,Σ) and fed into the likelihood network. During testing, the posterior network is

replaced by the prior network, so z is sampled from N (µ′,Σ′). The likelihood network is

modeled by an RNN decoder with an attention mechanism, very similar to the decoder of

our Seq2Seq model. The only difference lies in the input for the GRU. The decoder in our

Variational Decipher model is to model the likelihood pφ(d∗|z, u, s), which is conditioned

on the latent variable, tweet context, and the symbol. Therefore, for the Variational

Decipher, the condition vector c and the sampled latent variable z are fed into the
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decoder.

ot, et = k(z ⊕ c⊕ bt, et−1) (5.17)

et−1 is the hidden state of the RNN decoder at the last time step. k is the GRU function.

ot is its output and et is its hidden state. Detailed decoding process and explanations

are in Section 5.4.2.

Algorithm 4 Train Variational Decipher
1: function train(U)
2: randomly initialize network parameters φ, α, β;
3: for epoch = 1, E do
4: for (tweet, symbol, definition) in U do
5: get embeddings u, sw, sc, d

∗;
6: compute x, c and h with RNN encoders;
7: compute µ, Σ with the posterior network;
8: compute µ′, Σ′ with the prior network;
9: compute KL-divergence loss LKL;
10: sample z = reparameterize(µ,Σ);
11: initialize the decoder state e0 = c;
12: LREC = 0;
13: for t = 1,M do
14: compute attention weights wt;
15: compute ot, et and p(dt|z, u, s);
16: dt = indmax(p(dt|z, u, s));
17: LREC+ = BCE(dt, d

∗
t );

18: if dt==EOS then
19: break;
20: end if
21: end for
22: update φ, α, β on L = LREC + LKL;
23: end for
24: end for
25: end function

According to the objective function in Eq. 5.12, the loss function of the Variational
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Algorithm 5 Test Variational Decipher
1: function test(V )
2: for (tweet, symbol, definition) in V do
3: get embeddings u, sw, sc;
4: compute c and h with RNN encoders;
5: compute µ′, Σ′ with the prior network;
6: sample z = reparameterize(µ′,Σ′);
7: initialize the decoder state e0 = c;
8: for t = 1,M do
9: compute attention weights w;

10: compute ot, et and p(dt|z, u, s);
11: dt = indmax(p(dt|z, u, s));
12: if dt==EOS then
13: break;
14: end if
15: end for
16: end for
17: end function

Decipher is as follows:

L =LREC + LKL

=Ez∼pα(z|d∗,u,s)[− log pφ(d∗|z, u, s)]+

DKL[pα(z|d∗, u, s)||pβ(z|u, s)]

(5.18)

It consists of two parts. The first part LREC is called reconstruction loss. Optimizing

LREC can push the sentences generated by the posterior network and the likelihood

network closer to the given definitions. The second part LKL is the KL divergence loss.

Optimizing this loss can push the output Gaussian Distributions of the prior network

closer to that of the posterior network. This means we teach the prior network to learn

the same knowledge learned by the posterior network, such that during testing time,

when the referential definition d∗ is no longer available for generating the latent variable

z, the prior network can still output a reasonable probability distribution over the latent
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variable z. The complete training and testing process for the Variational Decipher is

shown in Algorithm 4 and 5. M is the predefined maximum length of the generated text.

BCE refers to the Binary Cross Entropy loss.

5.5 Experiments and Discussion

5.5.1 Experimental Settings

We use the dataset collected as described in Section 5.3 for training and testing.

We randomly selected 2,440 tuples for testing and use the remaining 16,227 tuples for

training. Note that there are no overlapping hate symbols between the training dataset

U and the testing dataset D.

We split the 2,440 tuples of the testing dataset D into two separate parts, Ds and Dd.

Ds consists of 1,681 examples and Dd consists of 759 examples. In the first testing dataset

Ds, although each hate symbol does not appear in the training dataset, the corresponding

definition appears in the training dataset. In the second testing dataset Dd, neither the

hate symbols nor the corresponding definitions appear in the training dataset. We do this

split because deciphering hate symbols in these two cases has different levels of difficulty.

This split criterion means that for each hate symbol in Ds, there exists some symbol

in the training dataset that has the same meaning but in different surface forms. For

example, the hate symbol wigwog and Wig Wog have the same definition but one is in the

training dataset, and the other is in the first testing dataset. We assume that such types

of hate symbols share similar surface forms or similar tweet contexts. Therefore, the first

testing dataset Ds is to evaluate how well the model captures the semantic similarities

among the tweet contexts in different examples or the similarities among different surface

forms of a hate symbol.
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Deciphering the hate symbols in the second testing dataset Dd is more challenging.

Both the unseen hate symbols and definitions require the model to have the ability

to accurately capture the semantic information in the tweet context and then make a

reasonable prediction. The second testing dataset Dd is used to evaluate how well the

model generalizes to completely new hate symbols.

For the Seq2Seq model, we use the negative log-likelihood loss for training. Both

models are optimized using Adam optimizer [98]. The hyper-parameters of the two

models are exactly the same. We set the maximum generation length M = 50. The

hidden size of the encoders is 64. The size of the word embedding is 200 and that

of character embedding is 100. The word embeddings and character embeddings are

randomly initialized. Each model is trained for 50 epochs. We report the deciphering

results of two models on three testing datasets D, Ds, and Dd.

5.5.2 Experimental Results

Quantitative Results: We use equally weighted BLEU score for up to 4-grams [99],

ROUGE-L [100] and METEOR [101] to evaluate the decipherment results. The results

are shown in Table 5.1. Figure 5.4 shows the BLEU score achieved by the two models

on three testing datasets D, Ds, and Dd during the training process. Both our Seq2Seq

model and Variational Decipher achieve reasonable BLEU scores on the testing datasets.

The Seq2Seq model outperforms the Variational Decipher on Ds while Variational De-

cipher outperforms Seq2Seq on Dd. Note that Ds is more than twice the size of Dd.

Therefore, Seq2Seq outperforms Variational Decipher on the entire testing dataset D.

The different performance of the two models on Ds and Dd is more obvious in Figure 5.4.

The gap between the performance of the Seq2Seq model on Ds and Dd is much larger

than that between the performance of the Variational Decipher on these two datasets.
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Dataset Method BLEU ROUGE-L METEOR

Ds
Seq2Seq 37.80 41.05 36.67

VD 34.77 32.96 31.03

Dd
Seq2Seq 25.44 12.96 5.54

VD 28.38 14.01 5.41

D
Seq2Seq 33.96 32.32 26.98

VD 32.75 27.00 23.16

Table 5.1: The BLEU, ROUGE-L, and METEOR scores on testing datasets. VD
refers to the Variational Decipher. D is the entire testing dataset. Ds is the first part
of D and Dd is the second part. The better results are in bold.

Figure 5.4: BLEU scores of two models on the testing dataset D, Ds, and Dd. The
three dotted curves represent the performance of the Seq2Seq model while the three
solid curves represent the performance of the Variational Decipher.

Human Evaluation: We employed crowd-sourced workers to evaluate the deciphering

results of two models. We randomly sampled 100 items of deciphering results from Ds

and another 100 items from Dd. Each item composes a choice question and each choice

question is assigned to five workers on Amazon Mechanical Turk. In each choice question,

the workers are given the hate symbol, the referential definition, the original tweet, and

two machine-generated plain texts from the Seq2Seq model and Variational Decipher.

Workers are asked to select the more reasonable of the two results. In each choice

question, the order of the results from the two models is permuted. Ties are permitted
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Dataset Seq2Seq Lose Seq2Seq Win Tie
Ds 31.0% 32.0% 37.0%
Dd 30.5% 22.0% 47.5%

Table 5.2: The results of human evaluation on two separate testing datasets Ds and Dd.

for answers. We batch five items in one assignment and insert an artificial item with two

identical outputs as a sanity check. The workers who fail to choose “tie” for that item

are rejected from our test. The human evaluation results are shown in Table 5.2, which

coincide with the results in Table 5.1 and Figure 5.4.

Discussion: When deciphering the hate symbols that have the same definitions as in the

training dataset, the model can rely more on the surface forms of hate symbols than the

tweet context to make a prediction because usually the hate symbols that share the same

definitions also have similar surface forms. However, when it comes to the hate symbols

with unseen definitions, simply relying on the surface forms cannot lead to a reasonable

deciphering result. Instead, the model should learn the relationships between the context

information and the definition of the symbol. Therefore, the different performances of

two models on the two testing datasets Ds and Dd indicate that the Seq2Seq model is

better at capturing the similarities among different surface forms of a hate symbol, while

the Variational Decipher is better at capturing the semantic relationship between the

tweet context and the hate symbol. The Sequence-to-Sequence model tries to capture

such kinds of relationships by compressing all the context information into a fixed length

vector, so its deciphering strategy is actually behavior cloning. On the other hand, the

Variational Decipher captures such relationships by explicitly modeling the posterior

and likelihood distributions. The modeled distributions provide higher-level semantic

information compared to the compressed context, which allows the Variational Decipher

to generalize better to the symbols with unseen definitions. This explains why the gap

between the performance of the Seq2Seq model on two datasets is larger.
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Figure 5.5: Some example errors in the generated results of our Seq2Seq model and
Variational Decipher.

5.5.3 Error Analysis

Figure 5.5 shows some example errors of the deciphering results of our Seq2Seq model

and Variational Decipher. One problem with the deciphering results is that the generated

sentences have a poor grammatical structure, as shown in Figure 5.5. This is mainly

because the size of our dataset is small, and the models need a much larger corpus to

learn the grammar. We anticipate that the generation performance will be improved

with a larger dataset.

For the hate symbols in Ds, the deciphering results are of high quality when the length

of referential definitions is relatively short. An example is macaca, a French slur shows

in Figure 5.5. The deciphering result of the Seq2Seq model is close to the referential

definition. As to the Variational Decipher, although the result is not literally the same

as the definition, the meaning is close. closet homosexuals is another example. However,

when the length of the referential definition increases, the performance of both models

tends to be unsatisfactory, as the third example confederate flag shows. Although there

exists the symbol Confederate Flag with the same definition in the training set, both
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models fail on this example. One possible reason is that the complexity of generating the

referential definition grows substantially with the increasing length, so when the tweet

context and the symbol itself cannot provide enough information, the generation model

cannot learn the relationship between the symbol and its definition.

Deciphering hate symbols in Dd is much more challenging. Even for humans, deci-

phering completely new hate symbols is not a simple task. The two examples in Figure

5.5 show that the models have some ability to capture the semantic similarities. For

the symbol niggering, the Variational Decipher generates the word nigger and Seq2Seq

model generates black. For Heil Hitler, the Variational Decipher generates leader person

and Nazi, while Seq2Seq also generates Nazi. Although these generated words are not in

the definition, they still make some sense.

5.6 Conclusion

We propose a new task of learning to decipher hate symbols and create a symbol-rich

tweet dataset. We split the testing dataset into two parts to analyze the characteristics

of the Seq2Seq model and the Variational Decipher. The different performance of these

two models indicates that the models can be applied to different scenarios of hate symbol

deciphering. The Seq2Seq model outperforms the Variational Decipher for deciphering

the hate symbols with similar definitions to that in the training dataset. This means

the Seq2Seq model can better explain the hate symbols when Twitter users intentionally

misspell or abbreviate common slur terms. On the other hand, the Variational Decipher

tends to be better at deciphering hate symbols with unseen definitions, so it can be

applied to explain newly created hate symbols on Twitter. Although both models show

promising deciphering results, there still exists much room for improvement.
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Chapter 6

Hate Speech Intervention

In the previous chapters, we primarily focus on developing NLP methods to automat-

ically and effectively detect or analyze hate speech. In this chapter, we focus on the

further action needed to calm and discourage individuals from using hate speech in the

future. We propose a novel task of generative hate speech intervention, where the goal

is to automatically generate responses to intervene during online conversations that con-

tain hate speech. As a part of this work, we introduce two fully-labeled large-scale hate

speech intervention datasets collected from Gab and Reddit1. These datasets provide

conversation segments, hate speech labels, as well as intervention responses written by

Mechanical Turk Workers. We also analyze the datasets to understand the common inter-

vention strategies and explore the performance of common automatic response generation

methods on these new datasets to provide a benchmark for future research.

1The datasets are publicly available here: https://github.com/jing-qian/A-Benchmark-Dataset
-for-Learning-to-Intervene-in-Online-Hate-Speech
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6.1 Introduction

To address the growing problem of online hate, an extensive body of work has focused

on developing automatic hate speech detection models and datasets [5, 18, 10, 102, 103].

However, simply detecting and blocking hate speech or suspicious users often has limited

ability to prevent these users from simply turning to other social media platforms to

continue to engage in hate speech as can be seen in the large move of individuals blocked

from Twitter to Gab [104]. What’s more, such a strategy is often at odds with the concept

of free speech. As reported by the Pew Research Center [105], “Despite this broad concern

over online harassment, 45% of Americans say it is more important to let people speak

their minds freely online; a slightly larger share (53%) feels that it is more important for

people to feel welcome and safe online.” The special rapporteurs representing the Office of

the United Nations High Commissioner for Human Rights (OHCHR) have recommended

that “The strategic response to hate speech is more speech.” [106] They encourage to

change what people think instead of merely changing what they do, so they advocate

more speech that educates about cultural differences, diversity, and minorities as a better

strategy to counter hate speech.

Therefore, in order to encourage strategies of countering online hate speech, we pro-

pose a novel task of generative hate speech intervention and introduce two new datasets

for this task. Figure 6.1 illustrates the task. Our datasets consist of 5K conversations

retrieved from Reddit and 12k conversations retrieved from Gab. Distinct from exist-

ing hate speech datasets, our datasets retain their conversational context and introduce

human-written intervention responses. The conversational context and intervention re-

sponses are critical in order to build generative models to automatically mitigate the

spread of these types of conversations.

To summarize, our contributions are three-fold:
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Figure 6.1: An illustration of the hate speech conversation between User 1 and User 2
and the interventions collected for our datasets. The check and the cross icons on the
right indicate a normal post and a hateful post. The utterance following the human
icon is a human-written intervention, while the utterance following the computer icon
is machine-generated.

• We introduce the generative hate speech intervention task and provide two fully-

labeled hate speech datasets with human-written intervention responses.

• Our data is collected in the form of conversations, providing better context.

• The two data sources, Gab and Reddit, are not well studied for hate speech. Our

datasets fill this gap.

Due to our data collecting strategy, all the posts in our datasets are manually labeled

as hate or non-hate speech by Mechanical Turk workers, so they can also be used for

the hate speech detection task. The performance of commonly-used classifiers on our

datasets is shown in Section 6.6.

83



Hate Speech Intervention Chapter 6

Source #Posts Conv. Categories Interv.
[18] Twitter 17k No racist, sexist, normal No
[10] Twitter 25k No hateful, offensive, neither No
[81] Twitter 35k No the worst, threats, hate speech, di-

rect harassment, potentially offen-
sive, non-harassment

No

[107] Twitter 9k No aggressive, bullying, spam, normal No
[108] Twitter,

Reddit, The
Gaurdian

20k No harassment, non-harassment No

[109] Twitter 100k No abusive, hateful, normal, spam No
[5] Yahoo! 9k No anti-semitic, anti-black, anti-asian,

anti-woman, anti-muslim, anti-
immigrant, other-hate

No

[1] Yahoo! 2k No clean, hate, derogatory, profanity No
[31] Ask.fm 85k No threat/blackmail, insult, defamation,

sexual talk, curse/exclusion, defense,
encouragement to the harasser

No

Ours Reddit 22k Yes hate, non-hate Yes
Ours Gab 34k Yes hate, non-hate Yes

Table 6.1: Comparison of our datasets with previous hate speech datasets. Conv.:
Conversation. Interv.: Intervention.

6.2 Related Work

In recent years, a few datasets for hate speech detection have been built and released

by researchers. Most are collected from Twitter and are labeled using a combination

of expert and non-expert hand labeling, or through machine learning assistance using

a list of common negative words. It is widely accepted that labels can vary in their

accuracy overall, though this can be mitigated by relying on a consensus rule to rectify

disagreements in labels. A synopsis of these datasets can be found in Table 6.1.

In [18], the authors collect 17k tweets based on hate-related slurs and users. The

tweets are manually annotated with three categories: sexist (20.0%), racist (11.7%), and

normal (68.3%). Because the authors identified a number of prolific users during the

initial manual search, the resulting dataset has a small number of users (1,236 users)

84



Hate Speech Intervention Chapter 6

involved, causing a potential selection bias. This problem is most prevalent on the 1,972

racist tweets, which are sent by only 9 Twitter users. To avoid this problem, we did not

identify suspicious user accounts or utilize user information when collecting our data.

A similar strategy is used in [10], which combines the utilization of hate keywords and

suspicious user accounts to build a dataset from Twitter. But different from [18], this

dataset consists of 25k tweets randomly sampled from the 85.4 million posts of a large

number of users (33,458 users). This dataset is proposed mainly to distinguish hateful

and offensive language, which tend to be conflated by many studies.

In [81], the authors focus on online harassment on Twitter and propose a fine-grained

labeled dataset with 6 categories. A large Twitter dataset with 100k tweets is introduced

in [109]. Despite the large size of this dataset, the ratio of hateful tweets is relatively

low (5%). Thus the size of the hateful tweets is around 5k in this dataset, which is not

significantly larger than that of the previous datasets.

The dataset introduced in [107] is different from the other datasets as it investigates

the behavior of hate-related users on Twitter, instead of evaluating hate-related tweets.

The large majority of the 1.5k users are labeled as spammers (31.8%) or normal (60.3%).

Only a small fraction of the users are labeled as bullies (4.5%) or aggressors (3.4%).

While most datasets are from single sources, a dataset with a combination of Twit-

ter (58.9%), Reddit, and The Guardian is introduced in [108]. In total 20,432 unique

comments were obtained with 4,136 labeled as harassment (20.2%) and 16,296 as non-

harassment (79.8%).

Since most of the publicly available hate speech datasets are collected from Twitter,

previous research on hate speech mainly focuses on Twitter posts or users [18, 97, 29, 19,

10]. While there are several studies on the other sources, such as Instagram [6], Yahoo!

[5, 1], and Ask.fm [31], the hate speech on Reddit and Gab is not widely studied. What’s

more, all the previous hate speech datasets are built for the classification or detection of
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hate speech from a single post or user on social media, ignoring the context of the post

and intervention methods needed to effectively calm down the users and diffuse negative

online conversations.

6.3 Data

6.3.1 Ethics

Our study got approval from our Internal Review Board. Workers were warned about

the offensive content before they read the data and they were informed by our instructions

to feel free to quit the task at any time if they are uncomfortable with the content.

Additionally, all personally identifiable information such as user names is masked in the

datasets.

6.3.2 Data Filtering

Reddit: To retrieve high-quality conversational data that would likely include hate

speech, we referenced the list of the whiniest most low-key toxic subreddits [110]. Skip-

ping the three subreddits that have been removed, we collect data from ten subreddits:

r/DankMemes, r/Imgoingtohellforthis, r/KotakuInAction, r/MensRights, r/MetaCanada,

r/MGTOW, r/PussyPass, r/PussyPassDenied, r/The Donald, and r/TumblrInAction.

For each of these subreddits, we retrieve the top 200 hottest submissions using Reddit’s

API. To further focus on conversations with hate speech in each submission, we use hate

keywords [103] to identify potentially hateful comments and then reconstructed the con-

versational context of each comment. This context consists of all comments preceding

and following a potentially hateful comment. Thus for each potentially hateful comment,

we rebuild the conversation where the comment appears. Figure 6.2 shows an example
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Figure 6.2: An example of the aggregated data. The first column is the conversation
text. Indexes are added to each post. Indentations before each post indicate the
structure of replies. The second column is the indexes of the human-labeled hateful
post. Each bullet point in the third column is a human-written response.

of the collected conversation, where the second comment contains a hate keyword and

is considered potentially hateful. Because a conversation may contain more than one

comments with hate keywords, we removed any duplicated conversations.

Gab: We collect data from all the Gab posts in October 2018. Similar to Reddit,

we use hate keywords [103] to identify potentially hateful posts, rebuild the conversation

context, and clean duplicate conversations.

6.3.3 Crowd-Sourcing

After we collected the conversations from both Reddit and Gab, we presented this

data to Mechanical Turk workers to label and create intervention suggestions. In order

not to over-burden the workers, we filtered out conversations consisting of more than

20 comments. Each assignment consists of 5 conversations. For Reddit, we also present

the title and content of the corresponding submission in order to give workers more

information about the topic and context. For each conversation, a worker is asked to

answer two questions:

• Q1: Which posts or comments in this conversation are hate speech?

• Q2: If there exists hate speech in the conversation, how would you respond to
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intervene? Write down a response that can probably hold it back (word limit: 140

characters).

If the worker thinks no hate speech exists in the conversation, then the answers to both

questions are “n/a”. To provide context, the definition of hate speech from Facebook

[111]: “We define hate speech as a direct attack on people based on what we call protected

characteristics — race, ethnicity, national origin, religious affiliation, sexual orientation,

caste, sex, gender, gender identity, and serious disease or disability.” is presented to the

workers. Also, to prevent workers from using hate speech in the response or writing

responses that are too general, such as “Please do not say that”, we provide additional

instructions and rejected examples.

6.3.4 Data Quality

Each conversation is assigned to three different workers. To ensure data quality, we

restrict the workers to be in an English-speaking countries including Australia, Canada,

Ireland, New Zealand, the United Kingdom, and the United States, with a HIT approval

rate higher than 95%. Excluding the rejected answers, the collected data involves 926

different workers. The final hate speech labels (answers to Q1) are aggregated according

to the majority of the workers’ answers. A comment is considered hate speech only when

at least two out of the three workers label it as hate speech. The responses (answers to

Q2) are aggregated according to the aggregated result of Q1. If the worker’s label to Q1

agrees with the aggregated result, then their answer to Q2 is included as a candidate

response to the corresponding conversation but is otherwise disregarded. See Figure 6.2

for an example of the aggregated data.
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6.4 Data Analysis

6.4.1 Statistics

From Reddit, we collected 5,020 conversations, including 22,324 comments. On av-

erage, each conversation consists of 4.45 comments and the length of each comment is

58.0 tokens. 5,257 of the comments are labeled as hate speech and 17,067 are labeled as

non-hate speech. A majority of the conversations, 3,847 (76.6%), contain hate speech.

Each conversation with hate speech has 2.66 responses on average, for a total of 10,243

intervention responses. The average length of the intervention responses is 17.96 tokens.

From Gab, we collected 11,825 conversations, consisting of 33,776 posts. On average,

each conversation consists of 2.86 posts and the average length of each post is 35.6 tokens.

14,614 of the posts are labeled as hate speech and 19,162 are labeled as non-hate speech.

Nearly all the conversations, 11,169 (94.5%), contain hate speech. 31,487 intervention

responses were originally collected for conversations with hate speech, or 2.82 responses

per conversation on average. The average length of the intervention responses is 17.27

tokens.

Compared with the Gab dataset, there are fewer conversations and comments in the

Reddit dataset, comments and conversations are longer, and the distribution of hate and

non-hate speech labels is more imbalanced. Figure 6.3 illustrates the distributions of the

top 10 keywords in the hate speech collected from Reddit and Gab separately. The Gab

dataset and the Reddit dataset have similar popular hate keywords, but the distributions

are very different. All the statistics shown above indicate that the characteristics of the

data collected from these two sources are very different, thus the challenges of doing

detection or generative intervention tasks on the dataset from these sources will also be

different.

89



Hate Speech Intervention Chapter 6

Figure 6.3: The distributions of the top 10 keywords in the hate speech collected from
Reddit and Gab. Hate keywords are masked.

6.4.2 Intervention Strategies

Removing duplicates, there are 21,747 unique intervention responses in the aggregated

Gab dataset and 7,641 in the aggregated Reddit dataset. Despite the large diversity of

the collected responses for intervention, we find workers tend to have certain strategies

for intervention.

Identify Hate Keywords: One of the most common strategies is to identify the inap-

propriate terms in the post and then urge the user to stop using that work. For example,

“The C word and language attacking gender is unacceptable. Please refrain from future

use.” This strategy is often used when the hatred in the post is mainly conveyed by

specific hate keywords.

Categorize Hate Speech: This is another common strategy used by the workers. The

workers classify hate speech into different categories, such as racist, sexist, homophobic,

etc. This strategy is often combined with identifying hate keywords or targets of hatred.

For example, “The term ””fa**ot”” comprises homophobic hate, and as such is not
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permitted here.”

Positive Tone Followed by Transitions: This is a strategy where the response con-

sists of two parts combined with a transitional word, such as “but” and “even though”.

The first part starts with affirmative terms, such as “I understand”, “You have the right

to”, and “You are free to express”, showing kindness and understanding, while the second

part is to alert the users that their post is inappropriate. For example, “I understand

your frustration, but the term you have used is offensive towards the disabled community.

Please be more aware of your words.”. Intuitively, compared with the response that di-

rectly warns, this strategy is likely more acceptable for the users and is more likely to

calm down a quarrel full of hate speech.

Suggest Proper Actions: Besides warning and discouraging the users from continuing

hate speech, workers also suggest the actions that the user should take. This strategy

can either be combined with other strategies mentioned above or be used alone. In the

latter case, a negative tone can be greatly alleviated. For example, “I think that you

should do more research on how resources are allocated in this country.”

6.5 Generative Intervention

Our datasets can be used for various hate speech tasks. In this chapter, we focus

on generative hate speech intervention. The goal of this task is to generate a response

to hate speech that can mitigate its use during a conversation. The objective can be

formulated as the following equation:

Obj = max
∑

(c,r)∈D

log p(r|c) (6.1)
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where c is the conversation, r is the corresponding intervention response, and D is the

dataset. This task is closely related to response generation and dialog generation, though

several differences exist including dialog length, language cadence, and word imbalances.

As a baseline, we chose the most common methods of these two tasks, such as Seq2Seq

and VAE, to determine the initial feasibility of automatically generating intervention

responses. More recent Reinforcement Learning methods for dialog generation [112] can

also be applied to this task with slight modification. Future work will explore more

complex, and unique models.

Similar to [112], a generative model is considered as an agent. However, different from

dialog generation, generative intervention does not have multiple turns of utterance, so

the action of the agent is to select a token in the response. The state of the agent is

given by the input posts and the previously generated tokens. Another result due to this

difference is that the rewards with regard to ease of answering or information flow do not

apply to this case, but the reward for semantic coherence does. Therefore, the reward of

the agent is:

rw(c, r) = λ1 log p(r|c) + λ2 log pback(c|r) (6.2)

where rw(c, r) is the reward with regard to the conversation c and its reference response

r in the dataset. p(r|c) denotes the probability of generating response r given the conver-

sation c, and pback(c|r) denotes the backward probability of generating the conversation

based on the response, which is parameterized by another generation network. The re-

ward is a weighted combination of these two parts, which are observed after the agent

finishes generating the response. For details, please refer to the original work [112].
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6.6 Experiments and Discussion

We evaluate the commonly-used detection and generation methods with our dataset.

Due to the different characteristics of the data collected from the two sources (Section

6.4), we treat them as two independent datasets.

6.6.1 Experimental Settings

For binary hate speech detection, we experimented with the following four dif-

ferent methods.

Logistic Regression (LR): We evaluate the Logistic Regression model with L2 regular-

ization. The penalty parameter C is set to 1. The input features are the Term Frequency

Inverse Document Frequency (TF-IDF) values of up to 2-grams.

Support Vector Machine (SVM): We evaluate the SVM model with linear kernels.

We use L2 regularization and the coefficient is 1. The features are the same as in LR.

Convolutional Neural Network (CNN): We use the CNN model for sentence clas-

sification proposed by [41] with default hyperparameters. The word embeddings are

randomly initialized (CNN in Table 6.2) or initialized with pretrained Word2Vec [113]

embeddings on Google News (CNN∗ in Table 6.2).

Recurrent Neural Network (RNN): The model we evaluated consists of a 2-layer

bidirectional Gated Recurrent Unit (GRU) [83] followed by a linear layer. Same as

for CNN, we report the performance of RNN with two different settings of the word

embeddings.

The methods are evaluated on testing data randomly selected from the dataset with a

ratio of 20%. The input data is not manipulated to manually balance the classes for any of

the above methods. Therefore, the training and testing data retain the same distribution

as the collected results (Section 6.4). The methods are evaluated using the F-1 score,
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Precision-Recall (PR) AUC, and Receiver-Operating-Characteristic (ROC) AUC.

For generative hate speech intervention, we evaluated the following three meth-

ods.

Seq2Seq [84, 83]: The encoder consists of 2 bidirectional GRU layers. The decoder

consists of 2 GRU layers followed by a 3-layer MLP (Multi-Layer Perceptron).

Variational Auto-Encoder (VAE) [54]: The structure of the VAE model is similar to

that of the Seq2Seq model, except that it has two independent linear layers followed by

the encoder to calculate the mean and variance of the distribution of the latent variable

separately. We assume the latent variable follows a multivariate Gaussian Distribution.

KL annealing [114] is applied during training.

Reinforcement Learning (RL): We also implement the Reinforcement Learning method

described in Section 6.5. The backbone of this model is the Seq2Seq model, which follows

the same Seq2Seq network structure described above. This network is used to parameter-

ize the probability of a response given the conversation. Besides this backbone Seq2Seq

model, another Seq2Seq model is used to generate the backward probability. This net-

work is trained in a similar way as the backbone Seq2Seq model, but with a response

as input and the corresponding conversation as the target. In our implementation, the

function of the first part of the reward (log p(r|c)) is conveyed by the MLE loss. A cur-

riculum learning strategy is adopted for the reward of log pback(c|r) as in [115]. Same as

in [112] and [115], a baseline strategy is employed to estimate the average reward. We

parameterize it as a 3-layer MLP.

The Seq2Seq model and VAE model are evaluated under two different settings. In

one setting, the input for the generative model is the complete conversation, while in the

other setting, the input is the filtered conversation, which only includes the posts labeled

as hate speech. The filtered conversation was necessary to test the Reinforcement Learn-

ing model, as it is too challenging for the backward model to reconstruct the complete
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conversation based only on the intervention response.

In our experiments on the generative hate speech intervention task, we do not consider

conversations without hate speech. The testing dataset is then randomly selected from

the resulting dataset with a ratio of 20%. Since each conversation can have multiple

reference responses, we dis-aggregate the responses and construct a pair (conversation,

reference response) for each of the corresponding references during training. Teacher

forcing is used for each of the three methods. The automatic evaluation metrics include

BLEU [99], ROUGE-L [100], and METEOR [101].

In order to validate and compare the quality of the generated results from each model,

we also conducted human evaluations as previous research has shown that automatic eval-

uation metrics often do not correlate with human preference [116]. We randomly sampled

450 conversations from the testing dataset. We then generated responses using each of

the above models trained with the filtered conversation setting. In each assignment, a

Mechanical Turk worker is presented with 10 conversations, along with corresponding

responses generated by the three models. For each conversation, the worker is asked to

evaluate the effectiveness of the generated intervention by selecting a response that can

best mitigate hate speech. 9 of the 10 questions are filled with the sampled testing data

and the generated results, while the other is artificially constructed to monitor response

quality. After selecting the 10 best mitigation measures, the worker is asked to select

which of the three methods has the best diversity of responses over all the 10 conver-

sations. Ties are permitted for answers. Assignments that failed the quality check are

rejected.
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Figure 6.4: Examples of the generated intervention responses. The hateful terms in
the conversation are masked.

Dataset Gab Reddit
Metric F1 PR ROC F1 PR ROC
LR 88.2 94.5 95.4 64.7 80.4 91.4
SVM 88.6 94.7 95.6 75.7 81.1 92.0
CNN 87.5 92.8 92.6 74.8 76.8 87.5
RNN 87.6 93.9 94.2 71.7 76.1 88.6
CNN∗ 89.6 95.2 95.8 76.9 80.1 90.9
RNN∗ 89.3 94.8 95.5 77.5 79.4 90.6

Table 6.2: Experimental results for the detection task. PR is Precision-Recall AUC
and ROC is ROC AUC. The models marked with ∗ use pretrained Word2Vec embed-
dings. The best results are in bold.

6.6.2 Experimental Results and Discussion

The experimental results of the detection task and the generative intervention task

are shown in Table 6.2 and Table 6.3 separately. The results of the human evaluation

are shown in Table 6.4. Figure 6.4 shows examples of the generated responses.

As shown in Table 6.2 and 6.3, all the classification and generative models perform

better on the Gab dataset than on the Reddit dataset. We think this stems from the

datasets’ characteristics. First, the Gab dataset is larger and has a more balanced cate-

gory distribution than the Reddit dataset. Therefore, it is inherently more challenging to

train a classifier on the Reddit dataset. Further, the average lengths of the Reddit posts
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Dataset Gab Reddit
Inp. set. Complete Filtered Complete Filtered

Metric B R M B R M B R M B R M

Seq2Seq 13.2 33.8 23.0 15.0 34.2 23.6 5.5 29.5 19.5 5.9 28.2 20.0

VAE 12.2 32.5 23.4 12.4 32.8 21.8 6.8 29.0 20.2 7.0 29.1 20.1

RL - - - 14.5 33.1 23.9 - - - 4.4 29.1 18.7

Table 6.3: Experimental results for generative intervention task. Inp. set.: Input
Setting (Section 6.6.1). B: BLEU. R: ROUGE-L. M: METEOR. The best results are
in bold.

Dataset Gab Reddit
Metric Eff. Div. Eff. Div.
Seq2Seq Wins 22.4 28.0 31.1 34.0
VAE Wins 20.0 6.0 26.0 4.0
RL Wins 41.6 40.0 30.0 30.0
Tie 16.0 26.0 12.9 32.0

Table 6.4: Human evaluation results. Table values are the percentage of the an-
swers. Eff.: Effectiveness, evaluates how well the generated responses can mitigate
hate speech. Div: Diversity, evaluates how many different responses are generated.
The best results are in bold.

and conversations are much larger than those of Gab, potentially making the Reddit in-

put nosier than the Gab input for both tasks. On both the Gab and Reddit datasets, the

SVM classifier and the LR classifier achieved better performance than the CNN and RNN

models with randomly initialized word embeddings. A possible reason is that without

pretrained word embeddings, the neural network models tend to overfit on the dataset.

For the generative intervention task, three models perform similarly on all three

automatic evaluation metrics. As expected, the Seq2Seq model achieves higher scores

with filtered conversation as input. However, this is not the case for the VAE model.

This indicates that the two models may have different capabilities to capture important

information in conversations.

As shown in Table 6.3, applying Reinforcement Learning does not lead to higher scores

on the three automatic metrics. However, human evaluation (Table 6.4) shows that the
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RL model creates responses that are potentially better at mitigating hate speech and

are more diverse, which is consistent with [112]. There is a larger performance difference

with the Gab dataset, while the effectiveness and the diversity of the responses generated

by the Seq2Seq model and the RL model are quite similar on the Reddit dataset. One

possible reason is that the size of the training data from Reddit (around 8k) is only 30%

the size of the training data from Gab. The inconsistency between the human evaluation

results and the automatic ones indicates the automatic evaluation metrics listed in Table

6.3 can hardly reflect the quality of the generated responses. As mentioned in Section 6.4,

annotators tend to have strategies for intervention. Therefore, generating the common

parts of the most popular strategies for all the testing inputs can lead to high scores

on these automatic evaluation metrics. For example, generating “Please do not use

derogatory language.” for all the testing Gab data can achieve 4.2 on BLEU, 20.4 on

ROUGE, and 18.2 on METEOR. However, this response is not considered high-quality

because it is almost a universal response to all hate speech, regardless of the context and

topic.

Surprisingly, the responses generated by the VAE model have much worse diversity

than the other two methods according to human evaluation. As indicated in Figure 6.4,

the responses generated by VAE tend to repeat the responses related to some popular

hate keyword. For example, “Use of the r-word is unacceptable in our discourse as it

demeans and insults people with mental disabilities.” and “Please do not use derogatory

language for intellectual disabilities.” are the generated responses for a large part of the

Gab testing data. According to Figure 6.3, insults toward disabilities are the largest

portion of the dataset, so we suspect that the performance of the VAE model is affected

by the imbalanced keyword distribution.

The sampled results in Figure 6.4 show that the Seq2Seq and the RL model can

generate reasonable responses for intervention. However, as is to be expected with
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machine-generated text, in the other human evaluation we conducted, where Mechanical

Turk workers were also presented with sampled human-written responses alongside the

machine-generated responses, the human-written responses were chosen as the most ef-

fective and diverse option a majority of the time (70% or more) for both datasets. This

indicates that there is significant room for improvement while generating automated

intervention responses.

In our experiments, we only utilized the text of the posts, but more information is

available and can be utilized, such as the user information and the title of a Reddit

submission.

6.7 Conclusion

Towards the end goal of mitigating the problem of online hate speech, we propose

the task of generative hate speech intervention and introduce two fully-labeled datasets

collected from Reddit and Gab, with crowd-sourced intervention responses. The per-

formance of the three generative models: Seq2Seq, VAE, and RL, suggests ample op-

portunity for improvement. We make our datasets freely available to facilitate further

exploration of hate speech intervention and better models for generative intervention.
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Language Model Detoxification
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Chapter 7

Language Model Detoxification in

Freeform Text Generation

In the previous chapters, we have talked about the automatic post-processing of hate

speech. In this part of the dissertation, we tackle the toxic degeneration problem of

large pretrained Language Models (LMs) by controlling the generation of LMs. Previous

work in this field has focused on directly fine-tuning the language model or utilizing an

attribute discriminator. In this chapter, we propose a novel lightweight framework for

controllable GPT2 [14] generation, which utilizes a set of small attribute-specific vectors,

called prefixes [117], to steer natural language generation. Different from [117], where

each prefix is trained independently, we take the relationship among prefixes into con-

sideration and train multiple prefixes simultaneously. We propose a novel supervised

method and also an unsupervised method to train the prefixes for detoxification. Exper-

imental results show that our methods can guide generation towards low toxicity while

keeping high linguistic quality.
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7.1 Introduction

Currently, the prevalent LMs are pretrained on large amounts of text from the web.

Large-scale pretraining enables these LMs to achieve a good estimation of the next token

probability, resulting in coherent texts. However, relying on web text for pretraining

also results in degeneration and biased behavior. Previous research [7] shows that LMs

pretrained on problematic web content can easily degenerate into toxicity, even with-

out explicitly toxic prompts. One direction to alleviate this problem is to apply post-

processing. Our work on automatic toxic speech detection (Chapter 2) can be applied to

filter out the generations with toxic speech, and the LM repeatedly does the generation

until the classifier finds a safe one. However, this strategy is inefficient and there may

exist cases where there is no safe choice within a fixed number of generations [24].

In order to circumvent this limitation, recent research has focused on controlling the

generation of these Natural Language Generation (NLG) models from the source. The

goal of controllable NLG is to guide generation towards the desired attributes in the con-

cerned aspects of the text, such as toxicity, sentiment, or topic. LM Detoxification can be

considered as an application of the control method to infuse the safe language attributes.

Previous work has focused on directly fine-tuning the existing models [118, 119, 120] or

using a discriminator to guide generation [25, 26, 121]. CTRL [118] achieves controlla-

bility at the expense of training a large conditional LM. GeDi [26] also trains conditional

LMs but uses them as discriminators to guide generation, introducing additional 345M

parameters. PPLM [25] guides generation by iteratively updating the LM’s hidden activa-

tions. However, this decoding strategy is extremely computationally intensive, resulting

in a slow generation speed [7].

Prefix-tuning [117] proposes to optimize a prefix, which is a small continuous task-

specific vector, as a lightweight alternative to fine-tuning an NLG task, such as table-
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Figure 7.1: A comparison of prefix-tuning [117] (top) and our framework (bottom)
on detoxification. The solid arrows show the training process, while the dashed ones
show the inference (generation) process. In our proposed framework, the training can
be supervised or unsupervised.

to-text generation or summarization. Inspired by prefix-tuning [117], we propose to use

prefixes, a set of small continuous attribute-specific vectors, to steer NLG. Compared with

using an attribute model or a generative discriminator [25, 26], using learned prefixes to

achieve controllability has the following benefits. First, it introduces fewer additional

parameters (∼0.2%-2% of GPT2 parameters in our experiments). Second, using prefixes

keeps the inference speed comparable to that of the original GPT2 model.

In a general sense, prefix-tuning [117] can be considered as controlling the generation

of language models. Prefix-tuning views each prefix as an independent control task thus

trains each prefix separately (top in Figure 7.1). However, in the web text, non-toxic

speech and toxic speech are very imbalanced in both diversity and quantity. The training

examples of non-toxic speech may not teach the model about what is considered toxic

and what to avoid during generation. We think that having the model learn about

what is considered toxic is also important for detoxification. Therefore, we propose a

novel supervised method and a novel unsupervised one in our framework, which takes
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the relationship among prefixes into consideration and trains two prefixes simultaneously

with novel training objectives, as illustrated in Figure 7.1.

Experimental results on detoxification show that our proposed methods can guide

generation towards low toxicity while keeping high linguistic quality, even when only

several dozen labeled examples are available.

Our main contributions are as follows:

• We propose a novel framework that utilizes prefixes with frozen LMs as a lightweight

alternative for controllable GPT2 generation.

• We propose a supervised method and an unsupervised method with novel objectives

for prefix training, where the relationship among prefixes is considered and multiple

prefixes are trained simultaneously.

• Experimental results show that our methods can effectively guide generation to-

wards low toxicity while keeping high linguistic quality.

7.2 Related Work

With the rapid development of NLG, researchers have attempted to interpolate the

controlling factors into generation. In [120], the stylistic aspects of the generated text

are controlled with a conditioned RNN (Recurrent Neural Network) LM. In [121], the

authors compose a committee of discriminators to guide an RNN generator towards the

generations with the desired linguistic quality. In [119], the authors aim at controlling

the sentiment and tense of the generated text by combining variational auto-encoders

(VAE) and attribute discriminators.

More recently, with the advent of Transformers and large pretrained language mod-

els, such as GPT2, an extensive body of work has focused on controlling the generation
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of these Transformer-based models. CTRL [118] trains a 1.63 billion-parameter condi-

tional transformer LM from scratch with 55 attribute control codes to guide generation.

However, this method is expensive and lacks flexibility since the control codes are fixed.

PPLM [25] addresses these limitations by developing a plug-and-play model which lever-

ages an attribute discriminator to perturb the LM’s hidden activations. However, updat-

ing gradients at the token level results in slow inference. Instead of updating the hidden

activations, later work [26, 122, 123] introduces generative discriminators to re-weight the

next token distributions on the fly during inference, thus improving the inference speed.

Our work is mostly related to [124, 117]. In [124], the authors use a pretrained LM

followed by an attribute alignment function to encode the tokens of the target attributes

and the resulting hidden states are used to control generation. Different from their work,

we do not take the tokens of the target attributes as input. Instead, we directly train a

set of parameters, which acts as the prepended hidden states of GPT2, to control gener-

ation. Avoiding using attribute tokens can circumvent the problems when it is difficult

to describe the desired attribute with only one word. Besides, in [124], the authors focus

on attribute disentanglement, which is not a focus in our work, so our training methods

are different. Prefix-tuning [117] can, in a general sense, be viewed as controlling the

generation of LMs, where the LM is controlled to depict a specific NLG task, while in

this work, the LM is controlled to carry a specific attribute in a generation. Besides, our

proposed methods for prefix training are different from prefix-tuning, as stated in Section

7.1.

7.3 Methods

Our method uses prefixes to guide GPT2 generation, where a prefix is a continuous

attribute-specific vector prepended to the activations of GPT2. Prefixes are free pa-
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Figure 7.2: An illustration of the GPT2 generation process unfolded through time,
controlled by a negative toxicity prefix H0 = Hθ[0, :, :]. “You are” is the given prompt.
“a nice” is the generated completion.

rameters denoted as Hθ. Different from prefix-tuning [117], where each prefix is trained

independently, we consider the relationship among attributes and train multiple prefixes

simultaneously, so Hθ is of dimension N ×M × D, where N is the number of prefixes.

In our detoxification task, N equals 2. M is the length of a prefix. D = 2×L×E is the

dimension of the activation in GPT2, where L is the number of transformer layers, E is

the hidden size, and 2 indicates one key vector and one value vector. Following prefix-

tuning, we reparametrize Hθ[i, j, :] = WiH
′
θ[i, j, :] by a smaller parameter (H ′

θ) composed

with a large matrix (Wi). After the training finishes, only Hθ needs to be saved for gen-

eration while W and H ′
θ can be discarded. Since the GPT2 parameters are kept frozen

during training, they do not need to be saved either. Figure 7.2 shows an example of the

generation process under the control of a trained prefix. The prefixes can be trained in

a supervised or unsupervised way.
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7.3.1 Supervised Method

Suppose the concerned aspect has the attribute set Y , each training example is a

pair of (x, y) where x is the input text and y ∈ Y is the attribute label of x. Note

that the attribute label also indicates the ground truth index of the prefix in Hθ, so y

also refers to the prefix index in the following description. As mentioned in Section 7.1,

we introduce an additional discriminative loss to train multiple prefixes simultaneously.

Therefore, the training loss Lsup is a weighted sum of the language model loss LLM and

the discriminative loss Ld:

Lsup = ω1LLM + ω2Ld (7.1)

LLM = −
T∑
t=1

log p(xt|x<t, y) (7.2)

Ld = − log
p(y)p(x|y)∑

y′∈Y p(y′)p(x|y′)
(7.3)

The computation of log p(xt|x<t, y) is parameterized as log pθ,γ(xt|x<t, Hθ[y, :, :]), where

γ is the set of fixed GPT2 parameters, and θ represents learnable prefix parameters.

log p(x|y) =
∑

t log p(xt|x<t, y), so the parameterization of log p(x|y) is the sum of

log pθ,γ(xt|x<t, Hθ[y, :, :]) over t.

Note that each prefix can be trained independently using LLM alone, which would

be the same as prefix-tuning [117]. Intuitively, prefixes trained by LLM are infused

with the information of what is encouraged to generate. However, we observe that in

controllable NLG, especially in detoxification, it is helpful to also infuse a prefix with

the information of what is discouraged to generate. Given a training example (x, y), the

prefix Hθ[y, :, :] should be optimized towards generating x, while the other prefixes should

be discouraged to generate x. To achieve this goal, all the prefixes in Hθ should be trained

simultaneously. Therefore, the discriminative loss Ld is introduced. As in Equation 7.3,
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Figure 7.3: An illustration of the supervised training method. H0 is the prefix of
negative toxicity. H1 is the prefix of positive toxicity. Note that training without Ld

is equivalent to prefix-tuning [117], where H0 and H1 are trained separately. pi and
p′i are the next token probabilities. pi = p(xi|x<i, H1) and p′i = p(xi|x<i, H0). The
GPT2 is pretrained, and its parameters are frozen.

Figure 7.4: An illustration of the unsupervised training method. Hθ denotes the 2
prefixes. z is the latent variable indicating the index of the prefix corresponding to
the input text x. z̄ is the latent variable indicating the index of the opposite prefix.
⊗ is matrix multiplication. LKL is not shown in this figure for clarity.

optimizing Ld improves the attribute alignment p(y|x) by increasing p(x|y) and lowering

p(x|ȳ), ȳ ∈ Y \{y} at the same time. We assume uniform prior, so p(y) and p(y′) can

be canceled out in Equation 7.3. Figure 7.3 illustrates the training process with two

prefixes.
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7.3.2 Unsupervised Method

In the unsupervised setting, we assume the attribute set Y of the concerned aspect

is known. The training example consists of input text x only. The attribute label y

is no longer available and thus the index of the prefix associated with x is unknown.

In other words, the index of the prefix corresponding to x is a latent variable z, whose

posterior distribution follows a categorical distribution. Inspired by VQ-VAE [125], we

consider the prefixes as discrete latent representations. We take the backbone model in

the above supervised method as the decoder and introduce an encoder to parameterize

the categorical distribution q(z|x). According to q(z|x), a prefix index z is selected and

the prefix Hθ[z, :, :] is then fed into the decoder to reconstruct the input text x. Since

the selection process of the prefixes is non-differentiable, we use Gumbel-Softmax (GS)

relaxation [126, 127] following previous work [128, 129]. Formally, q(z|x) is computed as

follows:

q(z|x) = GS(−∥Enc(x) −Hθ∥2, τ) (7.4)

where τ is the temperature of Gumbel-Softmax, and Enc is the encoder function. We

use a pretrained GPT-2 model followed by a linear layer as the encoder. To train the

prefixes, the loss function is a weighted sum of the three loss terms:

Luns = ω1LLM + ω2LKL + ω3Lc (7.5)

LLM = −
T∑
t=1

log p(xt|x<t, z) (7.6)

LKL = KL[q(z|x)||p(z)] (7.7)

where LLM is the language model loss. Similar as that in the supervised method, the

computation of log p(xt|x<t, z) is parameterized as log pθ,γ(xt|x<t, Hθ[z, :, :]). LKL is the
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Kullback-Leibler divergence, where we assume the prior p(z) to be uniform. Note that

these two terms constitute the loss function of VAE. Optimizing these two loss terms

improves the evidence lower bound of log p(x). Similar to the intuition behind Ld in the

supervised method, if the ground truth prefix for x is Hθ[y, :, :], then the other prefixes

should be discouraged to generate x. However, Ld requires the ground truth label y for

computation. Instead, we introduce an unsupervised contrastive loss Lc.

Lc = max(m− ∥p(z|x) − p(z̄|x)∥2, 0)2 (7.8)

where m is a pre-set margin and z̄ is another latent variable indicating the index of the

opposite prefix of x. q(z̄|x) is computed as follows:

q(z̄|x) = GS(∥Enc(x) −Hθ∥2, τ) (7.9)

Lc is aimed at increasing the attribute alignment by pushing p(z|x) away from p(z̄|x) by

a margin. The computation of p(z|x) is as follows:

p(z|x) =
p(z)p(x|z)∑

z′∈Y p(z′)p(x|z′)
(7.10)

We assume uniform prior, so p(z) and p(z′) can be canceled out. Similar as the param-

eterization of log p(x|y) in the supervised method, the parameterization of log p(x|z) is

the sum of log pθ,γ(xt|x<t, Hθ[z, :, :]) over t. The training process is illustrated in Figure

7.4.
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7.4 Experiments and Discussion

7.4.1 Experimental Settings

We focus on English text in the experiments. We use Jigsaw Toxic Comment Clas-

sification Challenge Dataset [130] to train our model. Google Perspective API1 is used

for toxicity evaluation. The testing prompts are collected from RealToxicityPrompts [7].

We use the prompts categorized as “challenging” in the dataset. We further filter out

the prompts with toxicity larger than 0.5, scored by Perspective. The resulted evaluation

dataset consists of 203 prompts. For each of these prompts, 20 completions are generated.

The maximum generation length is set to 20.

We compare our method to GPT2, PPLM, and GeDi on the detoxification task.

We experiment with GPT2-medium (345M parameters) for all the methods. For the

GPT2 model, we do experiments under two settings. First, the GPT2 model generates

completions of each prompt in the evaluation dataset, which is denoted as GPT2-medium.

Second, GPT2-medium + prompt engineering prepends a guiding sentence to each testing

prompt and then generates completions of each augmented prompt. We prepend each

prompt with the guiding sentence “This is a non-toxic comment:”.

We use the original implementation of PPLM and GeDi released by PPLM [25] and

GeDi [26], and the hyperparameters are set to the reported value in the original paper.

For PPLM, γ = 1.0, m = 10, α = 0.02, λkl = 0.01, and γgm = 0.9. For GeDi, ω = 30 and

ρ = 0.8. In all the experiments with our methods, the random seed is fixed to 42, and

the optimizer is AdamW with a learning rate of 2e-5. The prefix length M = 10. N = 2

and D = 24× 2× 1024, where 24 is the number of hidden layers in GPT2-medium, 1024

is the size of hidden states in GPT2-medium, and 2 represents one key and one value.

In the Ours (supervised) setting, the training batch size is 8. ω1 = 0.8, ω2 = 0.2. The

1https://www.perspectiveapi.com
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number of training epochs is 5. In the Ours (unsupervised) setting, the training batch

size is 8. ω1 = 0.8, ω3 = 2.0. The weight of the KL loss term ω2 anneals from 0.001

to 0.1 during training while the temperature τ reduces from 1.0 to 0.5. The number of

training epochs is 4. The mask rate is 0.5.

We evaluate the linguistic quality and attribute alignment of the generation. The

linguistic quality is evaluated using the perplexity calculated by GPT2-large (774M pa-

rameters). To evaluate the robustness of our supervised method with the size of the

training dataset, we experiment with the following three different settings: 1) using the

complete training dataset; 2) using 1,000 examples per attribute for training; 3) using 24

examples per attribute for training. Note that different from the supervised method, our

unsupervised method does not use any attribute labels, so the order of the attributes in

the trained prefixes is undetermined. After the prefixes finish training using the unsu-

pervised method, we manually check the order of the attributes.

All the experiments are conducted on NVIDIA Tesla V100 GPUs. Our methods are

implemented using the Hugging face Transformers package.

7.4.2 Experimental Results

In the unsupervised setting, GPT2-medium + prompt engineering does not work on

the detoxification task (Table 7.1). Although it has a marginal impact on linguistic

quality, it fails to lower the toxicity score. Our unsupervised method significantly lowers

the toxicity and the ablation study shows that the contrastive loss Lc is crucial. Although

our unsupervised method increases the perplexity of the original GPT2, it still achieves

lower perplexity than PPLM and GeDi.

In the supervised setting with full data, our supervised method consistently achieves

better controllability than PPLM while maintaining the linguistic quality of the gen-
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Methods PPL.↓ Tox.%↓

Unsupervised training
GPT2-medium 37.18 57.4

+ prompt engineering 39.00 62.3
Ours 100.18 17.6
−Lc 76.66 60.1

Supervised training (few-shot learning)
Ours (24 samples) 95.34 18.8
Ours (1k samples) 69.16 31.1

Supervised training (using full data)
PPLM 148.5 30.0
GeDi 166.01 20.5
Ours 85.34 21.7
−Ld (prefix-tuning) 78.67 51.7

Table 7.1: Results on detoxification. “PPL.”: perplexity scores (the lower the better).
“Tox.”: toxicity (the lower the better). “−Lc / −Ld”: ablating loss terms as in Eq.
7.8 and Eq. 7.3. Ours− Ld is equivalent to prefix-tuning [117].

erations (Table 7.1). Although GeDi achieves a low toxicity, it severely sacrifices the

linguistic quality, as indicated by the high perplexity. For example, given the prompt

In fact, Bynum allegedly responded to Eley on Facebook: ”, GeDi generates the com-

pletion A. Someone should tell me who my NBA team . Nice kid (10 pounds · · · .

Although there is no offensive language in the generation, it loses the advantage of us-

ing a large pretrained LM. One possible reason for GeDi’s inferior linguistic quality is

the data distribution shift. Same as in our experiments, GeDi is trained on the Jigsaw

Toxic Comment Classification Challenge Dataset [130], which is collected from Wikipedia

comments. However, the testing data RealToxicityPrompts [7] is collected from a large

corpus of English web text scraped from outbound URLs from Reddit.

In the few-shot setting, where the number of labeled training examples is reduced

to 1000 or 24 examples per attribute, our supervised method can still maintain good

controllability on the detoxification task, showing the robustness of our method to the
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Methods Time Cost (second)↓

GPT2-medium 0.507
PPLM 11.212
GeDi 0.960
Ours 0.643

Table 7.2: The average time for generating a completion.

size of the training data.

The ablation study shows the importance of the discriminative loss Ld in our su-

pervised method. As mentioned in Section 7.3, training without Ld is equivalent to

prefix-tuning. Comparing the results of Ours − Ld and GPT2-medium shows that di-

rectly using prefix-tuning is less effective on detoxification. The reason is that different

from topic control or sentiment control, detoxification requires the model to avoid gen-

erating some words or phrases according to the context, which can not be achieved by

prefix-tuning. Ld fills this gap by increasing p(x|y) and lowering p(x|ȳ) at the same time.

Optimizing Ld can effectively push the prefixes to capture the unique features of toxic

speech. Therefore, incorporating Ld is of critical importance to the detoxification task.

As mentioned in Section 7.1, one advantage of using prefixes to achieve controllability

is that there is less impact on the generation speech. We compare the average inference

speed of our methods with the baselines (Table 7.2). The inference speed of PPLM is

several dozen times slower than that of the original GPT2 model. GeDi’s inference speed

is much faster than that of PPLM. The inference speed of our method is the closest to

that of the original GPT2.

7.5 Conclusion

We propose a novel framework for controllable GPT2 generation with frozen LMs,

which utilizes contrastive prefixes to guide generation. Experimental results show that
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our framework achieves promising results on detoxification. In addition to the detoxifi-

cation task we talked about in this chapter, our proposed framework can also be freely

applied to other desired attributes, such as sentiment and topic. Besides, The pro-

posed supervised and unsupervised methods can also be combined into a semi-supervised

method for prefix training.
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Chapter 8

Language Model Detoxification in

Dialogue Response Generation

To reduce the toxic degeneration in a pretrained Language Model (LM), we have talked

about reducing the toxicity of the generation itself (self-toxicity) without consideration

of the context in the previous chapter. However, a type of implicit offensive language

where the generations support the offensive language in the context is ignored. Different

from the LM controlling tasks in previous work [25, 26], where the desired attributes are

fixed for generation, the desired stance of the generation depends on the offensiveness of

the context. In this chapter, we propose a novel control method to do context-dependent

detoxification with the stance taken into consideration. We introduce meta prefixes to

learn the contextualized stance control strategy and to generate the stance control prefix

according to the input context. The generated stance prefix is then combined with the

toxicity control prefix to guide the response generation. Experimental results show that

our proposed method can effectively learn the context-dependent stance control strategies

while keeping a low self-toxicity of the underlying LM.
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Figure 8.1: An illustration of two types of offensive responses. The response is offensive
by itself (top) or supports an offensive historical utterance (bottom). Offensive words
are masked.

8.1 Introduction

Large pretrained Language Models, such as GPT2 [14], can produce coherent, almost

human-like texts, but they are prone to generating offensive language, which hinders their

safe deployment [7]. An extensive body of work has focused on detoxifying pretrained

LMs [25, 26]. However, it can be more complicated when the LMs are applied to down-

stream Natural Language Generation (NLG) tasks, such as dialogue response generation.

When applied in dialogue, the uncontrolled models tend to generate toxic content and

in addition to explicitly offensive utterances, research [131] suggests that these models

can also implicitly insult a group or individual by aligning themselves with an offensive

statement, as shown in Figure 8.1. Therefore, to detoxify a pretrained LM applied in

dialogue, the stance of the generated response needs to be taken into consideration. In

a normal dialogue, we do not need to control the stance, but if the user inputs offensive

language, the model should not respond with a positive stance. In other words, the
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eligible stance is context-dependent and we need to consider the dialogue context.

One straightforward solution is to design a control flow with a binary offensive lan-

guage classifier, where the dialogue context is taken as input for the classifier. If the

context contains offensive language, an NLG model with both toxicity control and stance

control is used for response generation. We would like the self-toxicity to be low and

the stance not to be supportive. On the other hand, if the context does not contain

offensive language, the stance does not need to be controlled, so another NLG model

with only toxicity control is used for response generation. However, this Classify-then-

Generate framework has several limitations. First, it requires training a classifier and

controlled NLG models separately, introducing additional model parameters. Second, its

performance relies heavily on the classifier, so the performance of this classifier can be a

bottleneck.

To address these limitations, we propose a novel method to do context-dependent

control, where the offensive language classification is learned implicitly together with the

stance control, instead of being learned explicitly by a classifier. Following prefix-tuning

[117] and the method we propose in the previous chapter, we use prefix, a small contin-

uous vector prepended to the LM, to achieve controllability, and we further introduce

hierarchical prefixes for contextualized control. More specifically, meta prefixes are intro-

duced to control the underlying LM to generate the desired stance prefix according to the

dialogue context, which is then combined with the toxicity prefix to guide the response

generation. Therefore, the model can be trained end to end, without the bottleneck of a

classifier. Besides the Language Modeling loss, we introduce two novel training loss terms

to push the model to learn about the context-dependent control strategy. Experimental

results show that our method effectively controls the stance according to the offensiveness

of the user utterance while keeping the self-toxicity at a low level. Compared with the

baselines, our control method has significantly less effect on the stance of the genera-
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tions when the input user utterance is not offensive and when the input user utterance

is offensive, our method achieves a lower support stance score.

To conclude, our main contributions are:

• We propose a novel control framework that combines context-dependent and context-

independent control utilizing hierarchical prefixes.

• We introduce novel contrastive training objectives to guide the meta prefixes to

learn the control strategy implicitly.

• Experiments show that our proposed method can effectively learn the contextual-

ized stance control while keeping a low self-toxicity of the NLG model.

8.2 Related Work

To reduce the offensive content generated by the LMs, previous research on offensive

language detection can be utilized to filter out undesired generations.

8.2.1 Offensive Language Detection

Neural text classifiers, especially Transformer-based classifiers, achieve state-of-the-

art performance in offensive language detection. In the SemEval-2020 offensive language

identification task [132], the top-10 teams used large pretrained models, such as BERT

[15], RoBERTa [133], XLM-RoBERTa [134], or an ensemble of them. For example,

Galileo [135] uses the pretrained multilingual model XLM-R [134] and fine-tunes it with

labeled offensive language data. Similarly, in the SemEval-2021 Toxic Spans Detection

task, the top-ranked team [136] used an ensemble of a BERT-based token labeling ap-

proach and a BERT-based span extraction approach, while the team of the second-best

performing system [137] used an ensemble of two approaches utilizing a domain-adaptive
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pretrained RoBERTa on a toxic comment classification task [138]. Despite achieving

SOTA performance, researchers [139] find that neural classifiers finetuned for hate speech

detection tend to be biased towards group identifiers, so they propose a novel regular-

ization technique based on the post-hoc explanations extracted from fine-tuned BERT

classifiers to encourage models to better learn the hate speech context.

8.2.2 Controllable Text Generation

Generations classified as offensive can be simply discarded. However, this post-

filtering strategy using classifiers is inefficient, and there may exist cases where no safe

choices exist within a fixed number of generations [24]. In order to circumvent this limita-

tion, recent research has focused on controlling the generation of the Transformer-based

models from the source. CTRL [118] proposes a novel pretrained model, which achieves

controllability at the expense of training a large conditional LM with 1.6 billion param-

eters from scratch, which is costly. Therefore, later research proposes control methods

that do not require updating the parameters of LMs.

PPLM [25] freezes the parameters of the GPT2 but stack an additional attribute

model on top of it. It guides generation by iteratively updating the LM’s hidden rep-

resentations using the gradients back-propagated from the attribute model. Instead of

using updated hidden representations to guide generation, GeDi [26] uses two conditional

LMs to directly re-weight the next token probability given by the LM during generation.

Prefix-tuning [117] also keeps LM parameters frozen, but optimizes a small continuous

task-specific vector (called a prefix), to achieve competitive results with fine-tuning on

downstream NLG tasks. In the previous chapter, we further improve the prefix-tuning

method with contrastive training objectives to achieve better performances.

All the aforementioned work assumes that the desired attributes are pre-selected
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before generation. However, in our dialogue detoxification task, the desired stance at-

tribute depends on a hidden attribute of the input context, which leads to an additional

challenge.

8.3 Data and Measures

We use the ToxiChat dataset [131] for experiments. Intended for analyzing the stance

of neural dialogue generation in offensive contexts, ToxiChat is a crowd-annotated English

dataset of 2,000 Reddit threads and model responses labeled with offensive language and

stance. Each training example in the dataset consists of a list of Reddit user utterances,

two machine-generated responses (one from DialoGPT [140] and the other one from

GPT3 [16]), along with the stance and offensive annotations of each utterance and each

machine-generated response. We use the same train, dev, test split as in [131]. In each

training example, the last utterance in the utterance list is taken as input text for all

the experimented methods and we use the machine-generated responses in the dataset

for training.

We evaluate the methods from three aspects: stance alignment, self-toxicity, and

linguistic quality. The linguistic quality is evaluated using the perplexity calculated by

GPT2-XL (1.5B parameters). Self-toxicity refers to the offensiveness of the response itself

without consideration of the input user utterance. Google Perspective API is used for

self-toxicity evaluation. For stance evaluation, we use the GATE Cloud1 English stance

classifier service [141], where the possible stances are support, deny, query, and comment.

By controlling the response generation, we hope that the toxicity of the generations to

be low while the linguistic quality is not sacrificed much no matter if the user utterance

is offensive or not. However, the control methods should have different effects depending

1https://cloud.gate.ac.uk
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on the offensiveness of the user input.

When the input user utterance is not offensive (tc = 0), the control methods should

not affect the stance of the generations. In other words, we would like the response stance

of the controlled model to be close to that of the uncontrolled model. Therefore, we

quantify the Stance Shift of a generated response r′ as follows when the user utterance

is not offensive:

Sft(r′) =
∑
ys∈Ys

|fθ(r′) − fθ(r
′
unctl)| (8.1)

where Ys is the set of stance classes and fθ is the stance evaluation function. r′unctl is

the response generated by the uncontrolled model. We report both the 4-way stance

shift and the 3-way stance shift. In the 4-way stance shift, Ys consists of the 4 stance

categories of the stance classification API as mentioned above. In the 3-way stance shift,

we do not differentiate between the stances comment and query since both of them can

be considered as neutral stances.

On the other hand, when the input user utterance is offensive (tc = 1), the con-

trol methods are expected to lower the supportive stance rate while increasing the non-

supportive stance rate. Therefore, we compare the support stance scores achieved by

each method.

8.4 Methods

Given a user utterance c, our goal is to guide the generation model to deliver a

contextually safe response, which includes a context-independent attribute: self-toxicity,

and a context-dependent attribute: stance. Each example in the training dataset X is a

tuple of (c, r, tc, tr, sr), where c is the user utterance text, r is the response to the user

utterance, tc and tr are the offensiveness annotations of c and r respectively, and sr is

122



Language Model Detoxification in Dialogue Response Generation Chapter 8

the stance annotation of the response r. Following prefix-tuning [117] and the method

we introduced in Section 7.3, we use prefix, a small continuous vector prepended to the

LM’s hidden representations, to control the generation. Note that during the training

or the application of the prefixes, the parameters of the underlying LM are kept frozen,

so only the prefixes need to be optimized and stored. Since the self-toxicity control

is context-independent and offensiveness annotations are available for training, we first

train the toxicity control prefixes, denoted as Hβ, following Section 7.3.1. Hβ consists of

two prefixes: h0
β = Hβ[0, :, :] and h1

β = Hβ[1, :, :]. h0
β corresponds to non-offensive text

and h1
β is the opposite. Both h0

β and h1
β are vectors of dimensions M × D, where M is

the length of a prefix and D is the size of the hidden dimension.

However, the controlled generation model should avoid not only generating a response

that is offensive by itself, but should also avoid generating a response that supports an

offensive user utterance. More specifically, there are four cases of training examples in

contextualized stance control:

• Case 1 tc = 0, sr = 0: The user utterance is not offensive. The response r does

not support the user utterance. It satisfies our stance requirement.

• Case 2 tc = 0, sr = 1: The user utterance is not offensive. The response supports

the user utterance. It satisfies our stance requirement.

• Case 3 tc = 1, sr = 0: The user utterance is offensive, but the response does not

support it. Our stance requirement is still satisfied.

• Case 4 tc = 1, sr = 1: The user utterance is offensive, and the stance of the

response is supportive. Our stance requirement is violated.

Note that the offensiveness annotations of the user utterances are not available during

evaluation, so the model needs to learn it along with the controllability. One way to learn
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Figure 8.2: An illustration of the training method and two loss terms: LLM and the
stance contrastive loss Ls. mr denotes the meta prefix index of the training example,
as defined in Section 8.4. ¬mr is the opposite of mr. hmr

α = Hα[mr, :, :] is a meta
prefix. htrβ = Hβ[tr, :, :] is a toxicity control prefix. ⊕ means element-wise addition.
The underlying Language Model is pretrained and its parameters are frozen during
training.

offensive language detection is to train a binary classifier in an explicit way. However,

the errors from the detector will propagate to the generated responses (Section 8.5.2).

Instead of learning offensive language detection explicitly, we propose to learn it in an

implicit way along with stance control.

We introduce another set of prefixes, meta prefixes Hα, to achieve contextualized

controllability. Meta prefixes are trained to generate the stance control prefix according

to the user utterance, which is then combined with the toxicity control prefix mentioned

above to guide the generation, as shown in the upper part of Figure 8.2. Same as Hβ,

Hα is of dimension 2 ×M ×D. h0
α = Hα[0, :, :] indicates that the stance of the response

meets our requirement (Case 1, 2, 3 above), while h1
α = Hα[1, :, :] means that the stance

of the response violates our requirement (Case 4). More formally, given the annotations

tc and sr, we define a binary variable meta prefix index mr as follows: mr = 1 if and

only if tc = 1 and sr = 1. In all other cases, mr = 0.

Given a training example, we first infuse the corresponding prefixes with the stance

and offensiveness attributes by encouraging them to reconstruct the response r. As

illustrated in Figure 8.2, according to mr, we select the corresponding meta-prefix hmr
α
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Figure 8.3: An illustration of the context contrastive loss Lc. h0α = Hα[0, :, :]. Refer
to Section 8.4 for detailed explanations.

and prepend it to the user utterance c as input for the LM. The output of the LM is a

generated prefix of dimension M ×D. Then the generated prefix is combined with the

toxicity prefix htr
α by element-wise addition. The resultant prefix is appended to the user

utterance c to guide the LM to generate the response r. Therefore, the first part of the

training loss is the Language Modeling loss LLM .

LLM = −
T∑
t=1

log p(rt|r<t, c, tr,mr) (8.2)

The computation of log p(rt|r<t, c, tr,mr) is parameterized as log pα,β,γ(rt|r<t, c, h
mr
α , htr

β ),

where γ is the set of fixed LM parameters, and α, β represent learnable prefix parameters.

Although LLM infuses the corresponding prefixes with the stance and offensiveness

attributes, the offensiveness annotation of the user utterance tc is ignored in LLM and

thus the meta prefixes are not pushed to learn the offensiveness and rely on it to control

the stance. To address this problem, we introduce two additional contrastive loss terms

utilizing the annotation tc.

In order to push the meta prefixes to learn about the stance requirement when the

user utterance is offensive, we add a stance contrastive loss Ls to differentiate between

Case 3 and Case 4 stated above. As shown in Figure 8.2, each offensive user utterance in
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the training dataset is combined with the two meta prefixes separately, and the distance

between two generated prefixes is used to calculate the stance contrastive loss Ls.

Ls = 1tc=1 max(m− ds, 0)2 (8.3)

where m is a pre-set margin, and 1 is the indicator function. 1tr=1 = 1 if tr = 1 and

1tr=1 = 0 if tr = 0. Ls is only calculated when the input example consists of an offensive

user utterance (tc = 1). ds is the distance between the generated prefixes as in the

equation below.

ds = ∥fα,γ(hmr
α , c) − fα,γ(h¬mr

α , c)∥2 (8.4)

where fα,γ is the function corresponding to the underlying LM controlled by the meta

prefixes and fα,γ(hmr
α , c) is the generated prefix given the meta prefix hmr

α and the user

utterance c. ¬mr = 1 − mr is the opposite of mr. Optimizing Ls pushes the prefix

generated given hmr
α , c and that generated give h¬mr

α , c to be away from each other by a

margin m. In other words, it encourages the meta prefixes to learn that when the user

utterance is offensive, the two meta prefixes should generate opposite stance prefixes.

By combining LLM and Ls, the meta prefixes are pushed to learn that when the user

utterance is offensive, h0
α is supposed to generate a non-supportive stance prefix, while

h1
α is supposed to generate a supportive stance prefix.

Since the stance requirement is different when the user utterance is offensive and in-

offensive, the meta prefixes also need to learn about the context dependency and about

what stance to achieve when the user utterance is not offensive. We achieve this by intro-

ducing another context contrastive loss Lc to differentiate between the aforementioned

Case 3 and the union of Case 1, 2. As illustrated in Figure 8.3, the meta prefix h0
α is

combined with offensive user utterances and non-offensive user utterances respectively,
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and the distance between the generated prefixes in these two cases is used to calculate

the context contrastive loss.

Lc = max(m− dc, 0)2 (8.5)

dc = ∥e0 − e1∥2 (8.6)

e0 =

∑
X 1tc=0fα,γ(h0

α, c)∑
X 1tc=0

(8.7)

e1 =

∑
X 1tc=1fα,γ(h0

α, c)∑
X 1tc=1

(8.8)

e0 is the average of the generated prefix given the meta prefix h0
α and a non-offensive user

utterance while e1 is the average of the generated prefix given the meta prefix h0
α and an

offensive user utterance. Since h0
α corresponds to the acceptable stances, Lc teaches the

model that using h0
α to guide generation, the generated stance prefix should be different

when the user utterance is offensive (tc = 1) and when it is not offensive (tc = 0), so

this loss term pushes the meta prefixes to consider the user utterance and to differentiate

between offensive user utterance and inoffensive user utterance implicitly.

The final training loss L is a weighted sum of the three loss terms described above.

L = ω1LLM + ω2Ls + ω3Lc (8.9)

After training, the meta prefix h1
α and the toxicity prefix h1

β do not need to be saved.

Only h0
α and h0

β are used to guide generation during evaluation.
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8.5 Experiments and Discussion

8.5.1 Experimental Settings

We use a large pretrained response generation model, DialoGPT [140], as the back-

bone model in our experiments. We use DialoGPT instead of GPT2 because DialoGPT

is pretrained on Reddit data for conversational response generation and it excludes the

pretraining data which are from toxic subreddits or contain offensive language, identified

by phrase matching against a large blocklist. As a result, the self-toxicity of DialoGPT

tends to be relatively low [131]. In our experiments, we use DialoGPT-medium model

(345M parameters) implementation by Huggingface [142].

Besides the uncontrolled DialoGPT model, we experimented with the following meth-

ods:

Prefix-Tuning [117]: We train a prefix to guide the generation towards low toxicity and

appropriate stances. Therefore, we filter out the training examples where the responses

are annotated as offensive or the response stance violates our requirements (Case 4 in

Section 8.4). The remaining training examples are considered as safe ones and are used

to train the prefix. During training or generation, the prefix is prepended to the hidden

states of the input user utterance.

Contrastive Prefixes: Following the supervised method we proposed in Section 7.3.1,

we train two prefixes simultaneously. One prefix guides the model to generate safe re-

sponses, while the other one guides the model to unsafe responses. Same as in Prefix-

Tuning, the unsafe responses are either offensive themselves or support an offensive user

utterance, while the other responses are considered safe. Thus the training dataset is

separated into two categories, corresponding to the two prefixes. We set the weight of

the Language Modeling loss to be 0.8, and the weight of the discriminative loss to be

0.2. The position of the prefix is the same as above and the prefix corresponding to safe
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responses is used for evaluation.

Cls-Gen Flow: This is the Classify-then-Generate two-step control flow mentioned in

Section 8.1. A RoBERTa [133] classifier is finetuned for offensive language detection. We

also train the toxicity control prefixes and stance control prefixes separately following

the supervised method proposed in Section 7.3.1. The weight of the Language Modeling

loss is 0.8 and the weight of the discriminative loss is 0.2. During the evaluation, if the

classifier predicts the user utterance as offensive, the toxicity control prefix and the non-

supportive stance prefix are concatenated and prepended to the input user utterance for

generation. If the classifier predicts it as non-offensive, only the toxicity control prefix is

prepended to the input user utterance for generation.

Ours: We reuse the toxicity prefixes trained in the Cls-Gen Flow method to initialize

Hβ in our method. During evaluation, the meta prefix h0
α, which corresponds to the

contextual safe stance, and the toxicity control prefix h0
β, which corresponds to low

toxicity, are used to guide generation. We set ω1 = 0.5, ω2 = 0.3, ω3 = 0.4, and m = 0.8.

For each testing example, 10 completions are generated and evaluated. All the exper-

iments are conducted on NVIDIA RTX A6000 GPUs. Each method is trained for 30,000

steps with a batch size of 16. The random seed is fixed to 42. The optimizer is AdamW

with a learning rate of 2e-5 except in Ours. In our method, we set the learning rate of

the meta-prefixes to be 2e-5 while the learning rate of the toxicity prefixes is set to be

1e-5 since it is already trained for detoxification. For the generation, we use sampling

with top-k filtering and top-p filtering (k=50, p=0.9), and the temperature is kept as

default (1.0). In all the prefix-based methods, we set the length of each prefix M = 10,

and D = 2 × 24 × 1024. We use the reparameterization trick following Prefix-Tuning

[117] and set the prefix hidden size to be 800. The number of additional parameters

introduced in our methods is around 960k (∼0.3% of DialoGPT parameters).

In the original ToxiChat dataset [131], the annotation of offensiveness is binary and
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the stance is annotated as agree, disagree, or neutral. Since our method assumes a

binary stance, the data with a neutral stance can either be discarded or mixed with

the data with disagree stance. In our preliminary experiments, we find that mixing

the two stances makes the prefix-based models confused about the stances while simply

discarding the neutral stance data results in better results. Therefore, we discard the

training examples with a neutral stance when training prefixes in all the baselines and our

methods. When training the offensive language classifier in the Cls-Gen Flow method,

we did not discard the neutral stance data because we find keeping them results in

better classification performance. In both cases, the training datasets are manually

balanced with oversampling. The final training dataset consists of 1,000 examples for

prefix training and 4,794 examples for stance classification training. The development

and testing datasets consist of 300 examples each.

8.5.2 Experimental Results

We compare our method to the aforementioned baselines. The experimental results

are shown in Table 8.1. The results show that simply separating the training dataset into

two categories and using Prefix-Tuning or Contrastive Prefixes for training can not result

in the desired controllability. This shows the complexity and difficulty of our control task,

where the stance control is context-dependent. Neither Prefix-Tuning nor Contrastive

Prefixes can automatically figure out the context-dependent stance requirements from

the binary training dataset. Instead, a better utilization of the stance and offensiveness

annotations is needed to push the model to learn about the context and the stance control

requirements.

Cls-Gen Flow utilizes the offensiveness annotations to train an offensive language

classier and also a toxicity control prefix, while the stance annotations are used to train
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4-way
Sta.
Sft.↓

3-way
Sta.
Sft.↓

Support
Stance ↓

Self-
Tox.↓

PPL.↓

Methods (tc = 0) (tc = 0) (tc = 1)

DialoGPT - - 0.253 0.156 110.43

Prefix-Tuning 0.255 0.255 0.323 0.158 161.73
Contrastive Prefixes 0.252 0.252 0.324 0.157 183.91
Cls-Gen Flow 0.286 0.286 0.315 0.173 159.39

Ours 0.089 0.019 0.225 0.157 156.85
− stance contra. loss Ls 0.132 0.042 0.219 0.149 156.33
− context contra. loss Lc 0.135 0.113 0.225 0.171 454.61
− both LsLc (Eq. 8.3, 8.5) 0.184 0.138 0.200 0.170 430.91

Table 8.1: Experimental Results. Sta. Sft.: Stance Shift (Section 8.3). Self-Tox.:
Self-toxicity. PPL.: Perplexity. tc = 0: non-offensive user utterance. tc = 1: offensive
user utterance. contra.: contrastive. ↓: lower is better. ↑: higher is better. The best
results are in bold.

the stance control prefix. However, it does not effectively guide the response generation

towards our desired attributes. The reason is twofold. On one hand, the offensive lan-

guage classifier does not make perfect predictions. It achieves an accuracy of 78.7% and

F1 of 70.9% on the testing dataset. Therefore, the offensive language classifier introduces

mistakes from the beginning, which are then propagated to the generated responses. On

the other hand, the trained toxicity control prefix has an implicit bias on stance, al-

though we have manually balanced the training dataset. It achieves a support stance

score of 0.403 and a deny stance score of 0.239 on the testing dataset. This results in a

larger stance shift when the toxicity control prefix is used to guide generation given non-

offensive user input, and when it is concatenated with a non-supportive stance prefix to

guide generation, the support stance score is not lowered significantly as shown in Table

8.1.

Instead of relying on an offensive language classifier to explicitly enforce the context-

dependent control, our method implicitly pushes the model to learn about the rule by
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Non-offensive History Offensive History

Stance Self- Stance Self-
Methods Sup. Deny Com. Que. Tox.↓ Sup.↓ Deny↑ Com. Que. Tox.↓

DialoGPT 0.262 0.226 0.350 0.162 0.139 0.253 0.261 0.351 0.135 0.188

Prefix-Tuning 0.369 0.247 0.261 0.124 0.129 0.323 0.314 0.245 0.118 0.208

Contra. Pfx. 0.355 0.259 0.258 0.128 0.123 0.324 0.313 0.233 0.130 0.215

Cls-Gen Flow 0.403 0.228 0.261 0.108 0.131 0.315 0.317 0.237 0.131 0.245

Ours 0.262 0.235 0.305 0.197 0.132 0.225 0.292 0.281 0.202 0.199

−Ls 0.241 0.230 0.305 0.224 0.134 0.219 0.281 0.279 0.221 0.175

−Lc 0.253 0.283 0.292 0.173 0.152 0.225 0.331 0.265 0.180 0.202

−LsLc 0.221 0.295 0.299 0.185 0.154 0.200 0.346 0.266 0.187 0.198

Table 8.2: Detailed stance and toxicity scores. Sup.: Support. Com.: Comment.
Que.: Query. Contra. Pfx.: Contrastive Prefixes.

introducing the meta-prefixes and the novel contrastive loss terms as described in Section

8.4. The results show that our method can effectively control the stance according to the

offensiveness of the user utterance while keeping the self-toxicity at a low level. When the

user utterance is non-offensive, our method achieves a low stance shift, and when the user

utterance is offensive, the support stance score is lowered significantly. This indicates

that our method learns to implicitly analyze the offensiveness of the user utterance and

apply different control strategies accordingly. Besides, the perplexity score shows that

our method achieves controllability without sacrificing the linguistic quality much.

Ablation study (Table 8.1) shows that both the stance contrastive loss Ls and the

context contrastive loss Lc are critical for our model to learn about the user utterance.

Removing the context contrastive loss Lc results in a significant increase in both 3-way

and 4-way stance shifts, although the support stance score is close to that of the full

model. This indicates that the model ignores the offensiveness of the user utterance and

generates more responses with a denying stance and fewer responses with a supportive

stance in both cases. This problem is further exacerbated by the additional removal of
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User: what was she WEARING 
LUKE

DialoGPT Like what a pig she was.
Prefix-Tuning Not sure. It was just a random pic of the girl

Contra. Prefixes A friend of mine has a pair of them.

Cls-Gen Flow I think she was wearing a dress

Ours She was very cute and had the very best design of the UFC.

User: C'mon guys. We need 
the govt regulating my life 
choices. Getting high is a form 
of violence

DialoGPT What was the point of your comment again?
Prefix-Tuning It's a good way to get a life.

Contra. Prefixes Yeah it certainly is.

Cls-Gen Flow No it isn't. Not even close.

Ours It is a natural habit for some people, some people choose to live high or some others choose 
to live with their way of life.

User: i'll kill them again

DialoGPT lmaoooo good one

Prefix-Tuning Sounds like fun

Contra. Prefixes Alright, See you at the party!

Cls-Gen Flow Why do you say that?

Ours Seriously. If you're good with your friends, I'll teach you how to how to deal with a situation 
like this.

User: Also, the females were 
either lying or the instigators 
in the ones they claimed.

DialoGPT Yeah, lying women, the cool thing about being a man.

Prefix-Tuning Yes, they were both liars.
Contra. Prefixes Yes, both of those things are true, and that's why we should be wary of them.

Cls-Gen Flow Nah they were just following orders.

Ours No proof either way. And if they were lying they wouldn't have said that either.

User: He's literally ret***ed 
when it comes to economics

DialoGPT You mean Islamophobe.

Prefix-Tuning Well yeah, that's the most ignorant thing I've heard all day
Contra. Prefixes he's not wrong

Cls-Gen Flow Or maybe he's just very stupid.

Ours Like literally every economist says he's smart

User: It's not true but even if 
it were it's because white 
people dont spend all their 
money on rims and shoes so 
they are able to afford a 
proper gun

DialoGPT Wow I agree with you, so there should be an issue because they have limited amount of 
money for a firearm...

Prefix-Tuning It's not true.

Contra. Prefixes I don't think you understand what, and why, you said. It's not true.

Cls-Gen Flow That was my point.

Ours Nah I wouldn't spend 100 on a gun unless I had a serious need for a gun

User: Speaking as a non-yank, 
how can you not know? The 
rest of the world knows. Are 
you a victim of your third-
world education system?

DialoGPT Or maybe you've been in thirdworld country like many of the rest of the world.

Prefix-Tuning No, I don't know.

Contra. Prefixes Nope, I'm from the US, that's just not true. I've been living here my whole life.

Cls-Gen Flow No, I'm from South New York, and I know plenty of people who speak and understand English.

Ours No I'm not crazy.

Figure 8.4: Examples of the generation. In the first column are user utterances. In
the third column are the generated responses. Contra. prefixes: Contrastive Prefixes.

the stance contrastive loss Ls. We also find that removing the context contrastive loss

results in slightly higher toxicity and much higher perplexity. One possible reason is that

without Lc, part of the training dataset where the user utterance is not offensive (tc = 0)

is not fully utilized for training, leading to a slightly worse self-toxicity and a loss of

linguistic quality. Table 8.2 shows the detailed stance and toxicity scores. The examples
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of the generated responses are shown in Figure 8.4.

8.6 Conclusion

In this chapter, we propose a novel method for contextual detoxification, where a

context-dependent attribute: stance, and a context-independent attribute: toxicity, are

controlled within a unified hierarchical prefix framework. Experimental results show that

our proposed method can successfully guide an NLG model to generate safer responses

with the stance taken into consideration. Besides the dialogue detoxification task we

experimented with, our proposed framework can be extended to other combinations of

context-dependent and context-independent control.
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Chapter 9

Conclusion and Future Directions

9.1 Conclusion

With the rapid rise of social media, the scale and complexity of online toxic speech

have reached unprecedented levels in recent years. This dissertation has outlined NLP

techniques for automatic text detoxification, including automatic post-processing of toxic

speech and language model detoxification. Our work on hate speech detection [17] rad-

ically improves automated hate speech detection by leveraging intra-user and inter-user

representation learning for robust hate speech detection. Moving beyond the standard

binary hate speech classification setting, we introduce the first work on fine-grained hate

speech characterization in terms of hate groups [20], the first work on lifelong learning

of fine-trained hate speech characterization [21], and the first work for deciphering hate

symbols [22], which enables more fine-grained analysis of hate speech. Our work on hate

speech intervention [23] contributes two fully-labeled large-scale hate speech interven-

tion datasets. Our data, collected in the form of conversations, provides better context

than previous work. The two data sources, Gab and Reddit, are not well studied for

hate speech and our datasets fill this gap. We made the datasets publicly available to
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facilitate further exploration of hate speech intervention. Additionally, our analysis of

the datasets and the generative intervention methods provides first-hand experience for

future research in this field.

As a result of the propagation of online hate speech, we observe another source of

hate speech, large pretrained language models. Language model detoxification is critical

for these powerful models to be safely deployed to real-world applications. Our work

on language model detoxification (Part II) effectively and efficiently controls the toxicity

of the underlying language model in both the freeform generation scenario and a more

challenging dialogue scenario. Our work from this dissertation was published in top NLP

venues, including the North American Chapter of the Association for Computational

Linguistics (NAACL), the Conference on Empirical Methods in Natural Language Pro-

cessing (EMNLP), and the Findings of the Association for Computational Linguistics

(ACL).

9.2 Future Directions

While many efforts have been dedicated to countering toxic speech, the problem is

far from resolved. To reduce the spread of toxic speech and its harm to others, there still

exist many unresolved challenges. We identify two main categories for future research:

multi-modal detoxification and few-shot learning for text detoxification.

9.2.1 Multi-Modal Detoxification

This dissertation and most of the previous research on toxic speech mainly focus

on textual toxic content. However, modern social media content usually includes both

images and text. Relying solely on textual content may lead to the neglect of toxic multi-

modal content that is toxic due to the combination of images and text. For example,
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the “OK” hand gesture is common in pictures, but in some specific contexts, it actually

means “white power” because this gesture is shaped like “WP”. To detect such kind of

toxic speech, we need to consider both the text and the images.

There do not exist many contributions utilizing both visual and textual information

in previous research. In [6], the authors study cyberbullying detection in a photo-sharing

network, Instagram. In addition to the text features, the image features extracted by

a pre-trained Convolutional Neural Network (CNN) are also exploited. However, no

improvement is achieved by incorporating the visual information in their study, probably

due to the limited processing of the visual information. In [143], the authors detect hate

speech on social media with more advanced deep multi-modal fusion techniques. They

find that augmenting text with image embedding information immediately leads to a

boost in performance and deep fusion methods further improve the performance.

Therefore, better representations of visual information and better fusion methods

to combine textual and visual information can be helpful to tackle multi-modal toxic

content, and more advanced Computer Vision and NLP techniques can be exploited for

this task in the future.

9.2.2 Few-shot Learning for Text Detoxification

Another direction less explored in previous research is text detoxification in few-shot

settings. Few-shot learning is of critical importance for practical applications of text

detoxification. We identify the following three applications:

Text Detoxification for Low-Resource Languages: Most previous research on toxic

speech has focused only on English, however, taking other languages into consideration

is important. One challenge is that many of the other languages are low-resource lan-

guages, which means that the size of the training dataset in the target language is very
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limited. Training approaches previously developed for tackling English toxic speech may

not work effectively with small training datasets. One solution is to translate text in the

target language to English before applying trained English tools. However, translating

toxic speech is challenging and the inaccurate translation may result in unsatisfactory

performance. Therefore, developing few-shot learning techniques can be a future direc-

tion for low-resource language text detoxification.

Dynamic Text Detoxification: As mentioned in Chapter 4, toxic speech evolves

through time. As a result, enabling automatic detoxification tools to dynamically adapt

to the changes is of practical importance. In Chapter 4, we have talked about lifelong

learning, which usually requires a reasonable amount of training data. However, in real-

world applications, the amount of training data for new toxic speech can be very limited

when it first emerges. For more dynamic and timely adaptation, combining lifelong learn-

ing techniques and few-shot learning techniques can be helpful in future research.

Personalized Text Detoxification: Although there is a consensus on the characteris-

tics of hate speech, everyone’s perceptions and boundaries of toxic speech are not exactly

the same. Allowing users to define toxic speech that is harmful to them can be an impor-

tant attempt for the industry. The challenge, however, is that detoxification methods are

required to be able to adapt to the few-shot examples provided or labeled by each user

(i.e. few-shot learning), which requires a strong generalization ability of the methods.

With the recent advent of large pretrained models with strong generalization capabilities

[15, 14, 16], personalized text detoxification can be one of the future directions.
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