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Abstract

BACKGROUND/OBJECTIVES: Obesity, defined as excessive fat accumulation that represents 

a health risk, is increasing in adults and children, reaching global epidemic proportions. Body 

mass index (BMI) correlates with body fat and future health risk, yet differs in prediction by fat 

distribution, across populations and by age. Nonetheless, few genetic studies of BMI have been 

conducted in ancestrally diverse populations. Gene expression association with BMI was assessed 

in the Multi-Ethnic Study of Atherosclerosis (MESA) in four self-identified race and ethnicity 

(SIRE) groups to identify genes associated with obesity.

SUBJECTS/METHODS: RNA-sequencing was performed on 1096 MESA participants (37.8% 

white, 24.3% Hispanic, 28.4% African American, and 9.5% Chinese American) and linear models 

were used to assess the association of expression from each gene for its effect on BMI, adjusting 

for age, sex, sequencing center, study site, five expression and four genetic principal components 

in each self-identified race group. Sample-size-weighted meta-analysis was performed to identify 

genes with BMI-associated expression across ancestry groups.

RESULTS: Within individual SIRE groups, there were zero to three genes whose expression is 

significantly (p < 1.97 × 10−6) associated with BMI. Across all groups, 45 genes were identified 

by meta-analysis whose expression was significantly associated with BMI, explaining 29.7% of 

BMI variation. The 45 genes are expressed in a variety of tissues and cell types and are enriched 

for obesity-related processes including erythrocyte function, oxygen binding and transport, and 

JAK-STAT signaling.

CONCLUSIONS: We have identified genes whose expression is significantly associated with 

obesity in a multi-ethnic cohort. We have identified novel genes associated with BMI as well as 

confirmed previously identified genes from earlier genetic analyses. These novel genes and their 

biological pathways represent new targets for understanding the biology of obesity as well as new 

therapeutic intervention to reduce obesity and improve global public health.

INTRODUCTION

Obesity is a global pandemic with increasing prevalence and is associated with excess 

mortality and morbidity [1]. Obesity is a risk factor for many diseases, including 

cardiovascular disease, the leading cause of death globally [2]. Body mass index (BMI) 

is a commonly collected non-invasive anthropometric measure used as a proxy for fat mass 

to assess obesity. The World Health Organization defines obesity as a BMI greater than or 

equal to 30 kg/m2.

Recent large-scale genome-wide association studies (GWAS) have uncovered hundreds 

of genetic associations with BMI [3–12], with a meta-analysis of approximately 700,000 
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individuals identifying 941 BMI-associated loci [11]. Despite these high-confidence genetic 

associations, in aggregate they only explain 6.0% of variance in BMI [11]; further, polygenic 

risk scores for BMI have low prediction accuracy. Additional studies are required to further 

disentangle the biological basis of human obesity.

As ’omics technologies have developed and matured, it is possible now to interrogate 

multiple ‘omics in thousands of individuals. Transcriptome-wide association studies 

(TWAS), originally using gene microarrays, but currently, RNA-sequencing (RNA-seq) 

approaches, have led to the discovery of associations between human traits and expression 

of discrete genes. While TWAS uses the GWAS methodologic framework, it can capture 

more phenotype-relevant associations. GWAS only captures causal genetic variant (typically 

single-nucleotide polymorphism, SNP) associations, and the functional impact of these 

variants is often unclear. Multiple studies of gene expression with BMI (as a continuous 

trait) and obesity (as a binary trait) have been published; however, these studies are often 

limited by small number of subjects, variable phenotype definitions, and limited genetic 

diversity (primarily from individuals of European descent).

Obesity rates differ by genetic ancestry, with 47% of African American and Hispanic 

individuals being classified as obese relative to 38% of individuals of European descent 

[13]. In order to identify potential SIRE-specific and shared gene expression effects on BMI, 

we leveraged a multi-ethnic cohort. The Multi-Ethnic Study of Atherosclerosis (MESA). 

MESA is a longitudinal cohort study initiated in 2000–2002 to investigate emergent risk 

factors for subclinical atherosclerosis and risk of cardiovascular disease [13]. In order to 

increase participant diversity, MESA recruited 6814 participants at six field centers across 

the U.S. that self-identify as white (38%), African American (28%), Hispanic (22%), and 

Chinese American (12%). We examined the association of gene expression from RNA-seq 

data with BMI in each self-identified race and ethnicity (SIRE) group. We further aggregated 

ancestry-specific results through meta-analysis to identify genes and pathways leading to the 

risk of obesity.

METHODS

Samples

Participants from MESA were included in this study. MESA is a longitudinal, community-

based sample of 6814 men and women aged 45–84 years without evidence of clinical 

cardiovascular disease assembled to investigate the prevalence, risk factors, and progression 

of subclinical atherosclerosis. Participants were enrolled at six sites (Columbia University, 

New York, NY; Johns Hopkins University, Baltimore, MD; Northwestern University, 

Chicago, IL; University of California – Los Angeles, Los Angeles, CA; University of 

Minnesota, Twin Cities, Minneapolis and Saint Paul, MN; Wake Forest University, Winston 

Salem, NC) who self-identify as white (38%), African American (28%), Hispanic (22%), 

and Chinese American (12%) [14] between 2000 and 2002 [13]. Detailed clinical and 

biological data and samples were collected at baseline and across follow-up examinations. 

Blood samples were collected for biochemical risk factors and DNA extraction, while 

peripheral blood mononuclear cells (PBMCs) were viably cryopreserved for future studies 

(including RNA-seq). Anthropometric measures, including BMI, were collected at baseline 
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and over the course of the five follow-up examinations. All participants provided informed 

consent to be included in MESA.

RNA-sequencing

MESA is a study contributing to the NHLBI Trans-Omics for Precision Medicine (TOPMed) 

program. In addition to whole genome sequence data currently available for ~4600 

participants (in the same demographic proportions as the entire sample of 6814 subjects), the 

TOPMed MESA Multi-Omics project was designed to test whether archived samples could 

be used for generation of other ‘omics data (transcriptomics, methylation, metabolomics, 

proteomics). In MESA, PBMCs were collected at baseline (Exam 1, 2000–2002) and 10 

years later (Exam 5, 2010–2012), cryopreserved, and stored at the MESA Biochemistry 

Laboratory at the University of Vermont.

RNA was extracted at the University of Vermont, using samples from cryopreserved PBMCs 

collected during Exam 1 (2000–2002). RNA-seq was conducted by two NHLBI-sequencing 

laboratories (the Northwest Genomics Center at the University of Washington and the 

Broad Institute of MIT and Harvard) on 1096 unique MESA participants using harmonized 

protocols. RNA libraries were prepared from at least 250 ng RNA using the Illumina 

TruSeq™ Stranded mRNA Kit and sequenced using the Illumina HiSeq 4000 (Illumina, 

San Diego, CA) platform, for a target depth of ≥40 M 2 × 101 bp paired-end reads. 

Alignment was performed using the TOPMed RNA-seq pipeline. Briefly, reads were aligned 

to GRCh38 with STAR [15] and collapsed to the gene-level using RNASEQC v2 [16] 

and the GENCODE 34 reference [17]. Comprehensive pipeline information is provided at 

https://github.com/broadinstitute/gtex-pipeline/blob/master/TOPMed_RNAseq_pipeline.md.

Normalization by library size was performed using the estimateSizeFactors() function in the 

DESeq2 R package (v1.36.0) [18]. Principal component analysis was performed to identify 

sample outliers and major sources of variation. Samples at least 3 standard deviations from 

the mean of the first two principal components were excluded from analysis (n = 5). Genes 

with low expression were filtered using the apply_filters() function in the Olivia R package 

(v0.1.0) using default parameters. The final dataset for analysis included the expression of 

25,416 genes [19].

Statistical analysis

In each SIRE group, linear regression models were fit to the expression (from RNA-seq) of 

each gene, testing for association with BMI (measured at Exam 1), adjusted for age, sex, 

sequencing center, study site, and principal components (4 genetic and 5 expression) using 

the Olivia R package [19]. P values were adjusted for bias and inflation using the BACON 
R package (v1.24.0) [20]. BACON is a Bayesian method developed for transcriptomic and 

epigenomic association studies, and it has been shown to perform better in these scenarios 

than methods devised for genomic association studies such as genomic control. Statistical 

significance was determined using a Bonferroni-adjusted threshold of P = 1.97 × 10−6 

(25,416 tests/0.05). Sample-size-weighted meta-analysis within self-identified race/ancestry 

groups was performed using METAL [21]. The percent variation between SIRE groups for 

each gene due to heterogeneity, rather than chance, in the meta-analysis was assessed by 
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Cochran’s Q test [22] and the I2 statistic [23]. The percentage of BMI variance explained by 

gene expression identified through meta-analysis was calculated using a partial R2 approach 

implemented in the rsq R package (v2.5) [24], adjusted for age, sex, sequencing center, 

study site, and nine principal components (4 genetic and 5 expression).

Annotation

Genes whose expression was identified as significantly associated with BMI from our 

meta-analysis were further queried for previous association with BMI in the NHGRI-EBI 

GWAS Catalog [25], the GTEx portal (https://gtexportal.org/home/), and the TWAS Hub 

(http://twas-hub.org/). In the GWAS Catalog, 134 publications were identified; summary 

statistics were downloaded and GWAS SNPs annotated to the meta-analysis. Summary 

statistics from the 2018 GIANT consortium meta-analysis [11] were not available in the 

GWAS Catalog, but were included from the study web portal. SNPs annotated to genes from 

the BMI meta-analysis were interrogated for potential regulatory effects in the GTEx portal. 

Expression quantitative trait locus (eQTL) and splicing QTL (sQTL) targets of identified 

SNPs, as well as tissue- and cell-specific expression from GTEx bulk tissue and single-

nuclear RNA-seq, were identified and included in our annotation. Results from PrediXcan 

models (https://github.com/hakyimlab/MetaXcan) predicting gene expression associations 

with BMI were downloaded from the TWAS Hub. The TWAS Hub models were generated 

from genetic data obtained across multiple studies [12, 26] and made publicly available 

(http://www.nealelab.is/uk-biobank).

Pathways and targets

Overrepresentation enrichment analysis was performed on genes that attained statistical 

significance from meta-analysis using clusterProfiler [27, 28]. Genes were tested for 

enrichment in the Kyoto Encyclopedia of Genes and Genomes (KEGG) [29–31] and 

the Gene Ontology Resource (GO) Biological Process (GO:BP), Cellular Component 

(GO:CC) and Molecular Function (GO:MF) databases [32, 33]. Potential drug targets and 

disease associations were identified for the 45 significant genes using Open Targets (https://

genetics.opentargets.org/).

RESULTS

Demographics

A total of 1091 MESA participants were included in the analyses. Participants self-identified 

as white (37.8%), African American (28.4%), Hispanic (24.3%), or Chinese American 

(9.53%). There were no statistically significant differences with respect to sex within SIRE 

group among participants; however, there were significant differences by age at Exam 1 

(baseline) and BMI (Table 1). Those of Chinese American ancestry showed significantly 

lower BMI with reduced variation compared to participants in other SIRE groups, as 

observed previously.

SIRE-stratified analyses

Across groups, between 0 and 3 genes exhibited a statistically significant association of 

BMI with gene expression (Fig. 1, Supplementary Fig. 1, and Supplementary Table 1; 
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p < 1.97 × 10−6), independent of age, sex, study site, sequencing center, and principal 

components accounting for structure in genetics and gene expression. In African American 

subjects, SOCS3 (suppressor of cytokine signaling 3) and FAM20A (FAM20A golgi-

associated secretory pathway pseudokinase) were significantly associated with BMI. In 

Hispanic subjects, CD209, JAK3 (Janus kinase 3), and PIM1 (Pim-1 proto-oncogene, serine/

threonine kinase) were significantly associated with BMI. In white subjects, ARL6IP5 
(ADP ribosylation factor like GTPase 6 interacting protein 5) and JAK3 were significantly 

associated with BMI. No genes attained statistical significance with BMI in the Chinese 

American population, consistent with the smaller sample size relative to other populations.

Meta-analysis

Multi-ethnic sample-size-weighted meta-analysis was performed to identify significant 

associations of BMI with gene expression across SIRE groups. A total of 45 genes were 

identified with differential expression significantly associated with BMI after adjustment for 

bias and inflation [20] (Fig. 2, Supplementary Fig. 3, and Supplementary Table 2; BACON 

p < 1.97 × 10−6). Expression of the 45 meta-analysis significant genes explains 29.7% of 

BMI variation among individuals. The highest percentage of BMI variance explained was in 

Chinese American (39.9%), followed by African American (30.8%), Hispanic (30.6%), and 

white (26.4%) participants. Four of the five most highly associated genes were significant in 

at least one individual ancestry group: JAK3 (Janus kinase 3) in white and Hispanic groups, 

FAM20A and SOCS3 in the African American group, and PIM1 (Pim-1 Proto-oncogene, 

serine/threonine kinase) in the Hispanic group. Although no genes showed significant 

expression-BMI associations in the Chinese American group, these 5 genes were among 

the 12 most associated in unadjusted analyses.

A total of 44 of 45 genes whose expression was significantly associated with BMI 

had a consistent direction of effect in each SIRE group (Supplementary Fig. 4). NRG1 
(Neuregulin 1) showed increased expression with increased BMI in the African American, 

Hispanic, and white populations, but decreased expression with increased BMI in the 

Chinese American population. Accordingly, NRG1 and two other genes (PIM1 and SOCS2 
(Suppressor Of Cytokine Signaling 2)) exhibited significant evidence of heterogeneity 

between groups. For NRG1, there was a strong support of gene expression associated 

with BMI in African American and Hispanic participants (4th most significant in each 

group), with modest support in white (gene rank #1840) and little support in Chinese 

American individuals (gene rank #23,121). SOCS2 was strongly supported in the white, 

Chinese American (3rd most significant gene in each group), and Hispanic groups (4th 

most significant gene) but exhibited limited support in African American individuals (gene 

rank #1900). Lastly, PIM1 showed the strongest support in Hispanic (3rd most significant 

gene) and Chinese American (6th most significant gene) groups but limited support in the 

white (gene rank #186) and African American (gene rank #204) groups. Of the five most 

significant associations of gene expression with BMI in the meta-analysis, only GRAMD1B 
(GRAM Domain Containing 1B) did not have an individual group with a significant 

association. However, GRAMD1B expression with BMI was ranked highly in white (#50), 

African American (#6), Hispanic (#10), and Chinese American analyses (#2), suggesting a 

global, rather than SIRE-specific effect of its expression with BMI.
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In the GWAS Catalog [25], 134 publications report genetic (SNP) associations with BMI 

and obesity-related traits. Eight publications identify SNPs in FLT3 (Fms Related Receptor 

Tyrosine Kinase 3), NRG1, PACSIN1 (Protein Kinase C and Casein Kinase Substrate in 

Neurons 1), and PTPRS (Protein Tyrosine Phosphatase Receptor Type S) as associated 

with BMI [3–10]. SNPs in PACSIN1 and FLT3 were also present in the recent GIANT 

meta-analysis [11] (Supplementary Table 4). While these GWAS results suggest genetic 

variants may be associated with BMI, it is unclear if they act as eQTLs or sQTLs [34]. As 

shown in Supplementary Table 5, the FLT3-associated SNP is an eQTL for FLT3 in many 

tissues (but not an sQTL), including subcutaneous adipose and multiple brain regions. The 

PACSIN1-associated SNP is an eQTL and sQTL in multiple tissues, although the target 

effector gene may not be PACSIN1. The SNP in NRG1 associated with BMI is an eQTL 

in lung, liver, and whole blood, but it is not an sQTL. The PTPRS BMI-associated SNP is 

not an eQTL or an sQTL. The Open Targets database provides further evidence that these 

genes are involved in obesity biology, predicting 18 genes identified from meta-analysis are 

potential therapeutic targets for diabetes mellitus and 16 genes may be targets for obesity.

Pathways and enrichment analyses

Enrichment analyses using the KEGG (https://www.genome.jp/kegg/) and GO (http://

geneontology.org/docs/go-enrichment-analysis/) resources (Fig. 3 and Supplementary 

Table 3) were conducted for the 45 genes exhibiting significant association of BMI 

with gene expression. Upregulated genes are enriched for KEGG pathways “type 

2 diabetes mellitus”, “JAK-STAT signaling”, and the GO categories “hemoglobin 

complex”, “endocytic vesicle lumen”, “phosphatidylinositol 3-kinase complex”, “response 

to growth hormone”, “erythrocyte differentiation”, “erythrocyte homeostasis”, “myeloid 

cell homeostasis”, “oxygen carrier activity”, and “phosphatidylinositol 3-kinase regulator 

activity”. Downregulated genes are enriched for KEGG pathways “hematopoietic 

cell lineage” and GO categories “cytokine-cytokine receptor interaction”, “leukocyte 

proliferation”, “negative regulation of cytokine production”, “immune receptor activity”, 

“growth factor binding”, and “monosaccharide binding”.

Cells and tissue types related to the expression of genes identified from the BMI 

meta-analysis were interrogated using the Genotype-Tissue Expression (GTEx) Portal 

[34] (Supplementary Figs. 6–8). Some genes, including HBA2 (Hemoglobin Subunit 

Alpha 2), HBB (Hemoglobin Subunit Beta), SLC4A1 (Solute Carrier Family 4 Member 

1 – Diego blood group), AHSP (Alpha hemoglobin stabilizing protein), and ALAS2 
(5′-Aminolevulinate Synthase 2), are highly expressed in whole blood. Of the 45 

significantly associated genes, many have expression restricted to specific tissues (e.g., 

SERPINF2 in liver). Consistent with the hypothesis of brain-body (obesity) crosstalk, 

regulation of appetite, and the overrepresentation of brain tissue in GTEx, many of the 

45 significantly associated genes had the highest expression in brain tissues, including 

PACSIN1 and KCNH3 (Potassium Voltage-Gated Channel Subfamily H Member 3). 

As expected, a number of the 45 genes have expression in obesity-relevant cell types, 

including GPX3 (Glutathione Peroxidase 3) and PTPRS, which are expressed primarily 

in adipocytes and fibroblasts. Other cell populations represented included immune cells 

(SYTL3, Synaptotagmin Like 3), dendritic cells and macrophages (VSIG4, V-Set and 

Vargas et al. Page 7

Int J Obes (Lond). Author manuscript; available in PMC 2023 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.genome.jp/kegg/
http://geneontology.org/docs/go-enrichment-analysis/
http://geneontology.org/docs/go-enrichment-analysis/


Immunoglobuilin Domain Containing 4), mast cells (IL18R1, Interleukin 18 Receptor 

1), neuromuscular-junction-rich myocytes (FAM20A), and neuroendocrine and neuronal 

cells (NRG1). These results suggest potential cellular and temporal heterogeneity of gene 

expression related to obesity and it associated traits.

Sensitivity analyses

Sensitivity analyses were conducted to compare the stratified meta-analysis to a unified 

modeling including all individuals and adjusting for SIRE as a covariate. In contrast to 

the 45 genes exhibiting a significant association of BMI with gene expression in the meta-

analysis, the unified model identified a total of 56 genes. Of the 56 genes, 41 (73%) were 

shared with the meta-analysis, while 15 genes (DAB2IP, DNASE1L3, HBD, IRF8, ITGA7, 
KCNK10, LILRA4, NRP1, P2RY2, P2RY6, RP11–76E17.3, RRAS, S100A8, SERPINF1, 
TEX2) were different. Four of the genes in the meta-analysis were not seen in the unified 

model (AHSP, rank #22; HDAC4 (Histone Deacetylase 4), rank #43; IMPA2 (Inositol 

Monophosphatase 2, rank #45); and PTGER2 (Prostaglandin E Receptor 2, rank #40)) 

and were mostly of lower ranking by significance (Supplementary Fig. 5). Genes unique 

to the meta-analysis or unified model did not show significant evidence of heterogeneity 

by SIRE group and displayed a consistent direction of effect across groups, with the 

exception of TEX2 (Testis Expressed 2). In the unified analysis, TEX2 did exhibit evidence 

of heterogeneity and showed a negative association with BMI only in the Chinese American 

group.

DISCUSSION

In this report, we identified genes whose expression in peripheral blood is associated 

with BMI in a study with participants of diverse genetic ancestries. Sample-size weighted 

meta-analysis of RNA-seq from peripheral blood identified 45 genes whose expression is 

significantly associated with BMI. These genes are enriched for a variety of processes 

relevant to obesity, including pathways relating to brain, heme, and erythrocyte function and 

cytokine signaling, expressed across a variety of tissues and cell types.

A number of genes identified in this study through SIRE-specific analyses have been 

implicated previously in obesity and obesity-related traits. SOCS3 encodes a negative 

regulator of cytokine signaling induced by cytokines including IL6, IL10, and IFN-γ. 

SOCS3 protein binds multiple active tyrosine kinases, including IGF1 receptor, insulin 

receptor, and JAK2. CD209 encodes a C-type lectin involved in cell adhesion and pathogen 

recognition and is highly expressed in antigen-presenting cells such as dendritic cells and 

macrophages. It has been shown that dendritic cells obtained from post-menopausal women 

with obesity and type 2 diabetes have elevated levels of CD209 mRNA compared to 

normal-weight individuals with and without diabetes, as well as individuals with obesity but 

without diabetes [35], leading to the hypothesis that inflammation drives altered adhesion 

characteristics of dendritic cells. Decreased CD209 levels were seen in peripheral blood, 

indicative of monocyte-derived inflammatory cells having migrated to tissue. Expression 

of PIM1 has been shown to be upregulated in placenta of women with obesity and PIM1 
small interfering RNA knockdown in primary trophoblast cells results in a reduction of 
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pro-inflammatory cytokines. In mice, the loss of Jak3 results in increased body weight, 

chronic low-grade inflammation, and hyperinsulemia [36]. Mutations in ARL6, which 

physically interacts with ARL6IP5, result in the autosomal recessive disorder Bardet–Biedl 

syndrome-3, which is characterized by a history of obesity [37, 38].

Genes identified through meta-analysis also demonstrate biological relevance to obesity 

and related traits. FLT3 driver mutations are significantly associated with obesity [39]. 

CPT1A has been implicated as a potential biomarker (from rat PBMC gene expression) for 

metabolically obese normal-weight syndrome; its expression was correlated with obesity 

phenotypes regardless of weight gain when rats were fed a high-fat diet [40]. Mice 

overexpressing CPT1A have increased hepatic fatty acid oxidation and reduced obesity-

induced weight gain and inflammation [41]. GPX3 regulates insulin receptor expression in 

adipose tissue [42] and its expression in adipose tissue is downregulated in subjects with 

type 2 diabetes and obesity [43]. Mice overexpressing HDAC4 in adipocytes have reduced 

adiposity in response to either normal or high-fat diets, with HDAC4 driving expansion of 

beige adipocytes [44]. HDAC4 protein levels are reduced in individuals with obesity and 

upregulated by 3 months of physical exercise [45]. IL18R1 knockout mice have increased 

weight and reduced glucose and insulin tolerance [46]. NRG1 administered to mice results 

in reduced food intake and weight gain and increased leptin levels [47]. SOCS2-deficient 

mice exhibit increased adipose tissue mass with reduction in multiple cytokines, increased 

M2 macrophages (that resolve inflammation), and regulatory T cells [48]. VSIG4 inhibits 

macrophage activation and resulting inflammation, and Vsig4 knockout mice display obesity 

following administration of a high-fat diet [49].

In our meta-analysis, multiple genes whose expression is associated with BMI are involved 

in heme and erythrocyte processes, as well as JAK/STAT signaling. JAK/STAT signaling 

mediates cellular responses to cytokines, growth factors, and hormones. Leptin signaling 

requires JAK/STAT signal transduction and leptin binding to its receptor drives JAK/

STAT-mediated transcription of proopiomelanocortin that drives cortisol production [50]. 

Mutations in JAK2 have been associated with increased adiposity and waist circumference 

as well as protection from metabolic syndrome [51, 52]. Whole-body and specific-tissue 

knockouts of various JAK/STAT components display changes in body weight and measures 

of adiposity, metabolism, and insulin resistance [53]. Hemoglobin concentrations, higher in 

individuals with obesity, are consistent with the significance of hemoglobin-related genes 

(ALAS2, HBA2, and HBB) upregulated in skeletal muscle of rhesus macaques fed a high-

fat western-style diet [54]. Hemin treatment increases adipocyte differentiation in mouse 

fibroblast cell lines [55], and obesity alters red blood cell function; thus, individuals with 

obesity have higher rates of hemolysis and altered adhesiveness and aggregation [56, 57].

The 45 genes identified through meta-analysis explain 29.7% of BMI variance in this 

study. This estimate is much higher than the 6.0% of variance explained by genetic 

associations and is indicative of the different architectures of genetic and gene expression 

data. While genetic associations with phenotypes are causal except in rare situations, gene 

expression studies capture the effects of phenotype on gene expression. While this results 

in transcriptomic studies often failing to identify causal targets in disease, this additional 

information uncovered by these studies can provide valuable insights into biology and 
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can be leveraged for biomarkers and patient stratification. Recent studies incorporating 

transcriptional risk scores into predictive disease models have shown better prediction 

than genetic risk scores alone [58]. This also explains the limited overlap of genetic and 

transcriptomic associations for many phenotypes including BMI.

Despite identifying many biologically relevant findings, this study does have limitations. 

In large observational studies, BMI is used as a surrogate measure for adipose tissue fat 

mass given ease of collection and (incomplete) correlation with fat and lean mass. Validation 

of results from BMI should be made through targeted studies of tissue-specific adiposity 

in human and model systems to better understand how altered gene expression relates to 

physiologically defined measures of obesity. In addition, Gene expression was assessed in 

peripheral blood, and not the likely targeted tissues (e.g., adipose). Tissue-specificity of gene 

expression could explain the limited overlap with previous GWAS findings (including both 

common and rare variants) as well as a smaller sample size, particularly in SIRE-specific 

analyses. GWAS of BMI and obesity-related traits have identified associations with variants 

in the leptin-melanocortin pathway and genes expressed in the brain, central nervous 

system, and adipose tissue [59]. Despite being conducted in blood tissue, our analyses 

did identify genes involved in other tissue-specific processes, such as neuronal regulation 

and signaling (e.g., NRG1, PACSIN1, and KCNH3), and JAK/STAT signaling which drives 

leptin gene expression in white adipose tissue [60]. Ideally, studies should incorporate 

tissue- and cell-specific molecular signatures of obesity, however access to relevant tissues 

remains a limitation. Furthermore, as TWAS captures non-causal associations, many of 

the results reported in this manuscript are likely driven by increased BMI as opposed to 

causal associations detected by GWAS. In addition, these analyses were performed using 

only cross-sectional data. Future work in this (and other) populations would benefit from 

longitudinal analysis exploring the relationship between change in gene expression with 

change in obesity (BMI) in order to identify temporally stable relationships in diverse 

populations.

In summary, we provide evidence of 45 genes whose expression is associated with BMI in 

the MESA, including novel and replicated targets relating to obesity biology. These genes 

and pathways may provide insights into early biomarkers of obesity for targeted therapeutics 

and behavioral modification.
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Fig. 1. Transcriptome-wide associations with BMI in each SIRE group.
Panels represent associations in a African American, b Chinese American, c Hispanic, and 

d white individuals. Horizontal lines represent the Bonferroni significance threshold for 

25,416 tests (p < 1.97 × 10−6). Significant associations are labeled by gene name.
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Fig. 2. Foothill plot of multi-ethnic meta-analysis of BMI associations with gene expression.
Colored circles represent p values from individual analyses and triangles represent p values 

from meta-analysis. Horizontal dashed line indicates Bonferroni significance threshold for 

25,416 tests (p < 1.97 × 10−6).
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Fig. 3. Pathway overrepresentation enrichment analysis.
Panels represent most significant enriched pathways in a KEGG, b GO: Cellular Component 

(GO:CC), c GO: Biological Process (GO:BP), and d GO: Molecular https://doi.org/10.1038/

s41366-022-01240-x Function (GO:MF) databases.
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