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Abstract

A search for R-parity violating supersymmetry at the 13 TeV LHC

by

Rohan Bhandari

This dissertation describes a search for R-parity violating supersymmetry, motivated

by the stringent limits set on R-parity conserving models from Run I and Run II of

the LHC. These limits have excluded gluno masses up to approximately 2 TeV in mass,

which is the rough scale expected for supersymmetry to “naturally” solve the Hierarchy

Problem. These constraints, however, can be evaded by considering R-parity violating

models, in which the lightest supersymmetric particle can decay to Standard Model

particles and does not produce a large missing transverse momentum signature.

To avoid conflicts with experimental measurements, such as proton decay, the frame-

work of Minimal Flavor Violation is applied, resulting in the largest R-parity violating

coupling being between a top, bottom, and strange quark. Therefore, this search uses

the pair production of gluinos that decay via g̃ → t¯̃t → tbs as a benchmark model and

generically looks for new physics with a signature of a single lepton, large jet and bottom

quark jet multiplicities, and high sum of large-radius jet masses, without any requirement

on the missing transverse momentum in an event.

The search is conducted with 35.9 fb−1 of
√
s = 13 TeV proton-proton collisions

collected by the CMS experiment in 2016. The background is estimated through a

maximum-likelihood fit of the Nb distribution across bins of jet multiplicity and sum of

large-radius jet masses. No evidence of new physics is observed, and limits on a simplified

model, in which gluinos decay promptly via g̃ → tbs, are set, excluding gluino masses

below 1610 GeV at the 95% confidence level.
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Chapter 0

Introduction for Non-physicists

One of the primary tenets of science is to communicate results to as wide an audience

as possible. But in this regard, dissertations can be funny things, as they tend to have

the smallest audiences. For physicists, the results that make up this dissertation either

A) have been already communicated to the physics community through publications in

journals and/or B) will be outdated within a year or two (such is progress). For everyone

else, I am sure it’s just incomprehensible.

This introduction is my attempt to include the latter group and share with others,

particularly family and friends, what I have been doing for the last five years. So bear

with me, as I try to condense the next ∼100 pages into this short introduction. Here

goes...

The job of physcicists is to model how the universe works. For particle physicists,

in particular, we do this by understanding how fundamental particles interact with each

other. This provides really profound insights into the universe because these particles

and their interactions are the building blocks for the universe. A “fundamental particle”

is any particle that is not made up of smaller particles. For example, neutrons and

protons are not fundamental particles, as they are each composed of three “quarks”,

but an electron, on the other hand, is fundamental, as it is not made up of any smaller

particles.
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There are two groups of fundamental particles: fermions and bosons. Fermions are the

particles that make up matter and combine to form protons and neutrons (as mentioned

above), which lead to atoms, molecules, etc. Bosons are the “force carrier” particles.

They allow the particles to interact with each other and are responsible for transferring

forces between them. For example, the photon mediates the electromagnetic force, i.e.

electricity and magnetism. The gluon is responsible for the “strong force”, which is what

holds nuclei together, and the W and Z bosons carry the “weak force”, which is what

causes atoms to decay. In total there are 12 fermions and 5 bosons, shown in Figure 2.1,

that have been discovered so far.

Additionally, there are rules for which particles can interact with which particles

and through which forces and with what strength, etc. These rules are what particle

physicicts work to study and attempt to model. Our best understanding of these rules

has been combined into the Standard Model of Particle Physics. The Standard Model

is one of the greatest achievements of science. It has been able to predict and explain a

wide variety of phenomena and has withstood a number of stress tests. To this day, it is

the most precisely tested theory in physics, if not science as a whole.

It wasn’t until 2012, however, after almost 50 years of searching, that the Standard

Model was completed with the discovery of the Higgs boson. The Higgs boson was ini-

tially theorized in the 1960’s and is the particle responsible for explaining why things

have mass—very succinctly, the amount a particle interacts with the Higgs boson is pro-

portional to the amount of mass it has. This was a profound discovery, and it showcased

the incredible predictive power of the Standard Model, resulting in a Nobel prize and

even making it to the front page of the New York Times, as shown in Figure 0.1.

There was, however, a downside to this discovery – the Standard Model was com-

pleted. Despite all the successes of the Standard Model, there are certain things we

simply cannot explain with it. For example, you may have noticed earlier that when I
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Figure 0.1: The discovery of the Higgs boson made the front page of many newspapers,
including the New York Times [1].

described the fundamental forces, I did not mention gravity. This is because it turns out

it is really, really difficult to combine the Standard Model and Einstein’s theory of gen-

eral relativity, which is our best description of gravity. Furthermore, from astronomical

measurements, we know there is something called Dark Matter and that it comprises 4x

more of the matter in the universe than do the Standard Model particles, but we can’t

really say much more about it. What this means is that the Standard Model cannot tell

the full story of how the universe behaves and that there must be more undiscovered

particles to fill in the gaps.

One way to get hints for what this new physics may look like is by examining where

the Standard Model breaks down, as this would presumably be where new particles are

needed to correct the theory. When you do the mathematical calculation of the Higgs

boson mass, you get something close to infinity, while the measured mass of the Higgs

boson is 125 GeV/c2 (the units are unimportant here). Clearly, there is a discrepancy.

One way to reconcile this difference with the Standard Model is if two independent

parameters were perfectly tuned by nature to cancel at over 30 decimal places. This
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corresponds to two random numbers agreeing at the trillionth trillionth millionth decimal

place. Is it possible? Sure, but it’s definitely not likely.

An alternate solution to this discrepancy comes from the theory of Supersymmetry,

which extends the Standard Model, by positing that for every fermion there is a “su-

perpartner” particle that is a boson and vice versa. This symmetry between fermions

and bosons results in the Higgs mass calculation naturally being around ∼100 GeV/c2.

Additionally, in certain types of Supersymmetry, the additional particles may actually

be what make up Dark Matter and there may even be a coherent framework for unifying

gravity with the three other fundamental forces. Thus, Supersymmetry is a really ap-

pealing idea that seems like it could solve some of the biggest open questions in particle

physics.

Nature, however, owes us nothing, and a beautiful idea is just that until proven

otherwise. So what my dissertation boils down to is a detailed description of my search for

Supersymmetry. Unfortunately, as of the writing of this, no evidence for Supersymmetry,

by my search or any other, has been observed. But, this is an exploration, and as we all

know, it’s always the last place you look!
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Chapter 1

Introduction

The discovery of the Higgs boson at the end of Run I of the Large Hadron Collider

marked a transition in high energy physics from asking questions like “At what mass

will we find the Higgs boson?” to “Something needs to be out there, but what?”. The

different scopes of these questions reflect the different strategies of their respective search

programs. For the Higgs bosons, its couplings and branching fractions as a function of

mass were already well described by the Standard Model, and from these expectations,

one could formulate a targeted, multi-channel approach for discovery. On the other hand,

search strategies are now driven by motivated but still theoretical models and the goal

is to cast as wide a net as possible in the hopes of finding hints of something.

To this end, an incredible amount of work has been done over the last few years

to cover great amounts of model space. These initial searches rightfully worked under

the principle of Occam’s razor and searched for the simplest models that could provide

solutions to the most problems. Unfortunately, no evidence of new physics has been

observed, and it appears that nature is not that kind and likely won’t take the simple

forms hoped for. However, if one is willing to make sacrifices, in the form of increasing

model complexity or giving up potential solutions, there is still much more intriguing

phase space that needs to be covered.

This dissertation describes one such search using a dataset corresponding to 35.9 fb−1

5



Introduction Chapter 1

of
√
s = 13 TeV proton-proton collisions collected in 2016. A brief description of this

search and its results has been been published and is given in Reference [26] with ad-

ditional information presented in Reference [27]. Preliminary results using 2.3 fb−1 are

given in Reference [28], while results using similar methods at 8 TeV were published in

Reference [29].

Chapter 2 of this dissertation discusses the current state of the Standard Model and its

deficiencies, introducing the Hierarchy Problem. Chapter 3 then motivates minimal flavor

violating supersymmetry as a class of models worth experimental attention in which the

constraints on “natural” solutions to the Hierarchy Problem are reduced in exchange for

disfavoring explanations for dark matter. Chapters 4 and 5 describe the Large Hadron

Collider and Compact Muon Solenoid detector used for producing and collecting the

relevant data samples, as well as how particles are identified for reconstructing collision

events. Chapter 6 presents in more detail the data sample along with the generation of

the simulated samples used.

At this point discussion of the search strategy begins with Chapter 7, which presents

the event selection that defines the analysis region. Chapter 8 gives an overview of the

maximum-likelihood fit used for predicting the background, while the systematic uncer-

tainties that are assessed for this procedure are provided in Chapter 9. The technical

aspects of the likelihood model along with extensive validation tests are detailed in Chap-

ter 10. Finally, the results from this search are presented in Chapter 11, with a summary

and conclusions given in Chapter 12.

6



Part I

Theoretical Context and Motivations
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Chapter 2

The Standard Model

2.1 Overview and Successes

The Standard Model (SM) of particle physics is a wildly successfull theory and one

of the greatest accomplishments in science. Formulated in the second half of the 20th

century, it describes 17 experimentally-observed, fundamental particles and their interac-

tions through the electromagnetic, weak, and strong fundamental forces. These particles,

shown in Figure 2.1, consist of six quarks and six leptons, known as fermions, which

comprise the matter particles, along with four gauge bosons and one scalar boson, which

mediate particle interactions.

Formally, the Standard Model is a quantum field theory with symmetries described

by the group SUc(3)× SUL(2)× UY(1) and with a Lagrangian of

L = −1

4
FµνF

µν + iψi /Dψi

+ yij(ψiψj + ψ̄iψ̄j)φ+ |Dµφ|2 − V (φ), (2.1)

where Fµν is the field strength tensor, Dµ is the gauge covariant derivative, /D = γµDµ,

ψi are the fermion fields, φ is the Higgs field, and yij are the yukawa couplings. In the top

line, the first term of the Lagrangian describes the interactions of gauge bosons, while

8



The Standard Model Chapter 2

Figure 2.1: The fundamental particles of the Standard Model and some of their properties.

the second encodes the interactions between gauge bosons and fermions. The bottom

line describes Higgs physics with the first term describing the Higgs-fermion interactions,

the second term encoding the Higgs-gauge boson interactions, and finally, the third term

representing the Higgs potential.

As the Standard Model is able to provide predictions across an enormous scope of

physics, it has been rigorously tested throughout its history. For example, Figure 2.2,

shows the agreement between the SM predictions and experimental results for the pro-

duction cross section of a variety of processes. Amazingly, all of the measurements,

spanning nine orders of magnitude, agree with SM predictions. At the same time, the

Standard Model is the most precisely tested theory in physics with its prediction [22]

of the anamalous electron magnetic moment incredibly agreeing with experimental mea-

surements [23, 24] at up to twelve decimal places, as shown in Table 2.1.
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Figure 2.2: The theoretical and experimental value for the production cross section
of various processes [2].

ae(Theory) 0.001 159 652 181 78(77)
ae(Experiment) 0.001 159 652 180 73(28)

Table 2.1: The theoretical [22] and experimental [23, 24] values of the anamalous elec-
tron magnetic moment, ae. The uncertainty in the last digits is shown in parantheses.
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2.2 The Standard Model as an Incomplete Theory

Despite the impressive successes of the Standard Model, it is incomplete as a fun-

damental description of the unvierse and many tensions exist between it and both ex-

perimental and theoretical concerns. For example, the Standard Model glaringly leaves

out the fundamanetal force of gravity and attempts to construct a theory of quantum

gravity have been frought with difficulties. Furthermore, the Standard Model is unable to

explain the substantial astrophysical evidence for dark matter [30, 31], which comprises

∼ 80% of the matter in the universe, as it has no suitable candidate that can account for

the observed mass density of dark matter.

Additionally, the Standard Model provides no mechanisms for:

• the origin of neutrino masses

• the matter-antimatter symmetry

• the presence of dark energy

• a grand unified theory of the strong and electroweak forces

Because of these issues, the Standard Model is believed to be a low-energy effective

field theory with new physics entering at higher energies. It is, however, not easy to

know what form this new physics may take, and thus solutions to the above problems

have been used to drive much of the theoretical framework for extending the Standard

Model. In particular, the Hierarchy Problem and the idea of “naturalness”, described in

the section below, are perhaps the most significant “lampposts” in the search for new

physics.
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2.2.1 The Hierarchy Problem and Naturalness

The long-awaited discovery of the Higgs boson [32, 33, 34, 35, 36, 37], shown in

Figure 2.3, confirmed the existence of a scalar boson with an observed mass of approx-

imately 125 GeV. This relatively low mass of the Higgs boson, however, creates two

related theoretical concerns. First, the Higgs mass is tied to the electroweak scale by the

relation

v =
mH√
2λH

≈ 246 GeV, (2.2)

where v is the higgs vacuum expectation value (vev), mH is the physical Higgs mass, and

λH is the Higgs Yukawa coupling. The vev directly dictates the electroweak scale and is

only on the order of 100 GeV. The next largest known energy scale is that of quantum

gravity and is typically defined as the Planck mass, which is on the order of 1019 GeV.

The question as to why these two scales are so discrepant is known as the Hierarchy

Problem [38].

The second question stems from trying to understand the observed mass of the Higgs

boson in the presence of quantum corrections. The Higgs mass can be broken down into

two components, its bare mass, mH,0, and contributions from radiative corrections, δm2
H ,

as shown in the equation below

m2
H = m2

H,0 + δm2
H . (2.3)

As a scalar particle, the Higgs boson mass receives contributions from all massive parti-

cles. In partcular, for a fermion, f , the contribution to the Higgs mass at the one-loop
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Figure 2.3: Evidence for the existence of a 125 GeV Higgs boson in the di-photon
channel (left) and in the four-lepton channel (right) [3, 4].

level, corresponding to the the diagram shown in Figure 2.4, is of the form

δm2
H |f = −

λ2
f

8π2
Nf

∫ ΛUV d4p

p2

= −Nf

λ2
f

8π2

[
Λ2
UV − 6m2

f ln

(
ΛUV

mf

)
+ 2m2

f

]
+O

(
1

Λ2

)
, (2.4)

with λf the Yukawa coupling and Nf the number of fermionic degrees of freedom. The

quantity ΛUV is the cutoff of the momentum integral, which represents the approximate

scale at which the Standard Model is no longer valid. In the case that there is no new

physics beyond the Standard Model, this would correspond to ΛUV ∼ Planck scale ∼

1019 GeV, where effects due to quantum gravity are introduced.

In this scenario, the leading term of the Higgs mass corrections is O(1038 GeV2),

while, as measured, the squared Higgs mass is only O(104 GeV2). For these two values

to be consistent with each other, the Higgs bare mass parameter must exactly cancel the

correction term at over 30 decimal places of precision. This high-level of fine-tuning is
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Figure 2.4: The fermionic one-loop Higgs mass correction.

considered to be “unnatural” and has been deemed the Naturalness Problem [39, 40, 5,

41]. While it is entirely plausible that such a fine-tuned cancellation of parameters occurs

– there is no inherent theoretical reason against this, this problem motivates the need

for new physics below the Planck scale, particularly physics that naturally incorporates

a mechanism for cancelling the quadratic divergence of the Λ2
UV term.
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Chapter 3

Supersymmetry

3.1 Natural Supersymmetry

Supersymmetry (SUSY) is an extension of the Standard Model that introduces a new

symmetry that relates fermionic and bosonic degrees of freedoms [42, 43, 44, 45, 46, 47,

48, 49, 50, 51]. This symmetry imposes that for every fermionic degree of freedom in

the Standard Model, there exists a “superpartner” bosonic degree of freedom, and vice

versa. Furthermore, this symmetry dictates that both sets of particles couple to physics

at the ΛUV scale identitically.

In the Minimal Supersymmetric Standard Model (MSSM) [52], the Standard Model

is extended to include a Higgs sector comprised of two scalar doublets and only the SM

superpartners. The superpartners of fermions are scalars and labeled by prefixing an

“s” to the beginning of the corresponding SM particle name, while the superpartners of

bosons are spin-1/2, labeled by suffixing an “ino” to the end of the corresponding SM

particle name, and collecticely known as gauginos. Thus, the SUSY particles consist of

4 higgsinos, 12 squarks, 9 sleptons, and 7 gauginos, where there are 2 scalar particles for

each SM fermion in order to preserve the number of degrees of freedom. The superpart-

ners of SM particles are not necesarily mass eigenstates and can mix. The gauge and

mass eigenstates of the superpartners, along with their properties, are shown in Table 3.1.
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Name Spin Gauge Eigenstates Mass Eigenstates

Higgs bosons 0 H0
u H

0
d H

+
d H−d h0 H0 A0 H±

squarks 0

ũL ũR d̃L d̃R same

c̃L c̃R s̃L s̃R same

t̃L t̃R b̃L b̃R t̃1 t̃2 b̃1 b̃2

sleptons 0

ẽL ẽR ν̃e same

µ̃L µ̃R ν̃µ same

τ̃L τ̃R ν̃τ τ̃1 τ̃2 ν̃τ

neutralinos 1/2 B̃0 W̃ 0 H̃0
u H̃

0
d Ñ1 Ñ2 Ñ3 Ñ4

charginos 1/2 W̃± H̃+
u H̃−d C̃±1 C̃±2

gluino 1/2 g̃ same

Table 3.1: The additional SUSY particles in the Minimal Supersymmetric Standard Model.

With the addition of these superpartners, a mechanism for naturally cancelling the

radiative corrections to the Higgs mass is apparent, as the Higgs will couple to these

new massive particles as well and provide additional radiative corrections that cancel

the SM contributions. For example, for a fermion f , the radiative corrections from the

corresponding sfermion f̃ , shown in Figure 3.1, take the form

δm2
H |f̃ = +Nf̃

λf̃
8π2

[
−Λ2

UV + 2m2
f̃

ln

(
ΛUV

mf̃

)]

−Nf̃

λf̃
8π2

[
−2m2

f + 4m2
f ln

(
ΛUV

mf̃

)]
+O(

1

Λ2
UV

) (3.1)

using the relation
√

2mf = λfν. Supersymmetry imposes that Nf̃ = Nf and λf̃ = −λ2
f ,

and thus, in the case where mf = mf̃ , this perfectly cancels not only the quadratic

divergence in Equation 2.4 but also the higher-order corrections, solving the Hierarchy

and Naturalness Problems.

Of course, no superparticles have been observed at the SM scale. This, however, does

not imply that supersymmetry is incorrect but only that it may be a broken symmetry.
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Figure 3.1: The scalar one-loop Higgs mass correction.

In this scenario where mf 6= mf̃ , the quadratically divergent terms still cancel and what

is left is only a lograithmic divergence, mediated by the squared mass difference of the

partner particles:

δm2
H = Nf

λ2
f

8π2

(
m2
f −m2

f̃

)
ln

(
ΛUV

mf̃

)
+ ... . (3.2)

This squared mass difference defines the degree to which the Higgs mass is fine-tuned.

3.2 Phenemonological and Experimental Constraints

While there is no theoretical prediction for the mass of the supersymmetric particles,

there are certain guidelines for what the scale of these masses should be for a given

level of fine-tuning that is deemed acceptable. Firstly, the Higgsino masses are directly

controlled by the value of µ, which is related to the electroweak scale by

−mZ

2
= m2

H + |µ|2, (3.3)

indicating that the Higgsino masses must be near the electroweak scale, ∼ 100 GeV, in

order avoid a large fine-tuning of parameters.
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The other superparticle masses are constrained by the size of their contributions to

the Higgs mass, described in Equation 3.2. Not all superparticles, however, contribute

equally to the Higgs mass, and thus the phenemonological constraints for paritcles are in

proportion to the size of their correction to the Higgs mass. The largest constraint is on

the stop squark masses due to the large Yukawa coupling of the top quark, which implies

that the stop masses must be relatively light in order to keep the squared mass difference

small and correspondingly the overall contribution small. This also constrains the mass

of the left-handed sbotom squark as it is in a doublet with t̃L and thus must not be much

heavier. Finally, the gluino couples to the squarks at the one-loop level, which means

it still couples to the Higgs boson at the two-loop order, despite the Yukawa coupling

for a gluon being zero. This constraint on the gluino is looser than for other particles

described, but since it is strongly interacting, it has a high cross section at the Large

Hadron Collider (LHC) and is thus an important experimentally accessible particle. Not

considering model-dependent concerns, these are generically the only SUSY particles that

are required to be light, and the rest of the superparticles may be decoupled with very

high masses. A qualitiative example of a natural SUSY spectrum is shown in Figure 3.2.

In order to gain a rough quantitative sense of what the mass constraints for these

particles are, a measure of the Higgs mass fine-tuning can be constructed as

N ≡ δm2
H

m2
H

. (3.4)

Thus for N = 10, a fine tuning of 1 part in 10, the bounds are mt̃ . 1 TeV and

correspondingly mb̃ . 1 TeV and mg̃ . 2 TeV.

Recent results from the LHC, however, are already starting to threaten these bounds,

as shown in Figure 3.3 and Figure 3.4, with gluino and stop exclusion limits already

surpassing these bounds for certain models. These constraints, however, are largely
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Figure 3.2: An example spectrum for natural SUSY [5].

in the context of R-parity conserving models, where a new quantum number, PR, is

conserved. R-parity is defined per particle as

PR ≡ (−1)3(B−L)+2s, (3.5)

where B, L, and s is the baryon number, lepton number, and spin of the particle. This

results in PR = +1 for SM particles and PR = −1 for SUSY particles. The motivation for

requiring that R-parity be conserved is that the lightest supersymmetric particle (LSP),

in this case, cannot decay to SM particles and is therefore stable. For models where the

LSP is a neutralino, the LSP is then a dark matter candidate.

The phenomenology, however, for R-parity conserving (RPC) and R-parity violating

(RPV) SUSY models is very different. For RPC scenarios, the stable LSP does not

interact with the detector and escapes without depositing any energy. The presence

of the LSPs, however, can be inferred by examining the missing transverse momentum

(Emiss
T ) in an event, which due to the negligible transverse momentum of the initial
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q̃q̃, q̃→qχ̃0
1 0 2-6 jets Yes 36.1 m(χ̃

0
1)<200 GeV, m(1st gen. q̃)=m(2nd gen. q̃) 1712.023321.57 TeVq̃

q̃q̃, q̃→qχ̃0
1 (compressed) mono-jet 1-3 jets Yes 36.1 m(q̃)-m(χ̃

0
1)<5 GeV 1711.03301710 GeVq̃

g̃g̃, g̃→qq̄χ̃0
1 0 2-6 jets Yes 36.1 m(χ̃

0
1)<200 GeV 1712.023322.02 TeVg̃

g̃g̃, g̃→qqχ̃±1→qqW±χ̃0
1 0 2-6 jets Yes 36.1 m(χ̃

0
1)<200 GeV, m(χ̃

±
)=0.5(m(χ̃

0
1)+m(g̃)) 1712.023322.01 TeVg̃

g̃g̃, g̃→qq̄(ℓℓ)χ̃0
1

ee, µµ 2 jets Yes 14.7 m(χ̃
0
1)<300 GeV, 1611.057911.7 TeVg̃

g̃g̃, g̃→qq(ℓℓ/νν)χ̃0
1 3 e, µ 4 jets - 36.1 m(χ̃

0
1)=0 GeV 1706.037311.87 TeVg̃

g̃g̃, g̃→qqWZχ̃0
1 0 7-11 jets Yes 36.1 m(χ̃

0
1) <400 GeV 1708.027941.8 TeVg̃

GMSB (ℓ̃ NLSP) 1-2 τ + 0-1 ℓ 0-2 jets Yes 3.2 1607.059792.0 TeVg̃
GGM (bino NLSP) 2 γ - Yes 36.1 cτ(NLSP)<0.1 mm ATLAS-CONF-2017-0802.15 TeVg̃
GGM (higgsino-bino NLSP) γ 2 jets Yes 36.1 m(χ̃
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b̃1b̃1, b̃1→tχ̃±1 2 e, µ (SS) 1 b Yes 36.1 m(χ̃
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1 0 mono-jet Yes 36.1 m(t̃1)-m(χ̃

0
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±
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1
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∓
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±
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0
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1
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1 ,
χ̃0

2
χ̃±1 χ̃

0
2→Wχ̃0

1Zχ̃0
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0
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0
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χ̃0
2χ̃

0
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0
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0
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0
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0
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0
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Figure 3.4: An overview of recent results from SUSY searches from the A Toroidal
LHC Apparatus experiment [7].
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colliding particles, should be 0 in events without LSPs or neutrinos. Thus, the Emiss
T in

an event provides a powerful handle for discriminating signal and background and most

analyses search for signatures that include significant amounts of Emiss
T . In RPV models,

however, the LSP is not stable and decays to SM particles, which does not produce a

large Emiss
T signature. Although this disfavor the LSP as a dark matter candidate, it

allows RPV models to evade the constraints from RPC searches. Subsequently, RPV

SUSY yields an important class of models that can ease the tension between natural

solutions to the hierarchy problem and current experimental limits.

3.3 R-parity Violating Supersymmetry

In the MSSM, the additional R-parity violating terms are

WRPV =
1

2
λijkLiLjek + λ

′ijkLiQjdk +
1

2
λ

′′ijkuidjdk + µ
′iLiHu, (3.6)

where the color indices have been surpressed and the letters i, j, k denote generation.

The fields Li, Qj, and Hu are SU(2) doublets corresponding to leptons, quarks, and the

Higgs boson, respectively, while ek, ui, and dj are the charged lepton, up-type quark,

and down-type quark SU(2) singlets. The µ and various λ factors are coupling strengths

for their corresponding interactions, where λ and λ
′′

must be antisymmetric in their first

and last two indices, respectively, due to color conservation. A full description of RPV

SUSY can be found in Reference [53].

While there is no fundamental theoretical reason forbidding R-parity violation, there

are significant constraints on these interactions, primarilly due to the lepton number vio-

lating (LNV) couplings, λ and λ
′
, and and the baryon number violating (BNV) coupling,

λ
′′

[54]. The most stringent of these constraints is from proton decay on which current
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Figure 3.5: Example diagram representing proton decay, where the particle X rep-
resents a down-type squark [8]. The left vertex is mediated by the baryon number
violating coupling, λ

′′
, and the right vertex is mediated by the lepton number violating

coupling, λ
′
.

experimental results place a lower bound on the proton half-life of O(1034 years) [55, 56].

Proton decay, however, requires both a lepton number and baryon number violating cou-

pling, as shown in Figure 3.5. This constraint can be avoided if a mechanism exists to

make one of these couplings zero or negligibly small. Additionally, though, there are

strong limits on the individual LNV and BNV couplings, for example from neutron oscil-

lation and muon-to-electron decay measurements, which are most stringent for the light

generations. Thus, for any mechanism to evade these constraints, it must also motivate

smaller couplings for the lighter generations.

3.3.1 Miminal Flavor Violating Supersymmetry

One way to avoid the constraints placed on the RPV couplings is to construct a model

by following the structure of minimal flavor violation. In these Minimal Flavor Volating

(MFV) SUSY models [57, 58, 25], the RPV couplings are related to the SM Yukawa

couplings, making the third generation RPV couplings large and those of the first two
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ds db bs
u 3× 10−12 6× 10−9 5× 10−7

c 1× 10−8 1× 10−5 4× 10−5

t 4× 10−5 6× 10−5 2× 10−4

Table 3.2: Rough estimates for the sizes of the λ
′′
ijk MFV RPV couplings [25].

small. For example, the λ
′′

coupling can be written as

λ
′′

ijk = w
′′
y

(u)
i y

(d)
j y

(d)
k εjklV

∗
il (3.7)

with w
′′

an O(1) parameter, y(u) and y(d) the up- and down-type Yukawa couplings, and

V the CKM matrix. From this, the sizes of the λ
′′

ijk couplings can be roughly estimated

(using w
′′

= 1) and are shown in Table 3.2, which depicts the dependence of the coupling

strength on generation. Additionally, in MFV scenarios, the LNV couplings are severly

suppressed by neutrino masses, and in the limit of massless neutrinos, are exactly zero.

Thus, the only relevant RPV coupling in MFV SUSY models is the BNV udd coupling,

which is small for the first two generations – meeting the exact criteria necessary to evade

experimental constraints on RPV couplings. Furthermore, in the case where the LSP is

a squark, it will decay promptly and not produce Emiss
T , allowing these models to even

evade the constraints from RPC SUSY searches.

Because of these considerations, MFV SUSY is an intriguing class of models to inves-

tigate experimentally. In particular, due to the high g̃g̃ cross-section and large value of

λ
′′

tbs, a search for the pair-production of gluinos that decay via g̃ → t¯̃t → tbs, as shown

in Figure 3.6, is well-motivated.

The remainder of this dissertation is dedicated to describing such a search conducted

with the Compact Muon Solenoid detector using
√
s = 13 TeV proton-proton collisions.
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Figure 3.6: Example diagram of the pair production of gluinos that decay via g̃→ t¯̃t→ tbs.
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Experimental Apparatus
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Chapter 4

Experimental Apparatus and Event
Reconstruction

When construction of the Large Hadron Collider was approved over 20 years ago, much

of its design was influenced by the need to search for physics beyond the Standard Model

(BSM). The two most important properties of a collider are its center-of-mass energy

and its (instantaneous) luminosity, and the LHC was designed to surpass all previous

colliders in both aspects. The designed center-of-mass energy,
√
s, of 14 TeV allows for

the production of particles heavier than ever before, while the designed luminosity of

1034 cm−2s−1 allows BSM searches to probe very rare processes.

In the same way, the design of the Compact Muon Solenoid (CMS) detector reflects

the needs of BSM searches. In particular, an all-purpose, hermitic detector that can

precisely measure a variety of particles is essential to fully search the parameter space of

the many (un)theorized new physics models.

4.1 The Large Hadron Collider

The LHC since 2015 has been colliding protons together at
√
s = 13 TeV, slightly

below the designed specifications but still at an unsurpassed energy. In order to reach

this center-of-mass energy, the LHC uses a large accelerator complex consisting of many
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Figure 4.1: A schematic of the CERN LHC accelerator complex [9].

smaller particle accelerators, which is necessary to produce protons and bring them up

to a speed such that they can be injected into the LHC ring. A diagram of the CERN

accelerator complex is shown in Figure 4.1, while Figure 4.2 shows the physical size of

the LHC.

This process first begins with a simple bottle of hydrogen gas, from which the hydro-

gen atoms are ionized by an electric field to produce the needed protons. These resulting

protons are then fed into LINAC 2, the first accelerator in the chain, which accelerates

them up to 50 MeV, creating a beam of protons. The proton beam is then passed succe-

sively to the Proton Synchtron Booster, Proton Synchotron, and Super Proton Synchtron,

where the beam reaches energies of 1.4 GeV, 25 GeV, and 450 GeV, respectively. At the
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Figure 4.2: A map that shows the physical extent of the Large Hadron Collider.

Proton Synchotron, the beams are additionally split into “bunches”, each consisting of

O(1011) protons and separated in time by 25 ns. Finally, the protons can be injected into

the two beam pipes of the LHC, each circulating in opposite directions. These beams

continue to be accelerated until they reach their final energy of 6.5 TeV, allowing for

collisions at
√
s = 13 TeV. At this point, the proton beams are focused and fine-tuned at

several stages in order to increase the luminosity. In 2016, the LHC was able to collide

protons with an instantaneous luminosity of 1.4 × 1034 cm−2s−1, which exceeded its

designed specification and delivered a record-high integrated luminosity of 40.8 fb−1.

These improvements from previous generations of colliders greatly increase the reach

of searches for new, heavy particles. Since the center-of-mass energy of the actual colliding

partons,
√
ŝ, is typically much less than the overall center-of-mass energy, raising the

collider’s energy can greatly increase the production cross-section of heavy particles,

especially of those around the TeV scale. For example, Figure 4.3, which depicts the

ratio of parton luminosities at
√
s = 13 TeV and 8 TeV as a function of the characteristic

mass scale of the event, shows that a 2000 GeV gluino will be produced through gg
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Figure 4.3: Ratio of parton luminosities at
√
s = 13 and 8 TeV [10].

scattering processes ∼15× more often with less than a doubling of the collider energy.

Increasing a collider’s energy, however, is not always a practical option, involving new

technologies, expensive upgrades, or even a new collider. When this is the case, the best

alternative to continue to probe rare processes is to simply take more data, more quickly,

which a high luminosity collider like the LHC allows for.

A more complete description of the LHC can be found in Reference [59].

4.2 Compact Muon Solenoid

Along the tunnels of the LHC, below Cessy, France, sits the CMS detector, shown

in Figure 4.4, where proton-proton collisions are recorded. The overall shape of the

detector is cylindrical with a length of 21.6 m and radius of 7.3 m, while weighing

roughly 14,000 metric tons. The CMS detector is sometimes called a cylindrical onion,
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as its shape is comprised of layers of specialized detectors, each designed to provide

precise measurements for a particular particle type. Peeling back the layers from the

outside-in, the first sub-detector is the muon system, which is represented by the “M”

in CMS. Next is a superconducting solenoid of 6 m internal diameter that produces

a magnetic field of 3.8 T, and perhaps most importantly provides the “S” in CMS.

Placed within the solenoidal magnet, is the rest of the CMS detector, namely the Hadron

Calorimeter (HCAL), Electromagnetic Calorimeter (ECAL), and a silicon tracker. The

design challenge of compactly fitting most of the detector components within the solenoid

is responsible for the “C” in CMS. A diagram of the layout of the CMS detector can be

seen in Figure 4.5.

At the center of the silicon tracker is Interaction Point 5, the beam crossing which

provides the proton-proton collisions to the CMS detector, and is the nominal origin

of CMS’s coordinate system. The x-axis is defined to point towards the center of the

LHC ring and the y-axis is defined to point up towards the surface, both of which are

transverse to the proton beam. The z-axis points along the beamline with the positive

direction given by the right-hand rule relative to the x- and y-axes. Due to the CMS

detector shape, it is often useful to convert the cartesian coordinates to a cylindrical

coordinate system. In this system, the azimuthal angle, φ, is measured from the x-axis

in the xy-plane, and the polar angle, θ, is measured from the z-axis. The polar angle,

however, is often replaced by psuedorapidity, defined as η = − ln(θ/2). Thus, any point

in the CMS coordinate system can be represented by (r, η, φ). A diagram showing both

the cartesian and cylindrical coordinate systems can be seen in Figure 4.6.

The remainder of this section briefly describes the main features of the various CMS

sub-detectors. A detailed discussion can be found in Reference [18].
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Figure 4.4: The CMS detector [11].
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Figure 4.5: A diagram showing the various sub-detectors of the CMS detector [12].

Figure 4.6: A diagram of the cartesian and cylindrical coordinate systems used by CMS [13].

33



Experimental Apparatus and Event Reconstruction Chapter 4

4.2.1 Inner Tracking System

The tracking system is used for precise measurements of the trajectories of charged

particles, as well as reconstruction of seconday vertices. As the tracking system is the

closest subdetector to the interaction point, it faces a very large particle flux rate and

so must be able to provide both high granularity and fast response, as well as be able

to survive operating in those conditions with an expected lifetime of 10 years. At the

same time, these features must be balanced with minimizing the amount of material in

order to reduce unwanted interactions with the detector, such as multiple scattering, pho-

ton conversion, and nuclear interactions. These requirements lead to a tracking system

composed entirely of silicon technology.

The CMS tracking system is actually composed of two parts. The first is the pixel

detector, which surrounds the interaction point, and is composed of 3 barrel layers at

radii between 4.4 and 10.2 cm and 2 endcap layers that extend the acceptance up to

|η| < 2.5. In total, the pixel detector covers an area of roughly 1 m2 with 66 million

pixels and achieves a resolution of roughly 10 and 20 microns in the directions transverse

and logitudinal to the beam line, respectively.

The second part of the tracking system is the strips detector which sits just outside

the pixel detector. The strips detector is composed of 4 parts: the tracker inner barrel

(TIB), tracker inner disks (TID), tracker outer barrel (TOB), and the tracker endcaps

(TEC). The TIB and TID extend up to 55 cm in radius and are composed of 4 and 3

layers, respectively, while the TOB, which surrounds the TIB and TID, extends out to

116 cm and is composed of 6 layers. Lastly, the TEC which sits next to the other strip

detector components, covers a radius of 22.5 to 113.5 cm and is composed of 9 disks. In

total, the strips detector covers an area of 198 m2 with 9.3 million strips. A layout of the

tracking system including the pixel and strips detector is shown in Figure 4.7.
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Figure 4.7: Layout of the CMS tracking system, showing both the pixel detector (blue)
and the strips detector (red) [14].

4.2.2 Electromagnetic Calorimeter

The primary purpose of the electromagnetic calorimeter (ECAL) is to measure the

energy of electrons and photons. The ECAL is a hermetic, homogenous detector made

up of a barrel part, covering the |η| < 1.479 region, and two endcap parts that covers

1.566 < |η| < 3.0. Both the barrel and endcap sections are comprised of lead tungstate

(PbWO4) crystals with 61,200 in the barrel and 7,324 in each of the endcaps. The use of

the PbWO4 crystals was motivated by their high density, short radiation length, small

Molière radius, and radiation hardness, all of which allow for a fine granularity, radiation

resistant, compact calorimeter.

The lead tungstate crystals act as scintillators, which produce an amount of light

that is proportional to the energy of an incident particle. This light is then converted to

an electrical signal by silicon photodectors (avalanche photodetectors in the barrel and

vacuum phototriodes in the endcaps), which is used for the final energy measurement.
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Figure 4.8: A cross section of the ECAL, showing its geometry and layout [15].

The resulting resolution on the energy measurements is given by

σ

E
=

S√
E
⊕ N

E
⊕ C (4.1)

where S is the stochastic term, N the noise term, C the constant term, and E is in units

of GeV. Typical values for S, N , and C, as measured in electron beam tests, are 2.8%,

12%, and 0.30%, repectively.

In addition to the ECAL barrel and endcaps is a preshower detector, which sits in

front of the endcaps, covering 1.653 < |η| < 2.6. The main purpose of the preshower

detector is to identify neutral pions by improving the granularity, so as to be able resolve

photon pairs from the decay of high energy pions that otherwise would be mismeasured

as single photons. The preshower detector also provides improved position resolution

for electrons and photons and helps identify electrons from minimium ionizing particles.

The full layout of the ECAL is shown in Figure 4.8.
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Figure 4.9: The layout and geometry of a quarter of the HCAL detector [16].

4.2.3 Hadronic Calorimeter

The primary purpose of the hadronic calorimeter (HCAL) is to measure the energy

of hadrons, which can pass through the ECAL as they primarilly interact through the

strong force. The HCAL is a sampling calorimeter made up of either brass, iron, or steel

absorbers and uses plastic scintillator tiles as the sampling material, which measures

the energy of hadrons through scintillation, similarly to the ECAL. As a hadron travels

through the HCAL, it interacts with one of the absorber layers, which results into a

“shower” of particles that produces light in the scintillator tiles as the resulting particles

pass through the sampling layers. These light pulses are carried by wavelength-shifting

fibers to a hybrid photodiode, which converts the pulses to analog electrical signals that

when summed have an amplitude proportional to the hadron’s energy.

The HCAL is separated into 4 components: the hadron barrel (HB), hadron endcap

(HE), hadron forward (HF), and hadron outer (HO), the layouts of which are shown

in Figure 4.9. The HB and HE completely surround the ECAL and were designed to

37



Experimental Apparatus and Event Reconstruction Chapter 4

minimize any cracks between the two subdetectors with the HB covering |η| < 1.3 and the

HE covering the rest up to |η| = 3. Both components function as sampling calorimeters

with alternating absorber and sampling layers. In the HB, the first and last layers are

made of steel while the 14 other absorber layers are made of brass, while the HE is made

up of 18 brass absorber layers. For both components, there are sampling layers made of

plastic scintillator tiles interspersed between each of the absorber layers.

The HF is used to measure the energy of the forward most hadrons in the pseudo-

rapidity range of 3.0 < |η| < 5.0. At this forward position, the HF faces extradorinary

levels of particle flux and had to be designed to handle this radiation. Due to this con-

straint, the HF uses quartz fibers instead of plastic scintillator tiles as its active medium,

as the quartz fiber are more radiation hard. The HF uses both long fibers, which run

the full depth (165 cm) of the detector, and short fibers, which begin 22 cm from the

front end of the detector. This geometry allows the HF to provide depth information of

the energy deposits, which helps to identify electrons and photons from hadrons, as the

former tends to deposit most of its energy in the first depth, while the latter deposits its

energy more equally between the two depths. These fibers are embedded into the steel

structure of the HF, which also acts as the absorber.

Lastly is the HO, whose main purpose is to act as a “tail catcher”. Due to the

geometrical constraint that the HCAL fit within the CMS solenoid, the HB does not

have enough material in the central η region to adequately contain hadron showers. So

to provide extra sampling layers, the HO sits just beyond the solenoid and has 1 to 2

scintillator layers and uses the magnet as an extra absorber layer. At this position, the

HO is able to identify late starting showers and measure the amount of energy that is

deposited past the HB.
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Figure 4.10: The layout of the muon system within the CMS detector [17].

4.2.4 Muon System

Muons, as implied by the name of CMS, are a central focus of the CMS detector, and

the responsibiilty of identifying muons with high purity and providing precise momenta

measurements falls to the muon system. To do this, the muon system is composed of

three types of gaseous detectors, motivated by the need to cover a large area and varying

radiation environments. Figure 4.10 shows the layout of the muon system within the

CMS detector.

In the barrel region, |η| < 1.2, drift tube chambers (DTs) are used as the neutron-

induced background is small, the muon rate is small, and the magnetic field is uniform.

The DTs are organized into 4 stations, with three of the stations containing 8 chambers

that measure position in the r-φ plane and 4 that measure position in the z-direction.

The last station only contains the eight r-φ measuring chambers. In the endcap regions

of CMS, 0.9 < |η| < 2.4, the expected muon and background rates are higher and the

magnetic field is large and non-uniform, both of which preclude the use of DTs. Instead,
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the muon system endcaps are instrumented with cathode strip chambers (CSCs) that

have a high response time, fine segmentation, and higher radiation resistance The CSCs

have 4 stations in each endcap with chambers that are aligned perpendicular to the beam

line and are able to provide measurements in the r-φ plane and z-direction, along with

the beam crossing time of a muon.

Both the DTs and CSC are capable of providing high efficiency and pure muon pT

triggers, independent of the rest of the detector. But in order to further improve this,

particularly at the full LHC luminosity, another complementary trigger system consisting

of Resisitive Plate Chambers (RPCs) was added to both the barrel and endcap regions

(|η| < 1.6). The RPCs are double-gap chambers that operate with a fast response and

good time resolution. The spatial resolution, however, is coarser than the DTs or CSCs,

though the extra hits in the RPC still help resolve ambiguities when making tracks. There

are a total of 6 RPC layers in the barrel muon system, which help improver triggers for

low pT muons, and 3 layers in each of the endcaps that help reduce background and

improve the time and pT resolution of muons.

4.2.5 Trigger System

The high instantaneous luminosity of the LHC provides many techincal challenges for

the data aquisition system (DAQ), with proton-proton collisions occuring every 25 ns,

corresponding to a frequency of 40 MHz. At this collision rate, it is unfeasible to process

and store the data for each event. In order to reduce the rate, a two-stage trigger system

is used to select only the most “interesting” events for processing.

The first stage is the Level-1 (L1) trigger system, which has approximately only 4 µs

to decide whether or not an event should be further processed. In order to operate at this

timescale, the L1 trigger uses only coarse-grained information from the CMS calorimeters
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and the muon system.

For the calorimeter set of data, the L1 first generates trigger primitives by looking

for large energy deposits in the calorimeter. These trigger primitives are then passed to

the Regional Calorimeter Trigger (RCT), which uses this information to determine elec-

tron/photon candidates and transverse energy sums per calorimeter region. In addition,

the RCT also calculates information relevant for detecting minimally ionizing particles,

vetoing tau leptons, and muon isolation. Lastly, the Global Calorimeter Trigger (GCT)

uses the information from the RCT to construct jets and calculate the event-level trans-

verse energy and missing transverse energy, along with the final isolated and non-isolated

electron/photon candidates.

For the muon portion of the L1 trigger system, the DTs and CSCs both compute

local trigger information which consists of two- and three-dimensional track segments,

respectively. This information is then passed to a joint DT-CSC track finder, which

connects these segments into a full candidate track. At the same time, the RPC constructs

a separate, independent set of track candidates. Both sets of candidate tracks are sent

to the Global Muon trigger (GMT), which also takes in the relavent information from

the RCT, to construct muon candidates.

Lastly, the candidate particles and event-level information from the GCT and GMT

are sent to the Global Trigger, which takes this information and checks to see if certain

criteria are met. If so, a L1 Accept (L1A) is generated, which signals for the event to

be fully read out. This process, shown in Figure 4.11, reduces the full readout rate to at

most 100 kHz.

On the generation of an L1A, all the CMS subsystems read out the buffered data

corresponding to the L1A event and pass it to an event builder. The data the event

builder receives is both more complete and at a finer resolution, allowing it to construct

more complex quantities before sending it to the High Level Trigger (HLT), the second
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Figure 4.11: Flowchart depicting the generation of a L1 Accept [18].

stage of the trigger system.

The HLT software is run on a processor farm that reconstructs events in greater

detail to decide whether or not they should be kept. This framework is flexible allowing

both the HLT software and the processor farm to be updated in order to meet changing

experimental needs. As such the exact criteria used by the HLT in its decision varies

with time, but generally involves thresholding the pT and/or multiplicity of particles along

with event-level quantities. At the end of this process, the trigger rate is approximately

100 Hz.
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Particle Reconstruction and
Identification

5.1 Tracks

Track reconstruction with the CMS detector faces many challenges, as at each bunch

crossing O(103) particles are expected to pass through the CMS tracking system, all of

which must be reconstructed in time to be inputted to the HLT. This constraint makes it

immensely challenging to attain high track-finding efficiency, while minimzing the number

of fake tracks.

The first step of track reconstruction is to reconsutrct “hits” in a process called

“local reconstruction”. In this step, signals in both the pixel and strip channels that are

above some zero-suppression threshold are clustered together into hits, where the cluster

positions and uncertainties are then estimated.

Next, tracks are reconstructed from these hits in order to provide estimates for the

momentum and position of charged particles associated with the track. This is done

using specialized software based on Kalman filters known as Combinatorial Track Finder

(CTF). In order to reduce the combinatorial complexity of the problem, the CTF track

reconstruction is performed six times. Each iteration attempts to reconstruct the most
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easily-identifiable tracks, e.g. high-pT tracks, and then removes the hits associated with

those tracks. This helps simplify the track reconstruction in the following iterations.

Each iteration consists of four steps:

1. A seed is generated from a few (generally 2 or 3) hits. This seed provides an initial

estimate of the trajectory and uncertainties associated with thet track.

2. A Kalman-based track finder is used to extrapolate seed trajectories along their

expected paths. Additional hits that are compatabile with a path are assigned to

that track candidate.

3. A track-fitting module uses a Kalman filter and smoother to provide estimates of

the trajectory parameters for each track.

4. A track selection sets quality thresholds and discards tracks that fail the specified

criteria.

A detailed description of track reconstruction can be found in Reference [60].

5.1.1 Vertices

An essential part of event reconstruction is identifying which particles were produced

at parton-parton interaction vertices (primary vertices) and which were produced at a

decay vertex of produced particles (secondary vertices). The process for selecting primary

vertices consists of three steps: track selection, track clustering, and track fitting.

The track selection criteria is chosen in order to select tracks that are consistent

with being produced promptly in the primary interaction region. Tracks are required to

have a small transverse impact parameter relative to the beam spot, a certain number of

hits in the pixel and strip detectors, and good fit quality when fitting to the trajectory.
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No requirement is placed on the pT of tracks, in order to ensure a high reconstruction

efficiency, even for minimum-bias events.

After the track selection, a deterministic annealing clustering algorithm [61] is used

in order to group together tracks that appear to originate from the same vertex. Here the

selected tracks are originally all assigned to the same vertex and are then slowly divided

into multiple vertices. This process continues until reaching a cutoff defined by balancing

the risk of incorrectly splitting vertices and the resolving power of the algorithm.

Once the track clustering is completed, an “adaptive vertex fitter” is used to determine

the 3D-position of vertices with at least two tracks [62], in which tracks corresponding

to a vertex are each assigned a probability of correctly belonging to the vertex. The

weighted sum of these probabilities is then used in the fitting algorithm to determine

primary vertices.

In this process, many more than one primary vertex are reconstructed due to multiple

parton-parton interactions in an event. There is, however, usually only one primary

vertex of interest in the event, corresponding to the primary vertex with the highest sum

of track p2
T. This primary vertex is commonly referred to as the primary vertex.

5.2 Calorimeter Clusters

Energy deposits in the various CMS calorimeters are clustered together to form

“calorimeter clusters”. The purpose of the calorimeter clusters are to aid in, detect-

ing and measuring the energy and direction of stable neutral particles, separating these

neutral particles from the energy deposits of charged hadrons, reconstructing and identi-

fying electrons, along with their corresponding bremsstrahlung photons, and measuring

the energy of charged hadrons with low-quality track parameters.

The calorimeter clustering is done in three steps. First, cluster seeds are identified
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as cells with an energy both larger than some threshold and larger than the energy of

neighboring cells. Next, these cluster seeds are formed into “topological clusters” by

iteratively merging together neighboring cells that have significant energy deposits. In

this process, topological clusters can merge such that a cluster contains multiple cluster

seeds. Lastly, the energy in a topological cluster is distributed among its seeds through

a Gaussian-mixture model that results in the final calorimeter clusters.

This clustering is performed separately in each subdetector calorimeter, including

the ECAL preshower detector, whose two layers are treated independently. There is

no clustering performed in the HF, as each cell’s short- and long-fibers measure the

electromagnetic- and hadronic-energy components, as described in Subsection 4.2.3. These

components directly give rise to “HF EM” and “HF HAD” clusters.

5.3 Particle Flow

The particle-flow (PF) algorithm is a holistic approach towards event reconstruction.

It combines the basic information of subdetectors, i.e. the tracks and clusters defined

above, to identify each final-state particle and reconstruct their corresponding proper-

ties. By correlating measurements from the tracker and calorimeter, the PF algorithm

is able to provide improved energy and momentum measurements. A complete, detailed

presentation of the particle-flow algorithm is given in References [63, 64, 65].

5.3.1 Linking

As a particle traverses through the CMS detector, it is expected to generate multiple

input elements to the PF algorithm. Thus, the first step of reconstructing particles is to

“link” the various PF elements stemming from different subdetectors together. This is

done by defining a “distance” between two linked elements, where the closer the distance
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the more probable it is the two elements correspond to the same particle. The linking

algorithm then creates “PF blocks” by associating directly or indirectly linked elements

together. The exact criteria used to link elements together and define their distance

depends on the type of elements being considered and are listed below.

A link between a track and calorimeter cluster is established by extrapolating the

track trajectory through the ECAL and HCAL, up to a depth where energy deposits are

most expected. If the extrapolated track falls within the area of the calorimeter cluster,

the two elements are linked and the link distance is defined as the separation between

their positions in the (η, φ) plane. In the case multiple clusters are linked to the same

track only the link with the smallest distance is kept.

To link tracks with clusters from potential bremsstrahlung photons, tangents to the

track are extrapolated to the ECAL. If a tangent line falls within the cluster, the track

and cluster are linked with the η-φ separation used as the link distance.

Calorimeter clusters in the HCAL, ECAL, and preshower detector are linked together

when the position of a cluster in a more granular calorimeter (preshower or ECAL) is

within the boundaries of a cluster with less granularity (ECAL or HCAL). The distance

between these two clusters is defined as either the η-φ or x-y separation for HCAL-ECAL

and ECAL-preshower links, respectively. In the case where multiple HCAL(ECAL) clus-

ters are linked to the same ECAL(preshower) cluster, only the link with the smallest

distance is used.

Links between a track and a standalone-muon track, defined as a track segment

constructed from hits in the muon system, are established when a global fit to the two

tracks has an acceptable fit quality. The link distance in this case is defined as the χ2 of

the fit, and only the link with the smallest χ2 is retained when there are multiple links

to the same standalone-muon track. The resulting links are called “global muons”.
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5.3.2 PF Reconstruction and Identification

Once the PF blocks have been constructed, the PF algorithm is applied to reconstruct

and identify a set of particles from each PF block. This algorithm proceeds sequentially

to hierarchically reconstruct particles as described below.

First, PF muons are formed from global muons whose momentum is compatible with

that determined by only using the tracker. The corresponding tracks are then removed

from the PF block.

Next, PF electrons are identified by using information from the inner tracker and

calorimters. Electron candidates in a PF block are seeded by tracks with links to ECAL

clusters. These tracks are then re-extrapolated to the ECAL, and if a track is found to

be compatible with ECAL energy deposits and consistent with an electron, the track and

clusters are labelled a PF electron and are removed from the PF block.

The remaining elements in the PF block are used to form charged hadrons, photons,

neutral hadrons, and, in rare cases, additional muons. PF elements are identified as one

of these particle-types by comparing the track momentum to the linked cluster energies.

The following scenarios define the identification process:

• If the total cluster energy is much smaller than the track momentum, the excess

track momentum is labeled as a muon or fake track. This occurs for less than 0.03%

of the tracks used in the algorithm.

• If the total cluster energy agrees within the uncertainty of the track momentum,

a PF charged hadron is formed. The PF charged hadron is then assigned a mass

equal to that of a charged pion and a momentum based on a fit of the tracker and

calorimeter measurements.

• If the total cluster energy is significantly larger than the track momentum and the
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excess is greater than the total ECAL energy, then the track is considered a PF

charged hadron, as described above. The excess ECAL energy is labeled a PF

photon, and the remaining energy is assigned to a PF neutral hadron. The excess

ECAL energy is preferentially given to photons over neutral hadrons, as typically

photons account for 25% of the energy of a jet, while neutral hadrons only account

for 3%.

• If the total cluster energy is significantly larger than the track momentum and the

excess is less than the total ECAL energy, the track is considered a PF charged

hadron and the excess calorimeter energy is assigned as a PF photon.

• If there are ECAL or HCAL clusters without any linked tracks, the deposits are

respectively treated as PF photons and PF neutral hadrons.

5.4 Leptons

As the identification criteria for selecting PF electrons and PF muons are loose, these

objects serve as candidate particles. To increase the purity of true electrons/muon, more

stringent criteria must be passed for a PF electron/muon to be considered an analysis-

level electron/muon. The number of analysis-level leptons, where a lepton is defined as

either an electron or muon, is denoted as Nleps.

5.4.1 Electrons

The electron candidates are required to have pT > 20 GeV, |η| < 2.5, and to satisfy

identification criteria [66] designed to remove hadrons misidentified as electrons, photon

conversions, and electrons from heavy-flavor hadron decays. This criteria is shown in

Table 5.1, where σiηiη is a variable based on the width of the electron shower shape, and
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Criteria Barrel requirement Endcap requirement
σiηiη < 0.0101 < 0.0283
∆η(cluster, track) < 0.0103 < 0.07333
∆φ(cluster, track) < 0.0336 < 0.114
Ehadronic/Eelectromagnetic < 0.876 < 0.0678
1
E
− 1

p
[GeV−1] < 0.0174 < 0.0898

|d0| [mm] < 0.0118 < 0.0739
|dz| [mm] < 0.373 < 0.602
Missing hits ≤ 2 ≤ 1
Pass photon conversion True True

Table 5.1: Identification criteria that a PF electron must pass in order to be considered
an analysis-level electron.

d0 and dz are the transverse and logitudinal impact parameters of the associated electron

track, respectively.

Additionally, to preferentially select electrons that originate from the decay of W and

Z bosons, electrons are required to be isolated from other PF candidates. The relative

isolation of a particle Irel is quantified using an optimized version of the mini-isolation

variable Imini. Mini-isolation is computed as the scalar sum of the pT of charged hadrons

from the PV, neutral hadrons, and photons that are within a cone of radius Rmini-iso

surrounding the electron momentum vector ~p in η-φ space [67]. The cone radius Rmini-iso

varies with 1/pT according to

Rmini-iso =


0.2, pT ≤ 50GeV

10 GeV/pT, 50 < pT ≤ 200 GeV

0.05, pT > 200 GeV.

(5.1)

The pT-dependent cone size reduces the rate of accidental overlaps between the elec-

tron and jets in high-multiplicity events or highly Lorentz-boosted decays and in particu-

lar overlaps between bottom quark jets and leptons originating from a boosted top quark.
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Figure 5.1: The efficiency to select an analysis-level electron as a function of pT and
η. The low efficiency for 1.442 ≤ |η| < 1.556 corresponds to the ECAL “crack” region,
the boundary between the EB and EE, in which electron reconstruction is particularly
difficult.

Relative isolation is computed as Irel = Imini/pT after subtraction of the average contri-

bution from additional proton-proton collisions in the same bunch-crossing (pileup). To

be considered isolated, electrons must satisfy Irel < 0.1.

The combined efficiency for the electron reconstruction, identification, and isolation

requirements, shown in Figure 5.1, is about 50% at pT of 20 GeV, increasing to 65% at

50 GeV, and reaching a plateau of 80% above 200 GeV [68].

5.4.2 Muons

The muon candidates are required to have pT > 20 GeV, |η| < 2.4, and to satisfy

identification criteria [69] in order to select a high purity muon sample. This criteria is

shown in Table 5.2, where d0 and dz are the transverse and logitudinal impact parameters

of the associated muon track, respectively. Analogously to electron candidates, muon
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Criteria Requirement
Is PF muon True
Fraction of valid tracker hits > 0.8

AND

|d0| [mm] < 2
|dz| [mm] < 5
Is global muon True
Normalized global-track χ2 < 3
χ2 of tracker-standalone position match < 12
Track-kink χ2 < 20
Segment compatibility > 0.303

OR

Segment compatibility > 0.451

Table 5.2: Identification criteria that a PF muon must pass in order to be considered
an analysis-level muon.

candidates are required to satisfy Irel < 0.2, where the looser threshold is to account for

purity differences between electrons and muons.

The efficiency for reconstructing muons, shown in Figure 5.2 is about 70% at pT

of 20 GeV, increasing to 80% at 50 GeV, and reaching a plateau of 95% for pT >

200 GeV [70].

5.5 Jets

When a quark or gluon is produced at the LHC, they quickly hadronize due to color

confinement and produce a collimated “spray” of particles, called a jet, which is the

direct detector observable. The parameter of interest, however, is the momentum of the

inital parton before hadronization. Thus, clustering the constituent jet particles in a way

that accurately reconstructs the inital parton momentum is essential. Events, however,

often contain multiple jets with each jet typically composed of some ∼10-100 particles

that are incident on many detector channels across a large area. This makes the problem

of jet clustering non-trivial and an important aspect of object reconstruction.
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Figure 5.2: The efficiency to select an analysis-level muon as a function of pT and η.

5.5.1 Clustering

Jets are not physically-defined objects and are instead defined by the clustering rules

that form the jets. The primary class of clustering algorithms used are sequential re-

combination algorithms, which work by defining a distance measure between pairs of

particles, typicaly based on energy and spatial-location, and then combining the clos-

est pair of particles. This process proceeds sequentially and ends when some threshold

condition is met.

Commonly, the distance measures, dij, which is the distance between two entities

(particles or psuedojets), and diB, which is the distance between an entity and the beam,

are defined to be

dij = min(p2n
Ti, p

2n
Tj)

∆R2
ij

R2
(5.2)
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and

diB = p2n
Ti, (5.3)

where ∆R2
ij = ∆η2

ij + ∆φ2
ij, R is the jet radius parameter that sets the scale of the jet’s

size, and n is a parameter of the algorithm. The clustering procedure then proceeds by

finding the smallest of the distances, and if it is a dij, the two entities i and j are merged,

while if it is a diB, entity i is called a jet and is removed from the clustering list.

The parameter n determines the clustering order of the algorithm and thus different

choices for the value of n lead to different clustering algorithms. For n = 1, the clustering

follows the kT algorithm [71], which prioritizes clustering softer particles first. Setting

n = 0, reproduces the Cambridge-Aachen algorithm [72], which is an energy-independent

approach, relying only on the spatial distances between particles. Lastly, choosing n =

−1, gives the anti-kT algorithm [73], which favors using the harder particles as the jet

seeds and then clustering around them. A more detailed discussion of jets, including a

comparison of these and other clustering algorithms can be found in Reference [74].

5.5.2 Selection

The jets used in this dissertation are constructed by clustering PF candidates with the

anti-kT algorithm and R = 0.4, using the FastJet package [75]. To reduce the effect of

pileup on the jet clustering and energy measurements, a process called “Charged Hadron

Subtraction” is applied, where PF charged hadrons that do not originate from the PV are

not included in the jet clustering. In addtion, to remove the neutral energy component

of pileup, the contribution from PF neutral hadrons produced by pileup is estimated

based on the area of a jet and the energy density of the event and is subtracted from the

jet [76]. Additionally, to prevent double-counting, any jets which contain a PF candidate
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Criteria Requirement
Number of constituents > 1
Charged multiplicity > 0
Neutral electromagnetic fraction < 0.99
Neutral hadron fraction < 0.99
Charged electromagnetic fraction < 0.99
Chaged hadron fraction > 0

Table 5.3: Identification criteria that a jet candidate must pass in order to be consid-
ered an analysis-level jet.

identified as an analysis-level electron or muon are removed from the jet collection.

Finally, to be considered an analysis-level jet, the jets must have pT > 30 GeV,

|η| < 2.4, and must pass a set of loose identification requirements [77, 78] to surpress, for

example, calorimeter noise. These requirements are shown in Table 5.3. The resulting

jets are considered to be “small-R” jets and the variable Njets represents the number of

these jets in an event. Additionally, a proxy for the hadronic energy scale of an event,

HT, is defined as

HT =

Njets∑
i=1

pjetT,i (5.4)

5.5.3 b-tagging

Jets that are formed through b-quark hadronization have several unique properties

that allow them to be differentiated from jets formed from other quarks or gluons. This

ability to “b-tag” jets is a very useful tool for determining what physics processes occured

in an event, as b quarks are associated with specific physics process, such as top quark

decays. Similarly, many SUSY scenarios, where naturalness considerations motivate light

third-generation squarks, result in either the direct or indirect production of b quarks

through the decay of SUSY particles. Thus, b-tagging jets is not only often a crucial
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component to reducing backgrounds from processes where no b quarks are expected, but

also a powerful selector for potential signal events.

This analysis uses the Combined Secondary Vertex v2 (CSVv2) algorithm [79, 19],

which utilizes the long lifetimes, large masses, high-momentum daughter particles, and

frequent semi-leptonic decays typical of b hadrons to b-tag jets. As the b quark can only

decay to an up or charm quark through highly Cabibbo surpressed weak interactions,

b hadrons tend to have long lifetimes, typically on the order of 1.5 ps. Because of this,

b mesons can travel a few mm to a cm from the PV before decaying and producing

displaced tracks from which a secondary vertex can be reconstructed. In addition, due

to the relatively large b-quark mass, b mesons tend to be heavy, which leads to both

large secondary vertex masses and daughter particles with a hard momentum spectrum.

Lastly, the weak decay of the b quark results in an associated electron or muon in about

20% of decays. The presence of these soft, nonisolated leptons provides an additional

marker for the presence of a b-quark.

The CSVv2 algorithm exploits variables based on this information about secondary

vertices, their associated displaced tracks, and the presence of soft leptons to accurately

tag b-quark jets. A selection of the variables used that have high discrimination are listed

below:

• The significance of the flight distance in the transverse plane

• The number of SV

• The SV mass

• The number of tracks associated with the SV

• The ratio of the transverse momentum of the SV tracks and the transverse momen-

tum of the jet
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Figure 5.3: The distribution of the CSVv2 discriminator values for jets of different
flavors. Jets are selected from tt̄ events and required to have pT > 20 GeV [19].

• The 3D impact parameter of soft leptons associated with the jet

These variables are then fed into a multilayer perceptron with one hidden layer that

outputs a score between 0 and 1, indicating the likelihood the jet is a b-quark jet. The

distribution of CSVv2 discriminator values for different flavor jets is shown in Figure 5.3.

A threshold score of 0.8484 is used to b-tag a jet and is chosen such that the mistag

rate for light-flavor jets is 1%. This corresponds to a mistag rate for c-quark jets of 13–

15% (11–13%) in the barrel (endcap) and a tagging efficiency for b jets of 60–67% (51–

57%) in the barrel (endcap) for jets with pT between 30-50 GeV. The tagging efficiency

increases with pT before decreasing to ≈ 50% for jets above 150 GeV. The b-tagging

efficiency as a function of jet pT is shown in Figure 5.4.

The number of b-tagged jets in an event is denoted as Nb.
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Figure 5.4: The efficiency of the CSVv2 algorithm as a function of jet pT at the
working point used in this analysis.

5.6 Large-radius Jets

While the distance parameter of small-R jets is optimized for clustering the hadroniza-

tion products of a single parton, it is often useful to exploit information of physical pro-

cesses on a scale larger than a single jet, such as top quark or W boson decays. One way

to capture this information is to cluster jets with a large distance parameter, which can

encode the momentum, angular, and multiplicity information of the partons contained

in this larger jet.

This analysis constructs these “large-R” jets by clustering small-R jets with a distance

parameter of R = 1.2. Due to the relatively small number of small-R jets in an event

(. 10), the construction of these large-R jets is insensitive to the clustering algorithm,

and the anti-kT algorithm is chosen. While these large-R jets could be constructed

by performing the clustering at the PF candidate level, no significant improvement in

performance was noted. Thus, clustering small-R jets were chosen for the following

practical considerations. First, the FastJet implementation of the anti-kT algorithm
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has complexity O(n log n) [80], which results in a speed-up of on the order of 100x

when clustering small-R jets (. 10 objects) compared to PF candidates (∼1000 objects).

Secondly, large-R jets clustered from PF candidates would require the computation of

new energy-measurement and pileup-removal calibrations for jets of this specific radius.

Small-R jets, however, already incorporate standardized calibrations and by clustering

these calibrated small-R jets, the large-R jets correspondingly incorporate corrections

without the need of any additional development.

In addition to small-R jets, the jets associated with selected leptons are included

in the formation of large-R jets in order to capture as much of an event’s kinematic

information as possible. For example, this helps reduce the difference between large-R

jets formed by clustering hadronic and leptonic top quark decays, as by including the

lepton, the only information difference between the two scenarios is due to the undetected

neutrino.

This technique of clustering small-R jets into large-R jets has been used previously

by both the ATLAS and CMS collaborations, e.g. References [81, 82].

5.6.1 MJ — The Sum of Large-radius Jet Masses

A measure of the mass-scale of an event, MJ, can be constructed by summing the

masses of large-radius jets, defined as

MJ =
∑

Ji ∈ large-R jets

m(Ji) (5.5)

where m(J) is the mass of a single large-R jet.

The quantitity MJ has significant discriminating power between SM background pro-

cesses and signal processes, as SM events tend to have significantly lower mass-scales

than signal events that involve high mass particles. For example, MJ in events with only
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a produced tt̄ pair is limited to be . 2mtop ≈ 350 GeV. This is because the top quarks

decay back-to-back and if each top quark’s decay products are captured in a single large-

R jet, two large-R jets are clustered each with m(J) = mtop, resulting in MJ = 2mtop.

In the case where a top quark is not fully contained in a large-R jet, the mass of that

large-R jet, and correspondingly MJ, is even smaller. For signal events, however, the

mass-scale is roughly set by the gluino mass, which is on the order of 1 TeV.

The MJ distribution in tt̄ and signal events with mg̃ = 1000 GeV and 1600 GeV,

selected with a Njets ≥ 8 requirement to ensure both processes have similar Njets distri-

butions, is shown in Figure 5.5. From the figure, it can be seen that the MJ distribution

gets increasingly harder with higher gluino mass. Also of note is that the MJ distribution

in tt̄ events extends past 2mtop. This is because, in the presence of significant initial state

radiation (ISR), the ISR jets can either overlap with the tt̄ daughter jets or boost the tt̄

system such that the system is collimated, both which result in high-mass large-R jets

and, correspondingly, high-MJ. Processes of this nature are responsible for generating

high MJ background events.

The quantity MJ was proposed in phenomenological studies [83, 84, 85] and was

first used for RPC SUSY searches by the ATLAS Collaboration in all-hadronic final

states [86, 87] and by the CMS Collaboration in single-lepton events [82, 88]. Additionally,

the basic properties and performance of the MJ variable were commissioned using early

√
s = 13 TeV data [89].
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Chapter 6

Data Samples and Simulation

6.1 Data

The dataset used in this search corresponds to 35.9 fb−1 of proton-proton collisions at

√
s = 13 TeV collected by the CMS detector over the year 2016. This is a subset of the

40.8 fb−1 delivered by the LHC and selected to correspond to when all sub-detectors were

fully-operational. A plot of the cumulative delivered and recorded integrated luminosity

by the LHC and CMS, respectively, is shown in 6.1.

The data samples used in this analysis are shown in Table 6.1. The JetHT datasets are

primarily used to populate the analysis region with events, while the Single Electron

and Single Muon datasets are primarily used for trigger efficiency studies.

6.2 Monte Carlo Simulation

Monte Carlo simulations are used to model both SM and BSM physics processes and

are extremely useful in the design and optimization of the analysis stategy of new-physics

searches. These simulated samples allow for studying processes that in data would have

control regions with impure and/or small sample sizes or, in the case of signal processes,

may not even exist. This allows for both the optimization and validation of the (signal-
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Dataset name
/JetHT/Run2016B-03Feb2017 ver2-v2/MINIAOD
/JetHT/Run2016C-03Feb2017-v1/MINIAOD
/JetHT/Run2016D-03Feb2017-v1/MINIAOD
/JetHT/Run2016E-03Feb2017-v1/MINIAOD
/JetHT/Run2016F-03Feb2017-v1/MINIAOD
/JetHT/Run2016G-03Feb2017-v1/MINIAOD
/JetHT/Run2016H-03Feb2017 ver2-v1/MINIAOD
/JetHT/Run2016H-03Feb2017 ver3-v1/MINIAOD
/SingleElectron/Run2016B-03Feb2017 ver2-v2/MINIAOD
/SingleElectron/Run2016C-03Feb2017-v1/MINIAOD
/SingleElectron/Run2016D-03Feb2017-v1/MINIAOD
/SingleElectron/Run2016E-03Feb2017-v1/MINIAOD
/SingleElectron/Run2016F-03Feb2017-v1/MINIAOD
/SingleElectron/Run2016G-03Feb2017-v1/MINIAOD
/SingleElectron/Run2016H-03Feb2017 ver2-v1/MINIAOD
/SingleElectron/Run2016H-03Feb2017 ver3-v1/MINIAOD
/SingleMuon/Run2016B-03Feb2017 ver2-v2/MINIAOD
/SingleMuon/Run2016C-03Feb2017-v1/MINIAOD
/SingleMuon/Run2016D-03Feb2017-v1/MINIAOD
/SingleMuon/Run2016E-03Feb2017-v1/MINIAOD
/SingleMuon/Run2016F-03Feb2017-v1/MINIAOD
/SingleMuon/Run2016G-03Feb2017-v1/MINIAOD
/SingleMuon/Run2016H-03Feb2017 ver2-v1/MINIAOD
/SingleMuon/Run2016H-03Feb2017 ver3-v1/MINIAOD

Table 6.1: Data samples analyzed for this analysis. The corresponding integrated
luminosity is 35.9 fb−1.

plus-)background prediction methods, as the sensitivity of the analysis to particular signal

models can be estimated and pathologies in the prediction methodology can be unearthed

and investigated. Additionally, the simulated samples can be used to help commision

and understand the collected data by comparing expectations from simulation to what

is actually observed, particularly in the initial data taking periods.
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6.2.1 Background Samples

The MadGraph5 aMC@NLO 2.2.2 event generator is used in leading-order (LO)

mode [90, 91] to generate the tt̄, quantum chromodynamics multijet (QCD), W + jets

and Drell–Yan background processes with extra partons, while the tt̄W, tt̄Z, tt̄tt̄, and t-

channel single top quark production backgrounds are generated with MadGraph5 aMC@NLO 2.2.2

in next-to-leading order (NLO) mode [92]. The Powheg 2.0 event generator [93, 94, 95]

is used to generate the tW, t̄W, and s-channel single top quark processes at NLO preci-

sion.

The tt̄, W + jets, and QCD samples are generated with up to 2, 4, and 2 extra partons,

respectively, and all samples are generated using a top quark mass of 172.5 GeV and with

the NNPDF3.0 set of parton distribution functions (PDF) [96]. For the fragmentation and

showering of partons, the generated samples are interfaced with Pythia 8.205 [97] and

use the CUETP8M1 tune to describe the underlying event [98]. The detector response

is simulated with Geant4 [99], and the simulated samples are processed through the

same reconstruction algorithms as the data, as discussed in Chapter 5. The background

samples are normalized to the highest precision cross sections available [100, 101, 102,

103, 104, 105, 106].

The background samples used, along with their sample size and equivalent luminosity,

are shown in Table 6.2.

6.2.2 Signal Samples

For ease of generation and interpretation, signal samples are produced according to

the Simplifed Model Spectra (SMS) paradigm [107, 108], where all but one or two mass

parameters in a particular decay chain are fixed. Due to their “simplicity”, SMS models

can be interpreted generally and have reduced sensitivity to model specifics, allowing for
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Simulated sample name Events L [fb−1 ]
TTJets TuneCUETP8M1 13TeV-madgraphMLM-pythia8 10,259,790 12.57
TTJets SingleLeptFromT TuneCUETP8M1 13TeV-madgraphMLM-pythia8 53,056,561 296.90
TTJets SingleLeptFromTbar TuneCUETP8M1 13TeV-madgraphMLM-pythia8 60,282,318 337.34
TTJets DiLept TuneCUETP8M1 13TeV-madgraphMLM-pythia8 30,681,952 358.18
TTJets HT-600to800 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 13,838,472 5,291.21
TTJets HT-800to1200 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 10,506,985 9,753.77
TTJets HT-1200to2500 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 2,913,606 14,943.68
TTJets HT-2500toInf TuneCUETP8M1 13TeV-madgraphMLM-pythia8 523,826 225,454.60
QCD HT100to200 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 82,072,813 0.00
QCD HT200to300 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 57,336,294 0.03
QCD HT300to500 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 54,706,023 0.15
QCD HT500to700 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 63,336,989 2.16
QCD HT700to1000 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 45,232,792 6.93
QCD HT1000to1500 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 15,314,987 14.39
QCD HT1500to2000 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 11,647,431 95.86
QCD HT2000toInf TuneCUETP8M1 13TeV-madgraphMLM-pythia8 6,004,039 236.19
WJetsToLNu TuneCUETP8M1 13TeV-madgraphMLM-pythia8 28,210,241 0.46
WJetsToLNu HT-100To200 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 27,546,847 16.90
WJetsToLNu HT-200To400 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 19,851,490 45.57
WJetsToLNu HT-400To600 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 7,432,643 125.41
WJetsToLNu HT-600To800 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 18,132,628 1,243.62
WJetsToLNu HT-800To1200 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 1,540,354 231.42
WJetsToLNu HT-1200To2500 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 7,012,526 4,360.78
WJetsToLNu HT-2500ToInf TuneCUETP8M1 13TeV-madgraphMLM-pythia8 2,505,140 64,376.98
DYJetsToLL M-50 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 49,190,673 8.17
DYJetsToLL M-50 HT-100to200 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 7,558,769 44.08
DYJetsToLL M-50 HT-200to400 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 8,683,638 165.14
DYJetsToLL M-50 HT-400to600 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 396,532 58.65
DYJetsToLL M-50 HT-600to800 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 8,231,815 4,910.15
DYJetsToLL M-50 HT-800to1200 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 2,650,562 3,188.24
DYJetsToLL M-50 HT-1200to2500 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 616,458 4,320.56
DYJetsToLL M-50 HT-2500toInf TuneCUETP8M1 13TeV-madgraphMLM-pythia8 375,865 117,894.02
ST s-channel 4f leptonDecays 13TeV-amcatnlo-pythia8 TuneCUETP8M1 999,995 116.20
ST t-channel antitop 4f leptonDecays 13TeV-powheg-pythia8 TuneCUETP8M1 1,682,394 64.14
ST t-channel top 4f leptonDecays 13TeV-powheg-pythia8 TuneCUETP8M1 3,279,179 74.41
ST tW antitop 5f NoFullyHadronicDecays 13TeV-powheg TuneCUETP8M1 5,388,666 343.66
ST tW top 5f NoFullyHadronicDecays 13TeV-powheg TuneCUETP8M1 5,405,674 344.74
ttHJetTobb M125 13TeV amcatnloFXFX madspin pythia8 9,823,967 2,957.09
TTGJets TuneCUETP8M1 13TeV-amcatnloFXFX-madspin-pythia8 4,664,534 132.40
TTTT TuneCUETP8M1 13TeV-amcatnlo-pythia8 752,497 14,412.60
TTWJetsToLNu TuneCUETP8M1 13TeV-amcatnloFXFX-madspin-pythia8 252,664 328.75
TTWJetsToQQ TuneCUETP8M1 13TeV-amcatnloFXFX-madspin-pythia8 833,278 547.03
TTZToLLNuNu M-10 TuneCUETP8M1 13TeV-amcatnlo-pythia8 398,596 340.36
TTZToQQ TuneCUETP8M1 13TeV-amcatnlo-pythia8 749,386 310.64

Table 6.2: Simulated background samples used in this analysis with their correspond-
ing sample size and equivalent luminosity.
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results to be applicable to a wide variety of new-physics models. Additionally, the use

of SMS models results in signficantly reduced computing time for model generation, as

models need to be produced by scanning across at most only two parameters.

The assumptions used in the simplified model of the g̃ → t¯̃t → tbs process, denoted

as T1tbs, are given below:

• squarks other than the top squark are much heavier than the gluino, so they do

not affect the gluino decay

• the branching ratio of g̃→ t¯̃t→ tbs is 100%

• the top squark is virtual in its decay. This results in a three-body decay, so searches

for dijet resonances, i.e., ¯̃t→ bs, are not applicable in this scenario.

• the gluinos decay promptly

These assumptions correspond to a model of direct gluino pair production with each

gluino decaying to a top, bottom, and strange quark. An example diagram of the T1tbs

model is shown in Figure 6.2. The only free parameter in this model is the mass of the

gluino.

These signal models are generated between mg̃ = 1000 and 2000 GeV in steps of

100 GeV with up to two extra partons in leading-order mode and dynamic factorization

and renormalization scales by MadGraph5 aMC@NLO 2.2.2. The rest of the signal

sample production follows the same procedure used for the background samples, which

includes the parton fragmentation and showering, simulation, and event reconstruction.

Lastly, the samples are normalized to the NLO + next-to-leading logarithmic cross sec-

tions for gluino pair production [21].
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Figure 6.2: Example diagram of the T1tbs simplified model.

Dataset name Events L [fb−1 ]
SMS-T1tbs mGluino-1000 mLSP-0 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 130,281 400.39
SMS-T1tbs mGluino-1100 mLSP-0 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 71,488 437.26
SMS-T1tbs mGluino-1200 mLSP-0 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 50,739 592.46
SMS-T1tbs mGluino-1300 mLSP-0 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 31,815 690.84
SMS-T1tbs mGluino-1400 mLSP-0 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 21,392 845.61
SMS-T1tbs mGluino-1500 mLSP-0 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 16,702 1,177.00
SMS-T1tbs mGluino-1600 mLSP-0 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 10,101 1,246.92
SMS-T1tbs mGluino-1700 mLSP-0 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 10,380 2,206.99
SMS-T1tbs mGluino-1800 mLSP-0 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 9,865 3,572.55
SMS-T1tbs mGluino-1900 mLSP-0 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 10,071 6,157.86
SMS-T1tbs mGluino-2000 mLSP-0 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 10,556 10,759.60

Table 6.3: Simulated signal samples used in this analysis with their corresponding
sample size and equivalent luminosity.
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Event Selection

7.1 Baseline Selection

One of the main challenges for a SUSY search is that the ratio of SM-to-SUSY

events is O(1012 − 1014). To surmount this problem, it is paramount to develop highly

efficient signal-to-background discriminators. Fortunately, SUSY signatures typically

have characteristics unlike most SM processes. For the T1tbs process, events are expected

to have a large number of jets, many of which are b-quark jets, resulting in a large amount

of HT and many b-tagged jets. Additionally, the mass scale of the event is expected to

be larger than most SM events due to the high masses of the gluinos (O(1 TeV)), as

discussed in Section 5.6.1.

These features are used to construct the “baseline selection”, defined as a basic set

of requirements that events must pass, which reduces the background-to-signal ratio to

a more manageable value of O(102). In this analysis, the baseline selection is defined as

Nleps = 1, HT > 1200 GeV, MJ > 500 GeV, Njets ≥ 4, and Nb ≥ 1. To see the separation

of the signal and background distributions in these variables, the corresponding “N-1”

distributions, i.e. the distribution of a variable with the baseline selection applied except

for the requirement corresponding to the binned variable, are depicted in Figure 7.1 with

the black dashed vertical line representing the value of the baseline cut. Additionally, a
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Figure 7.1: The N-1 plots for Nleps (top-left), HT (top-right), MJ (middle-left), Njets

(middle-right), and Nb (bottom). The black dashed vertical line represents the value
of the corresponding baseline requirement.

“cutflow table” that depicts the expected yields for background and signal processes as

each baseline selection requirement is individually applied is shown in Table 7.1. Rows

above the horizontal line correspond to requirements in the baseline selection, while those

below correspond to additional kinematic cuts.
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L = 35.9 fb�1 QCD tt̄ W+jets Other All bkg. mg̃ = 1600 GeV

HT > 1200 GeV 1.615 ⇥ 107 9.76 ⇥ 104 2.718 ⇥ 105 2.965 ⇥ 104 (1.655 ± 0.007) ⇥ 107 2.8 ⇥ 102

Nleps = 1 1.11 ⇥ 104 1.292 ⇥ 104 2.502 ⇥ 104 4.48 ⇥ 103 (5.35 ± 0.01) ⇥ 104 7.9 ⇥ 101

Nb � 1 3240 10340 4990 2150 20725±80 74
Njets � 4 2770 9920 3740 1870 18304±70 74
MJ > 500 GeV 810 3658 1120 574 6162±40 67
MJ > 800 GeV 99 360 150 75 685±9 47
Njets � 8 38 200 42 29 309±7 36
MJ > 1000 GeV 11 43.0 11.3 7.9 73±2 22.6
Nb � 3 0.7 6.2 0.5 1.1 8.5±0.6 8.9

QCD tt̄ W+jets Other All bkg. mg̃ = 1600 GeV

Table 7.1: Expected yields in 35 fb−1 from simulations of SM and signal processes.
Rows above the horizontal line correspond to requirements in the baseline selection,
while those below correspond to additional kinematic cuts.

The HT > 1200 GeV cut sets the hadronic energy scale of the selected events and

reduces contributions from processes other than QCD, tt̄, and W + jets. At this point,

QCD is the dominate background and is reduced signicantly by selecting events with

Nleps = 1, resulting in the QCD, tt̄, and W + jets contributions being similar in scale. In

order to create a tt̄ dominant background, Nb ≥ 1 is required as tt̄ events have at least

two b-quark jets, while QCD and W + jets contributions largely pass the selection by the

mistagging of at least one jet. Finally, the Njets ≥ 4 and MJ > 500 GeV cuts are applied

in order to further increase the tt̄ purity of the analysis region.

A benefit of these selections is that the background is dominated by a single pro-

cess, tt̄, which reduces the complexity of the background prediction. This is especially

necessary as, after these cuts, the analysis region is on the kinematic tails of SM distribu-

tions where the physics is less well-modelled, typically requiring data-driven background

predictions.

Lastly, the baseline selection requires that events pass a series of filters designed to

remove poorly reconstructed events. These filters remove events with noise in the HCAL

or ECAL, beam halo effects, jets that fail to pass quality criteria, and events with zero

good PVs.

A final note of interest is that there is no requirement on the Emiss
T , making this
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analysis sensitive to BSM models other than MFV SUSY that produce either little or no

Emiss
T in an event. While the T1tbs model is used as a benchmark for interpreting results,

this search is structured to take advantage of this feature and be generically sensitive

to high-mass signatures with large jet and bottom quark jet multiplicities, which are

potential features of other BSM models.

7.2 Trigger Efficiency

The data sample used in this analysis is obtained by selecting events that pass a loose

HLT selection. In order to avoid biasing the selected sample, the HLT requirements must

be loose enough that the selection efficiency is as high as possible and independent of any

kinematic properties. In particular, events must pass an OR of the HLT PFHT900 trigger,

which requires an online HT of at least 900 GeV and the HLT PFJet450 trigger, which at

least one jet with online pT above 450 GeV.

Figure 7.2 shows the performance of the HLT PFHT900 trigger as a function of HT

during the first 27.3 fb−1 (Runs B-G, top-left), last 8.7 fb−1 (Run H, top-right), and full

dataset (Runs B-H, bottom). The trigger performances are measured in a data sample

collected using the HLT Ele27 WPTight trigger and offline requirements of at least one

electron and at least 4 jets. While the trigger efficiency for Runs B-G is 100% after the

trigger plateau of roughly HT = 1000 GeV, the trigger efficiency only performs with 80%

efficiency in Run H. This inefficiency was caused by an issue with an updated trigger

implementation that erroneously excluded high pT jets from the online HT calculation.

This effect corresponds to an overall trigger efficiency of 95%, corresponding to a loss of

about 2 fb−1 of data.

In order to recover this inefficiency, events passing the HLT PFJet450 trigger are

included in the collected data sample. To pass this trigger, events must have at least
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Figure 7.2: Trigger efficiency for HLT PFHT900 as a function of HT in Runs B-G
(top-left), Run H (top-right), and full dataset (bottom). The efficiences are measured
using a data sample collected with the HLT Ele27 WPTight trigger and an offline
requirement of at least one electron and at least four jets.
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one very high pT jet, i.e. & 450 GeV, which provides complementary efficiency where

the HLT PFHT900 trigger is inefficient. Figure 7.3 shows the performance as a function

of HT of the HLT PFJet450 trigger in Runs B-H (top-left) and the combination of the

HLT PFHT900 and HLT PFJet450 in Run H (middle) and in the full dataset (bottom),

measured with a dataset collected with HLT Ele27 WPTight and offline requirements of

at least one electron and at least 4 jets. The inclusion of the HLT PFJet450 trigger

restores the overall trigger efficiency to essentially 100% in both Run H and the entire

dataset.

This trigger efficiency, however, does not necessarily correspond to the efficiency for

signal events. A lower bound on the signal efficiency can be estimated by considering

that the HLT PFJet450 trigger is fully efficient for jets with pT > 500 GeV and 80%-

95% of simulated signal events (depending on the mass of the gluino) have a jet with

pT > 500 GeV. Thus, in the worst case scenario, the addition of the HLT PFJet450 trigger

is still expected to recover at least 85% of the lost signal efficiency in Run H. This results

in an efficiency of at least 97% in Run H and over 99% for the full dataset for signal

events.

Lastly, to ensure that there is no kinematic bias in the trigger efficiency either in-

herently or from residual effects of the online HT calculation issue, the trigger efficency

is measured as a function of MJ, Njets, and Nb. The measurements are done in a data

sample collected with the HLT Ele27 WPTight trigger and an offline requirement of at

least one electron, at least four jets, and HT > 1200 GeV. No kinematic bias is observed.

7.3 Analysis Binning

After the baseline selection, the background is dominated by tt̄ events with small

contributions from W + jets and QCD production. There are additional rare background
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Figure 7.3: Trigger efficiency as a function of HT for HLT PFJet450 in the full dataset
(top-left) and for the combination of HLT PFHT900 and HLT PFJet450 in Run H
(top-right) and the full dataset (bottom). The efficiences are measured using a data
sample collected with the HLT Ele27 WPTight trigger and an offline requiement of at
least one electron and at least four jets.

76



Event Selection Chapter 7

MJ [GeV]
Njets

4—5 6—7 ≥ 8

Nleps = 1

500 — 800 CR CR SR

800 — 1000
CR

SR SR

> 1000 SR SR

Figure 7.4: Illustration depicting the Njets, MJ binning after the baseline selection,
with control and signal region bins denoted by “CR” and “SR”, respectively.

processes, jointly noted as “Other”, with tiny, but non-zero contributions that arise from

single top quark, tt̄W, tt̄Z, tt̄H, tt̄tt̄, and Drell-Yan production.

In order to further increase the signal-to-background ratio, as well as create background-

dominated control regions, the analysis region is binned with respect to Njets and MJ.

The Njets bins are defined as 4 ≤ Njets ≤ 5, 6 ≤ Njets ≤ 7, and Njets ≥ 8. Each Njets

bin is further split into bins of 500 < MJ ≤ 800 GeV, 800 < MJ ≤ 1000 GeV, and

MJ > 1000 GeV, with the exception of the 4 ≤ Njets ≤ 5 bin for which the two highest

MJ bins are combined due to the limited data sample size in the MJ > 1000 GeV bin. A

diagram representing this binning is shown in Figure 7.4. The low-Njets, low-MJ bins are

expected to be background-dominated and are used as control regions for constraining

sytematics and for validating the prediction methodology, while the high-Njets, high-MJ

bins are used as signal regions.

Within each Njets and MJ bin, the Nb distribution is examined for evidence of new

physics and is separated into bins of Nb = 1, 2, 3, and ≥ 4. The two lowest Nb bins

are used to provide constraints on the background normalizations and systematic uncer-

tainites, while the higher Nb bins are the most sensitive to potential signals due to its

larger signal-to-background ratios.

In total, this analysis has 8 kinematic regions–3 control and 5 signal regions with

four Nb bins per kinematic region. The simulated Nb distribution of the SM background
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Figure 7.5: The simulated Nb distribution for background and signal processes in
the control region bins. The top-left plot corresponds to the 4 ≤ Njets ≤ 5,
500 < MJ ≤ 800 GeV bin, the top-right plot to the 5 ≤ Njets ≤ 6, MJ > 800 GeV bin,
and the bottom plot to the 6 ≤ Njets ≤ 7, 500 < MJ ≤ 800 GeV bin.

processes and a signal model with mg̃ = 1600 GeV for the control and signal regions are

shown in Figure 7.5 and Figure 7.6, respectively.
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Figure 7.6: The simulated Nb distribution for background and signal processes
in the signal region bins. The top-left plot corresponds to the 6 ≤ Njets ≤ 7,
800 < MJ ≤ 1000 GeV bin, the top-right plot to the 6 ≤ Njets ≤ 7, MJ > 1000 GeV
bin, the middle-left plot to the Njets ≥ 8, 500 < MJ ≤ 800 GeV bin, the middle-right
plot to the Njets ≥ 8, 800 < MJ ≤ 1000 GeV, and the bottom plot to the Njets ≥ 8,
MJ > 1000 GeV bin.
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Chapter 8

Background Prediction

8.1 Overview

This analysis seeks to find evidence of new physics by searching for deviations from

the SM in the Nb distribution. In order to do this, it is essential to be able to robustly

and accurately predict both the normalization and shape of the Nb distribution. To

obtain these predictions, a global maximum-likelihood fit is performed. This fit is carried

out both for a background-only hypothesis and for signal-plus-background hypotheses, in

which a signal contribution is extracted in addition to the contributions of SM background

processes. The model is constructed using the poisson probabilities of the bin contents

of the Nb distribution for all Njets, MJ regions, while systematic uncertainties are applied

as nuisance parameters.

As the kinematic tails of the Njets and MJ variables are difficult to model reliably, the

tt̄ and QCD normalizations are individually allowed to (almost) freely vary in each Njets,

MJ bin. The tt̄ normalizations are constrained in each bin by the low-Nb bins, while

the QCD normalizations are constrained by control regions with no identified leptons

(Nleps = 0). The overall W + jets normalization is determined from data and is allowed to

vary across Njets bins by amounts measured using a kinematically similar Z + jets sample,

while the normalization of Other is largely taken from simulation, as its contribution is
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small in the regions considered. Further details on the measurement of the normalizations

are given in the following sections.

Once the SM backround processes are normalized accordingly, further corrections to

the Nb shape are relatively small. The nominal Nb shape prediction for each process is

taken from simulation with data-to-simulation correction factors (SFs) applied for the

b-tagging efficiency of heavy- and light-flavor jets [79, 19]. This shape is allowed to

vary in order to assess the impact of mismodeling of relevant parameters, such as the

rate of gluon splitting to bb̄ and the b-tagging SFs. The appropriate ranges for these

parameters are determined based on measurements in dedicated control samples and then

constrained by a simultaneous fit across all bins of Njets and MJ in a correlated manner.

A detailed discussion of these variations and their measurements is given in Chapter 9.

8.2 tt̄ and QCD Normalizations

The tt̄ and QCD normalizations are allowed to float in each Njets, MJ bin but with

a loose constraint across MJ bins discussed in the following subsection. The largest

constraint on the tt̄ normalization in each bin is the background-dominated Nb ≤ 2 bins,

while the QCD normalization in each bin is mostly constrained by corresponding bins

in a similar 0-lepton kinematic region selected by requiring Nleps = 0, HT > 1500 GeV,

MJ > 500 GeV, Njets ≥ 6, and Nb ≥ 1. The higher HT requirement compared to the

analysis’s baseline selection is imposed in order to account for the extra energy in an

event carried by the lepton in the Nleps = 1 selection, while the higher Njets selection is

imposed in order to account for differences in the Njets distribution between the Nleps = 1

and Nleps = 0 samples. This control sample follows the same kinematic binning as the

Nleps = 1 regions, except that the Nb distribution in each bin is integrated in Nb for

Nb ≥ 1 and each bin’s Njets requirement is increased by two. A diagram representing
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Figure 8.1: Diagram depicting the Njets, MJ binning of the analysis including the
Nleps = 0 QCD control region. The QCD control region bins are denoted by “QCD
CR”, while the Nleps = 1 control and signal region bins are denoted by “CR” and
“SR”, respectively. The pairing structure between lepton bins is indicated by arrows
for the 500 < MJ ≤ 800 region and is the same for other MJ bins.

the binning of the Nleps = 0 control sample is shown in Figure 8.1, where the black

arrows indicate the pairing structure between lepton bins and is representative for all

MJ bins. The QCD contribution in a particular Nleps = 1 bin is then constrained by the

corresponding Nleps = 0 bin. To avoid biasing the normalization measurement, the small

contribution of tt̄ background to the Nleps = 0 control regions is simultaneously included

using the normalization from the corresponding Nleps = 1 bins, while contributions from

other processes are taken from simulation.
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8.2.1 MJ Connection

Due to the large freedom of unconstrained normalization parameters, the fit can

be sensitive to rare statistical fluctuations and return unphysical normalization values

particularly in bins dominated by tt̄ events. For example, in psuedodata experiments,

where psuedo-datasets are randomly generated according to the statistical and systematic

uncertainties of the pre-fit values, the fit reduced the tt̄ contribution in the Njets ≥ 8,

MJ > 1000 GeV bin (where statistical uncertainties are largest) to ∼0 in about ∼1%

of the experiments. This can be seen in Figure 8.2 (left) which shows a low tail in the

distribution of post-fit tt̄ yields in the Njets ≥ 8, MJ > 1000 GeV bin for 1000 psuedodata

experiments. This effect occurs when yields in a bin have a large fluctuation downwards,

as the fit must lower the normalization of a process to compensate. The QCD, W + jets,

and Other contributions, however, are largely constrained by other data control samples

or taken from simulation, and so the fit uses the freedom to adjust the tt̄ normalization

in order to model the fluctuation, leading to the unphysically small values.

In order to avoid this instability, the normalizations of tt̄ and QCD are (indepen-

dently) connected by log-normal constraints between adjacent MJ bins. By correlating

the normalizations across MJ bins, the fit’s sensitivity to large fluctuations in a single

bin is greatly reduced. The size of these connections is motivated by measurements of

the data-to-simulation ratio with Nb = 1 events (in order to avoid potential signal con-

tamination and unblinding the data) and is particuarly chosen to be significantly larger

than the uncertainty on the data-to-simulation ratios in order to avoid over-constraining

the normalization parameters, while still providing some constraint against unphysical

fits. Based on these measurements, shown in Figure 8.3, and criteria, a connection size

between adjacent bins of [50%-200%] is chosen.

Figure 8.2 (right) shows the results of the same 1000 psuedodata experiments but
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Figure 8.2: Distribution of post-fit yields of tt̄ in the Njets ≥ 8, MJ > 1000 GeV bin
for 1000 psuedodata experiments without (left) and with (right) constraints between
adjacent MJ bins. The dotted black line indicates the pre-fit yield.

Figure 8.3: Data-to-simulation ratios as a function of MJ for different Njets bins (data
points) with a selection of Nleps = 1, HT > 1200 GeV, and Nb = 1 applied. The
shaded region corresponds to the size of the MJ connection in each MJ bin.

now with this constraint across MJ bins applied. The resulting distribution of post-fit tt̄

yields now shows no evidence of unphysical normalizations and appears better behaved.
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8.3 W + jets Normalization

The W + jets background is determined in the fit with one global normalization pa-

rameter and two parameters to adjust the bin-to-bin normalization of adjacent Njets bins,

since the Njets shape may not be well-modelled by simulation. The amount the Njets

shape may vary is based on the data-to-simulation agreement in a kinematically similar

Z + jets sample, which is selected by requiring Nleps = 2 (ee or µµ), HT > 1200 GeV,

MJ > 500 GeV, Nb = 1, and 80 < m`` < 100 GeV, where m`` is the invariant mass of

the two leptons. This sample is used due to the similar electroweak processes involved

in W + jets and Z + jets production, which allows for the ISR component of the Z + jets

sample to be used as a probe of that of W + jets production. The Njets distribution and

data/simulation yields ratio for this sample are shown in Figure 8.4. The resulting uncer-

tainties are 17% between 4 ≤ Njets ≤ 5 and 6 ≤ Njets ≤ 7 and 62% between 6 ≤ Njets ≤ 7

and Njets ≥ 8. After correcting the Njets spectrum, the residual MJ mismodeling is

expected to be small, so no further correction is applied.

8.4 Other Normalization

The nominal normalization for Other is largely taken from simulation, as its contri-

bution is less than 20% in every bin with typical values .5%. It is, however, allowed to

vary according to its statistical and systematic uncertainties.
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Figure 8.4: Jet multiplicity distribution for data and simulation in a Z + jets control
sample selected by requiring Nleps = 2, HT > 1200 GeV, MJ > 500 GeV, Nb = 1, and
80 < m`` < 100 GeV. The total yield from simulation is normalized to the number of
events in data. The uncertainty in the ratio of data to simulation yields (lower panel)
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Chapter 9

Systematic Uncertainties

The nominal simulated shape of the Nb distribution is allowed to vary by the inclusion

of systematic uncertainties. Each uncertainty is incorporated in the fit with template

Nb histograms to account for the effects of the systematic variation and a nuisance

parameter θ to control the variation amplitude. The nuisance parameters are subject to

Gaussian constraints, normalized so that θ = 0 corresponds to the nominal Nb shape

and θ = ±1 corresponds to ±1 standard deviation (s.d.) variation of the systematic

uncertainty. These uncertainties affect only the Nb shape for tt̄, QCD, and W+jets

backgrounds, because their normalizations are determined from data, while for the other

(subleading) backgrounds the uncertainties affect both the Nb shape and normalization.

9.1 Gluon Splitting Rate

The primary source of systematic uncertainty is on the modelling of the rate of gluon

splitting (GS), as events with a gluon splitting to bb̄ provide an additional source of

b quarks in events. As this process may not be properly simulated, constraining the

splitting rate in data is crucial for establishing a robust prediction of the Nb distribution.

The dominant contribution of this effect is due to gluons that split specifically to b quark

pairs, so the phrase “gluon splitting” will hereafter refer exclusively to gluon splitting
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Figure 9.1: The ∆Rbb̄ distribution shapes for the three gluon splitting categories:
Events with a pair of b-tagged jets resulting from gluon splitting (green), events with
a gluon splitting yielding fewer than 2 b-tagged jets (blue), and events without a gluon
splitting to bb̄. These events are selected by requiring Nleps = 0, HT > 1500 GeV,
MJ > 500 GeV, Njets ≥ 4, and Nb = 2.

to bb̄. One way to select a data sample enriched in gluon splitting events is to use the

∆Rbb̄ distribution, where ∆Rbb̄ is defined as the ∆R between two b-tagged jets, as pairs

of b-tagged jets resulting from the same gluon splitting tend to have smaller values of

∆Rbb̄ than pairs resulting from hard scatter b-quarks or mis-tagged jets. This can be

seen in Figure 9.1, which shows the ∆Rbb̄ distribution in simulated QCD events with

Nb = 2 for three important categories. Events that have a correlated pair of b-tagged jets

originating from a gluon splitting (green, denoted GSbb) populate the low-∆Rbb̄ region,

while events without gluon splitting (yellow, denoted noGS) or where the splitting yields

one or fewer b-tagged jets (blue, denoted GSb) populate the low-and high-∆Rbb̄ regions

roughly equally.
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Figure 9.2: The relative fraction of the possible final states that occur from gluon
splitting to bb̄ for events satisfying Nleps = 0, HT > 1500 GeV, MJ > 500 GeV,
Njets ≥ 4, and Nb = 2.

Gluon splittings can contribute less than 2 b-tagged jets either because the quarks

are collimated into a single jet, one of the b-tagged jets is not tagged, or because one of

the jets fails to pass the jet selection criteria, typically because it is too soft. The relative

fractions of these contributions is shown in Figure 9.2.

The gluon splitting rate is then constrained by fitting the ∆Rbb̄ distributions to

data by using the difference in shapes of the GSbb, GSb, and noGS categories. This

fit varies the normalization of the GSbb and GSb contributions (varied together) and

the noGS contributions in order to extract the relative contributions of events with

and without a gluon splitting. It is performed in four equal bins in the range of 0 ≤

∆Rbb̄ < 4.8 with events selected by requiring Nleps = 0, HT > 1500 GeV, Nb = 2,

Njets ≥ 4, and MJ > 500 GeV, as the gluon splitting signal in a Nleps = 1 control

sample is contaminated by b quarks from the decay of top quarks. Additionally, the

Nleps = 0 control sample is formed from a subset of the data that is selected to be most

stable in the b tagging algorithm performance, since the precision of the ∆Rbb̄ fit is not
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Nominal MJ > 800 GeV 4 ≤ Njets ≤ 5 6 ≤ Njets ≤ 7 8 ≤ Njets ≤ 9 Njets ≥ 10
GS 0.77± 0.09 0.70± 0.38 0.80± 0.32 0.76± 0.14 0.75± 0.16 0.95± 0.36
No GS 1.21± 0.08 1.28± 0.35 1.15± 0.26 1.22± 0.13 1.24± 0.15 1.05± 0.36

Table 9.1: Gluon splitting weights derived in the nominal fit, a variation with a
requirement of MJ > 800 GeV, and 4 variations in bins of Njets (with the nominal
MJ > 500 GeV requirement.)

limited by the data sample size. This choice isolates the physical effects of gluon splitting

from the potential time dependence of the b tagging performance due to variations in

experimental conditions, which are separately incorporated by the uncertainties on the

b-tagging data-to-simulation scale factors, as described in Section 9.2.

The ∆Rbb̄ fit extracts a weight of 0.77± 0.09 for gluon splitting events and a weight

of 1.21 ± 0.08 for non-gluon splitting events. The post-fit distributions are shown in

Figure 9.3. The GSbb and GSb categories are plotted separately to demonstrate the

difference in shapes. The discrepancy in the last bin does not significantly impact the fit

because the higher yield bins at lower values of ∆Rbb̄ constrain the fit. The deviations of

these weights from unity, summed in quadrature with their post-fit uncertainty, are used

to form the ±1 s.d. variations of the gluon splitting rate nuisance parameter by applying

weights of 1± 0.25 to gluon splitting events and 1∓ 0.22 to non-gluon splitting events in

an anti-correlated manner. The fit results are used as a measure of the uncertainty on

modelling of the GS rate as opposed to a correction to the central value, since the ∆Rbb̄

variable may not be a perfect proxy for the GS rate. Figure 9.4 shows the effect of the

±1 s.d. variations on the Nb distribution of tt̄ for the two most sensitive bins.

In order to test the stability of the fit results and the dependence of the gluon splitting

weights across kinematic regions, the ∆Rbb̄ fit is repeated both with a higherMJ threshold

and with different Njets bins. The resulting weights are shown in Table 9.1 and are all

consistent with those of the nominal fit.
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Figure 9.4: Effect of the ±1 s.d. variations of the gluon splitting rate on the Nb distri-
bution in tt̄ events for the two most sensitive bins: Njets ≥ 8, 800 < MJ ≤ 1000 GeV
(left) and Njets ≥ 8, MJ > 1000 GeV (right). Event yields are normalized to that
expected in 35.9 fb−1 of data.
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9.2 b-tagging Data-to-simulation Scale Factors

Another significant systematic uncertainty is the uncertainty in the data-to-simulation

scale factors (SF) for b tagging efficiency and mistag rates. Simulating the b-tagging al-

gorithm relies on understanding the detailed behavior of the detector and also accurate

modelling of the parton shower and hadronization, both of which are non-trivial. There-

fore, it is important to measure the b tagging efficiencies and mistag rates in data and

correct the simulation to match.

The difference between data and simulation is corrected for by using a per jet data-

to-simulation SF

SFf = εdataf (pT)/εsimf (pT). (9.1)

where εdataf (pT) and εsimf (pT) are the tagging efficiencies for a jet with flavor f as a

function of pT in data and simulation, respectively. No dependence on η is derived due to

limited data sample sizes. In simulation, the efficiency is determined by matching jets to

their generated hadron to determine their flavor and then measuring how many of those

jets are correctly tagged. In data, this is done by using control regions determined by

specific selection requirements that produce pure samples of a certain flavor of jets while

not biasing the jets with respect to variables used in the b tagging algorithm.

The probability to tag a light-flavor or gluon jet (light jet) is measured in an inclusive

QCD sample. This sample is selected through a series of triggers that require at least

one jet over a certain pT threshold, the lowest being 40 GeV.

The probability to tag a charm-flavor jet (c jet) is determined by measurements in two

charm-enriched control regions. The first control region is formed by selecting events in

which a charm quark is produced in association with a W boson. The main contributions
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to this process is from s+g→W−+c and s̄+g→W++c̄, where a key property is that the

W boson and quark have oppositely signed electrical charges. The dominant background

is W + qq̄ events, which produce an equal amount of events with same- and opposite-

signed W boson and quark pairs. Thus, this background is removed by measuring its

contribution in the same-sign channel and then subtracting it from the opposite-sign

channel, resulting in a pure W + c channel. The second charm-enriched control region

is created by selecting single-lepton tt̄ events. As hadronically-decaying W bosons decay

to a charm quark about 50% of the time, about one of two single-lepton tt̄ events will

contain a charm quark. Finally, measurements in these two regions are combined using

the best linear unbiased estimator (BLUE) method described in Reference [109].

The probability to tag a b-flavor jet (b jet) is computed using QCD and tt̄ control

regions. The QCD control regions are enriched in b quarks by requiring that at least

one jet contains a muon with pT > 5 GeV, which takes advantage of the high branching

fraction to leptons of b hadrons. In the tt̄-dominated regions, there are two b quarks per

event, due to the decay of the two top quarks, and the b quark purity is further enhanced

by limiting the number of non-b jets in the event through the requirement that either

one or both of the W bosons decays leptonically. This creates independent single-lepton

and di-lepton control regions where multiple measurements are made and then combined

through the BLUE method.

The resulting SFs, including their uncertainties, are shown in Figure 9.5. A complete

discussion of how the SF measurements are made can be found in Reference [19].

The systematic uncertainties on the Nb shape are assessed by the±1 s.d. Nb templates

resulting from varying the SFs according to their uncertainties. Because the b and c jet

SFs have correlated uncertainties, they are conservatively varied together and form one

set of templates. The light-flavor SFs are uncorrelated with the b and c jet SFs and are

varied independently. The effects of these variations on the Nb distribution in tt̄ events
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Figure 9.5: The data-to-simulation scale factors for the tagging efficiency of b-flavor
jets (top-left), charm-flavor jets (top-right), and light-flavor or gluon jets (bottom)
are shown as a function of jet pT. The associated uncertainty with each scale factor
is shown as a blue hashed band.
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Figure 9.6: Effect of the ±1 s.d. correlated variations of the b-flavor and c-flavor jet
data-to-simulation scale factors on the Nb distribution in tt̄ for the two most sensitive
bins: Njets ≥ 8, 800 < MJ ≤ 1000 GeV (left) and Njets ≥ 8, MJ > 1000 GeV (right).
Event yields are normalized to that expected in 35.9 fb−1 of data.
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Figure 9.7: Effect of the ±1 s.d. variations of the light-flavor jet data-to-simulation
scale factors on the Nb distribution in tt̄ for the two most sensitive bins: Njets ≥ 8,
800 < MJ ≤ 1000 GeV (left) and Njets ≥ 8, MJ > 1000 GeV (right). Event yields are
normalized to that expected in 35.9 fb−1 of data.

are shown in Figure 9.6 and Figure 9.7.
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9.3 Lepton Fake Rate in QCD

While the QCD normalization is measured from data, it is mostly constrained by the

Nleps = 0 selection and applied in a Nleps = 1 region. If the simulated Nleps distribution is

not modelled perfectly, there may be residual differences between the normalizations of

these two regions. For processes that have true prompt leptons, such as tt̄ and W + jets,

the Nleps distribution is well modelled, because the dominant effects are the W branch-

ing fractions and the acceptance (including selection efficiency), both of which are well

understood. For QCD, however, this is less well modelled as the simulation of the tail of

the jet fragmentation function, as well as detector effects that can produce fake leptons,

are not as well understood.

To assign a systematic uncertainty on the modelling of the ratio of 0-lepton to 1-

lepton events in QCD, the lepton isolation distributions are studied. Figure 9.8 shows

the relative isolation distributions for eletrons (left) and muons (right) in a data sample

corresponding to the analysis control regions. The binning of the histograms are chosen

such that the first bin corresponds to the relative isolation requirement for signal leptons

(0.1 for electrons and 0.2 for muons). The normalizations of the QCD, tt̄, and W + jets

processes are scaled to match the results of a control region fit described in Section 10.2.2.

Table 9.2 shows the ratio of Irel < 0.1(0.2) to Irel ≥ 0.1(0.2) for electrons(muons) in

QCD and data with contributions for all other processes (tt̄, W + jets, Other) subtracted.

As the ratio in data agrees to that in QCD simulation within 20%, an additional 20%

log-normal uncertainty is assigned to the QCD normalization, which is fully correlated

across the 1-lepton bins.

96



Systematic Uncertainties Chapter 9

relI

E
ve

nt
s 

/ (
0.

1)

1

10

210

310

410

510

610

 (13 TeV)-135.9 fb

Data
QCD
W+jets

tt

Other

relI

0 0.5 1 1.5 2

D
at

a 
/ s

im
. 

0.5

1

1.5
relI

E
ve

nt
s 

/ (
0.

2)

1

10

210

310

410

510

610

710

810

 (13 TeV)-135.9 fb

Data
QCD
W+jets

tt

Other

relI

0 0.5 1 1.5 2

D
at

a 
/ s

im
. 

0.5

1

1.5

Figure 9.8: The relative isolation distribution for electrons (left) and muons (right) in
the analysis control region. The binning of the histograms is chosen such that the first
bin corresponds to the relative isolation requirement for signal leptons (0.1 for elec-
trons and 0.2 for muons). The normalizations of the QCD, tt̄, and W + jets processes
are scaled to match the results of a control region fit described in Section 10.2.2.

Process
Electrons Muons

Irel < 0.1 Irel ≥ 0.1 ratio Irel < 0.2 Irel ≥ 0.2 ratio
QCD 496.8 2455.5 0.20 219.8 36553.3 0.0060
Data - all other 452.8 2500.5 0.18 275.4 37497.7 0.0073

Table 9.2: Comparison of the relative isolation distributions, as described in the cap-
tion of Figure 9.8, for electrons and muons between QCD and data with contributions
from “all other” (tt̄, W + jets, and Other) subtracted.

9.4 Additional Systematic Uncertainties

Other experimental uncertainties are small and include lepton selection efficiency, jet

energy scale, jet energy resolution, and integrated luminosity. The uncertainty associated

with lepton selection efficiency is determined by varying the efficiency to select a lepton

within its uncertainty determined from data. Jet energy scale uncertainties [110, 111]

are assessed by varying the pT of small-R jets as a function of pT and η. The uncertainty

arising from jet energy resolution [110, 111] is determined by applying an |η|-dependent
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Figure 9.9: Background systematic uncertainties (in percent) for the Njets ≥ 8,
500 < MJ ≤ 1000 GeV (left) and Njets ≥ 8, MJ > 1000 GeV (right) bins. The
bottom row shows the total uncertainty for a given Nb bin by summing in quadrature
all uncertainties. These values are similar for other bins.

factor to the jet pT to match the jet energy resolution observed in data. The integrated

luminosity is varied according to its uncertainty of 2.5% [112], affecting only the back-

grounds estimated from simulation. No uncertainty is applied for the amount of pileup as

studies have shown its effect to be negligible in this high-HT selection. The uncertainties

due to the limited size of simulation samples are incorporated as uncorrelated nuisance

parameters in the fit.

Theoretical systematic uncertainties are applied and include independent and corre-

lated variations of the renormalization and factorization scales. Additionally, uncertain-

ties on the PDF are incorporated by considering variations in the NNPDF 3.0 scheme [96].

The size of these uncertainties is typically small as the effect of these variations is largely

to modify the cross section of processes, which for the main backgrounds are constrained

by data.

The background systematic uncertainties that affect the Nb shape are shown in Fig-

ure 9.9 for the two most sensitive search bins.
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Figure 9.10: Comparison of the Nb distribution for a sample generated at LO precision
with MadGraph5 aMC@NLO 2.2.2 (blue histogram) with that of one generated at
NLO precision with Powheg 2.0 (data points). The comparison is done after the base-
line selection and in bins of 4 ≤ Njets ≤ 5 (left), 6 ≤ Njets ≤ 7 (middle), and Njets ≥ 8
(right). In order to evaluate only shape differences, the MadGraph5 aMC@NLO
sample is normalized to match the normalization of the Powheg sample.

9.4.1 Nb Distribution With NLO Precision

As the nominal Nb distribution shape is generated at LO precision, it is important

to verify that the size of NLO effects is small and covered by the experimental un-

certainties. To do this, the Nb distributions of tt̄ samples generated at LO precision

with the default MadGraph5 aMC@NLO 2.2.2 generator and samples generated at

NLO precision with Powheg 2.0 are compared after the baseline selection. In order

to evaluate only the shape differences between the two samples, the normalization of

the MadGraph5 aMC@NLO sample is scaled to match that of the Powheg sample.

The comparison of the two distributions, shown in Figure 9.10, is conducted in bins of

Njets and indicates a disagreement of only about 5%. This disagreement is small and

subdominant to the experimental uncertainties previously discussed and no additional

uncertainty is applied.

Given the level of agreement between the two samples, the MadGraph5 aMC@NLO
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N true
PV ≤ 20 20 < N true

PV ≤ 40 N true
PV > 40

8.0± 0.5% 8.1± 0.4% 7.5± 1.5%

Table 9.3: The signal efficiency of the most sensitive bin Njets ≥ 8, MJ > 1000 GeV
for a 1600 GeV gluino in various bins of the number of truth-level primary vertices.

sample is used in this analysis as the sample size is significantly larger than that for the

Powheg sample.

9.5 Signal Systematics

Several of the systematic uncertainties affecting the signal yield are evaluated in the

same way as the background yield. These are the uncertainties due to gluon splitting,

lepton selection efficiency, jet energy scale, jet energy resolution, b tagging scale factors,

simulation sample size, integrated luminosity, and theoretical uncertainties. All system-

atic variations affect both the Nb shape and normalization, except for the gluon splitting

uncertainty, which is taken to affect only the Nb shape.

The number of jets from ISR produced in the signal simulation is reweighted based

on comparisons between data and simulated tt̄ samples. The reweighting factors vary

between 0.92 and 0.51 for the number of ISR jets between 1 and ≥ 6. One half of the

deviation from unity is taken as the systematic uncertainty in these reweighting factors.

The systematic uncertainties affecting the signal Nb shape are shown in Figure 9.11

for the most sensitive bins in a model with mg̃ = 1600 GeV. The dominant signal

systematic uncertainties arise from the limited simulation sample size, the b tagging

efficiency scale factors, and the ISR modeling. There is no systematic uncertainty taken

for pileup reweighting, as the signal efficiency is found to be insensitive to the number of

pileup interactions, which is shown in Table 9.3.
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Figure 9.11: Systematic uncertainties (in percent) for a mg̃ = 1600 GeV signal and
for the Njets ≥ 8, 500 < MJ ≤ 1000 GeV (left) and Njets ≥ 8, MJ > 1000 GeV (right)
bins. The bottom row shows the total uncertainty for a given Nb bin by summing in
quadrature all uncertainties. These values are similar for other bins.
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Fit Model and Validation

10.1 Description of the Fit Model

In order to determine the values of the background normalizations and nuisance

parameters, as well as extract any signal that may be present, a maximum-likelihood

fit to the observed data is performed. The full likelihood model can be written as the

multiplication of a likelihood constructed from only the Nleps = 1 bins and a likelihood

constructed from only the Nleps = 0 bins:

L = LNleps=1LNleps=0 (10.1)

where

LNleps=1 =
∏

i∈Njets

j∈MJ
k∈Nb

P (Nijk|µsignalνsignal
ijk + µtt̄

i ν
tt̄
ijk + µQCD

i νQCD
ijk + µW+jetsνW+jets

ijk + νOther
ijk )

∏
l∈tt̄ norm.

P (Nijk|θl)
∏

l′∈QCD norm.

P (Nijk|θl′ )
∏

l′′∈W+jets norm.

P (Nijk|θl′′ )
∏

m∈shape

P (Nijk|θm),

(10.2)
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and

LNleps=0 =
∏

i∈Njets

j∈MJ
i′=i+1

P (Ni′j|µsignalνsignal
i′j + µtt̄

i′ ν
tt̄
i′j + µQCD

i′ νQCD
i′j + νW+jets

i′j + νOther
i′j )

∏
l∈tt̄ norm.

P (Ni′j|θl)
∏

l′∈QCD norm.

P (Ni′j|θl′)
∏

m∈shape

P (Ni′j|θm). (10.3)

Here, the indices i, j, and k respectively run over the appropriate Njets, MJ, and Nb bins

of the analysis. The value of Nijk is the data yield in the corresponding bin, the µ factors

correspond to unconstrained normalization parameters, the ν factors are the simulated

yields, and the θ factors represent nuisance parameters. The sets of nuisance parameters

“tt̄ norm.” and “QCD norm.” correspond to the MJ-connection normalization parame-

ters discussed in Subsection 8.2.1, while the nuisance parameter set “W + jets norm.”

corresponds to the normalization parameters described in Section 8.3. The “shape” nui-

sance parameter set is comprised of those described in Chapter 9. For conciseness, the

dependencies of the ν terms and elements of the θ terms have been dropped but are kept

for the discussion below.

In more detail, for the Nleps = 1 likelihood, the µsignalνsignal
ijk (θm) term represents the

signal yield in the corresponding bin, as a function of θm, multiplied by a global signal

strength parameter. The µtt̄
i ν

tt̄
ijk(θm, θl,ij) term encodes the floating normalizations in

each Njets bin through µtt̄
i , while the effects of shape systematics and the MJ-connection

normalizations are represented by the dependence of νtt̄
ijk on θm and θl,ij, respectively. The

QCD term behaves analagously to the tt̄ term, except that it has separate MJ-connection

normalizations and, thus, is dependent on θl′,ij instead of θl,ij. The µW+jetsνW+jets
ijk (θm, θl′′,i)

term controls the W + jets yield in the corresponding bin, which is dependent on an

overall unconstrained normalization parameter, µW+jets, on shape systematics, θm, and

on Njets-dependent normalizations, θl′′,i. Finally, the term νOther
ijk (θm) does not have a
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corresponding µ factor as the normalization of Other is taken from simulation. The

dependence on θm, however, does allow the normalization to vary according to systematic

uncertainties.

The Nleps = 0 likelihood largely follows the same structure as the Nleps = 1 likelihood,

though with some important differences and features. First, the data yields, Ni′j, and

simulation yields, νi′j, do not depend on the index k, reflecting the fact that the Nleps = 0

regions are integrated in Nb for Nb ≥ 1. Second, the likelihood depends not on index

i but on i′, where i′ = i + 1. This represents the correspondence of Njets bins between

the 0-lepton and 1-lepton regions, where a higher Njets bin in the Nleps = 0 sample is

used to constrain an Njets bin in the Nleps = 1 sample. Third, the µtt̄ and µQCD terms

appear in this likelihood as well, indicating the simulataneous fit of their contributions

across the two Nleps regions, while the µW+jets term is not present, as the W + jets

normalization is only determined in the Nleps = 1 region. The W + jets normalization is

not simulataneously fit in both Nleps regions, because it is negligibly small in the 0-lepton

region. This fact also explains why a product analagous to
∏

l′′∈W+jets norm.

P (Nijk|θl′′ ) is

not present. Lastly, the product
∏

m∈shape

P (Ni′j|θm) only affects the term νOther
i′j , as for all

other processes the shape variations have no effect due to the integration in Nb.

10.2 Validation of the Fit Model

Due to the fit’s complexity and many adjustable parameters, it is important to verify

the fit model and that it behaves as intended. Signal injection tests are simulation-based

studies that allow for the assumptions of the model to be tested and, importantly, for the

behavior of the fit in the presence of signal to be evaluated. A control region fit is a data-

driven validation test, which is needed to ensure that the method is not overly-reliant on
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simulation and is able to model the actual experimental conditions. Both of these tests

were performed to validate the fit model and are described in fuller detail below.

10.2.1 Signal Injection Study

Signal injection studies are a useful way to quantify how well the maximum-likelihood

fit can extract a potential signal if it is indeed present. These studies rely on the use of

psuedodata experiments. A single experiment consists of generating psuedodata by fluc-

tuating bin yields around their pre-fit values according to their statistical and systematic

uncertainties. This pseudodata can then be treated as observations and can be fit with

the results examined. As many psuedodata experiments are generated, the collection of

observations approximates the distribution of possible observations as defined by the fit

model and as a result the distribution of post-fit results approximates the distribution of

possible post-fit results.

For the signal injection study, 1000 experiments are generated by fluctuating both

the expected background and signal yields (with signal strength = 1) for each gluino

mass point. Figure 10.1 shows the median fitted signal strength of the 1000 experiments

for each gluino mass point. For gluino masses between 1000 − 1700 GeV the fit shows

no evidence of a bias and has a median extracted signal strength of ∼1, while for higher

gluino masses, the fit tends to under-extract the signal contribution (up to ∼25% for

mg̃ = 2000 GeV). These biased mass points correspond to models where the number

of signal events is very low. For example, there are only 8.6 events expected for the

mg̃ = 2000 GeV model, summing over all analysis bins. This low yield means that

gaussian-approximations of the poisson-distributed bin yields used in the fit model are

no longer appropriate, leading to the bias in the fit.

In order to test this hypothesis, additional signal injection studies, each consisting
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Figure 10.1: Median extracted signal strength of 1000 psuedodata experiments as a
function of gluino mass. The uncertainties drawn are the median upper and lower
errors of the fitted signal strengths per mass point.

of 1000 experiments, are performed for the mg̃ = 2000 GeV mass point, where the

injected signal strengths are 1x, 3x, 5x, 10x the nominal cross section. The resulting

median extracted signal is 78%, 92%, 95%, and 98% of the injected signal, respectively.

These results support the hypothesis, as, with increasing signal strength, the gaussian-

approximations become increasingly accurate, allowing for the fit to properly extract the

signal contributions. The distributions of the fractional fitted signal strength for these

tests are shown in Figure 10.2.

No modifications to the fit model are made to correct for this issue. This is because

the fit bias only affects mass points that are far above the highest mass (1650 GeV)

expected to be excluded by this analysis, and Figure 10.1 shows that the fit bias is much

smaller than the precision of the fit for those mass points. Additionally, the coverage

of the 95% confidence intervals of the fit is tested using the signal injection experiments
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Figure 10.2: Distribution of the fraction of signal extracted from 1000 psuedodata
experiments for a 2000 GeV gluino at 1x (top-left), 3x (top-right), 5x (bottom-left),
and 10x (bottom-right) the nominal cross section. The last bin includes the overflow
contents, and the black dashed line represents extracting as much signal as was in-
jected. The median extracted signal is 78%, 92%, 95%, and 98% the injected signal,
respectively.
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mg̃ = 1800 GeV mg̃ = 1900 GeV mg̃ = 2000 GeV
96% 95% 96%

Table 10.1: Actual coverage probability of the 95% confidence interval of the fit for
the mass points with a biased signal extraction.

and found to be either correct or slightly conservative, as shown in Table 10.1.

10.2.2 Control Region Fit

While the signal injection studies are a useful validation of the fit model, it is im-

portant to validate the model using data in order to test for unmodeled effects. This is

done by performing the maximum-likelihood fit with only the low-Njets, low-MJ control

regions, as defined in Table 7.4. These bins are chosen due to their low-expected signal

yields, which avoids signal contamination effects and unblinding the high-expected signal

regions in the case further modifications of the fit are required.

The control region fit, under the background-only hypothesis, is able to model the

observed data well without needing large adjustments to the nuisance parameters, as

seen in the post-fit Nb distributions shown in Figure 10.3. The change between the

pre- and post-fit normalizations of the background processes is shown in Table 10.2,

while the pulls of the nuisance parameters corresponding to the systematic uncertainties

(largely controlling the shape of the Nb distribution) are shown in Figure 10.4. Both

sets of values are well-behaved, as the largest change in normalization is less than 50%

with typical values around 10-15%, while the nuisance parameters are all consistent

with their pre-fit uncertainties, with most shifted less than 0.05 s.d. The largest pulls

correspond to nuisance parameters controlling the gluon splitting rate (gs, +0.42 s.d.), the

light-flavor b-tag SFs (btag udsg, +0.37 s.d.), and the heavy-flavor b-tag SFs (btag bc,

+0.13 s.d.). These nuisances are expected to be shifted up as the observed data is higher

than simulation in the tail of the pre-fit Nb distributions, as seen in Figure 10.5, where
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Figure 10.3: Post-fit Nb distributions of the control region fit with only statistical
uncertainties shown.

Process Pre-fit Yield Post-fit Yield (b-only) % change

4 ≤ Njets ≤ 5, 500 ≤MJ ≤ 800
tt̄ 501.4 533.3± 80.7 +6.3
QCD 218.8 186.7± 36.8 -14.7
W + jets 400.4 225.5± 100.0 -43.7
Other 141.4 131.8± 34.5 -6.8

4 ≤ Njets ≤ 5, MJ ≥ 800
tt̄ 36.9 37.5± 13.3 +1.6
QCD 23.1 18.9± 4.5 -18.2
W + jets 45.7 25.7± 11.4 -43.8
Other 16.8 15.7± 3.8 -6.5

6 ≤ Njets ≤ 7, 500 ≤MJ ≤ 800
tt̄ 1370.4 1148.3± 78.0 -16.2
QCD 293.9 262.6± 52.1 -10.6
W + jets 367.7 205.6± 92.2 -44.1
Other 225.2 209.7± 58.5 -6.9

Table 10.2: Table comparing the post-fit normalizations of the control region fit to
the pre-fit yields for the various background processes.

the background simulation is normalized to match the observed data yields with a single

scaling factor and with the pre-fit uncertainty represented by a hatched band.

Lastly, Table 10.3 compares the post-fit pulls of the background-only and signal-plus-

background control region fit. The post-fit pulls between the two fits are fully consistent

with each other, as is expected for these signal-poor regions.
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Figure 10.4: Post-fit pulls of the background-only control region fit. The post-fit values
of the nuisance parameters are indicated by data points, while the post-fit uncertainty
is shown as a black line and is normalized by the pre-fit uncertainty depicted as the
blue band.
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Figure 10.5: Pre-fit Nb distributions of the control region bins with the background
simulation normalized to the observed data yields with a single scaling factor. The
ratio of data-to-simulation is shown in the lower panel. The pre-fit uncertainty is
represented by the hatched band.

Post-fit pull Post-fit pull
Nuisance parameter (b-only fit) (s+ b fit) ρ(θm, µ)
b,c jet b-tag SF (btag bc) +0.13± 0.98 +0.07± 1.05 -0.18
u,d,s,g jet b-tag SF (btag udsg) +0.37± 0.92 +0.28± 0.95 -0.26
Gluon splitting (gs) +0.42± 0.87 +0.22± 1.12 -0.43
Jet energy resolution (jer) −0.02± 0.63 −0.02± 0.60 -0.01
Jet energy scale (jes) +0.03± 0.63 +0.03± 0.61 -0.03
Lepton efficiency (lep eff) −0.01± 0.99 −0.01± 0.99 +0.01
Luminosity (lumi) +0.00± 0.99 +0.00± 0.99 -0.01
Fact. scale for Other (other muf) −0.00± 0.99 −0.00± 0.99 +0.00
Renorm. scale for Other (other mur) −0.07± 0.96 −0.06± 1.02 +0.02
Renorm. and Fact. scale for Other (other murf) −0.06± 0.98 −0.08± 0.96 +0.01
QCD fake rate (qcd fakerate) +0.05± 1.01 +0.09± 1.14 +0.09
Fact. scale for QCD (qcd muf) −0.01± 1.01 −0.01± 1.01 -0.00
Renorm. scale for QCD (qcd mur) +0.00± 0.99 +0.00± 0.99 -0.00
Renorm. and Fact. scale for QCD (qcd murf) −0.01± 1.01 −0.01± 1.01 -0.00
Fact. scale for tt̄ (ttbar muf) −0.01± 1.01 −0.01± 1.00 +0.00
Renorm. scale for tt̄ (ttbar mur) −0.00± 1.00 +0.00± 0.99 +0.01
Renorm. and Fact. scale for tt̄ (ttbar murf) −0.01± 1.01 −0.01± 1.00 +0.01
Fact. scale for W + jets (wjets muf) −0.00± 0.99 +0.00± 0.99 +0.00
Renorm. scale for W + jets (wjets mur) −0.00± 0.99 −0.00± 0.99 -0.00
Renorm. and Fact. scale for W + jets (wjets murf) −0.00± 1.00 −0.00± 1.00 +0.00

Table 10.3: Table of post-fit pulls of the background-only and signal-plus-background
control region fit. The last column, ρ(θm, µ), lists the correlation between the corre-
sponding nuisance parameter, θm, and the nuisance parameter controlling the signal
strength, µ.
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Chapter 11

Results and Interpretation

11.1 Examination of Pre-fit Data

Before proceeding with the full maximum likelihood fit using all the analysis bins, it

is helpful to evaluate the observed pre-fit data distributions. The pre-fit Nb distributions

for the control region bins are those shown in Figure 10.5 and have corresponding yields

given in Table 11.1, while those for the signal region bins are shown in Figure 11.1 and

Table 11.2. In Figure 10.5 and Figure 11.1, the background normalization is scaled to

match the observed data yields in each bin with a scaling factor that controls all processes

equally. This approximates the effect of the various normalization parameters in the

fit and allows for a rough comparison of the background and observed Nb distribution

shapes. By examining this comparison, a qualitiative understanding of the results and

expected fit behavior can be gained.

In particular, a generally good level of agreement is seen between the background

processes and observed data, suggesting that the background-only fit should be able to

describe the data well. There are, however, some small trends that suggest the observed

Nb distribution may be slightly harder than that of the simulated background processes.

Thus, the background-only fit is expected to increase the nuisance parameters controlling

the GS rate, heavy-flavor, and light-flavor b-tag SFs in order to correct the background
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Figure 11.1: Pre-fit Nb distributions of the signal region bins with the back-
ground simulation normalized to the observed data yields with a single scaling
factor: 6 ≤ Njets ≤ 7, 800 < MJ ≤ 1000 GeV (upper-left), 6 ≤ Njets ≤ 7,
MJ > 1000 GeV (upper-right), Njets ≥ 8, 500 < MJ ≤ 800 GeV (middle-left),
Njets ≥ 8, 800 < MJ ≤ 1000 GeV (middle-right), and Njets ≥ 8, MJ > 1000 GeV
(bottom-middle). The ratio of data-to-simulation is shown in the lower panel. The
pre-fit uncertainty is represented by the hatched band.
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Nb QCD tt̄ W + jets Other All bkg. Data Expected mg̃ = 1600 GeV

4 ≤ Njets ≤ 5, 500 < MJ ≤ 800 GeV
1 179.8 317.7 346.5 101.5 945.4 777 0.5
2 33.9 160.0 49.5 34.8 278.1 264 0.4
3 5.1 21.9 4.1 4.8 35.9 34 0.2
≥ 4 0.0 1.8 0.4 0.3 2.5 3 0.0

4 ≤ Njets ≤ 5, MJ > 800 GeV
1 21.1 25.6 39.6 12.3 98.5 77 0.3
2 1.3 10.1 5.6 4.2 21.1 18 0.4
3 0.7 1.2 0.4 0.4 2.7 3 0.1
≥ 4 0.0 0.1 0.0 0.0 0.1 0 0.0

6 ≤ Njets ≤ 7, 500 < MJ ≤ 800 GeV
1 229.8 741.5 299.0 134.6 1404.9 1105 2.5
2 55.3 516.8 60.4 73.7 706.1 588 3.1
3 7.3 100.0 7.4 14.6 129.3 112 1.4
≥ 4 1.6 12.1 0.9 2.3 17.0 21 0.3

Table 11.1: Pre-fit data and simulation yields in the control region bins in 35.9 fb−1 of data.

shape accordingly. In the case of the signal-plus-background fit, the fit may also shift

these nuisance parameters, or it may extract a signal contribution, depending on whether

the observed trends are consistent with variations in systematic uncertainties or with a

signal presence.

The quantitative results of the background-only and signal-plus-background fit are

described in the section below.

11.2 Results

11.2.1 Background-only Fit Results

The results of a background-only fit of the observed Nb distributions are shown in

Figures 11.2 and 11.3. These figures show the Nleps = 1 control and signal regions sep-

arately although the fit includes all bins simultaneously. The observed Nb distributions

are well described by the fit, and an examination of the nuisance parameters, displayed
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Nb QCD tt̄ W + jets Other All bkg. Data Expected mg̃ = 1600 GeV

6 ≤ Njets ≤ 7, 800 < MJ ≤ 1000 GeV
1 19.6 56.9 33.8 13.6 123.9 105 1.2
2 10.6 34.7 7.1 8.4 60.8 37 2.0
3 0.9 7.2 0.9 1.4 10.3 12 1.0
≥ 4 0.0 0.9 0.1 0.2 1.2 2 0.3

6 ≤ Njets ≤ 7, MJ > 1000 GeV
1 6.2 14.0 11.2 4.9 36.2 21 2.0
2 1.0 7.8 2.5 1.9 13.2 11 2.3
3 0.1 1.7 0.3 0.6 2.8 2 1.0
≥ 4 0.0 0.2 0.0 0.1 0.3 0 0.2

Njets ≥ 8, 500 < MJ ≤ 800 GeV
1 140.1 683.3 116.6 76.4 1016.4 821 3.5
2 45.1 557.7 28.9 55.0 686.8 603 5.4
3 7.8 153.7 4.9 19.1 185.5 148 3.0
≥ 4 2.4 31.4 0.8 5.4 40.0 40 1.4

Njets ≥ 8, 800 < MJ ≤ 1000 GeV
1 20.3 75.5 23.0 11.8 130.5 90 4.2
2 5.6 59.7 5.2 7.6 78.1 65 5.3
3 1.1 18.0 0.9 2.2 22.2 22 2.6
≥ 4 0.1 3.9 0.2 1.0 5.2 5 1.3

Njets ≥ 8, MJ > 1000 GeV
1 7.9 20.9 8.0 4.8 41.6 28 5.4
2 1.9 16.0 2.2 2.4 22.4 21 8.2
3 0.7 4.9 0.4 1.1 7.2 5 5.7
≥ 4 0.0 1.3 0.1 0.2 1.5 2 3.2

Table 11.2: Pre-fit data and simulation yields in the signal region bins in 35.9 fb−1 of data.
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Figure 11.2: Data and the background-only post-fit Nb distribution for the control
region bins: 4 ≤ Njets ≤ 5, 500 < MJ ≤ 800 GeV (left), 4 ≤ Njets ≤ 5, MJ > 800 GeV
(middle), and 6 ≤ Njets ≤ 7, 500 < MJ ≤ 800 GeV (right). The expected signal
distribution is also shown for a gluino mass of 1600 GeV (red line). The ratio of data
to post-fit yields is shown in the lower panel. The post-fit uncertainty is depicted as
a hatched band.

in Figure 11.4, shows that none of them are significantly changed by the fit, with typical

deviations less that 0.05 s.d. The largest shifts in the nuisance parameters correspond to

those controlling the gluon splitting rate (+0.50 s.d.), light-flavor b-tag SFs (+0.25 s.d.),

and heavy-flavor b-tag SFs (+0.14 s.d.) and are well within their pre-fit uncertainties.

The post-fit yields are presented in Table 11.3.

The good description of the observed data as well as the behavior of the nuisance

parmeters match the pre-fit expectations outlined in Section 11.1. An additional indica-

tion that the background-only fit is well-behaved is that the post-fit nuisance parameter

values are in good agreement with those of the control-region fit. This suggests that the

measurements of the nuisance parameters in the background-dominated control regions

are able to largely describe the difference in Nb shape between simulation and data in

the signal regions without the need of a signal contribution.
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Figure 11.3: Data and the background-only post-fit Nb distribution for the sig-
nal region bins: Njets ≥ 8, 500 < MJ ≤ 800 GeV (upper-left), 6 ≤ Njets ≤ 7,
800 < MJ ≤ 1000 GeV (upper-middle), Njets ≥ 8, 800 < MJ ≤ 1000 GeV
(upper-right), 6 ≤ Njets ≤ 7, MJ > 1000 GeV (bottom-left), and Njets ≥ 8,
MJ > 1000 GeV (bottom-right). The expected signal distribution is also shown for a
gluino mass of 1600 GeV (red line). The ratio of data to post-fit yields is shown in
the lower panel. The post-fit uncertainty is depicted as a hatched band.
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Figure 11.4: Post-fit pulls of the background-only fit. The post-fit values of the
nuisance parameters are indicated by data points, while the post-fit uncertainty is
shown as a black line and is normalized by the pre-fit uncertainty depicted as the blue
band.
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Nb QCD tt̄ W + jets Other All bkg. Data Expected mg̃ = 1600 GeV
4 ≤ Njets ≤ 5, 500 < MJ ≤ 800 GeV

1 148 340 196 91 775± 43 777 0.50± 0.13
2 29 175 30 31 264± 17 264 0.39± 0.11
3 4.3 24.8 2.5 4.4 36± 4 34 0.18± 0.08
≥ 4 0.0 2.2 0.3 0.2 2.7± 0.4 3 0.04± 0.04

4 ≤ Njets ≤ 5, MJ > 800 GeV
1 16.5 26.3 22.5 11.0 76± 6 77 0.32± 0.11
2 1.1 10.6 3.4 3.8 19± 2 18 0.40± 0.12
3 0.7 1.3 0.3 0.3 2.7± 0.5 3 0.13± 0.06
≥ 4 0.00 0.09 0.03 0.01 0.13± 0.03 0 0.03± 0.03

6 ≤ Njets ≤ 7, 500 < MJ ≤ 800 GeV
1 197 620 169 120 1106± 48 1105 2.5± 0.3
2 49 440 36 66 591± 21 588 3.1± 0.3
3 6.4 89.2 4.6 13.4 114± 8 112 1.4± 0.2
≥ 4 1.9 11.4 0.6 2.1 16± 2 21 0.25± 0.09

Njets ≥ 8, 500 < MJ ≤ 800 GeV
1 130 574 53 68 825± 38 821 3.5± 0.3
2 45 478 14 49 586± 20 603 5.4± 0.4
3 6.3 138.1 2.5 16.7 164± 9 148 3.0± 0.3
≥ 4 2.8 29.8 0.4 4.8 38± 4 40 1.4± 0.2

6 ≤ Njets ≤ 7, 800 < MJ ≤ 1000 GeV
1 17.3 48.4 19.2 12.3 97± 8 105 1.2± 0.2
2 6.6 30.1 4.3 7.3 48± 4 37 2.0± 0.3
3 0.8 6.6 0.5 1.3 9.3± 1.0 12 1.0± 0.2
≥ 4 0.0 0.9 0.1 0.2 1.1± 0.2 2 0.31± 0.09

Njets ≥ 8, 800 < MJ ≤ 1000 GeV
1 17.0 58.7 10.3 10.2 96± 8 90 4.2± 0.4
2 5.8 47.5 2.5 6.8 63± 5 65 5.3± 0.4
3 1.1 15.0 0.4 2.0 19± 2 22 2.6± 0.3
≥ 4 0.2 3.4 0.1 0.9 4.6± 0.6 5 1.3± 0.2

6 ≤ Njets ≤ 7, MJ > 1000 GeV
1 4.4 8.7 6.0 4.1 23± 2 21 2.0± 0.3
2 0.7 5.0 1.4 1.6 8.8± 1.2 11 2.3± 0.3
3 0.1 1.2 0.2 0.5 1.9± 0.3 2 1.0± 0.2
≥ 4 0.00 0.13 0.01 0.05 0.19± 0.04 0 0.23± 0.08

Njets ≥ 8, MJ > 1000 GeV
1 6.4 16.7 3.5 4.1 31± 3 28 5.4± 0.4
2 1.6 13.1 1.1 2.1 18± 2 21 8.2± 0.5
3 0.6 4.2 0.2 1.0 6.0± 0.8 5 5.7± 0.4
≥ 4 0.0 1.2 0.0 0.2 1.4± 0.3 2 3.2± 0.3

Table 11.3: Post-fit yields of the background-only fit, observed data, and expected
yields for mg̃ = 1600 GeV. 119
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Figure 11.5: Data and the mg̃ = 1600 GeV signal-plus-background post-fit Nb dis-
tribution for the control region bins: 4 ≤ Njets ≤ 5, 500 < MJ ≤ 800 GeV (left),
4 ≤ Njets ≤ 5, MJ > 800 GeV (right), and 6 ≤ Njets ≤ 7, 500 < MJ ≤ 800 GeV
(middle). The ratio of data to post-fit yields is shown in the lower panel. The post-fit
uncertainty is depicted as a hatched band.

11.2.2 Signal-plus-background Fit Results

Despite the good description of the observed data by the background-only fit, perform-

ing a signal-plus-background fit is necessary to see if the observed data is also consistent

with the presence of signal. Thus, a signal-plus-background fit is performed for gluino

masses ranging from 1000 to 2000 GeV, and, for all masses, the post-fit Nb distribution

describes the data well with the fits extracting at most a small and insignificant signal

contribution.

For example, the fitted signal strength for a model corresponding to a 1600 GeV gluno

is µ = 0.18+0.41
−0.18 with the post-fit Nb distributions shown in Figure 11.5 and Figure 11.6

for the control and signal region bins, respectively. The post-fit values of the nuisance

parameters are small and consistent with those of the background-only fit, as shown in

Table 11.4.

Given the post-fit agreement of the Nb distributions, well-behaved nuisance param-

eters, and insignificant fitted signal strength, no evidence for a signal corresponding to

the T1tbs model is observed.
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Figure 11.6: Data and the mg̃ = 1600 GeV signal-plus-background post-fit Nb

distribution for the signal region bins: Njets ≥ 8, 500 < MJ ≤ 800 GeV (up-
per-left), 6 ≤ Njets ≤ 7, 800 < MJ ≤ 1000 GeV (upper-middle), Njets ≥ 8,
800 < MJ ≤ 1000 GeV (upper-right), 6 ≤ Njets ≤ 7, MJ > 1000 GeV (bottom-left),
and Njets ≥ 8, MJ > 1000 GeV (bottom-right). The ratio of data to post-fit yields is
shown in the lower panel. The post-fit uncertainty is depicted as a hatched band.
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Post-fit pull Post-fit pull
Nuisance parameter (b-only fit) (s+ b fit) ρ(θm, µ)
b,c jet b-tag SF (btag bc) +0.14, 0.93 +0.12, 0.94 -0.09
u,d,s,g jet b-tag SF (btag udsg) +0.25, 0.91 +0.22, 0.91 -0.05
Gluon splitting (gs) +0.50, 0.69 +0.45, 0.70 -0.14
Jet energy resolution (jer) -0.01, 0.76 -0.02, 0.73 -0.01
Jet energy scale (jes) +0.03, 0.53 +0.01, 0.41 -0.06
Lepton efficiency (lep eff) +0.02, 1.00 +0.02, 1.00 +0.02
Luminosity (lumi) -0.02, 0.99 -0.02, 0.99 -0.02
Fact. scale for Other (other muf) +0.05, 0.97 +0.04, 0.97 -0.00
Renorm. scale for Other (other mur) +0.03, 1.09 +0.04, 1.09 +0.00
Renorm. and Fact. scale for Other (other murf) +0.11, 0.96 +0.09, 0.94 -0.00
QCD fake rate (qcd fakerate) -0.12, 0.98 -0.10, 0.99 +0.03
Fact. scale for QCD (qcd muf) -0.05, 1.01 -0.05, 1.01 +0.00
Renorm. scale for QCD (qcd mur) +0.00, 0.99 +0.00, 0.99 +0.00
Renorm. and Fact. scale for QCD (qcd murf) -0.04, 1.01 -0.04, 1.01 +0.00
Fact. scale for tt̄ (ttbar muf) -0.03, 1.02 -0.03, 1.02 +0.00
Renorm. scale for tt̄ (ttbar mur) +0.01, 0.99 +0.01, 0.98 +0.00
Renorm. and Fact. scale for tt̄ (ttbar murf) -0.02, 1.01 -0.02, 1.01 +0.00
Fact. scale for W + jets (wjets muf) -0.00, 1.00 -0.00, 1.00 +0.00
Renorm. scale for W + jets (wjets mur) +0.00, 1.00 +0.00, 1.00 -0.00
Renorm. and Fact. scale for W + jets (wjets murf) -0.00, 1.00 -0.00, 1.00 +0.00

Table 11.4: Table of post-fit pulls of the background-only and signal-plus-background
fit. The last column, ρ(θm, µ), lists the correlation between the corresponding nuisance
parameter, θm, and the nuisance parameter controlling the signal strength, µ.

122



Results and Interpretation Chapter 11

11.3 Statistical Interpretation

In the absence of significant evidence of signal, limits on the production cross section

of a model can be set through the CLs procedure [113, 114, 115]. The procedure is given

by the following steps:

First, construct likelihood functions for the background-only and signal-plus-background,

which for this search corresponds to the likelihood presented in Section 10.1.

Next, in order to evaluate the compatability of the observed data with the background-

only and signal-plus-background hypotheses, a test statistic, qµ, is defined as,

qµ = −2 ln
L(Nobs|µ, θ̂µ)

L(Nobs|µ̂, θ̂)
, 0 ≤ µ̂ ≤ µ (11.1)

Here, Nobs is the observed data, µ is the signal strength, θ represents the full set of

nuisance parameters. Additionally, θ̂µ is the value of θ that maximzes the likelihood

conditioned on a specified value of µ, i.e. for a fixed signal strength, while µ̂ and θ̂

respectively correspond to the values of µ and θ that globally maximize the likelihood.

The structure of qµ as a likelihood ratio is motivated by the Neyman-Pearson lemma [116],

which states that the ratio of likelihoods is the most powerful discriminator. The lower

constraint of 0 ≤ µ̂ is imposed on the physical consideration that the signal cannot

contribute a negative event yield, while the upper constraint of µ̂ ≤ µ is imposed so that

upward fluctuations that result in µ̂ > µ cannot be interpreted as evidence against the

signal-plus-background hypothesis.

For some choice of signal strength, µ′, and the observed data, calculate the observed

value of qobsµ′ .

Then compute the values θobs0 and θobsµ′ , which are the values of nuisance parame-

ters that maximize the background-only (µ = 0) and signal-plus-background (µ = µ′)
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likelihoods under the observed data, respectively.

From the values of θobs0 and θobsµ′ , construct the probability density functions (pdfs)

for qµ′ under the background-only hypothesis, f(qµ|0, θobs0 ), and under the signal-plus-

background with µ′, f(qµ|µ′, θobsµ′ ). These pdfs can either be determined by generating

and fitting psuedoexperiments or by using asymptotic formulae for approximating the

distribution of qµ [117]. The latter option is chosen, as with the former method, the

computational time and power needed for generating pseudoexperiemnts for each signal

mass point can be prohibitive.

Using these distributions, one can calculate the probability of observing data at least

as extreme as qobsµ′ under the backround hypothesis, CLb, and under the signal-plus-

background hypothesis, CLs+b. Formally,

CLb = P (qµ ≥ qobsµ′ |b) =

∫ ∞
qobs0

f(qµ|0, θobs0 )dqµ, (11.2)

and

CLs+b = P (qµ ≥ qobsµ′ |µ′s+ b) =

∫ ∞
qobs
µ′

f(qµ|µ′, θobsµ′ )dqµ. (11.3)

Finally, the CLs quantity can be calculated as the ratio of these two probabilities, with

CLs(µ) =
CLs+b

CLb

. (11.4)

Using the CLs quantity, a model can be said to be excluded at the (1−α) confidence

level (CL), if for µ = 1, CLs ≤ α. Convention is for the 95% CL upper limit on µ to

be quoted, corresponding to α = 0.05, in which case the value of µ can be scanned until

reaching CLs = 0.05. The resulting value of µ then represents the 95% CL upper limit

on the signal strength of the model and thus on its production cross section.
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Figure 11.7: Cross section upper limits at 95% CL for a model of gluino pair production
with g̃ → tbs compared to the gluino pair production cross section. The theoretical
uncertainties in the cross section are shown as a band around the red line [21]. The
expected limits (dashed line) and their ±1 s.d. and ±2 s.d. variations are shown as
green and yellow bands, respectively. The observed limit is shown by the solid line
with dots.

11.4 Limits on the T1tbs Benchmark Model

The resulting 95% upper limits on the signal production cross section from the CLs

procedure are shown in Figure 11.7, which includes the expected and observed limits

along with the gluino pair production cross section. Comparing the observed limits to

the gluino pair production cross section [21] indicates that gluino masses below 1610 GeV

are excluded in the benchmark g̃ → tbs model. The observed limits are slightly less

stringent than the expected limits, which is largely due to the insignificant excess in the

MJ > 1000 GeV, Njets > 8 and Nb ≥ 4 bin.
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Summary and Conclusions

This dissertation presented a search for new physics in 35.9 fb−1 of data produced by

√
s = 13 TeV proton-proton collisions from the LHC and collected by the CMS detector

in 2016. The search investigated events with a final state of a single lepton, large jet and

b-tagged jet multiplicities, and high sum of large-radius jet masses. This final state is

motivated by a R-parity and minimal-flavor violating supersymmetric model, in which

gluinos are pair produced and decay via g̃→ t¯̃t→ tbs. This search, however, is structured

to be generically sensitive to models with high-mass signatures and many b-tagged jets,

while the lack of an explicit Emiss
T requirement increases the search coverage to even

R-parity conserving models in which there is little Emiss
T produced.

The background is predicted through a global maximum-likelihood fit of the distri-

bution of number of b-tagged jets across bins of jet multiplicity and sum of masses of

large-radius jets. The normalizations of the dominant backgrounds are measured in data,

while their shapes are taken from simulation with corrections measured in data control

samples and are allowed to vary in the fit according to their uncertainties.

The main uncertainty in the background prediction method is the statistical uncer-

tainty due to the data sample size, while the largest systematic uncertainties arise from

the modeling of the gluon splitting rate and the b quark tagging efficiency and mistag

rate.
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Results from the background-only fit found the observed data to be well modelled

and consistent with the background-only hypothesis. Accordingly, limits are set on a

benchmark simplified model where pair produced gluinos each decay via g̃ → tbs. An

upper limit of approximately 10 fb is measured for the pair production of gluinos in

this scenario, which corresponds to excluding gluino masses below 1610 GeV at a 95%

confidence level.

These limits represent a significant improvement on the coverage of R-parity violat-

ing supersymmetric models, improving on results obtained at
√
s = 8 TeV [29, 86] by

approximately 600 GeV and are among the most stringent limits set by both the CMS

and ATLAS Collaborations [118, 119].

The original hopes for Run II of the LHC were for a quick discovery of new physics,

after which these new particles could be studied in detail and solutions to universal

questions obtained. Of course, this has not been the case, and instead many limits have

been set. The idea of naturalness, however, remains a highly-compelling reason for new

physics to be just around the corner, and despite the lack of evidence, there is still

significant phase space left in which (R-parity violating) supersymmetric models may

be hiding, while still meeting the naturalness guidelines outlined in Section 3.2. Thus,

supersymmetric models are an important class of signatures for which searches need to

be continued, and, if one truly believes in naturalness, comfort can be taken in that every

null result is one step closer to a discovery.

I am proud to know that the contents of this dissertation represent my contribution of

one such step to the corpus of particle physics. I sincerely hope that the next generation

of SUSY-searchers find themselves describing their results not in terms of limits but of

significances. Good luck and happy hunting!
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Appendix A

DeepJEC: Deep Learning the Jet
Response

A.1 Introduction

The beginning of the LHC program has been marked by either large increases in

center-of-mass energy or integrated luminosity, as shown in Figure A.1, with, for example,

the collision energy almost doubling from 7 to 13 TeV and the integrated luminosity

collected increasing 10-fold from 2015 to 2016. With each increase, large amounts of new

phase space were opened and inclusive searches attempted to cover this space by broadly

looking for signs of new physics. However, with the LHC’s energy capabilities nearly

saturated and the increase in data collection rate slowing down, more targeted searches

that try to extract hints of new physics from precision measurements are becoming more

well-motivated. These searches will require a more precise understanding of our detectors.

One physics object that is particularly difficult to measure is jets, as each jet is com-

posed of roughly ∼10-100 correlated particles that are of various particle-types (charged

hadrons, neutral hadrons, photons, etc), each with their own energy, and incident on

many different detector channels. All of these factors affect how well a detector measures

a jet and thus contribute to a wide detector response for jets, where response is defined
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Figure A.1: The (planned) integrated luminosity delivered and operating center-of–
mass energy for the LHC from 2010-2023.
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as

R =
preconstructed

T

ptrue
T

. (A.1)

By understanding how the jet response depends on these factors, jet measurements can

be better corrected. This can provide both better resolution for measurements, like those

that reconstruct the Higgs mass from bb̄ pairs, as well as better background-rejection

for searches where, for example, events with mis-measured jets comprise the largest

background.

Current methods [120, 121] only measure the jet response as a function of jet pT

and η, which are important first-order effects to consider. Figure A.2 shows that the

mean response does vary with both variables, where the disjoint η-dependence is due to

different detector technologies used at different values of η. The main goal of measuring

the jet response is to determine the mean of the response distribution correctly, as after

correcting for this bias, jets will be measured correctly on average. Figure A.3 shows the

jet response distribution (blue) and a model1 of the distribution as a function of only jet

pT and η (green, denoted pT,η) overlaid and depicts the limitations of using only these

variables: While the green distribution does capture the mean of the blue distribution,

it does not model much of the distribution’s width, which results in a wide jet resolution

for the detector. Although much of this width is due to inherenty stochastic processes

(e.g. photon production in scintillators), a question worth investigating is how much of

the jet response can be modeled by including the particle-level information of jets.

1This model was generated by training a simple 3-hidden layer neural network with 32 hidden units
each on only the jet pT and η with the jet response as the target. The training and test set details
are the same as those described in Section A.3. The model complexity here far exceeds that which is
necessary for a two-variable regression but is used for equal comparison to later results.
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Figure A.2: The mean jet response as a function of jet pT (left) and η (right).
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Figure A.3: The true jet response distribution (blue) and a model of the response as
a function of jet pT and η (green).
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A.2 Jet Images

One way to capture this particle-level information is by using the “jet images” tech-

nique [122, 123], which is a way of converting the detector signals of a jet into a 2D

image that encodes this information. Sophisticated image processing techniques can

then be used on these images in order to extract the dependence of the detector re-

sponse on the spatial and energy correlations of the jet fragmentation. The use of jet

images has been demonstrated to be effective for a variety of tasks, such as quark-gluon

discrimination, W boson and top tagging, and in jet quenching studies with heavy-ion

collisions [122, 123, 124, 125, 126, 127].

The process used in this study for generating is carried out for each jet in an event

and is as follows:

• First, define a 2D histogram in η-φ space centered around the jet’s η and φ. The

exact binning choice is arbitrary, but it is helpful that the segmentation of the

histogram approximates the segmentation of the detector and that the range of the

axes depend on the radius of the jet clustring algorithm. Here, for R = 0.5 jets, a

range of two with 25 bins is used for both the η and φ dimensions.

• Next, fill the histogram based on the η and φ of the constituent jet particles with

the weight of each entry equal to the particle’s pT.

• Finally, center the image such that the origin (η = 0, φ = 0) corresponds to the

highest pT bin and normalize the image such that the value of the highest pT bin

equals one.

Once completed, each bin of the histogram can be thought of as a “pixel” of an image

with an intensity equal to the weight of that bin. These images encode the particle-level

spatial and energy information of a jet, and an example jet image is shown in Figure A.4.
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Figure A.4: An example jet image.
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Figure A.5: The example jet image from Figure A.4 split by particle type: charged
hadrons (left), neutral hadrons (right), and photons + electrons + muons (right).

Detectors, however, have different responses to different particles, and this informa-

tion can be additionally encoded by splitting the jet images by particle type, where a

separate jet image is constructed for each particle type. Figure A.5 shows the example

jet image now split into three categories: charged hadrons, neutral hadrons, and photons

+ electrons + muons (which is dominated by, and hereafter referred to as, photons). The

resulting three images can then be combined into a single 3-channel jet image, completely

analagous to how a pixel encodes an R, G, and, B value in traditional colored images.

One can see that there is an information gain by comparing the average unnormalized jet

images for each category, as shown in Figure A.6. For example, while subtle, it can be

gleamed just by eye that the center of the average neutral hadron jet image is “brighter”

than that of the average charged hadron image, which indicates that on average neutral

hadrons are higher in pT than are charged hadrons. This information, along with other

much lower-level information, is now made accessible. The idea of “colorizing” jet images

was first presented in Reference [127].
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Figure A.6: Average unnormalized jet image for charged hadrons (left), neutral
hadrons (right), and photons + electron + muons (right).

A.3 Network Architecture

Now that jet images have been constructed that encode the particle-level jet infor-

mation, the correlations between this information and the detector response needs to be

extracted. This can be done by training a deep convolutional neural network (CNN) and

having it additionally “learn” the jet response as a function of jet fragmentation. The

network architecture is composed of two main parts: a set of convolutional layers that are

used as feature extractors and a set of fully-connected layers that build low-level features

from those extracted by the convolutional layer.

Because these jet images are sparse, i.e. only 5-10% of pixels are non-zero, the CNN

architecture deviates from typical image processing heuristics. For example, instead of

standard 3x3 filters, the network uses relatively large filters in early layers in order to

encapsulate more of the image and improve the network training. Then, as the network

reduces the image size through max-pooling layers, the filter sizes are correspondingly

reduced, while increasing the number of filters in each layer to allow the network to learn

many complex low-level features.

The exact network architecture is shown in Figure A.7 and is detailed below:
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• Input layer that accepts 25x25x3 jet images

• Four convolutional layers with tanh activations followed by 2x2 max-pooling layers

– 4 - 9x9 filters

– 8 - 6x6 filters

– 16 - 3x3 filters

– 32 - 1x1 filters

• Flatten and merge jet pT and η features

• Three fully connected layers, each with 32 hidden-units, ReLu activations, and 10%

dropout

• Output layer with linear activation that outputs the predicted jet response

The network is trained using ∼2 million jets and tested on ∼200,000 jets. These jets

are taken from a 2012,
√
s = 8 TeV simulation of QCD events obtained from CMS Open

Data [128] that does not include pileup interactions. Jets in this sample are formed using

the anti-kT clustering algorithm with R = 0.5 and are selected by requiring that they

have pT > 50 GeV. The mean squared error (MSE) loss function is optimized with the

ADAM optimizer (learning rate = 0.001, β1 = 0.9, β2 = 0.999) using stochastic gradient

descent with a batch size of 256.

A.4 Results

The results from the training of this network are presented in Figure A.8 which

shows the true jet response distribution of the test set (blue) and the corresponding

predictions of the pT,η model (green) and the CNN model (orange, denoted pT,η +
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Figure A.7: Schematic of the convolutional neural network architecture.
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Figure A.8: The true jet response distribution (blue), a model of the response trained
only on jet pT and η (green), and a model of the response additionally trained with
jet images (orange).

image). This figure shows that the CNN is able to capture a wider range of the jet

response, corresponding to a ∼10% improvement with respect to the MSE. Thus, one

can see that the jet images not only contain extra relevant information but also that the

CNN is able to extract it. One thing of note is that the CNN seems to model the high-

response tail better than the low-response tail. This behavior is not yet fully understood

but believed to be due to biases in the jet selection of the training set.

One way to see what the CNN is learning is by examining how the response is modeled

as a function of particle-type. Figure A.9 shows the mean response in bins of the fractional

jet energy due to charged hadrons (left), neutral hadrons (middle), and photons (right).

The mean response of the model using only pT and η, depicted in green data points,

is flat as a function of jet energy in each of the plots, which is expected because the

network was not given any information about particle type. The mean response of the
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Figure A.9: The mean jet response as a function of the fractional jet energy from
charged hadrons (left), neutral hadrons (middle), and photons + electrons + muons
(right). The truth-level distributions are shown in blue, while the predictions from
the pT,η model and pT,η + image model are shown in green and orange, respectively.

CNN model (orange), however, is starting to show the same dependencies on particle

type as the true jet response (blue). It is believed that with a larger training set this

modelling will improve further.

At this point, one may wonder how much of this improvement is due to the jet

images versus the network simply having more information. To separate the two effects,

a dense neural network (corresponding to just the fully connected portion of the CNN

network) is trained in which information on the jet fragmentation is included, i.e. the

multiplicity and fractional jet energy of the particle types. This model, shown as the

purple distribution in Figure A.10, is able to explain only roughly half the improvement

of the model trained on jet images, as it improves over the pT,η model by about 5% with
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Figure A.10: The true jet response distribution (blue), model of the response trained
on jet pT, η, and jet images (orange), and a model trained on jet pT, η, and jet
fragmentation information (purple).

respect to the MSE. Thus, it appears that the spatial and energy correlations encoded

in jet images carry additional information important for predicting the jet response.

A.5 Conclusions

While these results are certainly preliminary and much work is left to do, there is

early indication that by encoding the particle-level information of jets through jet images,

one can significantly improve the jet response measurement. This is because these jet

images not only include the individual particle information but also the energy and spatial

correlations of the jet fragmentation. This has the potential to help improve both the

core and the tail of the jet resolution.

There are, however, many steps necessary before this potential can be realized. This
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includes increasing the training set size to ∼10 million jets, as well as including pileup

effects. Additionally, a more detailed investigation is needed to understand what the

network is learning. Lastly, this method will have to be validated in data as the details

of the jet fragmentation may not be well simulated, and in this case, features developed

by training on simulated jets may not correspond to useful features for jets in data. This

can be done through tag-and-probe methods using, for example, photon + jets or QCD

di-jet events.
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[62] Früwirth, R and Waltenberger, Wolfgang and Vanlaer, Pascal, Adaptive vertex
fitting, Tech. Rep. CMS-NOTE-2007-008, CERN, Geneva, Mar, 2007.

[63] CMS Collaboration, Particle-flow reconstruction and global event description with
the cms detector, Journal of Instrumentation 12 (2017), no. 10 P10003.

[64] CMS Collaboration, Particle-flow event reconstruction in CMS and performance
for jets, taus, and MET, Tech. Rep. CMS-PAS-PFT-09-001, CERN, Geneva, Apr,
2009.

[65] CMS Collaboration, Commissioning of the particle-flow event reconstruction with
the first LHC collisions recorded in the CMS detector, Tech. Rep.
CMS-PAS-PFT-10-001, 2010.

147

http://xxx.lanl.gov/abs/hep-ph/9606414
http://xxx.lanl.gov/abs/hep-ph/0406039
http://xxx.lanl.gov/abs/hep-ph/9906209
http://xxx.lanl.gov/abs/1603.0356
http://xxx.lanl.gov/abs/0903.0676
http://xxx.lanl.gov/abs/1302.0004
http://xxx.lanl.gov/abs/1212.4860
http://xxx.lanl.gov/abs/1405.6569


[66] CMS Collaboration, “Cut-based electron identification in Run 2.”
https://twiki.cern.ch/twiki/bin/view/CMS/

CutBasedElectronIdentificationRun2Archive#Spring15_selection_25ns,
May, 2017. Accessed: May 01, 2018.

[67] K. Rehermann and B. Tweedie, Efficient identification of boosted semileptonic top
quarks at the LHC, JHEP 03 (2011) 059, [arXiv:1007.2221].

[68] CMS Collaboration, Performance of electron reconstruction and selection with the
CMS detector in proton-proton collisions at

√
s = 8 TeV, JINST 10 (2015)

P06005, [arXiv:1502.0270].

[69] CMS Collaboration, “Baseline muon selections for Run-II.” https://twiki.

cern.ch/twiki/bin/viewauth/CMS/SWGuideMuonIdRun2#Medium_Muon, April,
2018. Accessed: May 01, 2018.

[70] CMS Collaboration, Performance of CMS muon reconstruction in pp collision
events at

√
s = 7 TeV, JINST 7 (2012) P10002, [arXiv:1206.4071].

[71] S. D. Ellis and D. E. Soper, Successive combination jet algorithm for hadron
collisions, Phys. Rev. D48 (1993) 3160–3166, [hep-ph/9305266].

[72] Y. L. Dokshitzer, G. D. Leder, S. Moretti, and B. R. Webber, Better jet clustering
algorithms, JHEP 08 (1997) 001, [hep-ph/9707323].

[73] M. Cacciari, G. P. Salam, and G. Soyez, The anti-kT jet clustering algorithm,
JHEP 04 (2008) 063, [arXiv:0802.1189].

[74] G. P. Salam, Towards Jetography, Eur. Phys. J. C67 (2010) 637–686,
[arXiv:0906.1833].

[75] M. Cacciari, G. P. Salam, and G. Soyez, FastJet user manual, Eur. Phys. J. C72
(2012) 1896, [arXiv:1111.6097].

[76] M. Cacciari and G. P. Salam, Pileup subtraction using jet areas, Phys. Lett. B659
(2008) 119–126, [arXiv:0707.1378].

[77] CMS Collaboration, “Jet identification for the 13 TeV data Run2016.”
https://twiki.cern.ch/twiki/bin/view/CMS/JetID13TeVRun2016, February,
2018. Accessed: May 01, 2018.

[78] The CMS Collaboration, Determination of jet energy calibration and transverse
momentum resolution in CMS, Journal of Instrumentation 6 (2011), no. 11
P11002.

[79] CMS Collaboration, Identification of b-quark jets with the CMS experiment,
JINST 8 (2013) P04013, [arXiv:1211.4462].

148

https://twiki.cern.ch/twiki/bin/view/CMS/CutBasedElectronIdentificationRun2Archive#Spring15_selection_25ns
https://twiki.cern.ch/twiki/bin/view/CMS/CutBasedElectronIdentificationRun2Archive#Spring15_selection_25ns
http://xxx.lanl.gov/abs/1007.2221
http://xxx.lanl.gov/abs/1502.0270
https://twiki.cern.ch/twiki/bin/viewauth/CMS/SWGuideMuonIdRun2#Medium_Muon
https://twiki.cern.ch/twiki/bin/viewauth/CMS/SWGuideMuonIdRun2#Medium_Muon
http://xxx.lanl.gov/abs/1206.4071
http://xxx.lanl.gov/abs/hep-ph/9305266
http://xxx.lanl.gov/abs/hep-ph/9707323
http://xxx.lanl.gov/abs/0802.1189
http://xxx.lanl.gov/abs/0906.1833
http://xxx.lanl.gov/abs/1111.6097
http://xxx.lanl.gov/abs/0707.1378
https://twiki.cern.ch/twiki/bin/view/CMS/JetID13TeVRun2016
http://xxx.lanl.gov/abs/1211.4462


[80] M. Cacciari and G. P. Salam, Dispelling the N3 myth for the kt jet-finder, Phys.
Lett. B641 (2006) 57–61, [hep-ph/0512210].

[81] ATLAS Collaboration, Search for top-squark pair production in final states with
one lepton, jets, and missing transverse momentum using 36 fb−1 of

√
s =

13 TeV pp collision data with the ATLAS detector, arXiv:1711.1152.

[82] CMS Collaboration, Search for supersymmetry in pp collisions at
√
s = 13 TeV

in the single-lepton final state using the sum of masses of large-radius jets, JHEP
08 (2016) 122, [arXiv:1605.0460].

[83] A. Hook, E. Izaguirre, M. Lisanti, and J. G. Wacker, High multiplicity searches at
the LHC using jet masses, Phys. Rev. D85 (2012) 055029, [arXiv:1202.0558].

[84] T. Cohen, E. Izaguirre, M. Lisanti, and H. K. Lou, Jet substructure by accident,
JHEP 03 (2013) 161, [arXiv:1212.1456].

[85] S. El Hedri, A. Hook, M. Jankowiak, and J. G. Wacker, Learning how to count: a
high multiplicity search for the LHC, JHEP 08 (2013) 136, [arXiv:1302.1870].

[86] ATLAS Collaboration, Search for massive supersymmetric particles decaying to
many jets using the ATLAS detector in pp collisions at

√
s = 8 TeV, Phys. Rev.

D91 (2015), no. 11 112016, [arXiv:1502.0568]. [Erratum: Phys.
Rev.D93,no.3,039901(2016)].

[87] ATLAS Collaboration, Search for new phenomena in final states with large jet
multiplicities and missing transverse momentum at

√
s = 8 TeV proton-proton

collisions using the ATLAS experiment, JHEP 10 (2013) 130, [arXiv:1308.1841].
[Erratum: JHEP01,109(2014)].

[88] CMS Collaboration, Search for supersymmetry in pp collisions at
√
s = 13 TeV

in the single-lepton final state using the sum of masses of large-radius jets, Phys.
Rev. Lett. 119 (2017), no. 15 151802, [arXiv:1705.0467].

[89] CMS Collaboration, Commissioning the performance of key observables used in
SUSY searches with the first 13 TeV data, .

[90] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S.
Shao, T. Stelzer, P. Torrielli, and M. Zaro, The automated computation of
tree-level and next-to-leading order differential cross sections, and their matching
to parton shower simulations, JHEP 07 (2014) 079, [arXiv:1405.0301].

[91] J. Alwall et. al., Comparative study of various algorithms for the merging of
parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53
(2008) 473, [arXiv:0706.2569].

149

http://xxx.lanl.gov/abs/hep-ph/0512210
http://xxx.lanl.gov/abs/1711.1152
http://xxx.lanl.gov/abs/1605.0460
http://xxx.lanl.gov/abs/1202.0558
http://xxx.lanl.gov/abs/1212.1456
http://xxx.lanl.gov/abs/1302.1870
http://xxx.lanl.gov/abs/1502.0568
http://xxx.lanl.gov/abs/1308.1841
http://xxx.lanl.gov/abs/1705.0467
http://xxx.lanl.gov/abs/1405.0301
http://xxx.lanl.gov/abs/0706.2569


[92] R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12
(2012) 061, [arXiv:1209.6215].

[93] P. Nason, A new method for combining NLO QCD with shower Monte Carlo
algorithms, JHEP 11 (2004) 040, [hep-ph/0409146].

[94] S. Frixione, P. Nason, and C. Oleari, Matching NLO QCD computations with
parton shower simulations: the POWHEG method, JHEP 11 (2007) 070,
[arXiv:0709.2092].

[95] S. Alioli, P. Nason, C. Oleari, and E. Re, A general framework for implementing
NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP
06 (2010) 043, [arXiv:1002.2581].

[96] NNPDF Collaboration, Parton distributions for the LHC Run II, JHEP 04
(2015) 040, [arXiv:1410.8849].
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