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Abstract

Uncertainty Quantification with Experimental Data and Complex System Models

by

Trent Michael Russi

Doctor of Philosophy in Engineering-Mechanical Engineering

University of California, Berkeley

Professor Andrew K. Packard, Co-Chair

Professor Michael Frenklach, Co-Chair

This dissertation discusses uncertainty quantification as posed in the Data Collabo-
ration framework. Data Collaboration is a methodology for combining experimental
data and system models to induce constraints on a set of uncertain system param-
eters. The framework is summarized, including outlines of notation and techniques.
The main techniques include polynomial optimization and surrogate modeling to as-
certain the consistency of all data and models as well as propagate uncertainty in the
form of a model prediction.

One of the main methods of Data Collaboration is using techniques of nonconvex
quadratically constrained quadratic programming to provide both lower and upper
bounds on the various objectives. The Lagrangian dual of the NQCQP provides
both an outer bound to the optimal objective as well as Lagrange multipliers. These
multipliers act as sensitivity measures relaying the effects of changes to the parameter
constraint bounds on the optimal objective. These multipliers are rewritten to provide
the sensitivity to uncertainty in the response prediction with respect to uncertainty
in the parameters and experimental data.

It is often of interest to find a vector of parameters that is both feasible and
representative of the current community work and knowledge. This is posed as the
problem of finding the minimal number of parameters that must deviate from their
literature value to achieve concurrence with all experimental data constraints. This
problem is heuristically solved using the `1-norm in place of the cardinality function.
A lower bound on the objective is provided through an NQCQP formulation.

In order to use the NQCQP techniques, the system models need to have quadratic
forms. When they do not have quadratic forms, surrogate models are fitted. Surrogate
modeling can be difficult for complex models with large numbers of parameters and
long simulation times because of the amount of evaluation-time required to make a
good fit. New techniques are developed for searching for an active subspace of the
parameters, and subsequently creating an experiment design on the active subspace
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that adheres to the original parameter constraints. The active subspace can have a
dimension significantly lower than the original parameter dimension thereby reducing
the computational complexity of generating the surrogate model. The technique is
demonstrated on several examples from combustion chemistry and biology.

Several other applications of the Data Collaboration framework are presented.
They are used to demonstrate the complexity of describing a high dimensional feasible
set of parameter values as constrained by experimental data. Approximating the
feasible set can lead to a simple description, but the predictive capability of such a
set is significantly reduced compared to the actual feasible set. This is demonstrated
on an example from combustion chemistry.
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Chapter 1

Introduction

The American mathematician John Allen Paulos said, “Uncertainty is the only
certainty there is, and knowing how to live with insecurity is the only security.”
The budding field of uncertainty quantification is the product of this philosophy and
those like it. More and more researchers in various fields are realizing that they
cannot eliminate uncertainty in their experiments and methods. The goal should be
to quantify, analyze, and understand the uncertainty present in a system.

Uncertainty quantification (UQ) is a field of study pertaining to the character-
ization of error and uncertainty in various applications. The types of uncertainty
generally are placed into either one or both of two categories. The first type is prob-
abilistic or statistical uncertainty. In this case, uncertainties are modeled as random
processes [e.g. 65, 76]. The second type is systematic uncertainty, often modeled
as hard bounds on a set of possible values [e.g. 6, 84]. Some systems have both
types of uncertainty. UQ attempts to build models for these uncertainties and uses
experimental data to update these models.

One common task in uncertainty quantification involves using the uncertainty
models of a set of system parameters to produce a measure of uncertainty on the
output of a function or model [35, 57, 77]. This is known as the propagation of
uncertainty. With statistical uncertainty, the Monte Carlo method is a common
technique [64, 69]. With systematic uncertainty, a simple propagation using interval
mathematics is common [10]. In both cases, complex systems with large numbers
of parameters and long simulation times prove to be very difficult to work with.
There is much recent work examining techniques for dealing with large computational
complexity with regards to UQ [23, 117].

The pursuit of knowledge with regards to uncertainty is heavily dependent on
data. Experimental data, while it has uncertainty of its own, can provide information
about uncertainties in a system. For example, the prior knowledge on a parameter
may have lots of uncertainty, modeled as either a large variance or a wide interval.
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Data can help tighten this uncertainty, whether it be through statistical conditioning
or by adding hard constraints. In some cases, it can correct uncertainty that was
assessed incorrectly [12]. Oftentimes, experimenters are not able to directly measure
the parameter of interest, but what they measure does depend on this parameter.
Therefore, relating experimental data and uncertainty with parameter uncertainty
also involves the propagation of uncertainty, this time in the reverse direction.

The study of the effect of data on uncertainty lies in information theory as classi-
cally described by Shannon [103]. Shannon poses information as a lack of statistical
entropy, or as being the opposite of uncertainty in the prediction of an event. These
ideas have since been furthered by many to include measures for the information
gain specifically provided by experimentation [63] and more general notions of uncer-
tainty [56]. This interaction between data and uncertainty depends on the underlying
system models, thus modeling becomes an important part of UQ.

Propagation of errors depends on good models relating parameters to the system
feature of interest, be it the observable in an experiment or some implicit system
property. Modeling is one of the many ways that researchers learn about a system
[58]. A model represents the detailed knowledge of a system that can be validated or
invalidated with data. Good models can also provide some information by making
predictions of unmeasured system properties. It is for this reason that many strive
for more detailed, precise, and accurate models. Often times, however, this leads to
more complexity and hence more difficult analysis.

To compensate for this increase in complexity, algebraic surrogate models are
often created. Surrogate models have the benefit of increased evaluation speed and
the simplicity for easier system analysis. In the case of optimization, surrogate models
can provide functional forms that create optimization problems that are easier to
solve [29]. Good experiment designs, especially in the presence of uncertainty, help to
limit the number of evaluations of the “real” model that are required to create good
surrogates [1]. The validation of models (either the original simulation models or their
surrogates) also relies heavily on uncertainty quantification. Typically the models are
validated if they match measured data within the measurement uncertainty [26, 78,
119].

Computing power today has greatly improved the ability to sift through large
amounts of data and use it to makes increasingly precise assertions. Moreover,
Moore’s law suggests that computer power will continue to grow exponentially [71].
The capacity of data storage devices has also rapidly increased, even as the cost per
unit capacity has decreased.1 As scientific techniques become more sophisticated and
precise, they use more of the available computing power and storage. This naturally
leads to a need for more structure in the organization of scientific data [72, 85]. The
scientific community is calling for not only better data organization [50, 93], but also
for better collaboration in terms of providing data and not just results [19, 40, 74, 100].

This dissertation discusses some techniques for uncertainty quantification using

1The rate of data storage capacity increase is sometimes refered to as Kyrder’s Law [116].
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the information and knowledge gained from experimentation and modeling. Uncer-
tainty on a parameter or experimentally measured value is modeled as a closed interval
with no statistical interpretation. The presented method of uncertainty quantification
uses constrained optimization techniques to provide bounds on propagated uncer-
tainty. In the case when all process models are quadratic functions of the uncertain
variables, outer bounds (a lower bound on the minimum and an upper bound on
the maximum) are computed using techniques from control theory [22]. However,
the vast majority of parameterized models are not quadratic and, as mentioned, are
often complex and require long evaluation or simulation times. It is for this reason,
that (piecewise) quadratic surrogate models are generated when needed. But again,
with complex models this can be time-consuming and difficult, so the dissertation
addresses these issues by searching for an active subspace dependence and using it to
fit in smaller dimensions.

Data Collaboration is a term we use to describe our technique of combining ex-
perimental data, uncertainty, and models to constrain the correlated uncertainty in a
set of parameters. The framework and method is described in Chapter 2. Chapter 3
provides a review of nonconvex quadratically constrained quadratic programming
(NQCQPs). Lower bounds from NQCQP techniques provide Lagrange multipliers
which provide solution sensitivities to the uncertainty in the problem. This is de-
scribed in Chapter 4. A method for finding a representative vector of parameter val-
ues that matches all available experiment data and attempts to minimize the number
of parameters deviated from literature values is presented in Chapter 5.

The largest new contributions are presented in Chapters 6 and 7 which focus on
discovering the active subspace of a function and the subsequent experiment design
on the active subspace for building a surrogate model. Chapter 8 demonstrates a
few examples. Chapter 9 presents a few new applications for the Data Collaboration
methodology, and Chapter 10 uses these to further explore the complexities of high
dimensional systems analysis and the effects of uncertainty and approximation error
therein.
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Chapter 2

Data Collaboration

Experimentation and modeling are two of the most important aspects of research.
Experiments help scientists understand a system’s behavior, while models help predict
that behavior. Furthermore, experimental data can help improve predictive models
via model validation. In turn, better models lead to more understanding of system
behavior and can drive the design of future experiments. Our previous work took this
concept one step further by combining the experimental data and models from many
different experiments on a common system [42, 43]. That methodology, called Data
Collaboration, is summarized in this chapter.

2.1 Setup and Nomenclature

An experiment provides a measurement d of some scalar observable Y , as well
as lower and upper uncertainties l < 0 and u > 0. An associated parameterized
process model M predicts the measurement of Y . M is functionally dependent on
an n-dimensional vector of uncertain parameters, x. Each parameter xi has prior
knowledge bounds provided by domain experts.

αi ≤ xi ≤ βi (2.1)

These parameter bounds form a n-dimensional orthotope (a “hyperrectangle”) de-
noted H. Combining all of the models, data, and uncertainty for an experiment
forms a dataset unit. The collection of many experiments along with the prior knowl-
edge H, forms a dataset D. While the parameter values are constrained to the prior
bounds hyperrectangle, the dataset unit for each experiment, indexed by e, further
constrains the parameter values, via

le ≤Me(x)− de ≤ ue. (2.2)
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The set of valid parameters, those satisfying all constraints, is known as the feasible
set F .

The dataset and resulting feasible set represent the collective (collaborative)
knowledge about the system. We use this knowledge as the starting point for asking
questions about the system. Are the data and models from the various experiments
mathematically compatible? What is the range that a predictive model can take
over the feasible parameters? These questions are addressed in Sections 2.2 and 2.3,
respectively, where they are first posed as optimization problems.

2.2 Dataset Consistency

If the feasible set F for a given dataset D is empty, then there is no single vector
x in the prior knowledge bounds H that satisfies all experiment constraints (equa-
tion (2.2)). In this situation, we say the dataset is inconsistent. This could be due to
errors in any part of the dataset, such as the experimental measurement, experiment
uncertainties, prior bounds, or models. We can ascertain a dataset’s consistency by
solving the following feasibility problem:

Is the set F := {x ∈ H : le ≤Me(x)− de ≤ ue, e = 1, . . . ,m} nonempty? (2.3)

Data Collaboration techniques take this concept one step further. Previous work
introduced the consistency measure of a dataset D, notated CD, which is defined as
the maximum amount that all experiment uncertainties can be reduced such that
the dataset is consistent. Originally, the definition involved the absolute uncertainty
reduction [32, 33], and was later redefined as the relative uncertainty decrease [34],
which we present here.

CD := max
x,γ

γ

s.t.

{
x ∈ H
le(1− γ) ≤Me(x)− de ≤ ue(1− γ), e = 1, . . . ,m.

(2.4)

Notice that when CD is positive (γ > 0) the experiment bounds can be tightened
and a feasible point is still found. This implies there was a feasible point to begin
with. Thus CD ≥ 0 implies consistency. Likewise, a negative consistency measure
implies the constraints have to be loosened in order to find a feasible point, and hence
the dataset is inconsistent.

The consistency measure provides a quantitative measure for the “degree” of con-
sistency. The larger CD is, the larger the agreement between the information pro-
vided by each experiment (i.e. the larger the intersection of each experiment’s valid
parameter set). Along with the associated Lagrange multipliers (see Chapter 4), this
measure can be helpful in determining which experiments add the most information to
the dataset, which experiment causes an inconsistency, and discrimination of models
[see 32, 33, 47].
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2.3 Response Prediction

Response prediction is the prediction of the range of values an observable’s model
can output given assumptions on the possible values of its inputs. Often the input
parameters are assumed to vary within an interval or are treated as a random variable
with a given distribution. Furthermore, input parameters are often assumed to be
independent. However, Data Collaboration techniques show that by constraining the
parameter space using experimental data and models, we can tighten our assumptions
on the parameter space. Specifically, we only consider parameter values that are in
the feasible set F .

Take a new observable’s model M0 : Rn → R. The model maps a vector in the
parameter space and returns a scalar attribute (observable). We wish to find both
the minimum and maximum values that M0 outputs over inputs from the feasible set
F . This pair of optimizations is the response prediction problem.

L0 := min
x
M0(x)

s.t.

{
x ∈ H
le ≤Me(x)− de ≤ ue, e = 1, . . . ,m

(2.5)

R0 := max
x

M0(x)

s.t.

{
x ∈ H
le ≤Me(x)− de ≤ ue, e = 1, . . . ,m

(2.6)

The resulting prediction of M0 is the interval [L0, R0].

Information added to the dataset can potentially improve the prediction. If more
experiments are added, or uncertainty bounds are tightened, then the feasible set may
shrink, resulting in a possible tightening of the prediction interval. It is important to
note that dataset consistency is an important requirement for a response prediction.
If the feasible set is empty, i.e. the dataset is inconsistent, then many optimization
software packages will report the nonsensical interval prediction [∞, −∞].

2.4 Techniques

For each of the optimal objectives CD, L0, and R0, we are able to compute both
upper and lower bounds. The lower bound on a minimumization and the upper
bound on a maximumization are referred to as outer bounds. To compute these, our
main techniques include surrogate model approximations, polynomial optimization,
semi-definite programming, and branch and bound algorithms. The outer bounds are
notated as CD, L0, and R0. In some situations, outer bounds are required calculations.
For example, to prove inconsistency the outer (upper) bound on the consistency
measure CD must be negative. The computation of these outer bounds discussed in
Sections 2.4.1, 2.4.2, and 2.4.3.
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Likewise, the upper bound on a minimization and the lower bound on a maximu-
mization are called inner bounds. These are computed with interior-point methods.
Specifically, we use the fmincon algorithm which is part of the MATLAB optimiza-
tion toolbox. We notate the inner bounds with appropriate overlines and underlines
as CD, L0, and R0. Again, some situations require inner bounds. For example, to
prove consistency of a dataset, the inner (lower) bound on the consistency measure
CD must be positive.

2.4.1 NQCQP Formulation

In the event that all models involved in a dataset are quadratic, the consistency
measure (equation (2.4)) is a nonconvex quadratically constrained quadratic program
(NQCQP). Furthermore, if a predictive model of interest M0 is also quadratic, then
the response prediction (equations (2.5) and (2.6)) is formed by two NQCQPs. These
problems can be written as the primal NQCQP problem

p? := min
x

[ 1
x ]T Z0 [ 1

x ]

s.t. [ 1
x ]T Zi [ 1

x ] ≤ 0, i = 1, . . . , 2n+ 2m
(2.7)

where p? is the optimal primal solution, each Zi (including i = 0) is a (n+1)× (n+1)
matrix. Each of the 2n parameter constraints and 2m experiment constraints can be
written as one of the [ 1

x ]T Zi [ 1
x ] ≤ 0 constraints. Maximization problems can also be

written as a minimization, by changing the sign of the objective function.

There are existing methods for computing both upper and lower bounds on the
optimal value p? [38, 102]. Outer bounds are computed by relaxing the original
problem to form a semidefinite program (SDP). Both inner and outer bound solutions
for NQCQPs will be discussed in further detail in Chapter 3. To decrease the gap
between inner and outer bounds we use branch and bound techniques, which are
described briefly in Section 2.4.3.

Techniques have also been developed for rational quadratic forms (the ratio of
two quadratic functions) [34]; however, this document focuses on optimization with
quadratic models.

2.4.2 Surrogate Model Fitting

When the models are not quadratic, one can fit quadratic functions to the models
in order to utilize NQCQP techniques. These types of “replacement” functions are
called surrogate models for each model Me and are denoted as Se. This technique
is also known as solution mapping and as the response surface methodology [44,
75, 102]. The surrogate for model e is created by sampling the prior knowledge set
of parameters H, evaluating Me at these points, and fitting a quadratic model to
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this data. Depending on the behavior of Me, this may require a large number of
evaluations for the fit to converge. However, even if the fit has converged, it may still
be an inaccurate fit if the underlying model is significantly non-quadratic. One way
to improve the fit in this instance is to use a branch and bound technique (see §2.4.3).

The use of many function evaluations can be especially problematic if each one
takes a significant amount of computation time to produce. One way to cope with this
problem is to fit an intermediate surrogate model. This intermediate model would
not have to be quadratic, but could take any form that fits the data well and is
inexpensive to evaluate. Ideally, this intermediate model would require less function
evaluations to generate than a quadratic model, and would have much less fitting
error. A quadratic surrogate model is then made to approximate the intermediate
model. Since the intermediate model is quick to evaluate, the number of function
evaluations needed to make the quadratic fit is less of an issue. See [34] for details.

The dimensionality of the problem quickly becomes an issue when making surro-
gate models. To sufficiently sample a high-dimensional space, the number of points
should increase exponentially. As the dimension of the problem grows, the needed
sample size rapidly becomes unmanageable. For example, with only two grid points
per dimension, a 30-parameter space would have over a billion samples. As a result,
when creating surrogate models we are forced to under sample. To attempt to de-
crease the number of samples needed, we developed a method for searching for an
underlying lower-dimensional subspace dependence in a function (see Chapter 6).

2.4.3 Branch and Bound Algorithms

Branch and bound algorithms are used both to reduce the gap between inner and
outer bounds [15, 16] as well as to improve the fitting error of the surrogate models.
This class of algorithms has long been used to compute quantities of interest over
uncertain parameters [e.g. 9]. The algorithms generally consist of two main steps that
are iterated. First, in the branching step, the domain of the problem is subdivided
to create smaller subproblems with a presumably higher degree of accuracy than the
original problem. Second, the objective is bounded above and below. This process is
then iterated to converge the bounds.

To improve surrogate fitting, the domain is divided until the model is sufficiently
fitted with a quadratic over each subdomain. This procedure produces a piecewise
quadratic surrogate model. Inner and outer bounds are then found for each subdo-
main. Our experience shows that the outer bounds tend to be less accurate than the
inner bounds, even with accurrate and precise surrogate fits. To improve the outer
bound approximations we can continue to subdivide the domain, without necessarily
refitting the surrogate [32, 34]. Heuristics for a good choice of a subdivision have
been developed [34] and can significantly improve the outer bounds.
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2.5 Summary of Notation

For reference, Table 2.1 provides a list of much of the notation introduced in this
chapter that will be used throughout the rest of this document. Very nearly the same
notation appears in past publications, with [34] being the most similar.

Table 2.1: List of notation introduced in this chapter and used throughout this doc-
ument.

Symbol Datatype Description

e scalar Index for experiments
de scalar Observable value for experiment e
le scalar Lower uncertainty bound for experiment e
ue scalar Upper uncertainty bound for experiment e
Me function Parameterized model outputting the scalar observable

associated with experiment e
x n× 1 vector Vector of parameters
αi scalar Lower bound of the value of the ith parameter
βi scalar Upper bound of the value of the ith parameter
H set Set of prior knowledge parameters:

H := {x |αi ≤ xi ≤ βi, i = 1, . . . , n}
D dataset Collection of models, observations with uncertainty,

and the prior knowledge H
F set Feasible set of valid parameters as defined by parameter

and experiment bounds:
F := {x ∈ H | le ≤Me(x)− de ≤ ue, e = 1, . . . ,m}

CD scalar Consistency measure for dataset D. A positive value
implies consistency and negative value implies
inconsistency. See equation (2.4).

CD scalar Lower bound on CD from interior point methods.
CD scalar Upper bound on CD from the S-procedure.
L0 scalar Left bound of the model M0 as determined from the

response prediction. See equation (2.5).
R0 scalar Right bound of the model M0 as determined from the

response prediction. See equation (2.6).
L0 scalar Lower (outer) bound on the left prediction bound L0.
L0 scalar Upper (inner) bound on the left prediction bound L0.
R0 scalar Lower (inner) bound on the right prediction bound R0.
R0 scalar Upper (outer) bound on the right prediction bound R0.
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2.6 Example: GRI-Mech 3.0 Dataset

The GRI-Mech 3.0 dataset is a collection of process models and experimentally
measured data related to the combustion of methane [106]. The dataset has 102
uncertain parameters that are mostly constants from reaction rate equations. Prior
information bounds on the parameters are provided from experimentation and the
combustion literature. Each parameter has been transformed such that it is con-
strained to the bounds [−1, 1]. The dataset also contains models and experimental
observation data for 77 observables, referred to as “targets.” The working models
used by the GRI-Mech team are already fitted with quadratic response surfaces.

The dataset, as presented on the GRI-Mech website [106], does not include exper-
imental uncertainty bounds. In previous work, the reasonable but otherwise arbitrary
uncertainty of 0.1 was applied to all experiment observations [32, 33, 95], and that is
what we use for the following examples. However, recently, Xiaoqing You, a domain
expert, has decided upon uncertainties for each target based on the type of experi-
ment and her expertise [120, 121]. We will explore examples with these uncertainties
in later Sections (e.g. see §4.5).

We use the GRI-Mech 3.0 dataset for many examples since it is often relatively
quick to compute the consistency measure and response prediction using this dataset
because the models are already quadratic and therefore time is not spent making
surrogate models. Also, the dataset has 102 parameters and interesting phenomenon
are observed in large dimensions such as this (see Chapter 10).

Using the techniques outlined in Section 2.4, lower and upper bounds were com-
puted for the GRI-Mech 3.0 dataset as 0.278 and 0.403. The bounds restrict CD to be
positive, and hence the dataset is consistent. The bounds imply that the maximum
amount each experiment uncertainty can be reduced by and still maintain feasibility
is at least 27.8% and no more 40.3%.

To demonstrate the response prediction, we examine GRI-Mech 3.0 target StF8,
the laminar flame speed in a stoichiometric atmospheric ethane-air mixture [113].
The results from predicting this target using the rest of the GRI-Mech 3.0 dataset
constraints are shown in Table 2.2, which also includes the results after one branch
and bound algorithm iteration is used to improve the outer bounds.

Table 2.2: Prediction of GRI-Mech 3.0 target StF8 using the rest of the GRI-Mech 3.0
dataset. Includes initial prediction, and results after one branch and bound algorithm
iteration.

L0 L0 R0 R0

Initial prediction 1.538 1.543 1.753 1.767
One B&B iteration 1.541 1.543 1.753 1.765
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Chapter 3

Nonconvex Quadratically

Constrained Quadratic

Programming

Constrained optimization is the search for maximum or minimum values of an ob-
jective function subject to one or more constraints on its input. The difficulty in solv-
ing such problems relies on the functions that make up the objective and constraint
functions. Typically, optimization involving convex functions and constraints are con-
sidered efficient to solve [14, 91]. In this chapter, we consider a class of constrained
optimization problems involving nonconvex quadratic functions. Nonconvex quadrat-
ically constrained quadratic programs (NQCQPs) are not considered to be efficient
to solve in general; however, they can be bounded using interior-point methods for
local solutions and a convex relaxation using semidefinite programming. This chapter
contains a quick summary of NQCQPs and some solution techniques. Most of the
work presented in this chapter comes from the work of others [14, 101, 102, 108, 114].
Specifically, much of the notation and derivation comes from notes by Pete Seiler
[101]; however, we present the handling of equality constraints directly.

Given quadratic surrogate models, each of the basic Data Collaboration problems,
such as the consistency measure and response prediction, can be formulated as a non-
convex quadratically constrained quadratic problem. The basic form of this problem
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is written as

p? := min
x

[ 1
x ]T Z0 [ 1

x ]

s.t.

{
[ 1
x ]T Zi [ 1

x ] ≤ 0, i = 1, . . . , N,

[ 1
x ]T Zj [ 1

x ] = 0, j = 1, . . . ,M.

(3.1)

Each Zi and Zj is a (n + 1) × (n + 1) matrix of quadratic coefficients. The equality
constraints can be handled as inequality constraints by requiring the quadratic form
to be both greater and less than 0. However, we will use equality constraints directly
in the bounds for this problem. Note that there are no equality constraints used
for the consistency measure and response prediction problems, but we will present a
problem in Chapter 5 that does use them.

In the Data Collaboration framework, after the response models have been fit by
quadratic functions, the feasible set is described by nonconvex quadratic constraints.
There are two quadratic forms, Zi’s, for each experiment and each parameter con-
straint; one for the lower bound constraint, and one for the upper bound constraint.
Several of the data collaboration problems involve maximizations, which requires sim-
ply changing the sign of the objective, minimizing, then changing the sign again. Since
the problems can all be cast as minimizations, we will only examine the minimization
NQCQP in this chapter.

The NQCQP formulation is NP-hard [83, 96]. This means that all problems in the
class NP can be rewritten as an NQCQP in polynomial time1 (i.e. a time that grows
as a polynomial in the problem size) [105]. The class NP is the class of problems such
that a solution can be verified in polynomial time [21]. NP-hard problems are, as their
name implies, difficult. Garey and Johnson famously wrote that NP-hard means that
“I can’t find an efficient algorithm, but neither can all these famous people [46].”
However, there are many tools and heuristics to efficiently solve for bounds on the
optimal value of the NQCQP. These techniques are outlined in the rest of the chapter.

3.1 Lower Bound on the NQCQP

By using the Lagrangian dual and constraint relaxations we can construct opti-
mization problems whose solutions provide lower bounds to the NQCQP. The next
few sections will derive two such lower bounds using the S-procedure and a rank re-
laxation, and then demonstrate their relationship as dual problems. The derivations
are based on those presented in [14, 91, 101].

1There is a simple polynomial-time reduction from the Satisfiability problem (which is NP-
complete) to quadratically constrained quadratic programming.
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3.1.1 Lower bound using the S-procedure

The NQCQP is lower bounded using the S-procedure which formulates the prob-
lem as a semi-definite program (SDP) [14, 22].

p?
s

:= max
λ,ν,γ

γ

s.t.

 Z0 −
[
γ 0
0 0n

]
+

N∑
i=1

λiZi +
M∑
j=1

νjZj � 0

λ ≥ 0

(3.2)

The “� 0” constraint requires that the matrix sum be positive semidefinite, that is,
it is required to have only nonnegative eigenvalues. The Lagrange multipliers λi and
νj provide important sensitivity information. Sensitivities will be discussed in further
depth in Chapter 4.

The S-procedure formulation is in P, the class of problems whose solving time
grows polynomially with the problem size [114]. This is a significant improvement
over the original NQCQP formulation which is an NP-hard problem.

The derivation of the S-procedure involves formulating the Lagrangian dual prob-
lem and converting the quadratic constraints to linear matrix inequalities (semidef-
inite constraints). The dual problem formulation essentially involves changing the
objective function to include a weighted sum of the constraints [14]. Starting with
the nonconvex quadratically constrained quadratic problem in equation (3.1), the
lower bound problem in equation (3.2) is derived as in [14, 101].

p? = min
x

[ 1
x ]T Z0 [ 1

x ] s.t.

{
[ 1
x ]T Zi [ 1

x ] ≤ 0, i = 1, . . . , N

[ 1
x ]T Zj [ 1

x ] = 0, j = 1, . . . ,M

(a)
= min

x
max
λ≥0,ν

[ 1
x ]T Z0 [ 1

x ] +
N∑
i=1

λi [ 1
x ]T Zi [ 1

x ] +
M∑
j=1

νj [ 1
x ]T Zj [ 1

x ]

(b)

≥ max
λ≥0,ν

min
x

[ 1
x ]T Z0 [ 1

x ] +
N∑
i=1

λi [ 1
x ]T Zi [ 1

x ] +
M∑
j=1

νj [ 1
x ]T Zj [ 1

x ]

(c)
= max

λ≥0,ν,γ
γ s.t. min

x
[ 1
x ]T Z0 [ 1

x ] +
N∑
i=1

λi [ 1
x ]T Zi [ 1

x ] +
M∑
j=1

νj [ 1
x ]T Zj [ 1

x ] ≥ γ

(d)
= max

λ≥0,ν,γ
γ s.t. [ 1

x ]T
(

Z0 −
[
γ 0
0 0n

]
+

N∑
i=1

λiZi +
M∑
j=1

νjZj

)
[ 1
x ] ≥ 0 ∀x

(e)
= max

λ≥0,ν,γ
γ s.t. Z0 −

[
γ 0
0 0n

]
+

N∑
i=1

λiZi +
M∑
j=1

νjZj � 0

= p?
s

(3.3)

Equality (a) is minimizing the Lagrangian function, (b) is the relaxation due to switch-
ing the order of the minimization and maximization, (c) simply adds the slack variable
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γ, (d) removes the minimization by noting that the inequality holds for all x if and
only if it holds for the minimum, and (e) is a simple “if and only if” property shown
in [101]. The derivation in equation (3.3) is known as the S-procedure. The solution
p?

s
is a lower bound on the optimal primal solution p?. The final equality, (e), yields

a semi-definite program, which is a convex optimization in its variables γ, λ, and ν.

Since the S-procedure is a maximization problem, any feasible solution will be a
lower bound on the optimum. Therefore, any feasible solution provided by a numerical
solver (such as SeDuMi) will be a guaranteed lower bound on the optimal NQCQP
minimization problem.

3.1.2 Lower bound using rank relaxation

Another way to achieve lower bounds on the NQCQP minimization is to relax the
constraints. One choice is a formulation using a rank relaxation.

p?
r

:= min
Q�0,Q11=1

Tr [Z0Q]

s.t.

{
Tr [ZiQ] ≤ 0, i = 1, . . . , N,
Tr [ZjQ] = 0, j = 1, . . . ,M.

(3.4)

Here, Q is a (n + 1)× (n + 1) matrix constrained to be positive semidefinite with a
1 in (1,1) entry, and Tr is the matrix trace function. The optimal variable Q? can
be used for branching heuristics in branch and bound algorithms [34] as well as an
interior point method seeding for an upper bound on the NQCQP (see §3.3).

The formulation of the rank relaxation is a matter of simply rewriting the objective
and constraints before relaxing one of the constraints.

p? = min
x

[ 1
x ]T Z0 [ 1

x ] s.t.

{
[ 1
x ]T Zi [ 1

x ] ≤ 0, i = 1, . . . , N

[ 1
x ]T Zj [ 1

x ] = 0, j = 1, . . . ,M

(a)
= min

x
Tr
[
[ 1
x ]T Z0 [ 1

x ]
]

s.t.

 Tr
[
[ 1
x ]T Zi [ 1

x ]
]
≤ 0, i = 1, . . . , N

Tr
[
[ 1
x ]T Zj [ 1

x ]
]

= 0, j = 1, . . . ,M

(b)
= min

x
Tr
[
Z0 [ 1

x ] [ 1
x ]T
]

s.t.

 Tr
[
Zi [ 1

x ] [ 1
x ]T
]
≤ 0, i = 1, . . . , N

Tr
[
Zj [ 1

x ] [ 1
x ]T
]

= 0, j = 1, . . . ,M

(c)
= min

Q�0,Q11=1
Tr [Z0Q] s.t.


rank(Q) = 1
Tr [ZiQ] ≤ 0, i = 1, . . . , N
Tr [ZjQ] = 0, j = 1, . . . ,M

(d)

≥ min
Q�0,Q11=1

Tr [Z0Q] s.t.

{
Tr [ZiQ] ≤ 0, i = 1, . . . , N
Tr [ZjQ] = 0, j = 1, . . . ,M

= p?
r
.

(3.5)
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The quadratic quantities in the original problem evaluate to scalars, therefore (a)
follows from the fact that the trace function does not affect scalars. Equality (b) comes
from the fact that the trace is invariant under cycle permutations of the products
within. Replacing the outer product of the x vector with the matrix Q yields (c).
Finally, by relaxing the rank constraint (i.e. removing it) we get a lower bound
problem as shown in relation (d). This formulation is also an SDP, although it is not
in the standard form.

3.1.3 Duality of Lower Bound Formulations

The S-procedure formulation is also the Lagrangian dual of the rank relaxation
problem. This is shown with the following set of relations.

p?
r

= min
Q�0

Tr [Z0Q] s.t.


Q11 = 1
Tr [ZiQ] ≤ 0, , i = 1, . . . , N
Tr [ZiQ] = 0, , j = 1, . . . ,M

(a)
= min

Q�0
max
λ≥0,ν,γ

Tr [Z0Q] + (1−Q11)γ +
N∑
i=1

λiTr [ZiQ] +
M∑
j=1

νjTr [ZjQ]

(b)

≥ max
λ≥0,ν,γ

min
Q�0

Tr [Z0Q] + (1−Q11)γ +
N∑
i=1

λiTr [ZiQ] +
M∑
j=1

νjTr [ZjQ]

(c)
= max

λ≥0,ν,γ
min
Q�0

γ + Tr

[(
Z0 −

[
γ 0
0 0n

]
+

N∑
i=1

λiZi +
M∑
j=1

νjZj

)
Q

]
(d)
= max

λ≥0,ν,γ
γ s.t. Z0 −

[
γ 0
0 0n

]
+

N∑
i=1

λiZi +
M∑
j=1

νjZj � 0

= p?
s
,

(3.6)

where (a) is minimizing the Lagrangian function, (b) is a relaxation from switching
the maximization and minimization operators, (c) utilizes the linearity of the trace
function, and (d) is changing the Lagrangian to a semidefinite constraint. If either the
S-procedure problem or the rank relaxation problem is bounded and strictly feasible,
then strong duality holds, i.e. p?

s
= p?

r
[91]. In fact, even weaker conditions exist for

strong duality that we can assume hold for most cases [108].

The duality of the S-procedure and rank relaxation problems allows them to be
solved with a single call to the freely available MATLAB package SeDuMi [109]. Our
experience has been that, given quadratic models, the outer bound solutions take
much less computation time as compared to the inner bound computation.
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3.2 Stochastic Interpretation

The rank relaxation formulation (equation (3.4)) can be written with a stochastic
interpretation. To see this, first partition the optimization variable Q as,

Q =

[
1 xT

x Σ

]
(3.7)

where x ∈ Rn and Σ ∈ Rn×n.

Let X be a random vector with E [X] = x and E
[
XTX

]
= Σ. Using the linearity

of the trace and expectation functions, the trace constraints (and objective) in the
rank relaxation problems can be rewritten using the random vector X.

Tr [ZiQ] = Tr
[
Zi

[
1 xT

x Σ

]]
= E

[
Tr
[
Zi

[
1 XT

X XXT

]]]
= E

[
Tr
[
[ 1
X ]T Zi [ 1

X ]
]]

= E
[
[ 1
X ]T Zi [ 1

X ]
] (3.8)

This equality gives a direct interpretation of the rank relaxation problem using ran-
dom variables.

p?
r

= min
X,x,Σ

E
[
[ 1
X ]T Z0 [ 1

X ]
]

s.t.


E
[
[ 1
X ]T Zi [ 1

X ]
]
≤ 0, i = 1, . . . , N

E
[
[ 1
X ]T Zj [ 1

X ]
]
≤ 0, j = 1, . . . ,M

X is a random vector with E [X] = x & E
[
XXT

]
= Σ

(3.9)

Here the Q � 0 constraint from the rank relaxation problem is still satisfied. The
covariance matrix associated with a random vector is always positive semidefinite.
The covariance is E

[
(X− x)(X− x)T

]
= Σ − xxT. Using the Schur complement,

Q � 0 is equivalent to Σ− xxT � 0.

The optimal Q? matrix from the rank relaxation problem therefore provides the
mean and covariance for the optimal random vector to solve equation (3.9). These
first and second order statistics will be used to compute the upper bound on the
NQCQP in Section 3.3.

3.3 Upper Bound on the NQCQP

The NQCQP cost function evaluated at any feasible point (i.e. points satisfying
all constraints in equation (3.1)) will be greater than or equal to the optimal value.

16



Therefore any feasible point provides an upper bound on the optimal value p?. Readily
available computer solvers are used to tighten this upper bound down using interior
point methods [102].

The previous section demonstrated an interpretation of the rank relaxation op-
timal variable as the first and second order statistics of an optimal random vector.
Sampling from a distribution with these statistics will not necessarily provide a fea-
sible point, but can provide a good starting (seed) point for the interior-point solvers
used to find an upper bound solution.

3.4 NQCQP Formulation of Consistency and Re-

sponse Prediction Problems

As briefly described in Section 2.4, Data Collaboration techniques call for fitting
experiment models with quadratic surrogates. Branch and bound algorithms improve
these fits, by subdividing the prior bound hyperrectangle into sub-hyperrectangles,
and fitting each experiment model over each subdomain. Once reasonable fits are
made, solving for the consistency measure CD and response prediction bounds L0

and R0 are NQCQPs on each subdomain.

We now focus on the specific formulations for a given subdomain. Let Se de-
note the surrogate coefficient matrix for the experiment e, and le,fit and ue,fit are the
associated absolute fitting errors such that the inequality

le,fit ≤ [ 1
x ]T Se [ 1

x ]−Me(x) ≤ ue,fit (3.10)

holds for all x in the relevant subdomain. The experiment bounds can then be
rewritten as

le + le,fit ≤ [ 1
x ]T Se [ 1

x ]− de ≤ ue + ue,fit. (3.11)

For a response prediction, the objective coefficient matrix Zprediction
0 simply corre-

sponds to the coefficients of the model observable to be predicted, S0. The sign of this
matrix is of course flipped for the right prediction bound (maximization) problem.
Each of the experiments have two inequalities, one for the left bound, and one for the
right. The associated NQCQP constraint matrices are

Zprediction
e,l =

[
le + le,fit + de 01×n

0n×1 0n×n

]
− Se, (3.12)

Zprediction
e,u = Se −

[
ue + ue,fit + de 01×n

0n×1 0n×n

]
. (3.13)
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For the consistency measure, there is an extra optimization variable γ. Therefore,
the quadratic coefficient matrices will be (n+ 2)× (n+ 2) in size, and the quadratic
form will be [

1
x
γ

]T
Zi

[
1
x
γ

]
. (3.14)

The maximal γ is the consistency measure, so the Zconsistency
0 matrix has a -0.5 in

the (1, n + 2) and (n + 2, 1) locations (the negative sign corresponding to the fact
that the consistency measure is written as a maximization) and zeros elsewhere. The
experiment constraints are similar to the prediction problem, except that terms for
the products of the experiment uncertainty and γ are present.

Zconsistency
e,l =

le + le,fit + de 01×n −le/2
0n×1 0n×n 0n×1

−le/2 01×n 0

− [ Se 0n×1

01×n 0

]
, (3.15)

Zconsistency
e,u =

[
Se 0n×1

01×n 0

]
−

ue + ue,fit + de 01×n −ue/2
0n×1 0n×n 0n×1

−ue/2 01×n 0

 . (3.16)

In future discussion the le,fit and ue,fit terms will be omitted for notation simplicity.
The terms le and ue will notate all experiment and modeling uncertainty, including
fitting errors.

The coordinate aligned prior information constraints on the parameters (αi ≤
xi ≤ βi for i = 1, . . . , n) can be formulated as quadratic constraints in many ways.
Three options are,

(αi − xi)(βi − xi) ≤ 0, (3.17)

or (αi − xi)(βi + εi − xi) ≤ 0 & (αi − εi − xi)(βi − xi) ≤ 0, (3.18)

or αi − xi ≤ 0 & xi − βi ≤ 0, (3.19)

where εi in the second line of constraints is some small positive number. Each line
of constraints listed constrain xi to the interval [αi, βi]. However, in the S-procedure
formulation the resulting lower bound on the optimal cost can vary. It is proven in [34]
that the best lower bound results come from using the constraint in equation (3.17).
However, the constraints in equations (3.18) and (3.19) each have the added benefit
of their own Lagrange multiplier in the S-procedure formulation. Chapter 4 will show
that these Lagrange multipliers can be directly used for sensitivity analysis. If ε is
chosen sufficiently small, then the lower bound on the optimal cost when using the
constraints in equation (3.18) is not much worse than that resulting from the use of
the constraints in equation (3.17). Therefore, [34] recommends using the constraints
in equation (3.18) with a heuristic choice of εi = 0.05(βi − αi). The resulting two
quadratic forms for each parameter are,

Zi,α =

[
αi(βi + εi) −(αi + βi + εi)e

T
i /2

−(αi + βi + εi)ei/2 eie
T
i

]
, (3.20)

Zi,β =

[
βi(αi − εi) −(αi + βi − εi)eTi /2

−(αi + βi − εi)ei/2 eie
T
i

]
, (3.21)
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where ei is the ith standard vector, i.e. the vector with a 1 in the ith location and zeros
elsewhere. The dimension of ei is n × 1 for the prediction problem and (n + 1) × 1
for the consistency measure problem.

19



Chapter 4

Sensitivity Analysis

Sensitivity analysis is a broad range of techniques used to determine the relative
importance of inputs to a mathematical or computational model [98]. Typically it
involves varying the input parameters to a system to see how the output is affected.
The resulting analysis can be used for, among other things, active variable analysis,
system reduction, model development and verification [97].

In optimization, Lagrange multipliers, the variables of the Lagrangian dual prob-
lem, can be used for sensitivity analysis [92]. Most optimization solvers, automatically
solve the dual problem simultaneously, thereby providing sensitivity information for
free. These sensitivities provide information about the change in the optimal objec-
tive value with respect to changes in the constraint bounds. This is discussed more
in Sections 4.1 and 4.2 but we first discuss a simple toy example.

Figure 4.1 shows an example feasible set in two variables made of several linear
constraints. The parameters, x1 and x2 are constrained to the prior rectangle H as
well as constrained by five experimental constraints labeled e1, . . . , e5. The level sets
of a model M0 are shown in light gray. This model only has functional dependence
on x2.

Several interesting things can be seen in Figure 4.1 that might seem counterintu-
itive. Even though M0 only depends on x2, the optimal value is not locally sensitive
to the prior bounds of x2. Similarly, the maximum value of M0 is dependent on the
prior upper bound of x1. Examples of this type can also be seen with the experiment
constraints. The constraint e1 is redundant and therefore the optimal values have
no sensitivity to it, even though it is largely correlated with the gradient direction of
M0. The directions of the constraints of experiments e4 and e5 have large components
orthogonal to the gradient of M0, yet the minimum value is sensitive to the bound e4

and neither optimal value is sensitive to the bound e5.

This chapter will focus on the sensitivities of the response prediction and consis-
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Figure 4.1: Toy example demonstrating various qualitative sensitivities in a response
prediction problem. There are two variables x1 and x2, each upper and lower bounded
(the prior, H). There are five experiment constraints, labeled e1 through e5. The
feasible set, F is shaded. The light gray lines represent the level sets of the model to
predict, M0, which only depends on x2.
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tency measure problems. Sections 4.1 and 4.2 will discuss Lagrange multipliers and
their interpretation as partial derivatives. Section 4.3 derives the relation between
the Lagrange multipliers and the sensitivity to uncertainty in the response prediction
and consistency measure problems. Sections 4.6 and 4.7 discuss some uses for the
sensitivity information.

4.1 Lagrange Multipliers from the S-procedure

Lagrange multipliers are the basis for the sensitivity analysis presented in this
chapter. Lagrange multipliers are the optimal values of the variables from the La-
grange dual optimization problem. The dual problem formulation essentially involves
changing the objective function to include a weighted sum of the constraints [14].
Recall from Section 3.1.1 that the S-procedure formulation is such a dual problem
formulation.

p?
s

:= max
λ,γ

γ

s.t.

 Z0 −
[
γ 0
0 0n

]
+

N∑
i=1

λiZi � 0

λ ≥ 0

(4.1)

The optimal dual variables λ? are Lagrange multipliers for the NQCQP problem.
There are two multipliers for each experiment constraint, one each for the upper and
lower bounds. Here, the equality constraints in the general NQCQP formulation are
omitted, as they are not used for the consistency measure and response prediction
problems. The number of multipliers for each parameter depends upon the choice of
quadratic formulation of the parameter constraints. As discussed in Section 3.4, we
choose a formulation that provides a multiplier for each parameter lower bound and
one for each upper bound.

4.2 Lagrange Multipliers as Local Partial Deriva-

tives

The Lagrange multipliers from the outer bound S-procedure formulation are the
partial derivatives of the optimal outer bound value with respect to the constraint
bounds. To demonstrate this, we first rewrite the optimal NQCQP value as a function
of the constraint bounds.

p?(ξ) = min
x

[ 1
x ]T Z0 [ 1

x ]

s.t. [ 1
x ]T Zi [ 1

x ] ≤ ξi, i = 1, . . . , N
(4.2)

22



Note that p?(0) is the original solution p? as shown in equation (3.1). We can simi-
larly write the S-procedure and rank relaxation bounds as functions of the constraint
bounds as p?

s
(ξ) and p?

r
(ξ). These will be used to describe the Lagrange multipliers.

But a definition is needed first.

Definition A function f : Rn → R is called semi-differentiable at a point x ∈ Rn if
for every direction u ∈ Rn the one sided limit

∂uf(x) := lim
h→0+

f(x + hu)− f(x)

h
(4.3)

exists and is finite [86]. ∂uf(x) is called the semi-derivative with respect to the
direction u.

A function of one variable is semi-differentiable at a point if it is left-differentiable
and right-differentiable at that point. In other words, the standard limit definition
of the derivative exists from the left and the right, though they need not be equal.
This means that in the one dimensional case, a semi-differentiable function can have
“kinks” in it. The partial semi-derivative of the optimal value of the lower bounds
on the NQCQP is used to bound the value of Lagrange multipliers.

Theorem 4.1. If p?
r
(0) = p?

s
(0) (strong duality between equation (3.2) and equa-

tion (3.4)), and p?
r
(ξ) is semi-differentiable at the original constraint bounds ξ = 0,

then the optimal Lagrange multipliers from the S-procedure formulation, λ?, are
bounded by the left and right partial derivatives of the optimal value of the rank re-
laxation problem, with respect to the constraint bounds. Specifically,

λ?i ∈
[
−∂eip

?

r
(0), ∂−eip

?

r
(0)
]
, (4.4)

where ei is the ith standard vector, a vector with a one at the ith location and zeros
elsewhere.

Proof. Starting with an equality shown in the duality derivation from Chapter 3 we
derive a linear lower bound on the optimal outer bound solution.

p?
s

(a)
= max

λ≥0,γ
min
Q�0

Tr [Z0Q] + (1−Q11) γ +
N∑
i=1

λiTr [ZiQ]

(b)
= min

Q�0
Tr [Z0Q] + (1−Q11) γ? +

N∑
i=1

λ?iTr [ZiQ]

(c)

≤ min
Q�0

Tr [Z0Q] +
N∑
i=1

λ?iTr [ZiQ] s.t. Q11 = 1, Tr [ZiQ] ≤ ξi

(d)

≤ min
Q�0

Tr [Z0Q] +
N∑
i=1

λ?i ξi s.t. Q11 = 1, Tr [ZiQ] ≤ ξi

(e)
= p?

r
(ξ) +

N∑
i=1

λ?i ξi

(4.5)

23



Equality (a) comes from the duality derivation in equation (3.6). By substituting
in the optimal values λ? and γ? we get equality (b). Adding constraints to the
optimization increases the value as in (c). Since λ? is positive, substituting Tr [ZiQ]
for the largest constrained value ξi gives the upper bound in (d). The final equality
(e) uses the definition of definition of p?

r
(see equation (3.4)). This set of relations

simplifies to,

p?
r
(ξ) ≥ p?

s
(0)−

N∑
i=1

λ?i ξi. (4.6)

The rank reduction optimum, p?
r
(ξ) is under bounded by an affine function of the

constraint bounds ξ. With the hypothesis that strong duality holds between the
S-procedure and rank relaxation problems, the bound is rewritten as,

p?
r
(ξ) ≥ p?

r
(0)−

N∑
i=1

λ?i ξi. (4.7)

Note that equality holds when ξ = 0.

If p?
r

is semi-differentiable at a particular ξ = ξ̂, then the left and right partial
derivatives exist, are finite, and are written respectively as,

∂−eip
?

r
(ξ̂) = lim

h→0+

p?
r
(ξ̂ − hei)− p?r (ξ̂)

h
, (4.8)

∂eip
?

r
(ξ̂) = lim

h→0+

p?
r
(ξ̂ + hei)− p?r (ξ̂)

h
. (4.9)

By hypothesis, semi-differentiability holds at ξ = 0. Now a lower bound on the ith

Lagrange multiplier is derived by using the inequality in equation (4.7).

∂eip
?

r
(0) = lim

h→0+

p?
r

(hei)− p?r (0)

h

≥ lim
h→0+

p?
r
(0)− λ?ih− p?r (0)

h

= −λ?i .

(4.10)

And similarly, an upper bound is derived.

∂−eip
?

r
(0) = lim

h→0+

p?
r

(−hei)− p?r (0)

h

≥ lim
h→0+

p?
r
(0) + λ?ih− p?r (0)

h

= λ?i .

(4.11)

Thus the desired left and right bounds on λ?i are achieved.
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If differentiability is assumed in the previous theorem, an even stronger result
follows.

Corollary 4.2. If p?
r
(0) = p?

s
(0), and p?

r
(ξ) is differentiable at the original constraint

bounds ξ = 0, then the optimal Lagrange multipliers from the S-procedure formulation,
λ?, are the negative partial derivatives of the optimal value of the rank relaxation
problem, with respect to the constraint bounds. Specifically,

λ?i = −
∂p?

r

∂ξi

∣∣∣∣
ξ=0

(4.12)

Proof. If the optimal lower bound is differentiable at ξ = 0 then the bounds on λ?i in
Theorem 4.1 are equal.

Furthermore, with stronger conditions, the Lagrange multipliers provide direct
sensitivities to the original problem.

Theorem 4.3. If strong duality holds between the original NQCQP and the S-
procedure solution, p?(0) = p?

s
(0), and p?(ξ) is differentiable at the original constraint

bounds ξ = 0, then the optimal Lagrange multipliers from the S-procedure formula-
tion, λ?, are the negative partial derivatives of the optimal value of the primal NQCQP
with respect to the constraint bounds. Specifically,

λ?i = − ∂p?

∂ξi

∣∣∣∣
ξ=0

(4.13)

Proof. Chapter 3 demonstrated that

p?(ξ) ≥ p?
r
(ξ) ≥ p?

s
(ξ), ∀ξ. (4.14)

Furthermore, the proof of Theorem 4.1 shows the relation in equation (4.6). Therefore,

p?(ξ) ≥ p?
s
(0)−

N∑
i=1

λ?i ξi. (4.15)

From here the proof is the same as that of Theorem 4.1 and Corollary 4.2.

It has been our experience that the conditions for Corollary 4.2 usually hold and
the conditions for Theorem 4.3 often do not (except for simple problems). Through
the rest of this chapter, we assume that the conditions for the corollary hold, and
therefore the Lagrange multipliers are the exact partial derivatives shown in equa-
tion (4.12).
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4.3 Sensitivity to Experiment and Parameter Un-

certainty

Typically, sensitivity analysis examines the “by-value” sensitivities. These are
the sensitivities of a model’s output value to specific values of the input parameters.
The sensitivities provided by the Lagrange multipliers, as discussed in the previ-
ous sections, provide sensitivities of the optimal value of the optimization problem
with respect to the constraint bounds. The constraints in the Data Collaboration
formulation are bounded by the uncertainty in the parameters and experiment data.
Therefore, in past work, we have described the Lagrange multipliers from the solution
of Data Collaboration problems as “by-uncertainty” sensitivity [95].

For each type of question or problem formulated in the Data Collaboration frame-
work, the sensitivity information might be interpreted slightly differently. Therefore,
we focus on the response prediction and consistency measure problems. Throughout
this section we assume the conditions for Corollary 4.2 hold.

4.3.1 Response Prediction Sensitivity

Once the various experiment models are fitted with quadratic surrogate approxi-
mations, the response prediction problem is simply two NQCQPs: a minimization for
the lower bound L0 and a maximization for the upper bound R0. Each experiment
constraint has two inequalities, one for the lower uncertainty and one for the up-
per uncertainty. The Lagrange multipliers from the S-procedure formulation for this
constraint are denoted λ?e,u and λ

?

e,u, where the underline denotes the multiplier asso-
ciated with the lower bound prediction L0 and the overline denotes that associated
with the upper bound prediction.

In the rank relaxation formulation, the upper constraint on experiment e is,

Tr [Ze,uQ] = Tr

[(
Se −

[
ue + de 01×n
0n×1 0n×n

])
Q

]
≤ ξe,u, (4.16)

We are interested in the relationship between a change in the uncertainty ue and
the change in the bound ξe,u. In this case, the relation is unitary. Specifically, for
the optimal Q, ∂ξe,u/∂ue = Q?

11 = 1. Given these relations we can derive the local
sensitivity of the prediction bound to the uncertainty. For example,

∂L0

∂ue

∣∣∣∣
ue=ûe

=
∂L0

∂ξe,u

∣∣∣∣
ξ=0

· ∂ξe,u
∂ue

∣∣∣∣
ue=ûe

= (−λ?e,u) · (1).

(4.17)

Here, ue is meant to denote the uncertainty as a variable, and ûe is the nominal
value of the uncertainty. This derivation is similar for all the experiment sensitivities
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associated with response prediction, with only a few sign changes involved. The four
types of sensitivities associated with the experiments are

∂L0

∂le

∣∣∣∣
le=l̂e

= λ?e,l, (4.18a)

∂L0

∂ue

∣∣∣∣
ue=ûe

= −λ?e,u, (4.18b)

∂R0

∂le

∣∣∣∣
le=l̂e

= −λ?e,l, (4.18c)

∂R0

∂ue

∣∣∣∣
ue=ûe

= λ
?

e,u. (4.18d)

The sensitivities associated with the parameter constraints are derived in a similar
manner. For example, for the upper-bound constraint discussed in Section 3.4, the
rank relaxation formulation constraint is,

Tr [Zi,βQ] = Tr

[([
βi(αi − εi) −(αi + βi − εi)eTi /2

−(αi + βi + εi)ei/2 eie
T
i

])
Q

]
≤ ξi,β. (4.19)

At the optimal Q?,L for the left endpoint L0, the derivative of ξi,β with respect to βi
is

∂ξi,β
∂βi

= Q?,L
(1,i+1) − (αi − εi)Q?,L

(1,1)

= Q?,L
(1,i+1) − αi + εi.

(4.20)

The Lagrange multipliers from the S-procedure formulation associated with the upper
bound of the ith constraint are denoted as ν?i,β and ν?i,β, where the underline and
overline refer to the left and right prediction bounds, respectively. The local sensitivity
of the left prediction bound can now be derived as,

∂L0

∂βi

∣∣∣∣
αi=α̂i
βi=β̂i

=
∂L0

∂ξi,β

∣∣∣∣
ξ=0

· ∂ξi,β
∂βi

∣∣∣∣
αi=α̂i
βi=β̂i

=
(
−ν?i,β

)
·
(
Q?,L

(1,i+1) − α̂i + εi

)
.

(4.21)

The sensitivity due to the lower bound on the parameter, and the sensitivities of
the right prediction bound due to both parameter bounds are similarly derived. The
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resulting sensitivities are,

∂L0

∂αi

∣∣∣∣
αi=α̂i
βi=β̂i

= −ν?i,α ·
(
Q?,L

(1,i+1) − β̂i − εi
)
, (4.22a)

∂L0

∂βi

∣∣∣∣
αi=α̂i
βi=β̂i

= −ν?i,β ·
(
Q?,L

(1,i+1) − α̂i + εi

)
, (4.22b)

∂R0

∂αi

∣∣∣∣
αi=α̂i
βi=β̂i

= ν?i,α ·
(
Q?,R

(1,i+1) − β̂i − εi
)
, (4.22c)

∂R0

∂βi

∣∣∣∣
αi=α̂i
βi=β̂i

= ν?i,β ·
(
Q?,R

(1,i+1) − α̂i + εi

)
. (4.22d)

4.3.2 Consistency Measure Sensitivity

The consistency measure problem has an extra variable γ that plays a role in the
experiment constraints. Thus the sensitivity derivations associated with the experi-
ment constraints are slightly different than those for the prediction problem. In the
rank relaxation formulation, the upper constraint on experiment e is,

Tr [Ze,uQ] = Tr

[ Se 0n×1

01×n 0

]
−

ue + ue,fit + de 01×n −ue/2
0n×1 0n×n 0n×1

−ue/2 01×n 0

Q

 ≤ ξe,u.

(4.23)

At the optimal Q?, the derivative of ξe,u with respect to ue is

∂ξe,u
∂ue

= Q?
(1,1) −Q?

(1,n+2)

= 1− CD.

(4.24)

The optimal Lagrange multipliers for the consistency problem associated with the left
and right experiment bounds are denoted λ?e,l and λ?e,u respectively. The sensitivities
of the consistency measure with respect to the experiment constraints are the same
as before.

∂CD
∂ue

∣∣∣∣
ue=ûe

=
∂CD
∂ξe,u

∣∣∣∣
ξ=0

· ∂ξe,u
∂ue

∣∣∣∣
ue=ûe

,

= λ?e,u ·
(
1− CD(ue = ûe)

)
.

(4.25)

The multiplier λ?e,u enters positively because the consistency measure is a maximiza-

tion problem. Since CD is thought of as a function of constraint bounds, CD(ue = ûe)
refers to the consistency measure at the “current” constraint bounds. Naturally, it is
a function of all of the constraint bounds, not just ue, but we leave them out here for
notational simplicity.
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The sensitivity of the consistency measure due to the left bound is derived simi-
larly. To summarize, both types of experiment sensitivities are expressed as,

∂CD
∂le

∣∣∣∣
le=l̂e

= −λ?e,l ·
(

1− CD(le = l̂e)
)
, (4.26a)

∂CD
∂ue

∣∣∣∣
ue=ûe

= λ?e,u ·
(
1− CD(ue = ûe)

)
. (4.26b)

The parameter bound sensitivities are derived exactly the same as in the previous
section since the parameter constraints have no dependence on the variable γ. They
are expressed as,

∂CD
∂αi

∣∣∣∣
αi=α̂i
βi=β̂i

= ν?i,α ·
(
Q?

(1,i+1) − β̂i − εi
)
, (4.27a)

∂CD
∂βi

∣∣∣∣
αi=α̂i
βi=β̂i

= ν?i,β ·
(
Q?

(1,i+1) − α̂i + εi
)
, (4.27b)

where ν?i,α and ν?i,β are the Lagrange multipliers for the consistency measure problem

associated with the ith lower and upper parameter bounds respectively.

4.3.3 Sensitivity Pairs

Every experiment and parameter has two constraints, a lower and an upper bound.
Assuming that each left bound is strictly less than the corresponding right bound for
each of these constraints, it is intuitive that the consistency measure and prediction
bounds are not sensitive to both bounds. The optimization problem is only sensitive
to a bound if the optimal x? is on that boundary. Naturally, if the boundaries
are separated, x? cannot be on both the upper and lower boundaries simultaneously.
Therefore, for each pair of sensitivities of the primal problem to the constraint bounds,
at least one of them is zero.

This section will demonstrate that this intuition holds even for the sensitivities
derived from the S-procedure formulations for the experiment constraints. This is
asserted in two theorems, one for the response prediction case, and one for the con-
sistency measure case.

Theorem 4.4. For each experiment constraint e with nonzero uncertainty (le 6= ue),
at least one of the sensitivities of the outer left prediction bound L0 with respect to
le and ue is zero. In other words, at most one of λ?e,l and λ?e,u can be nonzero. The

same is true for the sensitivities associated with the outer right prediction R0.

Proof. Without loss of generality, we focus on the left prediction bound problem.
Assume that for a specific experiment e, the optimal λ?e,l and λ?e,u are both strictly
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positive. We will show a contradiction. Assuming a consistent dataset, the optimal
Lagrange multipliers λ? and maximal γ? satisfy the semi-definite constraint

Z0 −
[
γ? 0
0 0n

]
+

N∑
i=1

λiZi � 0. (4.28)

Examine the part of this summation associated γ? and λ?e,l and λ?e,u. Specifically,

λ?e,lZe,l + λ?e,uZe,u −
[
γ? 0
0 0n

]
=λ?e,l

[
de+le 0

0 0n

]
− λ?e,u

[
de+ue 0

0 0n

]
+ (λ?e,u − λ?e,l)Se −

[
γ? 0
0 0n

]
.

(4.29)

Now define new variables,

λ̃e,l := λ?e,l −min{λ?e,l, λ?e,u}
λ̃e,u := λ?e,u −min{λ?e,l, λ?e,u}
γ̃ := γ? + (ue − le) min{λ?e,l, λ?e,u}.

(4.30)

Both λ̃e,l and λ̃e,u are nonnegative, and at least one of them is zero. Furthermore,
the partial sum (4.29) remains unchanged.

λ̃e,l
[
de+le 0

0 0n

]
− λ̃e,u

[
de+ue 0

0 0n

]
+ (λ̃e,u − λ̃e,l)Se −

[
γ̃ 0
0 0n

]
=λ?e,l

[
de+le 0

0 0n

]
− λ?e,u

[
de+ue 0

0 0n

]
+ (λ?e,u − λ?e,l)Se −

[
γ? 0
0 0n

]
.

(4.31)

Therefore, the semi-definite constraint (4.28) is satisfied with λ̃e,l, λ̃e,u, and γ̃ instead
of λ?e,l, λ

?
e,u, and γ?, respectively. Lastly note,

γ̃ = γ? + (ue − le) min{λ?e,l, λ?e,u} ≥ γ?. (4.32)

Therefore, λ?e,l, λ
?
e,u, and γ? are not optimal. Contradiction.

Theorem 4.5. If the optimal upper bound on the consistency measure from the rank
relaxation formulation is differentiable with respect to the constraint bounds, then for
each experiment constraint e with nonzero uncertainty (le 6= ue), at least one of the
sensitivities of the upper bound on the consistency measure CD with respect to le and
ue is zero. In other words, at most one of ∂CD/∂le and ∂CD/∂ue, evaluated at the
original bounds le = l̂e and ue = ûe, can be nonzero.

Before proving this, we prove a lemma relating inactive constraints to zero-valued
multipliers.

Lemma 4.6. If the optimal Q? for the rank relaxation lower bound of an NQCQP
strictly satisfies one of the inequality constraints, i.e. Tr [Zı̂Q

?] < 0 for some ı̂ ∈
{1, . . . , N}, and if the optimal solution as a function of the constraint bounds, p?

r
(ξ),

is differentiable at ξ = 0, then λ?ı̂ = 0.
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Proof. Recall from Chapter 3 that we rewrote the rank relaxation problem as a func-
tion of its constraint bounds.

p?
r
(ξ) = min

Q�0
Tr [Z0Q]

s.t. Tr [ZiQ] ≤ ξi, i = 1, . . . , N
(4.33)

Without loss of generality, the possible equality constraints are not considered for
notational simplicity. The feasible set of the original problem is

F = {Q � 0 : Tr [ZiQ] ≤ 0, i = 1, . . . , N}. (4.34)

For any ε > 0 denote the feasible set associated with p?
r
(εeı̂) is

Fε = {Q � 0 : Tr [Zı̂Q] ≤ −ε, Tr [ZiQ] ≤ 0, i = 1, . . . , ı̂− 1, ı̂+ 1, . . . , N}. (4.35)

Then Fε ⊆ F for all ε > 0. Let Q? be the optimal matrix for the rank relaxation
problem at ξ = 0 such that p?

r
(0) = Tr [Z0Q

?]. By the lemma’s hypothesis, there is an
ı̂ ∈ {1, . . . , N} such that Tr [Zı̂Q

?] < 0. Then there exists ε > 0 such that for all ε′ ≤ ε,
Tr [Zı̂Q

?] ≤ −ε′. Therefore, for all ε′ ≤ ε, Q? ∈ Fε′ and hence p?
r
(0) = p?

r
(−ε′eı̂). Then

the optimal Lagrange multiplier associated with the ı̂th constraint is

λ?ı̂ =
∂p?

r

∂ξı̂

∣∣∣∣
ξ=0

= lim
h→0

p?
r
(0)− p?

r
(−ε′eı̂)

h
= 0. (4.36)

Proof of Theorem 4.5. If CD = 1, equation (4.27) shows that the partial derivatives
∂CD/∂le and ∂CD/∂le at the initial uncertainty will both be zero.

Assume, now, that CD < 1. We assume that both partial derivatives are positive
and show a contradiction. If both

∂CD
∂le

∣∣∣∣
le=l̂e

> 0, and
∂CD
∂ue

∣∣∣∣
ue=ûe

> 0 (4.37)

and since CD < 1, λ?e,l > 0 and λ?e,u > 0. From the contrapositive implication of
Lemma 4.6 Q? is on the respective constraint boundaries such that

Tr [Zl,consisQ] = 0, and Tr [Zu,consisQ] = 0. (4.38)

Let Q̂? be the matrix corresponding to the upper-left n+ 1× n+ 1 submatrix of Q?.
Then the equalities in equation (4.38) can be written as

le + de − leQ(1,n+2)− Tr
[
SeQ̂

?
]

= 0, and Tr
[
SeQ̂

?
]
− ue − de + ueQ(1,n+2) = 0.

(4.39)
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The consistency measure upper bound CD is equal to Q(1,n+2). Summing the two
equalities then yields,(

le + de − leCD − Tr
[
SeQ̂

?
])

+
(

Tr
[
SeQ̂

?
]
− ue − de + ueCD

)
= 0

⇒ le − ue − leCD + ueCD = 0
⇒ (ue − le)CD = ue − le

⇒ CD = 1.

(4.40)

Contradiction.

As mentioned above, a similar theorem for parameter constraints does not al-
ways hold for the parameter constraints in the outer bound formulation when they
are formed as a pair of quadratic constraints as demonstrated in equation (3.21)
on page 18. From experience, it is almost always true that at least one of the two
Langrangian multipliers associated with the bounds of a parameter is zero. We now
demonstrate a simple example, where both multipliers are nonzero.

Suppose we wish to make a response prediction of the function y = 1− x2 where
the parameter x is a scalar and subject to the bounds −1 ≤ x ≤ 1. No experi-
ment constraints are imposed. The S-procedure formulation of the left bound on the
prediction is

max
λ≥0,γ

γ

s.t. [ 1 0
0 −1 ]−

[
γ 0
0 0

]
+ λ1

[
−(1+ε) −ε/2
−ε/2 1

]
+ λ1

[
−(1+ε) ε/2
ε/2 1

]
� 0.

(4.41)

The optimal Lagrange multipliers are λ?1 = λ?2 = 0.5 > 0.

While the rank relaxation outer bound may be sensitive to both parameter bounds
(for a single parameter), this does not mean that actual optimal value is. In fact, it
will not be. In the case of strong duality between the rank relaxation problem and
the original problem, one of the pair of the Lagrange multipliers associated with a
parameter will be zero. If the conditions for Theorem 4.3 hold, then the the multipliers
are the partial derivatives of the optimal value of the original problem with respect
to the constraints. In this problem, both constraints cannot be zero simultaneously,
hence the multipliers can not both be strictly positive (see Lemma 4.6).

4.4 Variable and Output Transformations

To exploit semidefinite programming optimization techniques, transformations to
both the inputs (parameters) and outputs (responses) of an observable’s model are
employed with the goal of obtaining an input/output relation that is well- approxi-
mated by a quadratic function.
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Suppose that the parameters are denoted by a parameter vector k, the rectangular
set P = {k : ki ≤ ki ≤ ki} representing the prior information, and the models by Ge.
Associated with each parameter ki there is a nondecreasing invertible transformation,
φi, which is used to define a new variable,

xi = φi(ki), (4.42)

and its bounds

αi = φi(ki), βi = φi(ki). (4.43)

Since the transformation is invertible, it follows that ki = φ−1
i (xi). For a parameter

vector k, write x = Φ(k) to denote the element-by-element transformation into the
vector x. The prior bound H, as previously defined, can now be written as the
rectangle {Φ(k) : ki ∈ P}, which is the prior information in the new coordinates, x.
Similarly, associated with each model, there is an invertible output transformation
ψe.

Together, the variable and output transformations allow redefinition of the models,
via,

Me(x) = ψe
(
Ge

(
Φ−1 (x)

))
. (4.44)

The choice of transformations is guided by the goal that each Me should be well
approximated by a quadratic function over the domain x ∈ H. The lower and up-
per experiment uncertainty bounds, le and ue, and the measured value de are also
transformed using the same function as,

de = ψe(de), le = ψe(le), ue = ψe(ue) (4.45)

Consider the minimization problem to solve the response prediction left endpoint,
L0. Assuming ψ0 is monotone and invertible, then the left endpoint of G0, denoted
L0, is ψ−1

0 (L0). Consider the partial derivative of the lower bound prediction of a
model G0 with respect to the perturbation in the ith parameter bound. To convert
this derivative to be with respect to the original parameter upper bound ki we use
the chain rule. Then, for example, the sensitivity of the left prediction bound to the
parameter upper bound in the original units is,

∂L0

∂ki

∣∣∣∣
ki=k̂i

=
∂ψ−1

0

∂L0

∣∣∣∣
L0=L̂0

· ∂L0

∂βi

∣∣∣∣
β=β̂

· ∂φi
∂ki

∣∣∣∣
ki=k̂i

. (4.46)

Sensitivities with respect to the experiment uncertainty are derived similarly. For ex-
ample, the sensitivity of the left prediction bound of the upper experiment uncertainty
in the original units is,

∂L0

∂ue

∣∣∣∣
ue=ûe

=
∂ψ−1

0

∂L0

∣∣∣∣
L0=L̂0

· ∂L0

∂ue

∣∣∣∣
ue=ûe

· ∂ψe
∂ue

∣∣∣∣
ue=ûe

. (4.47)

Using the transformation in equations (4.46) and (4.47), sensitivities in a prob-
lem’s original variables are available. The next section uses such transformations to
analyze results from the GRI-Mech 3.0 dataset.
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4.5 Example: GRI-Mech 3.0

Section 2.6 presented the GRI-Mech 3.0 dataset, a collection of process models
and data related to methane combustion. There are 102 parameters (mostly con-
stants associated with reaction rates), and 77 experiments with quadratic models
and experimental data. Experimental uncertainty information was not available, and
in Section 2.6 and previous work [32, 33, 95] an arbitrary uncertainty of 0.1 was used
for all experiments.

We now consider a set of experiment uncertainties provided by a domain expert
[120, 121]. These uncertainties are chosen experiment by experiment to be reason-
able values for the experimental type and setup. We will use these uncertainties
throughout the rest of this document when using the GRI- Mech 3.0 dataset. Since
the uncertainties were not provided by the experimenters themselves, this dataset is
used only to demonstrate the technique and not to reach any conclusions about the
models or experiments therein.

The consistency measure bounds were computed as [−0.37, −0.26] with no branch
and bound iterations. This means that every experiment uncertainty must be tight-
ened by at least 26% in order to find a feasible parameter vector and tightening
them by more than 37% guarantees the existance of a feasible point. Therefore the
dataset is inconsistent. The sensitivity measures can provide insight into what might
be causing this inconsistency.

Using the notation from Section 4.4, each of the GRI-Mech 3.0 parameters lies in
the rectangular set P ; each parameter ki has an upper and lower bound.

ki ≤ ki ≤ ki. (4.48)

We define the span si of ki as
√
ki/ki, and the following transformation,

xi = φi(ki) =

log10(ki)− log10

(√
ki · ki

)
log10(si)

. (4.49)

This transformation normalizes the bounds of xi to be [−1, 1]. For each experiment
we also have ψe which is just a simple log10 transformation. However, for this type
of problem, kineticists are interested in the sensitivity with respect to the log of
the parameter bound ki and with respect to the log of the experiment bound ue. For
example, the sensitivities of the upper bound on the consistency measure with respect
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to an upper parameter bound and an upper experiment bound are

∂CD

∂ log10(ki)

∣∣∣∣
ki=k̂i

ki=
ˆ
ki

=
∂CD
∂βi

∣∣∣∣
αi=α̂i
βi=β̂i

· ∂φi
∂ log10(ki)

∣∣∣∣ ki=k̂i
ki=

ˆ
ki

=
ν?i,β(Q?

(1,i+1) − α̂i + εi)

log10(si)
,

(4.50)

∂CD
∂ log10(ue)

∣∣∣∣
ue=ûe

=
∂CD
∂ue

∣∣∣∣
ue=ûe

= λ?e,u
(
1− CD(ue = ûe)

)
.

(4.51)

The other sensitivities have similar variable transformations.

Figure 4.2 shows the sensitivities of the upper bound on the consistency mea-
sure with respect to each of the bounds on the 77 experiments and 102 parameters.
Locally the upper bound on the consistency measure is most sensitive to the upper
bound on experiment 36 (target F4 [28]) and experiment 37 (target F5 [53]). To
examine these sensitivities further, we remove each experiment constraint from the
dataset, one at a time, and recalculate the consistency measure. When target F4 is
removed, the consistency measure bounds were calculated as [−0.062, 0.021]. These
bounds do not ascertain the consistency of the dataset; however, after one branch and
bound iteration the consistency measure was tightened to [−0.062, −0.009], showing
inconsistency. When we instead remove target F5 (leaving target F4 in the dataset),
the consistency bounds are calculated as [0.13, 0.24]. Figure 4.3 shows the sensitiv-
ities of the upper bound on the consistency measure with target F5 removed. After
removing target F5, the scale of the sensitivities is reduced and spread out among
more experiments, and it is still relatively insensitive to the parameters.

Since the GRI-Mech 3.0 dataset with the new experiment uncertainties is incon-
sistent with target F5 included, we shall remove target F5 from the dataset for any
examples throughout the rest of this document. Target F5 would now seem a good
candidate for a response prediction, as it is no longer in the dataset; however, this
prediction is presented in [121] and doesn’t exhibit very interesting sensitivities as
an example. We therefore, remove target StF8, the laminar flame speed in a stoi-
chiometric atmospheric ethane-air mixture [113], and predict its range. Predicting
target StF8 using the rest of the GRI-Mech 3.0 dataset (except target F5) yields
an outer bound interval of [1.545, 1.727] log10(cm/s) and an inner bound interval of
[1.566 1.699] log10(cm/s).

Figures 4.4 and 4.5 show the sensitivities related to the outer bounds L0 and
R0, respectively. These sensitivities provide directions for improving the prediction
of target StF8 (i.e. narrowing the range of the prediction) by demonstrating which
experiment or parameter uncertainties have the most effect on the prediction bounds.
Figure 4.4 shows the left outer prediction bound is most sensitive to the lower un-
certainty bound on the 37th target (target F6 [53]). Figure 4.5 shows the right outer
prediction bound is most sensitive to the upper uncertainty bound on the 67th target
(target SF7 [68]).
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Figure 4.2: Sensitivity to the upper bound on the consistency measure CD of the
GRI-Mech 3.0 dataset with respect to the bounds on its 102 parameters and 77
experiments. The inconsistent measure has the most dependence on two experiments,
target F4 [28] and target F5 [53].
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Figure 4.3: Sensitivity to the upper bound on the consistency measure CD of the
GRI-Mech 3.0 dataset with respect to the bounds on its 102 parameters and 76 of its
experiments. Target F5 [53] is not included in the dataset. The dataset is consistent,
and the consistency measure is not overly sensitive to any one or two experiments or
parameters.

36



−0.4

−0.3

−0.2

−0.1

0

S
en

s.
 to

 u
p.

 b
nd

.

20 40 60 80 100
0

0.1

0.2

0.3

0.4

S
en

s.
 to

 lo
w

. b
nd

.

Parameter index,  i
20 40 60

Experiment index,  e

target F6

Figure 4.4: Sensitivity of the lower (outer) bound on the left endpoint, L0, of the pre-
diction of target StF8 using the constraints of the rest of the GRI-Mech 3.0 dataset
with respect to the lower and upper bounds on the 102 parameters and 76 experi-
ments.
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Figure 4.5: Sensitivity of the upper (outer) bound on the right endpoint, R0, of
the prediction of target StF8 using the constraints of the rest of the GRI-Mech 3.0
dataset with respect to the lower and upper bounds on the 102 parameters and 76
experiments.
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The sensitivity of the left outer prediction endpoint with respect to the upper
bound uncertainty in target F6 is about 0.366. The lower bound uncertainty for
F6 (as reported by Xiaoqing You [120, 121]) is -0.0448. Hypothetically, if further
experiments increased this lower uncertainty by 0.02 to -0.0248, we would expect the
left outer prediction endpoint to increase by at least 0.366·0.02 = 0.0073 to 1.552. We
changed the lower uncertainty of target F6 to -0.0248 and re-performed the prediction
of StF8. The new outer left endpoint is 1.553, within 0.01% of the estimate.

4.6 Assessing a General Experiment and Parame-

ter Impact

When gauging the importance of the uncertainty in a parameter or experiment
relative to a response prediction, the sensitivities derived in Section 4.3.1 are for the
prediction of a specific observable. A more general measure of parameter and ex-
periment impact could be useful for helping modelers and experimenters concentrate
their efforts. Specifically, we would like a prediction impact measure that is more
independent of the observable being predicted.

First we derive the sensitivity of the prediction interval length to the lengths
of the experiment/parameter uncertainty intervals. Take for example the length of
the experiment uncertainty interval in experiment e, unce = ue − le. We make the
assumption that a tightening of unce is symmetric, therefore for a given prediction
endpoint, the sensitivities with respect to ue and le are averaged to obtain a sensitivity
with respect to unce. Based on this assumption, the sensitivity of the prediction
interval length I0 = R0 − L0 with respect to unce is

∂I0

∂unce
=

1

2

(
∂R0

∂ue
− ∂R0

∂le
− ∂L0

∂ue
+
∂L0

∂le

)
. (4.52)

A similar expression is derived for the sensitivity due to the uncertainty interval length
in a parameter xi as

∂I0

∂unci
=

1

2

(
∂R0

∂βi
− ∂R0

∂αi
− ∂L0

∂βi
+
∂L0

∂αi

)
. (4.53)

These expressions provide a single sensitivity for the uncertainty in each parameter
and in each experiment.

To assess a general impact factor that each experiment and parameter has on
the model prediction, we need a large collection of models of observables to predict,
{M0,j}Nj=1. This collection should include a representative sample of models in the
dataset’s domain. Predictions are then performed on each model M0,j and for each
experiment and parameter. The associated sensitivities are then averaged over all
predictions. These average sensitivities are our general measures of sensitivity [95].
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In lieu of an available collection, we pose two possible alternatives. First, predict
the range of each model in the dataset, Me, constrained to the rest of the dataset ex-
periments. If the dataset itself has a fair number of models, this could provide enough
predictions to average out the effects of model specific prediction. It also trivially cov-
ers the type of observables present in the dataset. The top row of Figure 4.6 shows
these averaged sensitivities for the GRI-Mech 3.0 dataset.

The second method is to generate a set of models from a random distribution.
For each model to be generated, we first pick a list of parameters. This list is chosen
such that each pair of parameters in the list both appear as active parameters in at
least one of the dataset models. Each of the dataset models has been fitted with a
quadratic surrogate model Me(x) = xTAex + bT

ex + ce. The random model is also
quadratic, and its coefficients are constrained to be the same average scale as those
in the dataset models. Specifically,

‖A0,j‖F =
m∑
e=1

‖Ae‖F, ‖b0,j‖F =
m∑
e=1

‖be‖F, (4.54)

where ‖ · ‖F is the Frobenius norm. The constant term c0,j is arbitrarily set to 0 as it
does not affect the prediction sensitivities. These random models, should be similar
to the dataset models and there are an arbitrary number of them. The bottom row
of Figure 4.6 shows the average sensitivities over 10,000 random models of this type
with respect to the GRI-Mech 3.0 dataset.
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Figure 4.6: Average sensitivities over a collection of prediction models with respect to
the GRI-Mech 3.0 parameter and experiment uncertainties. The top row shows the
average over predictions of each of the GRI-Mech models constrained by the rest of
the dataset. The bottom row shows the average over predictions of random quadratic
models generated in the manner described in the text.
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The sensitivities in Figure 4.6 show similarities between the two methods of av-
eraging over GRI-Mech 3.0 models and random models. Both techniques share some
of the larger sensitivities (although on a different scale); however, the averaging over
the 10,000 random models exhibits more sparsity in the sensitivities.

4.7 Prediction Linearization Using Sensitivity In-

formation

With sensitivity information, a linearization of the response prediction as a func-
tion of experiment and parameter uncertainty is easy to create. Specifically, first
order Taylor series approximations of the left and right prediction endpoints only
require an evaluation of the prediction and the first derivatives (i.e. the sensitivities).
Explicitly,

L0(l,u,α,β) ≈L0(̂l, û, α̂, β̂) + . . .

+
m∑
e=1

[
(le − l̂e) ·

∂L0

∂le

∣∣∣∣
le=l̂e

+ (ue − ûe) ·
∂L0

∂ue

∣∣∣∣
ue=ûe

]
+ . . .

+
n∑
i=1

(αi − α̂i) ·
∂L0

∂αi

∣∣∣∣
αi=α̂i
βi=β̂i

+ (βi − β̂i) ·
∂L0

∂βi

∣∣∣∣
αi=α̂i
βi=β̂i


(4.55)

R0(l,u,α,β) ≈R0(̂l, û, α̂, β̂) + . . .

+
m∑
e=1

[
(le − l̂e) ·

∂R0

∂le

∣∣∣∣
le=l̂e

+ (ue − ûe) ·
∂R0

∂ue

∣∣∣∣
ue=ûe

]
+ . . .

+
n∑
i=1

(αi − α̂i) ·
∂R0

∂αi

∣∣∣∣
αi=α̂i
βi=β̂i

+ (βi − β̂i) ·
∂R0

∂βi

∣∣∣∣
αi=α̂i
βi=β̂i


(4.56)

where the partial derivatives are those derived in equations (4.18) and (4.22).

Prediction linearization has many potential applications. If the prediction is to be
constrained or optimized in any way, the prediction will possibly be evaluated many
times with different uncertainty values by an optimization solver. If each prediction
takes several minutes (or hours) to compute, this could be very computationally
expensive. Approximating the prediction with a linearization with alleviate much of
that expense.

One example where linearization is beneficial is a cost-constrained uncertainty
quantification. The sensitivities by themselves provide insight into possible future
experiments that would best improve the predictive quality of the dataset. However,
different experiments and data collection naturally would each have their own real-
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world costs; it might be more costly to reduce the uncertainty in the experiment
associated with the highest sensitivity than to do so with a lower ranked experiment.

Let Ke,l be the cost associated with the lower uncertainty bound from the eth

constraint. As a function, Ke,l(le) outputs the cost of tightening this uncertainty

from the current value of l̂e to le. The cost function should exhibit some practical
behaviors; the cost is zero at l̂e, it increases in value as the uncertainty tightens,
and it becomes infinite or at least very large with no uncertainty. Similar costs are
defined for the experiment upper uncertainty and the lower and upper parameter
uncertainties, i.e. Ke,u, Ki,α, and Ki,β. For notational simplicity, we define a 2n×2m
vector δ that contains all the uncertainty values, and Kj(δj) is the cost for the jth

element of δ.

One generic goal is to reduce the length of the prediction interval in a cost effective
manner. Since prediction interval length reduction and cost reduction are two com-
peting objectives, one is minimized while the other is used as a constraint. Given a
budget T , the uncertainty that achieves the minimal prediction interval length within
budget is written as,

δ?min.pred. = argmin
δ

R0(δ)− L0(δ)

s.t.

{ ∑2n+2m
j=1 Kj(δj) ≤ T,

0 ≤ δj ≤ δ̂j, j = 1, . . . , 2n+ 2m.

} (4.57)

Given a desired prediction interval length I, the uncertainty that achieves this pre-
diction length with the minimal cost is written as,

δ?min.cost = argmin
δ

2n+2m∑
j=1

Kj(δj)

s.t.

{
R0(δ)− L0(δ) ≤ I

0 ≤ δj ≤ δ̂j, j = 1, . . . , 2n+ 2m.

} (4.58)

Both δ?min.pred. and δ?min.cost are difficult to calculate because L0(δ) and R0(δ)
are optimization problems themselves, potentially taking several minutes per evalu-
ation. This is where the application of the prediction linearization is useful. With
the linearization, the optimizations in equations (4.57) and (4.58) are approximated
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respectively as,

δ?min.pred. ≈ argmin
δ

R0(δ̂)− L0(δ̂) +
2n+2m∑
j=1

(
δj − δ̂j

)
·
(
∂R0

∂δj

∣∣∣∣
δ=δ̂

− ∂L0

∂δj

∣∣∣∣
δ=δ̂

)

s.t.

{ ∑2n+2m
j=1 Kj(δj) ≤ T,

0 ≤ δj ≤ δ̂j, j = 1, . . . , 2n+ 2m,

(4.59)

δ?min.cost ≈ argmin
δ

2n+2m∑
j=1

Kj(δj)

s.t.

 R0(δ̂)− L0(δ̂) +
2n+2m∑
j=1

(
δj − δ̂j

)
·
(
∂R0

∂δj

∣∣∣∣
δ=δ̂

− ∂L0

∂δj

∣∣∣∣
δ=δ̂

)
≤ I

0 ≤ δj ≤ δ̂j, j = 1, . . . , 2n+ 2m.

(4.60)

If the cost functions Kj are convex, then these are convex optimizations and efficient
to solve with readily available solvers.

4.7.1 Example: Cost Analysis of GRI-Mech 3.0 Prediction

Using Linearization

The prediction of target StF8 using the rest of the GRI-Mech 3.0 dataset produces
the sensitivity information in Figures 4.4 and 4.5 in Section 4.5. The prediction was
most sensitive to the lower uncertainty of target F6 and the upper uncertainty of
target SF7. To reduce computation complexity we temporarily only focus on those
two uncertainties.

We assign to each uncertainty δ a cost function which has the desired properties,

K(δ) =

(
δ̂

δ

)a

− 1. (4.61)

where a is a positive number that relates to how quickly the cost rises with the
uncertainty reduction. When the uncertainty is held at the “current” uncertainty δ̂,
the cost is 0. Elimination of all uncertainty results in an infinite cost. Furthermore, K
is a convex function. For the present example, the parameters are arbitrarily chosen
as aF4 = 3 and aSF7 = 2.

As already mentioned, solving the full non-linearized cost minimization prob-
lem (4.58) is difficult and we therefore allow only the lower uncertainty of target F6
and the upper uncertainty of target SF7 to vary. The budget is set to T = 0.3.
Solving the two variable non-linearized problem obtains the optimal uncertainties of
l?F4 = −0.0401 and u?SF7 = 0.0042, which is no change in lF4 and a 0.0006 decrease in
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uSF7. This calculation took about 2 hours and 28 minutes to compute. Solving the
two variable linearized problem takes about 0.35 seconds to compute (plus about 2.5
minutes for the initial prediction to get sensitivities). and obtains the same answer to
6 digits of precision. An optimization over all 354 uncertainties (2 for each of the 102
parameters and 2 for each the 75 experiments) with the linearized prediction took
about 2.5 minutes (again plus another 2.5 mintues for the initial prediction).
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Chapter 5

Representative Feasible Parameter

Vector

Every point in the feasible set F is a vector of viable parameter values based on
the deterministic view of uncertainty presented in Chapter 2. However, there is often
a value associated with each parameter that is set by the scientific community to be
designated the “nominal value” of the parameter. This representative point can be
useful in designing experiments and running simulations.

The nominal value is sometimes determined by experiments on a parameter-by-
parameter basis, which often places the nominal value in the center of its uncertainty
range. Sometimes the nominal values are chosen via parameter optimization tech-
niques [39, 44, 52, 104]. Both of these techniques can result in an infeasible choice
of nominal values. This chapter presents one way of choosing a nominal parameter
vector that is feasible. It is an expansion on some of the work presented in [121].

5.1 Minimizing the Number of Parameter Devia-

tions From Nominal Values

The literature value of each parameter is usually presented as the result of some
combination of careful experimentation, tested analysis techniques, and expert opin-
ion. If a collection of experiments and models invalidate the nominal parameter vector
(i.e. it is not in the feasible set), then clearly the parameter values must deviate from
the nominal values in order to achieve feasibility. However, due to the amount of work
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that went into the determination of these nominal values, experts are often reluctant
to accept such deviations.

This presents a natural question: what is the minimal number of parameter de-
viations away from the nominal values required to achieve feasibility? We pose this
question mathematically as an optimization problem using the cardinality function,
card(·).

MD?
card := argmin

x∈F
card (x− x0) (5.1)

where x0 is the nominal parameter vector. The cardinality function counts the number
of nonzero elements of its argument and is sometimes called the `0- norm (although
it is not a true norm).1 This optimization problem is an instance of a Minimal
Cardinality Program (MCP).

One possible way to solve this optimization problem is to freeze a set of parameters
at the nominal values and solve the feasibility problem. In the worst case we must
try every possible combination of parameters to freeze in order to find the minimum
number. Unfortunately, there are 2n possible combinations for n parameters and the
problem is NP-hard [82]. The next section discusses a relaxation for the cardinality
problem in equation (5.1) using the `1-norm.

5.2 Convex Approximation Using the One-Norm

For a convex domain C, the convex envelope of a function f is the largest convex
function g such that g(x) ≤ f(x) for all x ∈ C. In other words, the convex envelope
is the best pointwise, convex, lower-bound approximation on the domain C [89]. The
convex envelope of the rank function on the set {X ∈ Rm×n : σ(X) ≤ 1} is the nuclear
norm (the sum of the eigenvalues) [31, 89]. It can be easily shown that this implies
that the convex envelope of the cardinality function on the set {x ∈ Rn : ‖x‖∞ ≤ 1}
is the `1-norm (the sum of the absolute values of the vector elements) [31]. Using the
`1-norm in minimization is a well-known heuristic approximation to the cardinality
function [17, 24] as it tends to drive the elements of its input to zero.

Applying this `1-norm approximation heuristic, the minimal deviation MCP
(equation (5.1)) is approximated as,

MD?
`1

:= min
x∈F
‖x− x0‖1 = min

x∈F

n∑
i=1

|xi|. (5.2)

If a normalization of the parameters is used, the prior bounds hyperrectangle is con-
strained to be H = {x ∈ Rn : ‖x‖∞ ≤ 1}. In this case, the `1-norm is the convex

1The `p-norm is defined as ‖x‖p = (
∑

i |xi|p)
1/p

for p ≥ 1. The triangle inequality does not hold
for 0 < p < 1 and hence ‖x‖p is not a norm for these values of p. The cardinality function is the
limit as p goes to 0: card(x) = limp→0 ‖x‖p
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envelope, and hence a lower bound, of the cardinality function. Since the feasible F
is a subset of H, MD?

`1
≤ MD?

card. Note that MD?
`1

= MD?
card if x0 ∈ F . Therefore,

for the rest of this chapter, we assume that the parameters have been normalized.

5.3 NQCQP Formulation of `1-Approximation

The absolute value function, and by extension the `1-norm, can be rewritten as a
linear function of twice as many variables with linear constraints. This is achieved by
separating the positive and negative elements of the vector x − x0 [36]. Define two
positive vectors µ and ν, such that µiνi = 0 (i.e. for each index i, only one of the
vectors has a nonzero entry) and xi − x0,i = µi − νi. In other words, µi is equal to
xi−x0,i when xi−x0,i is positive and is zero otherwise, whereas νi is equal to x0,i−xi
when it is positive and is zero otherwise. Then |xi − x0,i| = µi + νi.

The `1-norm minimization problem in equation (5.2) can be rewritten using the
vectors µ and ν.

MD?
`1

= min
µ,ν

n∑
i=1

µi + νi

s.t.


µ− ν + x0 ∈ F
µ ≥ 0, ν ≥ 0
µiνi = 0, i = 1, . . . , n

(5.3)

If all of the constraint functions that make up the feasible set F are quadratic, then
this formulation is an NQCQP, and the techniques described in Chapter 3 can be
utilized. The next few sections discuss the explicit formulation of equation (5.3) as
the NQCQP found in Chapter 3.

5.3.1 Combining Positive Constraints and Box Constraints

The prior information (box) constraints confine each parameter to an interval.

αi ≤ xi ≤ βi (5.4)

Substituting the vectors µ and ν used in equation (5.3) yields,

αi ≤ µi − νi + x0,i ≤ βi. (5.5)

The equality constraint µiνi = 0 forces either µi or νi to be zero. Therefore we can
split the box constraint up.

αi − x0,i ≤ µi ≤ βi − x0,i

αi − x0,i ≤ −νi ≤ βi − x0,i

(5.6)
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We assume the nominal value is in the prior bounds and add the positive constraint
for µi and νi.

0 ≤ µi ≤ βi − x0,i

0 ≤ νi ≤ x0,i − αi
(5.7)

We now have a lower and upper bound for each element of µ and ν. In Section 3.4,
the upper and lower bounds on the parameters were formulated as two quadratic
constraints to obtain Lagrange multipliers for each constraint. Applying this same
technique using a small ε > 0 (or a different one for each constraint) gives four
quadratic constraints.

µi(µi − βi + xi,0 − ε) ≤ 0

(µi + ε)(µi − βi + xi,0) ≤ 0

νi(νi − xi,0 + αi − ε) ≤ 0

(νi + ε)(νi − xi,0 + αi) ≤ 0

(5.8)

Let the ω denote the vector of µ stacked over ν, i.e.

ω :=

[
µ
ν

]
(5.9)

Then each of these 4n quadratic constraints on the vectors µ and ν can be written
in the matrix form as

[ 1
ω ]T Pi [ 1

ω ] ≤ 0, (5.10)

where Pi is a 4n+ 1× 4n+ 1 matrix representing the quadratic coefficients.

5.3.2 Quadratic Experiment Constraint Formulation

Other than the box constraints on the parameters, there are the constraints due
to models and experiments to consider. Using the notation from Chapter 3 each of
these quadratic constraints can be written as

[ 1
x ]T Zi [ 1

x ] ≤ 0. (5.11)

Substituting the µ and ν vectors used in equation (5.3) we get,[
1

µ−ν+x0

]T
Zi

[
1

µ−ν+x0

]
≤ 0. (5.12)

Define the matrix Pi as,

Pi :=

1 xT0
0 I
0 −I

Zi

[
1 0 0
x0 I −I

]
(5.13)
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Then using the vector ω as defined in equation (5.9), the constraint in equation (5.11)
is rewritten as,

[ 1
ω ]T Pi [ 1

ω ] ≤ 0 (5.14)

which is a quadratic constraint in 2n variables. Combined with the box constraints
derived in the previous section we re-index the matrices and let i range from 1 to
4n+ 2m for the 4n box constraints and the 2m experiment constraints.

5.3.3 Equality Constraint Formulation

For each index j = 1, . . . , n, either µj or νj needs to be 0. There are several ways
we could enforce this requirement as a quadratic constraint.

Method 1: As shown in the formulation shown in equation (5.3), the constraint can
be enforced with a quadratic constraint for each index j = 1, . . . , n.

µjνj = 0 (5.15)

Each of these quadratic constraints can be written in matrix form. De-
fine the matrix Pj as

Pj :=

0 0T 0T

0 0n Bjj

0 Bjj 0n

 (5.16)

where Bjj is an n×n standard basis matrix, i.e. a matrix with a one at
row j column j and zeros elsewhere. The equality constraints are then
written as

[ 1
ω ]T Pj [ 1

ω ] = 0, j = 1, . . . , n. (5.17)

Method 2: Since µ and ν are constrained to be positive, the equality constraints
can be written as one quadratic constraint.

µTν = 0 (5.18)

Define the matrix P as

P :=

0 0T 0T

0 0n I
0 I 0n

 . (5.19)

Then this equality constraint is written as

[ 1
ω ]TP [ 1

ω ] = 0. (5.20)
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Method 3: The constraint is not explicitly needed, because the optimal µ? and ν?

will satisfy µ?i ν
?
i = 0 for each i.

Proof. We prove this by assuming the optimal variables don’t satisfy
the constraint, and showing a contradiction. Suppose there exists a
j ∈ {1, 2, . . . , n} such that µ?jν

?
j 6= 0. For each i = 1, . . . , n let εi :=

min{µ?i , ν?i }. Each εi ≥ 0, and εj > 0 since µ?jν
?
j 6= 0. Let µ̃ = µ? − ε

and ν̃ = ν? − ε. The vectors µ̃ and ν̃ are feasible points: µ̃− ν̃ + x0 =
µ? − ν? + x0 ∈ F , µ̃ ≥ 0, and ν̃ ≥ 0. The cost using the vectors µ̃ and
ν̃ is less than the cost with vectors µ? and ν?.

n∑
i=1

µ̃i + ν̃i =
n∑
i=1

µ?i + ν?i − 2εi <
n∑
i=1

µ?i + ν?i

The inequality is strict because εj > 0. Therefore µ? and ν? are not
optimal. Contradiction.

All of these constraints are equivalent in the primal form of the NQCQP. However,
the choice can affect the lower bound formulation using the rank relaxation (or S-
procedure). We now formulate three lower bounds on the optimum using the different
equality constraints, and discuss their difference.

Letting P0 denote the quadratic matrix associated with the objective function,
the lower bound using the rank relaxation as discussed in Section 3.1.2 can now be
formulated using each of the three equality constraint cases, via,

p?
1

:= min
Q�0, Q11=1

Tr [P0Q]

s.t.

{
Tr [PiQ] ≤ 0, i = 1, . . . , 4n+ 2m,
Tr [PjQ] = 0, j = 1, . . . , n,

(5.21)

p?
2

:= min
Q�0, Q11=1

Tr [P0Q]

s.t.

{
Tr [PiQ] ≤ 0, i = 1, . . . , 4n+ 2m,
Tr [PQ] = 0,

,
(5.22)

p?
3

:= min
Q�0, Q11=1

Tr [P0Q]

s.t. Tr [PiQ] ≤ 0, i = 1, . . . , 4n+ 2m.
(5.23)

As mentioned in Section 5.3.3, all three methods for constraining either µi or νi
to be zero are equivalent for the primal formulation. However, for the lower bound
formulations in equations (5.21)–(5.23), this is not the case. The following theorem
shows an ordering on these bounds.

Theorem 5.1. Let p?
1
, p?

2
, and p?

3
be as defined in equations (5.21)–(5.23). Then

p?
1
≥ p?

2
≥ p?

3
. (5.24)
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Proof. Let Feas(p
1
), Feas(p

2
), and Feas(p

3
) denote the feasible sets for the optimiza-

tion problems in equations (5.21)–(5.23) respectively. The optimizations in equa-
tions (5.21)–(5.23) have the same objective function, therefore to prove the optima
ordering in equation (5.24) it is sufficient to show

Feas(p
1
) ⊆ Feas(p

2
) ⊆ Feas(p

3
).

The inequality constraints and the constraint that Q11 = 1 are the same in equa-
tions(5.22) and (5.23). The optimization in equation (5.22) has the additional single
equality constraint that is not present in equation (5.23). Therefore it is clear that
the right containment holds.

We now show the left containment. Let Q ∈ Feas(p
1
). Then,

Tr [PjQ] = 0, j = 1, . . . , n

=⇒Q(j+n+1,j+1) +Q(j+n+1,j+1) = 0, j = 1, . . . , n

=⇒
n∑
j=1

Q(j+n+1,j+1) +Q(j+n+1,j+1) = 0

=⇒Tr [PQ] = 0.

Thus, Q ∈ Feas(p
2
), and the left containment holds.

The inequalities in equation (5.24) can be strict for some cases. This would imply
that Method 1 should be used as it provides the tightest lower bound. However,
it also has the most constraints and therefore may have longer computation times.
In Section 5.5, the GRI-Mech 2.11 dataset is demonstrated as a case with strict
inequalities and varying computation times.

5.4 Stochastic Interpretation of the NQCQP For-

mulation

In Section 3.2, the rank relaxation formulation for an NQCQP is given a stochas-
tic interpretation. This same interpretation is applied here to provide a Gaussian
distribution that can be used to create a seed point for interior point (upper bound)
solutions.

The optimal matrix Q? from the rank relaxation problem can be partitioned as

Q? =

[
1 ωT

ω Σ

]
. (5.25)
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From the stochastic interpretation, the optimal random vector is any random vector
Ω with first and second moments,

E [Ω] = ω, E
[
ΩΩT

]
= Σ. (5.26)

We will use a Gaussian distribution with these statistics, Ω ∼ N (ω,Σ− ωωT).

To solve for an upper bound on the NQCQP formulation, a sample from this
distribution will tend to provide a good seed point for an interior point solver (e.g.
MATLAB’s fmincon). However, since the NQCQP formulation of the `1-norm ap-
proximation has twice as many variables as the original `1-norm approximation prob-
lem, it is computationally more efficient to solve the original problem. To seed this
problem, we simply transform the sampled point back into the x-space. First partition
the sampled point ωseed,

ωseed =

[
µseed

νseed

]
, (5.27)

then transform back to the x-space,

xseed = µseed − νseed + x0. (5.28)

5.5 Example: GRI-Mech Dataset

For the GRI-Mech release 3.0, researchers wanted to allow only a small number
of the 102 parameters to vary from their release 2.11 “nominal” values. After much
deliberation and very careful planning they chose 31 parameters to free from the
nominal values for optimization [106, 120]. These were mostly chosen with domain
knowledge of the parameters and the experiments used to determine their nominal
value [41]. Because of the many possible combinations of the 102 parameters, the
choice of parameters took months to come to. The finished optimized result, the
GRI-Mech 3.0 nominal, is not in the feasible set, and therefore isn’t consistent with
all of the experimental data, uncertainty, and models.

Using the `1-norm approximation to the minimal cardinality problem derived in
this chapter, we found a feasible point that only requires 52 parameters to deviate
from the GRI-Mech 2.11 nominal value (to within a tolerance of 0.01%). Of the 31
parameters optimized for GRI-Mech 3.0, 29 are in the list of parameters that deviated.
This means, in significantly less time, we are able to suggest a list of 53 parameters
to consider for optimization that contain most of the parameters eventually chose by
the GRI-Mech researchers themselves.

To obtain this result, the lower bounds on the optimal one-norm difference were
first computed. Table 5.1 shows the bounds computed using the different equality
constraint formulations discussed in Section 5.3.3 as well as computation times.
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Table 5.1: Objective lower bounds and computation times for GRI-Mech 2.11 min-
imum `1-norm distance. The three lower bounds correspond to the three different
equality constraint formulations described in Section 5.3.3.

Formulation Bound CPU Time (sec)

S-proc. w/ method 1 30.18 17.15
S-proc. w/ method 2 29.64 42.82
S-proc. w/ method 3 29.00 37.58

The three lower bounds exhibit the ordering proven in Theorem 5.1 and provide
an example where the inequalities in equation (5.24) are strict. Despite having the
most constraints, the bound using equality constraint method 1 took the significantly
less time than the other methods.

Upper bounds for the solution were then computed using several different seeds for
fmincon. The interior point solution also provides the desired feasible point. Table 5.2
provides the bounds and computation times. The inner bound was computed using
several different seedings. It appears that solutions do not really depend on the
seeding; however, there was a slight difference in computation time, although maybe
not enough to be of any consequence.

Table 5.2: Objective upper bounds and computation times for GRI-Mech 2.11 min-
imum `1-norm distance. The seed point for each problem was either 0, or sampled
from the distribution provided by the rank relaxation solution using one of the three
equality constraint methods.

Seed ‖x− x0‖1 card(x− x0) CPU Time (sec)

0 33.03 52 34.18
via method 1 33.03 52 30.89
via method 2 33.03 52 35.34
via method 3 33.03 52 33.16

The best lower bound implies that the upper bound solution (which provides a
feasible parameter vector) cannot get much better in terms of the `1-norm objective.
Trying to find a better solution by actually solving the cardinality problem, is not
realistic. The number of combinations of exactly 51 parameters (one less deviation
than we found) is about 4 × 1029. Checking if there is a solution with 51 deviated
parameters would, in the worst case, require solving a feasibility problem for each
combination.
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Chapter 6

Active Subspace Discovery

Many applications and analysis techniques in science and engineering use sim-
ulation as a means for gauging a system’s behavior. In coarse designs, simulation
provides a qualitative look at system attributes. Much denser simulation might be
required for more quantitative assessments. However, in advanced simulation tech-
niques with complex models, each simulation can take hours or days. Processes with
many variables require many simulation runs to adequately cover the space of re-
sponses. In this case, even if each simulation only takes a few minutes, the total
simulation time can grow exponentially.

Surrogate modeling is the technique of creating an algebraic approximation to
the simulation’s map from parameters to response. The resulting response surface or
surrogate model is much more efficient to evaluate than the original simulation and can
provide much insight into the behavior of the original system [75]. The best form for a
surrogate model depends on the application. They are formed with various methods
such as standard regression, support vector machines [107], and kriging methods
[79]. Data Collaboration techniques use quadratic surrogate models to calculate outer
bounds to various optimization objectives such as the consistency measure, response
prediction, and representative feasible parameter (see §2.4 and Chapters 3 and 5).
Ryan Feeley derived methods for using rational quadratic surrogates with the Data
Collaboration techniques, as well as the technique of using intermediate surrogates
[34].

One of the major problems facing surrogate modeling occurs when long simulation
time is required to adequately sample the model response. To fit a surrogate model,
many simulation runs are often required. The number of simulations depends on
the form of the surrogate (i.e. the number of basis functions) and the dimension of
the parameter vector. For example, with a quadratic surrogate, the number of basis
functions (monomials with a degree of at most 2) increases quadratically with the
number of parameters.
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This chapter describes a technique for discovering the possible dependence of the
response to an lower-dimensional active subspace of the parameters. If such an active
subspace were known, the amount of simulation required to make a surrogate would
depend on the subspace dimension instead of the original “full” dimension.

Subspace dependence is not a new concept. However, the focus of many works
is on searching for a subspace dependence of the multivariate output of a function
or of the evolving state vector of a set of coupled ODEs [8, 51, 59]. Some works
use local subspace dependence to preserve neighborhood relationships and fit low-
dimensional nonlinear manifolds to the data [25, 45, 94]. High-dimensional model
representations (HDMRs) build up a surrogate model by iteratively fitting along
every coordinate-aligned subspace starting with the 0-dimensional subspace.1 and
stopping after reasonable errors have been achieved [87, 88]

The following sections will derive the technique for active subspace discovery and
analyze the computational requirements for discovering it.

6.1 Active Subspace Dependence

Let f be a scalar-valued function of n active variables. Our goal is to find a
low-rank active subspace of the input variables that is the main contributor to the
variation of f . In other words, we would like to discover an n × r matrix S, with
r < n, and a function g : Rr → R such that f is well approximated as

f(x) ≈ g(STx). (6.1)

The quality of the approximation requires that f varies mostly along an active sub-
space of the original variables. In the current notation the active subspace is the
range space of the columns of S, written R(S).

Approximations of the type shown in equation (6.1) can always be made. A
trivial example is seen by setting S to the identity matrix (r equals n) and setting the
function g to be equivalent to f . However, the goal is to find a good approximation
such that r is as small as possible. This chapter focuses on finding a suitable matrix
S. Chapter 7 will focus on designing experiments for fitting the function g.

The function g and matrix S in equation (6.1) are not unique for an approximation.
Take for example any r × r invertible matrix R, and define tildeg := g ◦ R−1 and
S̃ := SRT. Replacing g with g̃ and S with S̃ does not change the approximation.

g(STx) = g(R−1RSTx)

= g̃(S̃Tx).
(6.2)

It is for this reason that when searching for an appropriate S matrix, the objective
is not to find a specific S, but rather one that spans the appropriate subspace of Rn,

1This is specifically referred to as the cut-HDMR.
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namely, that on which the function depends most. It is simple to see that since R is
invertible, R(S) and R(S̃) are equal.

Claim 6.1. R(S) = R(S̃).

Proof. First see that R(S) ⊆ R(S̃). Let x ∈ R(S). Then there exists a y ∈ Rr such
that x = Sy. Since R is invertible, there exists a z ∈ Rn such that y = RTz and thus
x = SRTz = S̃z. Therefore x ∈ R(S̃).

Now see that R(S) ⊇ R(S̃). Let z ∈ R(S̃). Then there exists a y ∈ Rr such that
z = S̃y = SRTy. Define x = RTy. Then z = Sx. Therefore z ∈ R(S).

For simplicity we assume that the columns of S are orthonormal and therefore
STS = Ir. The non-uniqueness of S allows this choice.

6.2 Methodology

The key to discovering the active subspace of the function f is noting that if the
factorization in equation (6.1) holds and the function is differentiable at a point x,
then the gradient of f at x multiplicatively factors via the chain rule of derivatives as

∇f(x) = ∇g(STx) · ST, (6.3)

where∇f(x) is the 1×n gradient vector of the function f at the point x. Furthermore,
this factorization holds when the gradients at many points are stacked into a matrix.
Define the matrices

F :=

∇f(x1)
...

∇f(xN)

 , G :=

∇g(STx1)
...

∇g(STxN)

 (6.4)

where each xk is an n-dimensional vector at a different location in the domain. Then

F = GST. (6.5)

Note that in general, the rank of the matrix F is the number of gradient locations, N ,
if N < r and is r if r ≥ N . For this factorization to be defined, the function f needs
to be differentiable at each xk; however, it need not be differentiable everywhere.

The rank of F naturally lends itself to an iterative algorithm. As more gradients
are computed and added to F, the rank should continue to grow. As soon as the rank
stops growing, a matrix factorization will provide the appropriate linear transforma-
tion matrix S. This matrix factorization is easily computed with a singular value
decomposition (SVD). Examine the singular value decomposition of the matrix F

F =
[
U1U2

] [Σ11 0
0 0

] [
VT

1

VT
2

]
. (6.6)
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The factorization is then written by setting G = U1Σ11 and S = V1.

In practice, F has full rank; however, the singular values of F may decay rapidly.
Given this, the active subspace is defined as the span of the directions associated with
the largest singular values of F. The threshold for deciding which singular values are
large enough is a parameter in the active subspace discovery algorithm.

The procedure for discovering the active subspace is shown in Algorithm 6.1.

Algorithm 6.1 Active Subspace Discovery

Require: f {function of interest}
Require: H {n-dimensional hyperrectangle domain for f}
Require: τ {Singular value cutoff threshold, 0.1 or 0.05 recommended}

1: n← dimension of H.
2: Initialize matrix F (empty)
3: {dlock}nk=1 ← n-point, n-dimensional Latin hypercube design on H.
4: for k = 1 to n do
5: grad← gradient row vector of f at location dlock
6: Add grad to bottom of matrix F.
7: U,Σ,V← SVD of F{such that F = UΣVT}
8: σ ← diag(Σ)
9: if k > 1 and there exists an i such that σi+1 ≤ τσi then

10: rj ← the minimum i such that σi+1 ≤ τσi
11: S← first r columns of V
12: return S {Algorithm exits.}
13: end if
14: end for
15: S← V {Only executes if no active subspace found yet.}
16: return S

The locations where the gradients are computed should be spread out in the
domain of the function. This algorithm uses a Latin hypercube sample design to
choose these locations (line 3 of Algorithm 6.1). Latin hypercube sample designs are
set up to be spread out in each variable. This is done by setting up a classic Latin
square in n-dimensions (examining only one treatment) [70] and uniformly choosing a
point in each of the chosen sub-cubes. Each point in a Latin hypercube sample design
is uniformly distributed on the hypercube, but the points are not independent. This
sample ensures that each variable is represented in a fully stratified manner [67].

The method of computation of gradients (line 5 of Algorithm 6.1) varies from
application to application. In some applications the local sensitivities are available
with a single simulation run. Often, n + 1 simulations near the gradient location
are computed to calculate a numerical derivative. If the simulations have noise in
their output, it may be necessary to run more simulations to average out error in the
derivative.

The algorithm is an iterative one, that completes as soon as the singular value
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threshold has been crossed (line 9 of Algorithm 6.1). If an appropriate subspace
matrix S is discovered, the for-loop does not complete. This is done to reduce the total
number of simulation runs. However, the accuracy of the active subspace generally
increases with the number of gradients computed (see §6.7). Therefore, if gradients
are cheap to compute for particular problems (e.g. requiring only one simulation run)
it makes sense to compute the gradient at all n locations.

A potential problem arises with the algorithm when f is nonlinear and has a
region of the domain with nonzero measure where the gradient is constant. When
this situation occurs, there is a nonzero probability that a new gradient calculation
will be the same as a previous one, and therefore the rank of F will not increase. This
would yield a subspace dimension that is potentially smaller than the actual active
subspace. The same situation would occur if there is a nonzero measure region where
there is a constant gradient that is equal to the multiplicative scaling of a gradient
already calculated. For example, take f(x) = ‖STx‖1 for some fixed n× r matrix S.
On each orthant, the gradient of f is constant. Moreover, ∇f(x) = −∇f(−x) and
hence the gradients at x and at −x are linearly dependent.

6.3 Complexity Analysis

The limiting factor in the time-complexity of the active subspace discovery algo-
rithm is the number of evaluations of the function f and likewise the computation of
gradients. Let κ be the number of simulations required to compute a single gradient
of f or the equivalent amount of time. For example, if gradients are calculated nu-
merically, with no noise in f , then n+ 1 tightly bunched simulations are needed, and
hence κ = n + 1. If a gradient requires only a single simulation, but one that takes
twice as long as usual, κ = 2. If the underlying rank is r, the algorithm must run
r+1 iterations to notice a drop-off in the singular values. Therefore the time Tsubspace

that it takes to discover an r dimensional active subspace is

Tsubspace ∈ O (κ · (r + 1)) , (6.7)

where big-O notation2 is used to upper bound the time [105].

Presumably, f is evaluated at least once at every location the gradient is com-
puted. This simulation can be reused to help fit a surrogate model to g. If multiple
evaluations of f are required to compute a gradient at each location, only one of the
simulations is useful for surrogate fitting because the points will be bunched together.
Therefore the r + 1 simulation results can be reused for fitting.

Let ϕ(r) be the number of evaluations of f required to make a surrogate fit in r
dimensions. This will depend on the form of the surrogate function (linear, quadratic,

2Let g be a function g : N→ R+. O(g(n)) is the set of all functions f : N→ R+ such that there
exists positive integers c and n0 such that f(n) ≤ c · g(n) for all n ≥ n0. In other words, O(g(n)) is
the set of all functions that are asymptotically upper bounded by g [105].
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rational quadratic, etc). ϕ(r) also depends on the behavior of the actual function f .
If an evaluation of f is noisy or if it has small-amplitude high-order effects, more
points are required to capture the behavior of the function. The time Tfit−full to fit a
surrogate model to f in the full n dimensions is

Tfit−full ∈ O (ϕ(n)) . (6.8)

The total time Tfit−subspace to fit a surrogate model in the subspace dimension including
discovery of the subspace is

Tfit−subspace ∈ O (ϕ(r) + (κ− 1)(r + 1)) . (6.9)

The subspace discovery is beneficial time-wise if Tfit−full > Tfit−subspace. It is likely that
fitting error will increase due to the use of a subspace, as governed by the threshold
τ on line 9 in Algorithm 6.1. If subspace discovery is to be useful, a significant time
decrease is required. Chapter 7 will further explore the design of evaluation points in
the active subspace and subsequent surrogate fitting.

As an example, say that the surrogate form of interest is a quadratic and that
ϕ(n) = (n + 1)(n + 2)/2, which is the number of coefficients in a n-dimensional
quadratic. Furthermore, say numerical gradients are used such that κ = n + 1.
If n = 60 and the underlying active subspace has dimension r = 5, then 1,891
evaluations are needed to fit the quadratic in all 30 variables. Only 381 evaluations
in total are needed to discover the subspace and fit the quadratic in 5 variables.

6.4 Relationship to Principal Component Analysis

Principal component analysis (PCA) is the process by which linear transforma-
tions of correlated variables are generated that produce relatively uncorrelated vari-
ables [37]. Given a set of vectors x1, . . . ,xm ∈ Rn, PCA provides a rotation to a set
of orthogonal ordered coordinates such that the first coordinate has the most vari-
ability, the second coordinate has the second most variability and so on. These new
directions are called the principal components. PCA is often used for reduction of a
set of data’s dimensionality by using only the top few principal components.

In general, PCA cannot by used directly to find the active subspace of a func-
tion. The input vector x is assumed to have uncorrelated components. On a set of
these input vectors drawn from a uniform sample on a hypercube domain H, PCA
would find that the variables are uncorrelated (on average) and no direction has any
more variability than the others. In general, f is nonlinear and can have arbitrary
variability.

The subspace discovery algorithm presented in Section 6.2, however, is a principal
component analysis in the gradient space. If the function f only depends on an r
dimensional subspace, then there will be directions of high variability in the gradient
space and, maybe more importantly, directions of low variability. The columns of the
subspace matrix S are the first r principal components of the gradient vectors.
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6.5 Measure of Subspace Containment

This section describes a simple measure of one subspace’s containment of another,
and how that limits the ability to fit a quadratic function. The measure is found in
[81]. Suppose L and D are two subspaces of Rn. Define a measure of containment of
L in D as

m(L,D) := max
l∈L,‖l‖2≤1

‖l− ΠD(l)‖2 (6.10)

where ΠD is the orthogonal projection onto D. Note that if L ⊆ D, then m(L,D) = 0,
and if L contains vectors orthogonal to D, then m(L,D) = 1.

Let L be a matrix whose orthonormal columns (so LTL = I) span L and similar
for D. Also let D⊥ be a matrix whose orthonormal columns span the orthogonal
complement of D. Note that the projection operator ΠD is just matrix multiplication
by DDT . Therefore

m(L,D) = max
η,‖Lη‖2≤1

∥∥Lη −DDTLη
∥∥

2

= max
η,‖η‖2≤1

∥∥(I −DDT
)
Lη
∥∥

2

= max
η,‖η‖2≤1

∥∥D⊥DT
⊥Lη

∥∥
2

= σ̄
[
D⊥DT

⊥L
]

= σ̄
[
DT
⊥L
]
.

(6.11)

Next, consider a quadratic form xTLSLTx which is to be approximated by a
quadratic form xTDBDTx, with D = DT given, and B = BT to be determined.

For a given B, the maximum singular value gives the maximum error over the
unit ball,

max
‖x‖2≤1

∣∣xTLALTx− xTDBDTx
∣∣ = σ̄

[
LALT −DBDT

]
. (6.12)

The goal of the approximation is to minimize this error given a choice of B. This
is easily solved with a series of manipulations.

min
B

σ̄
(
LALT −DBDT

)
= min

B
σ̄
([

DT

DT
⊥

] (
LALT −DBDT

)
[ D D⊥ ]

)
= min

B
σ̄
([

DTLALTD−B DTLALTD⊥
DT
⊥LALTD DT

⊥LALTD⊥

])
= min

X
σ̄
([

X DTLALTD⊥
DT
⊥LALTD DT

⊥LALTD⊥

])
= max

{
σ̄ ([ DT

⊥LALTD DT
⊥LALTD⊥ ]) , σ̄

([
DTLALTD⊥
DT
⊥LALTD⊥

])}
= max

{
σ̄
(
DT
⊥LA

)
, σ̄
(
ALTD⊥

)}
= σ̄

(
DT
⊥LA

)
.

(6.13)
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Note that σ̄
[
DT
⊥LA

]
≤ σ̄

[
DT
⊥L
]
σ̄ [A]. Moreover σ̄ [A] = max‖x‖2≤1

∣∣xTLALTx
∣∣.

Therefore,

min
B

max
‖x‖≤1

∣∣xTLALTx− xTDBDTx
∣∣ ≤ m(L,D) max

‖x‖≤1

∣∣xTLALTx
∣∣ . (6.14)

So (as expected) the extent to which the actual subspace (L) is contained in the
approximating subspace (D) limits the achievable approximation error. For the toy
examples in the following section, the active subspace is known a priori, and this
measure will give a sense of how well the subspace discovery algorithm is working.

6.6 Examples

This section will demonstrate the active subspace discovery algorithm on several
example systems. The first two will be contrived toy examples, where the actual
active subspaces are known for comparison. The other examples will be from real
systems where the active subspaces are unknown a priori.

6.6.1 Toy Functions

We chose an arbitrary 30 × 5 matrix S such that STS = I3. If z = STx, then let
f1(x) = g1(STx) where g1 is defined as

g1(z) = sin(z1) + z2z3z5 + z1z
2
4 + ez3 cos(z3

5). (6.15)

The domain of f1 is x ∈ [−1, 1]30.

First we examine the sensitivity coefficients for the 30-dimensional space. Here,
sensitivity analysis refers to finding a relative sense of the function’s dependence on
its parameters [58]. These were computed by evaluating the function on a fractional
factorial design from a Hadamard matrix [48]. An affine function is fitted to these
evaluations. The magnitude of the linear coefficients of the fit act as the sensitivity
coefficients. Figure 6.1 shows these sensitivity coefficients sorted by magnitude. From
the figure, we see most of the 30 variables are active.

Assuming that we do not have direct access to the gradient of f1, the gradients
are calculated numerically. After 6 iterations of the subspace discovery algorithm,
the singular values of the gradient matrix are as shown in Figure 6.2. This results
in a 5 dimensional subspace, which required 186 function evaluations to compute.
The measure of containment of the “real” subspace in the subspace approximation is
0.032, and therefore the approximate active subspace is very close to the true one.

As another example, take a function f2 that depends mostly, but not perfectly,
on a 5 dimensional subspace. Again an arbitrary 30 × 5 matrix S with STS = I3 is
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Figure 6.1: Sensitivity coefficients of f1 from a Hadamard design. Most variables are
active.
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Figure 6.2: Singular values of the gradient matrix for f1, after 6 iterations of the sub-
space discovery algorithm. Active subspace appears to be either 5- or 6-dimensional
depending on the threshold.
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chosen and fixed. Let S⊥ be the 30× 25 matrix with orthonormal columns such that
R(S) ⊥ R(S⊥), i.e. [S S⊥] is unitary. Let f2 be a quadratic function of the form

f2(x) =
[

1
STx

]T
Q1

[
1

STx

]
+

1

500

[
1

ST⊥x

]T
Q2

[
1

ST⊥x

]
. (6.16)

In this case, f2 does not vary solely on a 5-dimensional subspace, but does mostly.
This is why R(S) is called the active subspace.

Again, most or all of the 30 variables are considered active (see Figure 6.3), and the
singular values from the subspace discovery algorithm imply there is a 5-dimensional
active subspace (see Figure 6.4). This took 186 function evaluations to compute. The
measure of containment of the “real” active subspace in the subspace approximation
is 0.041, and hence the approximation is good.
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Figure 6.3: Sensitivity coefficients of f2 from a Hadamard design. Most variables are
active.

6.6.2 Logic Circuit

We are given an electric circuit design to simulate its behavior. For each circuit
element (resistor, capacitor, transistor, etc.) there exists models relating currents
and voltages given some parameters. Due to manufacturing uncertainties the param-
eters are unknown but have a nominal value and some uncertainty bounds. We are
interested in the behavior of a scalar attribute of the circuit’s output in response to
changes in these parameters.

The simulation tool SPICE [112] can provide sensitivity information (local deriva-
tives with respect to the parameters) by creating an “adjoint” circuit where the volt-
ages are the sensitivities. The adjoint system is more complex and takes about twice
as long to simulate as a regular simulation [110]. However, as of now this feature is
only available in some commercial releases of SPICE to which we do not have access.

Figure 6.5 shows the circuit diagram of a simple adder element used in multipliers.
The 10 gates shown are all simple logic gates each consisting of two transistors (a
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Figure 6.4: Singular values of the gradient matrix for f2, after 6 iterations of the sub-
space discovery algorithm. Active subspace appears to be either 5- or 6-dimensional
depending on the threshold.

p-type and an n-type). Each transistor has 3 uncertain parameters associated with
it. Therefore, there are a total of 60 parameters. For this example, the simulation
is setup with I1, I2, I4, and Cin set to high (Vdd), and I3 set to a rising step. The
function of interest will be the map from the 60 parameters to the voltage of node S
(the sum signal) at time t = 5.43ns (about halfway through the step transition). The
domain of the parameters is bounded by plus and minus 15% of their nominal values.

The variable sensitivities for the adder signal function are shown in Figure 6.6.
The singular values from the first 20 iterations of the subspace discovery algorithm
(Figure 6.7) show that the active subspace may be as small as one-dimensional. Had
a one-dimensional active subspace been chosen after only 2 iterations, only 122 sim-
ulations would have been required. If we had access to a simulator that provided
sensitivities with only one simulation, only two iterations would have been needed to
find the active subspace.

6.6.3 Methane Combustion

GRI-Mech 3.0 [106] target CH3.C1a is the maximum CH3 concentration in a
shock tube oxidation of methane [18]. The GRI-Mech project included quadratic
surrogate fits, but these were originally generated from shock-tube simulation codes.
The simulation has 313 parameters. The sensitivities of these parameters is shown
in Figure 6.8. The surrogate fit for the GRI-Mech project uses the top 11 ranked
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Figure 6.5: Adder element used in multipliers. Graphic from IEEE Journal of Solid-
State Circuits [49].
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Figure 6.6: Sensitivity coefficients of node S at t = 5.43ns in the adder element circuit
from a Hadamard design. Most variables are active.
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Figure 6.7: Singular values of the gradient matrix for logic circuit problem, after 20
iterations of the subspace discovery algorithm. Active subspace may be as small as
1-dimensional depending on the threshold.

parameters as the active parameters. However, depending on the threshold, as many
as 100 parameters could be considered active.
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Figure 6.8: Sensitivity coefficients GRI-Mech 3.0 target CH3.C1a from a Hadamard
design.

Even if the subspace discovery algorithm is performed in all 313 variables, a low
dimensional active subspace is found. Figure 6.9 shows the singular values of the
gradient matrix after 22 iterations of the algorithm.
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Figure 6.9: Singular values of the gradient matrix for GRI-Mech 3.0 target CH3.C1a
after 22 iterations of the subspace discovery algorithm.

6.6.4 Cellular Calcium Response

The next example comes from a biological signaling application. The model sim-
ulates the calcium response to ligand application in a murine macrophage cell line
[62]. We have used the model in previous work for model discrimination [32]. The
model involves 8 coupled ODEs with 34 uncertain parameters and has several features
that were previously examined. For this example, we examine the maximum calcium
concentration response to a 100nM ligand application.

Figure 6.10 shows the active variables for the response feature. Figure 6.11 shows
the singular values of the gradient matrix after 10 iterations of the active subspace
discovery algorithm. It appears that the model depends mostly on a 1-dimensional
subspace, and at most on a 5 dimensional subspace. Figure 6.12 shows the feature
along the one dimensional subspace and how much the response surface varies from
the 1- dimensional subspace approximation.

6.7 Extra Iteration Heuristic

The active subspace discovery algorithm includes an automated way of detecting
the rank based on a threshold parameter (line 9 in Algorithm 6.1). The quality of this
automated rank cutoff can change with the particular choice of locations for gradient
computation (line 3 in Algorithm 6.1). The algorithm calls for a Latin hypercube
design which has an element of randomness but provides a design that is “spread
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Figure 6.10: Sensitivity coefficients calcium response model from a Hadamard design.
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Figure 6.11: Singular values of the gradient matrix for the calcium response model
after 15 iterations of the subspace discovery algorithm.
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Figure 6.12: Peak calcium concentration offset from initial condition along 1-
dimensional active subspace. Light gray line represents the variance in the response
across all 34 parameters. The black line is the response as it varies only on the
subspace.

out” in a hypercube [70]. The random element of this design means the algorithm
will yield slightly different results each time.

Take, for example, the function f1 from Section 6.6.1 with a fixed 30× 5 subspace
matrix S. We ran the active subspace discovery algorithm 5,000 times with a threshold
τ = 0.05. 4,242 of the runs correctly computed an active subspace dimension of 5, 748
(almost 15%) computed a dimension less than 5, and the other 10 runs computed a
dimension greater than 5. These results are summarized in the first row of Table 6.1.
The computations that resulted in an overestimate of the active subspace are not
too problematic, because they are conservative in this way, and furthermore, the
subspace containment measure m(R(S),R(Sest)) for these cases is relatively good
with an average value of 0.0015. However, in the case of underestimating the subspace
dimension, which occurs more often than overestimating, the measure is always 1
because the active subspace cannot possibly be contained in an estimate with a smaller
dimension.

The accuracy of computing the active subspace matrix should be improved with
an increased number of gradients. However, more gradients means more simulations.
So as a heuristic, it is suggested that one or two more gradients be calculated after
the threshold is met, after which the rank is recalculated. Repeating the analysis on
function f1 (5,000 calculations of the active subspace) using either one or two more
iterations of the procedure yields the results in the second and third rows of Table 6.1.
The heuristic decreases the number of underestimates of the dimension of the active
subspace.
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As already mentioned, each extra iteration requires more gradient calculations and
hence more simulation time. Even without any extra iterations the algorithm was
successful about 85% of the time in the example above. The success rate is increased
to almost 97% with only one extra iteration. If one extra gradient calculation is
reasonable given the simulation expense, then it is recommended.

Table 6.1: Count of active subspace dimension calculations from 5000 iterations of
the algorithm on function f1 from Section 6.6.1 with a threshold of τ = 0.05. The first
row represents the counts from running the unmodified procedure in Algorithm 6.1.
The next two rows represent the counts by including either one or two more iterations
after the singular value threshold is met.

dim< 5 dim= 5 dim> 5
Unmodified alg. 748 4242 10
1 extra iteration 146 4828 26
2 extra iteration 23 4953 24

6.8 Active Subspace Discovery of a Vector-Valued

Function

The subspace discovery algorithm works well for functions with multiple outputs.
Let the function f now be a map from Rn to Rm. This is trivially thought of as m
functions that map Rn to R. Let fj be the function associated with the jth output
of f , with j ∈ {1, . . . ,m}. Each fj may have its own distinct active subspace, Sj.
Therefore, active subspace discovery and surrogate fitting must be performed for each
output of f .

The procedure as written in Algorithm 6.1 can simply be repeated for each of
the m outputs of f , one at a time. However, it is often the case that computation
of each of f ’s outputs is not independent of the others. For example, the elements
of the output of f may be different scalar features or attributes of a simulation
output as it evolves over time. In this case, it makes sense to run each iteration of the
subspace algorithm simultaneously for each output of the function. The total number
of iterations depends on the largest dimension of all the outputs’ active subspaces.
This implies that for some outputs there will be more iterations than necessary to
discover the rank of the corresponding active subspace. However, as mentioned in
Section 6.7, this is beneficial.

Algorithm 6.2 shows the procedure used for a multi- output function f . In this
algorithm, the Jacobian is only calculated once per location (line 6 in Algorithm 6.2).
This is a significant improvement over computing the gradient for each element of
the function’s output if the computation of the Jacobian (i.e. the gradient for all
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outputs) takes only as many simulations to compute as it does to compute one of the
gradients.

Algorithm 6.2 Active Subspace Discovery for a Vector-Valued Function

Require: f {function of interest}
Require: H {n-dimensional hyperrectangle domain for f}
Require: τ {Singular value cutoff threshold, 0.1 or 0.05 recommended}

1: n← dimension of H.
2: m← dimension of the output of f .
3: Initialize matrices Fj for j = 1, . . . ,m (empty)
4: {dlock}nk=1 ← n-point, n-dimensional Latin hypercube design on H.
5: for k = 1 to n do
6: J← Jacobian of f at location dlock
7: for j = 1 to m do
8: Add jth row of J to bottom of matrix Fj.
9: U,Σ,V← SVD of Fj{such that Fj = UΣVT}

10: σ ← diag(Σ)
11: if k > 1 and there exists an i such that σi+1 ≤ τσi then
12: rj ← the minimum i such that σi+1 ≤ τσi
13: Sj ← first r columns of V
14: else if k == n then
15: Sj ← V
16: end if
17: end for
18: if rj is set for all j = 1, . . . ,m then
19: return Sj for j = 1, . . . ,m
20: end if
21: end for

6.9 Alternative Approach using Rank Minimiza-

tion

The methodology for active subspace discovery presented in Section 6.2 appears
to work fairly well. In the two toy examples where the active subspace is known
(Section 6.6.1), the subspace containment measure was very low, implying a good
agreement between the true active subspace and the approximation.

One of the biggest flaws with the procedure occurs when gradients are not available
from the simulations, and numerical gradients are instead calculated. In this case,
many function evaluations must occur in tight bunches to estimate the gradients. In
Chapter 7 function evaluations will be used to make surrogate fits in the subspace
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dimension. Only one evaluation for each bunching of points used to discover the
active subspace can be reused in making the surrogate fit. This is because a good
experiment design for regression has high variance, i.e. is made of points that are
spread out.

This section presents an attempted approach at discovering the active subspace
using only partial gradients, or gradients along certain directions. If only partial
gradients are calculated, less points are needed in each bunch, and a larger percentage
of the evaluations can be used again for surrogate fitting. The method presented
does not appear to work very well; however, we describe the method and present an
example for the sake of thoroughness.

As before, define functions f : Rn → R and g : Rr → R, and a matrix S ∈
Rn×r where STS = I and suppose that the relation f(x) = g(STx) holds. Say we
compute the gradient of f at a point xk along the m directions defined by the linearly
independent columns of Vk ∈ Rn×m. Then the resulting 1 ×m directional gradient
vector dk is

dk = ∇f(xk) ·Vk. (6.17)

Here the assumption is that ∇f(xk) is not computed, only dk is. For a numerical
gradient this would only require m + 1 function evaluations near xk. Given that f
only varies along the active subspace R(S), equation (6.17) is further decomposed as

dk = ∇g(STxk) · ST ·Vk. (6.18)

Using previous notation, F is the matrix of gradients of f at the points {xk}Nk=1 and
G is the matrix of gradients of g at the points {STxk}Nk=1. The directional gradient
can be written using these matrices as

dk = eTkFvk = ekGSTVk, (6.19)

where ek is the kth N -dimensional standard basis vector.

In this set-up, the matrix F is unknown. However, we know it factors into the
matrix product GST where the inner dimension is r, a (hopefully) small number.
Therefore, the problem becomes finding a low rank matrix F such that all the direc-
tional derivatives match the calculations. Formulated as an optimization problem,
this is written as

min
F

rank(F)

s.t. dk = eTkFVk, k = 1, . . . , N.
(6.20)

This is a difficult problem to solve. However, over the domain of matrices in the
unit ball, the convex envelope of the rank function is the sum of the singular values
which is called the nuclear norm and notated ‖ · ‖∗ [31]. Even when F is not in the
unit ball, the nuclear norm provides a good heuristic approximation.

min
F
‖F‖∗

s.t. dk = eTkFVk, k = 1, . . . , N.
(6.21)
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This is a convex problem, and furthermore, Benjamin Recht it et. al. [89] showed
that this can be recast as the semidefinite program

min
F,W1,W2

1

2
(Tr [W1] + Tr [W2])

s.t.


[
W1 F
FT W2

]
� 0

dk = eTkFVk, k = 1, . . . , N.

(6.22)

The number of constraints in the nuclear norm formulation (equation (6.21)) is
N · m. The matrix F has N · n elements in it. Both N and m need to be greater
than the underlying r. Since r is unknown a priori, it makes sense to set N to be a
large number, and increase m until the rank stops increasing. As N increases, so too
does the difference between the number of entries of F and the number of constraints.
Therefore, setting N = n appears to make the most sense.

This implies an algorithm that is similar to Algorithm 6.1. The algorithm cycles
through the N locations adding one new derivative direction to the current location.
The SDP in equation (6.22) is solved yielding the matrix F. From here the procedure
continues as before; evaluating the singular values of F to determine the dimension
of the active subspace.

As an example application, let f be defined as the first toy example in Sec-
tion 6.6.1, equation (6.15). The function has 30 variables, and depends on a 5
dimensional space. Figure 6.13 shows the active subspace dimension estimate as
the algorithm iterates, as well as the corresponding subspace containment measure
m(R(S),R(Sest)). It appears that the rank estimate settles to be either 5 or 6 when
there are around twelve derivative directions per location. However, the subspace
containment measure shows that the active subspace estimate is very poor at this
point. It is not until there are 20 or 25 derivative directions per location that the
active subspace estimate is relatively good. In general cases, however, since there is
no way to evaluate the subspace containment measure (because the actual active sub-
space is unknown), there is no way to know when the iteration should stop. Moreover,
25 derivative directions yields a gradient that is almost complete (the full gradient
has 30 directions).

This methodology of rank minimization does not appear to work for this appli-
cation. Several combinations of choices of N and m yielded similar or worse results.
Therefore, this method is not recommended.
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Figure 6.13: Rank estimate and subspace containment measure compared to itera-
tion of an active subspace discovery algorithm using directional derivatives. The rank
is more or less found well before the estimate of the active subspace is a good ap-
proximation. The horizontal scale is marked with the minimum number of direction
derivatives at each location.
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Chapter 7

Subspace Experiment Design for

Fitting Surrogate Models

The design of experiments (DoE) is the process by which a set information- gather-
ing processes are formulated. In the case of both physical and computer experiments,
DoE often refers to the process of selecting specific sets of parameter values at which
the experiment will be performed. The goal of the design is to gather information
about a system of interest by adequately sampling the experiment parameter space
within the physical constraints and practical considerations of the experiment [13].

The goal of the present study is to produce a technique of creating surrogate
models based on an active subspace. Take a function f with n input parameters and
a scalar output. Typical surrogate modeling techniques involve evaluating f at a set
of points {xj}mj=1, and fitting a function of the desired form to this evaluation data
[70]. In this context, experiment design is the task of choosing the set of points for
evaluation.

Most classical experiment designs were created for hypercube and spherical do-
mains. These include grid (factor) designs, Latin squares, Box-Behnken designs, and
equiradial designs to name only a few [13, 75, 118, 122]. Some work has also been
done to create designs in very high dimensions [5, 80], but these also focus on hy-
percube domains. One notable exception arises in mixture experiments, where the
values of each parameter must add to a constant number. The domain for mixtures
is a simplex, over which several classes of design exist [75].

In Chapter 6, we explored an algorithm for discovering an active subspace of a
function’s parameters. This subspace can be represented as a transformation of the
parameters to a lower dimensional space. The goal is to make a surrogate fit that is a
function of the transformed variables. Therefore an experiment design of parameters
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for the surrogate fit is in the transformed space. The domain of the parameters in
the full (original) coordinates, is a hyperrectangle H. When the hyperrectangle con-
straints are projected onto the lower dimensional subspace, the result is a polytope.1

The goal of this chapter is to create good experiment designs over such polytopes,
which can be transformed back to the original variables for simulation, evaluation, or
experimentation.

Designs created for hyperrectangle or ellipsoid domains cannot be used with a
polytope domain. Simplexes are a special-case of polytopes, and therefore it is not
surprising that some simplex designs can work for general polytopes. Simplex-lattice
designs include each simplex vertex and various combinations of points evenly spread
along the edges and faces. Simplex-centroid designs also include the center of the
simplex. It seems logical, that this type of design would work well for a general
polytope. However, the problem of finding all the vertices of a polytope is NP-hard
[54]. Furthermore, the number of vertices can be much larger than the desired size of
the design. The design method presented in this chapter creates a reasonably sized
design, and does not require that the vertices of the polytope are known.

7.1 Methodology Overview

The goal of experiment design in this case is to choose the parameter vectors where
evaluations will make a good surrogate fit. Suppose that the function of interest f at
a point xj outputs the noisy evaluation yj and has the form

yj =
L∑
`=1

a`φ`(xj) + ηj (7.1)

where the functions φ` : Rn → R are basis functions and ηj is measurement noise.
The set of noises {ηj}mj=1 is modeled as independent Gaussian random variables with
zero mean and unit variance. Using a vector notation, let a ∈ RL be the vector
of a`’s and φ : Rn → RL be the map whose outputs correspond to each map φ`.
Then yj = aTφ(xj) for each j = 1, . . . ,m. Also, assume that there is enough data to
determine the coefficients a, in other words, the vectors φ(xj) span Rm.

The least squares estimate of the coefficient vector is

â =

(
m∑
j=1

φ(xj)φ
T(xj)

)−1 m∑
j=1

yjφ(xj). (7.2)

1Definitions of polytopes vary. Here we use one common definition as in [20]: A polyhedra is the
intersection of a finite number of half-spaces (those defined by a linear inequality). A polytope is a
closed polyhedra.
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This is a random vector due to yj’s dependence on ηj. The error in the coefficient
vector e = â− a is a random vector with zero mean and covariance matrix

Σ = E
[
eeT
]

=

(
m∑
j=1

φ(xj)φ
T(xj)

)−1

. (7.3)

The objective of experiment design in this context is to choose the vectors {xj}mj=1

such that the error has a “small” covariance matrix Σ. The scale of the covariance
matrix can be determined using some scalarization such as the determinant, largest
singular value, or trace of the matrix. This objective is equivalent to designing a set
of points whose variance, Σ−1, is large. There are several scalarizations that are used
to determine how to compare designs, which are discussed further in Section 7.3.

Boyd and Vandenberghe use a similar setup and go on to present a special type of
experiment design where the goal is to pick the best design points from a larger set of
predetermined parameter vectors [14§7.5]. In order to create designs in a polytope,
our methodology is to first create a large sample of points in the polytope and then use
Boyd and Vandenberghe’s method of selecting a design from this sample. Section 7.2
will discuss a couple of different ways of creating large samples in a polytope and
Section 7.3 will discuss several optimizations for choosing experiment designs.

7.2 Sampling the Constrained Subspace

Let the function f : Rn → R vary solely in directions along an r- dimensional
active subspace spanned by the orthonormal columns of the n× r matrix S. Then f
can be decomposed as

f(x) = g(STx) (7.4)

where g is a function of only r variables. The domain of f is a hyperrectangleH ⊆ Rn.
Let the input of the function g be denoted as z = STx, the vector of transformed
variables.

The experiment design for surrogate model fitting should be in the transformed co-
ordinates: the z-space. The following subsections demonstrate methods for sampling
a set of vectors {zk}Nk=1 such that each vector zk corresponds to a vector xk ∈ H.

7.2.1 Uniform Sample of a Polytope

The intersection of the subspace R(S) and the domain H is a polytope. To
guarantee a nonempty polytope, assume that the parameters x have been translated
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such that H is centered at the origin.2 For every point x ∈ R(S), there exists a
vector z ∈ Rr such that x = Sz. If x is constrained to the hyperrectangle H, then
this imposes constraints on the vector z. Let α and β be the vectors of lower and
upper bound constraints defining H. Then

α ≤ Sz ≤ β (7.5)

is a system of linear constraints on z. Therefore z is constrained to a polytope.

Traditional sampling techniques such as sampling from uniform or Gaussian dis-
tributions in r dimensions do not work for sampling this polytope as they do not
take into account constraints that are not coordinate aligned. A uniform distribution
can exist over a non-hyperrectangle domain, but it is not necessarily easy to sample
or even describe. In this section, we describe an algorithm designed to sample a
polytope.

The concept has been written about in the context of random walks [115] and
a Gas Kinetics Point Generation Algorithm (GKPG) [60]. The algorithm described
here takes the latter context. The concept begins by filling the polytope with a
hypothetical gas. The algorithm tracks a single gas particle (in n dimensions) as
it makes collisions with other particles and with set boundaries given a very simple
dynamic model.

Start with a point in the polytope. Pick a velocity from a Gaussian distribution
(which is uniform in direction [66, 73]) in r dimensions. Allow the particle to travel
with the speed and direction described by the velocity vector. If the particle encoun-
ters a set boundary, it reflects off of the boundary. After one time unit, the particle’s
position is recorded as a sample point. A new velocity is chosen simulating a colli-
sion with another particle. The process is then repeated until the desired number of
samples is obtained. Algorithm 7.1 shows the steps in the procedural form.

Several things should be noted in Algorithm 7.1. Since the polytope is convex,
the sample will converge to a uniform sampling of the polytope as the number of
samples goes to infinity [115]. Furthermore, the variance of the velocity (line 4) and
the time between recorded samples (line 5) can affect the time the algorithm takes
to achieve a satisfactory spread of points. If either the velocity variance and time
between recorded samples is too large, i.e. the distance traveled by the particle is
too large, there may be lots of reflections which increase the computation time to
discover the constraint involved and location of the collision. If distance traveled
between samples is too small, it may take a long time to sufficiently cover the space.
To combat the problem of too many reflections, Algorithm 7.1 limits the number of
reflections to 6 (line 16).

The algorithm heuristically chooses the variance of the velocity vector to depend
on the Chebyshev radius of the polytope (line 2 in Algorithm 7.1). The Chebyshev

2It is possible that the intersection of the subspace R(S) and H is empty. Translating the
parameters such that H is centered at the origin is sufficient (but not necessary) to achieve a
nonempty polytope. This translation does not affect the subspace dependence of the function f .
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Algorithm 7.1 Gas Dynamics Sampling Algorithm for Polytopes

Require: N {Number of desired samples}
Require: {ai}pi=1, {bi}pi=1 {Vectors and scalars defining constraints aTi z ≤ bi.}

1: z(0)← Chebyshev center of the polytope {z : aTi z ≤ bi, i = 1, . . . , p}.
2: radius← Chebyshev radius of the polytope.
3: for k = 1 to N do
4: Choose v ∈ Rr from a Gaussian distribution N (0, radius2/9){“velocity”}
5: Tremain ← 1 {Remaining “time” to next sample}
6: znow ← z(k − 1) {Current particle position}
7: cnt ← 0 {Number of reflections for this point}
8: while Tremain > 0 do
9: {T ?, i?} ← min

i
max
T

T s.t. aTi (znow + Tv) ≤ bi.

10: if T ? > Tremain{Didn’t hit boundary} then
11: z(k)← znow + Tremainv
12: Tremain ← 0
13: else if T ? ≥ 0.99Tremain{Near boundary} then
14: z(k)← znow + 0.99Tremainv
15: Tremain ← 0
16: else if cnt= 6 then
17: z(k)← znow + 0.99T ?v
18: Tremain ← 0
19: else
20: znow ← znow + 0.999T ?v
21: Tremain ← Tremain − T ?
22: η ← ai?{Boundary normal vector}
23: v← v − 2η

Tv
ηTη
η{Reflect velocity vector}

24: end if
25: cnt ←cnt+1
26: end while
27: end for
28: return {z(k)}Nk=0
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radius is the radius of the largest spheroid that is a subset of the polytope. The
Chebyshev center is the center of this spheroid, and the sampling algorithm uses this
as the initial sample point. The Chebyshev radius and center are easily computed for
polytopes using the linear program [14],

{c?, r?} = argmax
c,r

r

s.t. aTi c + r‖ai‖2 ≤ bi, i = 1, . . . , p.
(7.6)

The Chebyshev center is not unique in general, but the Chebyshev radius is.

When the hypothetical gas particle is traveling in a given direction, computing the
first intersected boundary is simple. The optimization on line 9 of Algorithm 7.1 does
not require an optimization solver. For each i, the maximum T is (bi−aTi znow)/(aTiv)
if aTiv is positive, and is infinite otherwise. Finding the minimum i corresponds to
finding the minimum entry in a list.

This algorithm is efficient and can generate a large number of samples very quickly.
A simple example in two dimensions is shown in Figure 7.1. Each point in the sample,
zk, is associated with a point xk = Szk in Rn that is contained in H, due to the
constraints imposed by the sampling algorithm. Note that if any translations were
performed on the parameters prior to the polytope sampling step, a simple reverse
translation of variables is needed here to achieve valid x’s.

Figure 7.1: Sample of a 2-dimensional polytope using the Gas Dynamics Sampling
Algorithm.
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7.2.2 Sampling a Polytope Via Point Projection

The second method of sampling is much simpler conceptually. Let {xk}Nk=1 be a
sample of points on the n-dimensional hyperrectangle H. The corresponding sample
in the transformed variables is simply {zk = STxk}Nk=1. The domain of possible
vectors zk is the transformation of H through ST, which is a polytope. Note that
this sampling method does not work for arbitrary polytopes, but only ones that are
projections of higher dimensional hyperrectangles.

The initial sample ofH can be obtained using any sampling method that is efficient
and produces many points. A simple choice would be a uniform sample over H. It
is important to note, however, that a uniform sample on H will not result in a
uniform sample over the projected polytope. Furthermore, when projecting from a
high dimension down to a lower one, the corners of the hyperrectangle are not sampled
well (because most of the volume is near the edges) and therefore the projected points
are not near the boundaries of the polytope. Take Figure 7.2 as an example. The
line in the figure represents the boundary of the polytope formed by projecting the
hypercube [−1, 1]30 onto an arbitrary 2-dimensional subspace. The points are a
uniform sample in the hypercube.

Figure 7.2: A 10000-point uniform sample of points over the hypercube [−1, 1]30

projected onto an arbitrary 2-dimensional subspace.

A slightly better approach when n is fairly large, is to project down a sample of
points taken from the vertices of the hyperrectangle. For example, in 30 dimensions,
there are 230 ≈ 1.07 × 109 vertices. Figure 7.3 shows an example of this projection
using the sample 2-dimensional subspace as the previous example. This sample does
a better job of filling the polytope, but still does not fill it completely.
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Figure 7.3: 10000 randomly chosen vertices of the hypercube [−1, 1]30 project onto
an arbitrary 2-dimensional subspace.

The polytope formed by projecting H onto the subspace R(S) is not the same
as the polytope formed by intersecting H with R(S). The latter is the subspace
used in Section 7.2.1 with the gas dynamics point generation algorithm and is easily
formulated as a set of linear constraints (H-polytope form). The polytope discussed
in this section is not easily formulated in H-polytope form. This polytope is the
convex hull of all vertices of H projected onto the subspace. Since the number of
vertices is exponential in n, this is a difficult process. The next section will further
explore the differences between these two samples.

7.2.3 Comparison of Sampling Methods

The previous two subsections described methods for sampling the constrained
subspace. Let Method 1 denote the method described in Section 7.2 using the gas
dynamics point generation algorithm to sample the intersection of the subspace and
the hyperrectangle H. Let P1 denote this polytope. Let Method 2 denote the method
described in Section 7.2.2 whereby a sample of the n- dimensional hyperrectangle is
projected onto the subspace. Let P2 denote the polytope that is the projection of H
onto the subspace.

The polytope P2 is almost always larger than P1 and in fact P1 ⊆ P2. Fig-
ure 7.4 shows this containment for the projection of a 2-dimensional square onto a
1-dimensional subspace. This disparity between the two polytopes is even more pro-
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nounced when larger dimensions are involved. Take for example Figure 7.5, which
shows the polytopes P1 and P2 resulting from a 30-dimensional hyperrectangle and
a 2-dimensional subspace. To get a sense of how much bigger P2 is than P1, examine
the space [−1, 1]30 and a 1-dimensional subspace. In this case, both P1 and P2 are in-
tervals and the average interval length of P1 with all possible 1-dimensional subspaces
is about 2.38. The average interval length of P2 in this case is about 4.40. These
numbers appear to grow with the square root of the dimension of the hypercube, n.

 R(S)

 H

 P
2

 P
1

Figure 7.4: Simple example showing the difference between the two polytopes P1 and
P2 as created by taking a 2D cube and either projecting it onto or intersecting it with
a 1D subspace.

Method 1 does a good job of filling P1 with points. Method 2 does not fill P2 very
well (as seen in §7.2.2) but it does provide samples outside of P1. This is beneficial,
because the ultimate goal is to have a sample with a large variance, as mentioned in
Section 7.1. In this sense, Method 2 seems to be beneficial.

One problem with Method 2 is that points evenly distributed in the n-dimensional
hyperrectangle tend to be clustered in the center of P2 after projection. Figure 7.6
shows two histograms of samples created using Method 1 and Method 2. Again, each
sample is on a 2-dimensional subspace and associated with points in a 30-dimensional
hypercube. In particular, the sample using Method 2 was generated using a set of
the hypercube’s vertices. Method 1 provides a more uniform distribution of points,
while the sample from Method 2 is bunched mostly in a space tighter than that of
Method 1. However, it turns out this will not affect the selection of design points.

In both methods, each sample point zk has an associated point in the original n-
dimensional space xk that will be used to evaluate the function f . Each of the points

82



Figure 7.5: Two types of polytopes associated with the polytope sampling method-
ologies. The inner polytope, P1, is the intersection of [−1, 1]30 and a 2-dimensional
subspace. The outer polytope, P2, is the projection of [−1, 1]30 onto the same sub-
space.

Figure 7.6: Histograms of points generated from the two polytope sampling methods.
The sample for the left panel was generated with Method 1 and the sample for the
right panel was generated with Method 2.
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xk associated with Method 1 will lie on the active subspace, whereas with Method
2 the points are may come from anywhere in the hyperrectangle H. In this manner,
Method 2 is superior. If the function f doesn’t depend solely on the subspace, or the
active subspace approximation has some error, it is beneficial to evaluate points off
of the subspace.

Method 2 is more efficient and it appears that it will lead to better designs.
Section 7.5 will provide examples to compare the two methods using surrogate fitting
errors.

7.3 Experiment Design via Optimization

Section 7.2 provided a couple of methods for creating a large sample of points
{zk}Nk=1 in r-dimensions. The goal of this section is to choose a subset of this sample
that is a good experiment design. In Section 7.1, we presented a motivation for
choosing a design with a large variance, which is derived from the desire to have a
low variance in the fitting error.

Specifically, the points should be spread out in the directions of the basis functions
used for regression. Let φ : Rr → RL map each sample vector to a vector in the
regression basis. For example, if r = 2 and the desired surrogate fit has a quadratic
form, then φ(z) = [1, z1, z2, z

2
1 , z1z2, z

2
2 ]T.

Boyd and Vandenberghe [14] present this objective as an optimization problem
which is presented here, with only slight modification.

min
b

(w.r.t. Sr+)

(
N∑
k=1

bkφ(zk)φ
T(zk)

)−1

s.t.


bk ∈ {0, 1}, k = 1, . . . , N,
N∑
k=1

bk = m.

(7.7)

Here the minimization is over the symmetric cone of positive semidefinite matrices
Sr+. The variables bk are constrained to be binary, with m of them constrained to
be 1. This formulation searches for the subset with m samples that provides the
“smallest” error covariance matrix. This is a difficult problem to solve because of the
binary variables and the nonscalar objective function.

The simplest way to address the binary variables is to relax (i.e. ignore) the binary
constraint. Boyd and Vandenberghe formulate the experiment design problem with
the possibility of repeated runs. This often does not work for computer simulations.
However, we use their relaxation, and adjust the results to obtain a design without
repetition. Define positive weights wk that will replace the binary variables. The
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relaxation simply replaces the objective with a weighted sum of all vectors [14].

min
ω

(w.r.t. Sr+)

(
N∑
k=1

wkφ(zk)φ
T(zk)

)−1

s.t.


wk ≥ 0, k = 1, . . . , N,
N∑
k=1

wk = 1.

(7.8)

The weights are constrained to sum to 1 instead of m, as the value of m does not
affect the objective.

The optimal weights w?k are used to produce the final design. For a design with
m points, the design is chosen to be the zk (with corresponding xk) associated with
the m largest values of w?k. Alternatively, we can choose the design associated with
the largest w?k’s, allowing as many points as required to reach some weight goal, for
example a total weight of 0.99. To notate the chosen design we simply re- index the
points as {zj}mj=1.

Several common scalarizations of the design objective have been proposed that
are more tractable [14]. The most commonly used is known as the D-optimal design
and it minimizes the log-determinate.

min
ω

log det

(
N∑
k=1

wkφ(zk)φ
T(zk)

)−1

s.t.


wk ≥ 0, k = 1, . . . , N,
N∑
k=1

wk = 1.

(7.9)

This is a convex optimization problem. For any confidence percentage ρ, there is an
ellipsoid centered at the least squares estimate of the model coefficients corresponding
to a design, such that the true model coefficients are in the ellipsoid with a probability
ρ. The D-optimal design corresponds to the minimum volume ellipsoid representing
the confidence region for a fixed confidence level [30].

Another scalarization of the design problem is known as the E-optimal design
where the matrix 2-norm (largest singular value) is minimized.

min
ω

σ̄

( N∑
k=1

wkφ(zk)φ
T(zk)

)−1


s.t.


wk ≥ 0, k = 1, . . . , N,
N∑
k=1

wk = 1.

(7.10)
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This is a convex optimization problem, and furthermore can be recast as a semidefinite
program (SDP).

max
ω,t

t

s.t.



N∑
k=1

wkφ(zk)φ
T(zk) � tI

wk ≥ 0, k = 1, . . . , N,
N∑
k=1

wk = 1.

(7.11)

The E-optimal design corresponds the confidence ellipsoid with its largest semi-axis
minimized [30].

The last scalarization is known as A-optimal design, wherein the trace of the error
covariance matrix is minimized.

min
ω

Tr

( N∑
k=1

wkφ(zk)φ
T(zk)

)−1


s.t.


wk ≥ 0, k = 1, . . . , N,
N∑
k=1

wk = 1.

(7.12)

This is also a convex optimization problem, and can also be recast as an SDP.

max
ω,u

L∑
`=1

u`

s.t.




N∑
k=1

wkφ(zk)φ
T(zk) e`

eT` u`

 � 0, ` = 1, . . . , L

wk ≥ 0, k = 1, . . . , N,
N∑
k=1

wk = 1.

(7.13)

Here e` is the `th standard basis vector in L dimensions, where L is the size of the
surrogate fit basis vectors φ(z). The A-optimal design minimizes the expected value
of the Euclidean norm of error in the least squares estimate of the model coefficients
[14].

It has been our experience that the results of all three of these scalarizations can
be skewed if the sample is not centered. This can be easily corrected by translating
the sample before converting to the surrogate basis. Let z̄ = 1

N

∑N
k=1 zk be the mean

vector of the sample. Then simply replace each vector zk with z − z̄ in each of the
optimizations.
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As a toy example, take the polytope shown in Figure 7.7. A 1,000-point sample
of the polytope is produced (using the gas dynamics point generation algorithm in
Section 7.2.1). The resulting 15 point design selection is shown for the D-, E-, and
A-optimal design optimizations. There are 6 points that show up in all three designs.
The E- and A-optimal designs are the most similar, sharing 11 points.

The D-optimal design in Figure 7.7 visually seems to be the most spread out,
with none of the points bunched up. However, the D-optimal took over 764 seconds
to select, which was the longest optimization time of the three designs. The A-optimal
design took 12.7 seconds to select and the E-optimal took 9.9 seconds. To further
compare the quality of the designs, Section 7.5 will demonstrate some fitting examples
using different designs and compare the fitting errors.

Sample

D−optimal design

E−optimal design A−optimal design

Figure 7.7: Selection of 15 design points using the D-, E-, and A-optimal design
optimizations from a 1000 point sample of a 2-dimensional polytope.

87



7.4 Surrogate Fitting and Validation

The optimizations in Section 7.3 selects an experiment design {zk}mk=1 in a r-
dimensional polytope from a large sample. The techniques for generating this sample
(Section 7.2.1) provide corresponding points in the n-dimensional hyperrectangle H,
such that for every design zk there is an xk ∈ H such that zk = STx, where R(S)
is the active subspace. Evaluation of the function of interest, f at the xk vectors of
parameters, yields the output yk = f(xk).

There is now enough information to create a surrogate fit of f . Recall, that φ is
the surrogate basis function — the function that maps a point in r- dimensions to the
vector in the surrogate basis. Then the surrogate fit is the function with coefficients
a that minimize the error on the design.

min
a

∥∥∥∥∥∥∥
φ

T(z1)
...

φT(zm)

 a−

y1
...
ym


∥∥∥∥∥∥∥ . (7.14)

The choice of norm does affect the fit. The 2-norm chooses coefficients to reduce the
average error on the design points. This is known as the least-squares problem and is
very efficient to solve for, and hence a quick calculation. The infinity-norm chooses
coefficients to reduce the maximum error on the design points. This problem is solved
with a linear program. Linear programs are also considered easy to solve, although
the solution takes longer to compute than the least-squares solution. All examples
throughout the rest of the document will use the 2-norm objective.

The optimization provides a surrogate fit on the r-dimensional subspace. To
convert the fit to one in the full n dimensions, simply compose the fit in r dimensions
with the linear transformation,

ffit(x) = a?Tφ(STx). (7.15)

Validation of ffit is then performed in the full n dimensions, and not on the subspace,
as this is where the function will be used.

7.5 Toy Examples

In this section, we explore how various experiment designs affect surrogate fitting
errors. Chapter 8 contains examples which demonstrate both the active subspace
discovery and experiment design and their effect on the surrogate fit. This section
will not explore how the choice of active subspace dimension affects the fit, but will
focus on how changes in the design affect the fitting errors.

Let S be a 30 × 3 matrix with orthonormal columns. The columns of S span
the active subspace of all of the following examples. We assume that this matrix is
known.

88



The first example function f1 is a quadratic function that depends only on the
active subspace, and includes some noise.

f1(x) =
[

1
STx

]T
Q
[

1
STx

]T
+ η (7.16)

where Q is a 4 × 4 symmetric matrix and η is Gaussian noise with zero mean and
variance of 0.01.

Two 3000-point samples were created using the two methods described in Sec-
tion 7.2. From these samples D-, E-, and A-optimal designs were selected using
quadratic basis functions and the optimizations presented in Section 7.3. The D-
optimal designs took an extraordinarily long time to compute. Table 7.1 shows the
computation times.

Table 7.1: Running times to compute optimal designs from 3000-point samples for
quadratic basis. The two sampling methods from Section 7.2 are shown. Designs
were computed with MATLAB on a laptop running Windows Vista x64 with a 2GHz
Intel Core 2 Duo processor.

Sampling Method
1 2

D-optimal 666.3 min 787.9 min
E-optimal 7.5 min 8.1 min
A-optimal 9.2 min 9.2 min

Using these designs, a quadratic surrogate model that depends on the active sub-
space is fitted to the model. The fits were created to minimize the least-squares
objective on the residual error. Error was assessed in the original 30-dimensional
space using 600,000 validation points. Table 7.2 contains the average relative error
over the validation points. As a comparison, an fitting to a random design produced
a fitting error of 0.71%. The D-optimal design does not provide much better fitting
errors than the E- or A-optimal and yet it took almost 100 times longer to compute.
In this example, there isn’t a significant difference between the two sampling methods.

Table 7.2: Average relative fitting errors for surrogates of f1 computed using 6 optimal
designs. Errors are assessed in the full 30-dimensional space over 600,000 validation
points.

Sampling Method
1 2

D-optimal 0.43% 0.45%
E-optimal 0.44% 0.45%
A-optimal 0.53% 0.48%

The second example is a function which is not purely quadratic.

f2(x) =
[

1
STx

]T
Q
[

1
STx

]T
+ 0.1

∣∣xTSC · diag(xTSSTx)
∣∣+ η. (7.17)
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Here, C is an r× r matrix representing coefficients associated with cubic terms. This
form was chosen for notational and computational simplicity. It contains cubic terms
such as x3

i and x2
ixj but does not include any of the cubic terms of the form xixjxk

for distinct i, j, and k. The same active subspace as the previous example is used,
and therefore we can use the same designs. Table 7.3 contains the relative fitting
errors for this function.

In this example, the D-optimal designs did worse than the E-, or A-optimal de-
signs. However, it should be noted that a random design produced a fitting error
of 1.2%. This may be due to the fact that f2 is not quadratic, and the design was
specifically created to fit quadratics well. In this sense, the experiment design tech-
nique only works if the function in question if very close to quadratic. Section 7.6.2
will discuss some methods for expanding a design to include more points.

Table 7.3: Average relative fitting errors for surrogates of f2 computed using 6 optimal
designs. Errors are assessed in the full 30-dimensional space over 600,000 validation
points.

Sampling Method
1 2

D-optimal 2.0% 3.4%
E-optimal 1.1% 2.0%
A-optimal 1.2% 2.3%

The last example is a quadratic function with noise that does not depend solely
on its active subspace.

f3(x) =
[

1
STx

]T
Q1

[
1

STx

]T
+ 0.01xTS⊥Q2S

T
⊥x + η. (7.18)

Here Q1 is an r+ 1× r+ 1 matrix as before, and Q2 is an n− r× n− r matrix. The
function f3 most strongly depends on the subspace R(S) but it also depends on the
orthogonal subspace R(S⊥). Table 7.4 contains the relative fitting errors associated
with the various designs. For comparison, a fit made with a random design had a
relative error of 4.8%.

Table 7.4: Average relative fitting errors for surrogates of f3 computed using 6 optimal
designs. Errors are assessed in the full 30-dimensional space over 600,000 validation
points.

Sampling Method
1 2

D-optimal 3.6% 3.8%
E-optimal 3.6% 4.0%
A-optimal 3.6% 3.9%

Based on these three simple examples, it appears that the large amount of time
spent on computing the D-optimal design is not worth the results it produces. Sam-
pling method 2 produced fitting errors that were no better, and often worse than
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that of sampling method 1. As seen in Section 7.2.3, this may be do to the fact
that method 2 might not produce samples that are outside of the polytope P1 and
therefore no improvement is made. The next section will discuss some improvements
that could be made upon these methods.

7.6 Method Improvements

7.6.1 Sampling on the Polytope Boundaries

The optimization problems in Section 7.3 that select the experiment design can
be very large and take a long time to solve. Each formulation involves the weighted
sum of N L × L matrices, where N is the number of sample points, and L is the
number of basis functions for a fit on the lower dimension r. For example, say the
sample involves 30,000 points, and the fit is a quadratic in 5 variables. Then each
optimization involves the weighted sum of 30,000 21 × 21 matrices. These large
dimensions affect computation times considerably; however, large sample sizes are
needed to adequately fill the polytope.

It has been our observation that most of the optimizations involving a quadratic
basis result in a design of points on the boundaries of the polytope and a point in
the center of the polytope. It therefore makes sense to only sample the boundaries of
the polytope and the center point. In this case, the sample would not need to be as
large in order to adequately find good design points. The following are two methods
for sampling the boundaries, analogous to the two methods of sampling presented in
Section 7.2.

To gain the center point of the polytope, transform the center point x0 of H to the
z-space, via, z0 = STx0. Choose a vector v ∈ Rr from a distribution that is uniform
in direction. This is achieved by sampling a Gaussian distribution and normalizing
[66, 73]. A sample point on the boundary zk is achieved by finding the maximum γ
such that z0 + γv is in the polytope. This procedure is then repeated, picking a new
direction each time, to produce a sample on the polytope boundary.

When discussing the two original sampling methods, Section 7.2.3 noted that each
sampled a different polytope. Method 1 sampled the intersection of the subspace and
H, which was denoted P1. Method 2 sampled the projection of H onto the subspace,
a polytope denoted P2. Sampling the boundaries of these polytopes requires one of
two optimizations. After the random direction v is sampled, a point on the boundary
of P1 corresponds to

max
γ

γ

s.t. x0 + γSv ∈ H.
(7.19)
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The boundary point is z0 +γ?v. This is a very simple optimization, and only requires
some simple vector operations to solve. To find a boundary point of P2 requires a
linear program.

max
x,γ

γ

s.t.

{
x ∈ H,
z0 + γv = STx.

(7.20)

This optimization solves for the furthest possible distance traveled along the direction
v such that there is a corresponding x ∈ H. The resulting boundary point is STx?.

As discussed previously, P2 is larger than P1 and so it is beneficial to sample its
boundary. However, the boundary points do take slightly more time to compute. A
simple example in two dimensions in shown in Figure 7.8 along with the resulting
D-optimal designs. In the case of designing on P1, a much smaller sample than was
demonstrated in Section 7.2.1 yields the same end design. However, the optimization
takes much less time, due to the decrease in sample size.

P
1

⇒

P
2

⇒

Figure 7.8: 500 point samples of the boundaries of P1 and P2 (and the center points)
and the resulting D-optimal designs.

As an example, take the function f1 from equation (7.16). The fitting errors for a
quadratic surrogate created from designs on the boundaries of P1 and P2 are about
the same as they were before. However, the design optimization time was significantly
decreased. Since the initial samples are all on the polytope boundaries, only 500 are
chosen. Table 7.5 shows the optimization times.
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Table 7.5: Running times to compute optimal designs from 500-point samples for
quadratic basis. The two samples used are on the boundaries of the polytopes P1 and
P2. Designs were computed with MATLAB on a laptop running Windows Vista x64
with a 2GHz Intel Core 2 Duo processor.

Sampling Method
1 2

D-optimal 306.9 sec 212.4 sec
E-optimal 1.6 sec 1.7 sec
A-optimal 7.5 sec 10.1 sec

7.6.2 Expanding a Design

The design optimization problems provide a weight for each point in the polytope
sample. After about 99% of the total weight has been distributed to the primary
design points, the design starts to bunch several points together. This may make
sense in laboratory experiments where repeating an experiment at the same parameter
values may yield different results. However, for the computer experiments used for
surrogate fitting, repeated points will only bias the fit to be better at those locations
in the parameter space. However, it may be necessary to increase the number of
design points if, for example, f is not similar to the form of the surrogate fit. Many
samples may help catch larger trends in the function.

One idea would be to perform designs on both types of Polytopes. Since P1 ⊆ P2,
designs on the boundaries of P1 and P2 will be disjoint (except for the center point).
If the boundaries of P1 and P2 are far enough apart, a union of the two designs will
provide parameter vectors that are spread out. Figure 7.9 shows an example of this
type of design union.

Another possible way to expand a design would be to use Voronoi decomposition.
Given an already optimized design, the Voronoi decomposition divides the space into
polyhedra, such that there is one design point in each polyhedron, and all points
in the interior of any polyhedron are closer to the enclosed design point than any
other design point. The vertices of the polyhedron provide a good addition to the
design as they are equidistant from the r + 1 closest design points. In this sense, the
Voronoi vertices are not dense with respect to the current design, although they can
be close to each other. The biggest problem with this approach is that the number
of Voronoi vertices grows very rapidly3 and can take some time to compute and may
provide more points than desired. Figure 7.10 shows the Voronoi cells for a design in
2- dimensions.

3Number of Voronoi vertices with m design points in r dimensions is in O(mdr/2e/dr/2e!) [55].
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Figure 7.9: The union of designs on the boundaries of polytopes P1 and P2 along
with the center point for a toy problem.

Figure 7.10: Voronoi cells corresponding to a design on a polytope. Polytope is shown
as dashed lines. Circles designate the original points and squares the Voronoi vertices.
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7.6.3 Including Orthogonal-Space Dependence

The technique developed in this chapter creates surrogate models that depend
solely on an active subspace R(S). The assumption is that the number of basis
functions grows unfavorably with the dimension, and hence fitting only on the active
subspace decreases the number of evaluations required substantially. However, the
function f does not necessarily depend solely on the active subspace R(S). The
term “active” simply implies that the majority of the dependence occurs along the
subspace directions. However, there may be some dependence in the orthogonal
subspace R(S⊥) = N (ST).

To capture some of that dependence without too many more function evaluations
we allow the surrogate fit to include linear terms in the orthogonal directions. If S⊥
is the n×n− r matrix whose orthonormal columns span the space orthogonal to the
active subspace, then the surrogate model formulation will be

ffit(x) = aTφ(STx) + bTST
⊥x (7.21)

where a and b are the surrogate coefficients. There are only n − r more coefficients
in this formulation than that of equation (7.15), and therefore it only requires on the
order of n more function evaluations.

Creating an experiment design for this fit is done in two steps. First create a
design as before without any orthogonal component considered. Second, simply add
points to the design that have nonzero orthogonal subspace components. For example,
these added points could come from an n − r point, n-dimensional Latin-hypercube
design. For another example, take the hyperrectangle vertices corresponding to the
orthants containing the columns of S⊥. We do not suggest optimizing this portion
of the design because presumably the dimension n− r is large enough that it is very
difficult to effectively sample the space.

This concept of allowing the surrogate fit to depend on the space orthogonal to
the active subspace, can be extended to allow any basis whose size grows linearly with
dimension. For example, we can allow both linear and purely quadratic terms (no
cross terms) in the orthogonal directions. This equates to creating a fit of the form

ffit(x) = aTφ(STx) + bTST
⊥x + xTS⊥ΛST

⊥x (7.22)

where Λ is a diagonal n− r × n− r matrix.

Chapter 8 provides an example of this technique.
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Chapter 8

Examples Using Active Subspace

Methods

This chapter presents some examples combining the active subspace discovery al-
gorithm of Chapter 6 and the subsequent design and fitting techniques of Chapter 7.
The first couple of examples will explore the effect of choosing different subspace
dimensions and different designs on fitting quadratic surrogate models. The last ex-
ample will using automated active subspace discovery as part of a dataset consistency
measure calculation.

8.1 Methane Combustion

GRI-Mech 3.0 [106] target CH3.C1a is the maximum CH3 concentration in a
shock tube oxidation of methane [18]. Simulation code for this observable has 313
parameters. The domain of our analysis will allow each variable to vary a factor of 2
above and below its nominal value.

Section 6.6.3 briefly examined this observable. Recall that a basic sensitivity
analysis from linear fits of a Hadamard design showed an asymptotic decay of sorted
parameter sensitivities. The GRI-Mech project uses the top 11 ranked parameters
as the active parameters for this observable. For this example, the top 100 ranked
parameters are chosen as the active parameters. The remaining 213 parameters are
set at their nominal values. The rest of the analysis in this section will only allow
these 100 parameters to vary; all subspace discovery analysis, surrogate fitting, and
fit validation will be on the active parameters.
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Let M : R100 → R be the function that takes the log10 of the 100 active parameters
to the log10 of target CH3.C1a. Each evaluation of M takes about 0.26 seconds on
a laptop running Windows Vista x64 with a 2GHz Intel Core 2 Duo processor. A
quadratic surrogate in 100 parameters has 5,151 coefficients. The required 5,151
simulations would take about 22 minutes to run, which isn’t too long. However,
simulation of some of the GRI-Mech targets can take as long as half an hour per run
[41]. Analysis of target CH3.C1a may provide some insight into how surrogate fitting
with active subspace techniques will work with other GRI-Mech targets.

The first step in creating a surrogate model using active subspace techniques is
using the active subspace discovery algorithm (Algorithm 6.1 on page 56). Figure 8.1
shows the singular values of the gradient matrix (computed using numerical gradi-
ents) after 40 iterations of the algorithm. The singular values of the gradient matrix
imply that M depends on a lower dimensional active subspace. The dimension of the
subspace could be taken as low as 1 or as high as 30 or 35.
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Figure 8.1: Singular values of gradient matrix after 40 iterations of the active subspace
discovery algorithm for GRI-Mech 3.0 target CH3.C1a

To examine the effects of using an active subspace, quadratic surrogate models are
created using several active subspace dimensions. Fitting designs were created using
an E-optimal choice from a sample created using sampling Method 2 (see §7.2.1 and
§7.3). The size of each design was double the number of coefficients of a quadratic
in the subspace dimension. Table 8.1 shows the relative fitting error of M for several
subspace dimension choices as well as the number of function evaluations needed to
generate the quadratic. The errors are relative and assessed in the log coordinates on a
40,000-point validation sample in all 100 active parameters. The total evaluations and
CPU time shown reflect both the evaluations used for fitting as well as the amount of
evaluations used for the active subspace discovery, given that the algorithm stopped
after one more iteration beyond that of the dimension of the active subspace (see §6.3).
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The total number of evaluations also takes into account the fact that several points
are reused from the subspace discovery algorithm for fitting. For example, discovering
a 6-dimensional subspace required 7 groups of 101 evaluations, and fitting a quadratic
in 6 dimensions used 49 evaluations (twice the number of coefficients minus 7 points
reused from the subspace discovery) for a total of 756.

Table 8.1: Surrogate fitting errors for GRI-Mech 3.0 target CH3.C1a. Several different
active subspace dimension are shown, as well as a fit in all 100 active variables. Fitting
errors are relative and assessed on the same 40,000-point validation sample of the full
100 dimensions.

Fit Descr. Avg. Err. Max. Err. Total Evals. CPU Time (min)
Full Dimension 0.07% 0.56% 10,302 44.6
1D Subspace 0.37% 2.9% 206 0.89
2D Subspace 0.66% 6.0% 312 1.35
4D Subspace 0.38% 3.4% 530 2.30
6D Subspace 0.19% 1.7% 756 3.28
10D Subspace 0.20% 1.4% 1,232 5.34
20D Subspace 0.09% 0.74% 2,562 11.1
30D Subspace 0.08% 0.70% 4,092 17.7

From the table we can see that there is not a significant decline in fitting error from
a fit in all 100 dimensions when using a 6- or 10-dimensional subspace. However, there
is an order of magnitude decrease in the number of function evaluations required, and
hence the computation time. Had the target simulation taken much longer than it
did, fitting a surrogate model in 100 variables would be very time consuming.

As noted in Section 7.6.3, it does not require many more function evaluations to
add linear terms in the direction orthogonal to the active subspace. To create these
fits a 200-point Latin hypercube design of the 100-dimensional domain was added
to the experiment design to include points not on the active subspace. Table 8.2
shows the surrogate fitting errors associated with these types of fits. These errors
were assessed on the same 40,000-point validation as before. Furthermore we can
add terms for the “pure” quadratic monomials in the directions orthogonal to the
active subspace, i.e. those of the form x2

i and not those of the form xixj. Again, the
number of these monomials is linear in the number of dimensions. A 400-point Latin
hypercube design was added to the experiment design (200 for the linear terms and
200 for the pure quadratic terms). Table 8.3 shows the surrogate fitting errors when
including both the linear and purely quadratic terms in the orthogonal directions.
In both cases, adding the extra terms for the orthogonal subspace does not lead to
much improvement. This is most likely due to the fact that the active subspaces were
correctly computed, and full quadratic is needed in those directions.
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Table 8.2: Surrogate fitting errors for GRI-Mech 3.0 target CH3.C1a. Several different
active subspace dimension are shown, as well as a fit in all 100 active variables. Each
fit (other than the fit in the full 100 dimensions) is quadratic on the active subspace,
plus includes linear terms for directions orthogonal to the active subspace. Fitting
errors are relative and assessed on the same 40,000-point validation sample of the full
100 dimensions.

Fit Descr. Avg. Err. Max. Err. Total Evals. CPU Time (min)
Full Dimension 0.07% 0.56% 10,302 44.6
1D Subspace 0.35% 2.2% 404 1.75
2D Subspace 0.32% 2.3% 508 2.20
4D Subspace 0.32% 2.1% 722 3.13
6D Subspace 0.20% 1.3% 944 4.09
10D Subspace 0.18% 1.4% 1,412 6.12
20D Subspace 0.09% 0.72% 2,722 11.8
30D Subspace 0.07% 0.57% 4,232 18.3

Table 8.3: Surrogate fitting errors for GRI-Mech 3.0 target CH3.C1a. Several different
active subspace dimension are shown, as well as a fit in all 100 active variables. Each
fit (other than the fit in the full 100 dimensions) is quadratic on the active subspace,
plus includes linear and purely quadratic terms for directions orthogonal to the active
subspace. Fitting errors are relative and assessed on the same 40,000-point validation
sample of the full 100 dimensions.

Fit Descr. Avg. Err. Max. Err. Total Evals. CPU Time (min)
Full Dimension 0.07% 0.56% 10,302 44.6
1D Subspace 0.35% 2.3% 602 2.61
2D Subspace 0.32% 2.3% 704 3.05
4D Subspace 0.29% 2.5% 914 3.96
6D Subspace 0.18% 1.0% 1,132 4.91
10D Subspace 0.17% 1.1% 1,592 6.90
20D Subspace 0.09% 0.73% 2,882 12.5
30D Subspace 0.08% 0.72% 4,372 18.9
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8.2 Cellular Calcium Response

The next example returns to the biological signal application introduced in Sec-
tion 6.6.4. The model simulates the calcium response to application of the ligand
C5a in a murine macrophage cell line [62]. Recall that the model involves 8 coupled
ODEs with 34 uncertain parameters and has several features that were previously ex-
amined. For this example, we examine the maximum calcium concentration response
to a 100nM ligand application.

Section 6.6.4 showed the results from the subspace discovery algorithm for this
model. The active subspace is somewhere between 1 and 3 dimensions depend-
ing on choice of threshold. A quick look at the surface of this function along the
1-dimensional active subspace shows that the model is not well approximated by
a quadratic function. However, if the model is well approximated by a piecewise
quadratic, then the Data Collaboration branch and bound techniques can be utilized
for analysis. Therefore, in this section the focus is to create a quadratic surrogate
model over a smaller domain. Nominal values for each parameter are given in the
original work [62] and a 20% uncertainty for each parameter is suggested in [34]. For
the example in this section we focus on a domain centered at the nominal values and
allowing just 2% variation in each parameter.

A quadratic surrogate function was fit on this smaller domain. The fit maps the
log10 of the 34 parameters to maximum calcium concentration (without a logarithmic
transformation). Table 8.4 shows the errors for several surrogate fits, including a few
different active subspace dimensions. Errors for fits using linear and pure quadratic
terms in the directions orthogonal to the active subspace are also shown. The errors
are assessed on a 13,600-point validation set. The errors are relative to the range of
the observable — the difference between the maximum and minimum values of the
observable.

Table 8.4: Fitting errors for the Lemon et. al. [62] model for maximum calcium
concentration due to a 100nM ligand application. Errors are relative to the range of
the function over the parameter domain.

S⊥ Error Total CPU Time
Fit Descr. Terms Avg. Max. Evals. (sec)
Full Dimension — 0.58% 10.7% 1,260 327
1D Subspace None 0.51% 16.3% 74 19.2
2D Subspace None 0.31% 15.5% 114 29.6
3D Subspace None 0.30% 15.0% 156 40.6
1D Subspace Lin. 0.52% 11.9% 140 36.4
2D Subspace Lin. 0.36% 12.6% 178 46.3
3D Subspace Lin. 0.50% 8.58% 218 56.7
1D Subspace Lin.+Pure Quad 0.42% 10.1% 206 53.6
2D Subspace Lin.+Pure Quad 0.51% 8.55% 242 62.9
3D Subspace Lin.+Pure Quad 0.38% 10.7% 280 72.8
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8.3 Consistency of Cellular Calcium Response

Dataset

In [34], Ryan Feeley demonstrated the consistency of a dataset made from several
features of the calcium response model by Lemon et. al. [62] used in the previous
section. The dataset included the rise time, peak offset, and fall time of the calcium
response due to each of six different ligand doses. When computing the consistency
measure, quadratic surrogate models were built for each of the 18 attribute models.
This was done with an iterative fitting algorithm that continually adds points to the
regression until each fit “settles” (see §B.5.2).

The goal of the active subspace method of surrogate fitting is to reduce the amount
of evaluations required. To fairly compare results of a consistency measure computa-
tion when the active subspace method is used for surrogate fitting to the computation
without the active subspace method, the iterative fitting algorithm is not used. In-
stead, each fit is created with a fixed number of evaluations that depends on the
number of dimensions. This calcium response model is generally not well fit by
quadratics, so we examine a smaller example than Feeley discusses. In this way, the
methods can be compared with the difficulties associated with the model playing less
of a role.

The dataset contains four models: the peak offset of the calcium response from
each of the ligand doses 50, 100, 250, and 500nM. The models each have 34 uncertain
parameters. The ranges of the parameters were taken at 2% above and below litera-
ture values. The experiment data was taken from the Alliance for Cellular Signaling
(AfCS) [3, 111] as in [34]. However, it should be noted that this data comes from a
cell type that is different than that for which the model was designed. Therefore, the
results presented here should only be viewed as an example of the techniques and not
as any conclusions about the model or data.

Five iterations of the branch and bound algorithm were used to compute the
consistency measure of this dataset. Surrogate models were generated to reduce
the infinity-norm of the residual error in the experiment designs.1 The resulting
bounds on the consistency measure are [−0.0583, 1.40] which took a total of 30.2
hours to compute on a desktop computer running Linux. These bounds do not imply
anything about the consistency of the dataset, since the measure can be either positive
or negative. More branch and bound iterations would be required to resolve the
consistency or inconsistency of the dataset.

The computation was repeated, this time using the active subspace method to
generate the surrogate models. A gradient matrix singular value threshold of 0.05
was used (see Algorithm 6.1). For experiment designs, sampling method 1 was used
to generate a sample on the subspace polytope from which the E-optimal design

1The infinity-norm was minimized since the maximum error is what is added to the experiment
uncertainty for the consistency measure calculation.
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was computed. The resulting bounds on the consistency measure were [0.0948, 2.16]
which took a total of 15.3 hours to compute. In this case, even though the upper
bound on the consistency was larger than before, the lower bound was positive, and
hence the dataset is consistent. The active subspace for each model, in each iteration,
was automatically computed to be 1-dimensional.

The difference in the results suggests the active subspace method works for this
example. The computation using the method took about half as long as the computa-
tion without it, and produced a better lower bound. It did, however, produce a worse
upper bound on the consistency measure. Table 8.5 shows the number of evaluations
used for the consistency measure computation with and without the active subspace
algorithm. Similarly, maximum fitting errors are shown. The computation with the
active subspace algorithm used about half as many evaluations, which explains the
difference in computation time. Note that each computation used the same number
of evaluations for validation since fitting errors are assessed on the full 34 dimensions.
If it were not for the large number of validation points, the time difference between
the two methods would have been larger.

The fitting errors are better using the active subspace method for three of the
four surfaces. In two cases (the 250nM and 500nM ligand doses) the errors are an
order of magnitude better. The large error on the fit for the model with a 100nM
ligand dose is likely the reason that the upper bound on the consistency measure is
larger when the active subspace method is used. More iterations of the branch and
bound algorithm would only improve the fitting errors, and hence the bounds on the
consistency measure.

Table 8.5: Number of evaluations and fitting errors for the consistency of the calcium
response dataset with and without the active subspace method. Totals are across all
5 iterations of the branch and bound algorithm. Fitting errors are absolute, and can
be compared to a maximum value of about 0.11 for each model.

w/o subspace w/ subspace

# evals. for subspace discovery 0 1,400
# evals. for fit 252,000 40,860
# evals. for validation 126,000 126,000
Total # of evals 378,000 168,260
Max. fit error (50nM model) 0.151 0.103
Max. fit error (100nM model) 0.121 0.309
Max. fit error (250nM model) 0.121 0.0164
Max. fit error (500nM model) 0.108 0.0121
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Chapter 9

Other Applications for the Data

Collaboration Methodology

The Data Collaboration methodology, as described in Chapter 2, has been used
primarily for checking dataset consistency [32, 33] and making model predictions
[42, 43]. In Chapter 5, a method for finding a representative feasible point is described.
This chapter will described several other tools and techniques for exploring a feasible
set as well as methods for using the model prediction techniques in new ways.

9.1 Sampling the Feasible Set

The feasible set associated with the Data Collaboration setup is often made of
nonlinear constraints in many variables. As such, traditional sampling techniques
such as sampling from uniform or Gaussian distributions in n dimensions do not
work as they do not take into account constraints that are not coordinate aligned.
Even a technique such as rejection sampling can be frivolous in high dimensions (see
§10.1). In this section, we modify the gas dynamics sampling algorithm for polytopes
(Algorithm 7.1 in Section 7.2.1) to sample a set described by nonconvex quadratic
constraints. The Data Collaboration techniques involve fitting model constraints with
quadratic constraints thus creating such a set.

The major difference between the algorithm presented here and the one previously
described for sampling a polytope have to do with the computation of gas particle
reflections off of the set boundaries. Algorithm 9.1 shows the steps in the procedu-
ral form, including the computation required for reflection when the constraints are
nonconvex quadratic.
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Algorithm 9.1 Gas Dynamics Sampling Algorithm for Nonconvex Quadratically
Constrained Sets

Require: x(0) {Starting feasible point}
Require: N {Number of desired samples}
Require: {Zi}mi=1 {Matrices defining constraints [ 1

x ]T Zi [ 1
x ] ≤ 0}

1: for k = 1 to N do
2: Choose v ∈ Rn from a Gaussian distribution N (0, I){“velocity”}
3: Tremain ← 1 {Remaining “time” to next sample}
4: xnow ← x(k − 1) {Current particle position}
5: cnt ← 0 {Number of reflections for this point}
6: while Tremain > 0 do
7: {T ?, i?} ← min

i
max
T

T s.t. [ 1
xnow+Tv ]

T
Zi [

1
xnow+Tv ] ≤ 0.

8: if T ? > Tremain{Didn’t hit boundary} then
9: x(k)← xnow + Tremainv

10: Tremain ← 0
11: else if T ? ≥ 0.99Tremain{Near boundary} then
12: x(k)← xnow + 0.99Tremainv
13: Tremain ← 0
14: else if cnt= 6 then
15: x(k)← xnow + 0.99T ?v
16: Tremain ← 0
17: else
18: xnow ← xnow + 0.999α?v
19: Tremain ← Tremain − T ?
20: η ←

[
0n×1 In×n

]
Zi? [ 1

xnow
]{Boundary normal vector}

21: v← v − 2η
Tv
ηTη
η{Reflect velocity vector}

22: end if
23: cnt ←cnt+1
24: end while
25: end for
26: return {x(k)}Nk=0
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Several things should be noted in Algorithm 9.1. If the sampled set is convex,
the sample will converge to a uniform sampling of the set as the number of samples
goes to infinity [115]. Without the convexity, the uniformity of the sample is not
necessarily achieved. Furthermore, the variance of the velocity (line 2) and the time
between recorded samples (line 3) can affect the time the algorithm takes to achieve
a satisfactory spread of points. What dictates what variances and times are “too
large” and “too small” depends on the set itself, and at this point we do not have a
good way to determine a good distance for nonconvex sets. However, to combat the
problem of too many reflections, Algorithm 9.1 limits the number of reflections to 6
as before (line 14).

This algorithm can be readily generalized to any set whose boundaries have easily
computed gradients. The gradients are needed to compute reflection angles. As
the Data Collaboration feasible set includes nonconvex quadratic constraints (with
surrogate modeling), the algorithm, as shown, is sufficient.

9.2 A Posteriori Parameter Ranges

The prior information hyperrectangle (H = {x : αi ≤ xi ≤ βi}) is the set of coor-
dinate aligned bounds on the parameter values, and represents the knowledge of each
parameter in an uncorrelated fashion. Once the parameters are further constrained
by the experimental models, data, and uncertainty, it may be possible to shrink the
bounds on some of the parameters and still maintain the same feasible set. These
new ranges are known as the a posteriori parameter ranges (the term coming from
philosophy [7] and Bayesian statistics [61]).

In the context of Data Collaboration the problem of finding posterior ranges is
posed as the question: What are the smallest coordinate aligned cube that contains
the feasible set? Or more specifically, for a single parameter: What is smallest and
largest values that a parameter can take in the feasible set? The Data Collaboration
methods can answer these questions via model predictions.

For each parameter xi, define a prediction model M0,i(x) = xi. Solve the model
prediction problem (see §2.3) to obtain the lower bound L0,i and upper bound R0,i.
The interval [L0,i, R0,i] is the posterior range of xi.

We performed this calculation for the GRI-Mech 3.0 dataset (described in Section
2.6). Figure 9.1 shows the percent reduction in parameter interval length that results
from these calculations. About 20 of the parameters show an interval length reduction.
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Figure 9.1: Percentage reduction in interval length when shrinking the prior hyper-
cube H to the smallest coordinate aligned cube containing the feasible set.

9.3 A Bounding Polytope of the Feasible Set

Polyhedra are geometric solids with flat faces and straight edges [20]. Definitions of
polyhedra vary, but we use the definition of Boyd and Vandenberghe [14] by requiring
such shapes to be convex as well. There are many good reasons to work with them,
not least of which is that the feasible sets of linear programs are polyhedra. Therefore,
it might be beneficial to construct a polyhedra that tightly bounds a feasible set. This
can be easily done using Data Collaboration techniques.

One way to specify a polyhedron is as the intersection of half-planes. Given vectors
ai ∈ Rn and scalars bi (say i = 1, . . . ,m), the resulting polyhedron P is written as

P = {x ∈ Rn : aTix ≤ bi, for i = 1, . . . ,m}. (9.1)

If the polyhedron is bounded, it is called a polytope. Using response predictions
techniques, we can find a polytope that bounds the feasible set.

The posterior hyperrectangle as described in the previous section is a polytope.
Further constraints can be added for arbitrary directions ai. The value of the associ-
ated bi is computed using a response prediction.

Li = min
x∈F

aTix, Ri = max
x∈F

aTix. (9.2)

The outer bounds Li and Ri are used to provide halfplane bounds on the feasible set.

aTx ≤ Ri (9.3)

−aTx ≤ −Li. (9.4)
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These types of constraints combined with the posterior (or prior) parameter bounds
form a polytope.

The choice of directions ai is rather arbitrary without more knowledge on the
shape of the feasible set. As more and more half-plane constraints are added, the
polytope improves as an approximation to the feasible set. Specifically, in the limit of
infinite half-plane constraints in all directions, the polytope converges to the smallest
convex set containing the feasible set: the convex hull of the feasible set. Therefore, it
makes sense to constrain the feasible set with as many half-planes as possible, taking
into account the amount of time to perform a prediction (which varies by problem).

One possible choice of directions ai are the principal components of a sample of
feasible points. Such a sample is obtained using the gas dynamics sampling algorithm
(Algorithm 9.1). The principal components of this sample provide a basic shape of
the feasible set. In this case the most important directions are those associated with
the smallest variance in the data as these directions will provide the tightest new
constraints.

9.4 A Bounding Ellipsoid of the Feasible Set

An ellipsoid is a generalization of an ellipse to higher dimensions. In n dimen-
sions, an ellipsoid can be written as the level set of a convex quadratic function in n
dimensions. In this work, we use the term ellipsoid to refer to an ellipsoidal solid, an
ellipse along with its interior. An ellipse E can be written

E := {x ∈ Rn : xTQx + bTx + c ≤ 0}, (9.5)

where Q is a n×n positive semidefinite matrix, b is an n×1 vector, and c is a scalar.

Ellipsoids are nice in that they can be described with one convex quadratic con-
straint. These can be used in quadratic programming (QP). Combined with a convex
objective, the convex constrained quadratic program is in P (the class of problems
solvable in polynomial time) [99], which is much better than the nonconvex quadrat-
ically constrained quadratic problem (see Chapter 3).

A sensible approach to finding a good ellipsoidal approximation to the feasible set
would be to find the minimum volume ellipsoid that contains the feasible set (known
as the Löwner-John ellipsoid [14]). However, unless the feasible set is described by
convex quadratic constraints, the formulation of this problem is not readily solved
[14]. Therefore, we provide another method for finding a covering ellipsoid.

By sampling the feasible set using the method outlined in Section 9.1, it’s possible
to obtain a spread of points that are representative of the shape of the feasible set
(assuming a connected feasible set). Principal component analysis (PCA) of the
sample produces a set of ordered orthogonal basis vectors for the space, such that
the first principal direction accounts for the most variability possible in the sample,
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the direction accounts for the second most variability, and so on. The directions
and variances provide an ellipsoidal shape, and the arithmetic mean of the sampling
provide the ellipsoid’s center.

Let x be the arithmetic mean of the m samples of the feasible set. Subtract off
the mean from the samples and stack the resulting vectors horizontally into an n×m
matrix X. Take the singular value decomposition

X =
[
U1 U2

] [Σ 0
0 0

] [
VT

1

VT
2

]
(9.6)

where Σ is positive definite and diagonal, [ U1 U2 ] and [ V1 V2 ] are unitary matrices,
and the zero matrices are of appropriate size. Then the quadratic coefficients of our

bounding ellipse will be contained in the matrix Q =
(
U1ΣUT

1

)−1
. Since we are

centering our ellipsoid at x, we need only find the constant term c in the quadratic
representation.

The problem is most intuitively formed as an optimization with a set containment
constraint.

c? := argmin
c

c

s.t. {x : xTQx− 2xTQx ≤ c} ⊆ F .
(9.7)

This problem can be rewritten as an NQCQP,

c? = max
x∈F

[ 1
x ]T
[

0 xTQ
Qx Q

]
[ 1
x ] , (9.8)

of which the outer bound can be solved using the S-procedure as outlined in Sec-
tion 3.1.1.

9.5 Convex Outer Approximation of a Nonconvex

Quadratically Constrained Set

If the feasible set is made of nonconvex quadratic constraints, then we can ap-
proximate it using convex quadratic constraints. Let the feasible set be made of p
constraints, written as

Lk ≤ xTQkx + bT
k x + ck ≤ Rk (9.9)

where k = 1, . . . , p, Lk and Rk are scalars, and Qk, bk, and ck are the quadratic,
linear, and constant coefficients, respectively.

The matrices Qk can be decomposed into matrices with only nonnegative or non-
positive eigenvalues using an eigenvalue decomposition. Since each Qk is assumed to
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be symmetric we can write the eigenvalue decomposition as

Qk =
[
VposVnegV0

] Λpos 0 0
0 Λneg 0
0 0 0

 [VposVnegV0

]T
(9.10)

where Λpos is the diagonal matrix of the positive eigenvalues, Λneg is the diago-
nal matrix of the negative eigenvalues, and Vpos, Vneg, and V0 are the correspond-
ing matrices of eigenvectors. By defining the matrices Qk,pos := VposΛposV

T
pos and

Qk,neg := VnegΛnegV
T
neg, the matrix Qk can be decomposed as

Qk = Qk,pos + Qk,neg, (9.11)

where Qk,pos is positive semidefinite and Qk,neg is negative semidefinite.

For each value of k we solve outer bounds of the following two optimization prob-
lems using the S-procedure.

γk := max
x∈F

xTQk,posx + bT
k x + ckωk := min

x∈F
xTQk,negx + bT

k x + ck (9.12)

where, again, F is the feasible set.

The convex feasible set approximation is created by using the prior parameter
bound constraints (which are convex) and further constraining the convex and concave
quadratic equations by γk and ωk, respectively.

xTQk,posx + bT
k x + ck ≤ γk (9.13)

xTQk,negx + bT
k x + ck ≥ ωk (9.14)

These constraints are convex. This feasible set approximation contains the actual
feasible set and hence is a conservative approximation.

9.6 Depth of a Point in a Nonconvex Quadratically

Constrained Set

The depth of a point x in a set is the smallest Euclidean distance from x to a point
on the boundary of the set. This is equivalent to the radius of the largest 2-norm ball
centered at x that is a subset of the set. If the point x is outside of the boundary of
the set, this definition of depth is equivalent to distance as discussed in Section 9.7.
We will assume that the depth property is only defined for elements of the set and
its boundary.

For a point x and a set F such that x ∈ F , let depth(x,F) notate the depth of
x in F . Specifically, it shall be defined as

depth(x,F) := max
r

r

s.t. {x : ‖x− x‖2 ≤ r} ⊆ F
(9.15)
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Furthermore, if the set is defined by m nonconvex quadratic constraints, described
by the n + 1 × n + 1 coefficient matrices {Zi}mi=1 as before, the depth property can
be written with semidefinite constraints. Using the S-procedure, equation (9.15) is
rewritten as

depth(x,F) = max
r,λ

r

s.t.

{ [
xTx xT

x I

]
−
[
r2 0
0 0n

]
− λiZi � 0, i = 1, . . . ,m.

λ ≥ 0.

(9.16)

A semidefinite program is affine in all of its variables. Therefore the square of the
depth can be solved with the SDP

depth2(x,F) = max
R,λ

R

s.t.

{ [
xTx xT

x I

]
− [ R 0

0 0n ]− λiZi � 0, i = 1, . . . ,m
λ ≥ 0,

(9.17)

where R is used to replace r2. However if the number of constraints used to de-
scribe the set is large, there are a lot of semi-definite constraints which implies longer
computation times. For a point in the GRI-Mech 3.0 dataset [106], with total 356
constraints, the computation can take close to 5 minutes. However, this problem can
be written as the minimum of m separate problems as

depth2(x,F) = min
i∈{1,...,m}

max
R,λ

R

s.t.

{ [
xTx xT

x I

]
− [ R 0

0 0n ]− λZi � 0
λ ≥ 0.

(9.18)

Furthermore, if there are constraints that are simply the bounds on individual coor-
dinates αi ≤ xi ≤ βi (e.g. the prior bounds H in the Data Collaboration framework),
then they can be handled simply by an upper bound on R. Let rmax be the minimum
of all βi − xi and all xi − αi, then R ≤ r2

max.

depth2(x,F) = min
i∈{1,...,m}

max
R,λ

R

s.t.


[

xTx xT

x I

]
− [ R 0

0 0n ]− λZi � 0
λ ≥ 0
R ≤ r2

max.

(9.19)

The concept of depth is tied to the concept of parameter optimization and find-
ing representative parameter values. The goal of parameter optimization is to find
parameter values that cause the value of models to deviate the least from their re-
spective experimental data. In Chapter 5 we described a method that attempts to
find a feasible point with the minimal number of deviations of the parameters from
their nominal values. Another notion of a representative parameter is a feasible point
that is far from all constraint boundaries. This could be seen as finding the point
with maximal depth. This is the same as allowing x to be an optimization variable in
equation (9.15). However, in this case, the formulation in equation (9.17) is no longer
an SDP. Nonetheless, depth, as presented in this section, can be used to compare two
feasible representative points.
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9.7 Distance of a Point to a Nonconvex Quadrati-

cally Constrained Set

A common definition of the distance between a point and a set is the infimum
of the distance between the point and elements of the set. If the set is closed, the
distance becomes a minimum. By definition any element of the set (or any boundary
point) has a distance of zero to the set.

For a point x and a set F , the distance between x and F is denoted dist(x,F)
and computed with the optimization problem

dist(x,F) := min
x∈F
‖x− x‖2. (9.20)

If the set F is made of nonconvex quadratic constraints, then the square of the dis-
tance is a NQCQP and can be bounded using the techniques described in Chapter 3.
Namely, the formulation becomes,

dist2(x,F) = min
x∈F
‖x− x‖2

2 = min
x∈F

xTx− 2xTx + xTx. (9.21)

For example, take the GRI-Mech dataset (Section 2.6). The optimized parameter
values from the last two GRI-Mech releases (2.11 and 3.0) are not contained in the
feasible set. The upper and lower bounds on the distance between the GRI-Mech 2.11
nominal vector and the feasible set is [5.03, 5.05]. The bounds on the distance for the
GRI-Mech 3.0 nominal values is [5.92, 6.00], which is a little further away. This is
a little surprising at first because the GRI-Mech 3.0 nominal value was optimized to
minimize the error between the models and data. However, this is possible because
when optimizing for GRI-Mech 3.0, researchers allowed only 31 of the 102 parameters
to deviate from their nominal. One of their goals was to allow only a small number
of parameters to deviate. The distance presented here uses the Euclidean norm and
therefore all parameters may deviate between the nominal to the closest feasible
point. In Section 5.5, this example is presented where the cardinality of the difference
between the nominal and a feasible point is minimized instead of the 2-norm of the
difference.
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Chapter 10

Exploring the Feasible Set

Many properties of high dimensional feasible sets are very difficult to calculate.
Estimations of the volume of a set, even if it is convex, are either poor estimates, or
use inefficient algorithms [11]. Even calculating the volume of a polytope is difficult
[27]. Discovering whether a set is convex or not is difficult, because even noncon-
vex constraints can result in a convex set. Without knowing much about a feasible
set’s properties, it would seem that quantifying the uncertainty in a model predic-
tion might be difficult. However, Data Collaboration methods (surrogate modeling
and constrained optimization) are able to do just that. In this chapter, we explore
several ways to examine the size and shape of a feasible set. Several approximations
were constructed of the feasible set and we explore how the approximations affect
uncertainty propagation.

10.1 Rejection Sampling

Consider a set A that contains the feasible set, and is easy to sample. Sample
points in A and reject any samples that are not in the feasible set. This is called a
rejection sampling of the feasible set. The percentage of samples that are not rejected
is an approximation to the ratio of the feasible set volume to the volume of A. If very
few samples are rejected, we expect A to be a good approximation of the feasible set.

Rejection sampling can be used to examine the various feasible set approxima-
tions presented in Chapter 9. Specifically we compute several approximations for the
GRI-Mech 3.0 feasible set described in Section 2.6. As a basis for comparison, 750
million points were sampled uniformly over the prior bounds hypercube, H. Using the
gas dynamics sampling algorithm described in Section 9.1, 750 million points were
sampled for each of several other feasible set approximations. A toy example in 2
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dimensions is shown for the feasible set and each type of sampled approximation is
shown in Figure 10.1.

The labels correspond to the following sets.

(a) The Feasible Set. In the case of the GRI-Mech 3.0 dataset, this is a set made
of 76 double sided nonconvex constraints and a double sided constraint on each
the 102 parameters.

(b) A Truncated Rotated Hyperrectangle. Outer bounds of the feasible set were
found in the principal component directions and were obtained from a sample
of the feasible set (as in Section 9.4). This rotated hypercube is then further
constrained (truncated) by the prior bounds H, resulting in a bounding polytope
as described in Section 9.3.

(c) An Ellipse. A bounding ellipse was found using the method described in Sec-
tion 9.4.

(d) A Truncated Ellipse. This approximation was constructed by further con-
straining the ellipse in (c) by the prior bound H.

(e) A Convex Quadratic Approximation. Using the method in Section 9.5, a
convex outer bound of the feasible set was constructed.

(f) Prior Bounds Hyperrectangle. The prior information on the parameters is
used without constraints from experiment data to construct this approximation.

In each approximation case, of all the sampled points, not a single point was found
to be in the feasible set.

The GRI-Mech 3.0 problem is in 102 dimensions. In high dimensions these ap-
proximations can be quite poor because of the large amount of volume along the
edges of the set. At the end of this chapter, in Section 10.6 we will provide further
evidence that these approximations are poor by using them for Data Collaboration
type questions.

10.2 Furthest Two Points in the Feasible Set

The prior bounds hyperrectangle for the GRI-Mech 3.0 dataset, H, has been
normalized to the hypercube [−1, 1]102. Two opposite corners in H have a Euclidean
(2-norm) distance of 2

√
102 ≈ 20.20 between them. This is the furthest straight

distance possible in H. The smallest coordinate aligned hyperrectangle that contains
the feasible set (as found in Section 9.2) has diagonal length of 19.37. By comparison,
the longest distance between two points in the unit ball ({x : ‖x‖2 ≤ 1}) is 2.
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(a)

(PCA) (b) (c)

(d) (e) (f)

Figure 10.1: Various approximations to a toy feasible set in 2 dimensions. In each case
the relevant set is shown with a bold outline, the actual feasible set is shaded, and
the prior bounds are shown as a square. Approximation formulations are described
throughout the text. See text for set descriptions. Subfigure (PCA) shows the princi-
pal component analysis of a feasible set sample resulting in the two directions shown.
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Using fmincon, one of MATLAB’s constrained optimization solvers, we were able
to find two points in the GRI-Mech 3.0 feasible set that are a distance of 18.72 apart.
This implies that the feasible set extends into corners of the hypercube, and is much
longer than the unit ball in at least one direction. This would also appear to imply
that the feasible set is similar in size to H. We will show in Section 10.1 that this is
not the case.

10.3 Testing for Convexity

A set K in Rn is called convex if θx+(1−θ)y ∈ K for every pair of points x and y
in K and every scalar θ ∈ [0, 1]. In words, a set is convex if the line segment between
every pair of points in the set is also in the set. In general, the Data Collaboration
feasible set is made of nonconvex constraints, and is therefore likely to be nonconvex
(although this is not necessarily the case).

In Section 10.1, a convex approximation of the GRI-Mech 3.0 feasible set was
shown to be much larger than the set itself. If the feasible set were constructed from
convex constraints this approximation would have been exact, therefore the feasible
set is possibly nonconvex. To explore the degree of nonconvexity of the GRI-Mech 3.0
feasible set, we picked random pairs of points in the set and looked for a point on the
line segment that is not contained in the feasible set. After examining 70,000 pairs of
feasible points, not a single connecting line that left the feasible set was found. Also
the line segment between the two farthest apart feasible points found in Section 10.2
is completely contained in the feasible set. While this search is by no means a proof
of convexity, it does seem to imply some sort of “roundness”.

Rejection sampling showed that a convex superset is much bigger than the feasible
set, yet every pair of points sampled defined line segments contained in the feasible
set. Perhaps the nonconvexities are small ripples along the feasible set boundary.
Yet in high dimensions, most of the volume is near the boundaries. This idea will be
explored further in the next section.

10.4 Average Depth of the Feasible Set

Section 9.6 describes a method for finding the depth of a parameter vector in the
feasible set. Section 9.1 demonstrated a method of sampling the feasible set. Using
these tools, we computed the depth of 50,000 sampled feasible points. The largest
depth found is 0.0021. The sample mean depth is 9.11×10−4. This seems to imply
that most of the feasible points are about half as far from the boundary as the deepest
point found.
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10.5 Comparison of a Feasible Set to the Unit Hy-

persphere and Prior Knowledge Bounds

So far, this chapter has explored several properties of the GRI-Mech 3.0 feasible
set. To further this exploration, we compare the feasible set F to the prior bounds
hypercube H (the unit ∞-norm ball for the GRI-Mech 3.0 dataset) and the unit
`2-norm ball, defined as,

B := {x ∈ Rn : ‖x‖2 ≤ 1}. (10.1)

The results of this exploration are summarized in Table 10.1.

Table 10.1: Property comparison of the GRI-Mech 3.0 feasible set F to the prior
bounds hypercube H and the unit `2-norm ball B. † denotes a value that was com-
puted with MATLAB’s fmincon. ∗ denotes a value that was computed via sampling
of the set.

Property F H B
Convex? No? Yes Yes
Convex by sampling test?∗ Yes Yes Yes
Maximum distance b/t points 18.72† 20.20 2
Mean distance 4.97∗ 8.23∗1 1.40 [2]
Standard deviation of distance 0.58∗ 0.48∗ 0.07 [2]
Contains origin? No Yes Yes
Contains GRI-Mech 3.0 nominal? No Yes No
Contains GRI-Mech 2.11 nominal? No Yes No
Maximum depth 0.0021∗ 1 1
Mean depth 9.11× 10−4∗ 9.71× 10−3 9.71× 10−3

Depth standard deviation 5.73× 10−4∗ 9.83× 10−2 9.83× 10−2

Volume ? 5.07× 1030 1.46× 10−41

R
jc

t.
sm

p
l.
∗ Rotated Truncated Hyperrectangle 0% 100% 0%

Ellipse 0% 0% 5.4× 10−4%
Truncated Ellipse 0% 100% 4.57× 10−4%
Convex Approx 0% 100% 100%
Prior Bounds, H 0% 100% 0%

Most of the properties of the feasible set are similar to those of the prior knowledge
hyperrectangle H. However, rejection sampling implies that it might be more similar
in size to the unit Euclidean-norm ball, B. While doing this type of exploratory
analysis may seem appealing, for uncertainty quantification and propagation it is
unnecessary. The next section demonstrates this.

1Using techniques from [4], we can hard bound the average distance between two points in H in
the interval [4.12, 8.25]. Exact solutions are known for up to 3-dimensions [90] but have not been
generalized to n dimensions.
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10.6 Predictions on Feasible Set Approximations

The Data Collaboration methods include the ability to predict the value of a model
by looking for its maximum and minimum values over the feasible set of parameters.
The methodology allows us to compute the prediction with the feasible set replaced
by one of the approximations discussed in Chapter 9.

Take for example, the GRI-Mech 3.0 target F5, a laminar flame speed of a
methane-air mixture [106]. As mentioned in Section 4.5, this target was excluded
from the constraints of the feasible set. Instead, a prediction of target F5 is made
using the rest of the GRI-Mech 3.0 dataset. Using the Data Collaboration meth-
ods described in Chapter 2 results in a prediction interval with outer bounds of
[33.65, 35.81] cm/sec, and inner bounds of [34.07, 35.61] cm/sec.

Predictions of target F5 are also made over the feasible set approximations men-
tioned in Chapter 9 and outlined in Section 10.1. Specifically, we calculated the
response prediction using the truncated rotated hyperrectangle, the bounding ellipse,
the truncated bounding ellipse, and the convex quadratic approximations as well as
the prior bounds only. Results are shown in Figure 10.2. The prediction over the
real feasible set gives the tightest prediction bounds. Furthermore the simplest ap-
proximation of the feasible set (the bounding ellipse) provides the largest prediction
interval.
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Target F5 Prediction.  Flame speed (cm/sec)

(a)

(b)

(c)

(d)

(e)

(f)

Figure 10.2: Prediction of GRI-Mech 3.0 target F5 using the actual feasible set and
various approximations. The width of the box on each bound represents the differ-
ences in inner and outer bound predictions. The various predictions correspond to
the type of constraints in Figure 10.1, namely (a) the actual feasible set, (b) a ro-
tated and truncated hyperrectangle, (c) an ellipse, (d) a truncated ellipse, (e) convex
quadratic approximation, and (f) the prior bound hypercube.
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Chapter 11

Summary and Conclusions

This dissertation has explored some techniques for quantifying the uncertainty in
collections of experimental data and simulation models. The techniques are mostly
geared toward formulating various objectives as constrained optimization problems
over the set of system parameters. These objectives include consistency of models
and experiment data, prediction of unmeasured observables, and determining a rep-
resentative parameter vector. The contributions provided in this work are expansions
and improvements on previously published work, as well as some new techniques for
surrogate fitting.

Data Collaboration is a framework presented in our previous work that combines
both experiment prediction models and experimental data to constrain a set of un-
certain parameters. Typical means of quantifying uncertainty in parameters lead to
distilling the information gathered from experiments down to easy-to-describe-and-
utilize results. Data Collaboration takes a different approach by using the collective
experiment data (as opposed to results) from several sources to tightly constrain the
parameters. Parameter constraints naturally fit in an optimization context. From this
perspective, the consistency of a collection of data and models is simply a feasibility
test of the constrained set. Prediction of an unmeasured observable is presented as
the maximum and minimum values a model of the observable can take over the set of
feasible parameters. Furthermore, when the models for the observables as functions
of the uncertain parameters have quadratic forms, techniques from convex optimiza-
tion and control theory are used to outer bound the optimization results, thereby
providing a provable conservative bound on the objectives.

The basis of the optimization techniques used are those with nonconvex quadrat-
ically constrained programs. A short review of NQCQP techniques for inner and
outer bound calculations is provided in Chapter 3. The outer bound optimizations —
achieved with the S-procedure and its dual formulation — provide sensitivity infor-
mation via Lagrange multipliers. The Lagrange multipliers are the partial derivatives
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of the outer bound optimal value to the bounds on the constraints. These can then
easily be transformed to get the partial derivatives of the optimal outer bounds to
the experiment and parameter uncertainties. The sensitivities can provide a general
measure of experiment impact, and also help create a linearization for the map from
uncertainty to optimal values.

In many situations it is advantageous to have a vector of parameter values that are
representative of the current knowledge of these parameters. Often this is the vector
of nominal literature values for the parameters. It can also be the result of optimizing
the parameters to improve correlation with experimental data. We furthered this idea
by applying the concepts of compressed sensing to reduce the number of parameters
required to deviate from their nominal values to achieve feasibility. The technique
uses the one-norm as a heuristic replacement for the cardinality function. This can
be rewritten as an NQCQP, and therefore outer bounds are computed quickly and
with associated sensitivities.

To facilitate the generation of quadratic surrogate models for the observable mod-
els we created techniques for searching for an active subspace of the parameters.
For complex simulation models with many parameters and long simulation times,
quadratic surrogate modeling can be the limiting factor. By searching for a hopefully
low-dimensional active subspace we can significantly reduce the amount of simulations
required to build these surrogate models. An active subspace discovery algorithm was
developed that exhibited the ability to compute a low-dimensional active subspace
(given its existence) in a relatively low number of simulations. This technique is
particularly useful when gradient calculations are available with each simulation and
also when several of the observables of interest come from the same simulation.

Once an active subspace is found we have developed a procedure for generating
experiment designs on the subspace that adhere to the original parameter bounds.
These designs choose simulation locations in the parameter space such that they are
spread out along the active subspace bases. We presented two methods for densely
sampling the subspace, and three different optimization problems for selecting the
design from the sample. There are pros and cons to each sampling method with
some improvements made by sampling along the polytope boundaries. The three
optimization problems yielded similar results in fitting errors, but were very different
in computation time — the E-optimal design computation being the fastest. The
optimizations could choose any desired number of design points from the samples;
however, the design points tended to clump together after a certain number were
chosen. Several suggestions are made to expand the design size beyond this number.

Several examples of using these active subspace method for surrogate generation
yielded very positive results. For the GRI-Mech 3.0 target CH3.C1a, the techniques
were able to achieve similar fitting errors to a fit generated over all parameters with
only about 20% of the number of evaluations and computation time. An example
in systems biology proved to benefit even more from the technique. In this case,
by adding linear or pure quadratic terms in the direction orthogonal to the active
subspace, even less fitting error was sometimes achieved for the cost of not many more
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simulations, particularly with the maximum error in this case. The time to compute
the consistency measure was also significantly reduced by using these techniques.

Even with good surrogate models that are fast to evaluate, if their domains are in
high dimensions, the feasible set characteristics are difficult to discover and describe.
The GRI- Mech 3.0 dataset appears to be very small as compared to the prior domain
hypercube, or any of several feasible set approximations. A line segment that is
partially out of the GRI-Mech 3.0 dataset, but has endpoints in the set, could not be
found, implying a relatively convex feasible set. Yet, rejection sampling implied that
the feasible set is much smaller than a convex approximation. Data Collaboration
techniques allow us to make model response predictions on a feasible set without
knowing its shape or complexity. Creating approximations to the feasible set that are
convex and possibly easier to describe (e.g. linear or few constraints) adds little benefit
to the analysis. Response predictions on the feasible set approximations presented
shown in this document are not as precise and informative as a prediction on the
actual feasible set or those using surrogate models.
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[11] I. Bárány and Z. Füredi. Computing the volume is difficult. Discrete & Com-
putational Geometry, 2:319–326, 1987.

[12] V. Bier. Implications of the research on expert overconfidence and depedence.
Reliability Engineering & System Safety, 85:321–329, 2004.

121



[13] G. E. P. Box, W. G. Hunter, and J. S. Hunter. Statistics for Experimenters:
An Introduction to Design, Data Analysis, and Model Building. Wiley, 1978.

[14] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, New York, NY, USA, 2004.

[15] S. Burer and D. Vandenbussche. A finite branch-and-bound algorithm for non-
convex quadratic programming via semidefinite relaxations. Mathematical Pro-
gramming, 113(2):259–282, 2008.

[16] S. Burer and D. Vandenbussche. Globally solving box-constrained nonconvex
quadratic programs with semidefinite-based finite branch-and-bound. Compu-
tational Optimization and Applications, 43(2):181–195, 2009.

[17] E. Candes and T. Tao. Decoding by linear programming. IEEE Trans. Inform.
Theory, 2004.

[18] A. Y. Chang, D. F. Davidson, M. DiRosa, R. Hanson, and C. Bowman. Shock
tube experiments for development and validation of kinetic models of hydro-
carbon oxidation. Poster at Proceedings of 25th Symposium (International) on
Combustion, 1994.

[19] G. Chin, Jr. and C. S. Lansing. Capturing and supporting contexts for scientific
data sharing via the biological sciences collaboratory. In Proc. of the 2004 ACM
conference on Computer supported cooperative work, pages 409–418, 2004.

[20] F. Christophersen. Mathematical necessities. In Optimal Control of Constrained
Piecewise Affine Systems, pages 3–19. Springer-Verlag, Berlin, Germany, 2007.

[21] S. Dasgupta, C. Papadimitriou, and U. Vazirani. Algorithms. McGraw-Hill,
New York, NY, 2008.
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Appendix A

Solving the NQCQP Lower Bound

Problems Using SeDuMi

Throughout this paper nonconvex quadratically constrained quadratic programs
are used to solve various problems. Often the lower bound problems derived using the
S-procedure (3.2) or a rank relaxation (3.4) are used because of computational speed
and Lagrange multiplier information as well as the lower bound itself. This appendix
will express the general NQCQP (including equality constraints) as a conic linear
program which many optimization solvers use. Section A.1 derivs the equations, and
Section A.2 provides MATLAB code for use with the SeDuMi optimization software
[109].

A.1 Conic Linear Program Formulation of

NQCQP Lower Bound Problems

The general formulation for the NQCQP including equality constraints is

p? = min
x∈Rn

[ 1
x ]T Z0 [ 1

x ]

s.t.

{
[ 1
x ]T Zi [ 1

x ] ≤ 0, i = 1, . . . ,m,

[ 1
x ]T Zj [ 1

x ] = 0, j = 1, . . . , q,

(A.1)

where Zi and Zj, for i = 0, . . . ,m and j = 1, . . . , q, are (n + 1) × (n + 1) symmetric
matrices. The equality constraints could be formulated as inequalities by constraining
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the quadratics to be both greater than or equal to or less than or equal to zero. How-
ever, most solvers use more sophisticated techniques for handling equality constraints,
so we use this formulation when equality constraints are involved.

The resulting lower bound from the S-procedure, p?
s
, and the lower bound from

the rank relaxation, p?
r
, are written as

p?
r

= min
Q�0

Tr [Z0Q]

s.t.


Q11 = 1,
Tr [ZiQ] ≤ 0, i = 1, . . . ,m,
Tr [ZjQ] = 0, j = 1, . . . , q.

(A.2)

p?
s

= max
λ≥0,ν,γ

γ

s.t. Z0 −
[
γ 0
0 0n

]
+

m∑
i=1

λiZi +

q∑
j=1

νjZj � 0,
(A.3)

The form of the linear conic program as used by the optimization package SeDuMi
[109] is

p = min
x∈RN

cTx

s.t.

{
Ax = b
x �K 0

(A.4)

where A is a M ×N matrix, b is a N × 1 matrix, and c is M × 1 matrix. Here the
constraint x �K 0 is a generalized inequality requiring x to be in the cone K [14].
The dual of this problem is

d = max
y∈RM

bTy

s.t. c−ATy �K∗ 0
(A.5)

where K∗ is the dual cone of K. We will now express the rank relaxation problem
(A.2) as the primal linear conic program (A.4) and the S-procedure problem (A.3) as
the dual linear conic program (A.5).

First we rewrite the rank relaxation formulation introducing the slack variables
τ ∈ Rp.

p?
r

= min
Q�0,τ≥0

Tr [Z0Q]

s.t.


Q11 = 1,
Tr [ZiQ] + τi = 0, i = 1, . . . ,m,
Tr [ZjQ] = 0, j = 1, . . . , p.

(A.6)

Also, let vec(·) be the function that maps an (n+1)×(n+1) matrix to an (n+1)2×1
vector as

vec
([

v1 · · · vn+1

])
=

 v1
...

vn+1

 . (A.7)
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Then the trace operations can be rewritten as

Tr [XY] = vec(X)T vec(Y). (A.8)

Now with this notation, the rank relaxation and S-procedure problems are rewrit-
ten in the linear conic program formulation.

A :=



−Im×m

− vec(Z1)T

...
− vec(Zm)T

0q×m

− vec(Z1)T

...
− vec(Zq)

T

01×m 1 01×(n2+2n)


,

c :=

[
0m×1

vec(Z0)

]
, x :=

[
τ

vec(Q)

]
,

b :=

0m×1

0q×1

1

 , y :=

λν
γ

 ,
K := {x = [

τ
vec(Q) ] : τ ≥ 0, Q � 0} .

These vectors b, c, x, and y and matrix A provide the conversion of the lower bound
problems into the linear conic programs as desired. This particular cone is self-dual,
so K∗ = K.

A.2 MATLAB code for NQCQP outer bounds us-

ing SeDuMi

The following MATLAB function solves the two NQCQP lower bound problems
presented in this document using the freely available optimization package SeDuMi
[109].

Algorithm A.1: MATLAB code for lower bounding of a NQCQP

function [lb1,lb2,Q,mults,info] = nqcqp_lowerbound(Z0,Zineq,Zeq,fid)

%Lower bound on the nonconvex quadratically constrained quadratic
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%program

%

% Provides lower bounds of the NQCQP

% min_x [1 x’]*Z0*[1;x]

% such that: [1 x’]*Zineq{i}*[1;x], i=1,...,m

% [1 x’]*Zeq{j}*[1;x], j=1,...,p

% Specifically it solves the program

% lb1 = min_Q trace(Z0*Q)

% such that: trace(Zineq{i}*Q)<=0, i=1,...,m

% trace(Zeq{j}*Q)=0, j=1,...,q

% Q(1,1)=1,

% Q is positive semidefinite

% and its dual program

% lb2 = max_{lambda,nu,gamma} gamma

% such that: Z0 - [gamma 0; 0 0] + sum(lambda_i*Zineq{i}) +

% + sum(nu_j*Zeq{j}) is positive semidefinite

% lambda_i>=0, i=1,...,m

% using SeDuMi.

%

% Inputs:

% Z0: an (n+1)-by-(n+1) symmetric matrix

% Zineq: a m-by-1 cell array with each cell containing an

% (n+1)-by-(n+1) symmetric matrix

% Zeq: [optional] a q-by-1 cell array with each cell containing an

% (n+1)-by-(n+1) symmetric matrix

% fid: [optional, default=1] file identifier for SeDuMi progress

% output. If fid=1, the progress is printed to the screen.

% If fid=0, the progress is supressed. This can also be a

% file identifier provided by the fopen command.

%

% Outputs:

% lb1: the value of the lower bound from the primal problem

% lb2: the value of the lower bound from the dual problem

% Q: the optimized primal decision variable, a (n+1)-by-(n+1)

% matrix

% mults: the optimized multipliers from the dual formulation, a

% structure with fields

% .ineq: a m-by-1 array (lambdas)

% .eq: a q-by-1 array (nus)

% info: structure provided by SeDuMi with information on the

% optimization. Most notably if info.pinf=1, then the primal

% problem is infeasible, a if info.pinf=1, then the dual

% problem is infeasible. See the SeDuMi help for more

% information.
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ni = nargin;

no = nargout;

%check number of inputs/outputs

error(nargchk(2,4,ni,’struct’));

error(nargoutchk(0,5,no,’struct’));

%if no equality constraints provided, make an empty cell array

if ni<3

Zeq = {};

fid = 1;

elseif ni<4

fid = 1;

end

%error check input classes

assert(isnumeric(Z0),’First input must be numeric array’);

assert(iscell(Zineq)&&(isvector(Zineq) || isempty(Zineq)),...

’Second input must be vector cell array’);

assert(iscell(Zeq)&&(isvector(Zeq) || isempty(Zeq)),...

’Third input must be vector cell array’);

assert(isnumeric(fid)&&isscalar(fid)&&any(fid==[0 1 fopen(’all’)]),...

’Fourth input must be 0, 1, or a valid file id provided by fopen’)

%get some sizes

n = size(Z0,1)-1;

m = length(Zineq);

q = length(Zeq);

%error check sizes

assert(size(Z0,2)==n+1,...

’First input needs to be a square symmetric matrix’)

Z0 = 0.5*(Z0+Z0’); %make it symmetric in case of small numeric issues

for i=1:m %repeat check for each inequality constraint

assert(all(size(Zineq{i})==[n+1 n+1]),...

[’Each cell of second input must be the same size as the’,...

’first input’])

Zineq{i} = 0.5*(Zineq{i}+Zineq{i}’);

end

for j=1:q %repeat check for each equality constraint

assert(all(size(Zeq{j})==[n+1 n+1]),...

[’Each cell of second input must be the same size as the’,...

’first input’])

Zeq{j} = 0.5*(Zeq{j}+Zeq{j}’);

end
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%build sparse matrix

A1 = [-speye(m); spalloc(q+1,m,0)]; %sparse matrix associated with

%linear vector inequalities

A2 = zeros(m+q+1,(n+1)^2); %sparse matrix associated with

%linear matrix inequalities

for i=1:m

A2(i,:) = -vec(Zineq{i})’; %vec is a function provided with the

%SeDuMi package

end

for j=1:q

A2(m+j,:) = -vec(Zeq{j})’;

end

A2(end,1) = 1;

A = sparse([A1 A2]);

%and vectors

b = spalloc(m+q+1,1,1);

b(end) = 1;

c = [spalloc(m,1,0); sparse(vec(Z0))];

%cone constraints

K.l = m; %first m elements of x are nonnegative

K.s = n+1; %next (n+1)^2 elements form a (n+1)-by-(n+1) matrix that is

%positive semidefinite

%set progress output file id parameter

pars.fid = fid;

%sedumi call

[x,y,info] = sedumi(A,b,c,K,pars);

%create outputs

lb1 = c’*x;

lb2 = b’*y;

Q = mat(x(m+1:end)); %mat is a function by the SeDuMi package

mults.ineq = y(1:m);

mults.eq = y(m+(1:q));
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Appendix B

Data Collaboration Toolbox for

MATLAB

The Data Collaboration toolbox is a free, open-source software package for the
MATLAB programming environment for non-stochastic uncertainty quantification us-
ing predictive models and experiment data. The software is available at http://collab-
sci.sourceforge.net/

The software allows a user to enter experiment data with uncertainty along with
a corresponding parameterized model. These combine to constrain a set of feasible
parameter values that match the data and model. Questions about this feasible set
of parameters, such as whether it is nonempty (consistency) and what the range of
values a given predictive model can take over the set (response prediction), are posed
as constrained optimization problems.

The techniques utilized in Data Collaboration (DC) are those described in several
journal articles.

1. M. Frenklach, A. Packard, and P. Seiler. Prediction uncertainty from models
and data. In Proc. American Control Conference, pages 4135–4140, 2002.

2. M. Frenklach, A. Packard, P. Seiler, and R. Feeley. Collaborative data process-
ing in developing predictive models of complex reaction systems. International
Journal of Chemical Kinetics, 36(1):57–66, 2004.

3. R. Feeley, P. Seiler, A. Packard, and M. Frenklach. Consistency of a reaction
dataset. Journal of Physical Chemistry A, 108(44):9573–9583, October 2004.

4. R. Feeley, M. Frenklach, M. Onsum, T. Russi, A. Arkin, and A. Packard.
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Model discrimination using data collaboration. Journal of Physical Chemistry
A, 110(21):6803–6813, March 2006.

5. P. Seiler, M. Frenklach, A. Packard, and R. Feeley. Numerical approaches for
collaborative data processing. Optimization and Engineering, 7(4):459–478,
December 2006.

6. T. Russi, A. Packard, R. Feeley, and M. Frenklach. Sensitivity analysis of un-
certainty in model prediction. Journal of Physical Chemistry A, 112(12):2579–
2588, February 2008.

This document is designed to act both as a manual for the use of the toolbox,
as well as providing some high-level description of the underlying algorithms. Each
section describes either the creation of some objects or an algorithm. If you feel
you would like to jump right in, we suggest you first read the requirements and
downloading/installation instructions in Sections B.1 and B.2. After that skip to the
examples in Section B.11.

B.1 Requirements

• “Any” computer operating system: DC has been tested on machines run-
ning Windows XP, Windows Vista x86 (32-bit), Windows Vista x64 (64-bit),
and Ubuntu. In principle, it should run on any fairly new desktop or laptop
computer that can run MATLAB.

• MATLAB release 2008a or later

• Optimization toolbox for MATLAB

• SeDuMi optimization package: SeDuMi is a free MATLAB toolbox for self-
dual minimization. DC provides version 1.21, but you may use another version
if you like. DC has been tested with SeDuMi versions 1.1 and 1.21.

B.2 Download and Installation

To download the software,

1. Visit the project home page at http://collab-sci.sourceforge.net/

2. Click the “Download Page” link.

3. Click the large green button that says “Download Now!”
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4. Depending on your internet browser’s preferences, you will either be prompted
to choose a location, or the zip-file will be saved to your default download folder.

Once the download is complete, unzip the file to a convenient location (e.g.
your default MATLAB working directory). To unzip a file you need a zip decom-
pression program. For windows, we recommend the free utility, 7zip, available at
http://www.7zip.com/. For linux/unix, there may already be a utility installed called
gzip.

Inside the main folder are several subdirectories and a few files. One of these files
is named “DCsetup.m,” a MATLAB script for setting path directories and importing
the main package. From the MATLAB command prompt run the script:

>> DCsetup

This will add the necessary directories to the current MATLAB path. It will also
import the +DClab package. This setup script should be executed from the main DC
directory each time you start MATLAB if you wish to use the DC toolbox. This
script can be executed from a startup file.

All of the main DC methods and objects have the prefix DClab., but this import
will make it such that using this prefix will be unnecessary. If you wish to use DC
objects and methods inside of a function or custom class, you either need to include
the DClab. prefix, or use the command

import DClab.*

at the top of each file. This command is in the “DCsetup” file, but that only will
import the package for the base workspace. For more information, see MATLAB
documentation on packages. Throughout this documentation, we will not use the
prefix for the sake of simplicity.

To test the directory setup, run the test script from the MATLAB command
prompt

>> dctest

This will take a minute or two. One issue you may run into the first time you run
the package is that the SeDuMi mex-files may need to be recompiled. This is only
necessary one time.

If the test script gives an error regarding SeDuMi, change the current directory in
MATLAB to the “SeDuMi 1 21” directory in the DC toolbox main directory. From
the command prompt type
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>> mex -setup

and select a c-compiler of your choice. For 32-bit operating systems, MATLAB ships
with the free compiler lcc. If no compiler is shown, you may need to get a c-compiler.
Please consult the MATLAB documentation for supported c-compilers. Once the
compiler is chosen, type the following at the command prompt

>> install_sedumi

This will take a few minutes. Once complete, change back to the main DC directory
and re-run dctest. Note: if the test script worked the first time, you should not have
to reinstall sedumi.

B.3 Version 2.0

The software has changed significantly from the previous release (1.0) to this
version (2.0). Most notably almost all of the object names has changed. Section B.12
provides a table to help you convert your own code to the names.

There are many changes to the underlying methods, and some ways that you can
interact with the software (e.g. the ability to define multiple features from a single
simulation file). All these are described in this document.

B.4 Dataset Formulation

The Data Collaboration Dataset is a collection of parameterized models, asso-
ciated experiment observations, and constraints on the individual parameters. Let
Ye be some scalar observable. Model Me predicts the value of the observable as a
function of n unknown parameters. Each parameter xi has a set of prior knowledge
bounds αi and βi such that αi ≤ xi ≤ βi. Also associated with each observable is
an experimental measurement de with lower and upper bound uncertainty le and ue
such that the value of the observable ye is bounded as le ≤ ye − de ≤ ue. All this
information collected together for m observables (e = 1, . . . ,m) is known as a dataset.

The following few sections describe how to build up these objects in the DC
software.

B.4.1 Listing of FreeParameters

The FreeParameter class describes objects associated with the model parameters.
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>> fp = FreeParameter(NAME,RANGE);

creates a FreeParameter object. NAME is a char array denoted the parameter’s name
(each parameter should have a unique name) and RANGE is a 1x2 numeric array de-
noted the lower and upper limits of the parameters value.

>> fp = FreeParameter(NAME,NOMINAL,UNCERTAINTY);

creates a FreeParameter object, using a nominal value with uncertainty. NOMINAL is
a scalar value. UNCERTAINTY can be a scalar such that the parameter is in the range
NOMINAL+/-UNCERTAINTY, or it can be a 1x2 numeric array so that the parameter is
in the range [NOMINAL+UNCERTAINTY(1), NOMINAL+UNCERTAINTY(2)]. Uncertainty
can also be specified relatively or with log transformations. The behavior of these
types of uncertainty specification are not as stable, however. If you are interested,
read the command line help for the FreeParameter object.

The FreeParameter objects can be stacked into vertical arrays. If you would like to
create the FreeParameters using a for-loop, you can pre-allocate empty FreeParameter
arrays. For example,

>> fps = FreeParameters(5);

initializes a 5x1 FreeParameter object array. This can then be filled using one of the
above syntaxes. For example,

>> fps(1) = FreeParameter(’param1’,[3 10]);

B.4.2 ResponseObservations

The observation of some scalar value of interest (the observable) related to an
experimental response is formulated as a ResponseObservation object.

>> ro = ResponseObservation(VALUE,UNCERTAINTY);

VALUE is a numeric scalar representing the measured observation. UNCERTAINTY can
either be a scalar or a 1x2 double. If it is a scalar, then the assertion is that the observ-
able y is constrained as | y - VALUE | ≤ UNCERTAINTY. If UNCERTAINTY is a 1x2 dou-
ble then the assertion is that UNCERTAINTY(1) ≤ y - VALUE ≤ UNCERTAINTY(2).
UNCERTAINTY can also be denoted as relative or with log transformations, but as with
the FreeParameter object, we suggest you use the above syntax.
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B.4.3 ResponseModels

A response model is an algebraic function or simulation code that maps a vector
of fixed parameter values to the scalar observable of the simulation response. For
example, if the model simulates some response over time, the scalar observable may
be the maximum value, or the rise-time to the peak value. Each model represents a
different observable. The model does not necessarily depend on all FreeParameters,
but it does depend on a subset of them.

There are two main types of ResponseModel objects that can be created. The
first is an algebraic model; specifically, it is an affine or quadratic function of the
parameters. The second is a general simulation model. Their creation is outlined in
the next two sections.

B.4.3.1 Linear or Quadratic Models

>> rm = ResponseModel(COEFFS,MODELDOMAIN);

creates an algebraic ResponseModel object.

MODELDOMAIN is an Nx1 struct array with two fields, name and range. N is
the number of parameters that this model depends on. For the ith element of
MODELDOMAIN, .name is a char array, that matches the name of one of the FreeParam-
eter objects and .range is the range of this parameter over which the model is valid.
The range must be a superset of the range define in the corresponding FreeParameter
object. The MODELDOMAIN may only contain parameters described in the FreeParame-
ter objects. The order does not need to correspond to the order of the FreeParameter
array in any way. The order of parameters in MODELDOMAIN is the order in which the
ResponseModel expects parameters for calculation.

If the ResponseModel is affine, COEFFS will be an (N+1)x1 numeric array, such
that the model corresponds to the form

y = COEFFS’*[1;x];

where x is a Nx1 vector of parameters in the same order as MODELDOMAIN.

If the ResponseModel is quadratic, COEFFS will be an (N+1)x(N+1) symmetric
numeric array, such that the model corresponds to the form

y = [1 x’]*COEFFS*[1;x];

where x is a Nx1 vector of parameters in the same order as MODELDOMAIN. This is the
same as
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y = COEFFS(1,1) + 2*COEFFS(1,2:end)*x + x’*COEFFS(2:end,2:end)*x;

The ResponseModel can also be specified with output uncertainty/error as

>> rm = ResponseModel(COEFFS,MODELDOMAIN,OUTPUTUNC);

If the algebraic form is a surrogate fit, then OUTPUTUNC may be the fitting error.
For example, this would be the peak fitting error over the model domain when the
algebraic model is a low-order approximation to a more detailed model. OUTPUTUNC

should be a scalar if the uncertainty in the model output is symmetric. If it is
asymmetric this should be a 1x2 vector, with OUTPUTUNC(1) <= eta(x) - M(x) <=

OUTPUTUNC(2), where M(x) is the algebraic model and eta(x) is the true model.

B.4.3.2 Models Using Simulation m-files

rm = ResponseModel(MODELHANDLE);

creates a response model given the function handle MODELHANDLE. It is also possible
to create a ResponseModel object with some additional inputs.

rm = ResponseModel(MODELHANDLE,ADDLINPUT1,...,ADDLINPUT2);

The function that is pointed to by MODELHANDLE has a special form. The easiest
way to learn this form is to use the template file “dcModel.m” found in the “fileTem-
plates” subdirectory of the main DC directory. If MODELHANDLE is @myModel, then the
first line of “myModel.m” is

function out = myModel(flag,paramMatrix,varargin)

or something similar. This function not only needs to return evaluations of a set of pa-
rameter values, but also return information about the function. This first input, flag,
will be a char array denoting the information requested by the toolbox’s methods.
The following list summarizes possible inputs for flag, and what the corresponding
output needs to be.

’simulate’ (Required) The input paramMatrix will be an NxL matrix (N is the
number of parameters for the model and L the number of points) where each
column represents one parameter vector. The output should be a 1xL array of
values.
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’getModelDomain’ (Required) This should return a Nx1 structure with fields .name
and .range corresponding to the parameters used by the model in the order it
expects them. See the description above for the case when the ResponseModel
is created with an algebraic form.

’isSavedEnabled’ (Optional, default=false) This should return either true or false.
If true, evaluations of this model are saved in the “savedEvaluations” subdirec-
tory of the main DC directory.

’isMultipleResponsesEnabled’ (Optional, default=false) This should return ei-
ther true or false. If true, then this single file returns multiple responses (or
features) for each simulation. If there are p responses then the output in the
’simulate’ case should have dimension pxL. Additionally, a response list must
be defined as in the next flag. We very highly recommend that this feature only
be used when ’isSavedEnabled’ is set to true.

’getResponseList’ (Required if ’isMultipleReponsesEnabled’ is true) This case
returns a px1 cell array chars. Each entry corresponds to the one-word name
of one of the features. This should be in the same order as returned by the
’simulate’ case.

’getName’ (Optional, default=filename) If the model can be different depend-
ing on the additional inputs then this lets you define a character array
(string) that will be used to name files when saving points. Note: if
’isMultipleResponseEnabled’ is true this should NOT reflect a specific fea-
ture. Feature names are handled automatically. This name can depend on the
other input arguments to this function as they are passed in when getting this
string.

There are a few other possible flags, that are optional, and described in the tem-
plate file. You do not need to provide output for the optional flags, the toolbox
will catch any errors when requesting this information, and assume defaults. The
additional inputs are passed in to the function each time, so they may be used to
determine the model domain structure, or name (for example).

When multiple features is enabled, each feature gets its own ResponseModel ob-
ject, even though they share an m-file. In this case, the first additional input will
be the char array specifying the feature. For example, imagine a model simulated
by “car.m” based on various driving and road conditions. It has two features we’re
interested in, ’top speed’ and ’mileage’. Then the two response models would be
created via

>> rm1 = ResponseModel(@car,’top_speed’);

>> rm2 = ResponseModel(@car,’mileage’);
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How the m-file simulates the model is entirely up to you. It can run basic MAT-
LAB code. It can call other files. If you have the means for MATLAB to call another
language (e.g. C-code via MATLAB’s mex interface), the simulation can be in that
other language. You can even use it to parallelize the simulation at the various param-
eter vectors. So all this m-file is, is a MATLAB wrapper file for whatever simulation
code you would like to use.

B.4.4 DCDataset

The last few steps in creating a dataset, is to pair up the ResponseObservation
objects with their corresponding ResponseModel objects and putting everything to-
gether with the FreeParameters.

First, for each observable, create a ModelAndObservationPair object.

>> mop = ModelAndObservationPair(RO,RM,NAME);

where RO is a ResponseObservation object, RM is a ResponseModel object, and NAME is
a char array. These objects should be vertically concatenated into a ModelAndObser-
vationPair array. If these objects are being created in a for-loop, you can pre-allocate
the array using the syntax

>> mops = ModelAndObservationPair(m);

which will create an mx1 array.

Once an mx1 ModelAndObservationPair array mops and a nx1 FreeParameter
array fps have been created, a DCDataset object can be formed.

>> dset = DCDataset(mops,fps);

This object is the basis for all further analysis.

To create a dataset with no model/experiment data, simply create an empty
ModelAndObservationPair by using the constructor with no inputs.

>> dset = DCDataset(ModelAndObservationPair,fps);

B.5 Surrogate Model Formulation

During the calculation of the consistency measure and response prediction (see
§B.6) and parameter optimization (see §B.7), for each ResponseModel that is not
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quadratic (or affine) the DC toolbox generates a quadratic surrogate model. This
happens automatically. The subdivision of the prior knowledge parameter domain
will be discussed in Section B.8. This section discusses how a quadratic is fit for each
ResponseModel on each subdomain.

Surrogate models and all fitting information is stored in a PolyDataset object,
which inherits from the DCDataset class.

B.5.1 Active Parameters and Parameter Transformations

Before the surrogate fit is made, some evaluations of the ResponseModel are made
to help determine “active” parameters. These are the parameters which are most
essential to the change in the ResponseModel’s output. Those parameters that are
considered not active, are set at their nominal values and then ignored (the surrogate
fit will not depend on them). This can reduce fitting time, as less evaluations are
needed to make a fit, but will potentially add fitting error.

Also to improve fit accuracy, the quadratic surrogate may have a logarithmic
dependence on some of its parameters, meaning the surrogate depends on the log10

of some parameters. Which parameters are chosen to be log can be determined
automatically.

B.5.2 Iterative Fitting Algorithm for Surrogate Convergence

On the current subdomain, a quadratic might fit quite poorly. The fit will even-
tually be improved through a branch and bound algorithm. However, straight assess-
ment of the fitting error will not gage whether this fit is the best possible quadratic fit.
The iterative fitting algorithm continues to add samples to the regression, until the
quadratic fit stops changing. When the surrogate has “settled,” errors are assessed.

Two quadratic forms Q1 and Q2 are compared over the domain H by evaluating
the normalized deviation between the functions

deviation =

∫
H
Q1(x)−Q2(x) dx∫
H
Q2(x) dx

If the deviation has not met a tolerance, then more points are added to the regression
to create a new fit.
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B.5.3 Evaluation Storage for Rapid Restarts

When the ’isSavedEnabled’ flag of an m-file based ResponseModel is set to true,
then evaluations of that model are stored in the “savedEvaluations” subdirectory of
the main DC directory. When a single m-file produces multiple responses, then all
responses are saved, even if only one of them is the current response being fitted.

Suppose that an m-file produces multiple responses and evaluations are flagged
for saving. When the surrogate model is generated for the ResponseModel associated
with one of the responses, all responses are saved to the hard disk. Subsequently, when
the ResponseModel for another response is generated, the points are loaded from the
disk, thereby reducing, and possibly eliminating the need for further evaluation of
that m-file.

If the computation is restarted, any saved evaluations can be reused for fitting.
Thus reducing the computation for creating surrogate fits from scratch. This also
provides a pseudo-backup for power outages and system crashes that occur during
long computations.

WARNING: If at any point, the simulation files are changed, you need to make
sure to clear all saved files. This can be done by either deleting the files in the
“savedEvaluations” subdirectory (and NOT the “savedEvaluationsDir.m”) or by us-
ing a method:

>> deleteSavedEvaluations(dset); %clears evaluations

%for a DCDataset

>> deleteSavedEvaluations(rm); %clears evaluations

%for a single ResponseModel

B.5.4 Fitting Error Approximation

Once a quadratic surrogate has been generated, the maximum fitting error over the
domain is estimated. This is done with a combination of determining the error of the
fit points and validation points and via local searches with fmincon. The maximum
error found from these three methods is then added to the ResponseObservation error
to get the total error for a ModelAndObservationPair.

146



B.6 Response Prediction and Consistency Mea-

sure Calculations

Once a DCDataset has been created a consistency analysis can be performed by
creating ConsistencyTest object.

>> ctestObj = ConsistencyTest(dset);

This calculates the relative consistency measure, CD

CD := max γ

s.t.

{
le(1− γ) + le,fit ≤Me(x)− de ≤ ue(1− γ) + ue,fit, e = 1, . . . ,m
x ∈ H

where le, le,fit, ue, and ue,fit are the lower and upper experiment and surrogate fitting
errors, de is the ModelObservation value, Me is a ResponseModel, and H is the
bounds defined by the FreeParameter object. We stress that this is the relative
consistency measure, because it was defined in an absolute sense in some of our
published work. If the consistency measure is positive, the dataset is said to be
consistent, if the consistency is negative it is inconsistent. Further, the consistency
measure is the percentage that all experiment uncertainty must be reduced in order
to achieve consistency.

Likewise, if a DCDataset is constructed, we can make predictions of the range of
values that an additional ResponseModel can take over the set of constrained feasible
parameters. This is posed as the creation of a ResponsePrediction object.

>> predObj = ResponsePrediction(rm0,dset);

Creating this object solves two optimization problems

L0 := min M0(x)

s.t.

{
le + le,fit ≤Me(x)− de ≤ ue + ue,fit, e = 1, . . . ,m
x ∈ H

R0 := max M0(x)

s.t.

{
le + le,fit ≤Me(x)− de ≤ ue + ue,fit, e = 1, . . . ,m
x ∈ H

where M0 is the function corresponding to the predicted ResponseModel.

Both the consistency and predictions can be customized using a DCOptions object
(see §B.10).
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>> ctestObj = ConsistencyTest(dset,opts);

>> predObj = ResponsePrediction(rm0,dset,opts);

In each calculation, quadratic surrogate models are fitted where required, and the
problem is formulated as a nonconvex quadratically constrained quadratic program
(NQCQP). Techniques for solving the NQCQP provide both outer and inner bounds
on the solutions.

B.6.1 NQCQP Formulation & Bounding

After surrogate fitting, the problems are formulated as Nonconvex Quadratically
Constrained Quadratic Programs. Outer bounds (upper bound on a maximization
and a lower bound on a minimization) are solved for using what is known as the S-
procedure. This formulates the problem as a semidefinite program which is solved
with the SeDuMi optimization package.

Inner bounds (lower bound on a maximization and an upper bound on a mini-
mization) are solved using a call to fmincon. Once an optimal parameter vector is
found for the quadratic surrogates, the original model is evaluated to create a true
inner bound.

B.6.2 Certification of Results

Once computation of the ConsistencyTest object or the ResponsePrediction ob-
ject is complete, the objects contain a large amount of information regarding the
calculation. This includes, but is not limited to,

• All branching locations for the branch and bound algorithm (see §B.8)

• All surrogate fits at each iteration of the branch and bound algorithm, with
fitting errors, and number of function evaluations

• Bounds on the objective for each subdomain during the branching

• Sensitivities of the optimal value to experiment and parameter uncertainty (see
§B.6.2.1).

The report method will generate a report on the calculations in HTML format
(which can be viewed with a web-browser) in the current directory.

>> report(ctestObj);

>> report(predObj);
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The bounds on the consistency measure are retrieved via

>> LB = ctestObj.LB; %lower bound on measure

>> UB = ctestObj.UB; %upper bound on measure

The bounds on the response prediction interval are retrieved in a similar fashion.

>> LBo = predObj.LBo; %outer bound on minimum

>> LBi = predObj.LBi; %inner bound on minimum

>> UBi = predObj.UBi; %inner bound on maximum

>> UBo = predObj.UBo; %outer bound on maximum

Furthermore, the parameter vectors that give the inner bounds are available.

>> LBx = predObj.LBx;

>> UBx = predObj.UBx;

B.6.2.1 Sensitivities

Outer bound computations automatically produce Lagrange multipliers. These
are extracted from the object by

>> ctestMults = ctestObj.upperBndMults;

>> predMults = predObj.outerBndMults;

The prediction multipliers are in a structure with two fields .lower for the
minimization problem and .upper for the maximization problem. ctestMults,
predMults.lower, and predMults.upper are each a struct object with four fields:
.paraml, .paramu, .expl, and .expu representing the multipliers for the lower and
upper bound constraints for the parameter and experiments.

The objects can also convert the Lagrange multipliers to be sensitivities. These
are the partial derivatives of the optimal outer bound objective with respect to the
uncertainty bounds.

>> ctestSens = ctestObj.upperBndSens;

>> predSens = predObj.outerBndSens;

These are struct objects with the same form as the multiplier structs.
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B.7 Parameter Optimization

Parameter optimization is a process of selecting a vector of parameters that mini-
mizes some objective. The DC toolbox has a parameter optimization algorithm using
the NQCQP techniques.

>> paramOptimObj = ParameterOptimization(dset);

Attempts to find the vector of parameter values x that solves the problem

min
x∈H

m∑
e=1

we(Me(x)− de)2

where we are weights that are by default set to 1/ue. This does so in the same general
method as consistency and prediction. It creates polynomial fits where required,
constructs an NQCQP, and computes upper and lower bounds on the objective. These
bounds are retrieved via

>> LB = paramOptimObj.costLB;

>> UB = paramOptimObj.costUB;

The optimal parameter vector is retrieved via

>> x = paramOptimObj.bestx;

A DCOptions can be provided to set various options.

>> paramOptimObj = ParameterOptimization(dset,opts);

It is also possible to minimize the 1-norm or the infinity-norm instead of the 2-norm.
This is done with

>> paramOptimObj = ParameterOptimization(dset,opts,norm);

where norm is either ’one’, ’two’, or ’inf’.

Furthermore, you can specify the weights we as a mx1 vector (m being the number
of ModelAndObservationPairs in the DCDataset).

>> paramOptimObj = ParameterOptimization(dset,opts,norm,weights);
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B.8 Automatic Branch and Bound Algorithm

A branch and bound algorithm is provided for the computation of the Respon-
sePrediction, ConsistencyTest, and ParameterOptimization objects. By default, the
computations do not perform any branching, but by setting ’maxBranchBoundIter’

option in the DCOptions object to 2 or greater (see §B.10), the branch and bound
algorithm will performed automatically. The goal is to improve the surrogate fits by
examining smaller subdomains (making the surrogate a piecewise quadratic) and to
reduce the gap between inner and outer bounds.

Even when quadratic surrogates are already created, the branch and bound al-
gorithm can improve the gap between inner and bounds that is due to the convex
relation made the outer bounds.

B.8.1 Piecewise Surrogate Model Binary Tree

The branch and bound algorithm divides the domain into subdomains, and keeps
track of each of the relevant subproblems in a binary tree data structure. This
structure is contained by the PiecewiseSurrogateModelTree object. The user generally
will not see, nor deal with this object, but it is available in the ResponsePrediction,
and ConsistencyTest objects.

Each node of the tree represents a subdomain of the prior knowledge parameter
domain. The children of a node represent the partition of the node into subdomains.
Each division is along a single parameter. Each node includes surrogate fits and
optimization bounds. For a minimization, the optimal value is the minimum of the
optimal values over each of the leaves of the tree.

The tree structure provides a history of the algorithms behavior. It tracks where
splits are made, the intermediate surrogate fits, and the optimal values.

B.9 Warm Starting Using Previously Calculated

Piecewise Surrogates

Suppose that you run a consistency analysis, and results show that the consistency
measure is bounded in the interval [−0.23, 0.3]. More iterations of the branch and
bound algorithm should be able to resolve this gap. However, we have potentially
spent lots of time generating piecewise surrogate models for each of the ResponseMod-
els in the DCDataset. However, we do not have to completely restart the algorithm.
The ConsistencyTest constructor can take a ConsistencyTest object as one of its
inputs to warm start the branch and bound iteration.
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>> ctestObj = ConsistencyTest(dset);

>> opt = DCOptions(’maxBranchBoundIter’,2);

>> ctestObjNew = ConsistencyTest(ctestObj,opt);

This can also be done with the ResponsePrediction objects and ParameterOp-
timization objects. Furthermore, the ResponsePrediction constructor can be warm
started with a ConsistencyTest object.

>> ctestObj = ConsistencyTest(dset); %first verify consistency

>> predObj = ResponsePrediction(rm0,ctestObj);

B.10 Fine Tuning Via User Options

There are many options that a user can set when creating a ConsistencyTest, Re-
sponsePrediction, or ParameterOptimization object. These are set using the DCOp-
tions object.

>> opts = DCOptions;

This creates a DCOptions object with all options set to their default. If no DCOptions
object is provided to the algorithm, this is the default that is generated internally.

Options are set in one of two ways. The first is to list them during creation as
property/value pairs.

>> opts = DCOptions(PROPERTY1,VALUE1,PROPERTY2,VALUE2,...)

The second way is to use dot-referencing to change the defaults or current options
in an already created object. For example, say we wanted to turn off the ’display’

option.

>> opts = DCOptions;

>> opts.display = ’none’;

The following is a list of all options the user can set, including their possible values
and meaning. First a simple option for the display level.
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’display’ (default=’iter’). Can be ’off’, ’final’, ’notify’, ’iter’, ’all’, or ’ALL’.
Defines the amount of information printed to the screen during the algorithms.

The following properties affect the optimization algorithms.

’omitInnerBound’ (default=false) Can be true or false. If true, inner bounds are
not calculated. However, if ’maxBranchBoundIter’>1, then inner bounds are
calculated once for the branch and bound algorithm.

’omitOuterBound’ (default=false) Can be true or false. If true, outer bounds are
not calculated.

’maxBranchBoundIter’ (default=1) Can be any positive integer. Maximum number
of iterations of the branch and bound algorithm. If reached before tolerances
are met, the algorithm exits. The first iteration equates to the first calculation
before any branching. The second iteration is the calculations after the first
branch.

’branchBoundTermTol’ (default=0.02) Can be any positive number. The branch
and bound algorithm will stop if the gap between inner and outer bounds is
smaller than this number.

’nRestart’ (default=2) Can be any positive integer. The number of times the inner
bound optimizations are restarted with a new seed. The result returned is the
optimum over all restarts.

’tolFun’ (default=1e-5) Can be any positive number. This is the function tolerance
used by the inner bound calculations (passed to fmincon).

’tolCon’ (default=1e-5) Can be any positive number. This is the constraint toler-
ance used by the inner bound calculations (passed to fmincon).

’sedumiParEps’ (default=1e-9) Can be any positive number. This is the optimiza-
tion tolerance used by outer bound calculations (passed to SeDuMi).

’constraints’ (default=[1 0 0 0]) A 1x4 array of 1’s and 0’s. Defines which trans-
formations to perform the optimization on. The first column is linXlinY, the
second is logXlinY, the third is linXlogY, and the fourth column is logXlogY,
where X is the parameters and Y is the model outputs. 1 means include the
indicated transformation in the optimization, 0 means exclude them. See the
’surfaceTransformation’ option.

The following properties affect how surrogate fits are made.

’fitNorm’ (default=2) Can be 2 or inf (the values, not the strings). This is the
norm of residual fitting error that is to be minimized by the fit. Ultimately,
the infinity-norm error is what is added to experiment uncertainties in the
optimization. However, the infinity-norm problem takes longer to solve, and for
large problems can run into memory issues.
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’findIOTransforms’ (default=true) Can be true or false. If true, uses some function
evaluations to determine which parameters should have a log10 transformation
for the best surrogate fit. Similarly, determines if the output should have a log10

transformation.

’activeParamSelCutOff’ (default=0.05) Can be any positive number. A tolerance
used for truncating the active parameter list. Setting this value to zero will
insure all model parameters are used in the corresponding surrogate model.
100*activeParamSelCutOff roughly corresponds to the percent error introduced
by eliminating nonactive parameters. We suggest never exceeding 0.2.

’nPntsPerCoeff4ActiveParamSel’ (default=25) Can be any positive integer. Cor-
responds to the number of function evaluations per coefficients in the surrogate
fit that are computed to determine active parameters.

’surfaceFittingMode’ (default=’iterative’) Can be ’iterative’ or
’oneShot’. If ’iterative’, then surrogates are fitted using the iterative
fitting algorithm (see §B.5.2). If ’oneShot’, then surrogates are fit only once
per iteration of the branch and bound algorithm.

’plotFitProgress’ (default=’off’) Can be ’off’ or ’on’. If on, and
’surfaceFittingMode’ is set to ’iterative’, then the difference metric
between successive surrogate fits during the iterative fitting algorithm is plot-
ted.

’minFitIter’ (default=3) Can be any positive integer less than or equal to the
’maxFitIter’ option. The minimum number of iterations of the iterative fitting
algorithm to perform if ’surfaceFittingMode’ is set to ’iterative’.

’maxFitIter’ (default=7) Can be any positive integer greater than or equal to the
’minFitIter’ option. The maximum number of iterations of the iterative fit-
ting algorithm to perform if ’surfaceFittingMode’ is set to ’iterative’.

’nSuccessfulFitIter’ (default=2) Can be any positive integer. The number of
times successive iterations a fit must meet the ’fitConvergenceTol’ on the
error convergence, before it is considered a good fit (if ’surfaceFittingMode’
is set to ’iterative’).

’fitConvergenceTol’ (default=0.05) Can be any positive number. The tolerance
that the metric between successive surrogate fits must meet to be considered
“successful” (if ’surfaceFittingMode’ is set to ’iterative’).

’maxPnts4Fit’ (default=Inf) Can be any positive integer. The maximum number
of points that can be used for a surrogate fit.

’nPntsPerCoeff4OneShot’ (default=20) Can be any positive integer. When
’surfaceFittingMode’ is set to ’oneShot’, this option determines the number
of evaluations to use per coefficients in the surrogate to create the surrogate fit.
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’subspaceDiscovery’ (default=’off’) Can be ’off’ or ’on’. When ’on’ and
when ’surfaceFittingMode’ is set to ’oneShot’, the surrogate fitting algo-
rithm attempts to find a lower dimensional active subspace upon which the
model depends.

’subspaceThreshold’ (default=0.1) Can be any positive number. When
’subspaceDiscovery’ is set to ’on’, this option determines the cutoff of
the singular values of a gradient matrix of the ResponseModel, thus determin-
ing the dimension of the active subspace. The cutoff is the first singular value
σi that satisfies opt.subspaceThreshold*σ1 > σi.

’derivRange’ (default=0.01) Can be any positive number. When ’subspaceDiscovery’

is set to ’on’, this option determines the spread of evaluations used to approx-
imate gradients of the ResponseModel. If the parameter domain is normalized
to be [−1, 1]n, then opt.derivRange is the radius of the circle in these coor-
dinates that contains all points used to estimate a gradient. Larger values may
be required for ResponseModels with lots of noise.

’surfaceTransformation’ (default={’linXlinY’}) This is a cell array of strings
listing the different transformations to be used when making a fit. This must
be a ’superset’ of the ’constraints’ option. Valid values are any cell array
containing one or more of the following: ’linXlinY’, ’logXlinY’, ’linXlogY’,
and ’logXlogY’.

’useAllPnts4Fit’ (default=true) Can be true or false. After loading saved evalu-
ations, the fitting algorithm will use all points already available to create the
fit if this option is set to true. If set to false, the algorithm will only use the
amount it would have computed had there been no saved points.

’nLocalValidationSearches’ (default=3) Can be any nonnegative integer. When
validating a surrogate fit, the algorithm uses fmincon to search for the loca-
tion of the worst error. This option determines the number of restarts of this
procedure.

’nPntsPerCoeff4Validation’ (default=250) Can be any nonnegative integer.
When validating a surrogate fit, the algorithm evaluates the ResponseModel
and the surrogate at a set of validation points to look for average and worst
case errors. This option determines the number of evaluations per coefficient
in the surrogate for this validation.

B.11 Examples

The toolbox comes with several built-in examples. These are very useful for
demonstration of the setup and basic operations associated with the toolbox. They
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can be found in the “examples” subdirectory of the main DC toolbox directory. The
following is a list and brief description of each example. We recommend that you look
at the m-file code for each example to see what it is doing and to read the comments
before running the example. It may also be useful to run the examples one cell at a
time using MATLAB’s “code cell” features.

Each example requires that the proper directories are added to the path via the
DCsetup script.

General Demos: In the “generalDemos” subdirectory of the “examples” direc-
tory, there are 3 examples. The three demo files — “demo1 linearModels.m”,
“demo2 quadraticModels.m”, and “demo3 generalModel.m” — demonstrate
creating some toy DCDatasets using each of the three types of ResponseModel,
linear, quadratic, and general. These demos do nothing more than create the
DCDataset object.

GRI-Mech 3.0: In the “GRI” subdirectory of the “examples” directory is a demo
relating the GRI-Mech 3.0 dataset. This is a dataset of 77 experimental ob-
servables, with data and pre-created quadratic surrogate models. There are 102
parameters in the system. The file “gri mech demo.m” includes a demonstra-
tion of consistency testing, sensitivity analysis, and prediction with this system.
Since all model are already quadratic, the analysis is relatively quick; however,
it still takes a few minutes due to the large size of the system.

Simple nonlinear dynamic system: In the “Prajna” subdirectory of the “exam-
ples” directory is a modified example presented by Stephen Prajna at the 2003
IEEE Conference on Decision and Control. This example has a nice HTML file
in the “html” subdirectory of the “Prajna” directory called “runPrajnaExam-
ple.html” that can be viewed in a web browser. The HTML file shows the
output and comments from the file “runPrajnaExample.m.” This example
demonstrates a consistency check on the dataset, and uses multiple features
for nonquadratic models as well as evaluation saving.

Mass-Spring-Damper System: In the “massSpringDamper” subdirectory of the
“examples” directory is an example involving the displacement of a mass at-
tached to a spring and damper when a step input force is applied. The example
does not have quadratic models. There are 3 features examined, and the model
evaluations are saved on the hard disk. We suggest looking not only at the exam-
ple m-file ”runMSDexample.m,” but also the model file “msdLinearModel.m.”

B.12 Conversion From Version 1.0

Conversion from version 1.0 to version 2.0 is pretty simple, albeit, possibly tedious.
The main thing you need to worry about is to make sure to run DCsetup at the
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beginning of each MATLAB session, and to make sure that if any DC objects are
created inside a function to include the command import DClab.*. Lastly, Table B.1
shows the object equivalence from version 1.0 to version 2.0.

Table B.1: Object conversion table, showing the names of equivalent objects from
versions 1.0 and 2.0 of the Data Collaboration toolbox.

Version 1.0 Version 2.0

ParameterAssertion FreeParameter
ExperimentAssertion ResponseObservation
ModelAssertion ResponseModel
DatasetUnit ModelAndObservationPair
ConsistTest ConsistencyTest
Prediction ResponsePrediction
ParameterOptimization ParameterOptimization
DCOptions DCOptions

All other objects are internal, and the user will most likely not interact with
directly.

B.13 Troubleshooting, Help, and Feature requests

There are several common mistakes that are made when using the Data Collabo-
ration toolbox that can lead to errors or incorrect results. They include

• If your models are flagged for saving evaluations, make sure that all old evalu-
ations are cleared when you make changes to the model file.

• Check the units on the parameters in your models and in your FreeParameter
objects. The analysis assumes that the FreeParameters are defined in the same
units as the ResponseModels (including transformations). The analysis also
assumes the output of the models is in the same units as the experiment data
and uncertainty with the default behavior. It is possible for the data and
uncertainty to defined in terms of the log of the ResponseModel output (see the
ResponseObservation command line help).

• Each FreeParameter should have a unique name, that is case-dependent.

• The FreeParameter array that is given to the DCDataset constructor should
include all FreeParameters listed by the MODELDOMAIN structures of the Respon-
seModels.
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Each of the objects and their methods have command line help. This can be
accessed by typing help followed by a space and the function name. For example to
read about the DCOptions object and all its properties, type

>> help DCOptions

If you have any more questions, come across any bugs, have suggestions, or want
to suggest features, please visit http://collab-sci.sourceforge.net/ and click on the
“Tracker” link.
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