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Cyber-Physical Systems (CPS) were presented as a solution to multidisciplinary integration

and control in embedded systems. They provide seamless interactions between cyber and

physical domains, enabling more intelligent and complicated control applications. However,

CPS face the challenges of reliability and energy efficiency since they mainly rely on batteries

for power supply. We investigate these issues with Electric Vehicles (EV) which are common

battery-powered CPS. EV were introduced as a mean of transportation to address environ-

mental problems like air and noise pollution. However, their stringent design constraints,

especially on battery packs, create challenges of limited driving range and battery lifetime

for daily drivers and manufacturers. Design automation community has been addressing

these by developing more efficient and dependable devices and control methodologies. Our

contributions in this thesis will embrace: 1) novel machine learning and physics-based mod-

eling techniques to capture CPS dynamics more accurately; 2) unique optimization problem

formulations to make optimal control decisions; and 3) intelligent control methodologies that

leverage the modeling and interaction within CPS to achieve reliable and efficient operation.

These contributions are applied to the systems in EV such as navigation system, climate

control, and battery management system. Our objectives are to further extend the EV driv-

ing range and prolong the battery lifetime while maintaining similar driving experience and

comfort for passengers.
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Chapter 1

Introduction and Background
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1.1 Cyber-Physical System - Electric Vehicle

Embedded systems contain dedicated computational hardware and software elements that

implement monitoring and control functions responsible for multiple physical systems (e.g.,

mechanical or electrical). These computational elements consider the physical system be-

havior in order to make control decisions for the proper operation of the whole system.

Advancement of technology and fabrication process have enabled production of smaller sen-

sors and actuators [31, 65]. Adding more sensors and actuators in the control process have

provided intense interactions and integrations among the computational (cyber) and the

physical systems. The multidisciplinary interconnections between the physical and cyber

domains have transformed embedded systems into Cyber-Physical Systems (CPS). The ulti-

mate objective of CPS is to provide performance and efficiency improvement for the system

by jointly designing the computing and control aspects [25, 156]. Interdisciplinary integra-

tions and coordination introduced in CPS have initiated new domains of applications that

are more complex and intelligent in areas as diverse as automotive, aerospace, health care,

manufacturing, and transportation. For instance, development of tiny sensors, responsive

actuators, and low-power microcontrollers have enabled advancement in automotive industry

towards commercial production of Electric Vehicles (EV), complicated Battery Management

Systems (BMS), and Advanced Driver-Assistance Systems (ADAS) [36, 38, 39, 96, 154].

On the other hand, unpredictability and indeterministic variations in the process of control

and physical domains enforce robust requirements on the design of CPS. Since CPS will

not be operating in a controlled and predictable environment, the requirements are more

stringent than for embedded systems [81]. Furthermore, the CPS will face the challenges of

reliability and energy efficiency since they mainly rely on batteries for power supply. The

unpredictable availability and behavior of energy and power of the battery add uncertainty,

and thereby may degrade the lifetime and efficiency of a battery-powered CPS. In this thesis,

we investigate these issues with EV as an example of similar battery-powered CPS [157].
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Transportation in the U.S. is mainly facilitated by roads and the vast majority of passenger

trips occur by automobiles [49]. Passenger vehicles are major pollution contributors, produc-

ing significant amounts of nitrogen oxides, carbon monoxide, and other pollutants; in 2013,

transportation accounted for about 27% of total U.S. greenhouse gas emissions [2]. The

environmental concerns such as global warming, air pollution, and noise pollution impact

the human health significantly. EV have been accepted as the most common zero-emission

and sustainable mean of transportation for commercial, non-commercial, and industrial pur-

poses in many countries [18, 32, 51, 62, 118, 128]. EV have had the potential to address

the environmental issues caused by greenhouse gases and other pollutants coming from road

transportation [29, 56, 91]. Moreover, governments provide incentives to promote EV de-

ployment and proliferation and help with addressing the above-mentioned global issues [107].

Furthermore, the EV power train architecture is much simpler compared to the one in Inter-

nal Combustion Engine (ICE) vehicles. Therefore, this simplicity has benefited the drivers

towards a more economical and sustainable mean of transportation even for longer terms

considering maintenance [33, 92]. However, EV consumers have been demotivated by the

poor driving range, high price, and troublesome recharging facing the EV [161]. Consumers

have not been able to gain the trust of using EV as their daily mean of transportation.

1.2 Energy Storage - Battery

Energy storage and specifically battery is the major component in the EV providing the

power. Major issues with EV have been mainly caused by the behavior of the commonly

used family of lithium-ion battery cells and EV stringent constraints especially on the bat-

tery pack [34, 103, 122]. The EV pose challenges regarding trade-offs between cost and

performance [33]. The cost, volume, and weight constraints in the battery pack design make

them the major bottleneck restricting the amount of energy stored for driving [34, 92]. Fur-
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thermore, the recharging process of the EV battery is significantly slow compared to the

refueling process of ICE vehicles. Both factors influence the EV usage for daily and/or long

trips causing ”range anxiety” for the drivers [51, 78, 103, 105, 137, 147].

Besides driving range issue, the battery capacity degrades over time due to the increase in

its internal resistance with every cycle of charging and discharging. In long-term, due to the

special behavior of lithium-ion, the battery becomes useless after 20% of capacity loss which

is considered as the battery lifetime [64, 98, 123, 152]. This creates more limitation on the

driving range and introduces huge battery replacement costs for the drivers/manufacturers.

Since battery production requires complex process and expensive material, the battery re-

placement gets sophisticated and costly which causes economic and sustainability issues [110].

For instance, the cost to replace a battery pack is more than 12,000$ for Tesla Model S

85 KWh [3] and 5,500$ for Nissan Leaf S [4]. Nevertheless, the battery pack itself costs

significantly more than the above-mentioned cost.

The driving range and battery lifetime are the parameters affected by the power

consumption of the EV. The power requests from the electric motor and other
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Figure 1.1: Contributors to EV power for var-
ious ambient temperatures.

auxiliary systems define the battery con-

sumption [131, 151, 158]. Figure 1.1 illus-

trates how much each of these systems con-

tribute to the EV power consumption. The

power and energy consumption affects the

stress put on the battery, and thereby the

driving range and battery lifetime. This in-

fluence becomes significant when considering

the rate-capacity effect in the battery [107, 111]. In other words, the available battery

capacity decreases when discharging the battery at higher rates.
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1.3 Battery and Energy Management

Battery-powered CPS implement controllers to address the above-mentioned challenges with

the battery while maintaining proper operation of the CPS. They are responsible to mon-

itor system state variables and decide on control inputs. They typically utilize integrated

design-time models towards their estimation, optimization, and decision making purposes.

The domain of these controllers may range from device level to system level depending on

their objectives [19, 139, 141, 145, 146].

For instance, at device level, a BMS observes the state of the battery cells by monitoring

their temperature, voltage, and current. Based on the observed state, the BMS decides the

amount of power request from each battery cell such that they are under equal load for better

efficiency and longevity of operation. Furthermore, the BMS is responsible to meet the power

requirements while preventing the battery cells from over charging, over discharging, over

heating, and over loading [38, 90, 107, 108, 131, 147, 159]. On the other hand, at system

level, controllers may monitor the state of the battery in order to schedule the load of the

systems on the battery. For instance, the EV power request can be split among battery

cells, ultracapacitors, or power generators in order to improve the total energy efficiency and

battery lifetime while putting the battery to rest. However, the battery behavior may vary

over time due to degradation and the inaccurate estimation may cause the BMS to make

unreliable decision and trigger over loading or over heating the cells. Moreover, the BMS has

limited knowledge of the systems utilizing the battery that may cause the BMS to operate

the battery cells in an inefficient manner and degrade the operation time of the systems.

The systems such as electric motor and auxiliary systems (see Figure 1.1) are the major con-

tributors to the battery power. Therefore, these systems will indirectly influence the energy

efficiency and battery lifetime, creating trade-offs between control quality of the systems and

efficiency or reliability of the battery. Control methods have been introduced to optimize the
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consumption [87] of these systems given the battery state. These methods will improve the

energy efficiency and battery lifetime in the EV and battery-powered CPS. Their primary ele-

ment is the modeling of the multi-domain systems and implicit dependencies between them.

However, the growing complexity and lack of scalability of modeling the interdisciplinary

systems in CPS such as EV make the high-level management of CPS, impractical.

1.4 Major Challenges and Thesis Contributions

Previously, we discussed the main issues with battery-powered CPS especially electric ve-

hicles in term of energy efficiency and reliability. There are state-of-the-art sophisticated

controllers implemented to monitor the systems and address these issues in device level or

system level. However, they pose major challenges that are listed below and will be discussed

in details throughout the thesis:

1. Control systems running separately have limited flexibility of control that results in

limited and non-optimal control quality of the whole system of EV.

2. Battery dynamics - energy efficiency and battery lifetime - are not considered in control

systems decision making process which may put excessive load and stress on the battery.

3. Limited design-time behavioral knowledge and inaccurate future estimation of the sys-

tems dynamics restrict the quality and optimality of the control system decision.

4. Implicit trade-offs existing between different systems within a CPS like an EV are

neglected which results in a limited system-level performance of the EV.

5. Lack of scalability to integrate multi-domain systems for optimizing a higher-level

quality rather than the quality of individual systems.

6. Controllers lack necessary mechanisms to secure the control loop, to prevent a compro-

mise, and to recover from the attack while maintaining the proper system operation.
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We address these existing challenges facing battery-powered CPS such as EV by implement-

ing novel modeling, machine learning, and control methodologies that improve the energy

efficiency and reliability of the systems:

1. Co-scheduling the utilization of multiple systems and joint optimization of their control

inputs help the CPS to achieve a better system-level control quality and performance.

2. Modeling battery behavior and dynamics and incorporating them into decision making

and optimization enable the controller to consider battery lifetime and energy efficiency.

3. Machine learning and data-driven modeling that capture the behavior of the systems

and provide long-term prediction to be integrated in their optimization and control

without overhead.

4. Self-secured control design by leveraging a machine learning architecture that monitors

the control loop and enables anomaly detection and secured recovery estimation for

vulnerable control loops in CPS.

Table 1.1: Challenges addressed by our contributions in the thesis.

Contribution Challenges Chapters References

1 Co-Scheduling 1, 4 2, 3, 4, 5, 6 [131, 133, 134, 135, 137, 138, 140, 147]
2 Battery Modeling 2, 3 2, 3, 4, 5 [20, 131, 133, 134, 137, 140]
3 Machine Learning 3, 4, 5 6, 7 [135, 142, 143]
4 Self-Secured Control 3, 6 8 [88]

Table 1.1 provides a high-level map of the contributions discussed in each chapter to address

the above-mentioned challenges with their corresponding publications. Detailed introduction

of the challenges facing the EV will be discussed in each chapter. Related work are analyzed

and novel methodologies are provided to address their issues. Experimental results are

provided to justify and analyze the performance of the systems and controllers in EV from

every aspect.
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Chapter 2

Reliable Battery Management
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2.1 Introduction and Related Work

Driving range and Battery LifeTime (BLT) or operational time are major challenges in

battery-powered CPS such as EV considering the stringent design constraints (see Chap-

ter 1). Researchers have been trying to extend these operating parameters by designing

more efficient materials for the batteries such as lithium-ion family, to provide more en-

ergy or power density while diminishing the battery capacity degradation rate [69, 92, 111].

On the other hand, intelligent control methodologies have been introduced to manage the

battery utilization more efficiently and reliably.

Sophisticated BMS with the capability of energy management have been implemented to

utilize the battery cells more efficiently by monitoring their status, while meeting the safety

requirements (e.g., thermal and power limits) and preventing over charging, over discharging,

and over heating [38, 90, 91, 131, 147]. Moreover, the utilization of the battery cells may

get balanced by evenly distributing the power requests by the BMS in order to improve the

driving range and extend the battery lifetime [38, 76, 122]. To further improve the energy

efficiency, Hybrid Electrical Energy Storage (HEES) [107, 108, 158, 159] design has been

introduced which comprises of batteries and ultracapacitors connected in different architec-

tures, e.g. parallel [121] or dual [123]. In HEES design, pulsed loads may be redirected to

ultracapacitors which have higher power density [121] to improve the total energy efficiency.

Since the battery capacity loss is significantly dependent on the battery operating temper-

ature, decreasing the battery temperature may reduce its capacity loss thus extending the

BLT [98, 123]. Hence, HEES has been also used to alleviate the thermal issues [109] caused

by the heat generated from the battery cells [123].
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2.1.1 Motivational Case Study

We conduct experiments to further analyze the performance of battery thermal manage-

ments. In this case study, the ultracapacitors are used when the temperature of battery cells

reaches a certain threshold [123]. Figure 2.1 illustrates the thermal management performance

using an HEES for different ultracapacitor sizes. As shown in the figure, the temperature can

be maintained using large ultracapacitors, however, the safe threshold for the battery cells’

temperature may get violated while using smaller ultracapacitors. If the ultracapacitors’

capacity is not sufficient, they will deplete before the batteries are cooled down well enough.

Also, the batteries are required to recharge the ultracapacitors again, which may increase

the battery temperature further than before in some circumstances. This will cause drastic

battery capacity loss and decrease in BLT.

Figure 2.1: Battery cells’ temperature while driving an EV simulated in ADVISOR (Ad-
vanced Vehicular Simulator) for US06 drive cycle [123, 155].

Summary and conclusion from observations: the above analysis shows that ultraca-

pacitors may not suffice to maintain the battery temperature and may not be a reliable

solution for avoiding thermal issues (unsafe states). On the other hand, adding more ultra-

capacitors may significantly increase the HEES cost (≈ $12, 000 for 20, 000F ) [5], volume,

and mass which are constrained during the design time [29]. Hence, having an active battery

cooling system is necessary for the energy storage in order to prevent thermal violations.
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Moreover, the above-mentioned energy managements and BMS have not considered the bat-

tery energy efficiency in different temperatures; it has been shown that lithium-ion battery

cells have higher usable capacity in higher temperatures [6]. On the other hand, the influence

of ultracapacitors’ high voltage swing on the HEES energy efficiency needs to be considered;

power efficiency of the DC/DC converter used for the ultracapacitors may decrease as the

voltage of the ultracapacitors drop while being overused [33, 40, 108]. Knowing these char-

acteristics will help the thermal and energy management in BMS to efficiently distribute the

energy among the battery cells or ultracapacitors. Since the active battery cooling system

consumes power to maintain the battery temperature, an Optimized Thermal and Energy

Management (OTEM) is necessary to know when to use the active battery cooling system or

the ultracapacitors such that it improves the driving range, extends the BLT, and maintains

the battery temperature in the safe range [123]. Furthermore, when OTEM decides to utilize

the ultracapacitors, it needs to make sure there is enough charge allocated in them. On the

other hand, when OTEM decides to utilize the battery, it needs to make sure the battery

is cooled enough. In this chapter, this quality metric is termed as Thermal and Energy

Budget (TEB). The OTEM should provide enough TEB (i.e., pre-cool battery or pre-charge

ultracapacitors) efficiently before utilizing the HEES.

2.1.2 Problem and Research Challenges

The problem of controlling the battery temperature and energy consumption for improving

the driving range and battery lifetime poses the following key challenges:

1. Considering the HEES design combined with active battery cooling system for the

thermal and energy management.

2. Accounting the total energy efficiency and battery lifetime while controlling the energy

consumption and maintaining the temperature constraints.

3. Having an efficient and reliable methodology to avoid the thermal and energy violations

while utilizing HEES.
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2.1.3 Novel Contributions and Concept Review

To address the above-mentioned challenges, a novel HEES thermal and energy management

methodology for improving the driving range and extending the battery lifetime is provided

which employs:

1. Hybrid Electrical Energy Storage (Section 2.2): in which the detailed electrical

and thermal characteristics of the battery, ultracapacitor, and hybrid architectures are

modeled and estimated.

2. Active Battery Cooling System (Section 2.2.4): in which the thermal dynam-

ics, power consumption, and influence on the battery temperature are modeled and

estimated.

3. Optimized Thermal and Energy Management (Section 2.3): which provides

enough TEB for the HEES by optimizing the utilization of different energy storage and

active battery cooling system power. The controller may pre-charge the ultracapacitor

or pre-cool the battery efficiently upto the perfect amount, in order to extend the BLT,

improve HEES efficiency, and minimize the energy consumption while maintaining the

thermal constraints. This methodology is formulated using Model Predictive Control

(MPC) [28, 131] in Section 2.3.2.

Figure 2.2 further describes our optimized thermal and energy management methodology

for HEES. Different architectures for HEES design and ultracapacitor sizing are analyzed

in Sections 2.2 and 2.4. Although the design space exploration for the HEES and active

battery cooling system in terms of size and cost [34, 50, 71] is out of the scope of this thesis,

the methodology will be economical for any design variation.
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Figure 2.2: Optimized thermal and energy management methodology for HEES.

2.2 System Modeling and Estimation

More knowledge about the future will help our OTEM to provide adequate TEB and control

the components efficiently. Hence, the contributing components, e.g. battery, ultracapacitor,

and active battery cooling system, are modeled to provide the OTEM (see Section 2.3) with

sufficient estimation of their behaviors; an EV power train and its drive cycle have been

modeled in ADVISOR [155], in order to estimate the power requests from the EV. The power

requests are then handled by the controller in OTEM (see Section 2.3.3). An optimized MPC

algorithm will monitor and control the HEES (see Section 2.2.3) comprising of batteries (see

Section 2.2.1) and ultracapacitors (see Section 2.2.2), and the active battery cooling system

(see Section 2.2.4).

2.2.1 Battery Model

Battery packs are designed according to the requirements specified for each EV. Typically,

EV deploy lithium-ion battery cells as their primary electrical energy storage [33]. For

instance, Tesla Model S utilizes a battery pack made out of 18650A battery cells [3, 6].
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Although, the electrical and thermal characteristics of these cells vary for each type, the

lithium-ion battery cells used for EV (18650A), are mostly modeled as the following.

Electrical model for each battery cell is described using an equivalent electric circuit

model [123]; the battery cell is modeled as a variable voltage power supply in series with

an internal resistance (see Figures 2.3(a) and 2.3(b)). The ratio of the available charge to

the battery capacity is represented by State-of-Charge (SoC). Open-circuit voltage (VOC)

of the battery (the variable voltage power supply) and the battery internal resistance (Rbat)

depend on SoC value, which are modeled by:

SoCt = SoC0 − 100×
t∫

0

Ibat
Cbat

(2.1)

VOC = v1e
v2SoCt + v3SoC

4
t + v4SoC

3
t + v5SoC

2
t + v6SoCt + v7 (2.2)

Rbat = r1e
r2SoCt + r3 (2.3)

where Cbat is the rated battery capacity (in Ah) evaluated in nominal discharge rate [6]. Ibat

is the current drawn from the battery. SoC0 represents the initial SoC at time 0. vx and rx

parameters can be empirically measured for each specific battery type [6, 123].

The energy production by a battery depends on its chemical metabolism and internal resis-

tance which change by the operating temperature; elevated battery temperature improves

the energy production by lowering the internal resistance and speeding up the chemical

metabolism. This behavior is modeled as temperature-sensitive rx parameters in Equa-

tion 2.3. The value for this parameter can be extracted from the battery manufacturer’s

datasheet [6].

Lithium-ion batteries generate internal heat (Qbat) while charging/discharging. The heat

generated is caused by the power loss due to the internal resistance or the entropy change

in the ions [71, 123]. Based on the current battery utilization, the heat generated from each
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battery is approximated using:

Qbat = Ibat(VOC − Vbat) + IbatTbat
dVOC

dTbat
(2.4)

where Vbat is the battery terminal voltage (which may be measured under load), Tbat is the

current battery temperature, and dVOC

dTbat
is a constant for approximating the entropy change

influence on the heat generated. The values for these parameters can be empirically mea-

sured for each specific battery type [123]. It needs to be noted that although more detailed

battery electrical model may increase behavior modeling accuracy, it will not contradict our

methodology.

The internal heat generated from each battery will increase the battery temperature. A

battery may be comprised of multiple materials with different density and thermal charac-

teristics [71]. A thermal capacity variable (Cb) in a thermal model is used to approximate

the changing temperature behavior regarding the internal heat and the convection heat from

the environment, e.g. air or active battery cooling system. HEES thermal behaviors are

modeled with details in Section 2.2.4.

The battery capacity degrades over time based on the battery utilization. Battery stress,

number of discharge cycles, discharge current, and temperature influence the capacity

loss [98]. In this chapter, the capacity loss is modeled considering the discharge current

and temperature:

Qloss = l1e
−l2/(RTbat)I l3bat (2.5)

where R is the ideal gas constant. lx parameters are the coefficients in the model that can

be measured empirically [98, 123].
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2.2.2 Ultracapacitor Model

Ultracapacitors are used as secondary energy storage for EV [33]. Since ultracapacitors

unlike batteries do not conduct chemical reactions to provide electrical energy, they can

be charged/discharged faster than batteries. Due to their higher power density, they are

used in parallel with batteries to handle the high-rate pulsed load [121]. Ultracapacitors are

modeled as a variable voltage power supply and an internal resistance [121] (see Figures 2.3(a)

and 2.3(b)). Ratio of the available energy stored in an ultracapacitor to its energy capacity

(maximum energy that can be stored - Ecap) is represented by State-of-Energy (SoE). The

voltage across the ultracapacitor (Vcap) varies significantly with the SoE. The electrical

model is described as follows:

Ecap = 1/2 CcapV
2
r (2.6)

Icap = Ccap dVcap/dt (2.7)

Vcap = Vr

√
SoEt/100 (2.8)

SoEt = SoE0 − 100×
t∫

0

VcapIcap
Ecap

(2.9)

where Ccap is the rated capacitance [5], Vr is the rated voltage of the ultracapacitor, Icap is

the current drawn from the ultracapacitor. SoE0 represents the initial SoE at time 0. Since

the internal resistance of an ultracapacitor is very inconsiderable (≈ 2.2mΩ), it has been

omitted in the model. Also, because ultracapacitors do not generate considerable heat, we

can ignore them in the thermal model.
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2.2.3 Hybrid Electrical Energy Storage Model

HEES design is composed of multiple battery cells and ultracapacitors. There are differ-

ent hybrid architectures in the literature defining the way of connecting and managing the

energy storage:

1. Dual/Parallel: as shown in Figure 2.3(a), in this architecture which was recently used

for thermal management in [123], two switches (Sb, Sc) are used to change the connection to

the battery or the ultracapacitor. In the dual architecture, the battery and the ultracapacitor

can be connected in parallel or individually to the EV (see Figure 2.3(a)). When each

energy storage is connected individually to the EV, the electrical model is described using

the equations defined in Sections 2.2.1 and 2.2.2. Otherwise, when they are connected in

parallel, we use the following equations [123]:

Pl =VlIl (2.10)

Il =Ib + Ic (2.11)

Vl =Vb −RbIb (2.12)

Vl =Vc − RcIc (2.13)

where Pl, Il ,and Vl are the load requested by the EV, the current drawn from the HEES,

and the voltage output to the load, respectively. Vb, Rb, and Ib are the open-circuit voltage,

the internal resistance, and the current drawn for the total battery pack (see Section 2.2.1).

Vc, Rc, and Ic are the open-circuit voltage, the internal resistance (it can be omitted), and

the current drawn for the total ultracapacitor pack (see Section 2.2.2).

2. Hybrid: as shown in Figure 2.3(b), in this architecture, each energy storage is connected

indirectly using a DC/DC converter to a DC bus in EV [107]. Hence, each energy storage

can be independently used with the capability of energy migration and allocation [159]. This
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(a) Dual/Parallel architecture. (b) Hybrid architecture.

Figure 2.3: Different HEES architectures for battery and ultracapacitor.

architecture is mainly used for our optimized HEES thermal and energy management, since

it provides the flexibility to control the utilization of each energy storage.

Performance of the DC/DC converters used for the energy storage changes for various

voltages. As the voltage domain drops, the conversion efficiency decreases. Hence, the

conversion efficiency is modeled as a parameter ηDC , which affects the power requests to the

ultracapacitors, batteries, or the dual/parallel architecture. The value for this parameter

can be measured empirically [40].

2.2.4 Active Battery Cooling System Model

Although the heat generated from the batteries are significantly dependent on the EV and the

battery type (see Section 2.2.1), having energy-dense and high-power batteries necessitate

the existence of a methodology to prevent over heating. Recently, EV utilize active battery

cooling system to maintain the battery temperature in the safe range. Another approach

is through constraining the battery utilization by redirecting the power to another energy

storage - ultracapacitor - as in [123]. However, as shown in Section 2.1, HEES is not sufficient

for preventing the battery over heating and the active battery cooling system is necessary

to maintain the battery performance and reliability.
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As stated in Section 2.2.1, the battery cells are connected together in parallel or series inside

a battery pack (see Figure 2.4). In the existence of an active battery cooling system, the

battery cells are surrounded by a flowing coolant. The coolant may be gas or liquid depend-

ing on the configuration. However, the coolant material is orthogonal to the methodology

provided and may only change the parameter values for the equations, we have considered

the details for the coolant as in [71]. The coolant is pumped to the battery pack using an

electric motor (pump). The hot coolant returned from the battery pack is cooled down by

a cooler and pumped back to the system again. Since the ultracapacitors do not generate

considerable internal heat, they are not considered in the cooling system and they may be

packed separately from the battery pack.

Figure 2.4: Active battery cooling system design for the battery pack.

The battery temperature (Tb) is influenced by the internal heat generated from the battery

(Qb) and the heat exchange with the coolant. Since the battery pack is completely isolated

from outside, the ambient temperature does not influence the battery temperature directly.

The energy balance for a battery cell is described as:

Cb
dTb

dt
= hcb(Tc − Tb) +Qb (2.14)

where Cb is the battery cell heat capacity (see Section 2.2.1), hcb is the heat transfer coefficient

between the coolant and the battery, and Tc is the coolant temperature in the battery pack.

Hence, the battery temperature changing rate (dTb

dt
) can be evaluated using Equation 2.14.
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The coolant temperature inside the battery pack (Tc) is influenced by the heat exchange

with the battery cells and the coolant pumped to the battery pack. Since the battery cells

are small, we can simplify the heat exchange model between the battery and coolant further

without affecting the concept in this chapter. Hence, both the battery cells and the coolant

are lump modeled by their heat capacity. The energy balance for the coolant is described as:

Cc
dTc

dt
= hbc(Tb − Tc) + Cc(Ti − Tc) (2.15)

where Cc is the coolant heat capacity [71] and hbc is the heat transfer coefficient between

the coolant and the battery. Hence, the coolant temperature changing rate (dTc

dt
) can be

evaluated using Equation 2.15.

The coolant returned from the battery pack is cooled down by a cooler. The cooler power

consumption (Pc) is proportional to the energy difference between its inlet and outlet coolant

flow. Moreover, the heat exchange among the coolant, environment air, and potential sec-

ondary coolant in the cooling system is modeled as an efficiency parameter (ηc), which is

influenced by the operating conditions.

Pc =
Cc

ηc
(To − Ti) (2.16)

The pump is needed for maintaining the coolant flow rate. The pump power consumption

(Pm) is related to the coolant flow rate (ṁc). In this chapter, the coolant flow rate is

considered fixed which makes the pump power consumption a constant.
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2.3 Thermal and Energy Management

In the previous sections, battery (see Section 2.2.1), ultracapacitor (see Section 2.2.2), and

HEES design (see Section 2.2.3) have been modeled in order to estimate their electrical and

thermal characteristics, e.g., energy consumption, battery lifetime, and generated internal

heat. This information is leveraged by our OTEM to maintain the battery temperature,

extend the battery lifetime, reduce the energy consumption by the active battery cooling

system, and improve the energy efficiency of the HEES (reducing the energy loss in battery,

ultracapacitor, or DC/DC converters).

2.3.1 Methodology Description

In OTEM, based on the models of the components contributing to the system, we may predict

the future state of the system for defined period of time (control window). Knowing more

information about the future may help the controller to configure and utilize the system, e.g.

HEES, in a more desirable and efficient way while minimizing a cost function, e.g. improve

the BLT and reduce the energy consumption/loss. This method of controlling is known as

Model Predictive Control (MPC) [28, 131].

The novelty of this methodology is to simultaneously consider the battery temperature,

energy consumption of active battery cooling system, and energy consumed (including energy

loss) in the HEES while considering the energy efficiency in different conditions. These values

are estimated for a time period in future. Hence, the OTEM provides sufficient TEB before

the EV power requests arrive. And, the HEES will be at the most efficient state for handling

the power requests.
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2.3.2 Optimization Formulation

Since the controlling is conducted in discrete time, the model equations need to be also

discretized. For instance, Equation 2.15 which models the thermal behavior of the battery,

is defined in discrete time as follows:

Cb
T+
b − Tb

�t
= hcb(

T+
c + Tc

2
− T+

b + Tb

2
) +Qb (2.17)

where ”+” symbol represents the value of the variable at the next time step t +�t. Here,

�t is the time step duration (sampling period).

EV power requests predicted by modeling the power train and driving route [107] are passed

as input variables to the controller. Let P t
e be the estimated EV power at time t. In the

OTEM, let xk|t be the value of the state variables vector [Tb, Tc, SoE, SoC], i
k|t be the value

of the controlling input variables vector [Ti, Pbat, Pcap], and uk|t be the value of the auxiliary

variables vector [Pe, Pc, Qloss, To, dEbat, dEcap] at time t + k� t, predicted at time t.

The control requirements and physical restrictions state the following inequality constraints

on state variables, controlling input variables, and auxiliary variables:

C1 : Tb ≤ Tb ≤ Tb safety restrictions on battery temperature

C2 : Ti ≤ To cooler always decreases the temperature

C3 : Pc ≤ Pc cooler maximum power output

C4 : 20% ≤ SoC ≤ 100% charge restriction on battery

C5 : 20% ≤ SoE ≤ 100% energy restriction on ultracapacitor

C6 : Pbat ≤ Pbat battery power restriction

C7 : Pcap ≤ Pcap ultracapacitor power restriction

(2.18)
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The discrete-time model equations, system dynamics are defined as the equality constraints

(Ceq) for the optimization process of the controller. Moreover, initial conditions for the state

variables are dictated using equality constraints. For instance, the initial value of Tb to

estimate T
k+1|t
b should be equal to T

k|t
b . T

0|t+1
b should be equal to estimated T+

b at time t:

Cj
eq

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xk|t

ik|t

uk|t

xk+1|t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 0 C i

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xk|t

ik|t

uk|t

xk+1|t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
≤ bi (2.19)

where Cj
eq is a non-linear function describing the equality constraints. C i and bi are matrices

stating the linear inequality constraints.

Our OTEM mainly attempts to decrease the energy consumption by the active battery

cooling system, energy consumption/loss in the HEES, and battery capacity loss. This goal

is represented by the following cost function which needs to be minimized:

F =

t+N�t∑
τ=t

w1(Pc� t) + w2Qloss + w3(dEbat + dEcap) (2.20)

where N is the MPC control window size. w1 represents the weight for reducing the active

battery cooling power consumption (Pc), w2 represents the weight for reducing the capacity

loss (Qloss) in the battery in order to improve its BLT, and w3 represents the weight for

reducing the energy used from the HEES which is the sum of energy consumed/lost in the

battery and the ultracapacitor. The values of these variables in the MPC control window

are summed as the cost.
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2.3.3 Control Algorithm

The optimized thermal and energy management system monitors and controls the com-

ponents at the driving-time. Using the estimated values by the implemented models, the

optimization problem (see Equation 2.19 and 2.20) is solved at each instances of time.

ALGORITHM 1: Our Optimized Thermal and Energy Management

Input: Estimated Power Request P̂e = {P t
e | 0 ≤ t ≤ T }

Output: Measured Capacity Lost in Battery Qloss

Output: Measured Energy Consumed in HEES Energy
// the total route duration

1 T = length (P̂e)
2 Qloss = 0
3 Energy = 0

4 N = control window duration
5 x = N × 4 matrix // state variable

6 i = N × 3 matrix // control inputs

7 u = N × 6 matrix // auxiliary variables

8 x+ = N × 4 matrix // state variable

9 x0 ← [298, 298, 100, 100] // initial conditions

// driving-time thermal and energy management

10 for t = 1 to T do
11 for τ = 0 to N − 1 do
12 uτ [Pe]← P τ+t

e

// control window optimization variables

13 z ← [x, i, u, x+]
14 zopt = Optimize (z) // call optimizer

// apply control inputs & measure the states

15 [T+
b , T+

c , Pc] = Package (zopt)

16 [SoC+, SoE+, dEbat, dEcap, Ql] = HEES (zopt)

// accumulate the capacity loss in battery

17 Qloss ← Qloss +Ql

// accumulate the energy consumed in HEES

18 Energy← Energy+ dEbat + dEcap

19 x0[Tb]← T+
b // next time step initial Tb

20 x0[Tc]← T+
c // next time step initial Tc

21 x0[SoC]← SoC+ // next time step initial SoC

22 x0[SoE]← SoE+ // next time step initial SoE

23 return [Qloss,Energy]

Algorithm 1 is the pseudo-code representing the methodology used in our OTEM. The

estimated values for EV power requests are added as vector P̂e. The driving duration is
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saved as T and two variables Qloss and Energy are defined to store the values for capacity

loss in battery and energy consumed in HEES, respectively (lines 1-3). The size of the control

window for MPC algorithm is defined in line 4. The state variables (x, x+), control input

variables (i), and auxiliary variables (u) for the control window are defined (lines 5-8). The

initial conditions for the state variables at time zero are defined in line 9. The for-loop in

lines 10-22 represents the driving-time thermal and energy management. In lines 11 and

12, the estimated values for EV power requests during the control window are initialized.

These state, control input, and auxiliary variables are combined in a vector as optimization

variables (z) (lines 13). The optimization variables are passed to the solver to solve the

optimization problem defined in Equation 2.19 and 2.20 (line 14). The optimized values will

be passed to the package (containing active battery cooling system and the battery pack)

for thermal management and the HEES for energy management and the outcome states

are evaluated (lines 17-18). The capacity loss in the battery and energy consumed in the

HEES are estimated and accumulated in Qloss and Energy, respectively (lines 17-18). The

estimated values of the state variables in this time step will be used as the initial conditions

for the next time step (lines 19-22). Eventually, the values of Qloss and Energy are returned.

2.4 Experimental Results

2.4.1 Experiment Setup

The model equations defined in Section 2.2 contain multiple parameters which are mostly

defined by the real-life specifications of the system. The values of the parameters are set

and adjusted so that the system dynamics are verified by the experimental data gathered

from the existing references. Our OTEM methodology defined in Section 2.3 is implemented

in MATLAB/Simulink [7] and the EV power consumption is estimated using ADVISOR
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(Advanced Vehicular Simulator) [155]. For evaluation, we use multiple standard driving

cycles [147] as the driving routes, different environment temperatures, and conduct the

simulation using these two platforms.

2.4.2 Results and Analysis

We compare the performance of our optimized thermal and energy management methodology

with other state-of-the-art methodologies:

1) Parallel Architecture [121]: where the simple parallel architecture (Section 2.2.3)

is used in the HEES design. There is no thermal or energy management implemented.

2) Active Battery Cooling System [71]: where only battery is used as the energy

storage and active battery cooling system is utilized to maintain the battery tempera-

ture in the safe range.

3) Dual Architecture [123]: where the dual architecture with switches (Section 2.2.3)

is used in the HEES design in order to maintain the battery temperature by switching

to ultracapacitor.

For fairness of the comparisons, all methodologies have been applied for the same system

configuration, drive cycle, and physical restriction (unless otherwise specified).

a) Battery Temperature Analysis: the battery temperature has been monitored for

the listed methodologies. As shown in Figure 2.5, the dual architecture methodology reacts

when the battery temperature reaches a threshold, in which may not be sufficient for ex-

tending BLT. However, the OTEM attempts to decrease the battery temperature further by

managing the utilization of different energy storage and the cooler in order to extend the

battery lifetime.
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OTEM

Figure 2.5: Battery temperature analysis for different methodologies.

To further analyze the OTEM methodology, we have performed the temporal analysis on

the battery temperature, the ultracapacitor SoE, and the EV power requests. As shown in

Figure 2.6, the OTEM provides enough TEB when it notices large EV power requests in the

near-future; it allocates more charge to the ultracapacitor or cools the battery to the right

amount so that the HEES stays in the most efficient state. This will decrease the capacity

loss and increase the energy efficiency of the HEES. Analyses shown in Figures 2.5 and 2.6

have been done using 25, 000F ultracapacitors and driving in US06 five times.

Figure 2.6: Illustrating the TEB preparation for the HEES using the OTEM.

b) Battery Lifetime Analysis: the EV has been driven for multiple drive cycles under

control by different methodologies and the battery capacity loss has been monitored and

compared. Figure 2.7 illustrates the ratio of the battery capacity loss in each methodology

compared to the parallel architecture methodology. The OTEM decreases the capacity loss

by 16.38% on average compared to the parallel architecture methodology and by 11.3% on
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average compared to the dual architecture methodology. The performance of each method-

ology varies for different drive cycles, since the EV requires different amount of power and

the battery may not get heated the same.

OTEM

Figure 2.7: Battery lifetime comparison for different methodologies in multiple drive cycles.

c) Energy Consumption Analysis: as we have stated, the HEES energy efficiency de-

pends significantly on the battery temperature and the ultracapacitor SoE. In Figure 2.8,

we have compared the average power consumption of the EV and the active battery cooling

system (if available). As shown in the figure, the methodologies which use active battery

cooling system have consumed more energy compared to others, since they attempt to de-

crease the battery temperature and extend BLT by cooling. However, in the OTEM, the

average power consumption has been decreased by 12.1% on average compared to the pure

active battery cooling system architecture, since HEES design has also contributed.

OTEM

Figure 2.8: Power consumption comparison for different methodologies and drive cycles.
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d) Ultracapacitor Size Analysis: in previous analyses we have considered the ultracapac-

itor size fixed (25, 000F ). However, the HEES efficiency and the methodologies’ performance

may vary significantly based on the ultracapacitor size. In Table 2.1, we have illustrated the

average power consumption and the capacity loss (compared to the parallel architecture using

25, 000F ultracapacitor) for different ultracapacitor sizes controlled by different methodolo-

gies. The experiment has been done using the US06 drive cycle, since it is a highly power

consuming drive cycle. The table shows that, by decreasing the ultracapacitor size, the

average power consumption increases significantly in parallel and dual architectures. Also,

the capacity loss while using the dual architecture increases by decreasing the size, since the

methodology significantly depends on the ultracapacitor size. In the OTEM, the increase

in the ultracapacitor size will help the efficiency of the HEES and the OTEM performance.

However, since the OTEM has the flexibility of using active battery cooling system, it is not

much dependent on the ultracapacitor size.

Table 2.1: Analyzing the influence of ultracapacitor size in different methodologies.

OTEM OTEM
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2.5 Concluding Remarks

In literature, active battery cooling system or HEES has been considered as solutions to

address the thermal issues influencing the battery performance and longevity. However,

active battery cooling system alone may not be efficient for improving the EV driving range.

Moreover, the HEES alone is an unreliable and costly solution to maintain the battery

temperature in the safe zone, which is highly dependent on the ultracapacitor size. Hence, in

this chapter, we have integrated both the solutions and implemented an OTEM methodology

that provides optimized TEB for the HEES before handling the power requests; it may pre-

charge the ultracapacitor or pre-cool the battery to put the HEES in the most efficient state.

Our methodology demonstrates significant improvement in BLT (on average 16.8%) and

average power consumption (on average 12.1% reduction) compared to the state-of-the-art

methodologies. We have also shown that the decrease in the ultracapacitor size, which is

preferable for HEES design, may not influence the OTEM performance.
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Chapter 3

Battery-Aware Climate Control
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3.1 Introduction and Related Work

EV as a whole CPS contain multiple physical systems that are governed by cyber systems or

controllers. For instance, we observed that the battery cells can be directly monitored and

controlled by BMS (see Chapter 2). However, there are physical systems that their behavior

indirectly depends on operation of other systems. In particular, the battery utilization is

defined by the power requests from the whole EV in which the electric motor (engine) is the

main continual contributor [45]. The electric motor power consumption/generation is mainly

influenced by the route and driving behavior [63, 147]. However, the power requests are not

only defined by the electric motor. For instance, other high-load components like Heating,

Ventilation, and Air Conditioning (HVAC) system may also affect the battery utilization

[20, 70, 131, 140]. The HVAC system power consumption is mainly influenced by the cabin

temperature and outside weather. To further demonstrate these characteristics, we look into

the following motivational example (see Figure 4.1).

3.1.1 Motivational Case Study

The electric motor is the major component that provides the required force for propelling

the EV. The energy goes to overcoming the driving forces on the EV (for details see Sec-

tion 3.2.2). Moreover, the electric motor may generate power in the regenerative mode

while decelerating the EV [107]. On the other hand, the accessory systems comprise of the

Heating, Ventilation, and Air Conditioning (HVAC) system and other computing, communi-

cation, and entertainment devices in the vehicle. The HVAC system is the major consumer

among the accessories (see Figure 3.1). The heating coils, cooling coils, and fans in the

HVAC system consume power according to their architecture design, control target, and the

ambient temperature (for details see Section 3.2.3) [131, 140]. For instance in ICE vehicles,

the heat generated from the combustion engine is utilized to heat the supply air to the cabin.

32



While in EV, negligible heat is generated by the electric motor and is not sufficient enough

to heat the supply air. Hence, electric heating coils are necessary as well for heating which

increase the power consumption further (up to 21% of total power consumption), compared

to the ICE vehicles (see Figure 3.1).

Figure 3.1: Contribution of three types of power consumers in EV [3] and ICE vehicle [77]
for different ambient temperatures [131, 140].

As shown in the figure, the influence of the HVAC system on the battery in EV can be more

significant than on the fuel consumption in ICE vehicles, especially in severe weathers. This

becomes more challenging considering the limited energy available in a battery of an EV.

The amount of the power consumption by the HVAC system results in further driving range

reduction by up to 13% in cold weather as shown in Figure 3.2.

Figure 3.2: Range reduction resulted by HVAC power consumption [20].

Summary and conclusion from observations: primarily, the electric motor power con-

sumption is defined by the driving behavior and route. Although the electric motor power

consumption can be optimized by adjusting the driving behavior and route, it is not flexible
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within the EV itself. However, the analysis explained above illustrates that the HVAC sys-

tem has flexible and large power consumption; the power consumption can be controlled by

adjusting the control parameters such as cooling/heating temperature, and fan speed [131].

These HVAC control parameters are mainly adjusted according to the cabin temperature.

Managing the limited energy in the battery of an EV is problematic and the HVAC system is

a major factor impacting the battery. Hence, it becomes the challenge of how to reduce the

influence of the HVAC on the battery behavior (battery lifetime and energy consumption)

without losing the thermal comfort for the passengers. By looking into the relationships

between HVAC, EV power, and battery characteristics, the flexibility of the HVAC system

in terms of its power consumption can be beneficial in reducing these impacts by controlling

its inputs while being aware of the battery behavior and the EV power consumption.

Automotive climate controls are responsible for monitoring and controlling the HVAC sys-

tem. The main objective of the control has been to maintain the passenger thermal com-

fort1 [20, 89, 131]. There are various automotive climate controls and HVAC system designs

in the literature with different performances in terms of energy consumption and thermal

comfort maintenance for the passengers. They may implement different control algorithms,

e.g., on-off controller, feedback control, Proportional-Integrator-Derivative (PID), Linear-

Quadratic Regulator (LQR), and Model Predictive Control (MPC) [59, 86, 107]. Some of

the automotive climate controls attempt to provide uniform thermal environment for the

passengers by maintaining the whole cabin temperature (single-zone). While, other method-

ologies maintain the temperature in multiple zones of the cabin separately providing higher

thermal comfort for the passengers (multi-zone). In these methodologies, multiple variables,

e.g. the cabin temperature, ambient temperature, and solar radiation, may be monitored and

the HVAC system is controlled accordingly to cool/heat the cabin [20]. They only consider

1The modeling of the passenger thermal comfort is important to the automotive climate control design,
however, the details of the modeling is out of the scope of this thesis. Moreover, the thermal comfort modeling
approach is orthogonal to our methodology. Hence, temperature deviation from the target temperature is
considered as a metric for thermal comfort (see Section 3.3.2).
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the behavior of the HVAC system (e.g. cabin and environment thermodynamics) during

their operation. However, they may also be capable of rejecting the disturbance caused by

the environment (e.g., solar radiation). Moreover, in these classical methodologies, the con-

trol parameters are set based on the design-time thermal loads and are not adaptive to the

environmental factors.

On the other hand, the BMS do not consider the influence of the automotive climate control

which controls the HVAC system - a flexible and large power consumer - on the battery

behavior. Moreover, the automotive climate control does not account the battery operation

behavior, e.g. driving range and battery lifetime, into the HVAC system control.

3.1.2 Problem and Research Challenges

In summary, the problem of designing an automotive climate control in EV to improve the

battery lifetime and driving range poses the following challenges:

1. Accounting the influence of the detailed HVAC load besides the electric motor on the

battery operation behavior, e.g. driving range and battery lifetime.

2. Considering and integrating the battery behavior in the automotive climate control

while managing the HVAC.

3. Applicability and scalability of the battery-aware automotive climate control ensuring

the passenger thermal comfort for any driving route and weather.

3.1.3 Novel Contributions and Concept Review

To address the above-mentioned challenges, we propose a novel methodology of battery-aware

automotive climate control which employs:
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1. EV Modeling and Estimation (Section 3.2): dynamic behavior of the EV com-

ponents is described, modeled, and estimated:

• Drive Profile (Section 3.2.1): behavior of the EV driving route is described.

The drive profile models the driving speed, acceleration, and route slope.

• Power Train (Section 3.2.2): power consumption/generation of the electric

motor which provides the propelling force for the EV or regenerate power is mod-

eled and estimated by considering the driving forces.

• HVAC System (Section 3.2.3): thermodynamics and power consumption of

the HVAC system and the automotive climate control are modeled and estimated.

• Battery (Section 3.2.4): battery behavior such as rate-capacity effect and

battery lifetime regarding the power request by the EV is modeled and estimated.

2. Battery-Aware Automotive Climate Control (Section 3.3): our novel method-

ology estimates the battery behavior and takes it into consideration for controlling the

HVAC system in order to improve the driving range and extend the battery lifetime

while ensuring the passenger thermal comfort:

• Predicting and optimizing the system state variables in the near-future control

window (receding horizon) using a Model Predictive Control (MPC) algorithm.

• Ensuring the passenger thermal comfort by predicting and maintaining the cabin

temperature in a convenient range around a target temperature.

3. Experiment, Exploration, and Analysis of Methodology (Section 3.4): the

performance of the methodology in terms of execution time, memory usage, improve-

ment on the battery lifetime, and energy consumption has been measured and analyzed

for various conditions and has been compared to the state-of-the-art methodology:

• Availability of the predicted data in the near-future in terms of the control window

size, e.g. number of estimated states and time duration of the each predicted state.
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• Environment factors such as the driving route and ambient temperature.

• Modeling and estimation error of the HVAC system as the physical plant.

As shown in Figure 3.3, our novel methodology of automotive climate control for EV con-

siders the battery behavior such as driving range and battery lifetime while monitoring and

controlling the HVAC system. The drive profile is utilized to describe and model the driv-

ing route (Section 3.2.1). The power consumption of the EV power train is then modeled

and predicted for the input drive profile (Section 3.2.2). Moreover, the HVAC system state

variables such as cabin temperature and the power consumption are modeled and estimated

(Section 3.2.3). Finally, the total EV power request is evaluated and used for battery en-

ergy consumption and battery lifetime estimation. These EV state variables are estimated

and optimized for better driving range and battery lifetime. Eventually, the optimal control

inputs are applied to the HVAC system.

Figure 3.3: Our novel battery-aware automotive climate control methodology for EV.

3.2 Electric Vehicle Modeling and Estimation

In our novel methodology of battery-aware automotive climate control, modeling of the EV

components are required to estimate the dynamics of the power train, HVAC system, and

battery operation. (Non-)linear and Ordinary Differential Equations (ODE) are utilized in

order to describe the dynamic behavior of these components.

37



3.2.1 Drive Profile

The driving route is a factor influencing the power consumption of the electric motor in

the power train2. The estimation of the driving route is required for predicting the power

consumption and our automotive climate control near-future optimization.

A driving route is modeled and termed as a drive profile in this chapter. A drive profile

encapsulates the behavior of the driving route at each time instance. The drive profile

contains the information about 1) velocity, 2) acceleration, 3) road slope, and 4) time step,

for each route segment (see Figure 3.4). The route segments may have uniform or non-

uniform time steps according to the abstracting and modeling level.

Figure 3.4: Modeling and abstracting the driving route as a drive profile.

Nowadays, navigation systems are the common method of finding the route to the destina-

tion. The driving route may be estimated by utilizing the map databases of the navigation

systems [8, 147]. The map databases may represent an abstracted version (model) of the

geographical map of the surrounding area using graphs (see Figure 3.4). Hence, the se-

lected route by the navigation system can be modeled and abstracted as a drive profile for

our battery-aware automotive climate control using this graph. There also exist other algo-

rithms that are capable of predicting the driving route behavior with various performances

for the purposes of navigation and safety that can be utilized [82, 83, 137, 142, 143, 147].

2The power consumption of the electric motor is dependent on the driving behavior. However, estimating
the driver behavior on route is out of the scope of this chapter (it will be further discussed in Chapter 7).
Hence, the driving route is only considered for estimating the power consumption which might be sufficient
for adjusting the HVAC utilization.
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Moreover, multiple standard drive cycles are created by United States Environmental Pro-

tection Agency (EPA) or United Nations Economic Commission for Europe (ECE) for exper-

imenting and testing the performance of the vehicles in terms of fuel/energy consumption,

air pollution, etc. Therefore, these standard drive cycles can also be used as the drive profiles

for modeling the typical driving routes [9, 14, 147].

3.2.2 Power Train

The power train which contains the electric motor is the major power consumer in EV. It is

responsible for generating the required power and driving force using the electric motor and

transferring it to the wheels.

Figure 3.5: Road load and driving forces on vehicle.

The tractive force (Ftr) provided by the power train overcomes the road load force (Frd)

imposed on the vehicle. It propels the vehicle forward at a desired speed and acceleration

[117]. Frd consists of the aerodynamic drag, the gravitational force, and the rolling resistance

(see Figure 3.5).

Frd = Fgr + Faero + Froll (3.1)

The aerodynamic drag (Faero) is the viscous resistance of the air working against the vehicle

motion which is quadratically proportional to the vehicle speed (v).
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Faero =
1

2
ρairCxA (v + vwind)

2 (3.2)

where ρair is the air density, Cx is the aerodynamic drag coefficient, A is the effective frontal

area of the vehicle, and vwind is the head-wind velocity.

The gravitational force (Fgr) is the force caused by the gravity and is mainly dependent on

the road slope.

Fgr = mg sin
(
arctan

( α

100

))
(3.3)

where m is the total mass of the vehicle, g is the gravitational acceleration constant, and α

is the percentage of the road slope; 100% represents the slope of 45◦.

The rolling resistance (Froll) is produced by the flattening of the tire at the contact surface

of the road.

Froll = mg
(
c0 + c1v

2
)

(3.4)

where c0 and c1 are the rolling resistance coefficients.

Ftr is generated by the electric motor to overcome Frd so that the vehicle maintains the

desired acceleration (a) and speed.

Ftr = Frd +ma (3.5)

When Frd is positive and the speed needs to be maintained, the vehicle should provide enough

forward force to prevent deceleration. In this case, the force is generated only by the electric

motor (Ftr). On the other hand, when Frd is negative and the speed needs to be maintained,

the vehicle needs to provide backward force to prevent acceleration. In this case, the force
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may be generated by the electric motor and the braking system. The later force generated by

the electric motor is due to the regenerative mode (Ftr < 0), is limited to Fmin, and may not

provide enough backward force to neutralize the resistive force (Equation 3.6). Therefore,

the rest of the backward force is generated by the braking pads (Equation 3.7).

Ftr = max ( Fmin , Ftot ) (N) (3.6)

Fbrake = Ftr − Ftot (N) (3.7)

The electric motor power (Pe) is calculated based on the tractive force and speed.

Pe =
Ftrv

ηm
(3.8)

where ηm represents the electric motor efficiency when converting electrical to mechanical

energy in the motor mode and converting mechanical to electrical energy in the regenerative

mode (regenerative brake). ηm is dependent on the motor rotational speed and the generated

torque [86, 93, 162, 162].

In this chapter, the specifications for the EV Nissan Leaf S have been used to validate

the power train model and to demonstrate the EV power consumption behavior while driv-

ing [131]. The parameters regarding the specifications are extracted from the manufacturers’

forums and experimental data provided by the third-parties testing the vehicles [4, 63].

3.2.3 HVAC

The HVAC in modern vehicles mainly uses the Variable Air Volume (VAV) system [67]. The

advantage of this system is the precise control of the temperature and humidity in multi-

zone or single-zone with lower energy consumption [67]. The HVAC structure [101, 130] in
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Figure 3.6: Scheme of a single-zone HVAC in an
automotive [131].

Figure 3.7: Control and monitoring
of an automotive climate control.

an EV is depicted in Figure 3.6. The system contains a variable-speed fan to provide the

supply air to the zone(s). A valve damper is used to control the mix of the outside air and

the recirculated air back into the system. The cooler and the heater will control the air

temperature by exchanging heat. In this chapter, we assume a single-zone HVAC and model

the corresponding behavior and dynamics in different parts of the system using low-order

ODEs. Despite the simplicity (compared to higher-order thermodynamic equations), the

model provides sufficient information for analyzing the transient behavior of the system. The

humidity can be an important factor affecting the HVAC power consumption, but it is not

typically directly measured or controlled [73]. Therefore, in this chapter, the temperature

represents an equivalent dry air temperature at which the dry air has the same specific

enthalpy as the actual moist air mixture.

As shown in Figure 3.7, the state-of-the-art automotive climate control methodologies mon-

itor the cabin (zone) temperature and adjust the controlling inputs of the system such as

heating coils, cooling coils, fan, and damper valves. Moreover, the temperature inside the

cabin (Tz) is influenced by the supply air (Ts) to the cabin, the heat exchange with outside,

and the solar radiation. The energy balance in the cabin model is described as:
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Mc
dTz

dt
= Q̇+ ṁzcp(Ts − Tz) (3.9)

where Mc is the thermal capacitance of the air, wall, and the seats inside the cabin and cp

is the heat capacity of the air. The cabin temperature changing rate (dTz

dt
) is also controlled

by the air flow rate into the cabin (ṁz).

The exchanged heat with outside and the solar radiation are modeled as thermal loads Q̇:

Q̇ = Q̇solar + cxAx(To − Tz) (3.10)

where the solar radiation (Q̇solar) and outside temperature (To) are time-varying factors.

The values of To and Q̇solar are assumed to be constant during driving (ambient temperature

and thermal load offset). The heat exchange through the walls with outside is proportional

to the difference between Tz and To, the heat exchange coefficient cx, and the area separating

the cabin and outside (Ax).

The air returned from the cabin is mixed with the outside air and recirculated back to the

system. The fraction of the returned air from the cabin is dr, which is controlled by a

damper. Then, the energy balance in the air mixer gives the temperature of the system inlet

air (Tm) as following:

Tm = (1− dr)To + drTr (3.11)

where Tr is the returned air temperature which is as same as the cabin temperature (Tz) in

a single-zone HVAC.

We consider the cooling and heating coil power consumption in terms of the energy dif-

ference between their inlet and outlet air flow. Moreover, the heat exchange between the
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coolant/evaporator and air is modeled as efficiency parameters:

Ph =
cp
ηh

ṁz(Ts − Tc) (3.12)

Pc =
cp
ηc
ṁz(Tm − Tc) (3.13)

where Pc and Ph are cooling coil and heating coil power consumption, respectively. ηh and

ηc are the efficiency parameters describing the operating characteristics of the heating and

cooling processes. Tc is the temperature of the cooling coil outlet air.

The fan power consumption (Pf ) is quadratically related to ṁz.

Pf = kf (ṁz)
2 (3.14)

where kf is a parameter that captures the fan efficiency and the duct pressure losses.

The parameters for the HVAC model have been extracted from the HVAC specifications pro-

vided in the literature [101, 130, 131] and to accurately match the thermodynamic behavior

of an HVAC system similar to the Nissan Leaf in different conditions [66, 77].

3.2.4 Battery

Lithium-ion batteries are widely used as the primary electrical energy storage [90, 92, 122] in

the EV. Despite their high energy density, they have specific characteristics. They demon-

strate less usable capacity in higher discharge rates (rate-capacity effect). This character-

istic is described using the Peukert’s Law [38, 48, 107, 148]. Therefore, the battery SoC

which shows the available charge in the battery can be estimated by having the battery

current [106].
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SoCt = SoC0 − 100×
∫ t

0

Ieff
Cn

dt (3.15)

Ieff = I

(
I

In

)pc−1

(3.16)

where Cn is the nominal capacity of the battery measured at the nominal current (In)

predefined by the battery manufacturer. Ieff represents the effective current draining the

chemical energy. pc is the Peukert’s constant typically measured empirically for the type of

the battery cell [48, 148]. SoCt represents the SoC at time t.

Figure 3.8: Battery SoC behavior in terms of SoC average (horizontal line) and SoC deviation
(vertical arrows).

Moreover, the battery lifetime in other words, State-of-Health (SoH) - the ratio of the current

capacity to the nominal capacity - degrades over time in Lithium-ion battery cells (capacity

fade effect). The SoH degradation (�SoH) is mainly influenced by the stress on the battery

cell which may be modeled as SoC deviation (SoCdev) and the SoC average (SoCavg) [98].

�SoH is measured based on the SoC pattern over a time period:

�SoH = f (SoCdev, SoCavg) = (a1e
αSoCdev + a2)(a3e

βSoCavg) (3.17)

where α, β, a1, a2, and a3 are the parameters empirically evaluated at design time for

estimating �SoH accurately based on the battery type. Consideration of the battery tem-

perature for estimating �SoH is out of the scope of the chapter and is modeled as a constant
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in Equation 3.17. SoCdev and SoCavg are calculated based on a discharging/charging cycle

(see Figure 3.8).

SoCavg =
1

T

T∫
0

SoC(t)dt (3.18)

SoC2
dev =

1

T

T∫
0

(SoC(t)− SoCavg)
2dt (3.19)

where T is the period of the discharging/charging cycle. However, in this chapter, the

charging part of the cycle is assumed to have a fixed pattern and duration. Hence, the

effect of the charging part on SoCdev and SoCavg are modeled as constants. The battery cell

capacity decreases with the rate of �SoH. When the battery capacity reaches 80% of its

nominal capacity, it will be useless. Therefore the number of discharging/charging cycles,

the battery can be used (the battery lifetime), is dependent on battery lifetime degradation

(�SoH). Although, the battery lifetime degradation is effected by both SoCdev and SoCavg,

the influence and flexibility of SoCdev is more significant on the battery lifetime [98]. Hence,

in this chapter, we further focus on the battery SoC deviation for reducing the battery stress.

The parameters for modeling the battery cell is empirically evaluated using the data for a

family of lithium-ion battery cells which are commonly used in EV like Nissan Leaf. More-

over, the structure of the battery package is defined according to the Nissan Leaf specifica-

tions [4, 63, 148].
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3.3 Battery-Aware Automotive Climate Control

3.3.1 Methodology Description

The HVAC system in the automotive has multiple actuators and sensors for monitoring and

controlling the operating parameters such as air speed, temperature set points, and valve

damper ratio. The automotive climate control is responsible for sensing these values and

making decision on the control inputs. Figure 3.9 illustrates the control inputs and variables

in the system from the controller’s perspective.

Figure 3.9: Automotive climate control variables and control inputs (circled).

In our battery-aware automotive climate control methodology, the goal is to improve the

driving range and extend the battery lifetime while maintaining the thermal comfort for

the passengers. In abstract, the methodology predicts the EV electric motor power con-

sumption regarding the route behavior and attempts to adjust the HVAC system power

consumption by deciding on the operating parameters such that the stress on the battery is

reduced. The route behavior is predicted and modeled using a drive profile (Section 3.2.1).

The power consumption of the electric motor is modeled and estimated by knowing the

driving forces on the EV (Section 3.2.2). The HVAC system thermodynamics and power

consumption regarding the operating parameters and control inputs are modeled and esti-

mated (Section 3.2.3). Therefore, our automotive climate control enables us to adjust the
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HVAC system variables while knowing the EV electric motor power consumption in order

to reduce the SoH degradation and energy consumption of the battery predicted according

to its power request (Section 3.2.4).

Figure 3.10: Scheme of MPC implemented for battery-aware automotive climate control.

The operation state of the HVAC can be defined by multiple state variables x = {Tz, SoC},
control inputs i = {Ts, Tc, dr, ṁz}, and auxiliary variables u = {Tm, Ph, Pc, Pf , Pe} for each
time step.

MPC is an advanced method of control that relies on dynamic models of the process or

physical plant (HVAC). The main advantage of MPC is the fact that it allows the current

time step to be optimized, while keeping future time steps in account (EV states). This is

achieved by optimizing a finite time horizon (control window), but only implementing the

current time step. MPC has the ability to anticipate future events and can take control

actions accordingly. PID and LQR controllers do not have this predictive ability [73].

Our battery-aware climate control is implemented based on a MPC algorithm (Figure 3.10).

For each time step of the control (t), the current system state is monitored. Then, the

state variables, control inputs, and auxiliary variables are predicted in the near-future con-

trol window. xk|t, ik|t, and uk|t are the values of the state variables, control inputs, and

auxiliary variables at time t + k� T , respectively predicted at time step t. The estimation

of the variables in the control window enables the controller to optimize the variables of

the system such that it minimizes a cost function. Moreover, in the MPC, the variables
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can be explicitly constrained which is important and beneficial to defining the temperature

range limits for thermal comfort and component control restrictions. After optimizing the

variables of the control window at each time step, the optimal values of the control inputs

for the first predicted step will be applied to the system. The controller will continue to

the next time step for predicting, optimizing the variables, and applying them to the system

again (receding horizon).

3.3.2 Optimization Formulation

The equations modeling the system (e.g. EV power train, HVAC, and battery) are the

main equations defining the constraints of the optimization problem in the MPC algorithm

for the battery-aware automotive climate control. Since the control has to take place in

a discrete-time domain, the continuous-time equations need to be discretized into different

discrete-time states. These constraints need to be applied for each time step of the control

window in order to model the dynamics of the system. The equations modeling the HVAC

system and the battery are discretized and used as the equality constraints in the following.

The thermodynamic behavior of the cabin regarding supply air and environment is described

as the following constraint (Equation 3.20). T+
z represents the cabin temperature at the next

time step t + �T . Here, �T is the time step duration of the controller (sample period).

The average of the temperature in the current step and the next step has been used as the

method of discretization.

CEQ1 : Mc
T+
z − Tz

�t
= Q̇solar + cxAx(To − T+

z + Tz

2
) + ṁzcp(Ts − T+

z + Tz

2
) (3.20)

Other equations describing the behavior of the air temperature and HVAC system power

consumption comprise the following equality constraints (Equation 3.21).
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CEQ2 : Tr = Tz

CEQ3 : Tm = (1− dr)× To − dr × Tr

CEQ4 : Ph =
cp ×mz

nh

× (Ts − Tc)

CEQ5 : Pc =
cp ×mz

nc

× (Tm − Tc)

CEQ6 : Pf = kf ×m2
z (3.21)

The battery SoC behavior has been modeled using the Puekert’s Law as a non-linear expo-

nential equation (Section 3.2.4). However, for implementation of the optimization constraint,

the equation can be approximated. Hence, the battery SoC estimation for the next time step

(SoC+) has been abstracted into a quadratic equation (Equation 3.22). I =
Pc+Ph+Pf+Pe

Vdc
is

the current drawn from the battery with the voltage of Vdc. Parameters αx are evaluated by

fitting Equations 3.15 and 3.16 into the quadratic form.

CEQ7 : SoC+ = SoC− (α2I
2 + α1I + α0) (3.22)

The electric motor power consumption is predicted for each time step of the control window

and is applied to the P
k|t
e variables by an equality constraint at each time step k|t. The values

of the state variables at the beginning of the control window (T
0|t
z , SoC0|t) should be assigned

to the currently measured values of the system using equality constraints. Moreover, the

values of the predicted state variables at end of each time step (T+
z

k|t
, SoC+k|t

) should be

assigned to the current values of the state variables at the next time step of the control

window (T
k+1|t
z , SoCk+1|t).

The control requirements and restrictions state the following time-varying constraints on

control inputs and state variables. They comprise of the limits for heating/cooling coil

power consumption and fan speed; tolerance of 10% for cabin temperature3; and restrictions

3The temperature tolerance is the maximum temperature deviation from the target temperature. Al-
though this tolerance has been selected arbitrarily, our methodology is orthogonal to this value or any other
value.
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on the values of the variables for correct operation of the system and right solution of the

optimization.

CNEQ1 : ṁz ≤ ṁz ≤ ṁz maximum and minimum air flow to the cabin

CNEQ2 : Tz ≤ Tz ≤ Tz comfort zone restrictions on cabin temperature

CNEQ3 : Tc ≤ Ts heater always increases the temperature

CNEQ4 : Tc ≤ Tm cooler always decreases the temperature

CNEQ5 : T c ≤ Tc minimum outlet air temperature by cooler

CNEQ6 : Ts ≤ T h maximum outlet air temperature by heater

CNEQ7 : 0 ≤ dr ≤ dr limitation on recirculated air fraction

CNEQ8 : Ph ≤ P h heater maximum power output

CNEQ9 : Pc ≤ P c cooler maximum power output

(3.23)

The cost function for the optimization problem is defined in the following (Equation 3.24).

(T
k|t
z −Ttarget)

2 is the thermal comfort cost added for minimizing the deviation of the temper-

ature from the target temperature with weight variable w1. It ensures that thermal comfort

of the passengers is not sacrificed in the optimization. (SoC+k|t−SoCk|t)2 is the battery SoC

cost added for minimizing the SoC deviation with weight variable w2. Since, the battery

lifetime and energy consumption is affected by the battery SoC change, this cost will result

in extending the battery lifetime and decreasing the energy consumption for further driving

range. The sum of the costs has been normalized by dividing them by N and �t2.

Ct =
1

N

N∑
k=1

w1 (T k|t
z − Ttarget)

2 + w2 (SoC+k|t − SoCk|t)2/�t2 (3.24)

Although maintaining the cabin temperature is addressed by minimizing the cost function

(thermal comfort cost) and defining a constraint on the comfort zone, there might be multiple
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optimizer solutions with different temperature behavior in the control window which might

not be acceptable; since the first step of the control window is applied to the system, the

temperature behavior may not be the acceptable optimal solution. Hence, another equality

constraint (Equation 3.25) is added to limit the solution space by enforcing the temperature

of the first step and last step of the control window to be equal. It needs to be noted that this

equality constraint is just one constraint for the whole control window, unlike the previous

constraints which were defined for each time step in the control window.

CEQ8 : T+
z

1|t
= T+

z
N |t

(3.25)

The non-linear equations of the system model which define the constraints and the cost func-

tion of the optimization problem are convex and quadratic equations. Therefore, the best

option might be to apply Sequential Quadratic Programming (SQP) which is an iterative

method for non-linear optimization. The optimization problem is solved for the MPC algo-

rithm in each time step. The non-convex non-linear equations have been approximated by

adding a convex quadratic term to the cost function using Lagrangian multiplier method [73].

3.4 Experimental Results

3.4.1 Experiment Setup

We need to implement the system modeling for our battery-aware automotive climate control.

All the equations in Section 3.2 have been formulated in MATLAB/Simulink [7] for modeling

the EV system including the power train, HVAC, and battery as the plant of the controller.

The optimization cost function, non-equality constraints, and equality constraints formulated

in Section 3.3.2 are implemented in MATLAB. fmincon toolbox has been used with the

sequential quadratic programming (sqp) solver. Multiple drive cycles (see Table 3.1) are

modeled as the drive profiles for our experiment benchmarks using AMESim [9].
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3.4.2 Results and Analysis

The performance of our methodology is compared with a baseline in which the power con-

sumption of the HVAC system is adjusted such that the cabin temperature is maintained

constant. Fuzzy-based control is implemented which has been the state-of-the-art method-

ology with the objective of maintaining smooth cabin temperature [67]. In the fuzzy-based

control, cooling/heating set points are adjusted based on the cabin temperature which makes

the temperature and the HVAC power almost constant. The resulted energy consumption is

the lowest compared to the other methodologies such as the on/off methodology [101, 130].

a) Temporal Analysis: our battery-aware automotive climate control adjusts the HVAC

power consumption regarding the electric motor power requests such that the battery stress

is reduced for better driving range and battery lifetime. However, the cabin temperature is

also affected due to the change in the HVAC power consumption.

Battery Aware

Figure 3.11: HVAC power adjustment by the battery-aware climate control.

We experimented the battery-aware and fuzzy-based methodologies in the 35◦C weather with

the target temperature of 25◦C while driving the ECE EUDC drive cycle. In Figure 3.11, the

HVAC power consumption with regards to the electric motor power consumption is shown.

When our battery-aware automotive climate control predicts or detects a high electric motor

power request in the near-future (control window), it adjusts the HVAC power such that the

energy consumption and battery stress reduce.
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In Figure 3.12, the behavior of the cabin temperature is illustrated while using our battery-

aware climate control. Our methodology ensures that the cabin temperature is maintained

around the target temperature. Hence, the methodology (pre-)cools the cabin when the

electric motor is estimated or detected to be using more power in the control window. In the

state-of-the-art fuzzy-based methodology, the HVAC power is adjusted such that the cabin

temperature is maintained around the target temperature. However, in our methodology,

the cabin temperature fluctuates around the target temperature while adjusting the HVAC

power. As a result, the battery stress (battery SoC deviation) reduces for better energy

efficiency and battery lifetime. The temperature deviation from the target temperature and

increase in the thermal comfort cost are the trade-offs for improving the battery lifetime and

driving range.

Battery Aware

Figure 3.12: Cabin temperature analysis for battery-aware climate control.

b) Scalability and Performance Analysis: the control window size for the MPC is

variable depending on the number of estimated states and time step duration. As the

number of states increases, more state variables of the system are being considered for the

optimization. Hence, as shown in Figures 3.13 and 3.14, more memory and longer execution

time are required by the optimizer to converge and find the solution. The execution time and

memory usage will be roughly the constant for the same number of states. However, the slight

difference is mainly due to the low accuracy and non deterministic nature of the memory

usage and execution time of the MPC optimization when solving a problem and converging
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to an optimal solution. Although designing a real-time embedded system controller is out of

the scope of this chapter, we need to analyze and design control window size such that not

to violate the timing and memory constraints. For instance, the maximum execution time

of the controller at each time step can be limited to the sampling time or time step duration

of the controller. The computing platform used for the experiments is comprised of an Intel

Core-i7 3770 CPU with 3.4 GHz clock frequency and an 8 GB of DDR3 RAM.

Figure 3.13: Execution time of optimizer at
each time step.

Figure 3.14: Memory usage of optimizer at
each time step.

(a) Normalized thermal comfort cost. (b) Normalized battery SoC cost.

Figure 3.15: Cost analysis for different different control window sizes.

On the other hand, by increasing the control window size, the optimization gets more flexibil-

ity and reaches to a better solution in terms of the cost (smaller cost value). Figures 3.15(a)

and 3.15(b) show the optimization cost of the final solution for thermal comfort and battery

SoC objectives normalized by the maximum value.
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The thermal comfort cost is based on the sum of the cabin temperature deviations from the

target temperature (see Section 3.3.2). Therefore, as shown in Figure 3.15(a), increasing the

control window size decreases the thermal comfort cost which results in better maintenance

of the cabin temperature and improving the thermal comfort. It needs to be noted that

the thermal comfort cost evaluated for the fuzzy-based methodology is nearly zero which is

better than our methodology. This is the trade-off of our methodology for reaching better

driving range and battery lifetime. However, the cabin temperature limits specified for the

thermal comfort are always met.

(a) SoH degradation reduction. (b) Energy consumption reduction.

Figure 3.16: Performance analysis for different control window sizes.

The battery SoC cost is based on the sum of the battery SoC differences over time (see

Section 3.3.2). This optimization cost does not have an absolute target like thermal comfort

cost. Hence, reducing the battery SoC cost does not necessarily reflect on better battery

SoH degradation and energy consumption. As shown in Figures 3.16(a) and 3.16(b), the

battery lifetime and energy consumption improve compared to the fuzzy-based methodology.

However, by increasing the control window size, the battery SoC cost reduction does not

reflect in better battery lifetime and energy consumption. The battery SoH degradation

reduction reaches up to 13.2% and energy consumption reduction reaches up to 14.4% with

5 states estimated in the control window with time step of 10s. Increasing the number of

states, reduces the improvement of the methodology. This is due to the fact that the final
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battery SoC deviation of the solution is different from the optimization cost. Therefore,

increasing the number of states in the control window reduces the MPC algorithm influence

on the final battery SoC deviation although the optimization cost function for the battery

SoC decreases.

c) Environment Analysis: environment factors such as driving route behavior and am-

bient temperature influence the performance of our methodology. This is due to the fact

that our methodology requires the knowledge of the route behavior for electric motor power

estimation and the HVAC system optimization. Moreover, the ambient temperature affects

the HVAC system power consumption.

Battery Aware

Figure 3.17: Average HVAC power consumption analysis and improvement over fuzzy-based.

Figure 3.17 illustrates the average HVAC power consumption for the fuzzy-based method-

ology and our battery-aware climate control. As you can see the HVAC average power

consumption increases as the ambient temperature deviates further from the target tem-

perature (25◦C). The reduction of the average HVAC power consumption while using our

battery-aware methodology is shown on the right axis of the figure in percentage. When the

ambient temperature deviates from the target temperature, the optimizer has less flexibil-

ity of adjusting the HVAC variables for maintaining the cabin temperature in these harsh

weathers which results in smaller power reduction.

Figure 3.18(a) shows that the maintenance of the cabin temperature is harder as the ambient

temperature deviates from the target temperature, which will result in higher thermal com-
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fort cost. The total energy consumption of the EV has been evaluated for different ambient

temperatures and has been compared with the fuzzy-based methodology. As Figure 3.18(b)

shows, the reduction in the total energy consumption is more noticeable in higher temper-

atures as the HVAC energy consumption is higher. It needs to be noted that heating the

cabin in cold weather is easier than cooling the cabin in hot weather, since the solar radi-

ation heats the cabin as well. Moreover, the SoH degradation has been compared for both

methodologies and its reduction has been illustrated in Figure 3.18(c). The SoH degradation

reduction is due to the fact that the SoC deviation has been reduced using the battery-aware

climate control.

(a) Thermal comfort cost. (b) Energy consumption reduction. (c) SoH degradation reduction.

Figure 3.18: Performance analysis for different ambient temperatures.

Automotive manufacturers utilize standard driving cycles and drive profiles to test their ve-

hicles for performance and energy consumption. Table 3.1 lists these drive profiles with the

metric showing the variance in the profile. The route coefficient variance is the normalized

standard variance (standard variance over average) of the route behavior for the drive profile.

The route coefficient variance affects the variation of the electric motor power requests along

the route. The performance of the battery-aware methodology has been evaluated for the

selected drive profiles. The table also illustrates the energy consumption and SoH degra-

dation reduction achieved by the battery-aware methodology compared to the fuzzy-based

methodology with the corresponding thermal comfort cost.
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Table 3.1: Performance of the battery-aware climate control for different drive profiles [14].

C1015
ECE_EUDC

ECE_EUDC_AT
ECE_EUDC_MT

FTP
HWFET
JC08_cold
JC08_hot
NEDC

NEDC_AT
NEDC_MT
NEDC_min
SC03
UDDS
US06

The route coefficient variance influences the electric motor power requests and thereby the

control performance. Hence, we have analyzed the performance of the battery-aware control

with respect to the variance (see Figure 3.19). It is shown that our battery-aware methodol-

ogy reduces the energy consumption, the SoH degradation, and thermal comfort cost further

when the coefficient variance is higher. This shows that our methodology benefits from the

higher variance of the electric motor power requests in order to reduce the battery stress by

adjusting the HVAC power.

Figure 3.19: Battery-aware climate control performance versus route behavior.
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It needs to be noted that the estimation error of the driving route behavior that depends on

its prediction algorithm may influence the performance of the climate control. However, the

MPC algorithm implemented in the climate control is very stable with regards to limited

outliers in the estimation window. Moreover, the optimization always ensures a safe and

comfort range of cabin temperature using the constraints. Therefore, the safe range of

HVAC control inputs and passenger comfort will not be violated for any estimation error.

d) Plant Modeling Error Analysis: the EV system, especially the HVAC system and the

cabin are modeled and estimated as part of our battery-aware automotive climate control

methodology (Section 3.2). However, the cabin thermodynamic behavior may not be accu-

rate in the model and may change according to the interior, e.g. seat material, passenger

body heat, etc. Hence, inaccurate estimation of the system behavior may result in different

performance of the climate control.

(a) Thermal comfort cost change. (b) Battery SoC cost change.

Figure 3.20: Cost analysis for different cabin thermal capacitance modeling error rates.

The performance of the battery-aware climate control methodology has been analyzed in

terms of the thermal comfort cost and the battery SoC cost for different modeling error

rate of the cabin thermal capacity (Mc). As shown in Figures 3.20(a) and 3.20(b), the

methodology attempts to make up for the cabin temperature estimation error and maintain

the thermal comfort and minimize the battery SoH degradation. Therefore, 30% of the

modeling error rate only changes the thermal comfort cost and battery SoC cost up to

2% from their nominal value (when there is no error). This shows that our battery-aware
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automotive climate control is adequately robust and tolerant to the modeling and estimation

error of the physical plant.

It needs to be noted that as the battery cell degrades, their capacity and internal resistance

change which will result in lower performance in the charging and discharging cycles. Hence,

the implemented model may underestimate the discharge-rate effect of the battery cell. We

have analyzed the performance resulted from this modeling and estimation error for HVAC

which will behave the same. It shows that the battery-aware automotive climate control is

robust and tolerant to the modeling and estimation error. Moreover, this can be compensated

by generating a more detailed model which is out of the scope this thesis and the methodology

of the climate control.
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3.5 Concluding Remarks

Design of EV has been challenging due to the battery restrictions and characteristics which

hinder the process of its development as a zero-emission mean of transportation. Differ-

ent battery management systems to manage battery cells and automotive climate controls

to maintain the passenger thermal comfort have been developed. However, it has been ob-

served that the HVAC system contributes a lot to the power consumption which significantly

influences the EV driving range and battery lifetime. This influence on the battery has not

been considered in the state-of-the-art battery management systems and automotive climate

control methodologies. In this chapter, we proposed a novel methodology of automotive

climate control which considers the battery behavior in terms of energy consumption and

battery lifetime while monitoring and controlling the HVAC system. Our battery-aware au-

tomotive climate control predicts the power requests from the electric motor and adjusts the

HVAC power consumption such that the battery stress reduces. The methodology has been

implemented and experimented for different control window sizes, ambient temperatures,

drive profiles, and modeling error rates. The performance and scalability of the methodol-

ogy has been analyzed and compared to the state-of-the-art. It has been shown that our

methodology diminishes the battery lifetime degradation by up to 13.2% and decreases the

total energy consumption by up to 14.4% with prediction of 5 states in the future with time

step of 10s.
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Chapter 4

Eco-Friendly Navigation System
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4.1 Introduction and Related Work

In Chapter 1, we noticed that there are multiple contributors to the EV power consumption.

The electric motor and HVAC are the two systems that have the major influence on the EV

power consumption, and thereby on energy consumption and battery lifetime. As explained

in Chapter 2, the BMS was implemented to manage the power requests to the battery cells

at device level regardless of the type of the power request. The BMS can optimize the

power split among battery cells and ultracapacitor such that the driving range is extended

and battery capacity loss is minimized. Moreover, in Chapter 3, a battery-aware automotive

climate control was implemented that could reduce the stress on the battery by co-scheduling

the load of HVAC given the future electric motor power requests. The proposed climate

control can prolong the battery lifetime and extend driving range while maintaining the

same passenger thermal comfort. The implemented methodologies estimate the electric

motor power consumption given a static driving route. For instance, a navigation system

may choose the fastest driving route and provide that to the driver and control methodologies

in order for them to make their optimal control decisions. The fastest driving route will be

the best option considering that it has the shortest driving time. However, the climate

control or BMS are not aware of and do not have any influence in the routing process. This

lack of knowledge may result in the selection of a driving route that mandates higher EV

energy consumption and battery capacity loss.

Figure 4.1: EV energy consumption analysis for various routes and ambient temperatures [8,
63, 131, 147].
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4.1.1 Motivational Case Study

We further analyzed the energy consumption of an EV (Nissan Leaf S) considering the electric

motor, HVAC system, and other accessories [63, 131, 147], while driving on local/highway

routes and hot/cold weather from University of California, Irvine (UCI) to Los Angeles

International Airport (LAX) (see Figure 4.1).

Summary and conclusion from observations: We noticed that the route behavior

significantly influences the electric motor energy consumption; energy is saved by driving on

the local route while sacrificing significant driving time (+50 min). Moreover, the HVAC

system makes up a significant amount of the EV energy consumption (∼ 40%) depending

on the ambient temperature. Moreover, the route behavior also influences the HVAC energy

consumption significantly; the HVAC energy consumption increases on the local route, since

the driving time increases.

In the existing works, the main objective for automotive climate controls has been to maintain

the cabin temperature in a comfort range [89]. Hence, stabilizing the cabin temperature and

reducing the HVAC energy consumption have been the major objectives in these climate

controls [27, 67, 89, 101]. In [131], it has been shown that the HVAC system may increase

the battery stress significantly, which results in major battery lifetime and driving range

degradation. Hence, a battery lifetime-aware automotive climate control has been introduced

in Chapter 3, which controls the HVAC optimally considering the EV power requests. This

methodology has reduced the battery stress in order to improve the battery lifetime and

driving range for the EV.

However, the HVAC energy consumption is significantly dependent on the route behavior,

especially in the battery lifetime-aware climate control which optimizes the HVAC based on

the route behavior. Moreover, the performance of these climate controls is mainly limited

by lack of route behavior prediction and optimization.
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On the other hand, existing automotive navigation systems attempt to only find the shortest

or the fastest route to a specific destination [8, 72]. Moreover, to reduce the energy con-

sumption of EV, new concept of energy-aware routing has been introduced; the EV energy

consumption is estimated for each route segment and used to select the route with the least

energy consumption. The estimation has been done using the real data gathered by moni-

toring the EV [54] or by estimating the electric motor energy consumption considering the

driving forces on the EV [150]. Furthermore, to account the battery lifetime in the navi-

gation system, [147] introduced a driving management which estimates the battery lifetime

resulted from driving multiple route alternatives to a specific destination; it selects the one

with the longest battery lifetime while preventing significant sacrifice of the driving time.

Moreover, the route behavior influences the EV energy consumption and battery lifetime.

Existing navigation systems have attempted to improve these parameters by optimizing the

route. However, the performance of these navigation systems is only limited to considering

the electric motor behavior. In other words, other high-load components in the EV and

their control dynamics (e.g. HVAC [131]) have not been considered for optimization. There-

fore, the integration of automotive climate control and navigation system and the trade-off

between electric motor, HVAC, and route behavior have not been considered for joint opti-

mization of the HVAC and route, which may cause sub-optimal results.

4.1.2 Problem and Research Challenges

In summary, the above-mentioned state-of-the-art methodologies implemented in EV for

navigation and control suffer from the following three major limitations:

1. Battery lifetime has not been considered in the route optimization, especially while

considering the influence of the high-load components and their control dynamics (e.g.

climate control in HVAC) on the battery behavior.
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2. Lack of route behavior prediction and optimization has been limiting the battery

lifetime-aware automotive climate control performance.

3. Implicit trade-off existing in automotive climate control and navigation system has

been neglected.

4.1.3 Novel Contributions and Concept Overview

To address the above-mentioned challenges, a novel eco-friendly automotive climate control

and navigation system methodology for extending the battery lifetime and driving range in

EV is proposed that employs:

1. System Behavior Estimation (Section 4.2): in which a detailed map database

is created and utilized to model the route behavior and estimate the power consump-

tion of the electric motor and HVAC while considering their influence on the battery

parameters.

2. Automotive Climate Control (Section 4.3.3): which optimizes the HVAC system

control inputs and variables by having the predicted route behavior in the near-future

using Model Predictive Control (MPC) [131] algorithm in order to reduce the battery

stress for extending the battery lifetime and driving range.

3. Automotive Navigation System (Section 4.3.4): which optimizes the route to-

wards a specific destination using Bellman-Ford algorithm [42] for longer battery life-

time and driving range while providing a predicted route behavior for the automotive

climate control.

As shown in Figure 4.2, we present a novel methodology in which automotive navigation

system optimizes the route of the EV for longer battery lifetime and driving range while
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considering the behavior of the electric motor and the HVAC system and their influence on

the battery degradation. Also, the navigation system provides a predicted route behavior

for our novel automotive climate control. Hence, the climate control optimizes the HVAC

utilization at driving time for further battery lifetime and driving range improvement.

Figure 4.2: Our eco-friendly automotive climate control and navigation system.

The integration of automotive climate control and navigation system in our methodology

helps us to handle the trade-off between the electric motor, HVAC, and route behavior for

better joint optimization of the route and HVAC system. It needs to be noted that the

driving behavior is affected not only by the route behavior, but also by the driver’s behavior

[74]. However, considering the driver’s behavior into the methodology is out of the scope of

this chapter (see Chapter 7 for further details).

4.2 System Components

Implementation of our eco-friendly automotive climate control and navigation system re-

quires the behavior knowledge of the contributing cyber and physical components in this

automotive CPS (EV). Hence, in the following sections, these components are described and

modeled. In Section 4.2.1, the map database containing the required geographical and traffic
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information is generated. Section 4.2.2 explains how the route behavior is modeled using the

map database. Finally, in Section 4.2.3, the EV components such as the electric motor and

HVAC system are modeled and their power consumption is estimated by knowing the route

behavior and their control dynamics. Then, their influence on battery operating parameters

is modeled and estimated.

4.2.1 Map Database

The automotive navigation system needs to know the current location and the surrounding

map for optimizing the route towards a specific destination. Multiple types of data of the

surrounding map are required for different purposes. OpenStreetMap [60] database is used

for locating the nodes (latitude and longitude values) and segments connecting these nodes

(graph). Also, map labels are used to find out the driveability of each segment. Google Maps

Figure 4.3: Sources used to create the map
database.

Elevation API [8] provides the elevation for

each node on the map. Google Maps Direc-

tions API [8] also provides the average speed

at each segment (see Figure 4.3). The data

extracted from these databases is leveraged

to generate the map database for our auto-

motive navigation system.

4.2.2 Route Behavior

In the map database, a node matrix (n) is created where each row holds the node id, elevation,

latitude, and longitude values. A segment matrix (s) consisting of driveable segments is also

created where each row contains the starting node id, ending node id, time duration, length,

average speed, and road slope (see Equation 4.1). The automotive navigation system utilizes
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the map database to model the route behavior. The model contains a series of sequentially-

connected segments with their respected information. The route behavior model is used as

the input to EV components’ model in order to estimate their utilization behavior.

s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

start end time length speed slope

n1 n2 t1 d1 v1 α1

. . . . . .

. . . . . .

nm nm+1 tm dm vm αm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.1)

4.2.3 Electric Vehicle

In the previous section, the route where the EV is being driven has been modeled. Here

in this section, the behavior of the contributing EV components such as the electric motor,

HVAC, and battery pack is described and modeled which is influenced by the environment,

e.g. route behavior.

Electric Motor in EV as described in [9, 131, 147] provides the requested force for the

vehicle to overcome the road load forces (Frd) for propelling the vehicle at a desired speed and

acceleration. The road load forces are caused by the rolling resistance (Froll), aerodynamic

drag (Faero), and gravitational (Fgr) forces. These forces are affected by the route behavior,

i.e. vehicle speed (v) and road slope (α):

Froll = mg
(
c0 + c1v

2
)

(4.2)

Faero =
1

2
ρairCxA (v + vwind)

2 (4.3)

Fgr = mg sin
(
arctan

( α

100

))
(4.4)

Frd = Froll + Faero + Fgr (4.5)
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where c0 and c1 are the rolling resistance coefficients, m is the total mass of the vehicle, g

is the gravitational acceleration constant, ρair is the air density, Cx is the aerodynamic drag

coefficient, A is the effective frontal area of the vehicle, vwind is the head-wind velocity, and

α is the percentage of the road slope; 100% represents the slope of 45◦. The values for the

speed and road slope in each segment are provided by the map database (see Section 4.2.1).

The tractive force (Ftr) to overcome the road load forces is provided by the electric motor

either in the motor mode or regenerative braking mode, depending on the required torque

direction (see Equation 4.6). The power consumed or generated by the electric motor is

described by Equation 4.7.

Ftr = Frd +ma (4.6)

Pe =
Ftrv

ηm
(4.7)

where ηm represents the electric motor efficiency when converting electrical to mechanical

energy in the motor mode or converting mechanical to electrical energy in the regenerative

braking mode. ηm is highly dependent on the motor rotational speed and the generated

torque [45, 155]. The parameters used in the equations are extracted from the specifications

for Nissan Leaf S [63, 131].

HVAC System is a component under the control of the automotive climate control which

is responsible for maintaining the cabin temperature [67, 89, 131]. HVAC system controls

heating/cooling coils in order to adjust the air supply temperature. Besides, recent HVAC

systems benefit from the Variable Air Volume (VAV) system for more precise control of

the temperature and humidity in multi-zone or single-zone with lower energy consump-

tion. These systems utilize variable-speed fans and air ducts to provide the supply air to

the zone(s).
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The thermodynamics of the cabin (zone) temperature (Tz) is modeled by energy balance

equations according to [131] (see Equation 4.8). Tz is influenced by the supply air to the

cabin (Ts) and other thermal loads (Q̇) including the heat exchange with outside (To) and

the solar radiation (Q̇solar) (see Equation 4.9).

Mc
dTz

dt
= Q̇+ ṁzcp(Ts − Tz) (4.8)

Q̇ = Q̇solar + cxAx(To − Tz) (4.9)

where Mc is the thermal capacitance of the air, wall, and the seats inside the cabin and cp is

the heat capacity of the air. The cabin temperature changing rate (dTz

dt
) is also controlled by

the air flow rate into the cabin (ṁz). The solar radiation (Q̇solar) and ambient temperature

(To) are time-varying factors which can be monitored. The heat exchange through the walls

with outside is proportional to the difference between Tz and To, the heat exchange coefficient

cx, and the area separating the cabin and outside (Ax).

The cabin air is mixed with the outside air and recirculated back to the system as the system

inlet air (Tm). The fraction of the returned air (Tz) from the cabin is dr, which is controlled

by a damper.

Tm = (1− dr) To + drTz (4.10)

The power consumption of the cooling and heating coils (Pc and Ph) is modeled based on

the energy difference between their inlet and outlet air flows. Moreover, the heat exchange

between the coolant/evaporator and air is modeled as efficiency parameters (ηh and ηc).

Also, the fan power consumption (Pf) is quadratically related to ṁz.
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Ph =
cp
ηh

ṁz(Ts − Tc) (4.11)

Pc =
cp
ηc
ṁz(Tm − Tc) (4.12)

Pf = kf (ṁz)
2 (4.13)

where kf is a parameter capturing the fan efficiency and duct’s pressure losses. Tc is the

temperature of the cooling coil outlet airflow going to heating coil. The model parameters

have been set based on an HVAC specifications [70, 131]. The humidity can be an important

factor affecting the HVAC power consumption, but it is not typically directly measured

or controlled. Hence, in this chapter, the temperature represents an equivalent dry air

temperature at which the dry air has the same specific enthalpy as the actual moist air

mixture.

Battery Pack mainly provides the requested power to the EV components. The battery

pack contains multiple battery cells connected together in series or parallel. The battery

packs are designed according to the requirements specified for each EV [34]. In this chapter,

we focus on lithium-ion battery cells which are typically used in existing EV. These battery

cells are constantly monitored by the Battery Management System (BMS) for ensuring the

reliability and safety requirements [64, 74, 75]. The BMS also distributes and balances the

power request to the battery cells in order to extend the battery lifetime and driving range1.

Battery cell electrical model is described using an equivalent electric circuit model [10, 123,

134]; the battery cell is modeled as a variable-voltage power supply in series with an internal

resistance (see Figure 4.4). The ratio of the available charge to the battery capacity is rep-

resented by State-of-Charge (SoC). Open-circuit voltage (VOC) of the battery (the variable

voltage power supply) and the battery internal resistance (Rb) depend on the SoC value

which are modeled by:

1Battery packs design space exploration and the BMS design and features review are out of the scope of
this thesis.

73



SoC+ = SoC− 100× Ib
Cb

dt (4.14)

VOC = v1e
v2SoC + v3SoC

4 + v4SoC
3 + v5SoC

2 + v6SoC+ v7 (4.15)

Rb = r1e
r2SoC + r3 (4.16)

where Cb is the rated battery capacity (in Ah) evaluated in nominal discharge rate [10].

Ib is the current drawn from the battery. SoC+ represents the resulted SoC after time

duration of dt. vx and rx parameters can be empirically measured for each specific battery

type [10, 123, 134].

Figure 4.4: Battery cell electrical circuit model.

Battery capacity degrades over time depending on the battery utilization. The battery

stress, number of discharge cycles, discharge current, and battery temperature influence this

capacity loss (Qloss) [64, 75, 98]. In this chapter, Qloss is modeled considering the discharge

current:

Qloss = l1e
−l2/(RTbat)I l3b (4.17)

where R is the ideal gas constant. lx parameters are the coefficients in the model that can

be measured empirically [6, 98, 123, 134]. The battery temperature Tbat is assumed to be

maintained and its influence on the battery operation [75] is out of the scope of this chapter.
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4.3 Control and Optimization

In the previous sections, the primitive data and CPS models required for implementation

of our eco-friendly automotive climate control and navigation system methodology have

been defined in details. The map database generated in Section 4.2.1 is traversed by the

automotive navigation system for routing purpose. The equation-based models defined for

route behavior and EV components will be used to evaluate the battery lifetime and EV

energy consumption with respect to each route and weather. Thereby, we are able to estimate

how eco-friendly a route is. On the other hand, the predicted route will be provided by the

automotive navigation system for the automotive climate control in order to optimize the

HVAC system utilization; the equation-based models defined for EV components will be

used to estimate the EV states in the near-future in order to optimize the HVAC control

inputs while maintaining the cabin temperature. This integration helps the methodology

to consider the trade-off existing in the climate control and navigation system in order to

jointly optimize the route and HVAC system for further battery lifetime and driving range

improvement.

4.3.1 Routing Algorithm

A routing algorithm is required as part of our automotive navigation system in order to find

the optimal route for longer battery lifetime and driving range. Although different routing

algorithms and data structures exist with various complexities and performances [42], our

navigation system is orthogonal to any routing algorithm and map data structure. In this

chapter, the Bellman-Ford algorithm is used as the routing algorithm. The routing algorithm

searches through the weighted directed graph (map database) which may be structured as

multiple matrices (see Section 4.2.1). The weight function of the routing algorithm evaluates

a cost metric of driving on each segment; as shown in Algorithm 2, the route behavior infor-
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mation for the respected segment connecting a target node to a neighbor node is extracted

(lines 1-4). In lines 5-7, the power consumption of the electric motor, HVAC, and the EV is es-

timated for the segment using the modeling equations (see Section 4.2.3), route behavior, and

current EV state (target state) [Distance Driven, Time Driven,Energy Used,Capacity Lost,

weight, SoC, Tz]. In line 8, the energy consumed in EV (Energy), change in the battery SoC

(dSoC), and the amount of battery capacity lost (Qloss) are estimated using the battery

model. In line 9, the variables contributing to weight function are stored in a vector. These

values will be accumulated later to find the EV state at each node and to select the node

with the least total weight. In line 10, the weight of the segment is calculated. The weight

parameters (wx) define the priority of minimizing each variable. They are adjusted based on

the following order of priorities from high to low: Qloss for improving the battery lifetime,

Energy for further driving range, and time to avoid sacrificing too much driving time.

ALGORITHM 2: Evaluate Segment Weight

Input: Target Node target
Input: Neighbor Node neighbor
Input: Target Node EV State target state
Input: Connecting Segment segment
Output: Segment Weight Vector weight
Output: Segment Weight weight

// extracting segment information

1 distance = segment (distance)
2 speed = segment (speed)
3 time = segment (time)
4 slope = segment (slope)

// estimating system power consumption

5 Pmotor = Electric Motor Model (0, speed, slope)
6 PHVAC = HVAC Model (target state (Tz))

7 PEV = PHVAC + Pmotor

// energy consumption & capacity loss estimation

8 [Energy, dSoC, Qloss] = Battery Model (Pmotor, ...
target state (SoC), time)

// segment weight calculation

9 weight = [distance, time,Energy, dSoC,Qloss]
10 weight = ω1 × distance + ω2 × time+ ω3 × Energy+ ω4 ×Qloss

11 return [weight,weight]
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� Lemma 1: Having a weighted directed graph with no negative-weight cycle, Bellman-Ford

algorithm can be applied to find the minimum weight routes to the nodes.

� Lemma 2: In any segment in graph, distance, time, and Qloss variables have positive

values. However, there can be a segment where Energy variable has positive or negative

value when EV is consuming or generating power. Hence, there is a segment where weight

variable is positive or negative.

� Lemma 3: The law of conservation of energy states that there cannot be a cycle in the

graph where the accumulated Energy variable has a negative value.

� Theorem: Due to Lemmas 2 and 3, there cannot be a negative-weight cycle in the graph.

Hence, according to Lemma 1 and the defined weight function (Algorithm 2), Bellman-Ford

algorithm can be applied to find the minimum weight route, which will improve the battery

lifetime and driving range while not sacrificing the driving time.

The main routing problem in this chapter is a single-pair shortest-path problem. However,

this problem can be solved by solving the single-destination shortest-path problem without

adding any complexity [42]. The Bellman-Ford routing algorithm is implemented in Algo-

rithm 3. The number of nodes in the map is saved in line 1. Matrix state which consists the

EV state variables at each node is initialized (line 2). In line 3, matrix t is created to store

the predecessor of each node. Since the algorithm is traversing from the destination node,

the EV state is initialized to zero for the fid node (line 4). In the for loop (lines 5-15), the

weights of the nodes get updated (# nodes− 1) times regarding the segment weights. target

and neighbor nodes are swapped since the algorithm is traversing from the destination (lines

7-8). The weight for each segment is evaluated and the update function adds the segment

weight to the current target’s state and weight (lines 9-10). In lines 11-14, the current weight

and estimated weight (after traversing segment) of the neighbor node are evaluated and the

neighbor’s state is updated to the one with the less weight. In line 15, the predecessor of

neighbor node is updated with the better possible node (target) in the t matrix.
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ALGORITHM 3: Single-Destination Routing Algorithm

Input: Segments s
Input: Nodes n
Input: Destination Node fid
Output: Trace t

1 # nodes = |n| // number of nodes

2 state = inf (# nodes, 7) // nodes’ current state

3 t = zeros (# nodes, 1) // predecessors of nodes

4 initialize state (fid) // initialize destination node

// multiple passes over the segments

5 for i = 1 in (# nodes− 1) do

// checking each segment

6 for segment in s do

// selecting nodes of edge

7 target = segment (end)
8 neighbor = segment (start)

// evaluate the segment weight

9 seg weight = eval seg weight (neighbor, ...
target, state (target), segment)

// neighbor state prediction

10 pred state = update (state (target), seg weight)

// current and predicted neighbor weight

11 neighbor weight = (state (neighbor)) (weight)
12 pred neighbor weight = (pred state) (weight)

// relaxing the neighbor node

13 if neighbor weight > pred neighbor weight then
14 state (neighbor) = pred state
15 t (neighbor) = target

// update state and predecessor

16 return [t]

4.3.2 Route Prediction

The route may change while driving due to any unexpected events, e.g. turns. Despite

this, the automotive navigation system is responsible for providing the optimal route to

the destination node, starting from any node where the EV is located. Using the routing

algorithm described in Section 4.3.1 (Algorithm 3), the route with the least weight from

any node to the destination node is evaluated. On the other hand, the navigation system is

required to provide a sufficient predicted route for the automotive climate control. Hence, a

route prediction algorithm needs to be implemented for the navigation system.
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We use the least-weighted route to the destination, starting from a specific node as the pre-

dicted route for that node. The route prediction algorithm utilizes the t matrix provided

by the routing algorithm to evaluate the route (single-pair shortest-path problem). In Algo-

rithm 4, t matrix which contains the predecessors of nodes is iterated through, in order to

evaluate the predicted route (route).

ALGORITHM 4: Route Prediction
Input: Starting Node sid
Input: Trace t
Output: Optimal Route route

1 iterate = sid
2 route = [iterate]

// iterate through the nodes until the end

3 while t (iterate) �= 0 do
4 iterate = t (iterate) // find predecessor node

5 route = [route; iterate] // add the node to route

6 return [route]

4.3.3 Automotive Climate Control

The behavior of an HVAC system has been described in Section 4.2.3 using ordinary dif-

ferential equations. The current state of an HVAC system is defined by multiple variables.

Automotive climate control is responsible for adjusting the control inputs to the HVAC sys-

tem for maintaining the system output and state variables in a specific range and target. The

battery lifetime-aware automotive climate control methodology in [131] has utilized an MPC

algorithm for estimating all the variables contributing to the system in a receding horizon

(control window) by having the EV power requests before hand. In each time segment, the

MPC algorithm optimizes these variables in order to minimize a cost function considering

the constraints put by the physical behaviors and control limits. Then, the optimized control

inputs are applied to the HVAC system and the variables are updated according to the new

system state. Since the control is done in discrete time, the model equations also need to be

defined in discrete time. The time segments are specified according to the segments of the

predicted route provided by the automotive navigation system.
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As shown in Figure 4.5, the automotive climate control receives the predicted

Figure 4.5: Flowchart of the automotive climate
control.

route behavior from the automotive navi-

gation system and utilizes the electric mo-

tor model (Section 4.2.3) in order to esti-

mate the EV power requests for the con-

trol window (steps 1-3). Then, according

to the current HVAC state, estimated EV

power requests, and HVAC model (Sec-

tion 4.2.3) the optimization variables and

their relationships are defined and initial-

ized (steps 4-7):

xk|t = [Tz, SoC]
′ (4.18)

ik|t = [Ts, Tc, dr, ṁz]
′ (4.19)

uk|t = [Tm, Ph, Pc, Pf , Pe, dt]
′ (4.20)

where xk|t, ik|t, and uk|t are respectively the values of the state variables, control inputs, and

auxiliary variables at time tk predicted at time t; k is the index of the segment in the control

window. The model equations, system dynamics, and constraints can all be expressed in the

following form:

Fj

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xk|t

ik|t

uk|t

xk+1|t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 0 Ak|t

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xk|t

ik|t

uk|t

xk+1|t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
≤ bk|t (4.21)

where Fj is the jth non-linear equality constraint function for the optimization problem.
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The matrices Ak|t and bk|t define the linear inequality constraints at time tk. Also, inside the

control window, the predicted values for the state variables T+
z and SoC+ need to be applied

to the state variables of the next segment (tk+1).

The cost function for optimization at time t is as follows:

Ct =

tN∑
τ=t1

w1(Pf + Pc + Ph) + w2(Qloss) + w3(Tz − Ttarget)
2 (4.22)

where N is the number of segments in the control window of the MPC, w1(Pf+Pc+Ph) is for

reducing the HVAC power consumption with the weight value of w1, w2(Qloss) is minimized

for battery lifetime improvement with the weight value of w2, and w3(Tz−Ttarget)
2 stabilizes

the cabin temperature around the target temperature (Ttarget) with the weight value of w3.

The values for the weight parameters are adjusted arbitrary for battery lifetime improvement

mainly. It needs to be mentioned that a trivial trade-off exists between extending the battery

lifetime, minimizing the HVAC power consumption, and stabilizing the cabin temperature.

The optimization problem formulated in Equation 4.18-4.22 is executed and optimized vari-

ables are saved (steps 8-9). The optimal control inputs are applied to the HVAC system at

each segment (step 10). The optimal state variables are sent to the navigation system for

routing purposes (step 11). Finally, the climate control goes to the next segment.

4.3.4 Automotive Navigation System

The automotive navigation system is responsible for providing the EV with the opti-

mal route and the automotive climate control with a predicted route. As shown in Fig-

ure 4.6, the routing algorithm (see Section 4.3.1) is executed in the pre-processing stage

to evaluate all the optimal routes from any node to the destination node (steps 1-2).

This data is stored for the run-time algorithm after step 3. The current node is lo-
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cated using the Global Positioning System (GPS) and one of the segments connecting to

the current node is selected (steps 4-5). The neighbor node connected to the segment

Figure 4.6: Flowchart of the automotive naviga-
tion system.

is input to the route prediction func-

tion (see Section 4.3.2) in order to eval-

uate the predicted route (steps 6-8). The

predicted route is sent to the automotive

climate control methodology for estimat-

ing the optimized HVAC state variables

(steps 9-11). The predicted route and

the optimized variables of the HVAC sys-

tem are used to evaluate the accumulated

weight of driving the route to the desti-

nation (see Section 4.3.1) (steps 11-13).

The segment with the minimum estimated

route weight will be selected and suggested

to the driver (using an in-vehicle infotain-

ment) (steps 13-15). The navigation sys-

tem will continue to the next segment and

if the destination is reached, it will termi-

nate (steps 16-17).
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4.4 Experimental Results

4.4.1 Experiment Setup

The map database and route behavior data (see Sections 4.2.1 and 4.2.2) are extracted

from the real-life databases [8, 60] considering the map of Orange County in California,

U.S.A. The parameters in equations defined in Section 4.2.3 for describing the electric mo-

tor, HVAC system, and battery pack are according to the real-life specifications of Nissan

Leaf S [63, 131] and automotive design and simulator tools: AMESim [9] and ADVISOR [155]

(see Section 4.2.3). The values of the parameters are set and adjusted so that the CPS dy-

namics are verified by the experimental data gathered from the existing references. The map

database generation, describing the physical equations, and implementing the algorithms in

the methodology have been conducted in MATLAB/Simulink [7] and JavaScript [53]. For

performance evaluation, we have driven the EV for various routes and weather, monitored,

and analyzed different parameters.

Figure 4.7: Experimental test bed hardware.

Moreover, the test bed shown in Figure 4.7 has been utilized to validate the experiments.

The required EV behavior is generated by the mentioned simulators while implementing the

climate control and navigation system. Then, the test bed hardware (physical plant) uses

the simulated data to emulate the EV power requests using the programmable DC power
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supply and DC load while utilizing the battery cells [6] as the battery pack (scaled-down) in

the EV. The required battery operating parameters, e.g. current and voltage, are monitored

using the data acquisition device.

4.4.2 Results and Analysis

We compare the performance of our eco-friendly automotive climate control and navigation

system methodology with the state-of-the-art methodologies:

1) Fastest: the route with the least driving time is selected [8] and the HVAC system

is controlled by the fuzzy-based controller to maintain the cabin temperature around

the target [67].

2) Energy-Aware: the route with the least EV energy consumption is selected [150].

The energy consumption of the HVAC for maintaining the cabin temperature is also

estimated and considered in the routing. The HVAC system is controlled by the fuzzy-

based controller to maintain the cabin temperature around the target [67].

3) Battery-Aware: our novel navigation system is implemented which estimates the

battery lifetime and navigates accordingly. The energy consumption of the HVAC for

maintaining the cabin temperature is also estimated and considered in the routing.

However, the HVAC is still under control of a fuzzy-based controller [67].

4) Eco-Friendly: our novel automotive navigation system and climate control method-

ology is implemented thoroughly. Herein, the integration between the climate control

and the navigation system is leveraged to jointly optimize the route and HVAC system

for further battery lifetime and driving range improvement.
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a) Time-Domain Analysis: the methodologies have been applied for multiple

test cases. As shown in Figure 4.8, the EV located at UCI is being driven to-

wards a shopping center and a beach as test cases (30◦C weather). The routes

selected by the methodologies and driving time are labeled on the map. Each

Figure 4.8: Selected routes by the navigation
system methodologies. (The traces are over-
lapped at some points)

methodology optimizes the route for differ-

ent goals. Hence, the driving time, EV en-

ergy consumption, and battery lifetime which

are affected by route behavior also vary. You

may refer to Table 4.1 for further details.

The behavior of the HVAC power consump-

tion and the cabin temperature are com-

pared for these methodologies while driving

the EV from UCI to a grocery store in 35◦C

weather. As shown in Figures 4.9(a) and

4.9(b), the first three methodologies (Fastest,

Energy-Aware, and Battery-Aware) imple-

ment the fuzzy-based controller in which the

main target is to stabilize the cabin temper-

ature around the target. Hence, the HVAC power consumption and the cabin temperature

are almost stable and flat. However, in our eco-friendly methodology, the climate control

utilizes the predicted route behavior provided from the navigation system to estimate the

EV power requests and optimize the HVAC system.

As shown in Figures 4.9(a) and 4.9(b), the HVAC power consumption is adjusted so that

to compensate the power consumption of the electric motor. For instance, the HVAC power

consumption is reduced when the electric motor is estimated to consume more. To maintain

the cabin temperature, the HVAC power consumption is increased when the electric motor is
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Eco Friendly

(a) HVAC power consumption.

Eco Friendly

Target = 25�C , To = 35�C

(b) Cabin temperature.

Figure 4.9: Time-domain analysis of climate control and navigation system integration.

estimated to consume less. Thereby, the battery stress is reduced which extends the battery

lifetime and driving range. This behavior illustrates the integration between our automotive

navigation system and climate control.

b) Ambient Temperature Analysis: the HVAC system consumes differently for various

ambient temperatures. Hence, the EV energy consumption and the battery lifetime are also

affected. In order to compare the performance of these methodologies, the EV has been

driven from UCI to a grocery store for various ambient temperatures while under control of

the four different methodologies. The target temperature for the automotive climate control

has been set to 25◦C for all the methodologies.
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Battery Aware Eco Friendly

Figure 4.10: HVAC energy consumption for different ambient temperatures.

As shown in Figures 4.10 and 4.11, the HVAC energy consumption and total EV energy

consumption decrease when the ambient temperature is closer to the target temperature.

The energy-aware methodology attempts to reduce the EV energy consumption. However,

as the temperature difference increases, the fastest and the energy-aware route methodologies

perform almost the same. This is due to the fact that the HVAC energy consumption gets so

significant that decreasing the driving time is more reasonable for saving energy than driving

through a longer route which might save electric motor energy.

Battery Aware Eco Friendly

Figure 4.11: EV energy consumption for different ambient temperatures.

The battery capacity loss for the methodologies is compared with the fastest route in per-

centage. As shown in Figures 4.11 and 4.12, the battery capacity loss improvement is also in-

fluenced by the ambient temperature. However, by comparing the energy-aware and battery-

aware methodologies, decreasing the EV energy consumption does not result in better battery

capacity loss, as this is expected behavior. The battery-aware methodology has improved the
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battery lifetime up to 3%, however our eco-friendly methodology has improved the battery

lifetime up to 24%. The battery lifetime improvement is because of the joint optimization of

the route and the HVAC system. Our eco-friendly methodology may decrease the EV energy

consumption (up to 17%) for reducing the battery stress. Under certain circumstances (e.g.

To = 25◦C), it even increases the HVAC energy consumption in order to compensate the

electric motor power consumption for reducing the battery stress. The weight parameters in

the optimization algorithm affect the trade-off explained here (see Section 4.3.3).

Battery Aware Eco Friendly

Figure 4.12: Battery capacity loss for different ambient temperatures.

c) Route Analysis: the electric motor energy consumption is influenced by the route

behavior. Moreover, the HVAC system energy consumption is also dependent on the driving

time. Hence, the total EV energy consumption and battery capacity loss are influenced

and the methodologies may perform differently for each route. As shown in Table 4.1, the

performance of these methodologies are compared for each route in details. Since, high HVAC

energy consumption minimizes the influence of the route behavior on the methodologies

performance, the EV has been driven in 30◦C weather.

Table 4.1: Performance analysis of navigation system methodologies for different routes.

Battery Aware Eco Friendly Battery Aware Eco Friendly Battery Aware

(2) Beach: 33.5843 , 117.8476
(5) Grocery Store: 33.6637 , 117.8263

(3) Shopping Center: 33.6136 , 117.8685
(4) Airport: 33.6776 , 117.8604
(1) UCI: 33.6439 , 117.8345

Ambient Temperature = 30°C , Target = 25°C
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The battery capacity loss resulted in our eco-friendly methodology has been compared with

other methodologies and the improvements (%) have been listed in the table. The battery-

aware methodology has improved the battery lifetime compared to the fastest and energy-

aware methodologies by optimizing the route (up to 3% compared to the fastest). However,

our eco-friendly is improving the battery lifetime further up to 24% by doing the joint

optimization.
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4.5 Concluding Remarks

Major design challenges in EV as automotive CPSs are mainly due to their energy-restricted

and aging batteries. The battery capacity - major bottleneck of driving range - degrades

over time which troubles the drivers with their daily trips. We noticed that route behavior

and weather influence the electric motor and HVAC power consumption. However, existing

automotive climate controls and navigation systems have not considered the trade-off be-

tween the route behavior, electric motor, and HVAC energy consumption and their influence

on the battery lifetime and driving range. Hence, in this chapter, we have presented a novel

jointly-optimized eco-friendly automotive climate control and navigation system methodol-

ogy in which the integration of these two systems helps us to optimize the route and the

HVAC for improving the battery lifetime and driving range. We conducted multiple experi-

ments using our real-life data and models to compare the performance of our methodology

with the state-of-the-arts for different weather and route behavior. We have seen up to 24%

improvement in battery lifetime and 17% reduction in energy consumption.
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Chapter 5

Drive Profile Optimization
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5.1 Introduction and Related Work

The number of EV utilized by daily drivers is growing significantly everyday. Since EV

are recharged from the power grid, their penetration into the power grid is also increasing

significantly [16, 41, 132, 136, 137, 144]. The electricity load (power demanded) by the EV

chargers is mainly dependent on their charging rates, e.g. Level I, Level II, and Level III

chargers consume about 1.4 KW, 3.3-6.6 KW, and 50-70 KW, respectively [47]. Therefore,

the increase in the EV penetration level may impact the pattern of the power grid load by

increasing the daily peaks [46, 114]. This penetration has been studied thoroughly and it has

been shown that it may affect the grid reliability and efficiency significantly; the components

making up the power grid are designed to operate efficiently and safely in a certain range.

However, by putting sudden load of EV charging on the power grid, the energy efficiency may

drop due to the increased daily peaks; the components’ thermal constraints may get violated;

and the operating voltage may drop which causes the components to malfunction [30, 113].

Furthermore, the intermittent behavior of the EV charging process, especially using in-house

EV chargers is not economical for the power grid utilities. Since the peak power demand is

higher than the base power demand, the utilities have to operate more power plants in order

to satisfy the peak demand for a short period of time.

On the other hand, we discussed in previous chapters that deploying EV poses new design

challenges (see Chapter 1). The electrical energy in EV is mainly provided by a battery

pack [92, 138]. The deliverable energy (capacity) of the battery pack restricts the driving

range. The capacity is limited by stringent battery design constraints and parameters,

e.g. size, weight, volume, and material. Moreover, the charging process of an EV battery

pack is troublesome due to its long duration, scarcity of fast charging stations, and cost

of recharging [51, 103]. The severity of driving range issue becomes more evident when

comparing the fuel efficiency map of an EV with an ICE vehicle.
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5.1.1 Motivational Case Study

We performed an experiment using the available data provided in manufacturers’ forums

and by the Environmental Protection Agency (EPA) [3, 11]. We compared the relation-

ship between the fuel economy and speed in an EV, with an ICE vehicle. Our experiment

shows that, EV and ICE vehicles have very different characteristics. As shown in Fig-

ure 5.1, the efficiency of an ICE vehicle is almost at its maximum when driving around

40-60 miles per hour (mph). However, for an EV, the efficiency drops significantly as the

speed increases to more than 25 mph. Moreover, the available battery capacity decreases in

higher discharge rates (rate-capacity effect) [90] (see Section 5.2.3 for more details). There-

fore, if we consider this effect, the fuel economy of the EV might decrease significantly at

higher speeds compared to ICE vehicles.

Figure 5.1: Fuel economy comparison be-
tween an EV and an ICE vehicle [3, 11].

Figure 5.2: Battery capacity loss for various
depths of discharge [158].

Summary and conclusion from observations: the analysis above illustrates the issue

with efficiency in different speeds and how it is different for the two types of EV and ICE

vehicles. Furthermore, the battery capacity degrades overtime due to the increase in the

internal resistance. The battery capacity degradation causes major efficiency and reliability

issues for the EV. The battery cells typically become useless after 20% of capacity degra-

dation [98, 152]. The number of cycles a battery cell can be used to reach this point is

considered as the battery lifetime. Analyzing the experimental data of battery cells shows

that the battery lifetime varies significantly based on the Depth-of-Discharge (DoD) (see
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Figure 5.2) [158]. This issue will enforce huge cost of battery replacement on the EV drivers

or even manufacturers. For instance, the cost to replace a battery pack is more than 12,000$

for Tesla Model S 85 KWh [3] and 5,500$ for Nissan Leaf S [4]. Even though, the battery

pack itself costs significantly more than the above-mentioned cost.

Moreover, the driving route on top of the driving speed (as shown in Figure 5.1) has been

shown to affect the EV energy consumption in short term and the battery lifetime in long

term (see Chapter 4 for further details). Hence, the time and cost for recharging and elec-

tricity load are affected by the driving route. Each daily trip also encapsulates the de-

parture/arrival time besides the driving route which are modeled as a drive profile (see

Section 5.2.1). The drive profile in higher level influences the driving route, energy con-

sumption, battery lifetime, electricity cost, charging time, and electricity load.

Battery management systems are responsible for monitoring and controlling the battery cells.

At run time, the BMS may monitor the status of the battery cells and control their power

request in order to prevent over discharging, over charging, thermal violation, and thereby

improve the driving range and battery lifetime [20, 78, 86, 131, 133, 134, 147, 151, 151,

158, 159]. Moreover, route selection algorithms are implemented that consider traffic and

energy consumption in order to find the most efficient route based on the data gathered from

the vehicle efficiency [54, 150] (see Chapter 4 for further details). However, the solution is

limited to finding the optimum route just for avoiding the ”range anxiety” at a particular time

(short-term decision making). Furthermore, the existing drive managements do not consider

battery lifetime, where it is a parameter affected by consecutive EV usages and its value

cannot be estimated unless in the long run. Therefore, drivers may need to take an informed

decision of their route selection everyday based on the EV and battery characteristics.

On the other hand, to address the concerns with the power grid and electricity cost, multi-

ple EV charging algorithms for managing the power demand have been proposed. In [16],

authors have analyzed the impact of in-house EV chargers on the load shape and compared
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it with the case in which the Time-Of-Use (TOU) rates have been applied for load shift-

ing [120]. Moreover, smart EV charging algorithms are proposed in which power grid load

prediction and power demand estimation are conducted for optimizing the charging schedule

in order to decrease the electricity cost [30, 43]. However, the existing charging algorithms

do not consider the EV daily trips, their required energy, the resulting battery lifetime, and

electricity cost while optimizing the charging process.

Hence, in this chapter, we model and estimate the behavior of the EV energy consumption

and battery lifetime with respect to the drive profile and EV characteristics. The EV charging

process and its influence on the power grid are modeled and estimated. Based on the system

modeling and estimation, our novel Optimized Charge and Drive Management (OCDM)

jointly optimizes the drive profile encapsulating the driving routes and departure/arrival

time with the EV charging process. The optimization will improve the EV driving range

and battery lifetime, decrease the charging electricity cost, and diminish the load on the

power grid while scheduling the daily trips according to the driver’s preferences.

5.1.2 Problem and Research Challenges

In summary, the problem of improving the EV driving range and battery lifetime, decreas-

ing the charging cost, and diminishing the load on the power grid poses the following key

challenges:

1. EV driving range and battery lifetime are significantly affected by the driving route.

2. Battery characteristics, especially rate-capacity effect influence the EV energy con-

sumption and battery lifetime degradation.

3. The required energy and cost for recharging are dependent not only on the charge

management but also on the drive management.
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4. Scheduling the daily trips, e.g. departure and arrival times, may also affect the charg-

ing, driving processes, and the EV parameters.

5.1.3 Novel Contributions and Concept Review

To address the above-mentioned challenges, a novel EV charge and drive management

methodology (OCDM) is proposed that employs:

1. System Modeling and Estimation (Section 5.2): the dynamic behavior of the

system components are described and modeled using linear/non-linear and Ordinary

Differential Equations (ODE).

• Drive Profile: the behavior and parameters incorporated with a daily trip are

modeled as a drive profile which encapsulates the driving route behavior, depar-

ture, and arrival times.

• Electric Vehicle: the power generation/consumption by the electric motor in

EV power train and its influence on the battery parameters are modeled and

estimated according to the drive profile.

• Power Grid: the EV charging process and its influence on the power grid pa-

rameters, e.g. load, are modeled and estimated.

2. OCDM Methodology (Section 5.3): our methodology considers and estimates EV

battery lifetime, energy consumption, electricity cost, and load profile of the power

grid. Then, it selects the optimized driving routes, schedules the departure/arrival

time (according to driver’s preferences), and optimizes the EV charging process. The

optimization problem of the methodology is formulated as a Mixed Integer Linear

Programming (MILP) [58, 84] (see Section 5.3.2).
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3. Experiment and Analysis of the Methodology (Section 5.4): the performance

of our methodology is compared with other state-of-the-art methodologies in terms

of EV energy consumption, driving time, battery lifetime, electricity cost, and power

grid parameters for various driving routes and benchmark EV. Moreover, the execution

time and memory usage have been measured for different time resolutions and number

of days in a charge and discharge cycle to analyze the scalability.

Figure 5.3 illustrates the data and model inputs to our OCDM and the components forming

the methodology. In OCDM, the system behavior, e.g. power grid load, route behavior, EV

energy consumption, etc. are modeled and estimated. Then, the behavioral estimation of

the system is leveraged for optimizing the variables of driving and charging the EV using

MILP. The optimized drive profile and charging process will improve the EV driving range

and battery lifetime, decrease the charging cost, and diminish the load on the power grid

while considering the driver’s timing preference.

Figure 5.3: Abstract illustration of our optimized charge and drive management for EV.

5.2 System Modeling and Estimation

Adequate information about the dynamic behavior of the system components enables the

charge and drive management to estimate the variables and parameters contributing to the

control process. For instance, the driving route behavior (Section 5.2.1) is used to evaluate
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the EV power consumption/generation and battery parameters at each instance of time.

This estimation requires the modeling of the EV power train (Section 5.2.2) and battery

pack (Section 5.2.3). Moreover, by knowing the power grid model and the EV charging

process (Section 5.2.4), the energy consumed from the grid, the recharging cost, and power

grid load are estimated.

5.2.1 Drive Profile

The driving route behavior needs to be modeled for estimating the EV power generation

and consumption. The features of a driving route such as speed, acceleration, and road

slope can be used to make up the drive profile. Moreover, drivers typically utilize GPS-

based navigation systems for finding the route to the destination. Hence, the driving route

is known before driving. Driving route features can be gathered using the existing map

databases and APIs provided by the navigation systems [8]. The drivers are typically forced

to maintain a certain speed according to the route condition and traffic. Gathering this

information helps us to model the driving route. A drive profile encapsulates: 1) the steps

to reach the destination (s); 2) the length of each step (ιs); 3) the average speed of the

vehicle at each step (υs); and 4) the slope of the route at each step (αs). Therefore the drive

profile is a vector of n tuples (ιs υs αs), in which n is the number of steps in the route.

Moreover, a daily trip contains departure and arrival times besides the driving route. Hence,

this timing information is also encapsulated in the drive profile for each trip. Standard

drive cycles (e.g. NEDC) typically used for test, simulation, and verification of vehicles

performance can be used as the drive profiles [107]. However, these drive cycles lack detailed

and real-life driving information such as departure, arrival times, etc. Hence, they cannot

be applied to our methodology in this chapter.
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5.2.2 Power Train

The power train in an EV is responsible for providing the requested propelling force by using

the electrical energy from the battery pack. Given the drive profile to the EV power train

model, the power requests of the EV are estimated and measured. Figure 5.4 depicts an EV

architecture to help us describe our EV power train model.

Commands sent by 
the driver or the 
cruise controller to 
the VCU.

Road situation, e.g. 
slope and speed 
sensed by the driver.

The body model 
considering the 
aerodynamic, climbing 
and friction forces.

The VCU sets 
the torque of 
the motor based 
on the requests.

The electrical 
motor which has 
two modes: 
generator, motorThe battery 

which provides 
the electrical 
energy needed.

The powertrain, e.g. gearbox, which 
forwards the torque to the wheels.

The Vehicle Control Unit (VCU) is also 
known as Engine Control Unit (ECU).

Figure 5.4: System-level EV model developed in AMESim tool [9, 147].

There are mainly three driving forces on an EV in motion: gravity force (Fgr), aerodynamic

force (Faero), and rolling resistance (Froll) which affect the vehicle movement in terms of

speed and acceleration. These forces are summed as the road load forces on the EV (Frd) [9].

Fgr is the force caused by the gravity considering the road slope. The α variable in Equa-

tion 5.1 is the percentage of the road slope, e.g. 100% value for α represents the road slope

of 45◦. m is the vehicle mass and g is the gravitational constant.

Fgr = m× g × sin ( arctan(0.01× α) ) (N) (5.1)

Faero is the aerodynamic drag force caused by the air striking the vehicle body. This force

99



depends on the vehicle speed (v), wind speed (Vwind), air density (ρair), penetration coefficient

(Cx), and vehicle active area (S) (Equation 5.2). Since the vehicle speed affects the force

quadratically, it will limit the vehicle’s top speed.

Faero = 1/2× ρair × Cx × S × (v + Vwind)
2 (N) (5.2)

Froll is the rolling friction force resisting the motion of the wheels and tires. The equation for

Froll has one constant (f) and two proportional friction coefficients (K,wind) (Equation 5.3)

which depend on the vehicle specifications.

Froll = m× g × (
f +K × v + wind× v2

)
(N) (5.3)

The driving forces or load forces on the EV (Frd) are overcome by a total force (Ftot) to

propel the vehicle (mass m) forward at a desired speed and acceleration (a) [117].

Frd = Fgr + Faero + Froll (5.4)

Ftot = Frd +ma (5.5)

When Frd is positive and the speed needs to be maintained, the vehicle should provide enough

forward force to prevent deceleration. In this case, the force is generated only by the electric

motor (Ftr). On the other hand, when Frd is negative and the speed needs to be maintained,

the vehicle needs to provide backward force to prevent acceleration. In this case, the force

may be generated by the electric motor and the brakes. The later force generated by the

electric motor is due to the generation mode (Ftr < 0) which is limited to Fmin and may not

provide enough backward force to neutralize the resistive force (Equation 5.6). Therefore,

rest of the backward force is generated by the braking pads (Equation 5.7).
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Ftr = max ( Fmin , Ftot ) (N) (5.6)

Fbrake = Ftr − Ftot (N) (5.7)

The mechanical power that drives the vehicle is the multiplication of Ftr and v (Equation 5.8).

Moreover, the electric motor has an energy conversion efficiency (ηmotor) less than 100% which

varies by the torque and the rotational speed [93, 162].

Pelec =
Ftr × v

ηmotor

(W ) (5.8)

I =
Pelec

Vdc
(A) (5.9)

In this chapter, the specifications for three EV (Tesla Model S 60KWh, Nissan Leaf S, and

Fiat 500e) have been used to validate the power train model and to demonstrate various

EV power consumption behavior while driving [3, 4, 12]. The parameters regarding the

specifications are extracted from the manufacturers’ forums and experimental data provided

by the third-parties testing the vehicles.

5.2.3 Battery Pack

The battery pack is the main component for storing and providing the electrical energy in

the EV. A battery model describes the battery energy consumption and its influence on the

battery lifetime. The battery model can be specific to the material (e.g. Lithium-ion), the

structure, and the connection of the battery cells in the pack.

The nominal capacity (Cn) of a battery pack depends on its structure and each battery

cell capacity [102]. The battery cell nominal capacity is measured at the discharge rate of

(In = 0.2C) [6]. The C rate is the discharge rate in which the battery depletes in one hour.
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Lithium-ion battery cells are mostly used in EV as the main electrical energy storage because

of their high energy density and adequate power density. The usable capacity of these

batteries varies by the discharge rate (rate-capacity effect). This effect is empirically modeled

as Peukert’s Law [48]. For instance, according to [6], by increasing the discharge rate from

0.2C to 2C the discharged capacity of the battery decreases from 2857 mAh to 2500 mAh

at the cut-off voltage of about 3.2 v. Peukert’s Law expresses the relationship between the

usable capacity and the discharge rate in Equation 5.10. pc is the Peukert Constant which

can be measured for each battery type empirically. For the type of lithium-ion battery used

here, the Peukert Constant is evaluated as 1.1342. This constant defines the behavior of the

battery energy consumption. Although it is necessary to be evaluated, its value is orthogonal

to the OCDM methodology.

The equation shows that by increasing the discharge rate, the efficiency of converting chem-

ical energy to electrical energy decreases and more chemical reactions are needed to provide

the same electrical energy. In other words, the internal resistance of the battery increases

which results in more power loss. Hence, this is modeled by a larger effective current which

is dependent on the discharge rate (Equation 5.11) and results in lower usable capacity.

C = Cn (In/I)
pc−1 (Ah) (5.10)

Ieff = I (I/In)
pc−1 (A) (5.11)

Battery State-of-Charge (SoC) shows the current available charge out of Cn. As shown in

Equation 5.12, the effective current is considered for SoC estimation using columb count-

ing [106]. Moreover, as the discharge rate increases, the SoC changing rate increases hyper-

bolically. SoC0 is the initial SoC at time zero.

SoCt = SoC0 − 100×
∫ t

0

(Ieff/Cn) dt (5.12)
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Using the EV power train and the battery models for three EV (Nissan, Fiat, and Tesla), we

have evaluated the driving range of the EV for different speeds. The results (see Figure 5.5)

show that the usable capacity of the battery changes for different speeds. This verifies that

considering the rate-capacity effect and having more accurate battery model in estimating

the EV driving range is essential for a drive management.

Figure 5.5: Estimated EV range w/ or w/o
considering the rate-capacity effect.

Figure 5.6: Battery lifetime cycles for vari-
ous depths of discharge.

Battery DoD or depth-of-discharge shows how much capacity has been used out of Cn in one

battery cycle. Cn degrades as the battery ages after each cycle. The capacity degradation

rate depends on the DoD [111, 158]. After about 20% of capacity degradation, the battery

will be considered useless. The battery lifetime is the number of cycles the battery can

be used until the cut-off edge. The battery lifetime cycles decrease by increasing DoD as

shown in Figure 5.6 [148]. Based on this observation and the data set presented in [148], the

relationship between the Battery LifeTime (BLT) and the DoD is approximately modeled in

Equation 5.13. The constants α and β can be measured for different types of batteries. For

the type of lithium-ion battery used here, α = 330.4 and β = 1.231 are measured.

BLT = α× (1/DoD)β (cycles) (5.13)

In this battery model, it is assumed that the battery cells are utilized evenly while powering

the EV. The aging effect, capacity degradation, and the decrease in usable capacity are
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distributed evenly among all the battery cells. This assumption is not an overestimation as

per paper [76], where the proposed configuration and scheduler evenly distribute the power

on the battery cells [102, 122]. In our experiments, the chemistry of the battery cells has

been assumed to behave the same for the three EV. The battery chemical characteristics

have been modeled by extracting the data set presented in [148]. The specifications for the

battery pack architecture, e.g. size and configuration, are extracted from the manufacturers’

forums [3, 4, 12].

5.2.4 Power Grid

The EV batteries get recharged using the electrical energy provided by the power grid. There

are various in-house EV chargers which provide different levels of charging. Drivers mostly

use the ordinary 110 v outlet existing in the U.S. houses (Level I) or use the 220 v outlet for

faster charging (Level II). Also, commercial EV charging stations provide even faster charging

for EV (Level III). Each charger has its own specifications in terms of charging rate, power

efficiency, and cost. The charging rate can be variable over time and get adjusted by the EV

charger controller.

The utilities providing electricity are responsible for meeting the power demand by the users.

They also need to maintain the reliability and efficiency of the power grid at all time. The

EV chargers put a significant load on the power grid. This will increase the peak power

demand which may diminish the transformer’s efficiency or violate its threshold and cause

thermal issues, voltage drop, and power outage.

Moreover, consuming electricity for recharging EV will cost money. The recharging electricity

cost is significantly dependent on the utility pricing policy and time of charging. The utilities

providing electricity have different pricing policies [13].
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For instance, utilities deploy the strategy of Time-Of-Use (TOU) rate (see Table 5.1) to

persuade users to shift their loads for reducing the peak power demand. In TOU policy, the

users have incentive to schedule the battery charging process such that the electricity cost

of recharging is minimized. Another similar incentive has been added for the weekends so

that the power demand is shifted towards the weekends, if possible.

Table 5.1: Specifications of the utility pricing policy.

Drivers may decide to use the battery partially and charge it to the full state every day.

Instead, others may discharge the battery completely to zero and charge it back to the full

state every week. In the earlier charging schedule, the DoD is small which increases the

battery lifetime [148]. Therefore, charging and discharging the battery partially decreases

the charging time and may provide the driver with the flexibility of deciding on the charging

schedule while possible improving the battery lifetime. For instance, the driver may choose

to follow the earlier schedule and charge the vehicle during the midnight when the electricity

price is lower. However, in the later schedule, the charging period is the maximum and it

may overlap with the time when the electricity price is higher.

Moreover, knowing the power grid specifications and characteristics may help us to analyze

and optimize the influence of the EV drive management on the power grid side, e.g. energy

consumption and electricity cost. To do so, the power grid load for each day is estimated

using the past statistics data. This information will be used in the OCDM as the esti-

mated power request by the appliances in a house (excluding the EV charger). Hence, the

OCDM optimizes the EV charger power in order to avoid increasing the total power demand

(including the EV charger).
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The power grid containing 20 houses has been modeled considering the appliances used in

the house, the schedule of appliance usage, and the weather [132]. The power consumption

of these houses has been evaluated for a month in order for the OCDM to estimate the daily

load pattern of the house.

The power consumption estimation of the houses provides the methodology with the flex-

ibility of scheduling the EV charger by knowing the capacity of the power grid and the

electricity price. However, reactive control of the EV charger without estimation may re-

sult in underutilization of the power grid and over restricting the grid users. Moreover, an

approximate estimation of the power consumption behavior is sufficient for the OCDM to

reduce the peak power. Misprediction in estimated power will result in slightly sub-optimal

solution and increasing the peak power.

5.3 Optimized Charge and Drive Management

5.3.1 Methodology Details

In the previous section, dynamic behavior of the system components has been described

and modeled using mathematical equations. Our methodology utilizes these equations to

estimate the system’s parameters at each time step of the management process. These

parameters include the control inputs and the state variables defining the system’s operat-

ing status.

The control inputs include the parameters of the selected drive profile for each daily trip such

as: selected driving route, departure time, and arrival time and the optimized EV charging

rate at each time step.
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The state variables include the parameters describing 1) the drive profile of each trip such as:

EV energy consumption and driving time; 2) the battery operating status such as: battery

power output and battery SoC; and 3) the power grid status such as: power demand by the

EV charger, predicted load profile, and electricity price. Then, the relationships between

these variables and control inputs are described through linear equations for the optimization

purposes (described in Section 5.3.2).

In our methodology, values of the constant variables are evaluated before the optimization

execution. For instance, the drive profiles for the route alternatives are modeled based on

all the possible candidates offered by the Google APIs (see Section 5.2.1). The timing pref-

erences and locations for each driver’s daily trip are also assumed in the constant variables.

The energy consumption of the EV while driving on each route is evaluated using the power

train modeling (see Section 5.2.2). Then, battery behavioral modeling has been used to esti-

mate the battery SoC; the rate-capacity effect is also accounted by considering EV effective

energy consumption (using Peukert’s Law) in estimating the SoC (see Section 5.2.3). More-

over, the power grid daily load profile is estimated and fed into the optimization problem as

time-series of constant variables as the estimation (see Section 5.2.4). The physical control

limitations (e.g. maximum charging rate) are also considered as the constraints of this op-

timization. Evaluating these constant values before optimization eliminates the influence of

modeling the non-linearity behavior of the system on the methodology complexity.

The optimization problem estimates multiple state variables of the system in the future

(receding horizon) and optimizes these variables and control inputs in order to reach an

objective. In other words, the optimum driving route is selected from the multiple route

candidates assigned statically for each daily trip; the arrival and departure time of the

trips are scheduled daily while satisfying the driver’s preferences; and EV charging rate

at each time step is adjusted in order to charge the battery by having the statically pre-

assigned estimated power grid load at that time step. The objective of the methodology
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is to minimize the recharging electricity cost, reduce peak load on the power grid, and

improve the battery lifetime. 1) Considering the estimated power for prediction of state

variables knowing their relationships; 2) considering the influence of multiple control inputs

and optimization variables on the solution simultaneously; 3) meeting hard constraints for

the optimized solution; are the reasons to select MILP to formulate and solve the problem.

However, selection of the approach is orthogonal to the problem and other approaches may

work with different performance.

5.3.2 MILP Optimization Problem

As part of the charge and drive management, the methodology needs to optimize the driving

route. For each trip, there are multiple route alternatives with their respected duration time

and average power consumption. The route alternatives are extracted from all the possible

routes provided by the Google APIs and modeled as the drive profiles. Then, the EV power

train model has been used for estimating the power consumption values. Then, the battery

model has been applied to estimate the effective average power consumption of the EV for

each trip. These values are estimated before the optimization and assigned as constant

variables1. The selection of the driving route for each of the daily trips is described by

tI =
6∑

j=1

tI
j rbjI tII =

6∑
j=1

tII
j rbjII tIII =

6∑
j=1

tIII
j rbjIII (5.14)

wI =
6∑

j=1

wI
j rbjI wII =

6∑
j=1

wII
j rbjII wIII =

6∑
j=1

wIII
j rbjIII (5.15)

1 =

6∑
j=1

rbjI 1 =

6∑
j=1

rbjII 1 =

6∑
j=1

rbjIII (5.16)

where ti and wi for I ≤ i ≤ III are the selected driving time and average EV power consump-

tion for each trip from the tji and wj
i alternatives. Binary values rbji are optimized for the

1In the optimization formulation, constant variables which are known before optimization are bold in order
to distinguish them with other variables. Nomenclature is provided listing and describing the variables.
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route selection, and constraints in Equation 5.16 ensure that only one alternative is selected

for each trip.

The departure and arrival times are constrained by the driving time of each trip:

tI = taB − tdA tII = taC − tdB tIII = taA − tdC (5.17)

where tax and tdx are the arrival time to and departure time from x : {A,B,C} location.

It needs to be mentioned that after three trips the driver reaches the same location. The

number of trips and route alternatives for each trip has been assumed to be statically three

and six respectively, however other values can be applied and the number is orthogonal to

the methodology.
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Figure 5.7: The state variables for the optimization over a day (1-hour time step duration).

The state variables of the system are defined for each time step over a day (24 hours). The

number of the state variables will change based on the time step duration. 1-hour time step

duration has been assumed in Figure 5.7 for easier illustration of how the methodology works

over a day. The (three) daily trips divide the time horizon of a day into 7 different stages

{a, b, c, d, e, f, g}. The timing of the stages changes according to the selected departure,

arrival, and driving time of the trips. The number of daily trips can increase by adding more

similar equations and variables while dividing the time horizon into more stages. However,

this will increase the complexity while maintaining the optimality of the methodology (see

Section 5.4 for further analysis).
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In the following, multiple variables and linear constraints will be defined for each time step

of the optimization:

ba tdA ≤ Ta ≤ ba tdA ba 0 ≤ Ta ≤ ba 0 (5.18)

tdA − tdA (1− ba) ≤ Ta ≤ tdA − tdA (1− ba) 0− 0 (1− ba) ≤ Ta ≤ 0− 0 (1− ba)

bb t
a
B ≤ Tb ≤ bb t

a
B bb t

d
A ≤ Tb ≤ bb t

d
A (5.19)

taB − taB (1− bb) ≤ Tb ≤ taB − taB (1− bb) tdA − tdA (1− bb) ≤ Tb ≤ tdA − tdA (1− bb)

bc t
d
B ≤ Tc ≤ bc t

d
B bc t

a
B ≤ Tc ≤ bc t

a
B (5.20)

tdB − tdB (1− bc) ≤ Tc ≤ tdB − tdB (1− bc) taB − taB (1− bc) ≤ Tc ≤ taB − taB (1− bc)

bd taC ≤ Td ≤ bd taC bd tdB ≤ Td ≤ bd tdB (5.21)

taC − taC (1− bd) ≤ Td ≤ taC − taC (1− bd) tdB − tdB (1− bd) ≤ Td ≤ tdB − tdB (1− bd)

be t
d
C ≤ Te ≤ be t

d
C be t

a
C ≤ Te ≤ be t

a
C (5.22)

tdC − tdC (1− be) ≤ Te ≤ tdC − tdC (1− be) taC − taC (1− be) ≤ Te ≤ taC − taC (1− be)

bf taA ≤ Tf ≤ bf taA bf tdC ≤ Tf ≤ bf tdC (5.23)

taA − taA (1− bf ) ≤ Tf ≤ taA − taA (1− bf) tdC − tdC (1− bf ) ≤ Tf ≤ tdC − tdC (1− bf )

bg 24 ≤ Tg ≤ bg 24 bg taA ≤ Tg ≤ bg taA (5.24)

24− 24 (1− bb) ≤ Tg ≤ 24− 24 (1− bg) taA − taA (1− bb) ≤ Tg ≤ taA − taA (1− bg)
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Ta + Tb + Tc + Td + Te + Tf + Tg ≤ τ ≤ Ta + Tb + Tc + Td + Te + Tf + Tg (5.25)

ba + bb + bc + bd + be + bf + bg = 1 (5.26)

where bx is the binary variable illustrating in which stage x : {a, b, c, d, e, f, g} the driver is,

at the current time step (τ ). τ in Equation 5.25 has a constant value corresponding with

the current time step for which we are defining the constraints. The optimizer will select the

binary variables bx for each time step (τ ) so that the stage timing boundaries are met and the

current time step fits in that stage boundaries. Tx and Tx define the variable upper and lower

timing boundaries of each stage. They are also optimized as part of the drive scheduling.

Moreover, these upper and lower boundaries for each stage are also limited by the upper and

lower boundaries of the departure and arrival times of each trip (tax, t
a
x, t

d
x, t

d
x). The departure

and arrival time boundaries are constants defined by the driver (driver’s timing preferences).

Equation 5.26 is added to make sure only one stage is selected at each time step.

At the driving stages, the battery power output is defined by the average EV power con-

sumption. While at the idle stages, the battery power output is defined by the EV charger

(if available). Hence, the battery power output at each time step is defined by:

Wa = ba wa Wa = ba wa (5.27)

bb wb ≤Wb ≤ bb wb bb wb ≤ Wb ≤ bb wb (5.28)

wI −wb (1−bb) ≤Wb ≤ wI −wb (1−bb) wI −wb (1−bb) ≤ Wb ≤ wI −wb (1−bb)

Wc = bc wc Wc = bc wc (5.29)
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bd wd ≤ Wd ≤ bd wd bd wd ≤Wd ≤ bd wd (5.30)

wII −wd (1−bd) ≤ Wd ≤ wII −wd (1−bd) wII −wd (1−bd) ≤Wd ≤ wII −wd (1−bd)

We = be we We = be we (5.31)

bf wf ≤Wf ≤ bf wf bf wf ≤Wf ≤ bf wf (5.32)

wIII −wf (1−bf) ≤Wf ≤ wIII −wf (1−bf) wIII −wf (1−bf) ≤Wf ≤ wIII −wf (1−bf)

Wg = bg wg Wg = bg wg (5.33)

Wa+Wb+Wc+Wd+We+Wf+Wg ≤ W ≤Wa+Wb+Wc+Wd+We+Wf+Wg (5.34)

where W represents the battery power output at time step τ . W is bounded by lower and

upper boundaries Wx and Wx at each stage. At driving stages, the constraints will force Wx

and Wx to be equal to the average EV power consumption selected for a specific trip. While

at idle stages, Wx and Wx are optimized between constant parameters wx and wx which are

defined by limitations of EV chargers (if available).

The energy consumed/stored in the battery and energy consumed by the EV charger at each

time step are evaluated by:

−M ba ≤Wa ≤M ba −M bg ≤Wg ≤M bg (5.35)

W −M (1− ba) ≤Wa ≤W +M (1− ba) W −M (1− bg) ≤Wg ≤ W +M (1− bg)

Wx = Wa +Wg (5.36)
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E = W dT Ex = Wx dT (5.37)

where Wa and Wg are the power outputs at stages a and g in which an EV charger exists

(it is assumed that c and e stages do not have EV chargers). These variables are defined

in order to evaluate the power demands by the EV chargers. They have true values only

at their designated stages. Big constant variable M has been used as a dummy variable for

avoiding quadratic constraints (big M method) [58]. Then, variable Wx is defined as sum of

Wa and Wg to evaluate the power demands of the EV chargers at each time step. Energy

change in the battery (E) and energy consumed by the EV charger (Ex) at each time step

are evaluated by multiplying W and Wx by dT , respectively.

The influence of the EV charger on the power grid load is evaluated by:

WT = Wx +Wc ET = WT dT (5.38)

WT ≤ W̃T Wx ≤ W̃x (5.39)

where Wc is the predicted house power consumption (excluding the EV charger) at each time

step. WT and ET are total house power consumption and energy consumption (including

the EV charger). Variables W̃T and W̃x define the total house peak power demand and EV

charger peak power demand.

The electricity cost is estimated using variable R which is the time-varying electricity price

constant pre-defined according to time step τ . The value of this constant variable is also

assigned statically before the optimization for each time step.

Px = Ex R PT = ET R (5.40)
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The battery behavior especially SoC estimation is defined by:

dSoC = E/E × 100 (5.41)

SoC = SoC− + dSoC (5.42)

SoC ≤ S̃oC (5.43)

where dSoC is the battery SoC change due the effective energy consumed/stored (E) at time

step τ . E is the battery capacity. The current SoC gets updated using the dSoC and the

previous value of the SoC at the previous time step (SoC−). Variable S̃oC defines the peak

value of the battery SoC which will be used in the cost function for reducing the average

SoC. Moreover, the SoC value at the final time needs to be the same as the initial value; this

is due to the fact that the management is done in daily basis and it will result in smaller

DoD which prolongs the battery lifetime. The charge optimization attempts to charge the

battery such that the daily battery SoC change is zero after one cycle.

The optimization cost function is defined by the following linear equation:

F = β1 W̃x + β2 W̃T +

24∑
τ=1

(β3 Ex + β4 Px) + β5 S̃oC (5.44)

where W̃x is for reducing the peak power from the EV charger which can improve the

battery lifetime by slow charging the battery. W̃T is for minimizing the total house peak

power demand which may improve the power grid energy efficiency and reliability. Ex is for

reducing the energy consumption which also extends the battery lifetime by minimizing the

battery DoD. Px is for minimizing the electricity cost at each cycle. S̃oC is for maintaining

low SoC average of the battery. The optimization weight variables (β) are defined manually

in order to find the optimum solution in terms of the battery lifetime first, then the energy

cost and energy consumption, and finally reducing the power grid load, charge rate, and SoC

average. The values for the weights are as following considering the scale of the variables

and their priority: β1 = 0.025, β2 = 0.015, β3 = 0.00015, β4 = 107, β5 = 1.2.
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Choosing the proper weights influences the balance and priority in the trade-off between

these objectives. All these objectives are towards the benefits of the user and the utility and

they all get minimized in the optimization. However, adjusting the weights can change the

trade-off balance depending on the preference of the user or the utility in the importance of

the objective. It needs to be noted that adjusting these weight variables is a cyber-domain

design space exploration and is out of the scope of this thesis and will change the solution

among the pareto-optimal points.

5.4 Experimental Results

5.4.1 Experiment Setup

Three different state-of-the-art EV (Tesla, Fiat, and Nissan) have been used as the bench-

mark EV to illustrate the performance of our methodology for various EV specifications and

power consumption. The power consumption of the power train has been modeled using

the equations specified in Section 5.2.2 and their parameters are extracted from the man-

ufacturers’ forums and experimental data provided by the third-parties testing the vehicles

(see Table 5.2).

Table 5.2: Components specifications for multiple benchmark EV.
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The Google Maps Direction and Elevation APIs [8] are implemented in MATLAB [7] pro-

gram to find the driving route alternatives for specific start and destination locations and

generate drive profiles describing their route behaviors. Multiple drivers have also been an-

alyzed in order to compare our OCDM methodology for various driving route conditions

and environment. The locations and timing preferences for each driver’s trips are selected

manually and listed in Table 5.3.

Table 5.3: Driver information regarding locations and timing preferences.

3
140 Columbia St, Seattle, WA 98104

Microsoft Build. 42, 15590 Northeast 31st St, Redmond, WA 98052
Univ. of Washington College of Eng., 371 Loew Hall, Seattle, WA 98195

1
1301 Le Conte Ave, Montara, CA 94037

1400 Amphitheatre Pkwy, Mountain View, CA 94043
Hillsdale High School, 3115 Del Monte Street, San Mateo, CA 94403

2
855 Katella St, Laguna Beach, CA 92651
Qualcomm, 8 Hughes, Irvine, CA 92618
Engineering Hall, Irvine, CA 92617, USA

The EV behavior and power consumption modeling is implemented using AMESim [9], an

automotive design software and MATLAB/Simulink. The EV state estimation for each drive

profile is evaluated in MATLAB. The power gird has been modeled and estimated according

to [132] using GridMat [17]. The main MILP optimization problem is solved using intlinprog

MATLAB toolbox.

5.4.2 Results and Analysis

We compare the performance of our methodology to the state-of-the-arts. Our optimized

charge and drive management includes three aspects of route selection, drive scheduling,

and charge optimization (see Section 5.3). We compare with the following methodologies in

order to analyze each of these aspects.
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1) Fast Drive and Dumb Charge (Fast): the route with the least duration time is

selected manually from the route alternatives for each trip [8]. The EV is charged at

the maximum current when a charger is available and as long as the electricity price

is low.

2) Green Drive and Dumb Charge (Green): the route with the least energy con-

sumption is selected manually from the route alternatives for each trip [150]. The EV

is charged at the maximum current when a charger is available and as long as the

electricity price is low.

3) Optimized Charge and Drive Management (OCDM): the optimal route is

selected, driving is scheduled, and charging is optimized according to the methodology

explained in Section 5.3. This will extend the battery lifetime, decreases the electricity

cost, and diminishes power grid load. The time step duration for the optimization is

set to 12 min, unless specified otherwise.

Trip
ABCharging at A

Trip
CA

Trip
BC

Figure 5.8: Battery power and estimated power of the house over a day when driving Tesla
by Driver 1.

a) Temporal Analysis: At first, the behavior of our OCDM methodology is analyzed

while driving a Tesla by driver 1 as an example. The value of the battery power output

is shown in Figures 5.8 and 5.9; the negative/positive values represent that the battery is

discharging/charging. The estimated power of the house (excluding the EV charger power)

is also illustrated in the secondary axis of Figure 5.8. The EV charging power is optimized
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and adjusted based on the estimated power of the house in order to reduce the electricity

load on the power grid. Level I EV charger which is the most common one for the residential

consumers is used with the maximum charging rate of 1.4 KW.

Trip
ABCharging at A

Trip
CA

Trip
BC

Figure 5.9: Battery SoC change regarding the discharging/charging processes when driving
Tesla by Driver 1.

Figure 5.9 illustrates that the battery SoC changes while driving the EV or charging the

battery. The charge optimization attempts to charge the battery such that the daily battery

SoC change is zero after one cycle. In other words, the EV is charged everyday only as

needed for daily driving (in one-day cycle). The charge optimization also makes sure that

the battery SoC does not violate the SoC level constraints (20% ≤ SoC ≤ 80%). Moreover,

the EV charging rate and the battery SoC average are also minimized in order to extend the

battery lifetime further.

b) Driving Analysis: Each trip has its corresponding energy consumption and time du-

ration. Hence, required energy consumption and the daily driving time are decided by the

drive management. The performance of each methodology has been analyzed for thee EV

types and three drivers in Figure 5.10. The daily driving time is at its least value while using

the Fast methodology. However, it causes the energy consumption to increase. This verifies

the fact that EV consume a lot more while driving at higher speeds. On the other hand, the

energy consumption resulted from using the Green methodology is at its least value while

increasing the driving time significantly.
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OCDM

Figure 5.10: Analysis of energy consumption and driving time for each case study.

In OCDM, the optimizer selects the routes with the least energy consumption that do not

violate the driver’s timing preferences. This will result in more daily driving range. The

OCDM has improved the required energy consumption by 27% on average compared to

Fast methodology (which is commonly used) by sacrificing 20 min total driving time on

average in a day. On the other hand, the OCDM has decreased the driving time by 13 min

while sacrificing 12% energy consumption compared to Green methodology. As illustrated

in the figure, the route selected by the Fast, Green, or OCDM methodologies for each EV is

different. This is mainly because of the different characteristics, e.g. aerodynamic drag, of

each EV. Compared to OCDM, the EV difference can cause drastic change in the selected

route by other methods that only consider one objective, e.g. Green methodology for driver

3 in Nissan and Fiat EV.

c) Battery Analysis: The battery discharging and charging cycle affects the battery DoD

and the battery lifetime. The battery lifetime cycles have been analyzed for the three EV

and three drivers in Figure 5.11.

The Fast methodology results in the worst battery lifetime due to high EV energy consump-

tion and deep discharge. The OCDM has improved the battery lifetime by 24.8% compared
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OCDM

Figure 5.11: Analysis of the battery lifetime for each case study.

to the Fast methodology. On the other hand, the OCDM has decreased the battery lifetime

by 4% compared to the Green methodology in the price of meeting the driving time pref-

erence. As shown in the figure, the influence of the driving routes on the battery lifetime

cycles is higher for the EV with smaller battery capacity, e.g. Nissan and Fiat.

OCDM

Figure 5.12: Analysis of the EV charging process and its influence on the power grid.

d) Grid Analysis: EV charging is done according to each methodology. The EV charger

power, house power due to other appliances, and total power from the house including
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the charger, for the time period of 4 PM to 2 AM are illustrated in Figure 5.12. The

corresponding peak power demand and electricity cost for daily charge are also shown. The

peak power demand has been evaluated by monitoring the power request from a house over

a month using the same daily plan of charging provided by each methodology.

In the Fast and Green methodologies, the drivers charge their EV during the low electricity

price tier unaware of the grid capacity and current power demand. This has resulted in up

to 10.5 KW peak power demand. However, in the OCDM methodology, the peak demand

has reduced to 9 KW (17% reduction) - the peak power demand of the house excluding the

EV charger - by estimating the power demand of the grid.

The electricity cost has been also compared in Figure 5.13. The reduction of electricity cost

resulted from OCDM is due to the energy consumption reduction and scheduling the charge

process when the price is low. OCDM has reduced the electricity cost 35% compared to the

Fast methodology. Compared to the Green methodology, the cost has increased by 13% in

trade for meeting the timing requirements.

OCDM

Figure 5.13: Analysis of the EV recharging cost for each case study.

It needs to be noted that the assumed EV charger is capable of providing upto 1.4 KW

(Level I). By using slower EV chargers, the Fast methodology result in longer charging time.

Hence, the battery cannot be charged between the time frame the electricity price is low

and the driver leaves location A. This will force the driver to charge at high electric price

tier which will increase the electricity cost. On the other hand, the slow charging of the

EV improves the battery lifetime and charging energy efficiency further. However, although

121



using the faster EV chargers decrease the charging time and maybe the charging cost, it may

increase the peak power demand further and reduce the battery lifetime.

Furthermore, considering the inclination of the drivers to charge their EV as soon as they

reach the charger can worsen the performance of the Fast and Green methodologies in terms

of peak power demand and electricity cost. However, the influence of this simultaneous

charging can be eliminated in the OCDM methodology by estimating the grid load profile

and scheduling the EV charger. Minimizing the peak power by implementing the power

prediction as in the state-of-the-arts benefits the utilities for better energy efficiency. Al-

though the power prediction might not be completely accurate, it is sufficient enough to

provide us with the necessary information about the power grid in order to diminish the

peak demand and schedule the EV charging. Moreover, without the power prediction, the

EV charging rate may dynamically change with the real-time house power consumption.

However, in this solution, unexpected concurrent high power consumption in the house with

the EV charging may result in an undercharged vehicle for the next trip especially using

slow chargers (Level I).

e) Driving Schedule Analysis: Drivers’ timing preferences affect the time slack available

for charging the EV at location A especially when the electricity price is low. Hence, changing

the timing preferences such as setting earlier departure time from location A may increase

the energy cost and the peak power demand. Moreover, giving more slack for the driving

preferences enables the methodology to select another route with lower energy consumption

and higher driving time. For instance, driving the Tesla by driver 1, setting the minimum

tdA from 7:30 AM to 7 AM enables the OCDM to select a longer route with lower energy

consumption reducing the energy cost from $ 1.6 to $ 1.3. Setting the maximum taB from

8:50 AM to 8 AM forces the OCDM to select the shorter route again with higher energy

consumption. However, the slack time for EV charging gets also smaller which increases

the energy cost from $ 1.6 to $ 1.9. Earlier departure time from location A will increase
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the energy cost due to the charging time overlap with the time the electricity price is high.

Therefore, the drive management is required to optimize the driving schedule based on the

preferences in order to decrease the energy cost and power grid load while improving the

battery lifetime.

f) Methodology Scalability: Multiple parameters in the OCDM methodology, e.g. time

step duration, number of trips per day, and number of days in a charge and discharge cycle,

have been set manually previously. The execution time and memory usage for the optimizer

have been monitored for multiple case studies (e.g. EV and driver) and time step duration

(see Figure 5.14). The computing platform is comprised of an Intel Core-i7 3770 CPU with

3.4 GHz clock frequency and an 8 GB of DDR3 RAM.

Longer time steps result in higher EV average power consumption at each time step. This

will increase the values of the coefficients in the optimization equations too much to converge.

Longer time steps also increase the discretization error of the time in OCDM methodology.

However, the optimality of the selected solution has not been compromised since the dis-

cretization is done by considering the ceiling value in order to make the timing preferences

more stringent. On the other hand, smaller time steps add more equations and variables to

the optimization problem. This increases the memory usage and execution time for finding

the optimum solution hyperbolically.

Figure 5.14: Analysis of the methodology scalability in terms of execution time and memory
usage.
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Adding more trips per day and increasing the number of days in a charge and discharge cycle

increase the complexity of the methodology polynomially such as inverse of the time step

duration. As shown in the figure, the execution time of the methodology is less deterministic

than the memory usage. This is due to the fact that in the process of solving an MILP

problem, multiple discrete solutions are explored heuristically and the one closest to the

optimal solution gets picked. Hence, the convergence time is less predictable.

Weekend

Figure 5.15: Battery power and SoC during daily and weekly cycles (energy cost and peak
power shown above).

Considering multi-day cycles instead of one-day cycles adds more equations and complexity

to the optimization problem (see Figure 5.14). However, if the electricity price policy and

the driving routes are the same for all days, the resulted solutions are as same as the optimal

solution for the one-day-cycle problem. This is due to the fact that having more days in the

cycle does not add any flexibility to the optimization problem to reach better solution. On

the other hand, we may consider that in the last day of the cycle (weekend in a weekly cycle),

the electricity price policy changes and the EV is not used and parked at home ready to be

charged (location A). Hence, more flexibility may be added for the OCDM in order to find a

better solution. Depending on the pricing policy and the habit of EV utilization, the energy

cost, power peak demand, EV charging rate, and SoC average may decrease. As shown in

Figure 5.15, the EV charging has been more spread over the weekend decreasing the EV

charging rate and SoC average. Moreover, although the weekly energy cost has decreased by

2%, it is not significant. The peak power also stays the same. This is due to the fact that in

this scenario the OCDM was already using the low price tier during the week to charge.
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5.5 Concluding Remarks

The EV driving range, battery lifetime, and charging process are the challenges for the

EV owners and designers. The driving route, departure/arrival time of daily trips, and

electricity price influence the EV energy consumption, battery lifetime, electricity cost, and

the EV charger load on the power grid. Hence, we have proposed an Optimized Charge and

Drive Management (OCDM) methodology in order to improve the EV driving range, extend

the battery lifetime, reduce the recharging cost, and diminish the influence of EV charger

on the power grid. Our methodology has three aspects of selecting the optimal driving,

scheduling the daily trips, and optimizing the charging process. The optimization has been

formulated in a mixed-integer linear programming using the modeling and estimation of the

system components such as drive profile, EV power train, battery pack, and power grid.

The performance of our methodology compared to the state-of-the-arts has been analyzed

by experimenting on three benchmark EV and three drivers. Our OCDM has decreased

the EV energy consumption by 27%, improved the battery lifetime by 24.8%, reduced the

electricity cost by 35%, and diminished the power grid peak load by 17% while increasing

less than 20 min of daily driving time. Moreover, the scalability of the methodology has

been analyzed for different time resolutions and number of days and trips in a charge and

discharge cycle. It has been shown that although execution time and memory usage changes

by changing these variables, the optimality of the solution does not get compromised.
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Chapter 6

Quality-Aware Control
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6.1 Introduction and Related Work

We introduced multiple control methodologies implemented in battery-powered CPS of EV.

The main responsibility of CPS controllers in any area may be abstracted into adjusting

(optimizing) system variables for improving (minimizing or maximizing) an objective variable

considering these (explicit or implicit) interconnections [35]. Hence, the deviation of the

objective variable from the optimal value may define the controller Quality. The quality

variable can be defined for any application domain of CPS controllers whether for cyber or

physical components [22, 35, 138]. In this thesis, we focused on the area of automotive CPS

by looking into EV as an example of interdisciplinary CPS to address its design challenges.

Design of high energy/power density battery cells has helped in addressing the challenges

of EV. On the other hand, battery cell monitoring and control have been implemented for

ensuring the battery cells’ safe and efficient operation. This CPS controller described as a

BMS in Chapter 2, leverages a model of the battery defined at design time to estimate its

behavior at run time. Hence, it extends the battery lifetime and improves the EV driving

range further by monitoring and controlling the power requests to the battery cells. There-

fore, the controller quality of a BMS for a battery (physical system) can be defined by either

the energy consumption or the capacity loss of the battery.

Electric motor is a major system in EV contributing to the battery power request. It is

under control by a Motor Control Unit (MCU) which consumes energy in the motor mode to

propel the vehicle and generates energy in the regenerative mode when braking. Its energy

consumption/generation depends on the driving behavior and driving route [104, 133]. There

are other auxiliary systems in EV like Heating, Ventilation, and Air Conditioning system

that may also contribute to the power request [70] (see Chapter 3 for further details). The

total power requests influence the battery operating behavior in terms of EV driving range

and battery lifetime which are the major concerns and challenges with EV.
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Furthermore, for daily drivers, driving time of a route to a destination is another major

concern. Automotive Navigation System (ANS) which may be available in any vehicle espe-

cially autonomous vehicles is responsible for selecting the driving route with the least driving

time. The ANS is typically equipped with a large online/offline map database of the route

information. It constantly monitors the current location of the EV, looks for route alterna-

tives to the destination, and selects the route with the minimum driving time. Therefore,

the controller quality of an ANS for a driving route (physical system) can be defined by the

driving time (see Chapter 4 for further details).

We introduced three of the main controllers in an EV: battery management system, motor

control unit, and automotive navigation system, responsible for battery, electric motor, and

driving route, respectively. Typically, these controllers only consider the behavior of their

own physical systems for maintaining the quality. However, the behavior of a system and

its controller is not determined only by itself and it can get affected by other systems in the

CPS. In other words, due to the explicit or implicit interactions between different systems

in a CPS, the controller quality of a system may get affected by another system’s behavior

and control. The following motivational example will illustrate this further:

6.1.1 Motivational Case Study

Consider the two physical systems of battery and driving route in a CPS of an EV. There

are multiple route alternatives to a specific destination and one of them is selected by the

navigation system. The selected driving route not only affects the driving time which is the

controller quality of the ANS, but also affects the EV power consumption and thereby the

controller quality of the BMS (e.g., energy consumption or battery capacity loss).

Figure 6.1 shows multiple route alternatives with their corresponding driving time and bat-

tery energy consumption. The BMS attempts to decrease the battery energy consumption
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Figure 6.1: Analyzing driving routes in terms of driving time and battery energy consump-
tion [133, 137].

(moving left on X axis) by considering the behavioral model of the battery. On the other

hand, the ANS attempts to decrease the driving time (moving down on Y axis) by consid-

ering the behavioral model of the driving route. Moreover, it has been shown that driving

an EV on faster highway routes may result in higher battery energy consumption. This is

due to the fact that frequent braking in local driving routes may regenerate and save more

energy. However, the BMS or the ANS is not aware of this implicit interaction between the

driving route and battery.

Summary and conclusion from observations: since each controller has the behavioral

model of its own physical system, the selected solution (driving route and battery energy)

may fall into the dominated solutions which are not pareto efficient for the whole CPS. It is

necessary for the controllers to have the behavioral model of each other’s physical system to

reach the pareto-optimal (non-dominated) solutions. This challenge is not limited to these

two systems or the three above-mentioned systems in EV and may occur for any pair of

systems in a CPS.

Different control designs have been presented to address the above-mentioned challenge; there

are state-of-the-art system-level controllers which are equipped with a centralized behavioral

model of multiple physical systems under control. They attempt to optimize the variables

to reach a predefined global objective variable comprised of the objective variables for each
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system. For instance, a predictive BMS in [107] has considered the driving route model

for optimizing the battery utilization. An energy-aware navigation system in [137, 150]

has leveraged the battery and EV power model in order to optimize the route for smaller

energy consumption as well as faster driving time. However, these state-of-the-art controllers

need to have a centralized behavioral model of all the other interdisciplinary influencing

systems to achieve an optimal operation. This ideal embedded control design, increases the

computation and memory requirements, and limits the scalability of the integration between

multiple complex systems. On the other hand, the model embedded in the controller at

design time is static and its accuracy is limited to the bounded knowledge available at

design time. Hence, as the behavior of the physical or cyber systems changes over time -

battery capacity degrades or controller ages - the controller quality and solution optimality

deviate as well [35].

6.1.2 Problem and Research Challenges

In summary, the above-mentioned state-of-the-art CPS control designs suffer from the fol-

lowing major limitations:

1. Control in a system is limited to the behavioral knowledge of its own physical system

to improve only its own quality.

2. Accuracy of the static behavioral model in a system controller is limited to the bounded

information available at design time.

3. Lack of scalability to integrate multi-domain systems for optimizing a higher-level

quality rather than the quality of individual systems in order to reach pareto-optimal

solutions for the CPS.
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6.1.3 Main Contributions and Concept Review

To address these challenges, a novel CPS control design to enable a system-level integration

and optimization is proposed that employs:

1. System Modeling and Estimation (Section 6.2): describes the dynamic behavior

of the System Under Design (SUD) using mathematical equations, e.g., modeling the

electric motor using Ordinary Differential Equations (ODE) (Section 6.2.1).

2. Adaptive Quality-Aware Control (Section 6.2.2): monitors the controller quality

of other influenced/influencing neighbor systems (e.g., battery energy consumption)

in order to dynamically derive and update a data-driven behavioral model of those

systems using run-time regression analysis.

3. Cooperative Control Design (Section 6.3): integrates the SUD controller with

the data-driven model of the neighbor systems to consider their quality, adapt to their

behavior, and cooperate with them by enabling a system-level optimization.

Figure 6.2: Abstract illustration of the highlighted contributions in our novel Adaptive
Cooperative Quality-Aware control design for CPS.

Figure 6.2 illustrates the highlighted contributions in our Adaptive Cooperative Quality-

Aware (ACQUA) control design, in abstract. Typically, a system comprises of a controller

and a physical plant. The controller of the SUD may implement a design-time (centralized)

mathematical model of the physical plant of its own system and any other neighbor systems,
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if it is a system-level controller. However, in ACQUA control design, the need to have

the complex and centralized design-time mathematical model of the neighbor systems is

eliminated. This is achieved by implementing a dynamically data-driven modeling block

using regression analysis. The ACQUA-based controller will monitor the controller quality

of the neighbor systems, learn their behavior, and use the model to enable a system-level

optimization and reach pareto-optimal solutions.

6.2 System Modeling and Estimation

During a control design process in CPS, the behavior of the physical systems are modeled.

The modeling is used for the estimation of the system behavior to meet the control constraints

or optimize the control inputs for minimizing a specific cost. There are different approaches to

utilize this system modeling for controlling purpose, e.g., feedback control, Linear-Quadratic

Regulator (LQR), and Model Predictive Control (MPC) [86, 107, 133]. We further explain

details of the system modeling using the three mentioned systems in EV; we look into

an automotive navigation system that selects the route with minimum driving time while

cooperating with the motor control unit, and battery management system.

6.2.1 Design-Time Mathematical Modeling

There are various approaches to model and estimate the behavior of a physical system.

Typically, the behavior is described using mathematical equations such as graphs, (non-

)linear, and ordinary differential equations. The equations are defined by laws of physics and

their parameters are evaluated by curve fitting the empirical data gathered of the system.

These models are generated at design time by control designers of the system. Three physical

systems of driving route, electric motor, and battery are mathematically modeled in the

following as part of their corresponding controllers.
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Driving Route as a physical system is modeled in map databases that are stored in the

controller (ANS) or are accessible online (Google Maps [8, 60]). The databases contain

geographical data for different nodes (locations) and segments (routes) between these nodes.

They also provide information about the elevation of a node, length, average speed, and road

slope of the connecting segments. It needs to be noted that, these databases are static from

the controller perspective even if they get updated through other cyber systems (e.g., online

update). Here, the databases are basically graphs or discrete mathematical modeling of the

physical system (routes).

Electric motor generates the necessary force to drive the vehicle. The power consumption

or generation of the electric motor in the EV is modeled and estimated by considering

the motor characteristics and driving forces on the vehicle such as: gravitational (Fgr),

aerodynamic drag (Faero), and rolling resistance (Froll) forces.

Ftr = Fgr + Faero + Froll +m a (6.1)

The tractive force (Ftr) is provided by the electric motor to overcome the forces to propel

the vehicle with mass (m) forward at a desired speed (v) and acceleration (a) [63]. The

direction of the tractive force is defined by whether the electric motor is at the regenerative

mode (regenerative braking) or motor mode.

The electric motor power consumption (Pe) is calculated as:

Pe =
Ftrv

ηm
(6.2)

where ηm represents the electric motor efficiency when converting electrical to mechanical

energy in the motor mode and converting mechanical to electrical energy in the regenera-

tive mode (regenerative braking). ηm is dependent on the motor rotational speed and the
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generated torque. The values of the equation parameters are evaluated at design time using

empirical data [86, 93, 162].

Battery provides the power requested by the EV systems such as the electric motor and the

HVAC. The influence of these power requests on the battery are estimated by models of the

battery operating behavior such as State-of-Charge (SoC) and battery lifetime degradation

or State-of-Health (SoH).

The usable capacity inside a lithium-ion battery decreases, by increasing the discharge

rate (I) (rate-capacity effect). This effect is modeled by Peukert’s Law using an effective

discharge rate. Hence, the battery SoC is estimated by the coulomb counting and evaluating

the effective discharge rate:

SoCt = SoC0 − 100

Cn
×

∫ t

0

I

(
I

In

)pc−1

dt (6.3)

where Cn is the nominal capacity of the battery measured at nominal current (In) predefined

by the battery manufacturer. SoCt represents the SoC value at time t. pc is the Peukert’s

constant measured empirically at design time for the type of the battery cell [48, 148]. For

the type of lithium-ion battery used here, the Peukert’s constant is evaluated as 1.1342. This

constant defines the behavior of the battery energy consumption. Although pc is necessary

to be evaluated, its value is orthogonal to our methodology.

Battery capacity degrades over time (capacity-fade effect) depending on the battery uti-

lization. The battery stress, number of discharge cycles, discharge current, and battery

temperature influence this capacity loss (Qloss) [64, 98]. In this chapter, Qloss is modeled

considering the discharge current:

Qloss = l1e
−l2/(R Tbat)I l3 (6.4)
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where R is the ideal gas constant. lx parameters are the coefficients in the model that

are measured empirically at design time [123]. Battery temperature Tbat is assumed to be

maintained and its influence on the battery operation is out of the scope of this chapter.

6.2.2 Dynamically Data-Driven Modeling

Another approach to model the physical system is by using the data gathered while analyzing

the system at run time (data-driven). In this approach, the gathered data is not fit into any

physics-based equation, instead, reduced-order models or polynomial equations are utilized.

This helps when the control designer of the system under design, at design time, lacks the

behavioral knowledge of other neighbor systems that influence or are under influence of this

system. Moreover, run-time data-driven modeling eliminates the computationally expensive

offline phase required to build a centralized model at design time. Furthermore, the model

dynamically updates as more data is gathered at run time. This will improve the modeling

and estimation accuracy compared to the static model defined at design time, especially in

the systems where their behavior changes over time, e.g., aging battery cells. In this chapter,

two physical systems of electric motor and battery are going to be dynamically modeled at

run time by the automotive navigation system using data-driven approach.

1) Data Collection. The first step to dynamically data-driven modeling is data collection.

In our ACQUA control design, there are two pieces of data to be collected. The first piece

of data ([Y ]) that the system under design collects, is related to the controller quality of the

neighbor systems. The data is provided by the controller of the neighbor systems through

a predefined communication channel. The channel may be already available or can be im-

plemented at no extra cost on an existing network connecting the systems in the CPS (e.g.,

CAN or FlexRay in automotive)1. The control designer of the SUD is not required to know

1Design of the communication system is out of the scope of this thesis and we assume there is at least
one simplex channel available for transmitting the quality signal.
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the data type or unit of the quality signal. The control designer of the neighbor systems is

responsible for deciding and designating a controller quality signal, if the controller needs to

be part of a cooperative system.

The second piece of data ([X]) to be collected is the data gathered in the SUD by monitoring

its own state variables. These variables are the ones which may influence the neighbor

systems directly or indirectly and may be adjusted in the controlling process to provide the

adaptivity to the controller quality of the neighbor systems. Since the state variables are

accessible inside the controller, there is no need for an additional communication system.

Data collection rate is decided according to the sampling time of the neighbor systems pro-

viding the data and the communication channel. The rate may be different and independent

from the execution and actuation time of the SUD controller due to its intrinsic parallelism.

2) Regression Analysis. The second step to derive a dynamically data-driven model,

is to fit the collected data into a general reduced-order model called fit model (F ) that

approximates equation [Y = F (X)+ error]. Here, we use linear regression analysis to model

the data. Mostly, the behavior of the systems is too complex to be modeled by linear

regression and simple features (first-order system variables), therefore polynomial regression

and higher orders of polynomial features may be used in the modeling. Since there is no

prior knowledge of the relationships between the variables of the system under design and

neighbor systems, different fitting regression models with various orders and features may

be tested to see which one fits better. The fit models are generated using fast and efficient

techniques to LASSO regression analysis using QR decomposition [24, 61]. Moreover, wider

variety of machine learning models and more complex features can be added to fit the data.

In other words, our ACQUA control design is applicable and orthogonal to any selection of

fitting models and techniques.
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The selected fit model should fit the collected data and estimate the future values with the

minimum error possible. There are various techniques and metrics to evaluate if a fit model

is a proper model for the given data set.

Mean Squared Error (MSE) is the average of the squared deviations that is the difference

between estimated values (Ỹ = F (X)) from actual values (Y ) for a data set. It is a measure

of discrepancy between the data and the fit model (F ). MSE evaluated for n samples of

the collected data ([X, Y ]) and the generated fit model (F ) in ACQUA, is the fitting error

(FMSE) of the model:

FMSE = 1/n ‖Y − F (X)‖2 ( ‖.‖2 = l2-norm ) (6.5)

Smaller fitting error of a model (FMSE) demonstrates that the model fits the collected (train-

ing) data set better. However, it is not necessarily a good model to estimate and describe

the behavior of the data (e.g., controller quality) since it may over fit the data [94].

Cross validation is a technique for assessing how a fit model will generalize to an inde-

pendent data set. In a k-fold cross validation, the collected data set ([X, Y ]) is randomly

partitioned into k equally-sized subsets. One of the k subsets is selected as the validation

data ([Xv, Yv]) for testing the model, and the remaining k - 1 subsets ([Xt, Yt]) are used

as the data for generating (training) the model. The cross validation process is repeated k

times (number of the folds), with each of the k subsets used exactly once as the validation

data to evaluate the MSE. In other words, F i is generated (trained) using [X i
t , Y

i
t ] subset

and then validated using [X i
v, Y

i
v ] by measuring its MSE. The MSE results for the k folds are

then averaged to produce the validation error (VMSE) of the model:

VMSE =
1

k

k∑
i=1

‖Y i
v − F i(Xv)‖2 (6.6)
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Smaller validation error of a model (VMSE) demonstrates that the model will probably esti-

mate and describe the behavior of the data better. Cross validation eliminates the problem

we had with the fitting error (FMSE). This is due to the fact that the fit models generated

at each step of the k-fold cross validation is trained and validated on separate data sets. In

other words, each of the k subsets once has been considered as independent data sets and

the generated fit models were not biased to those data.

The two metrics are used to assess how the generated fit model describes the collected data.

The best fit model is the one which fits the data perfectly (FMSE) while avoiding a biased

model and over fitting (VMSE). Hence, a cost function (C) is defined based on the two

weighted metrics which helps in deciding the best fit model.

C = α FMSE + β VMSE (6.7)

where α and β are the weight parameters selected arbitrarily such that in the selected best fit

model, over fitting is avoided and the model is stable and tolerable to variance and addition

of data.

Pseudocode in Algorithm 5 explains the regression analysis conducted at run time to select

the best fit model for the given data. Inputs to the function are the monitored SUD variables

(X) and the controller quality signal (Y ) from the neighbor system controller. X may be

horizontally concatenated data of multiple SUD variables. Output of the function is the best

fit model selected by assessing the data and all the alternatives. A pool of fit model types

(models) specifying the order of the regression models and selection of polynomial features

is defined in line 1. The number of splits for k-fold cross validation which is typically set to

five, is defined in line 2. The data set ([X, Y ]) is split to training ([Xt, Yt]) and validation

([Xv, Yv]) sets (lines 3-4). Each of the training and validation sets has k subsets for each

iteration of k-fold cross validation. In lines 5-12, the fitting (FMSE) and validation (VMSE)
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errors for each fit model are evaluated (Equations 6.5 and 6.6). polyfitn is a function to

generate fit model F based on the given data set and the specified fit model type; it solves the

regression problem using QR decomposition. polyvaln is a function to evaluate the output

of the fit model based on the input values; it is going to be simple matrix multiplication.

In line 13, the cost function (Equation 6.7) is evaluated for the fitting and validation errors.

Finally, the fit model with the minimum cost is selected as the best fit model and returned

by the function.

ALGORITHM 5: Regression Analysis

Input: SUD variables X
Input: neighbor controller quality Y
Output: best fit model bestF

1 define models // pool of fit model types

2 define k = 5 // # of folds in cross validation

// split data to k-fold training and validation

3 [Xt, Xv]← k-fold (X)
4 [Yt, Yv]← k-fold (Y )

// assessing all the fit models

5 for m = 1 : |models| do
6 F {m} = polyfitn (X, Y, models {m})

// evaluating model fitting error

7 FMSE {m} = norm (polyvaln (F {m}, X)− Y )2 / |X |
/* evaluating validation error using k-fold cross validation */

8 VMSE {m} = 0
9 for i = 1 : k do

10 F i = polyfitn (X i
t , Y i

t , models {m})
// evaluating model estimation error

11 MSEi = norm (polyvaln (F i, X i
v)− Y i

v )
2 / |X |

12 VMSE {m} = VMSE {m}+MSEi/k

// evaluating the cost function

13 C = αFMSE + βVMSE

14 [min m , min C] = min (C)

15 bestF = F {min m} // select the best fit model

16 return [bestF]
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6.3 ACQUA Control Design

Our adaptive cooperative quality-aware control design comprises of three modules which we

describe in the following (see Figure 6.3).

Figure 6.3: Modules of ACQUA-based control design for SUD.

1) The first module that also exists in other control designs is the main control and opti-

mization of the system under design by considering the state variables and controller quality

of the system. Different controlling approaches such as feedback control, Linear-Quadratic

Regulator (LQR), and Model Predictive Control (MPC) may utilize the design-time model

(see Section 6.2.1) of the SUD to estimate its behavior for optimizing the control inputs

based on the feedback received from the system. The controller is responsible for ensuring

the stability, optimal behavior, and controller quality of the system by adjusting the control

inputs properly.

2) In second module, ACQUA learns the controller quality of the other neighbor systems

(to be cooperated with) by monitoring their quality signal. ACQUA-based controller applies

regression analysis to the collected data of controller quality and system variables at run time

to dynamically generate a quality-aware behavioral model (see Section 6.2.2). It needs to be

noted that, state-of-the-art embedded control designs implement a centralized design-time

model of all these systems which can get too complex with larger CPS.
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3) The third and final module is the integration of the generated quality-aware model into

the existing control and optimization in order to establish a cooperative and adaptive control

as we call ACQUA. The dynamically data-driven model generated at run time, provides an

estimation of the controller quality of the neighbor systems which is added into the control

and optimization of the SUD as an additional cost variable. It needs to be noted that the

cooperation can be bi-direction and between multiple systems.

6.3.1 ACQUA-based Navigation System

In the following, we further describe how to leverage our ACQUA control design into an ANS

cooperating with the MCU and the BMS. We explain how implementation of the ACQUA

differs in compared to the existing ideal embedded control design.

Firstly, the BMS in EV monitors and controls the status of the battery cells. It is responsible

for maintaining the battery parameters (e.g., temperature, current, and voltage) in the

safe range. It may balance the load between the cells as well. This results in less energy

consumption and less battery capacity loss (more battery lifetime). Therefore, in the BMS,

the controller quality can be the battery energy consumption or the battery capacity loss.

Secondly, the MCU governs the performance of the electric motor. It may be responsible

for selecting and regulating the speed, regulating or limiting the torque, and protecting

against overloads and faults. Optimal adjusting of the electric motor torque and the power

to its circuits may result in less energy consumption and degradation of the electric motor.

Therefore, in the MCU, the controller quality can be the electric motor energy consumption.

On the other hand, the ANS selects the best route to a destination according to the selected

controller quality which is the driving time. The controller utilizes the map database and

driving route model to estimate the driving time at each route segment and thereby the
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total driving time. Based on the estimated driving time, the ANS selects the fastest route.

Therefore, the cost function of the control and optimization only involves the driving time.

In navigation systems, the cost function may also consider the electric motor power in order

to help the MCU reduce its energy consumption. Moreover, the battery capacity loss may

be added to the cost function to help the BMS improve the battery lifetime while driving.

However, the behavior and characteristics of these variables need to be known at each route

segment. In the state-of-the-art ideal embedded control designs (IDEAL), a centralized

behavioral model is implemented to provide an estimation of the electric motor power and

the battery capacity loss for the ANS [133].

However, the MCU and BMS may be able to provide the data for the electric motor power

(pe ∈Pe) and the battery capacity loss (qb ∈Qb). Moreover, the ANS already has the data

for the driving speed (v∈V ) and road slope (α∈A). Hence, an ACQUA-based automotive

navigation system (ANS) can benefit from the cooperation and retrieve the data while

driving, to generate the necessary behavioral model (see Section 6.2.2). There will be two

fit models FMCU and FBMS describing the relationships between the estimated electric motor

power (p̃e) and battery capacity loss (q̃b) with the driving speed (v) and road slope (α):

p̃e = FMCU (v, α) q̃b = FBMS (v, α) (6.8)

As more data is collected while driving, the fit models get updated dynamically and be-

come more accurate and adaptive to the situation. Eventually, the dynamically data-driven

models will be integrated into the cost function of the control and optimization in the ANS

representing the quality of the BMS and MCU controllers (see Section 6.3). This enables

system-level optimization and integration for the ANS, BMS, and MCU. It needs to be noted

that there would be trade-offs between the quality of these controllers - driving time, electric

motor power, and battery capacity loss.
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Figure 6.4: ACQUA-based navigation system cooperating with the EV motor control unit
and battery management system.

Pseudocode in Algorithm 6 explains the implementation of an existing ANS and how our

ACQUA control design is integrated into its control and optimization. The yellow high-

lighted codes are added on top of the existing control to enable the ACQUA. Inputs to the

function are the current location of the EV (received from GPS), destination node, MCU

quality signal, and BMS quality signal. Output of the function is the suggested direction or

the selected route segment to drive on. Two arrays of s and n define the map segments and

nodes stored locally in the ANS (line 1). In lines 2-5, current vehicle speed (v), road slope

(α), MCU quality (pe), and BMS quality (qb) are added to the data sets ([V,A, Pe, Qb]). In

lines 6-7, the data sets are used by function reg analyze to generate the best fit models (see

Algorithm 5). These two lines bring the adaptivity feature to the control design. In line 8,

the ANS pre-processes all the routes to the destination by solving a single-destination routing

problem (routing function) [133]. Array of routes stores the fastest routes to the destination

from any give node. In lines 9-20, the ANS continues searching for direction if the vehicle

has not reached the destination node yet (fid). Segments connected to the current node are

extracted and iterated to find the best one (lines 11-12). For each segment, the neighbor

node is selected and the predicted route from the node is extracted from the array of routes

(lines 13-14). In line 15, evaluate function uses the mathematical design-time models to

estimate the driving route parameters such as the driving time in order to evaluate the cost

of the driving route (see Section 6.2.1). In the ACQUA, the generated best fit models (FMCU
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and FBMS) are also utilized to estimate the MCU and BMS controller qualities based on the

predicted route and then the route cost is adjusted (line 16). This line makes the controller

cooperative and quality-aware of the neighbor system controllers. Parameters α and β are

set to give weights to the MCU and BMS controller qualities in trade-off with the driving

time. The route with the minimum cost is selected and its segment direction is returned

(lines 17-20).

ALGORITHM 6: ACQUA-based Automotive Navigation System

Input: current node current
Input: destination node fid
Input: MCU quality signal pe
Input: BMS quality signal qb
Output: best direction selected seg

1 define s, n // stored map segments and nodes

// ACQUA data collection

2 V ← [V ; v] // vehicle speed

3 A← [A;α] // road slope

4 Pe ← [Pe; pe] // MCU quality signal

5 Qb ← [Qb; qb] // BMS quality signal

// dynamically data-driven modeling

6 FMCU = reg analyze ( [V,A] , Pe)

7 FBMS = reg analyze ( [V,A] , Qb)

// pre-process all the routes to destination

8 routes = routing (s, n,fid)

9 if current �= fid then
10 min cost =∞
11 attached segments = {s ∈ s | s (′start′) = current}

// search the segments from current node

12 for seg in attached segments do
13 neighbor = seg (′end′)
14 route = [current; routes (neighbor)]

// use design-time model to evaluate route driving time

15 cost = evaluate (′time′, route)

// update cost to consider other qualities

16 cost + = α evaluate (FMCU, route) + β evaluate (FBMS, route)

17 if cost < min cost then
18 min cost = cost
19 selected seg = seg

20 return [selected seg]
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6.4 Experimental Results

We experiment and analyze how ACQUA influences the performance of a controller by

considering the example of an ANS cooperating with MCU and BMS.

6.4.1 Experiment Setup

A real-life EV - Nissan Leaf S [63, 133] - is considered for the experiment. The behavior

of the EV electric motor and battery are modeled and simulated (see Section 6.2.1) using

automotive design and simulator tools: AMESim [9] and ADVISOR [155]. The map and

route behavior data (see Sections 6.2.1) for the ANS are extracted from Google Maps and

OpenStreetMap real-life databases [8, 60, 133] considering the map of Orange County in

California, U.S.A. We conduct the experiments by driving the EV on arbitrary selected six

real-life benchmark routes listed in Table 6.1:

Table 6.1: Multiple real-life route benchmarks.

A B C D E F

The run-time controllers and algorithms including the ANS, MCU, and BMS (see Section 6.3)

are implemented in MATLAB/Simulink. Controller quality signals of the neighbor systems:

MCU and BMS are passed as input variables to the ACQUA-based ANS at run time. How-

ever, a Gaussian noise with 10% variance has been added to make the behavior of the systems

non-deterministic. The computing platform used for the experiment is comprised of an Intel

Core-i7 3770 CPU with 2.3 GHz clock frequency and 8 GB of 1600 DDR3 RAM.
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6.4.2 Results and Analysis

Regression Analysis: The ACQUA controller collects data at run time to generate the

two fit models for MCU and BMS. The regression analysis algorithm evaluates various fit

models to see which on is the best fit. Fitting and validation errors should be lower for the

selected fit models.

M
CU

(a) Motor Control Unit

BM
S

(b) Battery Management System

Figure 6.5: Model estimation error and fit model adjustment at run time.

Figures 6.5(a) and 6.5(b) show the estimation errors (FMSE) of the fit models at each time

step validated against the whole data set. As shown in the figures, the fit models change

dynamically to adapt to the collected data. It shows that the errors decrease by updating

the models as more data is collected. The validation errors does not decrease after a specific

number of samples and the fit model get more stable. This is due to the fact that over fitting

is avoided and having more data increases the variance and its corresponding error.

Real and estimated values of the MCU quality (Qb) and BMS quality (Pe) are drawn in

Figure 6.6. The fit models are generated based on four of the six benchmark routes (�70%-
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CU

BM
S

Figure 6.6: Regression accuracy and fit model histogram.

30% training-validation splits). The percentage of the validation error for FMCU and FBMS are

1.3% and 20.2%, respectively. It shows that the ACQUA estimates the controller qualities

with adequate error; higher complexity of the battery behavior results in higher error. The

regression analysis adjusts the best fit models at run time. The selection frequency of each

model fit is shown in Figure 6.6. It shows that the polynomial regression models with the

complexity of 21% and 26% (out of order of 8) are the best fit for MCU and BMS controller

qualities. The best fit models are drawn in Figures 6.7(a) and 6.7(b) alongside the collected

data values.

(a) Motor Control Unit (b) Battery Management System

Figure 6.7: The best fit regression models and the data values.
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We compare the performance of the control designs below in terms of EV energy consump-

tion, battery capacity loss, and complexity:

1. ALONE. the ANS is completely independent from other systems and only considers

the driving time for optimizing the route which is its controller quality.

2. IDEAL. a centralized behavioral model of the electric motor and battery is integrated

into the ANS [133]. This enables an ideal system-level optimization with the MCU and

BMS to consider energy consumption and battery capacity loss.

3. HALF-ACQUA. the ANS only has knowledge of the battery. It cooperates with the

MCU to learn its behavior and generate a data-driven model to enable the system-level

optimization.

4. FULL-ACQUA. the ANS does not have prior knowledge of the electric motor and

battery. It cooperates with MCU and BMS to learn their behavior and generate data-

driven models.

Table 6.2: Complexity analysis of different control designs.

FULL ACQUA

Table 6.2 summarizes the details for the control designs in the experiment. It also shows that

our ACQUA-based control design can enable system-level optimization without the need of

a centralized model with low computation overhead.

Figures 6.8 and 6.9 illustrate the battery energy consumption and capacity loss for each

benchmark route and each control design. The driving time (min) values for the routes
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labels = driving time (min)

Figure 6.8: Energy consumption vs. control design and route.

labels = driving time (min)

Figure 6.9: Battery capacity loss vs. control design and route.

are shown on top of each bar. ALONE control results in the least driving time thereby

increasing the energy consumption and capacity loss. IDEAL control results in an pareto-

optimal solution which may minimize the battery capacity loss and energy consumption

with the driving time. The performance of our ACQUA control is in the middle of the two

other controls, as it is expected. It tries to reach the solution of the IDEAL control by

being aware of the model of the neighbor systems. The performance of HALF-ACQUA

is closer to IDEAL than FULL-ACQUA since it has a prior knowledge of the battery.

Nevertheless, the regression model in our ACQUA estimates the controller qualities with

adequate accuracy such that it reaches 86% of the maximum achievable improvement by

IDEAL control. The results show that energy consumption reduces by 18% and the battery

capacity loss decreases by 12% compared to ALONE control.
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6.5 Concluding Remarks

We observed that the state-of-the-art control designs in CPS require a centralized complex

behavioral model of the influencing/influenced neighbor systems to reach a system-level

pareto-optimal solution. This is challenging for the control designers who lack the knowledge

of the neighbor systems. Hence, in this chapter, we proposed our ACQUA control design

that learns the behavior of the neighbor systems by monitoring and modeling their controller

quality with respect to the SUD variables. The dynamically generated data-driven model

is then integrated into the existing controller at no cost to enable the cooperation with

neighbor systems. We applied our ACQUA into a navigation system to cooperate with

motor control unit and battery management system. The results illustrated that by only

driving the EV once on a route, the ANS can model the MCU and BMS controller qualities

with an adequate accuracy for the next trip to enable system-level optimization for both

driving time and battery capacity loss. As a result, energy consumption reduces by 18%

and the battery capacity loss decreases by 12% compared to the state-of-the-art on average

which is 86% of the maximum achievable improvement by an ideal control.
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Chapter 7

Driving Behavior Estimation
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7.1 Introduction and Related Work

The electric motor is a major component in the EV that consumes energy in the motor mode

and generates energy in the regenerative mode when braking. Future reactions of the driver

in terms of adjustments to vehicle direction and speed, based on the driver’s perception of

the route and vehicle condition are described as driving behavior. The energy consump-

tion/generation depends on the driving behavior on the route and can vary for different

drivers [104, 142] (see Figure 7.1). Moreover, other accessories in EV especially Heating,

Ventilation, and Air Conditioning (HVAC) system have shown to be another major con-

tributor to battery energy consumption [20, 70, 131, 138]. The HVAC energy consumption

depends on its utilization and the ambient temperature, thereby making HVAC a flexible

load. The total power request in the EV influences the battery operating behavior and will

be illustrated in EV driving range and battery lifetime that are the major EV design chal-

lenges [134].

Design challenges in EV have been addressed by designing more efficient and robust battery

cells, device-level battery management systems, or system-level battery and energy man-

agements. The device-level methodologies monitor or control the cells in order to maintain

their safe and efficient operation [115]. Moreover, as we focused in this thesis, system-level

methodologies are implemented to optimize the battery utilization by adjusting higher-level

power requests in order to improve the battery lifetime and driving range given the future

driving route [86, 151] (see Chapters 2-5).

For instance, it has been shown that the driving route influences the EV energy, thereby the

EV driving range and battery lifetime. This is in addition to the fact that the driving route

also affects driving time and distance. Hence, navigation systems have been implemented to

optimize and select the best route for a specific EV [133, 137, 147, 150] (see Chapter 4). In

another work, route prediction has helped in optimizing the energy split between battery and
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ultracapacitor in Hybrid Electrical Energy Storage (HEES) [29, 152]. Moreover, a predictive

thermal and energy management methodology has been implemented for Hybrid Electrical

Energy Storage (HEES) in order to optimize the ultracapacitor and battery utilization while

maintaining the battery temperature in the safe range (see Chapter 2). Furthermore, a

battery lifetime-aware automotive climate control has been implemented which considers

the driving route in the future to predict the EV power requests and optimize the HVAC

operation while maintaining passenger thermal comfort (see Chapter 3).

The above-mentioned system-level battery and energy management methodologies require

information regarding the future EV power requests for optimizing the control inputs. Hence,

they have assumed that the driving route - which can be provided by the navigation system

- is known before hand for estimating future EV states. However, the driving route is not

the only factor affecting the EV power. The driving behavior of a driver regarding the

driving route condition is also influential. Experiments have been conducted to illustrate

how driving behavior affects the power consumption.

significant decrease
in range

Figure 7.1: Impact of different driving behavior on EV power consumption variation and
driving range tested on Nissan Leaf [104].

7.1.1 Motivational Case Study

The impact of different aggressiveness levels of driving behavior on the EV power has been

analyzed using historical data. Figure 7.1 shows the power consumption and estimated

driving range evaluated for a Nissan Leaf simulated in FASTSim [104, 142].
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Summary and conclusion from observations: we realized that the driving behavior

may significantly affect the EV acceleration and speed, and thereby the power consumption.

Hence, the driving behavior should be accounted into the energy management as well. How-

ever, current EV power prediction has been limited to the knowledge of only the driving

route. This limitation significantly decreases the estimation accuracy required for the EV

battery and energy managements.

Driving behavior modeling has been investigated and exploited for driver assistant systems,

especially for vehicle safety purposes [82, 83]. These models attempt to eliminate the driver’s

decision-making lag of 0.5-1.5 seconds [21, 22, 126] and predict the future reactions up to

a few seconds. For instance, in the state-of-the-art modeling methodologies using Hidden

Markov Model (HMM), Neural Network (NN), and graph modeling, the driver’s behavior

in terms of the vehicle speed is predicted up to the next 3 seconds with accuracy of up to

99.5% [37, 68, 119]. These controllers need to be triggered within a few seconds before an

event for safety purposes. Hence, we consider their prediction as short-term (< 5 seconds).

However, these short-term predictions are not sufficient for battery and energy management

methodologies. They require more accurate and longer-term predictions of at least more

than 5 seconds to perform well. The requirement for longer prediction time is mainly due to

the fact that the physical process involved is much slower. We consider their prediction as

long term when the prediction time is comparable to the duration of driving segments.

7.1.2 Problem and Research Challenges

The problem of driving behavior modeling and estimation for EV energy management poses

the following challenges:

1. Energy and battery managements in EV do not account driving behavior for optimiza-

tion, although it affects the operating parameters - driving range and battery lifetime.
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2. Accuracy of the EV power consumption estimation has been at stake due to lack of

driving behavior consideration.

3. Driving behavior modeling methodologies focus only on very recent input information

and current state (visible environment around the car) for short-term prediction. This

leads to failure of the prediction for longer period of time.

7.1.3 Main Contributions and Concept Review

To address the above-mentioned challenges, a novel methodology of driving behavior mod-

eling and estimation for EV energy management is proposed which employs:

1. Electric Vehicle Modeling (Section 7.2.1): main EV components such as elec-

tric motor, HVAC, and battery are modeled using Ordinary Differential Equations

(ODE) and operating parameters such as power consumption and battery lifetime are

estimated for various driving conditions.

2. Driving Behavior Modeling (Section 7.2.2): driving behavior is modeled using

a variation of Artificial Neural Networks (ANN) by training a novel context-aware

Nonlinear AutoRegressive model with eXogenous Inputs (NARX) [97, 125] based on

historical behavior of the drivers, their recent reactions, and the average speed of the

route reported by Google Maps. This context-aware model estimates the driving be-

havior of a specific driver in terms of the vehicle speed for up to 30 seconds (long term).

3. Integration into EV Energy Management (Section 7.3): the estimated future

maneuvers of the driver in terms of vehicle speeds are utilized in the battery and energy

management methodologies for improving the battery lifetime and driving range. In

this chapter, a battery lifetime-aware automotive climate control is implemented and

its performance has been analyzed using our novel context-aware driving behavior

modeling and estimation methodology.
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Figure 7.2: Illustration of our novel context-aware driving behavior modeling and estimation
for energy management (contributions highlighted).

Figure 7.2 illustrates our proposed methodology to estimate the driving behavior. In this

chapter, the EV driving dynamics are modeled given the driving behavior. Moreover, a

context-aware NARX model (variation of ANN) is generated and trained using driving route

information and corresponding real data of the driver’s behavior. Our novel model is self-

adaptive with respect to specific driver behavior and is able to predict the driving behavior

for long-term up to 30 seconds. We integrate our context-aware model into a newly adjusted

energy management methodologies. Hence, their control inputs are adjusted given the future

vehicle speeds and EV power requests to minimize power variation, energy consumption, and

extend the battery lifetime.

7.2 System Modeling and Estimation

Recent energy management methodologies deployed in EV, as in the battery lifetime-aware

automotive climate control, require modeling of the EV components for predicting their

dynamic behavior and power requests (see Section 7.2.1). Moreover, estimation of the driving

behavior and vehicle speed (see Section 7.2.2) is required for accurate estimation of the EV

power request. The system modeling and estimation is then used for optimizing and adjusting

the control inputs in order to improve the EV driving range and battery lifetime.
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7.2.1 Electric Vehicle

EV as an automotive Cyber-Physical System (CPS) consists of many interconnected subsys-

tems with various functionalities and responsibilities. There are two subsystems in EV (elec-

tric motor and HVAC) which are the main contributors to energy consumption/generation

(i.e. battery utilization). Their functional behavior needs to be investigated and modeled,

for estimating the EV power request at each instance of time.

Electric motor generates the necessary force to drive the vehicle. The power consumption

or generation of the electric motor in the EV is modeled and estimated by considering

the motor characteristics and driving forces on the vehicle such as: gravitational (Fgr),

aerodynamic drag (Faero), and rolling resistance (Froll) forces.

Ftr = Fgr + Faero + Froll +ma (7.1)

The tractive force (Ftr) is provided by the electric motor to overcome the forces to propel

the vehicle with mass (m) forward at a desired speed (v) and acceleration (a) [117]. The

direction of Ftr is defined by whether the electric motor is in regenerative mode (regenerative

braking) or motor mode.

The electrical motor power consumption (Pe) is calculated as:

Pe =
Ftrv

ηm
(7.2)

where ηm represents the electric motor efficiency when converting electrical to mechanical

energy in the motor mode and converting mechanical to electrical energy in the regenera-

tive mode (regenerative braking). ηm is dependent on the motor rotational speed and the

generated torque; its values are provided as the electric motor specifications [86, 93, 162].
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HVAC system is monitored and controlled by the automotive climate control to maintain

the cabin temperature. The cabin temperature (Tz) is influenced by the supply air tem-

perature (Ts), flow rate (ṁz), the cabin heat capacity (Mc), and the heat capacity of the

air (cp). The relationships between these variables and parameters are defined by ordinary

differential equations describing thermodynamics in the HVAC system [131].

The HVAC system power consumption consists of: 1) cooling power, 2) heating power, and

3) fan power. The cooling and heating power consumption is due to the energy difference

between their inlet and outlet air flow:

Pc =
cp
ηc
ṁz(Tm − Tc) (7.3)

Ph =
cp
ηh

ṁz(Ts − Tc) (7.4)

where Pc and Ph are cooling and heating power consumption. ηc and ηh are the efficiency

parameters of the cooling and heating processes. Moreover, the heat exchange between the

coolant/evaporator and air is modeled as efficiency parameters. The air returned from the

cabin (Tz) and the outside air (To) are mixed and recirculated back into the cooling coil. Tm

is the temperature of the mixed air and dr is the mixture fraction [Tm = (1−dr)To+drTz]. Tc

is the temperature of the outlet air after cooling before heating. The fan power consumption

(Pf) is quadratically related to ṁz and kf is a parameter that captures the fan efficiency

and the duct pressure losses.

Pf = kf (ṁz)
2 (7.5)

The parameters for the model are set based on an HVAC specifications and to accurately

describe the thermodynamic behavior in different conditions [66, 131].
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Battery provides the power requested by the EV systems such as the electric motor and the

HVAC. The influence of these power requests on the battery are estimated by models of the

battery operating behavior such as State-of-Charge (SoC) and battery lifetime degradation

or State-of-Health (SoH).

The usable capacity inside a lithium-ion battery decreases with higher discharge rate (I)

(rate-capacity effect). This effect is modeled by the Peukert’s Law using the effective current.

Hence, the SoC of the battery is estimated by the coulomb counting and measuring the

effective discharge rate:

SoCt = SoC0 − 100

Cn
×

∫ t

0

I

(
I

In

)pc−1

dt (7.6)

where Cn is the nominal capacity measured at nominal current (In) predefined by the man-

ufacturer. SoCt represents the SoC value at time t. pc is the Peukert’s constant typically

measured empirically for the type of lithium-ion battery cell [48, 148]. For the battery type

used here, pc is evaluated as 1.1342. Although this constant is necessary to capture the

battery consumption behavior, our methodology is not influenced by its value.

Ratio of current capacity to nominal capacity (SoH) degrades over time in lithium-ion bat-

teries (capacity-fade effect). The SoH degradation (�SoH) is mainly influenced by the stress

on the battery cell which is modeled by SoC deviation (SoCdev) and SoC average (SoCavg).

�SoH is related to the pattern of SoC values over a time period [98] following Equation 7.7:

�SoH = f (SoCdev, SoCavg) = (a1e
αSoCdev + a2)(a3e

βSoCavg) (7.7)

where α, β, a1, a2, and a3 are the parameters for estimating �SoH accurately based on the

battery type. Thorough evaluation of the battery temperature influence on �SoH is out of

the scope of the chapter. Hence, we have modeled it as a constant in Equation 7.7.
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The EV components are modeled using the above-mentioned equations. Moreover, their

parameters are extracted from the manufacturers’ forums and experimental data provided

by the third-parties testing the vehicle (see Table 7.1).

Table 7.1: Components specifications of the Nissan Leaf EV.

7.2.2 Driving Behavior

The driving forces on the vehicle are evaluated by knowing the driving behavior given the EV

model (see Section 7.2). The driving behavior depends on the driving route and reactions of

the driver to specific route condition. Although the driving behavior estimation is leveraged

in the battery optimization, they operate independently of each other. In the following, we

describe state-of-the-art methodologies to model the driving behavior in terms of the future

vehicle speed that will be used for EV power request prediction in the battery optimization:

1) Ideal (IDL). In this model, we are able to predict the vehicle speed at any given time

with perfect accuracy. In other words, a controller would have access not only to the previous

and current vehicle speeds, but also to the future vehicle speeds.

2) Motion-Preserving (MP). Typically, in rule-based or optimization-based method-

ologies [112, 127], either there is no assumption about the future, or the assumption is
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that the vehicle is going to preserve its current motion. In other words, in this model, the

future vehicle speed after h seconds, is assumed to be determined by the following physics-

based equation,

vt|k = vt|0 + at|0 × k (7.8)

where vt|0 and at|0 are the speed and acceleration values at time t. vt|k is the speed for time

t+k predicted at time t.

3) Statistical Modeling. In this approach, the future vehicle speed is predicted using

past speeds, current speed, and information of any other factors that can affect the vehicle

speed. Since the correlation between the current speed and predicted speed decreases for

further future time instances, the estimation error increases. In order to address this, as

part of our novel methodology, statistical information of the average speed for each road

segment (ṽ) extracted from Google Maps APIs [8] is also fed to the model providing the

future context and condition of the driving route. Given the current location of the vehicle,

the future trajectory of the vehicle and the average speed values can be determined using

the map database. The average speed at a specific time is a feature and information that

is provided that can represent and model the uncertainty, route condition and traffic of a

segment. Therefore, accounting them into the model will further reduce the prediction error.

More features can be used to improve the accuracy, however, the available data of the route

is limited.

To model and predict the driving behavior, we evaluate V +h
t = {vt|k : 1 � k � h}, which

are the predicted values of the vehicle speeds for the next h � 1 future seconds at time t.

The problem of statistical modeling is formulated as a challenge to estimate the function f

in Equation 7.9,

V +h
t = f (V −d

t , Ṽ −d′
t , Ṽ +h′

t ) + E+h
t (7.9)
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where V −d
t = {vτ |t−d � τ � t−1} and Ṽ −d′

t = {ṽτ |t−d′ � τ � t−1} represents the values
for the past d and d′ real speeds and average speeds before time t. Ṽ +h′

t = {vt|k : 1 � k � h′}
represent the values for the future h′ average speeds since time t. E+h

t = {eτ |t+1 � τ � t+h}
represent the error introduced to the system due to other factors influencing the future

speeds (V +h
t ) such as weather, etc. However, other influencing factors have been considered

to be the same for all the data and are avoided in the modeling and estimation. Hence,

V̂ +h
t = f̂ (V −d

t , Ṽ −d′
t , Ṽ +h′

t ) is predicted using f̂ , the approximation of function f . We have

investigated three machine learning and modeling techniques for approximation: Random

Forests, FeedForward Neural Network, and NARX.

3.a) Random Forests (RF). Multiple regression Decision Trees (DT) are combined

to make an RF [26]. Each of these regression decision trees chooses a random set

of input variables (features such as past, current speeds, and future average speeds)

and works independently on a subset of data to model a particular aspect of the driv-

ing behavior. In a regression decision tree, instead of making deterministic decisions

in the leaves as in a binary decision tree, a statistical distribution model specifies the

probability of each output value. Singular decision trees easily over fit the training

data. However, this is addressed in RF by randomly selecting the input features for
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Figure 7.3: RF architecture to predict each of
the future speed values.

each decision tree and combining the results.

A single probability distribution is generated

by weighted averaging of the probability dis-

tribution outputs of the trees based on the

frequency of occurrence of a particular driver

behavior in the training data set. The most

probable value of the final distribution is

reported as the final result of the random

forests.
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3.b) FeedForward Neural Network (FFNN). Artificial Neural Networks (ANN) are

a family of models that are mostly used to estimate nonlinear functions with large number

of inputs and outputs. They consist of connected artificial neurons which mimic biological

neural network behavior under different topologies. In order to model driving behavior

and estimate future vehicle speed (approximate function f̂), considering limited processing

power, we initially chose FFNN, the simplest, fastest, and the most common variation of

ANNs [23, 160]. In an FFNN architecture, neurons in one layer are connected via directed

weighted edges to only the neurons in their adjacent layer and there is no interconnection

between neurons inside one layer. Moreover, as the name FFNN suggests, there are no

feedback edges in this architecture of neurons (see Figure 7.4).
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Figure 7.4: FFNN architecture to predict future speed values.

The output signal of neuron i in layer l + 1 is calculated by:

zl+1
i = f (wl

0i +

nl∑
j=1

wl
jiz

l
j) (7.10)

where nl is the number of neurons in layer l, wl
ji is the weight of the edge between neuron j

in layer l and neuron i in layer l + 1, and wl
0i is the inherent threshold of neuron i in layer

l + 1 (treated as a normal weight with the input signal being one). f is a transfer function

which is (typically) chosen to be a logistic sigmoid function, f(x) = 1
1+e−x . Weight of the

edges are calculated by a Back Propagation (BP) algorithm [100] to train the model and
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minimize the following performance function:

MSE =
1

P

P∑
p=1

K∑
k=1

(dpk − opk)
2 (7.11)

where MSE is the global mean sum squared error between the estimated outputs op and the

targets dp where p and k are indices for the training sample p and for the component k of

the output vector, respectively.

3.c) Nonlinear AutoRegressive model with eXogenous Inputs. NARXs are one

of the simplest architectures of Recurrent Neural Networks (RNN) that includes feedback

edges between two different layers of nodes. RNNs are a very promising family of Neural

Networks which have the capability to adapt to changes in the input/output, and typically

they are much more stable in compare to FFNNs. In this work, we have chosen to focus on

NARXs which inherit the adaptivity properties of their architecture family and have been

proven to carry out good results in long-term prediction applications [97, 125].
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Figure 7.5: NARX architecture to predict future speed values.

As shown in Figure 7.5, the architecture is similar to FFNN’s and the only difference is

that the output of the architecture is connected to its input by a delay of one-second. In

other words, to train a NARX-based model, function f̂ in V̂ +h
t = f̂ (V −d

t , Ṽ −d′
t , Ṽ +h′

t , V̂ +h
t−1)
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is estimated to minimize the effect of E+h
t in Equation 7.9. The feedback loop in this

architecture helps in capturing the behavior of a specific driver. It needs to be noted that

the NARX model adapts to the specific driver behavior at the training phase (offline) with

no extra time spent online. In other words, the pre-trained NARX model has the ability

to adapt its output to each individual driver’s behavior, at the cost of a limited amount of

processing power thanks to the feedback from its estimated outputs to its inputs.

Although RFs are known to easily achieve high accuracy for a wide range of problems, ANNs

can be more accurate if their parameters are tuned for the given problem. Moreover, NARXs,

as a fast recurrent architecture of ANNs, are more suitable for time-series prediction since

they can memorize and utilize the recent observations in the time-series data. It needs to

be noted that any technique that can reach the same accuracy is also applicable to our

methodology. In this chapter, our context-aware NARX model with 8 layers is used to

predict 30 seconds (h = 30) of future vehicle speeds. The number of input features is d = 35,

d′ = 5, and h′ = 35 (total 76 features). These values were decided based on the data and

validation error to avoid over fitting.

7.3 Driving Behavior within Energy Management

We elaborated on how our methodology models and estimates the driving behavior in terms

of the future vehicle speeds (Section 7.2.2). The estimated future values of the vehicle speed

are used by the battery and energy managements in order to predict the EV power requests

and optimize their control inputs. In this chapter, we consider a battery lifetime-aware

automotive climate control as an example of how to deploy this driving behavior estimation

for improving the driving range and battery lifetime while maintaining the thermal comfort

for the passengers. It needs to be noted that any control methodology that uses the future

driving behavior for its optimization purpose can benefit from our model.
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As detailed in Algorithm 7, our driving behavior modeling methodology implemented as

the function f̂ , uses the past vehicle speeds (V −d), past average vehicle speeds (Ṽ −d′), and

future average vehicle speeds (Ṽ +h′
) (by Google Maps) in order to estimate the future vehicle

speeds (V̂ +h) (line 1). The future vehicle speeds (v) are derived to evaluate the future vehicle

acceleration (a) (lines 2-3). Moreover, the future road slopes (S+h′
) are retrieved and saved

in α from Google to predict the driving forces on the EV such as the gravitational force

(line 4). In line 5, the electric motor model is utilized to predict the power requests based

on the driving behavior (see Section 7.2.1). Then, the battery lifetime-aware automotive

climate control implements a Model Predictive Control (MPC) (lines 6-9) that considers the

pattern of the electric motor power requests to adjust HVAC control inputs and optimize its

utilization. The objective of the optimization is to maintain the temperature and reduce the

battery stress by decreasing the SoC deviation (Equation 7.12). Finally, the optimal control

inputs are applied to the HVAC (lines 10-11).

ALGORITHM 7: Driving Behavior Integration with Climate Control

Input: past vehicle speeds V −d

Input: past average vehicle speeds Ṽ −d′

Input: future average vehicle speeds Ṽ +h′

Input: future road slopes S+h′

Input: current state Tz

Output: control inputs [Pf , Pc, Ph]

// estimate future vehicle speeds

1 V̂ +h ← f̂ (V −d, Ṽ −d′
, Ṽ +h′

)

2 v ← V̂ +h // future vehicle speed

3 a← dV̂ +h/dt // future vehicle acceleration

4 α← S+h′
// future road slope

// predict electric motor power consumption

5 Pe ← electric motor (v, a, α)

/* define state variables and control inputs */

6 x0 ← Tz // initial cabin temperature

7 z ← [x, i, u, x+]′ // control window variables

8 init ceq, cneq, c // define constraints, cost func.

9 z̃ ← optimize (z, ceq, cneq, c) // call optimizer

10 [Pf , Pc, Ph]← z̃ {control inputs}
11 return [Pf , Pc, Ph]
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In the MPC optimization problem, the dynamic behavior of the EV including the HVAC,

electric motor, and battery subsystems is modeled using linear and non-linear equations

(see Section 7.2.1), multiple state variables x={Tz, SoC}, control inputs i={Ts, Tc, dr, ṁz},
and auxiliary variables u = {Tm, Ph, Pc, Pf , Pe}. The values of these variables and inputs

are estimated and evaluated for a future prediction horizon using the modeling equations.

The controller utilizes an optimizer to adjust the HVAC control inputs such as heating and

cooling coil temperature set points and fan speed in the prediction horizon while considering

the EV power requests. The solver optimizes these variables to improve the battery lifetime,

reduce the HVAC power influence, and maintain the cabin temperature around a specific

target temperature. The relationships between the variables and control inputs are defined

by equality and non-equality constraints (Ceq, Cneq). Moreover, there are certain constraints

on the control inputs and state variables of the MPC problem that should be satisfied

during the optimization and control process for safe operation and stable control. The

cost function for the optimization problem at time t is formulated as in Equation 7.12;

(T
k|t
z − Ttarget)

2 is the thermal comfort cost for minimizing the deviation of the temperature

from target temperature (Ttarget); T
k|t
z is the temperature for time t + k predicted at time

t. (SoC+k|t − SoCk|t)2 is the battery SoC cost for minimizing the SoC deviation; SoCk|t

and SoC+k|t
are the current and final SoC values for time t + k predicted at time t. This

function will result in extending the battery lifetime and decreasing the energy consumption

for further driving range.

min.
N∑
k=1

w1

γ1
(T k|t

z − Ttarget)
2 +

w2

γ2
(SoC+k|t− SoCk|t)2

s.t. Ceq discretized modeling equations [Equations 7.1-7.6]

Cneq limits on control inputs and variables [x, i, u]

constrained cabin temperature [T z ≤ Tz ≤ T z] (7.12)

The constraint on the cabin temperature already ensures the required thermal comfort by

limiting the temperature variance. Hence, a higher priority is given to the battery SoC devi-
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ation in order to extend the battery lifetime and reduce the energy consumption. Therefore,

we evaluate optimization coefficients (wx and γx) accordingly to find the optimum solution

in terms of the battery lifetime first, then thermal comfort cost.

Experiments on the HVAC system and its behavior analysis showed that (�Tz = 1◦C)

temperature variance results in an energy consumption equivalent to (�SoC = 0.04%)

battery SoC reduction per second on average. Hence, coefficients (γ1 = �Tz
2 = 1) and

(γ2 = �SoC2 = 0.0016) are evaluated to normalize the objective terms considering the

range of their values. Moreover, weight coefficients (w1 = 0.1, w2 = 0.128) are defined to pri-

oritize each term accordingly. It needs to be noted that the values for weight coefficients are

decided arbitrarily by trial and error, to ensure the desired battery performance. Further-

more, they can be adjusted by the designer’s preferences for the trade-offs between battery

lifetime and thermal comfort regardless of the estimation methodology.

Adjusting the constraints and the weight coefficients will help in finding the best optimal

solution to the problem. However, the driving behavior estimation methodology is indepen-

dent of the optimization process. Moreover, the optimization may be implemented using

Sequential Quadratic Programming (SQP) to achieve better solution [131].
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7.4 Experimental Results

7.4.1 Experiment Setup

The EV electric motor, HVAC, and battery subsystems are modeled and implemented in

MATLAB/Simulink. The experiments are conducted using part of the SHRP 2 Naturalistic

Driving Study [1] database. We use the driving data of three drivers in 17, 19, and 20

trips with duration of 3 to 138 minutes, each. The driving data is divided into training

(≈ 70%), validation (≈ 15%), and test (≈ 15%) splits. Each split is divided such that they

include short, medium, and long distance trips on highway and local areas. The training and

prediction of the NARX model have been done using the ”train” and ”predict” functions

in Neural Network toolbox of MATLAB. The optimization problem has been formulated

as matrices in MATLAB and has been solved using ”fmincon” function in Optimization

toolbox. The computing platform used for the experiments has an Intel Core-i7 3770 CPU

with 2.3 GHz clock frequency and 8 GB of 1600 DDR3 RAM.

Figure 7.6: Portion of the real-life vehicle speed data for two route conditions.

The data is sampled every second and the simulation time step is considered to be one second

as well. For instance, Figure 7.6 illustrates a small portion (≈ 33 min = 2000 samples) of

the recorded vehicle speed of a real driver that we used for training. The figure shows the

behavior of the vehicle speed both in highway and local driving areas (highlighted in the

figure). These contexts are used in the training for improving the vehicle speed prediction.
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7.4.2 Results and Analysis

We compare the performance of the following methodologies in terms of complexity, estima-

tion accuracy, and resulting performance of the battery/energy optimization:

1. IDL: in ideal methodology, the values of the future vehicle speeds are known, which

is the most ideal scenario.

2. MP: the vehicle is assumed to basically preserve its current motion for a specific future

period. It is typically utilized for fast path prediction and collision avoidance [112, 127].

3. RF: the vehicle speed is predicted using random forests model [26] trained by real data.

The future prediction is based on the past and current speed values while knowing the

context of the road condition defined by the average speeds in the past and future

(Section 7.2.2).

4. FFNN: the vehicle speed is predicted using an FFNN architecture with 8 layers [160]

trained by real data. The prediction is based on the past and current speed values

while knowing the context of the road condition defined by the average speeds in the

past and future (Section 7.2.2). This architecture does not have any feedback loop

which limits the ability to adapt to a specific driver behavior.

5. NARX: our novel context-aware modeling is implemented using an 8-layer nonlinear

autoregressive model with exogenous inputs [97, 125] trained by real data. The predic-

tion is based on the past and current speed values while knowing the context of the road

condition defined by the average speeds in the past and future (Section 7.2.2). The

feedback loop in the architecture makes it self-adaptive and driver-specific resulting in

better speed prediction.
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a) Complexity analysis: the execution time of each methodology is different due to their

various architecture and complexity. Ideal (IDL) and motion-preserving (MP) methodolo-

gies do not require any training phase, while the other statistical model-based methodologies

(RF, FFNN, and NARX) implement machine learning models that should be trained.

Table 7.2: Complexity of the driving behavior estimation.

Ideal
Motion Preserving
Random Forests
FeedForward
Neural Network

Nonlinear AutoRegressive
with eXogenous Inputs NARX

The time needed for the training and prediction phases in each methodology is shown in Ta-

ble 7.2. It needs to be noted that the training phase is done offline and it is not considered

as a bottleneck for the controller. The prediction phase is more important since it is inte-

grated into the controller for energy management. The ideal (IDL) and motion-preserving

(MP) methodologies require inconsiderable time since they implement just one equation.

However, the statistical models take more time to predict in the interest of having smaller

error for longer-term prediction. The prediction time for NN-based models are the smallest

as they implement constant number of equations to predict a value as opposed to random

forests (RF) which requires traversing through multiple decision trees.

b) Estimation accuracy: the accuracy of different methodologies is compared in terms of

Mean Absolute Error (MAE) and Delay (D). For n-second future vehicle speed prediction,

MAE(n) and D(n) are calculated as follows:

MAE (n) =
1

M

M∑
i=1

|SP n(i)− Sn(i)| (7.13)

D (n) = argmax ρ (ŜP n, Ŝn) (7.14)
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where SP n is the vector of the estimated n-second future speeds and Sn is the vector of the

real speeds during that time. M is the number of samples for validation or test. Function

ρ calculates the correlation between the two normalized signals ŜP n and Ŝn. Due to the

nature of our control optimization, the value of error in the prediction is not the major factor

affecting the output of the optimization and control performance. The more valuable aspect

is the model ability to predict the changing trend of the vehicle speed. The model should

be able to predict whether the speed is going to increase or decrease. The MAE represents

how close the predictions are to the real values, however, it does not show correctness of the

model in predicting the direction and changing trend of speed. Meanwhile, D (n) shows the

agility of the model to catch up with the changing trend of speed (not execution time). For

instance, D (23) = 12 demonstrates that if a changing trend is going to occur in 23 seconds,

it might not be predictable by the model up to 12 seconds (on average) before its occurrence.

IDL MP RF FFNN NARX

Figure 7.7: Estimation delay for different methodologies for various window sizes.

Figures 7.7 and 7.8 illustrate mean absolute error and delay for the methodologies for n-

second (n = 1 : 30) future speed prediction. Longer term estimation increases the error

except for the ideal (IDL) methodology. The error and delay of our novel context-aware

methodology (NARX) is less than the other methodologies especially for longer estimation

(n > 15). This is due to the intrinsic feedback in our context-aware NARX enabling self-

adaptive model which adjusts to the specific driver behavior resulting in lower delay and

estimation error, as opposed to the other statistical models (RF and FFNN).
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IDL MP RF FFNN NARX

Figure 7.8: Estimation error for different methodologies for various window sizes.

c) Optimization cost: the vehicle speed prediction is integrated into the battery lifetime-

aware automotive climate control. Hence, the prediction accuracy and delay may influence

the MPC optimization and control performance. The optimization cost includes the thermal

comfort and battery lifetime costs (Equation 7.12 in Section 7.3). It has been shown that

the optimization cost decreases by having the future EV power requests, compared to the

traditional climate control (which only considers the cabin temperature). However, this has

been previously done when the real future vehicle speeds were given (IDLmethodology). The

results prove the statements mentioned in Section 7.2.2 about the performance of NARX;

the NARX model has smaller prediction time, estimation error, and average delay for the

model compared to other models (RF and FFNN). Hence, in the following, we select our

context-aware NARX model as the best statistical modeling.

MP NARXIDL

Figure 7.9: Distribution of total cost improvement for different methodologies.
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Figure 7.9 shows the distribution of the optimization cost improvement over the traditional

climate control. In other words, it shows how these methodologies improve the control quality

compared to the the traditional climate control. The ideal (IDL) methodology illustrates

the maximum improvement 11% (larger mean and smaller variance values). Our context-

aware NARX can reach up to 6.9% improvement (on average) which is higher than the

state-of-the-art methodology of motion-preserving (MP). This is mainly achieved because

of the lower estimation error and average delay of the model.

d) EV performance: driving range and battery lifetime are the important factors in EV.

Hence, the optimization performance in the battery lifetime-aware climate control is ana-

lyzed.

IDL MP NARX

Figure 7.10: Energy saving, battery lifetime improvement, and total optimization cost re-
duction compared to ideal case.

Figure 7.10 shows the energy saving, battery lifetime (SoH) improvement, and total optimiza-

tion cost reduction achieved, compared to the ideal methodology in percentage. For instance,

using IDL methodology, the SoC deviation reduced by 11% to improve the battery lifetime.

However, using context-aware NARX methodology, SoC deviation reduced by 9.5% and

there was no improvement in MP methodology. It is shown that our context-aware NARX

can help the battery lifetime-aware automotive climate control to improve the driving range

and battery lifetime up to 82% of the maximum improvement achievable (by IDL methodol-

ogy). Small degradation in the improvement is due to the estimation error and misprediction
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of the future vehicle speeds and EV power requests. However, our context-aware NARX

methodology is much better than the motion preserving (MP) methodology especially in

terms of the battery lifetime. The poor performance of the MP is due to the fact that it

does not capture the uncertainty in driving behavior for long term prediction. Hence, the

mispredicted future vehicle speeds and EV power requests cause the energy management to

decide wrong control inputs which do not help the performance.

Ambient Temperature = 35°C

Figure 7.11: Temperature variation when integrating driving behavior estimation into bat-
tery lifetime-aware automotive climate control.

e) Thermal comfort: the automotive climate control has been set to maintain the cabin

temperature around the target temperature (25◦C) with the variation of up to 1◦C (≈4%)

The ambient temperature is assumed to be 35◦C. Since the constraint is very stringent,

no thermal comfort degradation has been seen in terms of temperature variation (see Fig-

ure 7.11) compared to the ideal methodology. The figure illustrates how the HVAC power

and cabin temperature are adjusted by the climate control according to the estimated EV

power requests such that the battery stress is minimized. It needs to be noted that deciding

the set points for the cabin temperature (variation of 2◦C) is a very costly decision for the

climate control in terms of the power consumption required by the HVAC system to maintain

that temperature. Therefore, it becomes important for the climate control methodology to

exploit the variation of the cabin temperature around the target temperature to improve the

battery lifetime and energy consumption.

175



f) Estimation window: having more knowledge of the future vehicle speeds and EV

power requests might help the performance of the battery lifetime-aware automotive climate

control. We have analyzed its performance in terms of the optimization cost improvement for

different estimation window sizes. We have changed the time step duration and the number

of steps in the window size of the prediction horizon:

IDL MP NARX

Figure 7.12: Impact of estimation window size on climate control performance.

Figure 7.12 shows that in IDL methodology, the performance (total optimization cost im-

provement) always increases by having more future information. In other words, longer-term

prediction improves the performance of the energy and battery management; it results in

more battery lifetime (SoH) improvement and energy saving. In our context-aware NARX

methodology, the performance also increases for longer predictions, but it saturates after

more than 17-second future estimation. This is due to the fact that the estimation error

increases for the time instances further away from the immediate present causing the mis-

prediction of the future vehicle speeds and EV power requests. Higher misprediction rate

and average delay for the methodologies like motion-preserving (MP) result in lower perfor-

mance compared to our methodology and definitely ideal methodology. That is due to the

uncertainty in the driving behavior that will result in poor performance of the controller com-

pared to the IDL. The uncertainty is modeled and further eliminated in our context-aware

NARX model by using average vehicle speed data to represent the route condition.
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7.5 Concluding Remarks

State-of-the-art EV battery and energy managements leverage long-term power prediction

to optimize their control inputs and improve the EV driving range and battery lifetime.

However, they have only considered the driving route which is not enough for accurate

modeling and estimation of the EV power requests. Moreover, the state-of-the-art driving

behavior modeling and estimation methodologies focus on short-term prediction and fail to

predict for long term. In this chapter, we proposed a novel context-aware methodology using

NARX architecture to model and estimate the driving behavior in terms of future vehicle

speeds for up to 30 seconds. Our methodology shows only 12% estimation error for up

to 30-second speed prediction which is improved by 27% compared to the state-of-the-art.

Moreover, we showed in our results that our novel context-aware NARX model can help an

energy management methodology like a battery lifetime-aware automotive climate control

to improve its control performance up to 82% of the maximum performance achievable in

the ideal methodology where all the future vehicle speeds are assumed to be known.
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Chapter 8

Self-Secured Control
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8.1 Introduction and Related Work

Electronic Design Automation (EDA) has helped with addressing the challenges towards

design and development of the CPS. Controllers are integrated within these systems that

compromise of: sensors to monitor the environment and state of the physical system; micro

controllers to process the data and make decisions; and actuators to apply the control actions

to the physical system [116]. Sophisticated control algorithms are implemented that make

decisions based on phsyical state and given a complex model. For instance, a Battery

Management System (BMS) utilizes a model of the battery in order to decide how much each

cell can provide power and energy at this current state of the system. The BMS is responsible

to prevent over loading, over charging, and over discharging the battery cells considering

any power request received from the system, e.g. EV. Moreover, resource management

and scheduling algorithms may be implemented using Model Predictive Control (MPC) or

Reinforced Learning to distribute the power among the battery cells or even other types of

energy storage such as ultracapacitor [107, 151]. Hence, the main objective of the BMS has

always been to improve the available capacity and energy efficiency while minimizing the

battery lifetime degradation that may happen in lithium-ion battery cells [124, 131].

All the decisions made at run time by the controller depend on the observed state of the

physical system or the environment and the control inputs are adjusted based on the model.

However, the arising challenge is that whether the controller can trust the sensed data

and/or the model. There are many scenarios that the control loop can be compromised.

The corrupted loop will cause the controller to make wrong decisions and thereby sway the

state of the physical system to unwanted or unstable states [52, 153].
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8.1.1 Motivational Case Study

Control loops can be compromised from different aspects such as data sensing, the physical

system, or the model (see Figure 8.1). For instance, the sensed data can become unreliable

by directly or indirectly attacking the sensors to give wrong data, no data, or misplaced

data (e.g. Denial-of-Service or Delay Attacks). Example of this attack has been seen in

navigation systems by altering the data received from the GPS or IMU sensors [57, 129].

Moreover, the physical system which is the main module of the control loop can be attacked.

This may seem less frequent and easily detectable. However, a battery may be replaced with

a low-quality battery and cause the whole CPS to catch on fire since the BMS is unaware

of the alteration of the physical system. Furthermore, biased machine learned models in the

controllers have been seen to give wrong decisions by changing the control inputs slightly

not visible to naked eyes. For instance, an image classifier model in an autonomous driving

control may detect a ”STOP” sign as a ”Speed Limit” sign [44].

FAKE REAL

REAL
ATTACKED

Figure 8.1: Examples of different attacks on the control in a compromised CPS. [79]

Summary and conclusion from observations: according to the observation and exper-

iments, the state-of-the-art controllers are not intelligent enough to capture any anomaly in

the control loop. In other words, the controller makes the decision based on the current ob-

served state of the physical system and the given model without considering that the behavior

of the control loop is not normal. Moreover, the controller does not have any mechanism to

secure the control loop to prevent a compromise and to recover from the attack.
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8.1.2 Novel Contributions and Concept Review

In order to address the challenges with vulnerabilities existing in control, we propose a novel

self-secured machine learning architecture by employing the following.

1. Control Loop Vulnerabilities (Section 8.2): are described in details for the cur-

rent controllers of the automotive CPS. Different aspects that the control loop can be

compromised and our solution to the issues are explained.

2. Self-Secured Machine Learning (Section 8.3): architecture is proposed that uti-

lizes a novel Conditional Generative Adversarial Network (CGAN) to capture the be-

havior of the control loop and detect any anomaly at the run time [55]. Moreover, a

novel secure prediction technique will recover the control loop from the attack.

3. Self-Secured BMS (Section 8.4): is implemented where the self-secured machine

learning architecture is integrated into an existing BMS and tested against multiple

existing attack models.

Figure 8.2: Self-secured machine learning archi-
tecture integrated into automotive CPS.

Figure 8.2 illustrates the highlighted

modules of our novel self-secured ma-

chine learning architecture that will be

integrated into an existing automotive

CPS, e.g. battery management system.

Moreover, it abstracts how the modules

are related to each other to detect a vul-

nerability and recover from it.
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8.2 Control Loop Vulnerabilities

Cyber-physical systems in every domain typically implement controllers that are responsible

for interacting with one or more physical systems to reach an objective and maintain a

certain control quality [80]. In other words, controller seeks to maintain physical variables at

certain set points in spite of unmeasured disturbances. The interaction between the physical

systems and the controller is abstracted as a closed-loop feedback control.

8.2.1 Control Loop Design

Control loops comprise of multiple components of sensors, microcontrollers, and actuators,

interacting with a physical system (see Figure 8.3).

Sensors are devices that measure and convert certain types of energy in terms of a physical

parameter to an electrical output. Sensors are mostly used to monitor the state of a physical

system or the environment. For instance, a BMS may implement thousands of sensors on a

battery module attached to each cell to measure their voltage, current, or temperature.

Microcontrollers periodically retrieve the data from the sensors and process them to reach

a decision for the controllable variables. Typically, Proportional Integral Derivative (PID)

controllers are responsible to accomplish this task. However, PIDs have very limited knowl-

edge of the physical system and its dynamic behavior. Hence, Model Predictive Control

(MPC) is a more advanced method of control that relies on dynamic models of the physical

system. They achieve better control stability and quality of control by optimizing the con-

trol process for a certain time horizon in the future. For instance, the BMS may process the

data to evaluate the battery cell State-of-Charge (SoC) or battery lifetime - State-of-Health

(SoH) [85]. The BMS will then find the optimal control actions considering the battery

lifetime and energy efficiency.
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Actuators are devices that convert an electrical signal to the required physical parameter,

e.g. current, voltage, physical motion, etc. The electrical signal to the actuators are decided

by the microcontrollers. For instance, the BMS may adjusts the current drawn from the

battery cells as the control actions, as the results from the BMS algorithm. Furthermore,

there may be relay switches to change the battery structure for better battery operation [64].

Physical System dynamics will then change by triggering the actuators and applying the

control actions decided by the microcontroller. The control process will continue and the

physical system will continuously react to the control inputs. Meanwhile, the control loop is

triggered periodically to maintain the required set points. For instance, due to the intrinsic

variations in battery cells, they may discharge differently from each other. Hence, the BMS

observing the state of these cells will adjust its controllable variables (current drawn from

the cells) to maintain a balance among them to increase the available capacity of the battery.

8.2.2 Physical System Attack

Physical system dynamics change slowly overtime depending on the values of its controllable

variables. Typically, the behavior of the physical system is described using mathematical

equations such as Ordinary Differential Equations (ODE) or Finite-State Machines (FSM).

These modeling equations can be used in MPC algorithms for estimating the state of the

system and evaluating optimum control actions. Physical systems may have unique behavior

when applying the control inputs.

Battery cells have different performances and dynamic behavior. In other words, they will

illustrate different current-voltage (I-V) behavior during charge and discharge cycles. More-

over, their thermal behavior and their internal generated heat are different due to the various

materials used in the production. High performance battery cells are typically required for

high-power or high-energy applications. However, they cost much more than the low perfor-
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mance ones. Hence, middle-man-attack may replace or alter the cells with the counterfeit

ones without the BMS being aware of the altercation. The BMS interacting with the new

counterfeit physical system may not operate properly resulting in unstable states, e.g. fast

draining battery cells or cells catching on fire [149]. Currently, there exist multiple mecha-

nisms to distinguish between these cells. For instance, the appearance and packing can be

used to tell the difference or an embedded RFID tags can be used. However, the current

approaches can be hacked easily leaving the control loop vulnerable.

Figure 8.3: Control loop design (1) in a BMS controller and its vulnerabilities within auto-
motive CPS: physical attack (2), sensor attack (3), and vulnerable model (4).

8.2.3 Sensor Attack

The performance of a sensor is typically decided by the control designer at the design time.

It defines how the sensor reacts the physical parameter it is measuring. The electrical

signal is provided for the microcontroller in order to be processed. Nowadays, to maintain

scalability of the sensor network with the growing number of sensors implemented in CPS,

the connections are becoming wireless, e.g. Bluetooth, Zigbee. The wireless network can

bring more weak points and add more vulnerabilities to a control loop. Therefore, the sensor

data can be under multiple attacks, e.g. man-in-the-middle, fuzz attack, replay attack.

Therefore, the controller may not be able to trust the data to observe the state of the physical

system and make decisions. For instance, a compromised voltage sensor of a battery may

cause the BMS to over charge or over discharge the battery resulting in shorter battery
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lifetime or in the worst case explosion. Cryptography algorithms are typically used to secure

the communication channel for data. However, they have their own challenges in terms of

complexity scalability. Furthermore, they will not be effective against physical attacks to

the sensors, leaving the control loop vulnerable.

8.2.4 Vulnerable Model

Physical system models are the major part of decision making of a controller. The models

utilized by the algorithms will help the controller identify the current state of the physical

system given the observed data. For instance, an object detection algorithm classifies the

recorded image from the camera based on a pre-trained machine learning model. The BMS

estimates the SoC of the battery cell given the measured current drawn from the battery.

However, the reliability of the model and decisions made by the controller are unknown

without testing. In other words, the attacker has the option of remaining in a stealth mode

wherein it spoofs some sensor but only by an amount that is indistinguishable from noise.

However, the attacker can force the system to get into an unsafe region [99]. For instance,

the object detection algorithm can be fooled to classify an image completely wrong with the

highest probability by slightly tweaking the image (not visible to naked eye) [79]. On the

other hand, the BMS may be attacked to consumer more energy from the battery cells [95].

8.3 Self-Secured Control

We explained the security and vulnerability challenges with the current controls. Hence, in

this chapter, we propose a novel machine learning architecture using Conditional Generative

Adversarial Network (CGAN) that will be integrated in parallel to the control loop (see

Section 8.3.1). It is responsible to capture and learn the normal behavior of the physical
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system interacting with the controller (see Section 8.3.2). The architecture is trained by

running the CPS and monitoring the control loop at run time by the manufacturer, before

any attack can happen, at train-only phase. Afterwards, at detect-n-predict phase, the

architecture will monitor the control loop to detect any anomaly or attack (see Section 8.3.3)

and recover from them (see Section 8.3.4) at run time. Moreover, it will also get updated

and learn new dynamics, if the rate of attacks detected are low in a certain time window.

8.3.1 Machine Learning Architecture

Typically, the dynamic behavior of the control loop containing the physical system and

the control components can be modeled using mathematical equations and deterministic

modeling. However, the behavior of the physical systems can get too complex to be mod-

eled by equations. Moreover, there may be many unknown factors influencing the behavior

that make it challenging to model. For instance, a battery manufacturing process is not

completely deterministic that will result in various battery cells with different performance

and behavior. Modeling and capturing the exact behavior of the battery cells is very chal-

lenging problem. Hence, data-driven statistical modeling (machine learning) is applied to

describe the behavior. However, machine learning models may suffer from unknown biases

and sometimes significant prediction errors. Therefore, we propose a novel conditional gen-

erative adversarial network to capture the behavior. Moreover, it will also help in enabling

a self-secured control.

Generative Adversarial Networks (GAN) is a recently-introduced neural networks architec-

ture that helps with generating a more stable machine learning model without dealing with

the complex distribution of the data [55]. By the definition of GAN, there will be two neural

networks 1) generator (G) and 2) discriminator (D) (see Figure 8.4); the generator attempts

to generate data resembling a physical process; and the discriminator attempts to tell the
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difference between the real data of the physical process and the fake data generated by the

generator. The output of the discriminator is a scalar representing the probability of the

data being real.

GAN creates a situation for both neural networks that can be modeled as a minimax game

in game theory. Hence, for the generator to be successful, it needs to learn to generate the

distribution of the real data for the physical process very well, such that the discriminator

cannot distinguish. On other hand, for the discriminator to be successful, it needs to learn

the distribution of the real data for the physical process very well, such that the generator

cannot fool it. Therefore, in order to compete with each other to get better in this game,

both will become the best to generate and discriminate. Hence, at the equilibrium point,

which is the optimal point in minimax game, the generator will model the real data, and the

discriminator will output probability of 0.5 as the output of the generator equals real data.

Figure 8.4: Detailed architecture of our novel conditional generative adversarial network for
self-secured control.

Selection of GAN architecture for the control design would be mainly due to the following

factors: 1) competition between two networks can provide faster convergence; 2) two net-

works are already being trained for purposes required for a secured control design; 3) the

model will be more robust towards any attack model especially adversarial examples.
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Here in this chapter, both neural networks need to learn the physical process of the control

loop for a limited number of time steps (T = 6). The data is sampled from the signals of the

sensors and actuators in the control loop. The discriminator verifies whether the physical

process data for the period of T is real or fake (compromised). On the other hand, the

generator attempts to generate similar data to fool the discriminator.

To capture the current state of the physical system and make the decisions more aware of

the context, a Conditional GAN (CGAN) is implemented. Here in, the beginning portion of

the time steps (Tc = 4 < T ) is given as the condition data to both networks. Therefore, both

networks will predict based on the given condition. Furthermore, the conditional prediction

will help the generator to later do recovery prediction that will be discussed in Section 8.3.4.

8.3.2 Training and Adjusting

The main challenge of the CGAN machine learning architecture is training two neural net-

works. Both networks need to converge to an equilibrium point where none of them are

too much stronger than the other. Otherwise, the discriminator always tells the difference

between the real or fake data or the generator always generates very closely to real data.

Hence, at the train-only phase, the manufacturer is responsible to run the controller for

a certain period of time in order to train the CGAN with real data. During the training

process, two optimizations will be conducted to minimize their loss functions.

Gloss =
1

N

N∑
i=1

H (D (G (ci) , ci) , 1) (8.1)

where Gloss loss function is to minimize the mean of the cross entropy between label one (1)

and the output of the discriminator given the fake generated data based on condition ci over

N batch size. In other words, training the generator to fool the discriminator.
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Dreal
loss =

1

N

N∑
i=1

H (D (xi, ci) , 1) (8.2)

Dfake
loss =

1

N

N∑
i=1

H (D (G (ci) , ci) , 0) (8.3)

Dloss = Dreal
loss +Dfake

loss (8.4)

On the other hand, Dloss loss function of is to minimize the mean of the cross entropy between

label zero (0) and the output of the discriminator given the real data and condition ci, plus

the cross entropy between label one (1) and the output of the discriminator given the fake

generated data based on condition ci.

After training the CGAN, both entropies will reach small stable values. However, the training

will not stop after the train-only phase. The CGAN will be further trained at the detect-

n-predict phase given the new batches of data sampled at run time. However, only the

consecutive batches are used for training that their probability of having no anomaly is higher

than an arbitrary defined thrust threshold (αreal) for a large period of time. Meanwhile, at the

detect-n-predict phase, the CGAN is used for anomaly detection and recovering prediction

as will be discussed in the following.

8.3.3 Anomaly Detection

Trained CGAN includes a discriminator neural networks that is used for distinguishing

between real or fake data of the physical process. The trained discriminator captures the

real dynamic behavior of the control loop for T time steps given the conditional data for

Tc time steps. Due to competition with the generator, it does not get adapted to fake or

corrupted data and it is less biased and more tolerant to adversarial attacks.
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Any attack to the vulnerable physical system, sensor, or model will corrupt the physical pro-

cess of the control loop (see Section 8.2). Therefore, the discriminator can give a probability

of detecting an anomaly in the period of the given data x and condition c. The conditional

anomaly detection helps in capturing the state of the physical system for the last Tc time

steps to make more deterministic decision. When the probability of having no anomaly

within the given batch is smaller than the fake threshold [D (x, c) < αfake], the batch will be

labeled as an anomaly. In other words, the control loop is compromised.

Many defensive mechanisms can be implemented in case of detecting an anomaly, e.g. trig-

gering default control actions. However, we introduce a recovering prediction mechanism

that can complement or replace the current mechanisms.

8.3.4 Recovering Prediction

Trained CGAN includes a generator neural networks that is used for generating data (fake)

resembling the real data of the physical process. The trained generator captures the real

dynamic behavior of the control loop for T time steps given the conditional data for Tc time

steps. Therefore, using the generator model, the dynamic behavior of the physical system

can be predicted, when needed.

When an anomaly is detected, the current conditional data can be given to the generator

network to generate the rest of the physical data. Although the data is fake, it is very close

to the real data that might have happened when there was no anomaly. The first estimated

physical data: x̃[Tc + 1]← x̃ = G (c) will be applied to the control loop.
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8.4 Self-Secured BMS

We apply our novel CGAN machine learning architecture to an existing battery management

system to enable self-security against various attacks and vulnerabilities.

8.4.1 Attack Models

Multiple attack models are applied to the control loop of a BMS to observe the changing

dynamic behavior of the physical system.

a) Physical Attack: in this attack model, the physical system is altered, for instance the

battery cell is replaced with lower performance battery cell. The internal resistance and

capacitance of the battery cell will be higher. The behavior is not detectable by normal

BMS since the cell may still provide enough power required

b) Denial-of-Service Attack: the data retrieved from the sensors are tampered with

uniform distribution noise that is randomly generated with the probability of 20%. This

attack will directly fool the controller to observe a wrong (random) state of the system, e.g.

higher SoC or lower voltage than actually available.

8.4.2 Integrating Novel Architecture

We apply our novel CGAN machine learning architecture to an existing BMS. Voltage,

current, and power sensor values are sampled every second. They will represent the dynamic

behavior of the control loop (physical process). They will represent the I-V characteristics

of a battery cell. Moreover, the relationships between these data values should follow the

correct behavior of the control loop (without a compromised control or sensor).
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8.5 Experimental Results

To test the functionality and performance of our novel self-secured control using CGAN,

the self-secured BMS is experimented on multiple attack scenarios and the performance is

compared with a normal BMS and single generator trained individually for both anomaly

detection and recovery prediction.

8.5.1 Experiment Setup

The battery, sensors, and actuators are modeled in MATLAB. Lithium-ion battery cell 18650

has been used for the experiment. A Nissan Leaf S EV has been driven on a standard driving

cycle NEDC and ECE [107, 131] as case studies. The training and prediction of the CGAN

machine learning model has been implemented using TensorFlow in python [15]. Hence, the

control algorithms of the self-secured BMS is running in python and communicating with

MATLAB to retrieve sensor data and transmit control actions.

8.5.2 Results and Analysis

We analyze and compare the performance of the self-secured BMS in terms of model accuracy

of CGAN for training data, anomaly detection performance of the discriminator networks,

and estimation error of the generator network in prediction.

a) CGAN Model Accuracy: at the train-only phase, the CGAN model is trained on

10,000 samples of data by driving the Nissan Leaf S EV on a standard driving cycle NEDC

and ECE. The loss function of the both networks are shown in Figure 8.5. It is shown that

after a while, the value of cross entropy for both loss functions reaches a stable value, when

they have captured the physical process thoroughly. There might be new data samples at run
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time that the models have not captured and there should be a peak in the error. However,

these will not be detected as anomaly since they are higher than the fake threshold.

Figure 8.5: CGAN generator and discriminator loss function at train-only phase reaching
equilibrium point.

The performance shown in this chapter is the result after tuning the CGAN machine learning

networks by optimizing multiple hyper parameters. The size of the inputs the networks are

Tc = 4 and T − Tc = 2 multiplied by the number of sensors (3). The discriminator has one

hidden layer with 360 neurons and the generator has one hidden layer with 1200 neurons.

The dimension of added noise in the generator is 15. These parameters are adjusted such

that the models do not over fit the data and can reach equilibrium point.

Figure 8.6: Performance of the discriminator in detecting DoS and physical attack.

b) Anomaly Detection: at the detect-n-predict phase, we apply two attack models (see

Section 8.4.1) and observe how the self-secured BMS detects them. Figure 8.6 illustrates

the metric that the discriminator predicts the behavior to be correct. When there is no

attack it is in a normal range. However, when the behavior is corrupted in a compromised
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control, the values fall below the threshold as shown in the figure. The threshold is defined

based on the minimum value achieved in the train-only phase. The denial-of-service attack

happens 20% of the time with a uniform distribution. It is shown that 83% of the attacks

are detected. The physical attack is much harder since the behavior is complex to capture.

However, our self-secured control is able to detect the attack by identifying the fake behavior.

It has been seen that the single generator technique would not be able to detect more 65%

of the attacks. Since the decision is mainly based on the error of the prediction and current

state, it does not capture behavior change when there is anomaly.

c) Prediction Recovering Error: at the detect-n-predict phase, we apply two attack

models (see Section 8.4.1) and observe how the self-secured BMS recovers from the detected

anomalies by predicting. The error of the predicted values from the generator is compared

with the real values of the physical system at the run-time detect-n-predict phase. Fig-

ure 8.7 shows the probability density of the prediction error. As shown in the figure, the

estimation error when a physical attack happens, is more deterministic than DoS. This is due

to the fact that the physical behavior is compromising the system in a more deterministic

way than a random number jamming a data (DoS). The average prediction error resulted

from the generator is about 21% which is significantly good for a model which has no prior

knowledge of the system. The error has decreased compared to a single generator which

was 29%.

Figure 8.7: Performance of the generator in terms of the prediction error when an attack
happens.
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8.6 Concluding Remarks

Current CPS and their control loops are vulnerable to attacks from sensors/actuators, un-

known biases. and predictions in the control models. These vulnerabilities may cause the

state of the physical system to sway to an unstable state, e.g. battery catching on fire. Cur-

rent security solutions such as cryptography do not address these attacks from the physical

domain. Hence, in this chapter, we have proposed a novel machine learning architecture

using CGAN to enable a self-secured control. CGAN containing of two neural networks will

capture the dynamic behavior of the control loop in order to detect any anomaly resulted

from the attacks, and to recover from the attack by predicting the correct state of system.

We experimented our novel architecture on a self-secured BMS by driving a Nissan Leaf S

on NEDC, ECE driving cycles. The self-secured BMS could detect the added attacks to

the system with 83% accuracy and the recovering prediction error has been 21% on average

which improved by 28% and 8%, respectively.
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