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ABSTRACT OF THE DISSERTATION

Design Automation of Continuous Flow-Based Microfluidic Biochips

by

Jeffrey Michael McDaniel

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, August 2016

Professor Philip Brisk, Chairperson

Continuous flow-based microfluidic biochips use actively controlled valves to manipulate the

flow of fluids through components and channels to automate biochemical protocols. The current

state-of-the-art design practices require biochemists with no engineering experience to manually

design these devices. This process severely limits the realistic complexity a device can have,

limiting the applications they can be used for. These devices can be viewed as a netlist of

components and their interconnections, along with a protocol to be performed, similar to a how

an integrated circuit can be abstracted. This thesis introduces an end to end tool-chain capable

of taking a high level biochemical protocol and automatically generating a device design that can

be fabricated to perform that experiment. This is done through the use of design automation

algorithms adapted from the electronic design automation (EDA) industry.
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Chapter 1

Introduction

Microfluidics-based biochips have become an actively researched area in recent years.

These devices, known as laboratory-on-a-chip (LoC) or microfluidic total analysis systems

(µTAS), manipulate fluids at the micro- or nano-liter scale to automate biochemical experi-

ments. These devices fall into several different categories, digital microfluidic biochips (DMFB),

paper-based microfluidic devices, and continuous flow-based microfluidic devices. The focus of

this thesis is on continuous flow-based microfluidic devices.

1.1 Continuous Flow-Based Microfluidic Devices

In the continuous flow paradigm, as the name suggests, the device is made up of

channels through which the samples continuously flow. This can be particularly useful in cell

culturing where a medium needs to be flow over the cells to provide nutrients for growth in a

controlled manner. These devices were originally passive, fluid would be either flowing through

the entire device or not flowing at all, but With the advent of microfabrication techniques

researchers were able to integrate active valving to control the flow of fluids. This enabled the

development of biochemical components (e.g., dispensers, filters, mixers, separators, detectors)
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which could be integrated on the device to perform more complex biochemical experiments [80].

These microsystems offer several advantages over the conventional biochemical analyzers, e.g.,

reduced sample and reagent volumes, reduced reaction time, ultra-sensitive detection and higher

system throughput with several assays being integrated on the same chip [86].

As the valving technology improved these devices became known as “microfluidic

Very Large Scale Integration” (mVLSI) devices [13]. The chip has two logical layer types:

flow layer and the control layer. The liquid in the flow layer is manipulated using the control

layer to actuate valves. Theoretically there could be multiple flow and control layers, however,

to date, the most complex chip utilizes only three layers (two control sandwiching one flow

layer) [14]. These devices are typically fabricated using a flexible elastomer such as Polydimethyl

Siloxane (PDMS) to create the valve. The two main technologies for these valves include the

microfabricated valves developed at Stanford University by Dr. Stephen R. Quake [83] and the

monolothic membrane valves developed at Berkeley under Dr. Richard A. Mathies [35].

The microfabricated valves use multilayer soft lithography to fabricate the layers sep-

arately then aligning and bonding these layers using alignment marks. This method allows for

rapid prototyping, and retains the biocompatibility properties of the PDMS. The valves are

create by having channels on the control layer cross the channels along the flow layer, as shown

in Fig. 1.1. When the control channel is pressurized, the channel expands and the thin layer

of PDMS between the flow and control channels flexes to block the flow channel, closing the

valve.

The monolithic membrane valves use chemical etching to create channels on two layers

of glass, which become the “flow” and “control” layers. The two layers of glass are aligned

and then a thin layer of PDMS is then bonded between them to create the valves as shown

in Fig. 1.2. In this paradigm, a vacuum is applied to the control channel, drawing the PDMS

3



(a) (b)

Figure 1.1: (a) The microfabricated valve from Stanford University. The bottom layer (blue)

indicates the flow layer and the top layer (red) is the control layer. (b) When the control

channel is pressurized the PDMS flexes and closes the flow channel, blocking the flow of fluids.

into the control channel, allowing the fluid to flow through the flow channel, opening the valve.

The fabrication methodologies presented above are more suited for rapid prototyping

or devices produced in small quantities, such as those used in research applications. The

processes do not scale up to mass production quantities that are needed in fields such as point-

of-care-diagnostics. These devices need to be fabricated using injection molding typically, which

leads to more complex valve technologies.

In academia, LoC devices have been used most prominently in the biomedical field

for high throughput biochemistry like drug discovery, DNA analysis, or other research appli-

cations [26, 37, 38, 40, 55, 59, 80]. However these devices have been gaining more traction in

industry for immediate point-of-care-diagnostics [19, 20, 28],food control testing [93], environ-
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(a) (b)

Figure 1.2: (a) The monolithic membrane valve naturally closed and (b) when a vacuum is

applied to the control channel the membrane flexes, opening the valve.

mental monitoring [23, 48] (e.g., air and water samples) and biological weapons detection [30].

The following are some prominent example applications for flow-based LoC devices:

• Drug Discovery: LoC devices allow massively–parallel, high throughput testing of molecules,

which is ideal for drug discovery. For example, in order for the hepatitis C virus to pro-

liferate one of its proteins needs to interact and bind with the RNA (Ribonucleic acid).

The flow-based chip in [26] has been used to screen over 1,200 small molecules to test

if such a protein-RNA interaction was inhibited and 14 such molecules were found. The

results were later used to develop a drug which is now in clinical trials.

• Diagnostic Testing: The biochip in [19] has been designed for testing HIV and syphilis.

The chip is cheap, easy to use, requires only micro-litres of the blood sample and it

simultaneously tests for HIV and syphilis giving out the result within 20 minutes. The

chip has been utilized successfully in Rwanda to test hundreds of locally collected human

samples. In this chip, microfluidic procedures of fluid handling and signal detection have

been integrated into a single, easy to use, point-of-care device that replicates all the steps
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of the current state-of-the-art, at a lower material cost and without trained interpretation

of the results [19].

• Prenatal Screening: In [20], proof of concept studies for a chip that can be used for non-

invasive prenatal test to test for chromosomal abnormalities have been reported. The

mothers blood is used to measure the fetal DNA (Deoxyribonucleic acid). This chip

has been used to successfully identify cases of trisomy 21 (Down syndrome), trisomy 18

(Edward syndrome) and trisomy 13 (Patau syndrome) [20]. A company, Verinata Health

, was launched earlier this year to make this technology available to general public and

has since been acquired by Illumina [5].
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Chapter 2

Related Works

During the last decade, a significant amount of work has been carried out on the

individual LoC components as well as the entire platforms [25, 57, 60]. The manufacturing

technologies used for the flow-based biochips has advanced faster than Moores law [39] in terms

of how many valves can be integrated on a single device. Although these devices are becoming

more complex everyday, Computer Aided Design (CAD) tools are still in their infancy. Initial

CAD research has been focused on device-level physical modeling of components [77, 52] where

designers are using full-custom and bottom-up methodologies involving many manual steps to

implement these chips.

Currently, researchers manually map the applications to the valves of the chip using

some custom interface (analogous to exposure of gate-level details in microelectronics) [79]. The

manual process is quite tedious and needs to be repeated every time a change is made either

to the chip architecture or the biochemical application. For larger chips and applications,

the process can easily result in inefficient architectural mappings. As the chips grow more

complex (commercial biochips are available which use more than 25,000 valves and about a

million features to run 9,216 polymerase chain reactions in parallel [71]) and the need of having
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multiple concurrent assays on the chip becomes more significant, these methodologies become

highly inadequate. Therefore, new top-down design methodologies and design tools are needed,

in order to provide the same level of CAD support to the biochip designer as is currently taken

for granted in the semiconductor industry. The design process can take months or years for a

device which would be considered simple conceptually in the semiconductor industry.

The LoC device can be abstractly viewed as a netlist of components and the inter-

connections between them, akin to the way an application specific integrated circuit (ASIC) is

viewed. In this paradigm the adders, multipliers and memory units are replaced with mixers,

heaters and storage units, and the wires are replaced with channels containing volume. Their

are many similarities, however, and researchers have proposed significant work on top-down

synthesis methodologies for microfluidic devices that utilize algorithms from the semiconductor

industry and adapt them to the new constraints.

The system level specifications of the device (e.g., chip area, fabrication technology)

and the application (e.g., dependency graph) are taken as the input. The mVLSI design flow

starts with generating a schematic design of the biochip. Minhass et. al proposed a topology

graph-based system-level model of a biochip architecture, independent of the underlying biochip

implementation technology in Ref. [66]. This is followed by the physical design of the flow

layer, consisting of placement of the components [68, 63, 82, 72] and routing of flow channels [68,

58, 41] while following the design rules. Researchers have also proposed integrated placement

and routing approaches for the flow layer [68, 72]. The routing latencies for the flow fluids

between operations can now be estimated using the channel lengths and geometries and specific

fluid properties (e.g., viscosity). These latencies, and operation time, are used for application

mapping of the given biochemical application onto the biochip architecture and the optimized
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Control
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Figure 2.1: The mVLSI design flow from a system specification a schematic design is generated.

The physical design of the flow layer is then placed and routed and the application is mapped to

the architecture. The control layer is synthesized, and optionally optimized, before the control

layer is routed. Finally the device is ready for fabrication.

schedule for its execution is generated. Application mapping and scheduling have been proposed

in [66, 82, 24, 67].

If the desired application requires only a passive device to be completed then a fab-

rication specification can be generated at this point. If active control is required, then the

control information (which valves to open and close at what time and for how long) can now be

extracted. The control synthesis step uses optimization schemes [68, 42, 92] to minimize the

external pressure sources required by the control layer, reducing the macro-assembly around

the chip. This is followed by the control layer routing [41, 42]. The finalized device is then

ready to be sent to fabrication. The fabrication process may introduce defects, which could lead

to costly application failure (due to high reagent costs and hard-to-obtain samples). Hence,

testing techniques [43] have been proposed to screen the chips after fabrication. This process

is typically iterated over several times before a reliable architecture can be fabricated.
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Chapter 3

Overview

Figure 3.1 shows the tool-chain flow described in this thesis. The flow is split into

several sections separated by the dashed boxes; the high level language compilation on top,

followed by device assembly, programming, and simulation on the bottom left, and finally the

physical synthesis on the bottom right. The top level input to the system is a high level language

assay specification of the experiment to be run. The BioCoder language [11] was extended

in Ref. [62] to apply to LoC devices and their constraints. The specification is then compiled,

generating an intermediate representation (IR) in a virtualized assembly language [62] and

javascript object notation (JSON). The IR encodes a sequencing graph of the operations

to be performed and their dependencies in the form of a directed acyclic graph (DAG). This

sequencing graph, combined with the available entity libraries is input into the architecture

synthesis step to allocate the necessary components and specify their interconnections. This

generates an LoC architecture specification in the microfluidic Hardware Design Language

(mHDL). Note: If the user wishes to describe a device architecture without a specific experiment

in mind the mHDL language can be used and the previous steps can be skipped.
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The LoC device can be abstractly viewed as a LoC Netlist of components and their

interconnections. This abstract view is encoded in a JSON formatted IR which can be gen-

erated from the mHDL Compiler. This netlist is fed into the application mapping and

debugging stage which performs the scheduling of the application onto the architecture. The

scheduling of the application produces a device-specific assembly language [62] which can

be used to generate the device control program through the device specific assembler

or used in the performance simulation to generate an execution trace of the application

being performed on the given architecture. The execution trace can be used to iterate through

designs before fabricating the final design, a much more expensive process.

The LoC Netlist is also used to initiate the physical synthesis process, shown on the

bottom right. This process begins with the placement and routing of the flow layer(s) in the

flow layer physical design step. The control valves are then deterministically placed on the

device in the control synthesis step. The control valves can optionally be optimized during

this step to reduce the number of external pressure sources needed to drive the device. The

control layer physical design consists of placing the external pressure sources on the device

and routing the corresponding channels between each pressure source and the control valve(s)

it drives. Finally the design is completed and the last step is to generate a file that can be used

to fabricate the device. A scalable vector graphic (SVG) file can be used to generate the masks

necessary for the soft lithography and chemical etching processes used for the microfabricated

valve and monolithic membrane valve technologies (respectively). A stereolithograpy (STL) file

can be generated as well if the desired fabrication technology is injection molding, used most

commonly in industry, or 3D printing, used for rapid prototyping typically.
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Chapter 4

Preliminaries

4.1 Models

4.1.1 Architecture Model

Figure 4.1 shows the functional view of a flow-based biochip with five inputs, five

outputs, two mixers, one heater, one filter and one detector. Physically, the biochip can have

multiple layers, but the layers are logically divided into two types: flow layer(s) and control

layer(s). The liquid in the flow layer is manipulated using the control layer.

The architecture is represented as a device netlist, or graph, D = (V,C) where V

is the set of vertices, or nodes, and C is the set of connections with cij being a connection

between vi and vj ∈ V . The set V is made up of two types of nodes, S ⊂ V represent-

ing the switches in the device and M ⊂ V representing the non-switch components. S and

M are disjoint sets such that S ∪ M = V . In Fig. 4.1, V = {S,M : s1 . . . s11 ∈ S and

In1 . . . In5, Out1 . . . Out5,Mixer1,Mixer2, Det1, Heater1, and Filter1 are the m ∈ M}. The

connection between In1andS1 can be represented by cIn1,s1 ∈ C.
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Figure 4.1: Functional view of an LoC with five inputs, five outputs, two mixers, one heater,

one filter, one storage container and eleven switches.

This model of the given architecture allows us to abstract away the finer details and

focus on the overall design of the device. The nodes in this graph representation of the architec-

ture, however, are not individual points but microfluidic components with positive dimensions.

Akin to the semiconductor where gates are made of transistors, and more complex units are

made up of these gates, the nodes in the architecture model represent more complex units,

entity types that are made up of the basic building block of the LoC, the valve. In Fig. 4.1

Mixer1 and Mixer2 are both of type Mixer, Fig. 4.3. To make the system easier to use and

more extensible an entity model E = (F,H) is introduced where F is the set of functions the

entity is capable of performing and H is the dimensions of a bounding box for the entity defined

as H := width× height× depth or w× h× d. Note: The architecture model can be viewed as a

set of layers, each of which represented in 2D space. In this model the depth of the entities is

ignored until generating the final fabrication specification.
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(a) (b)

(c)

Figure 4.2: Switch configurations with (a) two directions (b) three directions and (c) four

directions.

(a)

(b)

(c)

Figure 4.3: (a) Schematic view of a mixer component (b) conceptual view of the mixer and (c)

operational phases of the mixer
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The Mixer entity type has one function f ∈ F (mix) which is defined by its five

operational phases shown in Figs. 4.3a and 4.3c. The first two phases represent the input of

two fluid samples that need to be mixed, followed by the mixing phase. The mixed sample is

then transported out of the mixer in the last two phases. For the first fluidic input (phase Ip1,

see Fig. 4.3a), valves v1, v2, v7 and v8 are opened (together with v4, v5, v6 ), the pump at the

Input is activated and the liquid fills in the mixer upper half.

In the next phase Ip2, the second fluid sample fills the lower half of the mixer (Fig. 4.3c-

i). Once both halves are filled, the mixer input and output valves (v1andv8 ) are closed while

valves v2, v3, v7, v9 are opened and the mixing operation is initiated (Fig. 4.3c-ii). Valve set

{v4, v5, v6} acts as a peristaltic pump. Closing valve v4 inserts some pressure on the fluid inside

the mixer, closing valve v5 creates further pressure, then as valve v6 is closed valve v4 is opened

again. This forces the liquid to rotate clockwise in the mixer. The valves are closed and opened

in a sequence such that the liquid rotates at a certain speed accomplishing the mixing operation.

Next, in phase Op1 (Fig. 4.3c-iii), half of the mixed sample is pushed out of the mixer towards

the rest of the chip and in Op2 (Fig. 4.3c-iv), the other half is transported to the waste.

Table 4.1 shows the entity library L = E(F,H) of six commonly utilized microfluidic

components [10]. The geometrical dimensions H are given as lengthwidth and are scaled, with a

unit length being equal to 150 µm, i.e., a length of 10 in Table 4.1 corresponds to 1500 µm. The

different operational phases listed for a component may or may not be executable in parallel

depending on how the component is implemented. E.g., the mixer presented here has only one

input port to receive both input fluids, thus only one input phase can be activated at a time.

The individual components of the LoC device are represented using the component

model m = (e, x, y) where (x, y) is the location of the top left corner of the component on the

layer and e ∈ E is the entity type of the given component. The size and functionality of the
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Table 4.1: Entity Library (L)

Entity Operational Phases Exec. Time H

Mixer Ip1/Ip2/Mix/Op1/Op2 0.5 s 30× 30

Filter Ip/Filter/Op 20 s 120× 30

Detector Ip/Detect/Op 5 s 20× 20

Separator Ip1/Ip2/Separate/Op1/Op2 140 s 70× 20

Heater Ip/Heat/Op 20 ◦C/s 40× 15

Storage Ip or Op – 90× 30

component can be extracted from the entity type. The component model m is also assumed

for switches s ∈ S where the entity type e is a switch in the fabrication technology.

Transporting a fluid through the flow channels requires (i) the fluid that needs to be

transported; this fluid is already inside the chip as the output of an operation, or it has to

be dispensed from a fluid reservoir connected to an input port, such as In1 in Fig. 4.1, (ii) a

pressure source that can move the fluid, typically obtained with an off-chip pump; alternatively

it can be generated on-chip by a peristaltic micropump and, (iii) an output port to remove

the displaced fluid. Note: The displaced fluids can remain on-chip but this would lead to the

problem of “dead fluid management”, i.e., moving displaced fluids around, such that they do

not interfere with the chip operation.

In an active LoC the valves are represented on the flow and control layer as they

indicate a crossing point between a flow layer channel and a control layer channel. These valves

are used to control the transportation of fluids through the device. The control layer model

captures the valve actuation details required for the on-chip execution of all operational phases
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of an entity. Table 4.2 presents the control layer model of the pneumatic mixer presented

in Fig. 4.3a. In Table 4.2, the valve activation for each phase is shown, 0 representing an open

and 1 a closed valve. The status Mix shown for the valve set {v4, v5, v6} on row 4 of Table 4.2

represents the mixing step in which these valves are opened and closed in a specific sequence to

achieve mixing. LoC devices have many methods of control, however these methods all require

the same information, represented in the actuation sequences of the control layer model.

The paths the fluids take through the devices are defined as a set of routes R where

each route ri ∈ R is a set of components m ∈ M and connections c ∈ C in the architecture.

In Fig. 4.1, r(In1,Mixer1) = {In1, cIn1,s1 , s1, cs1,s2 , s2, cs2,Mixer1 ,Mixer1} is the route from

In1 to Mixer1. The entire flow path is occupied, and unusable, until the completion of the

fluid transportation. This imposes routing constraints on the device; two routes are mutually

exclusive if they share any component or connection along their respective routes, i.e. routes r1

and r2 are mutually exclusive if ∃vi ∈ V or cij ∈ C such that vi ∈ r1 and r2 or cij ∈ r1 and r2.

If a route flows through a channel cij it will by definition flow through vi and vj and so the above

can be simplified to only look at all v ∈ r1 and r2. Let r1 = r(In1,Mixer1) from above and

r2(Heater1,Mixer1) = {In1, cIn1,s1 , s1, cs1,s2 , s2, cs2,Mixer1 ,Mixer1}, r1 and r2 are mutually

exclusive because they share s2 and Mixer1.

Now with the routes defined, the time it takes for the transportation of a fluid, unlike in

semiconductors, is non-trivial. The latency of a connection is defined with l(cij) and the latency

of an entire route with l(ri) =
∑

cij∈ri l(cij). It is important to note here that the routing latency

can only be known after the device is fully placed and routed. Prior to placement and routing,

an estimate for the routing latency can be used.
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Table 4.2: Mixer: Control Layer Model

Phase v1 v2 v3 v4 v5 v6 v7 v8 v9

1. Ip1 0 0 1 0 0 0 0 0 1

2. Ip2 0 1 0 0 0 0 1 0 0

3. Mix 1 0 0 Mix Mix Mix 0 1 0

4. Op1 0 0 1 0 0 0 0 0 1

5. Op2 0 1 0 0 0 0 1 0 0

Figure 4.4: Sequencing graph
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4.1.2 Application Model

The application model of the biochemical experiment, or assay, is represented as a

sequencing graph, shown in Fig. 4.4, G = (Op, E). The sequencing graph G is a directed and

acyclic graph (DAG) which is polar, i.e., there is a source vertex that has no predecessors and

a sink vertex that has no successors. Figure 4.4 shows an example of a biochemical application

model with four mixing operations (op1, op2, op7, op9), two filtering operations (op4, op8), two

heating operations (op3, op6), and two detecting operations (op5, op10). The execution times for

the operations are given in parentheses below the operation node.

The application model is bound to a specific device architecture model using a binding

function B : Op →M. Each vertex (operation opi ∈ Op) is bound to a component m ∈ M of

the architecture D. The switches in the architecture do not execute operations, rather they are

used for transporting fluids. The operations of the biochemical experiment have an execution

time represented with t(opi). This execution time is only an estimate of the execution time

as different components may complete the same operation in a different amount of time. A

more precise representation of the execution time, after binding, is given by t(opi,mj), which

indicates the execution time of a given operation opi on the the component mj .

The edge set, E , models the dependency constraints in the assay, i.e., an edge ei,j ∈ E

from opi to opj indicates that opj is dependent on opi. The fluid output of opi must be used as

an input for opj and so it must be transported from B(opi) = mi to B(opj) = mj . If the fluid

output from opi cannot be used immediately by opj (e.g., it has to wait for another operation

to finish on component mj), it has to be stored in a “storage unit”, see Table 4.1. Each storage

unit is capable of storing one or more fluid unit samples, depending on the number of storage

channels inside the unit. Operations have one incoming edge for each input required. These

inputs correspond to the input phases (Ipx) of the corresponding component, e.g., a mixing
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operation has two incoming edges because the mixer component has two input phases (Ip1

and Ip2). Similarly, an operation has at most one outgoing edge for each output phase of the

corresponding component. If it has fewer outgoing edges than the number of output phases it

is assumed that the remaining fluids are transported to the waste.
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Part II

High Level Synthesis
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Chapter 5

High Level Languages

5.1 Introduction

In previous research, the top level input to the system is a sequencing graph represen-

tation of the assay to be executed. These sequencing graphs, however, lacked standardization

in how they were specified and the burden lay on the “programmer” to describe the sequencing

graph. In this case, the “programmer” is a biochemist with little experience in graph theory or

traditional programming models and languages. This presents a significant hurdle to overcome

when attempting to design or program one of these devices. In this section an intermediate

representation (IR) in the javascript object notation (JSON) format is presented along with

an abstract and device specific assembly language and a higher level language (HLL). These

languages are designed to standardize the interface of the algorithms in this field, and present

an easy to use interface for the biochemists. In addition to the application programming,

a microfluidic hardware design language (mHDL) based on very high speed integrated circuit

hardware design language (VHDL) is presented to enable device and entity designers to describe

novel devices at a higher level.
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5.2 Assembly Language

The assembly language is lower level language meant to interface more directly with

the system. This provides a target for future work in higher level languages, where a newly

developed language could compile into this assembly language and be provided as input to the

system. This assembly language is divided into two languages:

Abstract assembly language which abstractly describes the functionality that is desired.

This assay description is not tied to any specific device architecture or even technology.

The operations are described for the functionality that they need to perform, without

any underlying knowledge of the architecture or technology. This description needs to go

through an entity matching phase during which each operation is matched to an entity

type that is needed to perform that operation. If the entity matching phase fails then the

description is either malformed, or there do not exist the proper entities in the library to

complete that assay.

Device specific assembly language has knowledge of the underlying technology, and poten-

tially even the underlying architecture. This language initially has undergone the entity

matching phase, and the required entity types within a given technology are known. At

this point the function names and parameters are more precisely defined for the tech-

nology that the device will be fabricated in. As the LoC architecture is synthesized,

this description is improved, adding in more information about the specific components

that will be performing each operation, and including the move operations between those

components. Once the device has been synthesized completely, and the assay has been

completely scheduled onto it, this description can be used to generate a control program

to execute the assay on the fabricated device.
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5.3 Biochemical “Programming” Language

In recent years there has been more research being done into formalizing and standard-

izing a biochemical “programming” language. This formal language would enable biochemists

to specify their experiments with more determinism and reduced ambiguity, increasing the re-

producibility of experiments. Towards this end several languages were developed: the EXACT

description of biomedical protocols [78] attempted to describe the experiment actions that were

being taken in something akin to an assembly language, Aqua HLL and Aquacore Instruction Set

(AIS) [7, 6] were developed as programming language for the Aquacore software-programmable

LoC (SPLoC), a device that is similar to a field programmable gate array (FPGA) but for the

LoC domain.

The BioCoder language is a C library developed at Microsoft Research, India, which

is intended to standardize the specification and dissemination of biological protocols [11]. A

biologist specifies the protocol in C using the BioCoder library; the BioCoder compiler then out-

puts a step-by-step specification of the protocol in a manner that is fully unambiguous yet the

output has the conceptual look and feel of a recipe in a cookbook. This unambiguous recipe can

then be disseminated to other biologists in order to enhance clarity and reproducibility within

the larger research community. This language seemed to have gained the most traction with

numerous assays specified on the open source biology and biological engineering site OpenWet-

Ware.org [1]. The original language was not intended for use with microfluidic, or even lab

automation in general, although the original paper does hint at its possible use in those areas.

In [62] the BioCoder language was adjusted and targeted towards LoC devices, more specifically

to be used as a high level input to this system.
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Influenza Detection Assay:

The thermocycling protocol applied to the device consists

of 92 degrees C for 30s, and then 35 cycles of the following:

92 degrees C for 5s, 55 degrees C for 10s, and 72 degrees C

for 20s, and finally 72 degrees C for 60s, for a total cycling

time of 22 minutes. A portion of the PCR product (~60nl) is

subsequently subjected to a restriction endonuclease digestion

within the same device. The restriction digest reaction is

performed at 37 degrees C for 10 min.

Figure 5.1: English language specification of an influenza detection assay [70].

Figure 5.1 is an English language specification of an influenza detection assay [70]. As

can be seen, this is an informal method of specifying an assay, which leads to ambiguities and

errors; the BioCoder language addresses these shortcomings.

The language was modified in several ways to target microfluidic LoC devices. First,

the syntax was modernized to more closely resemble C++, rather than the older C language.

Secondly, portions of the language that were not compatible with LoC devices were eliminated,

such as support for solid substances. At present, BioCoder does not support control flow

operations, so all loops are explicitly unrolled at compile time. The BioCoder specification of an

assay makes no underlying assumption about the target technology (Loc devices, or something

else) or about the target architecture (e.g., how many mixers are available, interconnection

schemes, etc.). A device-specific compiler that targets known LoC devices must determine if

the device has sufficient architectural components and interconnections to execute the protocol.

Figure 5.2 presents the BioCoder specification of the influenza detection assay Fig. 5.1.

The fluids are first initialized with their respective names and volumes. Physical resources

that perform operations are viewed as “abstract containers,” to designate storage of fluid;

the synthesis process will allocate physical containers in the LoC device which will store the

physical fluid. The remainder of the BioCoder program specifies the operations to be performed;

26



these operations are compiled into an intermediate representation of the sequencing graph for

the described assay. The dependencies (E) are extracted to complete the sequencing graph

imposing a partial ordering on the operations.

5.4 Microfluidic Hardware Design Language (mHDL)

The LoC devices are not always derived from a specific application model, at times bio-

engineers will want to specify a device or entity model independent of a particular application.

These could be novel devices to perform a particular “step” for an assay or to execute an entire

class of assays for reuse in a lab setting. To this end, a higher level microfluidic hardware design

language (mHDL) was developed in [61].

The mHDL syntax, shown in Fig. 5.3, is based on VHDL and has been designed to

be easily extensible to deal with the creation of new entity types as well as the development or

discovery of new fabrication technologies. The flexibility of the language comes from the use of

a library of entity files during the synthesis process so the mHDL syntax can grow and evolve

with the introduction of new LoC entity types and fabrication technologies.

The mHDL file starts by naming the current chip design, shown in the Design rule

in Fig. 5.3. The entity types are then declared in the entities section, followed by a list of

components and the connections between those components. The engineer may optionally

declare intermediate lines to be used, if finer grained control of the routing is desired.

The entities can be either active or passive, whether they require valves for control

or not; an active component is declared with control while a passive component is declared

without control. This annotation simplifies the internal representation and allows the system to

identify and work with control and flow layers separately. Entities are declared with the same

name as the library file associated with them, but without the file extension. The components
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static BioCoder* assayFluDiagnosis() {

BioCoder* FluDiagnosis = new BioCoder("Influenza Detection");

Container tube1 = FluDiagnosis->new_container(STERILE_MICROFUGE_TUBE2ML);

Fluid F1 = FluDiagnosis->new_fluid("PCR_Reagents",Volume(240,UL));

Fluid F2 = FluDiagnosis->new_fluid("DNA",Volume(600,UL));

Fluid F3 = FluDiagnosis->new_fluid("RDReagents",Volume(500,UL));

Fluid F4 = FluDiagnosis->new_fluid("ReproGel",Volume(100,UL));

FluDiagnosis->measure_fluid(F1,Volume(240,UL,tube1);

FluDiagnosis->measure_fluid(F2,Volume(600,UL,tube1);

FluDiagnosis->vortex(tube1,Time(1,SECS));

for(int i = 0;i < 35;i++) {

FluDiagnosis->incubate(tube1,92,Time(5000,SECS));

FluDiagnosis->incubate(tube1,55,Time(10000,SECS));

FluDiagnosis->incubate(tube1,72,Time(20000,SECS));

}

FluDiagnosis->incubate(tube1,72,Time(60000,SECS));

FluDiagnosis->measure_fluid(F3,Volume(500,UL,tube1));

FluDiagnosis->vortex(tube1,Time(1,SECS));

FluDiagnosis->store_for(tube1,37,Time(60000,SECS));

FluDiagnosis->measure_fluid(F4,Volume(100,UL,tube1));

FluDiagnosis->vortex(tube1,Time(1,SECS));

FluDiagnosis->electrophoresis(tube1);

FluDiagnosis->drain(tube1,"B3");

FluDiagnosis->end_protocol();

}

Figure 5.2: BioCoder specification of the influenza detection assay.

28



Design:

DEFINE ident entities components lines connections

entities:

ENTITY LIST: ident WITHOUT CONTROL; END LIST;

WITH

components:

COMPONENT LIST: ident OF ident ; END LIST;

ident : ident ;

,

lines:

LINES LIST: ident ; END LIST;

connections:

CONNECTION LIST; ident CONNECTS TO sink ; END LIST;

sink:

ident AT number BLOCKS , sink ;

ident:

[ˆ ,:;\nt]

number:

[0-9]

Figure 5.3: A syntax diagram for mHDL. This language provides support for defining the

entities, declaring the components, and describing the interconnection between components.
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list declares each component and requires an entity type to be specified since the entity type

contains much of the information needed by the system. The syntax allows the user to declare

one or more components having the same entity type within a single statement.

The connections list defines the channels that connect the individual components.

Specific intermediate lines can be optionally declared for clarity and finer grained control over

the routing of the device. Each connection is directional with a single source component that

injects fluid into it (specified first), followed by a list of sinks, which receive fluid. A single

source can connect to multiple sinks regardless of the connectivity of the respective components.

During the architectural synthesis and switches that are necessary will be inserted. Multiple

directional connections with difference sources can be used in lieu of a bi-directional channel.

The blocks keyword enables the engineer to provide estimates of the length of a fluid

channel to enable simulation of fluid transfer latencies; the exact length is not known until the

physical layout of the LoC has been finalized. This construct can also be extended in the future

to enforce specific distances between components. Within the fields of biology and chemistry

their are specific reactions that must occur within a specified amount of time or the results

become nullified. This is an initial step in that direction.

5.5 Technology Files

The system is designed to be able to synthesize LoC devices targeting multiple fabri-

cation technologies. This enables an engineer to compare the trade-offs of devices and decide

the best fit for their need. More importantly it allows engineers to develop new fabrication

technologies, and to add them to the system with ease. Technology files, which describe the

specific requirements and fabrication constraints, are input to the system. To develop a new

fabrication technology, a technology file must be created and added to the system. Once the
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Figure 5.4: Illustration of an LoC that performs influenza detection [70]; the key observation

here is that the LoC can be viewed as a netlist of components and their interconnection.

file has been added to the system, that technology can be used on future LoC device designs.

Technology files contain the fabrication constraints including spacing requirements, size and

I/O restrictions, and timing to open and close a valve. An example of fabrication requirements

for the Stanford foundry [3] is shown in Tables 5.1 and 5.2.

5.5.1 Entity Libraries

The different technologies that are made available have different entities which they

support and different valves they utilize. The valves are the microfluidic equivalent to gates,

and the entities are circuits that are built from these basic gates to perform specific operations,

in place of adders and multipliers there exist mixers and heaters. Interestingly enough, the

microfluidic equivalent of adders has been developed to perform computation [45]. The entities

are designed to perform the operations necessary to execute the assays, and as engineers continue

to develop novel ways to perform biochemical operations on microfluidic devices, more entities

will need to be inserted into the system. These entities can be either passive, with no valves or

controllable elements, or active, with valves and/or controllable elements.
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Influenza Detection LoC mHDL Specification

define flu_diagnosis:

entity list:

storage without control;

valve with control;

mixer with control;

electrophoresis with control;

PCR with control;

RDR with control;

Exhaust with control;

end list;

component list:

valve: V1,V2,V3,V4,V5,V6,V7,A4,A6,B2,RDvalve;

PCR_chamber of PCR;

RD_chamber of RDR;

Electrophoresis_section of electrophoresis;

B3 of Exhaust;

Storage: L1,L2,L3,PCR_product,B1B4;

end list;

connection list:

L1 connects to V1 at 10 blocks;

V1 connects to V3 at 100 blocks;

L2 connects to V2 at 10 blocks;

V2 connects to V3 at 120 blocks;

V3 connects to V4 at 40 blocks;

V4 connects to PCR_chamber at 40 blocks;

PCR_chamber connects to V5 at 40 blocks;

V5 connects to A4 at 110 blocks;

A4 connects to PCR_product at 10 blocks;

PCR_product connects to A6 at 10 blocks;

A6 connects to RDvalve at 50 blocks;

L3 connects to V6 at 10 blocks;

V6 connects to RDvalve at 100 blocks;

RDvalve connects to RD_chamber at 10 blocks;

RD_chamber connects to V7 at 30 blocks;

V7 connects to B1 at 10 blocks;

B1 connects to B2 at 20 blocks;

B2 connects to Electrophoresis_section at 10 blocks;

Electrophoresis_section connects to B4 at 10 blocks;

B2 connects to B3 at 10 blocks;

end list;

end define;

Figure 5.5: The mHDL specification of the netlist from the chip shown in Fig. 5.4
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Table 5.1: Valve area and approximate closing pressure from the Stanford foundry [3].

Push-down Valve

Valve Area Flow Chan-
nel Height

Closing
Pressure

100 µm× 100 µm 5 µm 10psi

100 µm× 100 µm 10 µm 10psi

100 µm× 100 µm 15 µm 10psi

Table 5.2: Critical design rules from the Stanford foundry [3].

Parameter Value

Min. overall chip thickness 3 mm

Max. overall chip thickness 7 mm

Min. flow channel height 5 µm

Max. flow channel height 15 mm

Min. possible feature width 15 µm

Max. possible feature height 150 mm

Nominal control channel height 10 µm or 25 µm

Min. spacing between borders 2 mm

Min. spacing between punch holes (20 gauge) 1500 µm

An entity E = (F,H) is defined with a list of the biochemical operations, or functions,

it can perform F and the dimensions of the bounding box of the footprint of the entity H =

w×h×d. The locations of the Input/Output ports along the edge of the bounding box must also

be defined for the routing step. If the entity is an active entity (contains valves), the location

of those valves must also be specified. These locations are used when routing the control layer

of the device. The functions also contain a list of actuation sequences that define the order in

which the valves must be actuated to perform that specific operation. These functions are used

by the compiler when mapping a given application model to an architecture model, or when

synthesizing a new device design from an application model.
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Part III

Flow Layer
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Chapter 6

Flow Layer Synthesis

An LoC device is made up of two logical types of layers, flow and control. These layers

are similar in many ways, but also provide their own unique opportunities and constraint. In

this chapter the flow layer is discussed in detail, and the algorithms for the placement and

routing of these layers are introduced. These algorithms may sometimes be reused during the

control layer synthesis, discussed in the relevant chapter.

A device netlist D, represented as a graph, can be partitioned into subgraphs, Di ⊂ D,

to represent the different layers, where Di are disjoint sets such that dDi = D. The notation Dfi

is used to represent the flow layer(s) containing a subset of the switches si ∈ S and components

mi ∈ M . The flow layer contains all of the switches and the components of the device, the

associated control layer(s) will be synthesized from the resulting placed and routed flow layer.

The flow layer netlist is viewed abstractly as a graph, and so can be thought of, to

some extent, as analogous to a circuit in VLSI. This abstraction allows us to borrow, and adapt,

algorithms from the well established EDA industry for the placement and the routing of the

device. Microfluidic LoC devices have been designed directly using electric circuit analogies

by Kwang W Oh et. al [69] and traditional VLSI simulation software has been used to verify
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industry designs. However, unlike traditional VLSI, the routing latencies of fluids makes up

a non-trivial portion of the assay execution time. Additionally, once a channel has been used

to route a fluid, that channel may be contaminated and unable to be used to route future

fluids until it has been washed. These constraints complicate the placement of routing of these

devices.

The following sections first introduce several placement algorithms, simulated anneal-

ing and planar embedding. The routing algorithms, maze routers and network flow are then

introduced. Finally, a combined scheduler and router is introduced and integrated washing of

the device is discussed.

6.1 Simulated Annealing

The process of design space exploration involves altering a design to improve the

quality of the design. In greedy algorithms this process of continually improving the design

can lead to finding locally optimal designs, shown in Fig. 6.1. At this point the algorithm,

unable to accept a worse design, is stuck with a suboptimal design. The simulated annealing

process uses randomization to overcome this shortcoming. The components on the device are

manipulated randomly using prescribed ‘move” operations. The cost of the resulting solution

is then calculated, and if the solution is better it is immediately accepted. If the new solution

is worse, however, it may still be accepted based on a random number. This allows the design

space exploration to “climb” out of locally optimal valleys and continue searching for a more

globally optimal solution. As the name suggests, the algorithm follows a predefined “cooling”

schedule, where it will initially accept worse solutions with a high probability, but as the

algorithm progresses a worse solution is less likely to be accepted, allowing the solution to

progress towards a more globally optimal solution.
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Figure 6.1: A design space typically contains many locally optimal solutions. The process of

simulated annealing allows for worse solutions to be selected to “climb” out of these valleys and

find the globally optimal solution.
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Simulated annealing is a meta-heuristic which describes a process more so than an

actual algorithm. To implement simulated annealing several things need to be defined 1. initial

solution, 2. the “move” operations, 3. a cost function to determine solution quality, and, 4. a

cooling schedule Due to it’s flexibility, simulated annealing has had a long history of success in a

number of fields including number partitioning [47], graph coloring [46], and more importantly

in standard cell VLSI [76] and FPGA placement [85]. Prior work in microfluidics also claims to

use simulated annealing [68], although the details are not discussed. This chapter discusses the

details of a simulated annealing implementation for placement of the flow layer of LoC devices.

6.1.1 I/O Region Segregation

The physical area of the LoC device is represented as a grid, where the pitch defines

the granularity of the perturbation operations; in this chapter several pitches are utilized and

discussed. The components mi occupy multiple nodes in the grid. As shown in Fig. 6.2a, the

grid is partitioned into four region types: input, output, center, and invalid. The placer is

constrained to place I/O punch holes in the input and output regions respectively, and all other

components in the center. The invalid regions are isolated in the corner of the chip and no

components or I/Os may be placed there as placing components in the chip corners often leads

to routing failures, as shown in Fig. 6.2b. It is assumed initially that all components occupy

one rectangular unit of grid area; this constraint is relaxed in Section 6.1.4. Non-rectangular

components, such as the circular mixer in Fig. 4.3, are represented by their bounding-box as

defined in the entity library. The channel routes are not known during placement, so the routing

estimate assumes all channels start at the center point of the source component, and end at the

center point of the sink component, as shown in Fig. 6.3a. This provides an estimate on the
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length of the channel, using the manhattan distance, and the number of intersecting channels.

Figure 6.3b shows the resulting LoC layout after routing has been performed.

6.1.2 Perturbation

This simulated annealing placer implementation employs two different perturbation

operations, shift and move. First, a component mi ∈ M is chosen at random. Then a shift or

move perturbation is chosen randomly and with equal probabilities. Throughout the simulated

annealing process, all solutions must be legal, therefore any perturbation that shifts or moves

mi into an incompatible grid region or off the grid, is suppressed. The shift direction (up,

down, left, right) is chosen randomly with equal probabilities. Similarly, if a move operation

is selected, the target location in the grid is chosen randomly; all target locations have equal

probabilities. If the target position randomly chosen for mi is empty, then mi is moved there;

if the target position contains another component, mj , then mi and mj swap positions. This

becomes more complex when heterogeneous component sizes are considered in Section 6.1.4.

After each perturbation, the cost function that characterizes the placement solution is updated,

and the perturbation is accepted or rejected: if the cost function improves, then it is accepted

outright; if not, it may still be accepted based on a probabilistic calculation, as per the typical

behavior of simulated annealing [76].

6.1.3 Cost Function

The cost function assesses the quality of the placement of the components on the grid;

the foremost concern is route-ability. Three metrics are considered: (i) the estimated number

of intersections, (ii) total edge length, and (iii) the sum of the squares of each edge length.
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(a) (b)

Figure 6.2: (a) The mLSI grid is partitioned into input, output, center and invalid regions. (b)

Placing a component in an invalid region may cause a routing failure.

The intuition behind reducing the number of intersections as each intersection in-

troduces additional valves, and potentially additional external pressure sources, as shown

in Fig. 6.3b. In most fabrication technologies, there is a fixed limit on the number of punch holes

that a device can support, defined by the foundry design rules. At the Stanford foundry [3],

this limit was at thirty-five at the time of writing, which can impose a significant constraint

in fabrication. Additionally, each additional I/O adds another net to the control layer, which

complicates the control layer synthesis.

The intuition underlying the total edge length metric is two-fold. First, shorter fluid

channels allows for lower fluid transportation times, which represent a non-trivial portion of the

assay execution time. Second, if a significant proportion of the device area is dedicated to fluid

channels, the structural reliability of the flow layer becomes an issue. A channel is essentially
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(a)
(b)

Figure 6.3: (a) Fluid channels are represented as direct lines between the centers of components.

The circle shows an intersection point between two lines. (b) After routing, the intersection is

converted to a 4-microvalve switch, requiring two external pressure sources (circles) and two

control channels.
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the absence of PDMS and if too little PDMS is present there is a higher likelihood that the

flow layer will collapse on itself becoming unusable. Reducing the total channel length thereby

increases the amount of PDMS present, which increases the likelihood of successful fabrication.

The intuition of summing the squares of the length of each edge was to penalize very

long routes, thereby reducing the variance in route length, leading to fairly equal spacing among

components. This could potentially improve the route-ability of the device.

Equations

Let D = (V,C) be a graph representing the netlist of the LoC device being synthesized.

Let c = (pi, pj) be an edge connecting the center points pi and pj of two components mi and

mj , where each point pk = (xk, yk) is defined in terms of its x- and y- coordinates. Let N

be the number of intersections in D. The intersection point between two non-parallel infinite

lines defined by segments c1 = (p1, p2) and c2 = (p3, p4), respectively, is the point p∗ = (x∗, y∗),

where

x∗ =

∣∣∣∣∣∣∣∣
∣∣∣∣x1 y1x2 y2

∣∣∣∣ ∣∣∣∣x1 1
x2 1

∣∣∣∣∣∣∣∣x3 y3x4 y4

∣∣∣∣ ∣∣∣∣x3 1
x4 1

∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣x1 1
x2 1

∣∣∣∣ ∣∣∣∣y1 1
y2 1

∣∣∣∣∣∣∣∣x3 1
x4 1

∣∣∣∣ ∣∣∣∣y3 1
y4 1

∣∣∣∣
∣∣∣∣∣∣∣∣

, and y∗ =

∣∣∣∣∣∣∣∣
∣∣∣∣x1 y1x2 y2

∣∣∣∣ ∣∣∣∣y1 1
y2 1

∣∣∣∣∣∣∣∣x3 y3x4 y4

∣∣∣∣ ∣∣∣∣y3 1
y4 1

∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣x1 1
x2 1

∣∣∣∣ ∣∣∣∣y1 1
y2 1

∣∣∣∣∣∣∣∣x3 1
x4 1

∣∣∣∣ ∣∣∣∣y3 1
y4 1

∣∣∣∣
∣∣∣∣∣∣∣∣

(6.1)

The length of an edge segment c = (p1, p2) is assumed to be the Manhattan Distance (MD)

between the two points:

MD(c) = |x1 − x2|+ |y1 − y2| (6.2)

The total edge length L and total squared edge length S are

L = Σc∈CMD(c), and S = Σc∈CMD(c)2 (6.3)
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The objective function, F (D), is computed as follows:

F (D) = αN + βL+ γS, (6.4)

where α, β, and γ are user-specified weights, which can be modified to alter the relative impor-

tance of each metric.

Implementation Details

The time complexity of computing the number of edge intersections is O(n2) in the

general case; however recalculating the cost for each edge after each move is unnecessary. A two-

part cost function is implemented to speed up the annealing process. First, each edge maintains

a list of the other edges that it intersects. When a component is moved or swapped, any change

in the set of intersecting edges will exclusively involve edges incident on the components that

move. F (D) is computed explicitly after the initial placement; subsequently, it is incrementally

updated.

Let C be the subset of edges that are incident on the component(s) that are moved

during a perturbation. Let N denote the number of edge intersections involving edges in C,

L′ = Σc∈C′MD(c), and S′ = Σc∈CMD(c)2 (6.5)

After moving all of the component(s) involved in the perturbation, let N ′′, L′′ and S′′ re-

spectively denote the updated values of N , L and S that are recomputed after moving the

component(s). Then the updated metrics after the perturbation are:

Nnew = N −N ′ +N ′′, (6.6)

Lnew = L− L′ + L′′, and (6.7)

Snew = S − S′ + S′′ (6.8)
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yielding an updated value for F (D), denoted as Fnew(D). If Fnew(D) is an improvement

(i.e, if Fnew(D) < F (D)), then the perturbation is accepted; if not, it may still be accepted

probabilistically in accordance with the operating procedure of simulated annealing.

6.1.4 Heterogeneous Component Geometries

Initially it was assumed that all components have uniform size; to achieve this uni-

formity, the placer preemptively pads smaller components with extra cells to ensure that all

components are of the same size, as shown in Figs. 6.4a and 6.4b. This simplified the perturba-

tion process, but yields poor area usage for LoC architectures with a large number of relatively

small components. In some cases, the placer could not find legal solutions for small LoC devices

easily placed by hand using exact component sizes.

To introduce heterogeneity, the grid pitch is reduced, allowing finer grained control

over the location and size of components. The components are still assumed to be rectangular,

using the bounding box defined in the entity library. The grid pitch is now defined as the greatest

common divisor (GCD) of the component widths and heights and the minimum spacing width

between components (a foundry design rule). Component dimensions are now recomputed as

integer multiples of the grid pitch. The heterogeneity in component sizes introduces several

complications during the perturbation operations, specifically the “swap” step within the move

perturbation operation.

Heterogeneous Swaps

Let a block be a node in the grid. The annealer randomly selects a component mi

and a target block b, which must be outside of the region encompassing mi. If b is contained

within a component, mj , then the annealer sets b to be the top-left corner of mj . Next,
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(a) (b) (c)

Figure 6.4: (a) A large component; (b) if all components require a uniform size, smaller com-

ponents are padded with extra cells; (c) alternatively, the same amount of padding is used for

each component, yielding heterogeneous sizes.

the annealer creates a region R with b as the top-left corner, and dimensions equal to the

maximum dimensions of mi and mj . If R contains blocks (nodes) from multiple grid regions

(e.g., input/center) then the swap aborts preemptively. If all components with at least one block

in R are fully contained in R, then the swap is legal; all components within R are swapped with

mi, as shown in Fig. 6.5. If any component with at least one node in R is not fully contained

within R, then the swap is aborted, as shown in Fig. 6.6.

Shifts

The annealer randomly selects a component mi and a direction d (up, down, left,

right). The shift tries to move mi one block in the direction d. A region R is created starting

in direction d from the top-left of mi. If R contains no components other than mi, the shift is

legal (Fig. 6.7); otherwise it is aborted (Fig. 6.8).
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(a) (b)

Figure 6.5: Illustration of the region formation process for a successful swap operation (a); since

both components are contained within the region, the swap proceeds (b).

(a) (b)

Figure 6.6: Illustration of the region formation process for a failed swap operation (a); since

one component is partially contained within the region, then swap aborts (b).
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(a)
(b)

Figure 6.7: Illustration of the region formation process for a successful shift operation (a); since

there are no components in the target region, the shift proceeds (b).

(a)
(b)

Figure 6.8: Illustration of the region formation process for a failed shift operation (a); since

there is a component in the target region, the shift aborts (b).
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6.1.5 Component Spacing

To ensure that components have a valid placement, there must be space between them

to accommodate fluid channels for routing. Unlike standard cells, it is not possible to dedicate

different layers of metal (PDMS) for logic (components) and wires (fluid routing channels). The

minimum spacing requirement to ensure successful fabrication is a design rule provided by the

foundry. Spacing beyond the minimum may be necessary to achieve route-ability.

Let ∆ be the spacing constraint, mi.h and mi.w be the height and width of the

component, B.h and B.w be the height and width of a block in the grid. Then the number of

blocks required for the height (H) and width (W ) of a component, including spacing, is:

H =

⌈
mi.h+ ∆

B.h

⌉
, and W =

⌈
mi.w + ∆

B.w

⌉
(6.9)

The spacing rules from Eq. (6.9) work fairly well, but led to routing failures when the LoC

device netlist incorporated components that connect to a large number of fluid channels. The

components with higher connectivity must have more channels route in close proximity, while

components with lower connectivity typically have fewer channels in close proximity.

Let f(mi) be the number of fluid channels connected to component mi. To account

for f(mi) , the components height (Hf ) and width (Wf ) are

Hf =

⌈
mi.h+ ∆f(mi)

B.h

⌉
, and Wf =

⌈
mi.w + ∆f(mi)

B.w

⌉
(6.10)

This provides sufficient spacing to route fluid channels around components with a high degree

of fluidic connectivity, while simultaneously reducing excess padding around components with

lower connectivity.

As shown in Figs. 6.9a and 6.9b, two components of equal size have equal of padding,

regardless of the number of I/O ports (red). In Fig. 6.9c, a component with four I/O ports,

instead of two, gets an extra layer of padding to improve route-ability.
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(a) (b) (c)

Figure 6.9: Components receive equal padding, regardless of the number of I/O ports (a)/(b);

extra padding added to a component with four ports to improve route-ability (c).

6.1.6 Initial Placement

The initial placement of components may affect the ability of the simulated annealing-

based placer to find a good solution. Here, two greedy heuristics to select the initial placement

are considered.

Random Initial Placement

The components are processed from largest to smallest to limit the likelihood of failure

due to fragmentation of the grid area if small components are placed before large components.

For each component, the placer determines if a valid position is available; next it generates

a random location in an appropriate region (input, output, center) for the component: if the

location is legal, then the component is placed there; if not, a new random location is generated

and the process repeats until a legal location is found. A failure is declared if there are no valid

positions detected for a component.
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Directed Initial Placement

The first input component is placed in the top-left position in the input grid region.

The algorithm then iterates over the list of outgoing edges, and each component is placed

nearby in the appropriate grid region (input, output, center). It maintains three variables that

represent the starting integer position of the input, output, and center regions in the grid.

When a component is selected, the variable for its compatible region selects the next available

location. The components dimensions determine the number of grid blocks in the horizontal

and vertical directions to search. The search continues until a valid placement or the end of the

region is found; placement fails in the latter case. This process repeats until all components

are placed, as shown in Fig. 6.10.

6.1.7 Experimental Results

Although many LoC devices have been published in bioengineering literature, netlist

representations are unavailable for most of them. A set of netlists made publicly available by

researchers at the Technical University of Denmark [2]. Each netlist is placed using simulated

annealing and routed using a variant of Hadlocks algorithm for mLSI technology, as suggested

by Minhass et al. [68].

(a) (b) (c) (d)

Figure 6.10: The first four steps of a directed initial placement
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Standard parameter values for simulated annealing implementation were used: an

initial temperature of 100◦, with a cooling rate of 5%, ten thousand successful moves at each

temperature level, and a freezing temperature of 1◦. These parameters were used without

modification for all experiments, and the results of the implementation decisions are reported

using the following metrics:

Success Rate: Each netlist is placed ten times with ten different random number seeds. The

success rate is the number of times Hadlocks algorithm successfully routes the placed chip.

Number of Intersections: The number of intersections estimated by the placer, e.g., Fig. 6.3a,

and the actual number of intersections occurring after routing, e.g., Fig. 6.3b are reported.

Results are averaged across all (successful) runs. Hadlocks algorithm is ineffective at

avoiding intersections and a more intelligent router may be able to provide more success

cases with fewer intersections. Hadlocks algorithm was chosen to be consistent with prior

work on LoC physical design [68].

Total Channel Length: The sum of the lengths of all fluid channels after placement and

routing, i.e., term L in Eq. (6.3).

Random vs. Directed Initial Placement

The first set of experiments (Fig. 6.11(a)/(b)) vary the weights of the metrics in the

objective function using random and directed initial placement. Two trends are observed: (1)

random initial placement tends to yield higher success rates than directed initial placement;

and (2) equally weighting the number of intersections and total edge length generally yielded

the best success rates, especially when combined with random initial placement.

The rest of the experiments exclusively use random initial placement and objective

function F (D) = 500N + 500L.
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Figure 6.11: Comparison of different objective functions using random (a) and directed (b)

initial placement; recall from Eq. (6.3) that the objective function is F (D) = αN + βL + γS,

where N is the number of intersections, L is the sum of the edge lengths of all fluid channels,

and S is the sum of the squares of the edge lengths of all fluid channels.
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Impact of I/O Padding on Components

Figure 6.12 reports the impact of scaling the I/O padding around components in

accordance with Eq. (6.10). Using I/O padding positively affects the success rate, suggesting

that it should be used primarily for netlists that are otherwise challenging to route. Routing with

Hadlocks algorithm increases the number of intersections compared to the placers estimate. For

Synthetic 1-3, which were easier to route, I/O padding increased the number of intersections,

while marginally increasing total routing channel length; however, for Synthetic 4-5, which

were harder to route, I/O padding reduced the number of intersections after routing, while

significantly shortening total routing channel length.

Impact of I/O Region Segregation

Figure 6.13 reports the impact of I/O region segregation (Section 6.1.1) on the success

rate and number of fluid channel intersections. I/O region segregation increases the success

rate and reduces the number of intersections (post-routing) for all benchmarks. In one case

(Synthetic 5), all routing attempts without segregation failed. This experiment was performed

with I/O padding.

Summary

To summarize, the best configuration of the simulated annealing placer uses: (1)

random initial placement; (2) objective function F (D) = 500N + 500L; (3) I/O padding; and

(4) I/O region segregation. The runtime of the simulated annealing algorithm ranged from 2.3

minutes (Synthetic 1) to 18.6 minutes (Synthetic 5). These reported runtimes are not absolute,

and depend on the temperature schedule, as well as other simulated annealing parameters.
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Figure 6.12: The impact of I/O padding on (a) success rate, (b) the number of intersections,

and (c) total fluid channel length.

6.2 Planar Placement

Planar Graphs

A graph D is planar if it can be embedded in the plane in such a manner that edges

only cross at their endpoints. In the context of LoC devices, this means that the netlist can be

placed and routed such that fluid routing channels intersect only at components (represented,

for now, as points). Every planar graph also admits a straight line planar embedding in which

the planar graph property is preserved and all edges can be drawn as straight line segments.

Algorithmic planarity testing is typically based on an alternate, but equivalent defini-

tion of planarity: graph D is planar if and only if it does not contain the specific graphs K5 or

K3,3, Fig. 6.14, as minors, where a minor is a graph H that can be obtained from D by deleting

vertices and/or deleting or contracting edges [53].
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Figure 6.13: Success rate (a) and intersection count (b) for LoC placement with I/O region

segregation. Synthetic 5 benchmark failed to route without I/O region segregation.
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Figure 6.14: A graph with K5 (a) or K3,3 (b) as a minor cannot be planar.

Implications for LoC Device Technology

A legal placement and routing solution for the flow layer of an LoC device is essentially

a planar embedding that treats vertices as components with dimensions and area, rather than

points. In this context, a legal planar embedding means that components do not overlap one

another, routed fluid channels do not intersect components, and routed fluid channels do not

intersect one another. Our approach is to take a planar graph embedding and convert it into a

planar LoC device embedding, as described in the next section.

6.2.1 Planar Embedding Algorithm

Straight Line Planar Embedding

The process starts with a graph G = (V,C) representing the netlist of components

V and their connections C; vertices do not yet have dimensions or area. The first step is to

make D fully connected, and check for planarity using the Boyer-Myrvold method [16]. If D

is planar, then it is transformed to be biconnected and maximally planar. The vertices vi ∈ V

are then ordered canonically and the Chrobak–Payne straight line embedding algorithm [22] is

invoked to obtain a straight line planar embedding. These steps were implemented using the

Boost Library; Fig. 6.15 provides a high-level overview.
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Component Expansion

The straight line embedding does not account for the size or dimensions of components.

To create a valid LoC device embedding, a two pass method is applied to expand components

and remove any overlap between them. The first pass sorts the components mi ∈ M by their

xi coordinate in ascending order, and expands each component by its width wi. All subsequent

components mj ∈ M , where j > i, are shifted in the positive x direction by wi; xj = xj + wi.

The second pass of the expansion applies the same steps along on the y-axis, while expanding

and shifting components based on their heights, rather than their widths. This guarantees that

components do not overlap after expansion, as shown in Fig. 6.16.

In practice, the component expansion step rarely preserves the straight line planar

embedding that was computed previously. Figure 6.16 shows how the component expansion

invalidates the straight line planar embedding. Moreover, there is no direct mechanism to

assign fluid channels to component ports after expansion. A routing algorithm is still required

to complete the layout of the LoC device.

6.2.2 Results

The Planar placement (PP) algorithm is compared to an Incremental Cluster Expan-

sion (ICE) [82] and the Simulated Annealing (SA) algorithm from the previous section. Two

separate routers are used to obtain results, Hadlock’s maze routing algorithm (HR) [68] and a

Network Flow based routing algorithm (NFR). Every combination combination of placer and

router is compared to determine which combination works best. The results are based on the

outcome of the router since the placement will directly effect how well the router performs. A

comparison is then made between the number of added intersections since adding additional

intersections will generally invalidate the design.

57



The Planar placer (PP) will place points initially, and then expand afterwards, which

determines the device size automatically. The Incremental Cluster Expansion (ICE) method

will place around a center point and expand from there, which will also determine the device

size. Note: A maximum size restriction was not placed on the device size for these placers

though it would be trivial to implement. The Simulated Annealing (SA) based placer, however,

requires the device size as input. The tests were initially run on the planar placer, and then

the device sizes from the resulting placement are utilized for the simulated annealing placer.

The algorithm combinations are run on two sets of benchmarks. The first set is a syn-

thetic set of benchmarks first published by [68]. These benchmarks are originally non-planar,

however non-planar netlists are currently impossible to fabricate. To make these synthetic

benchmarks planar we manually add switches to the netlist to make it artificially planar. The

second set of benchmarks is based on devices that have been previously designed by hand and

fabricated in [56, 84, 73]. The AquaFlex-3b and AquaFlex-5a benchmarks were derived from

images of the devices developed by Microfluidic Innovations LLC. The actual device architec-

tures are proprietary intellectual property of Microfluidic Innovations LLC. and are therefore

not cited in this paper.

The Network Flow based routing algorithm (NFR) does not allow for intersections to

be added and so results of the Incremental Cluster Expansion placer with the Network Flow

based router (ICE+NFR) or the Simulated Annealing placer with the Network Flow based

router (SA+NFR) are not reported as those algorithms typically introduce intersections, causing

a routing failure. The Hadlock’s based router (HR) is able to allow additional intersections,

perhaps too liberally; allowing it to route on the non-planar placements generated by ICE and

SA. It also caused intersections when routing on the planar placement that is generated.
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As shown in Fig. 6.18, the Planar placement method combined with the Network

Flow based router (PP+NFR) is the only method capable of creating a placement and routing

that is valid for fabrication. While the Planar placement combined with the Hadlock’s based

router (PP+HR) reduced the number of intersections by 26% versus ICE+HR on average and

40% versus SA+HR on average, even this does not reduce intersections enough to allow for

fabrication. The Urbanski et al. [84] test case adds the fewest number of intersections using the

PP+HR method, adding only 17. This would add 34 control lines to support these new switches,

which with the minimum two input valves that are needed in the flow layer to make a useful

device violates Stanford’s thirty-five external pressure source maximum for fabrication [3].

Planar embedding increased the total device area by approximately one order of mag-

nitude in comparison with the other approaches (detailed results are omitted due to space

limitations). The reason for the large area is the shifting that occurs during the component

expansion process. The indiscriminate shifting of all components on the device introduce un-

necessary space on the device. Despite the area overhead, it is important to recognize that

the proposed approach is the only technique published, to date, that yields planar layouts that

can be fabricated; thus, there is absolutely no benefit to approaches that reduce area while

sacrificing legality.

6.2.3 Conclusion

At present, LoC device fabrication technology only allows for the creation of LoCs

with one flow layer. Existing algorithms for LoC physical design ignore this constraint; although

they produce designs with small areas and short wirelength, the layouts are non-planar, and

therefore require multiple flow layers or too many introduced valves, which exceeds the present
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capabilities of modern LoC device fabrication. This algorithm can produce planar LoC device

layouts that adhere to the constraint of a single flow layer;
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Require: D := (V,C) an undirected graph

Ensure: D := (V,C) with each vi ∈ V placed

1: D := make connected(D)

2: if !boyer myrvold planarity test(D) then

3: exit()

4: D := make biconnected planar(D)

5: D := make maximal planar(D)

6: X := planar canonical ordering(D)

7: D := chrobak payne straight line(D,X)

Figure 6.15: Chrobak Payne straight line embedding from the Boost library. The function calls

shown here are Boost library calls [4].

Figure 6.16: (a) The original graph, (b-e) expands the components one at a time to their full

size. The dotted line represents the straight line connection that has been invalidated because

of the expansion.
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Benchmark Components Connections

Synthetic1 21 21
Synthetic2 15 21
Synthetic3 34 33
Synthetic4 34 34
Synthetic5 46 45
Synthetic6 62 64

AquaFlex-3b 15 14
AquaFlex-5b 17 16
Li et al. [56] 13 12
Urbanski et al. [84] 13 12
Rhee and Burns [73] 30 37

Figure 6.17: The number of components and connections for each benchmark, Synthetic on top
followed by Real Life on the bottom

Figure 6.18: The number of intersections for each benchmark with each combination of algo-

rithms. Notice that all the Planar Placement and Network Flow based Router (PP+NFR)

benchmarks add zero intersections
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Chapter 7

Flow Layer Routing

The flow layer routing of an LoC device lays out the channels that the fluids will flow

through during the execution of the experiment. Since there can currently only be one flow layer

fabricated on a given chip, there can be now intersections in the final device. Any intersections

that do occur need to be replaced with a switch, which can deterministically direct the fluid

to the proper components. Additionally the device needs to be connected to external pressure

sources to provde the pressure that actually moves the fluids once a valve has been opened.

Alternatively peristaltic pumps can be placed on the chip, though typically that would be done

prior to the routing phase.

7.1 Maze Routing Algorithms

The first class of routers explored, and the one that has typically been used in the

literature, are maze routing algorithms. These algorithms discretize the plan of the LoC device

into a grid, where each node is a block that can contain a channel within it. The size of these

blocks will be defined as the width of a channel that would flow through it, plus half the width

of the spacing required between channels, or a channel and a component. This ensures that the
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fabrication specification will obey the design rules as they are specified in the technology file.

Each node is connected to the nodes to the North, East, South, and West, as well as diagonally

in each of those directions. This grid structure is used in all of the routing algorithms in this

thesis.

7.1.1 Hadlock’s Maze Routing

Hadlock’s maze routing algorithm [36] is an optimization to Lee’s maze routing algo-

rithm [54]. In Lee’s algorithm, a node adjacent to the port on the source component is selected

as the source node. The algorithm then implements an expanding wavefront over a series of

iterations. During each iteration, the nodes that are adjacent to any node on the edge of the

expanding wavefront are added as sources and marked with the iteration they were discovered

at. Once the sink node has been discovered, the algorithm must trace back to the source. The

simplest way to trace back is to start at the sink node, and one at a time add each node with

decreasing discovery iteration until the source node is added. The path that has traced back

will be a shortest path between the source and sink components. The nodes along the path are

then labeled as occupied and the process iterates on the next route.

This process unnecessarily explores many nodes that are not on the final path and not

even in the same direction as the sink node. The optimization developed by Hadlock implements

a directed search. When adding nodes to the wavefront they are added with their manhattan

distance to the sink node. This enables a priority queue to be used to direct the search towards

nodes that are in the direction of the sink. The direct path between two components is not

always available, however, so once the algorithm is no longer able to search in the direction of

the sink, it is able to reverse, and get around any obstacles in this way, before continuing the

exploration process. This method is a näıve method for routing, but it provides initial results
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and has been used in prior works [68]. The next section describes a more intelligent method of

performing the flow layer routing.

7.2 Planar Routing Algorithms

7.2.1 Network Flow-Based Router

The network flow-based router does not allow for the introduction of intersections dur-

ing the routing step. This may limit the number of devices that can be successfully routed, but

as added intersections significantly complicate the control layer synthesis step, and frequently

render a device too complex to fabricate this limitation is acceptable. Similar to the maze

routing algorithms discussed in the previous section, the network flow-based router implements

a grid based method.

Routing Grid

A routing grid R = (U,F ) is instantiated in the device plane, where U is a set of

grid points, and F is a set of edges representing potential channel routes between adjacent grid

points. For each component mi ∈ M a vertex ui for the ports ph ∈ Pi is instantiated and

added to U . A grid of vertices is then instantiated in the empty space between components.

Pseudocode is presented in Fig. 7.1. In lines 17 and 20, edges that represent potential routing

channel segments are added to F by instantiating a bidirectional edge fi with a capacity of 1

between ui ∈ U and uj ∈ U if and only if (uj .x− ui.x == 1)⊕ (uj .y − ui.y == 1).

The network flow model ensures that no edge is used more than once, however it is also

necessary to ensure that no vertices are used more than once in routing. This is accomplished

by splitting each vertex ui ∈ U into u′i and u′′i and adding a directed edge fi = (u′i, u
′′
i ) to

F . All incoming edges to ui are now forced through u′i, and all outgoing edges from ui leave
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through u′′i . Thus, any fluid channel that routes through ui, must go through the edge fi, and

the capacity constraint on edges ensures that there can be at most one such channel using that

vertex.

Network Flow Model

Once the grid R = (U,F ) has been constructed, the next step is to route channels

between the components. This is accomplished using a network flow routing method based

on Ref. [87]. Components are processed in-order, and unrouted channels that are incident on

each component are routed together using this model. The special nodes super sources, super

sinks and sink groups; are added to the routing problem which enables the network flow to

simultaneously perform port assignment as well.

Figure 7.2 shows the grid prepared to route mi ∈M

• Create a super sink usupersink.

• For each tj ∈ Ti

1. Add a vertex usink group tj to U .

2. Add an edge fj = (usink group tj , usupersink) to F with capacity 1 and cost 1.

3. For each port pk ∈ Pi of tj

i. Add a vertex upk to U .

ii. Add an edge fpk = (usink group tj , upk) to F with capacity 1.

• Create a super source usupersource.

• For each port pj ∈ Pi.

i. Add a vertex upj to U .

ii. Add an edge fpj = (usupersource, upj ) to F with capacity 1.
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Require: M := set of all components in the system

Require: max x,max y := the maximum x and y values in the plane

Ensure: R := (U,F ) grid of vertices

1: for all mi ∈M do

2: for all ph ∈ mi do

3: U ← U ∪ ui = (ph.x, pi.y)

4: for all 0 < x < max x do

5: for all 0 < y < max y do

6: if !within component(x, y) then

7: U ← U ∪ ui = (x, y)

8: for all 0 < x < max x do

9: for all 0 < y < max y do

10: ui ← (x, y)

11: F ← F ∪ get east neighbor(ui)

12: F ← F ∪ get south neighbor(ui)

Figure 7.1: Grid Creation Algorithm

A set of routes from mi to all tj ∈ Ti is found by computing the maximum flow from

usupersource to usupersink, followed by a path reclamation step adapted from Lee’s algorithm [54].

The paths computed by the network flow algorithm include port assignment at the source and

sinks, and may present multiple valid paths. The purpose of the trace back, as shown in Fig. 7.3

is to compute the shortest valid path from the port pk at each sink ti to its corresponding port

pj at the source component mi, as determined by the solution to the network flow problem.

The super source, super sink, and sink groups along with their accompanying edges are then

removed from the routing grid, and the process repeats for each component in the system,

taking care not to route fluid channels that have already been routed.

One problem that may occur is that a route between components mi and mj may

abut a third component, mk, potentially blocking one of its ports. To avoid this, we create
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Figure 7.2: The addition of the super source, super sink, and sink group vertices with accompa-

nying edges allows the use of minimum cost maximal flow algorithms to do both port selection

and channel routing. Note that a sink group is connected to every port of a particular sink

buffer zones of a few vertices around every component that is not currently being routed. The

vertices within the buffer zone are removed from the routing grid ensuring that the ports are not

blocked, and only added back to the grid temporarily while routing to or from the respective

component.

As fluid channels are routed one-by-one, the routing grid becomes fractured, leading

to failures due to routed channel intersections. If a routing failure occurs, the old routes are

removed and the queue of components is reordered so that components whose routes have

failed in the past are now routed first. The number of times that the component queue may be

reordered is limited; if the limit is exceeded, a routing failure is declared. The results of this

algorithm are reported in the previous section on the Planar placement algorithm.
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Figure 7.3: The maximum flow minimum cost network flow algorithm numbers the nodes as

they are discovered, ending when it reaches an unused port. These numbers are then used to

trace back the path of the channel route.
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Chapter 8

Fluid Routing

8.1 Fluid Routing Without Washing

The input to the fluid router is a sequencing graph A = (Op, E), shown in Fig. 8.1, and

the architecture D = (V,C), as shown in Fig. 8.2. Where Op ∈ A is the set of operations to be

performed, E ∈ A defines the dependencies between the operations, V ∈ D are the components

that perform the operations, and C ∈ D represents the channels between components.

Each eij ∈ E is a fluid that needs to be routed from the source B(opi) = mi to the

sink B(opj) = mj , where mi,mj ∈ V are the components that execute opi, opj ∈ Op, as defined

by the binding function B. The fluid eij needs to be routed before the operation opj can be

executed.

The objective of the fluid routing is to determine the set of disjoint paths P =

{p1, p2, . . . pn} that need to be routed during each time step such that all of the fluids will

be routed. Each path pi ∈ P is a three part path in D:(i) a sub-path from a buffer input to

the source, si; (ii) a sub-path from the source si to the sink, ti; and (iii) a sub-path from ti to

a fluid output.The constraints on the fluid routing are as follows:
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Figure 8.1: Sequencing graph representation of the synthetic benchmark with 10 operations

from [2]
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Figure 8.2: Functional model of a chip to execute the assay shown in Fig. 8.1. The circles

indicate I/O punches, the rectangles indicate the components, and the lines represent the

interconnections between them. The diamonds correspond to switches on the control layer.

• The partial ordering defined in the sequencing graph must not be violated,

• there may not be any cross contamination,

• and accidental dilution of the fluids must be avoided.

It is important, here, to recognize that simply opening microvalves along the path does

not actuate fluid motion; pressurized fluid must be injected from an external source in order to

cause fluid to flow.

The paths in P will all be routed in parallel, therefor the time required is equal to

the time required to route the longest path, L(P ). Let l(pi) be the length of path pi, then the

time required to route the set P is proportional to L(P ) = max{l(p1), l(p2), . . . , l(pn)}. This

problem is a straight forward variant of the Disjoint Path Problem which was one of the original

NP-complete problems identified by Karp [50].
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8.2 Näıve Method

The näıve fluid routing algorithm takes in as input, a list of movements which must be

executed with respect to a partial order. The algorithms, shown in Fig. 8.3 will iterate through

the different movements while maintaining the order, and will continue to route fluids until

the assay completes, or becomes unroutable. The algorithm takes place in the following four

phases:

Phase 1 (Execute Operations): First the operations that are ready, all input fluids have

arrived, are executed. These operations will be executed in parallel, and so the timestep

is advanced to the completion of the longest operation. All of the operations executed

during these step will be marked as completed. Initially only the fluid input operations

are ready.

Phase 2 (Determine Ready Movements): A movement is said to be ready when the ac-

tion that produces that fluid has completed. Additionally any movements that were

delayed from a previous routing step will be added to the list of ready movements.

Phase 3 (Compute Routes): Fluids are routed one-by-one and evaluated to ensure that

legal routing has taken place. The routing phase occurs by calling Dijkstra’s algorithm

three times. First the buffer input is routed to the source si, then from si to ti, and finally

from ti to a fluid output. If successful then the fluid is allowed to follow the path found by

Dijkstra’s algorithm; if not, the fluid is not allowed to route and will be delayed to future

iterations; partial routes are not allowed. Once a route has been verified, the vertices and

edges along the route are contaminated and therefore marked invalidated. An invalidated

node is essentially removed from the graph, and will be inserted back into the graph once

it has been washed. This will prevent cross contamination between the samples during
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Require: Operations with a partial ordering

Ensure: Schedule of operations {M}äıve Method

readyOperations ← ∅

readyMoves ← ∅

delayedMoves ← ∅

timeStep ← 0

while operations remain unscheduled do

for all opi ∈ operations do

if opi.inputs completed then

readyOperations ← opi

readyMoves ← opi.output

for all opi ∈ readyOperations do

Execute opi

Schedule opi

timeStep ← next event

for all movei ∈ readyMoves do

Dijkstra(bufferInput,movei.source)

Dijkstra(movei.source,movei.sink)

Dijkstra(movei.sink,Waste)

if Routing succeeds then

Schedule movei

Set movei as completed

else

delayedMoves ← movei

timeStep ← next event

Call Washing()

timeStep ← end of washing

readyMoves ← delayedMoves

delayedMoves ← ∅

Figure 8.3: Näıve fluid routing method
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the execution of the assay. Figure 8.4 shows two independent routing steps, the routes

in each step are clearly disjoint. There would need to be a washing step between these

steps.

Phase 4 (Wash): This phase will wash the contaminated nodes and insert them back into

the graph, allowing them to be used for subsequent routes. If the device is unable to be

washed, routes will be removed until the washing can complete. This process is discussed

in Section 8.3.

The four phases repeat until the assay has complete, or it is determined that a routing

failure has occurred and the assay cannot be completed as described on the given device. If

on any iteration after a wash no additional fluids are able to route, this will indicate a routing

failure and the algorithm will abort.

These four phases lead to a discretization of the assay into operation, movement, and

wash steps, as shown in Fig. 8.5, by advancing the timestep to the next event. In phase 1

an operation step is set up, and the event is defined as the end of the longest operation to

complete. The event for phase 2 and 3 is defined as the end of the longest route scheduled.

Finally the timestep is advanced to the end of the wash step in phase 4.

This discretization of the assay leads to wasted time steps. If a short operation is

executing in parallel with a much longer operation during phase 1 then the movement produced

by the short operation will need to wait until the end of the step before it is able to route. This

will delay the movement of the fluid, as well as any operations that follow that movement.
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Figure 8.4: The first (a) and second (b) routing steps for the assay from Fig. 8.1 executing

on the chip from Fig. 8.2. These two steps would need to be broken up by a washing step, as

shown in Fig. 8.5. The light yellow shows the components that are currently being used for

moves. Heater0 is being used during (b) to run an operation concurrently with the moves being

executed.

Figure 8.5: This illustrates the washing step that would occur between Fig. 8.4(a) and (b). The

contaminated nodes are washed, without diluting the reagents that remain in the components.

The green indicates the nodes that are washed, while the light yellow indicates the nodes that

remain contaminated.
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8.3 Combined Scheduler and Router

The combined scheduler and router (CSR) algorithm will more tightly integrate the

scheduling of operations with the routing of the fluids. The algorithm extends the näıve method

to allow for operations to be scheduled concurrently with either wash steps or movements. This

removes the discretization of the assay which led to wasted time.

This is done by redefining what is classified as an event from the näıve method.

Originally it an event would be the end of any given step, however, as shown above, this leads

to wasted time steps and under utilization of the device. To create a tighter schedule, an

event is defined to be end time of the movement or operation that completes soonest, not last.

This event triggered algorithm requires several adjustments to how ready operations, shown

in Fig. 8.6, and movements are handled. Instead of marking them as complete and advancing

the time step, they are added to a list of initiated operations/movements and add them to the

schedule once they have completed.

These minor changes enable finer grained control over the current time step, allowing

it to advance much more incrementally providing a tighter integration of the routing of fluids

and scheduling of operations. This fine grained control is what allows the wasted time steps to

be removed from the näıve method, as shown in Fig. 8.4(b).

8.4 Washing the LoC

Unlike traditional VLSI devices, LoC’s have to consider cross contamination between

different fluids within the device. If cross-contamination occurs, the entire assay could be

invalidated and need to be run again. Virtually all microvalve-based LoCs require washing at

some point during the execution of a biological protocol. Washing the LoC decontaminates
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Require: Operations with a partial ordering

Ensure: Schedule of operations {C}SR Fluid Routing Phase 1

initiatedOperations ← ∅

initiatedMoves ← ∅

readyOperations ← ∅

readyMoves ← ∅

delayedMoves ← ∅

for all opi ∈ initiatedOperations do

if opi completed then

readyMoves ← opi.output

Schedule opi

Remove opi from initiatedOperations

for all movei ∈ initiatedMoves do

if movei completed then

Schedule movei

Remove movei from initiatedMoves

for all opi ∈ operations do

if opi.inputs completed then

initiatedOperations ← opi

Figure 8.6: CSR Algorithm
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components and microchannels to facilitate contamination-free routing of future fluids. The

objective of each washing step is to decontaminate as many components and microchannels

as possible by injecting buffer into the LoC and routing it through contaminated regions, but

without diluting any of the fluids presently stored on the chip.

Washing is achieved similarly to the routing of the fluids in the system. The primary

goal behind the washing step is to decontaminate all nodes that have been contaminated due

to the previous routing step. The entire washing process takes place in four different phases:

Phase 1 (Buffer Inputs to Source Nodes): it is guaranteed that the only nodes that are

contaminated fall along the previously computed routes, pi = {v1, v2, . . . , vn}, therefore

flooding the system to perform the washing is unnecessary. Instead, Dijkstras algorithm

is run using the buffer input (B) as the source node, and pi.source = v1 of the path as

the sink.

Phase 2 (Trace Routes): Only contaminated components are being washed, so it is sufficient

to trace through the routes which the fluids have flowed through, as previously computed,

in order to remove the contamination. The one caveat to keep in mind here is that all the

destination nodes for each route still contain fluid. To avoid diluting the solution, each

path pi is only traced to the second to last node, {v1, v2, . . . , vn1}.

Phase 3 (Buffer Disposal): Disposing of the buffer fluid is similar to the process of phase 1.

Dijkstras algorithm is employed again, using the second to last node, vn1 in each path as

the source node(s), and the waste output W as the sink node. The difference between the

Dijkstras used during washing, and the one used during fluid routing is that the nodes

encountered during the washing iterations of Dijkstras are not invalidated, allowing the

routes in each individual phase of washing to use nodes on routes from the previous
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phases. Once the routes have completed, the nodes visited are marked validated again in

the graph, and can be used in subsequent fluid routing iterations.

Phase 4 (Fail safe): If any of the previous 3 phases fails to route, then the washing has failed.

In this case, previously computed routes are removed and washing is attempted again until

the wash step is able to complete. This will require more washing steps and more routing

steps which will extend the the execution time of the assay but it will prevent the chip

from becoming unroutable due to contamination.

Due to the underlying mechanisms of pressurized control, it is not possible to drain

buffer from the chip entirely to leave it empty; however, by definition, buffer is chosen to be

non-reactive with the other fluids that comprise the assay. Therefore, the process of opening

new paths to transport fluid will push part of the buffer that remains in the chip after washing

out of the chip once the process completes.

8.5 Results

The fluid routing algorithms were run on a set of publicly available synthetic bench-

marks [2] as well as several real life benchmarks: PCR [2] and Chromatin Immunoprecipitation

(ChIP) [88]. The results of the algorithms are presented in Table 8.1. The table shows the

execution time of the assays, δG , with and without washing. The execution times are shown

using the näıve method, Combined Scheduler and Router (CSR), and the full path enumeration

from Minhass et al. [68]. The results from the method from [68] are not shown for the assay

run with washing since they do not account for washing in their algorithms.

It is clear from the table that the CSR algorithm out-performs the näıve method for

every benchmark, averaging a speedup of 1.8x. The CSR algorithm performs much better on
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Table 8.1: Fluid Routing

Benchmark
δG w/Washing δG w/out Washing Run Time

näıve CSR [68] näıve CSR [68] näıve CSR

Synthetic

10 52 s 33 s N/A 45 s 33 s 35.7 s 2 s 2 s

20 79 s 51 s N/A 62 s 49 s N/A 6 s 8 s

30 112 s 67 s N/A 82 s 65 s 46.1 s 17 s 20 s

40 148 s 104 s N/A 100 s 98 s 59.5 s 34 s 47 s

50 176 s 131 s N/A 114 s 129 s 60.4 s 45 s 72 s

Real Life
PCR 32 s 21 s N/A 27 s 21 s 19.7 s 3 s 2 s

ChIP 31420 s 9081 s N/A 31399 s 9081 s N/A 23 s 31 s

highly parallelizable assays, having as much as a 3.5x speedup in execution time for the ChIP

benchmark with and without washing. The run times for the algorithms are presented in the last

two columns of the table. The run times for [68] are unavailable. The näıve method performs

faster in general, but the improvement on the schedules from the CSR approach outweighs the

time lost during the routing process.

The full enumeration algorithm does outperform both algorithms when washing is

not taken into account, however the focus of these algorithms was to introduce washing and

produce realistic assay schedules. The schedules produced by Minhass et. al [68] could not

realistically be executed without contaminating the components and therefore nullifying the

results. Additionally their schedules are produced by fully enumerating all of the paths and

their conflicts, and using them to produce a schedule. This approach is not scalable to large

chips. The details of their algorithm are also insufficient for it to be entirely clear how decisions

are made between multiple paths, making a direct comparison difficult.
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It is important to note here that the results for both algorithms have been obtained

using the same chip placements, however access to the placed chips from [68] is unavailable. The

difference in routing times could also be partially accounted for by a difference in placements.

8.6 Conclusion

A novel fluid routing algorithm which routes the fluids without enumerating every

possible route, which is not scalable to larger designs. Additionally it is the first ever fluid

routing algorithm that will insert the necessary washing steps to prevent cross contaminations.

Without these washing steps the results would become contaminated and the chip, and the

results would become useless. The näıve fluid routing algorithm is also extended to integrate

the scheduling of the operations with the routing of the fluids. This integration produces a

more tightly coupled schedule, reducing wasted time which leads to a shorter execution times

across all benchmarks we tested.

The CSR algorithm led to an average of a 1.8x speed up in execution time of the assay,

with a speedup of 3.5x on the highly parallelizable ChIP assay. Microfluidic chips are frequently

used to execute highly parallelizable assays to increase throughput, making the speedup on the

ChIP assay quite significant.

82



Part IV

Control Layer
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Chapter 9

Control Layer Synthesis and

Optimization

The synthesis of the control layer involves the binding of valves to control channels,

the allocation of external pressure sources, and the subsequent binding of control channels to

an external pressure source. The external pressure sources will provide the pressure to actuate

the valves thereby controlling the flow. When an external pressure source is actuated (1) then

the valve(s) connected to that channel, control line, will be closed, when it is not actuated

(0) the valves will be open. The number of these external pressure sources that will fit on a

device is limited, and is one of the most limiting factors in LoC device design. According to

Quake’s foundry design rules [3] external punch holes are limited to thirty-five, this number may

be flexible.

The algorithms presented here will perform control line minimization, and as a result

minimize the number of external pressure sources, the pressure sources will then be allocated,

and then during the routing of the control channels, they will be bound to specific external
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pressure sources. If the control line minimizations is unable to reduce the number of control

lines to below the maximum allowed, synthesis will fail.

Problem Description: A set of valves, vi ∈ V , is given along with their actuation

sequences, asi, and an external pressure sources constraint, MAX P . An actuation sequence

asi is defined by a sequence of 1 (closed), 0 (open), or x (don’t care), that describes the actuation

status of the valve vi at each time step. The number of control lines, cj , needed to control all

vi ∈ V , must be minimized such that j <= MAX P and no valve is open when it should be

closed, or vice versa.

Note: A valve with the actuation status of x (don’t care) indicates that the status of

the valve will have no affect whatsoever on the flow of fluid through the device.

9.0.1 Graph Coloring Method

The graph coloring method described in [68] is employed to perform the optimization

of the external pressure sources. The graph is constructed by first adding a node for each valve

on the chip, the nodes are added with knowledge of their spatial location on the chip. This

allows for decisions on coloring to be made later on. An edge is then added between any two

nodes whose actuation sequences differ during at least one time step. An actuation sequence

is said to differ at a time step if one actuation sequence has a 1, while the other has a 0. If

either actuation sequence has a don’t care (x) then the actuation sequences do not differ at

that time step. The edges indicate valves that cannot share a control line. A general graph

coloring solver is used to identify which valves can share control lines, the nodes (valves) which

share the same color can be on the same control line. The full algorithm is shown in Fig. 9.3.

Once the graph is colored the control lines are ready to be routed. It may end up that

some of the sets of valves are difficult, or even impossible to route. To solve this the valves will
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Figure 9.1: Example actuation sequences for valves from [68].
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(a) (b)

Figure 9.2: (a) An example chip with the valves and external pressure sources bound. It is clear

from the image that without control line sharing this chip would be un-route-able, as there are

more valves than external pressure sources. (b) Shows the example device with the control lines

routed, manually, and some lines are shared so that the chip is route-able.

be dynamically selectable based on their difficulty to route, and moved from the valve set it

is contained in, to a new valve set. The graph used for the coloring is maintained, with a few

updates; the graph is essentially inverted, creating an edge between each set of nodes that did

not have an edge in the original graph, and removing all others. These edges will indicate nodes

that the selected node can share a control line with. Additionally these edges will be weighted

with the Manhattan distance between the valves corresponding to the nodes at the end points.

This updated graph can be used to dynamically adjust the color of a node when it’s

corresponding valve is difficult to route. After a route fails, the color of the set of valves that

are deemed un-route-able, x, is taken. In this set the valve that is most difficult to route is

selected, call it vi. The nearest adjacent valve to vi with a different color y such that y 6= x

is chosen. This is done using the edges weighted with Manhattan distance. The valve, vi is

then recolored with color y and routing is attempted again. The case may arise where a node

is continually swapped between two colors, say valve vi has color x on the first attempt, color y
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on the second attempt, and then back to color x on the third attempt, and so on. To prevent

this, a list of the colors a node has already used is maintained. If any node exhausts all of the

colors available to it the graph is deemed un-route-able.
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Require: V : Set of Valves.

MAX P : Maximum number of external pressure

sources

Ensure: A colored graph indicating the valves that

can share control lines. Nodes of the same color

can share a control line.

Construct a node, ni, for each valve in the biochip.

for all vi, vj ∈ V do

if asi 6= asj then

Construct an edge, eij , between ni and nj .

Perform Graph Coloring on the constructed graph

using tabu graph coloring from [68].

Figure 9.3: Graph Coloring algorithm for control synthesis problem.

Figure 9.4: Graph coloring example from [68]
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9.1 Control Layer Routing

The control synthesis step allocated the necessary valves and placed them determin-

istically based on the flow layer placement. The number of external control lines (pressure

sources), was then (optionally) optimized during control layer optimization and the external

pressure sources were allocated. The external pressure sources are assumed to be placed initially.

The control channels must be routed from the external pressure sources to the valves

they control. This will require either routing to (1) a single valve or (2) routing to multiple

valves which are sharing the same external pressure source. In case (2), the shared valves must

be tethered together and routed to the external pressure source. Case (1) is a simplified version

which does not require any valves to be tethered together. Figure 9.5a shows an example routing

using shared control lines, the routing was performed manually.

Problem Definition: Given a set of vi ∈ IV ⊂ V independent channel valves and

a set svi ∈ SV ⊂ V of Shared Valve lines where each svi is a set of valves vj ∈ svi that share

the same control line. The set IV ∩ SV = ∅ and IV ∪ SV = V with V being the set of all

valves. Additionally a set pi ∈ EP of possible locations for External Pressure sources is given. A

routing must be provided such that each valve vi ∈ IV and shared valve set svi ∈ SV are routed

successfully to an independent pi ∈ EP while minimizing overall length L =
∑
∀vi∈V l(vi).

9.1.1 Unconstrained Control Line Routing

The unconstrained control line routing problem is equivalent to the Steiner tree prob-

lem, or routing from a single source to multiple sinks.A control line must be routed from each

source to the corresponding sink(s), while minimizing overall length. There is no constraint on

the order in which the sink(s) (valves) are reached, actuation time, or the skew between the

90



(a) (b)

Figure 9.5: An example chip with the valves and external pressure sources placed and the

channels between them routed (a) with and (b) without using equal length routing techniques.

actuation times of the valves. The lines with a single valve for the sink is just a simplified case

of this problem and will be handled using the same method. The routing will be performed

using a modified Hadlock’s routing algorithm to route to mulitple sinks.

9.1.2 Constrained Control Line Routing

In the constrained control line routing problem, the constraint that the control signal

needs to arrive at the same time for all valves on a single shared control line is added. This

problem is similar to the clock signal routing problem in electronic systems. In the clock signal

routing problem, any clock source that are adjacent (they are only separated by combinational

logic) will need to have a clock arrival time within a prescribed skew.

The Delayed Merge Embedding (DME) algorithm from [49] will be utilized to perform

a Zero Skew Tree (ZST) routing to these valves. First merging segments are determined between
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each pair of valves. This merging segment indicates a reasonable selection of midpoints between

two valves where the route to each valve will be of equal length. Once the merging segments

have been determine, the algorithm works back up from the leaf nodes (valves) and select the

points along the midsegments to use for the routing. The generated tree provides equal length

straight line routing to all valves along the shared channel. If there were only one tree this

would now be done, however there are multiple such trees, one for each shared control line, on

the device. The next step is to route all of these paths while respecting the other paths on the

device. Hadlock’s algorithm is employed again to route these channels. Hadlock’s router does

not take into consideration the equal length constraint of the routes, and so the skew may be

enlarged.

Yao et. al implemented the control layer routing method using a negotiated congestion

router in place of the Hadlock’s router in PACOR [92]. In their work a post processing step is

used to determine if a route does not meet the equal length criteria. That route is then ripped

up and rerouted with a detour embedded to match the equal length criteria.
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Part V

Conclusion
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9.2 Conclusion

This thesis presents an end to end tool chain that is capable of taking a high level

language description of either a biochemical application, or an LoC device, and producing a

design that is capable of being fabricated. The three major tracks that this system could

take starts with (i) just a biochemical application (ii) just an LoC device specification (iii) a

biochemical application and an LoC device specification.

Biochemical application only is ideal for a scientist that has an application in mind and

would like to develop a new LoC to perform that experiment. This scientist need not

have the expertise in fabrication technologies or even necessarily in microfluidics. The

biochemical application, or assay, be written in a high level language like biocoder, can

be compiled and a sequencing graph representing the assay generated. This sequencing

graph is then used to allocate the necessary components to complete the assay, and extract

the required connections between those components, defining a netlist for an LoC device.

This netlist can then be synthesized into a design that can be fabricated, as described in

the following section.

LoC device specification only allows an engineer to design novel devices or entities. These

device or entities can be designed to address a very specific operation, or generally ap-

plicable to a class of operations. The LoC netlist can be described in the high level

microfluidic hardware design language (mHDL). This netlist describes the flow layer, and

the control layer is derived from the entity library files. The flow layer is then placed

and routed, the control layer synthesized, and finally the control layer is routed. Without

a specific application in mind, the control layer will not be able to be optimized as the

actuation sequence of the valves is unknown. The output is a description of the LoC in
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an IR, allowing it to be used by scientists that need the functionality, or in an STL file

which can be used to fabricate the LoC.

Biochemical application and LoC specification is envisioned to be how many scientists

and engineers working together will be able to use the system. In this case there will be

a library of available LoC architectures that has been generated by the engineers. The

scientists are then able to define the biochemical application, and attempt to map it onto

existing devices. This allows labs to have a stock pile of existing devices, and not have to

redesign a new device for every application that is developed. The architecture already has

a netlist, and is already placed and routed. The biochemical application is then scheduled

onto this architecture, assuming it has the necessary components and connections. The

algorithms developed in this thesis are capable of this step, although if it is unable to

complete the scheduling process it will declare a failure.
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Appendix A

Sequencing Graphs

Figure A.1: Sequencing graph for synthetic benchmark 1 from Denmark Technical University

(DTU) [2]. The benchmark has 10 operations.
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Figure A.2: Sequencing graph for synthetic benchmark 2 from Denmark Technical University

(DTU) [2]. The benchmark has 20 operations.
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Figure A.3: Sequencing graph for synthetic benchmark 3 from Denmark Technical University

(DTU) [2]. The benchmark has 30 operations.
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Figure A.4: Sequencing graph for synthetic benchmark 4 from Denmark Technical University

(DTU) [2]. The benchmark has 40 operations.

106



Figure A.5: Sequencing graph for synthetic benchmark 5 from Denmark Technical University

(DTU) [2]. The benchmark has 50 operations.

Figure A.6: Sequencing graph for polymerase chain reaction (PCR) benchmark from Denmark

Technical University (DTU) [2]. The benchmark has 7 operations.
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Figure A.7: Sequencing graph for in-vitro diagnostics (IVD) benchmark from Denmark Tech-

nical University (DTU) [2]. The benchmark has 22 operations.

Figure A.8: Sequencing graph for colorimetric protein assay (CPA) benchmark from Denmark

Technical University (DTU) [2]. The benchmark has 55 operations.

108




