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Abstract of the Dissertation

Learning Robust Representations for Low-resource Information

Extraction

by

Yichao Zhou

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Wei Wang, Chair

Information extraction (IE) plays a significant role in automating the knowledge acquisition

process from unstructured or semi-structured textual sources. Named entity recognition and

relation extraction are the major tasks of IE discussed in this thesis. Traditional IE systems

rely on high-quality datasets of large scale to learn the semantic and structural relationship

between the observations and labels while such datasets are rare especially in the area of

low-resource language processing (e.g. figurative language processing and clinical narrative

curation). This leads to the problems of inadequate supervision and model over-fitting. In

this thesis, we work on the low-resource IE algorithms and applications. We believe incor-

porating the supervision from domain-specific auxiliary knowledge and learning transferable

representations can mitigate the deficiency of low-resource IE. Specifically, we explore pre-

training domain-specific deep language models to acquire informative word/sentence embed-

dings to curate clinical narratives. We experiment with multi-modal learning techniques to

recognize humor and to recommend keywords for advertisement designers. We also extract

attributes of interest from the semi-structured web data by building transferable knowledge

representations across different websites. For more applications of the low-resource IE, we

build a COVID-19 surveillance system by inspecting users’ daily social media data. Ex-

tensive experiments prove that our algorithms and systems outperform the state-of-the-art

approaches and are of impressive interpretability as well.
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CHAPTER 1

Introduction

1.1 Motivation

Imagine that you are a data analyst with a health organization that recently forecasts the

pandemic trends and determines the essential risk factors that may aggravate the infection of

Coronavirus. You will at least need to know some prevailing topics that people are discussing

on the Internet related to the coming events, famous influencers, or social phenomena. For-

tunately, these can be found in the enormous social media data like this one:

Runners of LA marathon were advised to wash their hands before the race and not to

shake hands with other participants or the public. Hand sanitizer was also available for

runners along the course. #LAMarathon #StaySafe March.14.2020 Los Angeles

where we recognized a coming event LA marathon and some activities such as wash hands

and shake hands which may influence the transmission of the virus in the area of Los Angeles.

Imagine that you are a cardiovascular doctor looking for related clinical case reports for

reference. Specifically, those case reports describing patients who were admitted into the

hospital because of fever and cough and then detected tumor cells in a Magnetic Resonance

Imaging test are exactly what you are interested in. Ideally, the doctor can quickly find

the reference with access to a powerful database recording the chronological diagnosis and

treatment of every patient. To build such a magical database, we need to acquire the dis-

eases, diagnostic procedures, laboratory tests, etc., from the large scale of customized clinical

reports and as well identify the temporal relationships among these significant entities.
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The patient is a 47-year-old women with long-term use of glucocorticoids. She was

confirmed with COVID-19 by tested positive of antibody and then admitted to the hospital.

The above example demonstrates the information extraction from clinical narratives. In

this task, entities (e.g. confirmed with COVID-19, positive of antibody, admitted to the

hospital) are extracted and temporal relations (positive of antibody, BEFORE, admitted to

the hospital) is identified.

We summarize the aforementioned knowledge acquisition processes as Information Ex-

traction (IE) – extracting information from unstructured or semi-structured textual sources

to enable finding entities and relationships as well as classifying and storing them in a

database. IE is essential for increasing the accessibility of knowledge through search engines,

conversational AI systems, and medical research tools.

Traditional IE systems rely on a large amount of annotated datasets to build complex

but straightforward feature sets by making use of the linguistic attributes such as Part-of-

speech (POS) tags of words and syntactic structures of sentences to train supervised machine

learning models. The models are used for capturing and memorizing the hidden relationships

between the annotated labels and these features. However, we can rarely find datasets

of large size or high quality when conducting information extraction tasks in some highly

specialized domains such as bioinformatics, clinical science, and social media. It is not always

affordable and efficient to clean, annotate, and curate the data in these domains. Extracting

knowledge from some languages that are used by only a few people nowadays or from special

types of languages such as figurative language (e.g. expressing humor, irony, metaphor,

etc.) is an extremely important task but also of dramatic challenge. We summarize the

information extraction under these conditions as Low-resource Information Extraction

and in this thesis, we explore robust and highly interpretable methodologies to overcome

the aforementioned problems and aim to build end-to-end information extraction systems

for real applications.
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1.2 Thesis Statement

This thesis demonstrates that learning with domain-specific auxiliary supervision and word

knowledge can overcome the challenges caused by the low-resource circumstances in the

information extraction tasks. Moreover, leveraging transfer learning techniques (e.g. few-

shot learning, multi-modal learning) to achieve powerful word and sentence representations

that incorporate out-of-domain knowledge can also help build generalizable and interpretable

information extraction models.

1.3 Contributions

This dissertation advances three approaches to learn semantically and syntactically powerful

representations for information extraction tasks: (1) pre-training domain-specific contextu-

alized language models to facilitate down-streaming information extraction applications; (2)

learning robust representations by incorporating auxiliary supervision such as the structural

relationships among knowledge; (3) learning robust representations with transfer learning

techniques such as few-shot learning and multi-modal learning. We detail the contributions

as follows.

The first research issue comes from the fact that static language models fail to provide

precise word embeddings when the words have multiple semantic meanings in different con-

texts. Pre-training an informative contextualized language model provides powerful word

and sentence embeddings to facilitate the information extraction processes including named

entity recognition and relation extraction. In this thesis, we collect millions of clinical case

reports and all COVID-19 relevant text corpus including scholarly papers and social me-

dia data to pre-train three deep language models, Clinical-ELMo, Clinical-Flair and

Corona-Bert. We release the models to facilitate further researches in the biomedical com-

munity. We also present experimental results to show the effectiveness of domain-specific

language models, compared to the static embeddings and languages models learned on a
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general-domain corpus.

The second research direction addresses how to leverage auxiliary supervision to learn

robust representations for information extraction tasks. To take figure 2.1 as an example,

useful dependency structures exist among multiple temporal relationships, i.e. given the facts

that event (a) happens before event (b) and event (b) happens before event (d), we can infer

that event (a) also happens before event (d). The dependency structures like this example are

the key enabler of classifying the temporal relations. We propose to leverage probabilistic

soft logic (PSL) rules to model this auxiliary knowledge. Specifically, we summarize the

common transitivity and symmetric dependency patterns of temporal relations as PSL rules

and penalize the temporal relation instances that violate any of those rules in the training

stage. Different from the traditional approaches using integer linear programming to solve the

hard constraints, our solution requires no off-the-shelf solver and conducts the experiments

with linear time complexity.

The third research direction focuses on applying transfer learning techniques to learn

robust representations for information extraction tasks. We experiment with this approach

on three tasks as follows.

• In the task of extracting attributes from semi-structured web documents, we aim to

recognize attributes of interest like {title, author, ISBN13, publisher} of a book or {post

date, location, company} of a job description from the web pages built with HTML files

and DOM trees. We explore two novel few-shot settings of attribution extraction: (i)

given a few labeled seed websites from a given domain and we extract the attributes

from unseen websites from the same domain; (ii) given a few labeled seed websites

from a given domain (say A) and addition labeled websites from a different domain

(say B) and we extract attributes from unseen websites in domain A. To tackle the two

challenging few-shot scenarios, we learn contextual representations for DOM tree nodes

in the web page by leveraging the local tree structures. Extensive experiments show

our approach outperforms the state-of-the-art methods largely and the representations

are proven robust and transferable within the same domain or across different domains.
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• In another work, given the heterogeneous data corpus including ad images and texts

associated with the ads, we aim to design a theme (keyphrase) recommendation system

for ad creative strategists. We build a cross-modality encoder to train visual-linguistic

representations for understanding the relationships between the images and texts. In

the experiments, the cross-modal representations show better performance compared

to separate image and text representations.

• In the pun detection and location tasks, we aim to detect whether puns exist in a

given sentence and which words are the puns. Traditional methods employ word sense

disambiguation techniques to identify the equitable intention of words in utterances or

make use of external knowledge bases such as WordNet to determining word senses of

pun words. However, these approaches cannot tackle heterogeneous puns with distinct

word spellings and the knowledge bases often incorporate very limited words. We

propose a pronunciation-attentive contextualized pun recognition model to build multi-

modal representations for pun detection and location. After considering the contexts

and the phonological properties of words, the embeddings can be more beneficial to

pun recognition.

1.4 Dissertation Outline

The rest of this dissertation is arranged as follows. Chapter 2 summarizes the related works

for some basic tasks of information extraction. chapter 3 describes an end-to-end pipeline

of clinical information extraction and demos a clinical case report system. We discuss the

effectiveness of utilizing auxiliary knowledge to enhance the temporal relation extraction

model. We also show the improvement from our pre-trained contextualized language model.

Chapter 4 presents our work on multi-modal representation learning approaches to solve

the pun recognition and theme recommendation tasks. Chapter 5 introduces a transferable

framework to tackle two few-shot attribute extraction tasks. A simple and effective contex-

tual node representation learning method is proposed. Chapter 6 propose an application
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of information extraction: forecasting pandemic trends and detecting risk factors based on

the named entities and relationships extracted from the social media corpus. Chapter 7

concludes the thesis with discussions and an outlook for future work.

1.5 Other Publications

During my PhD study, I have published other research works related to the topics of rep-

resentation learning and information extraction in various domains. I briefly overview the

work with reference. These projects either propose state-of-the-art methods to improve the

performance of NLP tasks or build end-to-end systems with advanced information extraction

techniques.

To extract event temporal relations and address the problem of biased predictions derived

from a limited amount of training data, [99] proposes a framework that enhances deep neural

network with distributional constraints constructed by probabilistic domain knowledge.

Adversarial attacks against machine learning models have threatened various real-world

applications such as spam filtering and sentiment analysis. [272] builds a novel framework

to recognize and adjust malicious perturbations, thereby blocking adversarial attacks.

In the ads targeting task, the paths of online users towards a purchase event (conver-

sion) can be very complex but significant. [276] introduces novel attention mechanisms to

automatically assign users and activities to different funnel stages. In another work for ad

creative refinement task, [182] learns robust multi-modal representations with visual and

textual inputs to recommend keyphrases for new ad text and to assign tags for selecting new

ad images.

To aid navigation of the analytical tools fragmented across the web, [238, 254] create a

novel information extraction-enhanced platform, AZTEC, that empowers users to simulta-

neously search a diverse array of digital resources including databases, standalone software,

web services, publications, and large libraries composed of many interrelated functions.
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CHAPTER 2

Background

This chapter provides background information necessary for understanding the rest of this

dissertation. This chapter is organized as follows:

Section 2.1 introduces some information extraction tasks including extraction from nar-

rative text and extraction from semi-structured documents. Specifically, I discuss a standard

knowledge extraction pipeline from narrative text which is composed of the named entity

recognition and the relation extraction tasks. I also overview the attribute extraction task in

the semi-structured extraction problem. Section 2.2 introduces the basic machine learning

concepts and models for information extraction tasks including statistic models and deep

neural networks. I also discuss the challenges of information extraction under low-resource

circumstances and advance strategies to tackle the problem including transfer learning tech-

niques and deep language models.

2.1 Information Extraction

An information extraction system responds to a user’s information need to identify a subset

of information within a document, which is not necessary a summary or gist of the contents of

the document. Rather it corresponds to predefined generic types of information of interest

and represents specific instances found in the text [192]. For example, the user may be

interested in identifying and databasing all the disease-related expressions from doctors’

notes to build a structural ontology. The user may want to collect all the book names

and the publishers from several book websites. We regard the first scenario as information
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extraction from unstructured narrative while the second as extraction from semi-structured

documents considering the HTML formats of web pages.

2.1.1 Extraction from Unstructured Narratives

Figure 2.1: An example with extracted named entities.

Named Entity Recognition is one of the important tasks of IE used to extract (i) domain-

independent entities such as organization, person, and location; (ii) domain-specific entities

such as problem, test, and treatment in the clinical domain [9]. The task is formulated as

classifying words or phrases into pre-characterized classes. Named entity recognition usually

serves as the first step while an essential step in the information extraction pipeline. In

this task, we aim to detect the boundaries of entities in the sentences and to simultaneously

recognize the categories of these entities. Figure 2.1 illustrates identifying the entities of

interest from an unstructured narrative. Entities can either be a word (e.g. 48-year-old and

COVID-19 ) or phrases composed of a couple of words (e.g. confirmed with COVID-19 ).

The nested recognition patterns exist in the results (e.g. COVID-19 and confirmed with

COVID-19 ). The named entity recognition tasks can be applied in different domains such

as recognizing the puns in the figurative language, detecting the adversarial examples from

attacked data in cybersecurity, and building knowledge bases based on clinical entities and

events.

Relation Extraction is the following subtask in the information extraction pipeline, ex-

tracting substantial relationships between the extracted named entities. Open relation ex-

traction extracts open-domain relation triples from the sentence, representing a subject, a

relation, and the object of the relation. As shown in Figure 2.2, (patient, ADMITTED

TO, hospital) and (patient, CONFIRMED WITH, COVID-19) are two typical examples of
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Figure 2.2: An example with identified relations.

open relation extraction. On the other hand, closed relation extraction pre-defines a re-

lation set which not necessarily appear in the sentence. (48-year-old, MODIFY, patient)

in Figure 2.1 is an example of closed relation extraction and MODIFY defines an attribu-

tive relationship between a subject and its property. In this thesis, we mainly discuss a

special type of closed relation extraction, the temporal relation extraction, determining the

chronological relationships between event objects. In this example, we identify two temporal

relationships: (confirmed with COVID-19, OVERLAP, positive of antibody) and (positive of

antibody, BEFORE, admitted to the hospital). Note that hidden dependencies may exist in

different temporal relationships, thus we do not need to identify the relationship between

any two event objects. In this case, the relation entry (confirmed with COVID-19, BEFORE,

admitted to the hospital) can be inferred from the previous two relation entries.

2.1.2 Extraction from Semi-structured Documents

Web information extraction processes a vast amount of semi-structured content from the web

and has drawn a lot of attention from the data mining research community [53, 153, 80].

Different from the narrative texts, the web page is rendered to display in a browser-based

on the source data, a Document Object Model (DOM) tree [94]. Four broad categories of

web information extraction tasks can be summarized. They are attribute (entity) extraction,

relation extraction, composite extraction, and application-driven extraction. Attribute ex-

traction targets to identify named entity mentions such as book price, phone number, movie

title from web documents. Though this task is intuitive to describe, the high-quality corpus

annotation requires time-consuming human-crafted rules and dictionaries [148, 102, 46, 197].
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Relation extraction associates pairs of named entities and identifies a pre-defined relation-

ship between them. Composite extraction aims to extract more complex concepts such as

reviews, opinions, and sentiment mentions [58, 227, 223], while application-driven extraction

includes a broad spectrum of application scenarios such as web representation learning, PDF

information extraction using OCR techniques, anomaly detection of web-based attacks and

so on [247, 168, 127].

2.2 Machine Learning for Information Extraction

In this section, we explain some common machine learning strategies for two important

information extraction tasks: named entity recognition and relation extraction. Overall, a

machine learning algorithm aims to learn a function f(x, θ) that maps an input space X to

an output space Y. The mapping functions are usually parameterized with weights θ. In the

supervised learning scenario, given labeled dataset D = (x,y), we minimize the empirical risk

J(D) = 1
N

∑N
i=1 L(yi, f(xi)), to find the parameters θ∗ = argminθ J(D) with optimization

techniques such as stochastic gradient descent [203] and Adam stochastic optimization [123].

In the inference stage, output variables can be assigned with maximum a posteriori (MAP)

inference which computes y∗ = argmaxS(x,y, θ), where S is a scoring function.

2.2.1 Task Formulation

Figure 2.3: An example of extracted entities with BIO tagging format.

Named Entity Recognition is formulated into a sequence tagging machine learning task

nowadays, i.e. given a sequence of words, the model assigns a label to each word according

the word-level and sentence-level features. Two tagging policies are prevailing: (1) BIO
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tagging [275] where B denotes the beginning of an entity, I representing inside an entity

and O means outside an entity; (2) BIOES tagging where E additionally marks the end of

an entity and S denotes the entity is a single word. Figure 2.3 shows one example of BIO

tagging format. The single-word entity 48-year-old is tagged with B-age while the middle

word with of phrasal entity confirmed with COVID-19 is tagged with I-activity. Without

loss of generality, we make use of the BIO tagging policy in this thesis.

Figure 2.4: An example of relation extraction formulation.

Relation Extraction∗ is formulated into a sentence classification task, i.e. given a sequence

of words and special marks of two entities in the sentence, the model assign a label to the

sentence. There are multiple ways of marking the entities in the sentence. We adopt the

method shown in Figure 2.4 by appending XML tags around the entities [279]. Note that the

marking order of two entities, i.e. the order of <e1> and <e2>, matters in the classification

such as (48-year-old, MODIFY, patient). Some relations like OVERLAP is bidirectional,

thus we may swap <e1> and <e2> in the second example. [269] mark the entities using

position embeddings, which is an alternative of XML tags.

2.2.2 Prevailing Learning Algorithms

Hidden Markov Model (HMM) [207] and Conditional Random Fields (CRF) [133]

are prevailing statistical methods for the boundary detection and named entity recogni-

tion tasks. HMM provides a joint distribution over the sentence/tags with an assumption

of dependency between adjacent tags. Parameters of the HMM model include an emis-

sion matrix A, where P (Xt = k|Yt = j) = Aj,k, ∀t, k, a transmission matrix, B, where

∗In this thesis, we only discuss the closed relation extraction problem.
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P (Xt = k|Yt−1 = j) = Bj,k,∀t, k, and a initial probability, C, where P (Y1 = k),∀k. HMM

models the joint distribution of the sequence by

y0 = START, p(x,y|y0) =
T∏
t=1

p(xt|yt)p(yt|yt−1) =
T∏
t=1

Ayt,xtByt−1,yt . (2.1)

To learn the parameters in HMM, Maximum Likelihood Estimation (MLE) is used to esti-

mate the matrices Â, B̂, Ĉ by

Â, B̂, Ĉ = argmax
A,B,C

N∑
i=1

logp(xi, yi|A,B,C). (2.2)

In the inference stage, the marginal inference such as the Forward-Backward Algorithm [146]

is applied to compute the marginal distribution for a hidden state, given a sequence of

observations while the MAP inference such as Viterbi Algorithm [85] is used to find the

most-likely sequence of hidden states.

However, HMM models capture the dependencies between each state and only its corre-

sponding observation and the mismatch between the learning objective function and predic-

tion objective function leads to sub-optimal performances, i.e., HMM, as a generative model,

learns the joint distribution of states and observations P (X, Y ) while in the prediction task,

we seek for the conditional probability P (Y |X). The linear-chain CRF model is similar to

an HMM, except that CRF learns a discriminative model and its factors are not necessarily

probability distributions,

p(y|x) =
1

Z(x)

K∏
k=1

φem(yk, xk)φtr(yk, yk−1) =
1

Z(x)

K∏
k=1

exp(θ · fem(yk, xk))exp(θ · ftr(yk, yk−1)).

(2.3)

The Gradient-based Algorithm can be employed to learn the parameters in the CRF model

and similarly, the Forward-Backward Algorithm and Viterbi Algorithm are required to com-

pute the partition function and the highest-probability output sequence.

Recurrent Neural Networks [221] is a type of artificial neural network which uses se-

quential data or time-series data. This machine learning algorithm is commonly used for

ordinal or temporal problems, such as named entity recognition and relation extraction.
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Figure 2.5: A long short term memory unit (⊗:element-wise multiplication, ∼:activation

function).

RNN is capable of processing variable-length sequences of inputs using its internal memory

unit. One problem of the RNN model is known as gradient exploding and vanishing. The

gradient may either grow fast or decay to zero if the propagation sequence is too long, which

may increase the training difficulty. To control the gradient issue and choose useful infor-

mation to transit, the long short term memory (LSTM) [105] is taken into consideration for

optimizing the model. LSTM was introduced as a solution to the vanishing and exploding

gradient problem. Each LSTM cell transit unit state ht and cell state ct among hidden

units. As depicted in Figure 2.5, LSTM blocks contain three Gates implemented by using

the logistic function to compute a value between 0 and 1, which are intelligent in controlling

the information flow into or out of memory. In equation 1-3, when processing the tth word

of a sequence, Input Gate it controls the extent to which a new value flows into the memory;

Forget Gate ft controls the extent to which a value remains in memory; And Output Gate ot

controls the extent to which the value in memory is used to compute the output activation

of the block. A candidate value gt is computed for the state of memory cells by equation 2.7.

σ denotes a Sigmoid function.

it = σ(Wi · xt + Ui · ht−1 + bi) (2.4)
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ot = σ(Wo · xt + Uo · ht−1 + bo) (2.5)

ft = σ(Wf · xt + Uf · ht−1 + bf ) (2.6)

gt = tanh(Wg · xt + Ug · ht−1 + bg) (2.7)

ct = ft ⊗ ct−1 + it ⊗ gt (2.8)

ht = ot ⊗ tanh(ct) (2.9)

Current cell state ct is the combination of previous cell state ct−1 and candidate value gt

weighted by Forget Gate ft and Input Gate it (Equation 2.8). Final output of this hidden

unit is combined by Output Gate ot and cell state ct through an activation (Equation 2.9).

As an alternative, the Gated Recurrent Unit (GRU) [63] has a slightly simpler archi-

tecture. Empirically, GRU is proven more computationally efficient than LSTM while can

achieve competitive performances for the machine learning tasks [64]. Equation 2.10 to 2.13

define the information flow over a GRU network.

rt = σ(Wr · xt + Ur · ht−1) (2.10)

zt = σ(Wz · xt + Uz · ht−1) (2.11)

ht = tanh(Wh · xt + Uh · ht−1(rt ⊗ ht−1)) (2.12)

ht = zt ⊗ ht−1 + (1− zt)⊗ ht (2.13)

where rt, zt denotes the Reset Gate and Update Gate, respectively.

2.2.3 Learning under Low-resource Conditions

Deep Language Model. Word embeddings are fixed-length, dense, and distributed repre-

sentations for words [12], mainly learned with static language models which focus on predict-

ing the next word given the previous words. Word embeddings are capable of encoding accu-

rate syntactic and semantic word properties [176, 199], of which Word2Vec and GloVe are the

most influential models. Either neural networks or word-context matrices are leveraged to
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encode the relationships between words and their contexts. However, it is sub-optimal to as-

sign each word with one fixed embedding vector and static language models fail to adjust the

word embeddings according to different contexts. Contextual embeddings [71, 10, 201], such

as ELMo, BERT, and Flair move beyond the static word representations and achieve break-

ing improvements on a wide range of natural language processing and data mining tasks [157].

The ELMo model extracts context-dependent representations with a bidirectional LSTM-

based language model, i.e. a forward LSTM and a backward LSTM are designed to encode

both left and right contexts, respectively. Besides, Flair learns contextual string embeddings

which are pre-trained without any explicit notion of words and are extremely useful in some

character-level tasks such as sequence labeling. Different from building an auto-regressive

language model like ELMo and Flair, BERT proposes a masked language modeling objective

together with Word-piece tokenization [260] to formulate the model into a transformer-based

auto-encoder [248]. BERT also uses the next-sentence-prediction objective to improve the

understanding over neighboring sentences, which is essential in the question answering and

summarizing tasks. Overall, the contextualized embeddings pre-trained from the deep lan-

guage models assign each word a representation based on the context, thereby encoding the

knowledge across languages. We believe pre-training domain-specific deep language models

can facilitate down-streaming information extraction applications under low-resource condi-

tions. Recently, researchers pre-trained a number of deep language models using biomedical

literature corpus [138, 275, 31], financial service corpus [18], multi-lingual corpus [147], and

so on.

Multi-modal Learning. Modality refers to how something happens or is experienced and

obviously, our experience of the world is multi-modal, i.e. we can see the objects, read

the texts, hear the sounds, taste the favors, etc. [28]. The purpose of multi-modal learning

is to build machine learning models that are capable of gathering and interpreting signals

from various modalities together. Usually, we adopt multi-modal learning to learn cross-

modality representations to help the modality with less annotated data. Recently, multi-

modal learning is drawing the attention of NLP researchers. For instance, image data are
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often associated with text explanations where keywords in the text describe the objects in the

image. Images are also leveraged to enhance the expression of ideas in an article. In practice,

it is challenging to (1) highlight the complementarity and synchrony between modalities; (2)

translate data from one mobility to another or transfer the knowledge between modalities; (3)

recognize the correspondence between elements from different modalities; and (4) combine

multi-modal signals for regression or classification tasks [184]. [237, 114] combine multi-

modal embeddings to solve the visual question answering tasks with deep neural networks

such as LSTM, modular neural networks, and transformer. [216, 109, 229] improve the

performance of machine translation by jointly learning the cross-modality representations

from linguistic, acoustic, and visual signals. We believe applying multi-modal learning to

tackle the problems in the area of low-resource information extraction is very promising

considering cross-modality signals are capable of enhancing the representations learned from

the limited mono-modal annotated dataset.

Few-shot Learning. To tackle the problem that information extraction models are ham-

pered when the datasets are small, few-shot learning is proposed as another promising strat-

egy. The few-shot learning is explained as generalizing from a few examples, i.e., using

prior knowledge to rapidly generalize to new tasks containing only a few samples with la-

bels [267, 107]. [257] summarized three categories of few-shot learning methods which are (1)

prior knowledge enhanced supervised learning; (2) prior knowledge-based hypothesis space

reduction; and (3) prior knowledge engaged optimal hypothesis searching. Three categories

are in the perspectives of data, model, and algorithm, respectively. Specifically, augment-

ing data by transforming samples from the training set, other labeled or unlabeled datasets

is the common strategy of data-perspective few-shot learning [132, 243, 78]. The model-

perspective few-shot learning covers a wide range of advanced approaches such as parameter

sharing, learning hybrid embeddings, and learning with external memory [14, 32, 234]. In

the algorithm-perspective, researchers refine existing or meta-learned parameters or learns

task-specific optimizers [16, 82, 106].
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CHAPTER 3

Clinical Information Extraction

Figure 3.1: The pipeline of clinical information extraction.

Clinical case reports (CCRs) are written descriptions of the unique aspects of a particular

clinical case, playing an essential role in sharing clinical experiences about atypical disease

phenotypes and new therapies. In this chapter, we introduce our work on building a clinical

information extraction system for extracting, indexing, and querying the contents of CCRs.

We start by building a comprehensive typing system to facilitate clinical experts to annotate

up-to-date case reports and to create new entity and relation types in Section 3.1. We then

pre-train two clinical language models to enhance the named entity recognition model for

automatically extracting entities of interest from the case reports in Section 3.2. Further-

more, we focus on the temporal relation extraction task, i.e. identifying the chronological

orders over the extracted entities and events in Section 3.3. Last but not least in Section 3.4,

we demo our CREATe search engine which is an end-to-end system incorporating algorithms

for extracting, indexing, and querying the contents of CCRs.
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3.1 A Comprehensive Clinical Typing System for Information Ex-

traction

3.1.1 Motivation

A diverse set of text documents embodies our expanding knowledge of biological phenomena,

including human health and disease. Every type of observation, from the semi-structured

results in experimental studies to the detailed narratives in CCRs or electronic health records

(EHR), is growing in volume, variety, and complexity. Any single human reader must

therefore perform extensive labor when using clinical narratives to comprehensively answer

biomedical questions, especially when comparing observations across medical subdomains.

The structured data yielded by foundational advances in clinical information extraction

(CIE) is of great assistance in addressing this challenge: they can consistently identify con-

cepts and events within specific domains and tasks. However, interpreting clinical text with

the greatest accuracy depends upon (sub)domain knowledge: e.g., the word “elongated” may

describe different types of clinically concerning but surgically correctable deformities, such

as an elongated tricuspid valve leaflet in the heart or an elongated styloid process in the skull

(i.e., Eagle’s syndrome [27]). Identification of specialized terminology with highly contextual

semantics within biological and clinical text remains an open challenge for CIE methods.

Recognizing the need for resources supporting adaptation of CIE to clinical narratives,

we seek to standardize the entity, event, and relation types within clinical text with a high

degree of granularity. We therefore sought to design a typing system for clinical text capable

of reflecting the diverse vocabulary and phenomena described within a clinical document

without requiring direct connections to curated concepts or terminology. We believe this

approach is ideal for designing practical CIE systems as it primarily reflects the semantics of

terminology as it is used rather than an exact correspondence between a set of vocabulary

and their expected meaning. A context-driven approach is also intuitive for clinical domain

experts.
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3.1.2 Methods

3.1.2.1 General design of the ACROBAT clinical typing system

ACROBAT is appropriate for manual annotation, automated labeling (i.e., named entity recog-

nition and relation extraction), or a combination of both. For each document in a corpus,

ACROBAT should be used to label all words and phrases in the document corresponding to

one or more of the types. We make a distinction between events and entities: events occur

during specific points in time (i.e., they may be arranged into a timeline) while entities are

other meaningful text spans, often those modifying or describing properties of events. As a

general guideline, the smallest span describing a single entity or event is labeled: for exam-

ple, in the phrase massive heart attack, the labeled event is heart attack, as “heart attack”

refers to a specific condition and attack alone is too general. The term massive describes is

an entity in its own right; the term is a modifier of the Severity type. Words and phrases

are labeled even if they do not specifically discuss a patient, e.g., if the authors discuss

hypothetical situations or a patient’s family members. This increases the total number of

annotated instances and therefore the total pool of potential training examples. Labels may

also overlap where appropriate or when multiple labels apply.

ACROBAT incorporates relations for semantic purposes, coreference resolution, and tem-

poral order. Semantic relations cover all instances in which an entity modifies or results

from another event or entity in any manner. For coreferences, an event/entity and any of its

coreferences within a single document are linked through pairwise relations. Temporal order

defines events within a continuous time series (e.g., event 1 → event 2 → event 3 ). Direc-

tionality is meaningful in ACROBAT and all relations (with the exception of Identity relations)

are directed. ACROBAT also supports event properties for indication of changes over time or

event negation. In cases where an abbreviation is present (e.g., optical coherence tomogra-

phy (OCT)), the full name (optical coherence tomography and the abbreviation (OCT ) are

labeled as separate events and connected with an Identity relation.

Events. Events include words or phrases indicating a discrete activity or occurrence in a
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document. In this section, we describe each event category, delineate annotation rules, and

provide examples.

Properties. Properties are attributes of a single event. All events may include values for

neither, one, or both properties.

Entities. Entities include words or phrases that do not completely constitute a clinical

event on their own but generally modify an event or subject.

Relations. Relations are connections between entities or events. There are two general cat-

egories of relations: those used to express the temporal order of events (BEFORE, AFTER,

and OVERLAP), and those used to define more specific relationships.

Coreferences. Rather than denoting specific events, Coreferences label words or phrases

referring to previously defined events or entities (i.e., linguistic anaphora). Annotating a

coreference therefore defines a relation but takes the form of an event in our system to

accomodate labeling of the corresponding text spans.

3.1.2.2 Annotation of clinical case reports

In order to prepare a deeply annotated resource of clinical text, we sought to annotate

clinical case reports using the schema described above. This work follows from creation

of our Metadata Acquired from Clinical Case Reports, or MACCR, set [49]: each source

document in the new set corresponds to a single entry, and therefore a collection of higher-

level metadata, in our MACCR dataset. We therefore refer to our set of deeply annotated

CCRs as MACCROBAT2018. For each of 200 documents, we obtained open-access text from

PubMed Central, limiting the text portion to that comprising the clinical case (i.e., we

did not include any other sections including introduction, discussion, figure/table legends,

or supplementary materials). The document count was chosen based on manageability;

subsequent releases will add more annotated documents. Each document in the set is named

based on the respective PubMed identifier of their source document.

All documents were annotated by at least one of six annotators. All annotators had
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Figure 3.2: Example visualization of a selection of an ACROBAT annotated document.

previous experience reading biomedical and clinical language. Annotations were checked for

format and type consistency upon completion. Annotation was performed through an imple-

mentation of the brat tool [231]; all annotation visualizations presented in this manuscript

were created with brat. An example of annotation of a CCR is provided in Figure 3.2.

3.1.3 Results

The MACCROBAT2018 is intended to serve multiple purposes. This collection of annotations

serves as both a demonstration of the ACROBAT scheme: each document is annotated with

all appropriate event and entity types as well as relations, thereby providing numerous

contextual examples of the typing scheme’s implementation. The set is also ideal for train-

ing/testing CIE methods as it covers a variety of disease presentations and corresponding
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vocabulary: the 200 documents in the set contain an average of 22.7 sentences, or 4,541 sen-

tences in total, with sentences containing an average of 21.6 single-word tokens and 98,038

tokens in total. Because the text is annotated with multiple label and relation types, it may

be used for the initial training of joint models (e.g., a tagger for both diagnostic procedure

events and their results).

The MACCROBAT2018 set contains a total of 3,652 sentences and 59,164 annotations of any

kind, including event/entity labels and relations.∗ Out of all categories and all 200 CCRs,

Diagnostic procedure events occur most frequently, with an average of more than 45 occur-

rences per document. The set also includes more than 6,700 annotations of signs/symptoms

and more than 3,500 lab values.

As compared to other annotated corpora in biomedicine, MACCROBAT includes far

more entity and relation types, as well as explicitly defined types for integration with knowl-

edgebases. Sets with similar or greater numbers of coreferences (e.g., the GENIA [122], 2011

i2b2 Coreference Challenge [244], ODIE [217], or CRAFT [66] corpora) have been completed

but do not exclusively focus on clinical language and, in some cases, are freely available

in their entirety. As coreferences are not the primary focus of our annotations, it may be

appropriate to use our set along with other corpora for applications in training coreference

resolution models.

3.1.4 Discussion

A consistent set of concept types is a valuable resource for clinical informatics in both

philosophy and practice. We see ACROBAT and MACCROBAT2018 as a way to manually or com-

putationally enforce structure upon biomedical language, and in doing so, produce resources

for training and developing systems for better understanding the concepts within clinical

documents and publications.

∗The MACCROBAT2018 set can be downloaded at Figshare: https://doi.org/10.6084/m9.figshare.c.

4652765.

22



3.2 Clinical Named Entity Recognition using Contextualized To-

ken Representations

3.2.1 Motivation

Clinical named entity recognition (CNER) is an important text mining task in the domain

of Clinical Information Extraction (CIE) [275]. It aims to identify clinical entities and events

from the case reports. For example, in the sentence “CT of the maxillofacial area showed

no facial bone fracture.” “CT of the maxillofacial area” is a “diagnostic procedure” and

“facial bone fracture” belongs to the “disease and disorder” category. As with documents

describing experimental procedures and results—often the focus of general biomedical an-

notated corpora such as PubTator [258] – CCRs include a large variety of entity types and

potential orders of events [51]. Methods to better enable biomedical and clinical NLP at

scale, across numerous entity types, and with generalizable approaches across topics are

necessary, as single-task or single-entity type methods provide insufficient detail for compre-

hensive CNER. Fine-grained CNER supports development of precision medicine’s hope to

leverage advanced computer technologies to deeply digitize, curate and understand medical

records and case reports [208, 29].

Biomedical NER (BioNER), of which CNER is a subtask, has been a focus of intense,

groundbreaking research for decades but has recently undergone a methodological shift. Its

foundational methods are largely rule-based (e.g., Text Detective [236]), dictionary-based

(e.g., BioThesaurus [154] or MetaMap [20]), and basic statistical approaches (e.g., the C-

value / NC-value method [86]). Source entities for NER are sourced from extensive knowl-

edgebases such as UMLS [41] and UniProtKB [241]. Readily applicable model-based BioNER

methods, including those built upon non-contextualized word embeddings such as Word2Vec

and GloVe [177, 200] now promise to more fully address the challenges particular to the

biomedical domain: concepts may have numerous names, abbreviated forms, modifiers, and

variants. Furthermore, biomedical and clinical text assumes readers have extensive domain

knowledge. Its documents follow no single structure across sources or topics, rendering their
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content difficult to predict.

These models neither avoid time-consuming feature engineering, nor make full use of se-

mantic and syntactic information from each token’s context. Context can thoroughly change

an individual word’s meaning, e.g., an “infarction” in the heart is a heart attack but the same

event in the brain constitutes a stroke. Context is crucial for understanding abbreviations

as well: “MR” may represent the medical imaging technique magnetic resonance, the heart

condition mitral regurgitation, the concept of a medical record, or simply the honorific Mis-

ter. Non-contextualized word embeddings exacerbate the challenge of understanding distinct

biomedical meanings as they contain only one representation per word. The most frequent

semantic meaning within the training corpus becomes the standard representation.

Inspired by the recent development of contextualized token representations [201, 71, 10]

supporting identification of how the meaning of words changes based on surrounding con-

text, we refresh the technology of CNER to better extract clinical entities from unstruc-

tured clinical text. The deep contextualized token representations are pre-trained with a

large corpus using a language model (LM) objective. ELMo [201] takes word tokens as in-

put and pre-trains them with a bidirectional language model (biLM). Flair [10] proposes

a pre-trained character-level language model by passing sentences as sequences of charac-

ters into a bidirectional LSTM to generate word-level embeddings. Following recent work

demonstrating impressive performance and accuracy of pre-training word representations

with domain-specific documents [225], we collected domain-specific documents all related to

CCRs, roughly a thousandth of PMC documents, and pre-trained two deep language mod-

els, Clinical-ELMo and Clinical-Flair. In this study, we focus on the CNER task and

evaluate the two language models across three datasets. Our two pre-trained language mod-

els can support applications beyond CNER, such as clinical relation extraction or question

answering.
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3.2.2 Contributions

• To the best of our knowledge, we are the first to build a framework for solving clinical

natural language processing tasks using deep contextualized token representations.

• We pre-train two contextualized language models, Clinical-ELMo and Clinical-Flair

for public use†. We evaluate our models on three CNER benchmark datasets, MAC-

CROBAT2018, i2b2-2010, NCBI-disease, and achieve dramatic improvements of 10.31%,

7.50%, and 6.94%, respectively.

• We show that pre-training a language model with a light domain-specific corpus can

result in better performance in the downstream CNER application, compared with

domain-generic embeddings.

3.2.3 Methods

3.2.3.1 Contextualized Language Models

ELMo. ELMo is a language model that produces contextualized embeddings for words.

It is pre-trained with a two-layered bidirectional language model (biLM) with character

convolutions on a large corpus. The left lower part in Figure 3.3 is the high level architecture

of ELMo, where R(·) means the representation of a word.

ELMo takes a sequence of words (w1, w2, ..., wN) as input and generates context-independent

token representations using a character-level CNN. Then ELMo feeds the sequence of tokens

(t1, t2, ..., tN) into the biLM which is a bidirectional Recurrent Neural Network (RNN). The

forward-LM computes the probability of each sequence by:

p(t1, t2, ..., tN) =
N∏
k=1

p(tk|t1, t2, ..., tk−1). (3.1)

†The pre-trained model can be downloaded at https://drive.google.com/drive/folders/

1b8PQyzTc_HUa5NRDqI6tQXz1mFXpJbMw?usp=sharing.
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Figure 3.3: Pre-training Character and Word Language models.

Flair. Flair is a character-level word representation model that also uses RNN as the

language modeling structure. Different from ELMo, Flair treats the text as a sequence of

characters. The goal of most language models is to estimate a good distribution p(t0, t2, ..., tT )

where t0, t1, ..., tn is a sequence of words. Instead of computing the distribution of words,

Flair aims to estimate the probability p(x0, x1, ...xT ), where x0, x1, ..., xT is a sequence of

characters. The joint distribution over the entire sentence can then be represented as follows:

p(x0, x1, ..., xT ) =
T∏
t=0

p(xt|x1, x2, ..., xt−1) (3.2)

where p(xt|x0, ..., xt−1) is approximated by the network output ht from one RNN layer. The

details are illustrated in the left upper part in Figure 3.3.
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3.2.3.2 CNER Model

We used a well-established BiLSTM-CRF sequence tagging model [110, 256, 95] to address

the downstream sequence labeling tasks.

First, it passes sentences to a user-defined token embedding model, which converts a

sequence of tokens into word embeddings: r0, r1, r2, ..., rn. We may concatenate embedding

vectors from different sources to form a new word vector. For example, the concatenated

embeddings of GloVe and Flair is represented as:

ri = rGloV ei ⊕ rFlairi (3.3)

Then, the concatenated embeddings are passed to the BiLSTM-CRF sequence labeling model

to extract the entity types.

3.2.4 Experiments

3.2.4.1 Datasets

Table 3.1: Number of tokens and types in each CNER dataset.

Dataset Name Train Dev Test # of Entity Types

MACCROBAT2018 64,879 862 7,955 24

i2b2-2010 134,586 14,954 267,250 3

NCBI-disease 135,701 23,969 24,497 1

MACCROBAT2018. MACCROBAT2018 contains 3,100 curated CCRs spanning 15 dis-

ease groups and more than 750 reports of rare diseases. We randomly selected 10% case

reports as development set and 10% as test set. The remaining documents are used to train

the CNER model. Detailed description is shown in 3.1.

i2b2-2010. The i2b2-2010 dataset provides “layered” linguistic annotation over a set of clin-

ical notes. The dataset contains three entity types which are “test”, “problem”, “treatment”.

We followed [245] to split the dataset into train/development/test sets.
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NCBI-disease. The NCBI-disease [77] dataset is fully annotated at the mention and con-

cept level. The dataset contains 793 PubMed abstracts with 6,892 disease mentions which

leads to 790 unique disease concepts. Therefore, the dataset only has one types which is

“disease”.

3.2.4.2 Pre-training Corpus

To pre-train the two language models, we obtained articles through the PubMed Central

(PMC) FTP server‡, and in total picked 47,990 documents that are related to clinical case

reports. We indexed these documents with some keyword including “case report” and “clin-

ical report”.

3.2.4.3 Pre-trained Language Model

We proposed Clinical-ELMo and Clinical-Flair, which are respectively a pre-trained

ELMo and a pre-trained Flair with the domain-specific corpus. To fairly compare the

two models, we do not initialize Clinical-ELMo and Clinical-Flair with any pre-trained

ELMo and Flair, and pre-train them on the same clinical case report corpus described in

Section 3.2.4.2. Moreover, we tried to set both models’ parameter sizes to a similar scale.

Since Flair’s parameter size is 20M when it performs at its best (hidden size of 2048), we

chose the medium size ELMo model correspondingly, which has 25M parameters according

to AllenNLP [201]. All models were pre-trained on one NVIDIA Tesla V100 (16GB), with

each requiring roughly one week to complete.

For Clinical-Flair, we followed the default settings of Flair, a hidden size of 2048, a

sequence length of 250, and a mini-batch size of 100. The initial learning rate is 20, and

the annealing factor is 4. For Clinical-ELMo, we chose the medium-size model among all

configurations, which has a hidden size of 2048 and projection dimension of 256. For the

convolutional neural network token embeddings, the maximum length of a word is 50 and

‡ftp://ftp.ncbi.nlm.nih.gov/pub/pmc
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Table 3.2: The comparison of F1-scores (%) on three datasets among different types of

embeddings.

Embeddings MACCROBAT2018 i2b2-2010 NCBI-disease

GloVe 59.63 81.35 82.18

ELMo 61.69 84.61 84.50

Flair 57.25 81.65 84.23

GloVe+ELMo 63.09 84.82 85.37

GloVe+Flair 62.63 81.21 85.58

GloVe+ELMoPubMed 64.56 86.50 87.04

GloVe+Clinical-ELMo 65.75 87.29 87.88

GloVe+Clinical-Flair 64.18 87.45 86.60

the embedding dimension is 16.

3.2.4.4 Results

To fairly compare the performance of each model, we pre-trained Clinical-Flair and

Clinical-ELMo on the same subset of PubMed Central (PMC) documents. We then applied

the BiLSTM-CRF model [110] to evaluate the downstream sequence labeling tasks. The

results of our experiments are shown in Table 3.2. Note that “Embeddings” in Table 3.2

denotes the stacking embeddings which can be the concatenation of different word embed-

ding vectors. We used the pre-trained GloVe embeddings of 100 dimensions. The Flair

embeddings are pre-trained with a 1-billion word corpus [54]. ELMo denotes the pre-trained

medium-size ELMo on the same 1-billion word corpus and ELMoPubMed denotes the pre-

trained ELMo model with the full PubMed and PMC corpus. We used the micro F1-score

as the evaluation metric.

Domain-specific v.s. Domain-generic corpus. From Table 3.2, we can observe that the

models pre-trained on the selected case report corpus outperformed all the other language
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Table 3.3: The performance of three baseline methods and our best model on three datasets.

Models MACCROBAT2018 i2b2-2010 NCBI-disease

Our best model 65.75 87.45 87.88

CNN [166] 60.13 81.41 82.62

Cross-type [256] 63.10 84.97 86.14

BioBERT [138] 64.38 86.46 89.36

models pre-trained on the domain-generic corpus. The concatenated embedding of GloVe

and Clinical-ELMo performs the best on MACCROBAT2018 and NCBI-disease datasets,

while GloVe plus Clinical-Flair achieved the best performance on i2b2-2010. We can

conclude that pre-training the language models with a small domain-specific corpus can be

more efficient and effective for improving the performance of some downstream tasks. The

domain-specific knowledge can alter the distribution and the proximity among words, thus

contributing a better understanding of the relationship between word and entity types in

our task.

Contextualized v.s. Non-contextualized embeddings. We also used the static word

embeddings, GloVe itself, to represent the tokens in the sequence labeling task. The results

in Table 3.2 show that the stacking contextualized embeddings dramatically boosted the

F1-score on three different datasets by 10.31%, 7.50%, and 6.94%. It proves that the deep

language models absorb more intensive semantic and syntactic knowledge from the contexts.

We noticed that the F1-score of Flair on MACCROBAT2018 dataset was surprisingly low.

It showed that the performance of a purely character-level language model may be not as

robust as the word-level models.

Compared with other baseline models. [166] proposed a bi-directional LSTM-CNNs-

CRF model to make use of both word- and character-level representations. [256] leveraged

multi-task learning and attention mechanisms to improve the performance of biomedical

sequence labeling task. Compared with these two state-of-the-art models, as shown in
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Table 3.3, our methods perform consistently better. We suppose that with the help of

pre-trained contextualized embeddings, even a light-loaded downstream model can achieve

extraordinary performances.

The BioBERT proposed in [138] was pre-trained using a language model with around

110M parameters and using a large number of computational resources (8 NVIDIA V100

32GB GPUs). However, this contextualized language model only gets better performance

in the simplest dataset (NCBI-disease) with only one entity type. On MACCROBAT2018

and i2b2-2010, we improved the performance by 2.13% and 1.15%. This shows that good

experimental results can be achieved by making rational use of limited resources.

3.2.4.5 Case Study and Analysis

We analyze the Clinical-Flair and Clinical-ELMo on specific categories for the MAC-

CROBAT2018 dataset. We look into the F1-scores of 10 different entity types. All these

types appear more than 50 times in the dataset.

From Table 3.4, we can see that the character-level language model Clinical-Flair

shows an advantage in the type “Dosage”. We find that this entity type has a number of

entities that do not appear in the word-level vocabulary, such as “60 mg/m2”, “0.5 mg”,

and “3g/d”. On the other hand, Clinical-ELMo has a better performance in the type

“Severity”, which contains words like “extensive”, “complete”, “significant”, and “evident”.

Clinical-ELMo also extensively outperforms Clinical-Flair in “Detailed Description”.

The representations of tokens rely more on the word-level context in these types. Therefore,

Clinical-ELMo shows better power of capturing the relationship between the word-level

contextual features with the entity types.

We noticed in Table 3.4, “Disease Disorder” achieved around 50% F1-score with both

models. Though they performed well on NCBI-disease dataset, it is hard for them to correctly

recognize complex phrase-level disease entities on MACCROBAT2018, such as “Scheuer

stage 3”, and “feeding difficulties”.
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Table 3.4: The comparison of F1-scores (%) between Clinical-ELMo and Clinical-Flair

on different entity types of MACCROBAT2018.

Entity GloVe+Clinical-ELMo GloVe+Clinical-Flair

Biological Structure 63.94 64.88

Detailed Description 45.81 40.00

Diagnostic Procedure 74.93 74.71

Disease Disorder 50.84 50.83

Dosage 77.42 80.00

Lab Value 74.48 72.31

Medication 76.34 72.13

Non-biological Location 80.77 76.00

Severity 72.41 61.81

Sign Symptom 62.27 60.64

3.2.5 Conclusion

In our study, we showed that contextual embeddings show a sizable advantage against non-

contextual embeddings for clinical NER. In addition, pre-training a language model with a

domain-specific corpus results in better performance in the downstream CNER task, com-

pared to the off-the-shelf corpus.
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3.3 Clinical Temporal Relation Extraction with Probabilistic Soft

Logic Regularization and Global Inference

3.3.1 Motivation

There is a perennial need to automatically and precisely curate the clinical case reports

into structured knowledge, i.e. extract important clinical named entities and relationships

from the narratives [21, 218, 228, 50, 11, 279]. This would greatly enable both doctors

and patients to retrieve related case reports for reference and provide a certain degree of

technical support for resolving public health crises like the recent COVID-19 pandemic.

Clinical reports describe chronicle events, elucidating a chain of clinical observations and

reasoning [235, 55]. Extracting temporal relations between clinical events is essential for

the case report retrieval over the patient chronologies. Besides, medical question answering

systems require the precise ordering of clinical events in a time series within each document.

In this study, we tackle the temporal relation extraction problem in clinical case reports.

Figure 3.4 illustrates a paragraph from a typical CCR document with three common types

of temporal relations, “Before”, “After”, and “Overlap”. Glucocortocoids was described as

the medicine history of this patient, which happened before confirmed with COVID-19 and

positive of antibody. An “Overlap” temporal relation exists between nasal congestion and

a mild cough. We consider the aforementioned clinical concepts as events, while regarding

a day later as a time expression. A temporal relation may exist between event and event

(E-E), event and time (E-T) or time and time (T-T).

There is a consensus within the clinical community regarding the difficulty of temporal

information extraction, due to the high demand for domain knowledge and high complexity

of clinical language representations [87]. [172, 137] apply machine learning models with

lexical, syntactic features, or pre-trained word representations to tackle the problem but

neglect the strong dependencies between narrative containment and temporal order, thus

predicting inconsistent labels and garbled time-lines [141].
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The patient is a 47-year-old woman with 
long-term use of glucocorticoids She was 
confirmed with COVID-19 by tested positive 
of antibody and admitted to the hospital. 
Just a day later, she began to have a mild 
cough and nasal congestion.

(a)glucocorticoids

(c)positive 
of antibody

(b)confirmed 
with COVID-19

(d)admitted to 
the hospital

(e)a day later(g)a mild cough

Before Overlap After

(f)nasal congestion

Figure 3.4: An illustration of a clinical case report with its partial temporal graph where

transitivity dependencies exist.

The dependency is the key enabler of classifying the temporal relations. For instance in

Figure 3.4, given that b happened before d, e happened after d and e happened simultane-

ously with f , we can infer according to the temporal transitivity rule that b was before f.

Some recent studies [141, 190, 99] convert the task to a structured prediction problem and

solve it with Maximum a posteriori Inference. Integer Linear Programming (ILP) with hard

constraints is deployed for optimization, which however needs an off-the-shelf solver to tackle

the NP-hard optimization problem and can only approximate the optimum via relaxation.

Besides, globally inferring the relations at the document level would also be intractable for

them due to the high complexity and low scalability [24].

Recently, some researchers [70, 59, 108] have explored Probabilistic Soft Logic (PSL) [24]

to tackle the structured prediction problem. Inspired by them, we propose to leverage the

PSL rules to model relation extraction more flexibly and efficiently. In specific, we summarize

common transitivity and symmetry patterns of temporal relations as PSL rules and penalize

the training instances that violate any of those rules. Different from ILP solutions, no off-
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the-shelf solver is required and the algorithm conducts the training process with linear time

complexity. Besides, logical propositions in PSL can be interpreted not just as true or false,

but as continuously valued in the [0, 1] interval. We also propose a simple but effective time-

anchored global temporal inference algorithm to classify the relations at the document level.

With such a mechanism, we can easily verify some relations, such as the relation between b

and f, with long-term dependencies which are intractable with existing approaches.

3.3.2 Contributions

• To the best of our knowledge, this is the first work to formulate the probabilistic soft

logic rules of temporal dependencies as a regularization term to jointly learn a relation

classification model,

• We show the efficacy of globally inferring the temporal relations with the time graphs,

• We release the codes§ to facilitate further developments by the research community.

3.3.3 Clinical Temporal Relation Extraction

Corpora. Different from the datasets in the news domain [206, 91], the corpora in

the clinical domain require rich domain knowledge for annotating the temporal relations.

I2b2-2012 [235] and Clinical TempEval [35, 36, 37] are some great efforts of building clinical

datasets with extensive annotations including labels of clinical events and temporal relations,

the second of which was not tested in our work due to lack of access to the data.

Models. Some early efforts to solve the clinical relation extraction problem leverage con-

ventional machine learning methods [161, 235, 262, 239, 137, 61] such as SVMs, MaxEnt and

CRFs, and neural network based methods [150, 149, 74, 242, 151, 92, 152, 88]. They either

require expensive feature engineering or fail to consider the dependencies among temporal

relations within a document. [141, 97, 98, 190] formulate the problem as a structured pre-

§The codes are available at https://github.com/yuyanislearning/CTRL-PG.
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diction problem to model the dependencies but can not globally predict temporal relations.

Instead, our method can infer the temporal relations at document level.

3.3.4 Preliminaries for Probabilistic Soft Logic

3.3.4.1 Problem Statement

Document D contains sequences [s1, s2, ..., sM ] and named entities xi ∈ E
⋃ T , 1 ≤ i ≤ N ,

where M,N are the total number of sequences and entities in D. E and T represent the set of

events and time expressions, respectively. There is a potential temporal relation between any

pair of annotated named entities (xj, xk), where 1 ≤ j, k ≤ N . Formally, the task is modeled

as a classification problem with a set of temporal relation types Y . Given a sequence si

together with two named entities xi,1, xi,2 included, we predict the temporal relation yi ∈ Y
from xi,1 to xi,2. In practice, we create a triplet with three pairs of entities to be one training

instance I, to enable the PSL rule grounding, as explained in the following section.

3.3.4.2 Probabilistic Soft Logic and Temporal Dependencies in Clinical Narra-

tives

Here, we introduce some concepts and notations for the language PSL and illustrate how

PSL is applicable to define templates for temporal dependencies and to help jointly learn a

relation classifier.

Definition 1. A predicate p̃ is a relation defined by a unique identifier and an atom l̃

is a predicate combined with a sequence of terms of length equal to the predicate’s argument

number. Atoms in PSL take on continuous values in the unit interval [0, 1].

Example 1. Before/2 indicates a predicate taking two arguments, and the atom Before(A,B)

represents whether A happens before B.

Definition 2. A PSL rule r̃ is a disjunctive clause of atoms or negative atoms:

ηr : T1 ∧ T2 ∧ ... ∧ Tm → H1 ∨H2 ∨ ... ∨Hn, (3.4)
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Table 3.5: Temporal transitivity and symmetry PSL rules R. A,B,C are three terms

representing either events or time expressions.

Abbrev. PSL rules

Transitivity Dependencies

BBB Before(A,B) ∧ Before(B,C) → Before(A,C)

BOB Before(A,B) ∧ Overlap(B,C) → Before(A,C)

OBB Overlap(A,B) ∧ Before(B,C) → Before(A,C)

OOO Overlap(A,B) ∧ Overlap(B,C) → Overlap(A,C)

AAA After(A,B) ∧ After(B,C) → After(A,C)

AOA After(A,B) ∧ Overlap(B,C) → After(A,C)

OAA Overlap(A,B) ∧ After(B,C) → After(A,C)

Symmetry Dependencies

BA Before(A,B) → After(B,A)

AB After(A,B) → Before(B,A)

OO Overlap(A,B) → Overlap(B,A)

where T1, T2, ..., Tm, H1, H2, ..., Hn are atoms or negative atoms.

We name T1, T2, ..., Tm as rbody and H1, H2, ..., Hn as rhead. ηr ∈ [0, 1] is the weight of the

rule r, denoting the prior confidence of this rule. To the opposite, an unweighted PSL rule

is to describe a constraint that is always true. The unweighted logical clauses in Table 3.5

describe the common temporal transitivity and symmetry dependencies we summarize from

the clinical narratives.

Definition 3. The ground atom l and ground rule r are particular variable instantiation

of some atom l̃ and rule r̃, respectively.

Example 2. That Overlap (e, f) ∧ Overlap (f, g) → Overlap (e, g) from Figure 3.4 is a

ground rule composed of three ground atoms, denoted as l1, l2, and l3, respectively. It is

grounded from the OOO rule, as shown in Table 3.5.
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Definition 4. The interpretation I(l) denotes the soft truth value of an atom l.

Definition 5.  Lukasiewicz t-norm [126] is used to define the basic logical operations in PSL,

including logical conjunction (∧), disjunction (∨), and negation (¬):

I(l1 ∧ l2) = max{I(l1) + I(l2)− 1, 0} (3.5)

I(l1 ∨ l2) = min{I(l1) + I(l2), 1} (3.6)

I(¬l1) = 1− I(l1) (3.7)

The PSL rule in Definition 2 can also be represented as:

I(rbody → rhead) = I(¬rbody ∨ rhead),

so we can induce the distance to satisfaction for rule r.

Definition 6. The distance to satisfaction dr(I) of rule r under an interpretation I is

defined as:

dr(I) = max{0, I(rbody)− I(rhead)} (3.8)

PSL program determines a rule r as satisfied when the truth value of I(rhead)−I(rbody) ≥
0.

Example 3. Given that I(l1) = 0.7, I(l2) = 0.8, and I(l3) = 0.3, we can compute the distance

according to Equation (3.5)-(3.8):

dr = max{0, I(l1 ∧ l2)− I(l3)}

= max{0, 0.7 + 0.8− 1− I(l3)}

= max{0, 0.5− 0.3}

= 0.2

This equation indicates that the ground rule in Example 2 is completely satisfied when

I(l3) is above 0.5. Otherwise, a penalty factor will be raised (0.2 in this case). When I(l3) is
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Figure 3.5: The overall architecture of CTRL-PG.

under 0.5, the smaller I(l3) is, the larger penalty we have. In short, we compute the distance

to satisfaction for each ground rule as a loss regularization term to jointly learn a relation

classification model. We finally use the smallest one as the penalty because we only need

one of the rules to be satisfied.

3.3.5 Methodologies for Temporal Relation Extraction

Figure 3.5 shows the overall framework of the proposed CTRL-PG model. The framework

consists of three components, (i) a temporal relation classifier composed of a deep language

encoder and a Feed-Forward Network (FFN), (ii) a Cross-Entropy loss function with PSL

regularization, and (iii) a time-anchored global temporal inference module. We will introduce

the details of the three modules in the following subsections.

3.3.5.1 Temporal Relation Classifier

The context is essential for capturing the syntactic and semantic features of each word in

a sequence. Hence, we propose to apply the contextualized language model, BERT [73], to

derive the sentence representation vi of ds-dimension to encode the input sequence si includ-

ing two marked named entities xi,1, xi,2 from the instance I, where i ∈ {1, 2, 3}. We group
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three sequences together to facilitate the computation of regularization term introduced in

the next subsection.

By feeding the sentence embedding vi to a layer of FFN, we can predict the relation type

ŷi with the softmax function:

ŷi = argmax
y∈Y

P(y|si) (3.9)

P(y|si) = softmax(Wf · vi + bf ), (3.10)

where Wf and bf are the weights and bias in the FFN layer.

To learn the relation classification model, we first compute a loss with the Cross-Entropy

objective for each instance I:

Lce = −
∑

i∈{1,2,3}

∑
y∈Y

y logP(y|si) (3.11)

3.3.5.2 Learning with Probabilistic Soft Logic Regularization

We also aim to minimize the distance to rule satisfaction for each instance. We compute

the distance with function F(·, ·), as described in Algorithm 1, by finding the minimum of

all possible PSL rule grounding results, i.e., when one PSL rule is satisfied, F(·, ·) should

return 0. In specific, we first ground the three relation predictions ŷi with potential PSL

rules. We then incorporate Equation (3.5)-(3.8) for distance computation. The prediction

probabilities are regarded as the interpretation of the ground atoms li. If none of the rules

can be grounded, the distance will be set as 0. Then, we formulate the distance to satisfaction

as a regularization term to penalize the predictions that violate any PSL rule:

Lpsl = F(R; {(P(y|si), ŷi)}), i = {1, 2, 3} (3.12)

and finalize the loss function by summing up (3.11) and (3.12):

L = Lce + λ · Lpsl, (3.13)

where λ is a hyperparameter as the weight for PSL regularization term. We apply gradient

descent to minimize the loss function (3.13) and to update the parameters of our model.
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Algorithm 1: Function F for PSL Rule Grounding and Distance Calculation.

Input: PSL Rules R, Prediction ŷi, and Probability P(y|si), i = {1, 2, 3};
Output: Distance dr;

Set dr = 1; dt = 0; IsGround = false;

for each l1 ∧ l2 → l3 ∈ R do

if ŷ1 matches l1 and ŷ2 matches l2 then

Determine ȳ3 with l3;

dt ← max{P(y = ŷ1|s1) + P(y = ŷ2|s2)− 1, 0};
dt ← max{dt − P(y = ȳ3|s3), 0};
dr ← min{dr, dt};
IsGround ← true;

end

if IsGround == false then

dr ← 0;

3.3.5.3 Global Temporal Inference

In the inference stage, we leverage the Timegraph algorithm [179] to resolve the conflicts in

the temporal relation predictions ŷ. Timegraph is a widely used algorithm of time complexity

O(v+ e) for deriving the temporal relation for any two nodes in a connected graph, where v

and e denote the numbers of nodes and edges. Nodes and edges represent the named entities

and temporal relations, respectively. Our goal is to construct a conflict-free time graph G
for each document D through a greedy Check-And-Add process, described as 4 steps in

Algorithm 2. Intuitively, we want to rely on some trustworthy edges to resolve the conflicts

in the time graph with the transitivity and symmetry dependencies listed in Table 3.5. As

illustrated in Figure 3.5, the probabilities of predictions Overlap(e1, e2) and Overlap(e2, e3)

are 0.7 and 0.8, which are higher than that of Overlap(e1, e3). When we trust the first

two predictions, the third prediction could be neglected considering the relation between e1

and e3 can already be inferred with the transitivity dependency. In this way, the predicting
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Algorithm 2: Check-And-Add Process for Constructing a Conflict-free Time Graph

G
Step 1: Predict temporal relations P1 on pairs of the time expressions T-T;

Step 2: Construct a time graph G with P1;

Step 3: Rank all other predictions P2 on the relations of type E-E and E-T according

to the predicting probabilities in decreasing order, naming P ranked
2 ;

Step 4:

for each p in P ranked
2 do

Apply Timegraph algorithm to check the conflict between p and G;

if there exists a conflict then

Drop p;

else

Add the edge p to G;

end

end

mistakes with low confidence scores can be ruled out, leading to better model performance

in the closure evaluation.

We believe that the relations between time expressions are the easiest ones to predict.

For example, the ground atom Before (06-15-91, July 1st 1991 ) is obviously true. Therefore,

we try to build up a base time graph on top of the relations of type T-T. Next, we rank the

rest of the predictions according to their probabilities in decreasing order and then check

whether each of the predictions is inconsistent with the current time graph iteratively. The

relation will be dropped if it raises a conflict, otherwise added to the graph as a new edge.

3.3.6 Experiments

In this section, we develop experiments on two benchmark datasets to prove the effectiveness

of both PSL regularization and global temporal inference. We also discuss the limitation
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Table 3.6: I2B2-2012 and TB-Dense Dataset Statistics.

Dataset Train Dev Test

I2B2-2012
# doc 181 9 120

# relation 29,736 1,165 24,971

TB-Dense
# doc 22 5 9

# relation 4,032 629 1,427

and perform error analyses for CTRL-PG.

3.3.6.1 Datasets

Experiments are conducted on I2B2-2012 and TB-Dense datasets and an overview of the

data statistics is shown in Table 3.6. The datasets have diverse annotation densities and

instance numbers.

I2B2-2012. The I2B2-2012 challenge corpus [235] consists of 310 discharge summaries.

Two categories of temporal relations, E-T and E-E, were annotated in each document. Three

temporal relations, Before, After, and Overlap, were used. I2B2-2012 has a relatively low

annotation density¶, which is 0.21.

TB-Dense. To prove that our PSL regularization is a generic algorithm and can be easily

adapted to other domains, we also test it on the TB-dense [48] dataset, which is based on

TimeBank News Corpus [206]. Annotators were required to label all pairs of events/times

in a given window to address the sparse annotation issue in the original data. Thus the

annotation density is 1. This dataset has six relation types, Simultaneous, Before, After,

Includes, Is Include, and Vague.

¶Annotation density denotes the percentage of annotated pairs of event/time expressions.
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3.3.6.2 Baseline Models

We employ different baseline models for the two datasets to compare our method with the

SOTA models in both clinical and news domains.

I2B2-2012. (1) Feature-engineering based models from I2B2-2012 challenge, MaxEnt-SVM [262]

incorporating Maximum Entropy with Support Vector Machine (SVM), CRF-SVM [239] using

Conditional Random Fields and SVM, RULE-SVM [189] relying on rule-based algorithms; (2)

Neural network based model, RNN-ATT [158], which applies Recurrent Neural Network plus

attention mechanism; (3) Structured Prediction method, SP-ILP [97, 141] leveraging the ILP

optimization; (4) Basic version of our model, CTRL, which only fine-tunes a BERT-BASE [73]

language model with one layer of FFN, similar to the implementations in [151, 92].

TB-Dense. (1) CAEVO [52] with a cascade of rule-based classifiers; (2) LSTM-DP [60] us-

ing LSTM-based network and cross-sentence dependency paths; (3) GCL [172] incorporating

LSTM-based network with discourse-level contexts; (4) SP-ILP and CTRL, same as the base-

lines for I2B2-2012. Note that the results of CAEVO, LSTM-DP, GCL, and SP-ILP are collected

from [97].

3.3.6.3 Evaluation Metrics

To be consistent with previous work for a fair comparison, we adopt two different evaluation

metrics. For TB-Dense dataset, we compute the Precision, Recall, and Micro-average F1

scores. Following [98, 172], we only predict the E-E relations and exclude all other relations

from evaluation. Note that Micro-averaging in a multi-class setting will lead to the same

value for Precision, Recall, and F1. For I2B2-2012, we leverage the TempEval evaluation

metrics used by the official challenge [235], which also calculates the Precision, Recall, and

Micro-average F1 scores. This evaluation metrics differ from the standard F1 used for TB-

Dense in a way that it computes the Precision by verifying each prediction in the closure of

the ground truths and computes the Recall by verifying each ground truth in the closure of

the predictions. We explore all types of temporal relations in I2B2-2012 dataset.
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Table 3.7: Performance of temporal relation extraction on I2B2-2012 datasets.

Model P R F1

RULE-SVM 71.09 58.39 64.12

MaxEnt-SVM 74.99 64.31 69.24

CRF-SVM 72.27 66.81 69.43

RNN-ATT 71.96 69.15 70.53

SP-ILP 78.15 78.29 78.22

CTRL 84.88 73.28 78.65

CTRL-PG 86.80 74.53 80.20

3.3.6.4 Implementation Details

In the framework of CTRL-PG, any contextualized word embedding method, such as BERT [73],

ELMo [202], and RoBERTa [159], can be utilized. We choose BERT to derive contextualized

sentence embeddings without loss of generality. BERT adds a special token [CLS] at the

beginning of each tokenized sequence and learns an embedding vector for it. We follow the

experimental settings in [73] to use 12 Transformer layers and attention heads and set the

embedding size ds as 768. The CTRL-PG is implemented in PyTorch and we use the fused

Adam optimizer [124] to optimize the parameters. We follow the experimental settings in

[73] to set the dropout rate, and batch size as 10−1 and 8. We perform grid search for the

initial learning rate from a range of {1× 10−5, 2× 10−5, 4× 10−5, 8× 10−5} and finally select

2× 10−5 for both datasets. We train 10 epochs for each experiment on two datasets, which

can all be completed within 2 hours on single DGX1 Nvidia GPU.

We search the PSL regularization term λ from {0.1, 0.5, 1, 2, 5, 10}. For I2B2-2012 and

TB-Dense datasets, we set λ as 5 and 0.5, respectively. The hyperparameters are selected

by observing the best F1 performance on the validation set.
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Table 3.8: Ablation study on I2B2-2012 dataset. GTI denotes the global temporal inference.

Feature P R F1 Lift

Best 86.80 74.53 80.20 -

w/o PSL 85.78 73.31 79.06 1.44%

w/o GTI 85.08 73.31 78.76 1.83%

Table 3.9: Comparison of different ranking methods applied in the global inference on I2B2-

2012 dataset.

Strategy P R F1 Lift

Random 85.08 73.93 79.21 -

Confidence 86.07 73.76 79.44 0.29%

Confidence +
86.80 74.53 80.20 1.25%

Time Anchor

3.3.6.5 Experimental Results

Table 3.7 and Table 3.10 contains our main results. As we observe, our CTRL-PG enhanced

by PSL regularization and global inference achieve the best relation extraction performances

per F1 score. Compared with the baseline models, the F1 score improvements are 2.0% and

2.5% on I2B2-2012 and TB-Dense data respectively, which are all statistically significant‖.

I2B2-2012. As shown in Table 3.7, our model CTRL-PG outperforms the best baseline

method CTRL by 2% and outperforms the structured prediction method SP-ILP by 2.5%

per F1 score. SP-ILP gets the highest Recall score, but sacrifice the predicting precision

instead. We also observe that by simply fine-tuning the BERT to generate the sentence

embeddings and then feeding them into one layer of FFN for classification, CTRL can achieve

‖All improvements of CTRL-PG over baseline methods are statistically significant at a 99% confidence

level in paired t-tests.
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Table 3.10: Performance of temporal relation extraction on TB-dense datasets.

SP-ILP CTRL-PG

P R F1 P R F1

Before 71.1 58.9 64.4 52.6 74.8 61.7

After 75.0 55.6 63.5 69.0 72.5 70.7

Includes 24.6 4.2 6.9 60.9 29.8 40.0

Is Include 57.9 5.7 10.2 34.7 27.7 30.8

Simultaneous - - - - - -

Vague 58.3 81.2 67.8 72.8 64.8 68.6

Micro-average 63.2 65.2

CAEVO 49.4

LSTM-DP 52.9

GCL 57.0

CTRL 63.6

an impressive F1 score of 78.65%. This proves the advantage of contextualized embeddings

over static embeddings used by other baseline models. Besides, CTRL-PG outperforms the

feature-based systems, CRF-SVM and MaxEnt-SVM, by over 10% per F1 score.

We develop an ablation study to test different features, as shown in Table 3.8. We

see that PSL regularization and global temporal inference modules lift the performance by

1.44% and 1.83% separately. Both Precision and Recall performances are improved. We

can clearly conclude that learning the relations with the proposed algorithms improves our

model significantly (also at a 99% level in paired t-tests).

We also show the comparisons among different ranking strategies for the global inference

module in Table 3.9. Random denotes that we randomly add a new prediction to the time

graph and resolve the conflict. Confidence denotes we rank the predictions per the prediction

probabilities and then add them to the graph in decreasing order. Time Anchor represents
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that we first construct the time graph based on the predictions for temporal relations of

type T-T. In the results, we see a 0.29% improvement per F1 score when switching from the

Random to the Confidence strategy. After adding the Time Anchor method, we observe a

1.25% performance lift, compared to Random strategy. This proves the effectiveness of the

time-anchored global temporal inference module.

TB-Dense. We show the experimental results on TB-Dense dataset in Table 3.10. Our

model outperforms the best baseline model CTRL by 2.5% and outperforms the structured

prediction method SP-ILP by 3.2% per Micro-average F1 score. We observe that in the

performance breakdown for each relation class, CTRL-PG obtains similar scores on Before,

After, and Vague as SP-ILP and gets much better performances on Is Include and Includes.

These two types only occupy 5.7% and 4.5% of all the instances. CTRL-PG and SP-ILP both

fail to label any instance as Simultaneous because of its even fewer instances (1.5%) for

training.

Besides, we observe CTRL-PG achieves higher Recall values in all the categories of tempo-

ral relations, which prove that incorporating the dependency rules into model training can

dramatically lift the coverage of predictions.

3.3.6.6 Case Study and Error Analysis

Table 3.11 shows the results of a case study with the outputs of CTRL and CTRL-PG. In the first

case, the temporal relation between Her acute bradycardic event and the beta blocker is hard

to predict due to the noise brought by the long context. CTRL predicts it as Overlap, while

CTRL-PG corrects it to After according to the potential PSL rule that can be matched with

the first two correct predictions. In some cases, however, CTRL-PG will make new mistakes.

For example in case 2, if our model initially predicts the relation between started and a beta

Elmore wrong, a potential PSL rule sometimes will lead to an extra mistake when predicting

the relation between started and Maxine ACE. In the case 3, antibiotics treated the attacks
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Table 3.11: Case study and error analysis of the model predictions on I2B2-2012 Dataset.

1

Text
Her acute bradycardic event was felt likely secondary to her new beta blocker in conjunction with

a vagal response. It was determined to stop the beta blocker, and atropine was placed at the bedside.

(e1, e2) (Her...event, her...blocker) (her...blocker, the beta blocker) (Her...event, the beta blocker)

True Label After Overlap After

CRTL After Overlap Overlap

CTRL-PG After Overlap After

Rule After(A,B) ∧ Overlap(B,C) → After(A,C)

2

Text
The patient was given an aspirin and Plavix and in addition started on a beta Elmore, Maxine ACE

inhibitor, and these were titrated up as her blood pressure tolerated.

(e1, e2) (started, a beta Elmore) (a beta Elmore, Maxine ACE) (started, Maxine ACE)

True Label Before Overlap Before

CRTL After Overlap Before

CTRL-PG After Overlap After

Rule After(A,B) ∧ Overlap(B,C) → After(A,C)

3

Text She has had attacks treated with antibiotics in the past notably in 12/96 and 08/97.

(e1, e2) (antibiotics, 12/96) (12/96, 08/97) (antibiotics, 08/97)

True Label Overlap Before Overlap

CRTL Overlap Before Overlap

CTRL-PG Overlap Before Before

Rule Overlap(A,B) ∧ Before(B,C) → Before(A,C)

twice in both 12/96 and 08/97, where the PSL rule is no longer valid since the antibiotics in

fact denote two occurrences of this event. In such special cases with invalid rules, CTRL-PG

may make a mistake.

3.3.7 Conclusion

In this work, we propose CTRL-PG that leverages the PSL rules to model the temporal de-

pendencies as a regularization term to jointly learn a relation classification model. Extensive

experiments show the efficacy of the PSL regularization and global temporal inference with

time graphs.
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3.4 CREATe: Clinical Report Extraction and Annotation Technol-

ogy

3.4.1 Motivation

Case reports are a time-honored means of sharing observations and insights about novel

patient cases [44, 50, 271]. As of 2020, at least 160 case report journals were in existence,

with over 90% having open access policies and almost half indexed by PubMed [170]. The

narrative of a case report details the symptoms, diagnosis, treatment, and outcome of an

individual, describing observations made over the course of clinical care.

Often these case reports contain exceptionally valuable clinical data, addressing unusual

disease situations. To our knowledge, there has been no attempt to annotate, index, or

otherwise curate these reports. Unlike other types of medical literature, there are no or-

ganizational frameworks or methodical review articles for case reports, and no metadata

standards exist for their curation. A significant challenge exist for this rapidly growing cor-

pus. Focusing our efforts, we address the domain of cardiovascular disease, an important

area for which a range of research and clinical questions occur frequently.

In this paper, we demonstrate an end-to-end systems incorporating algorithms for ex-

tracting, indexing, and querying the contents of clinical case reports.∗∗ Our proposed system,

Clinical Report Extraction and Annotation Technology (CREATe), automates generation of

metadata about case reports, unlocking this important data resource through a searchable

portal.

To make case reports findable and accessible, our primary innovation is a graph-based

representation of each case report, where nodes signify concepts described in the narrative

(e.g. sign/symptoms, diagnosis, etc). To build a case report’s graph, we start by employing

named entity recognition techniques to identify concepts (nodes), which are then standard-

ized against existing biomedical ontology [50] to make the metadata interoperable. Concepts

∗∗An online video of the demonstration can be viewed at https://youtu.be/Q8owBQYTjDc.
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are then connected (edges) by detecting described temporal relationships in the text, facili-

tating retrieval over the patient chronologies that are hallmarks of case report descriptions.

Collectively, CREATe framework will be used to share metadata around published case re-

ports, making it reusable by others via public APIs.

3.4.2 System Properties

• As of October 2020, it offers rich resources of over 10k reports for cardiovascular dis-

ease with depositions from a wide range of sources such as Scientific Literature and

Authorized User Submissions, as shown in Figure 3.7.

• It provides a PDF submission service, based on Grobid [164], which is able to convert

the publications in PDF format into well organized XML format. Metadata such as

title, author, affiliation information can be automatically extracted for users by text

mining technology.

• It is powered by CREATe-IR, a relation-based information retrieval system for clin-

ical case reports, which outperforms solr [226]. Instead of simple keyword match,

CREATe-IR embeds advanced deep learning algorithms to extract significant named

entities and relations from the narrative. Relative case reports are retrieved from the

database based on these structured knowledge. This also enables a temporal reasoning

on the user queries and provides better search results.

• It provides a user-friendly interface for entity and relation annotation. A graph visu-

alization of temporal order of the clinical events is generated for each document.

3.4.3 System Architecture and Design

CREATe is a cloud-based application and its service is mainly hosted on the Amazon ECS

(Fargate) with a CI/CD pipeline as illustrated in Figure 3.6.

As shown in Figure 3.7, the main feature of CREATe is to allow users perform CREATe-IR
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Figure 3.6: The Development Pipeline of CREATe.

search, which will be elaborated in later sections. The two sources of data are case reports

collected from PubMed and user-input reports. The frontend of CREATe is a single page

application developed using React, which allows users to communicate with the RESTful

API in the backend built with Express. The application is served by Nginx, a light-weight

software for web serving. The majority of data for CREATe, is stored in the MongoDB server

for persistency. The data in MongoDB server is queried via the Express backend to ensure

security and consistency. This is the same for both Neo4j server and ElasticSearch server,

which allow the application to perform complex search as explained in later section.

3.4.4 CREATe-IR

3.4.4.1 Data Source and Preprocessing

Identification of data source begins with a query to PubMed using the publication type

and MeSH term filters to locate cardiovascular (CVD) case reports. A query of PubMed

in six areas of CVD (cardiomyopathy, ischemic heart disease, cerebrovascular accidents,

arrhythmias, congenital heart disease, and valve disease) returns around 118,000 case reports.

From these results, a web crawler (e.g. Apache Nutch) is used to locate the associated case

reports and publication metadata. The contents can be captured in XML or online PDFs.

The XML and PDF documents will be parsed into plain text to facilitate subsequent analysis,
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organized into case report sections and sentences.

Back-end Databases

Source 1: Scientific 
Literature Mining

Source 2: 
Author Initiated Submission
CREATe Invited Submission

RESTful API

End Users:
CREATe-IR 

Enabled 
SEARCH

Figure 3.7: The Architecture of CREATe.

3.4.4.2 Data Annotations

As described in Section 3.4, to enable a supervised learning process for the automatic extrac-

tion of events/entities and relations from the clinical case reports, we build a comprehensive

typing schema for information extraction from clinical narratives [50] and invite several

medical experts to annotate hundreds of case reports based on this schema.

3.4.4.3 Information Extraction from User Queries

Once we receive a user query like “A patient was admitted to the hospital because of fever and

cough.”, we apply two machine learning modules to parse the query and extract important

knowledge from them (i.e. hospital (Non-biological Location), fever (Sign/Symptom), cough

(Sign/Symptom), and the temporal relation between cough and fever (OVERLAP)).

Named Entity Recognition. We develop a named entity recognizer, as described in

Section 3.2, using contextualized token representations to locate and classify clinical termi-
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nologies into predefined categories, such as diagnostic procedure, disease disorder, severity,

medication, medication dosage, and sign symptom.

Temporal Relation Reasoning. We continue to predict the temporal relations among the

extracted named entities, as introduced in Section 3.3. We notice the dependencies among

events in one clinical document are key enabler of classifying the temporal relations. In our

system, we build a temporal relation extraction module [279] based on common dependencies

such as transitivity and symmetry patterns.

3.4.4.4 Search Approach

We provides multiple search functions in our search engine, including search by keywords,

search by entities and search by relations. ElasticSearch and Neo4j are utilized to build

up the search component, where ElasticSearch mainly handles keyword search and Neo4j

handles entity&relation search. For independent resource occupation purposes, a collection

of case reports are indexed separately on each search engine. Figure 3.8 illustrates the overall

search flow. By default, Neo4j is the primary search engine in CREATe-IR system. The results

returned by Neo4j will be placed on top, followed by results from ElasticSearch.

Neo4j. In Neo4j, data is saved as a graph of nodes and edges. Therefore, indexing each

case report into Neo4j requires a transformation from texts to nodes and edges. A particular

node will contain a nodeId, a label and a entityType. Property label keeps a natural language

description for the node and property entityType represents the classification of this node.

An edge will contain a source, a target and a label, which records the source nodeId and

destination nodeId, as well as the relation type. Then, all nodes and edges are put into

Neo4j via cypher query.

ElasticSearch. To better cater to the keyword search demand in CREATe-IR system,

we build the document index with customized analyzer. In ElasticSearch, an analyzer can

be divided into three sub-components: token filters, tokenizers and character filters. For

token filter, we choose asciifolding, lowercase, snowball, stop and stemmer. For tokenizer,
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Figure 3.8: The search workflow of CREATe-IR.

considering that some of the symptoms or medications may have longer names, we select

N-gram tokenizer and customize it with min gram=3 and max gram=25.

3.4.4.5 Event Visualization in Temporal Order

Annotations break the text structure down to event anchors and the temporal relations be-

tween them. These representations emphasize the atomic units and relational structures that

are crucial for an understanding of the progression of a clinical case. CREATe-IR represents

these underlying structures through network graph visualizations, which show the intercon-

nections between sets of entities and events, giving focus to the semantic roles played by

these fine-grained elements over the course of a clinical narrative. An example of such a

visualization is shown in Figure 3.9. This visualization component is rendered using scal-

able vector graphics under a force-directed algorithm, which distributes nodes and clusters in

space to minimize their repulsive energies and crossing edges. This component also possesses

functionality for recognizing standard user interface gestures. The layout of nodes can be

reconfigured by selecting a node with the mouse and dragging it to a different location in

space. Similarly, the visualization window can be adjusted by zooming and panning using

mouse wheel and drag gestures, respectively.
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Figure 3.9: Example network graph visualization representing a clinical case matching the

query: “A patient was admitted to the hospital because of fever and cough”.

3.4.5 Conclusion

In this work, we demonstrate CREATe, the first end-to-end system for annotating, indexing

and curating the clinical case reports. CREATe is powered by CREATe-IR, which includes two

state-of-the-art information extraction techniques to parse the important clinical events and

temporal relationships for retrieving related clinical documents.
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CHAPTER 4

Multi-modal Representation Learning for Information

Extraction

In this chapter, we introduce two explorations on the multi-modal representation learning

algorithms for information extraction tasks: (1) theme (keyphrase) extraction and (2) pun

recognition. In the first work, we design a cross-modality representation learning framework

to ingest ad images as well as textual information while in the second work, we leverage

the self-attention mechanism to learn a joint representation for both text and pronunciation

embeddings.

4.1 Recommending Themes for Ads Design via Visual-Linguistic

Representations

4.1.1 Motivation

With the widespread usage of online advertising to promote brands (advertisers), there

has been a steady need to innovate upon ad formats, and associated ad creatives [2, 277].

The image and text comprising the ad creative can have a significant influence on online

users, and their thoughtful design has been the focus of creative strategy teams assisting

brands, advertising platforms, and third party marketing agencies. Numerous recent studies

have indicated the emergence of a phenomenon called ad fatigue, where online users get

tired of repeatedly seeing the same ad each time they visit a particular website (e.g., their

personalized news stream) [220, 268]. Such an effect is common even in native ad formats
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Q: Why should I drink Gatorade?
OCR: Gatorade always wins

Wiki page: Gatorade
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Q: Why should I buy Audi Quattro?
OCR: Audi Quattro

Wiki page: Audi
brand: Audi

VQA based

recommender

for ad design

theme

heights,

thick & thin,

good

perform better
better at sports,

take anywhere

bad weather,

winner,

creative
strategist

Figure 4.1: Ad (creative) theme recommender based on a VQA approach.

where the ad creatives are supposed to be in line with the content feed they appear in [2, 268].

In this context, frequently refreshing ad creatives is emerging as an effective way to reduce

ad fatigue [3, 4].

From a creative strategist’s view, coming up with new themes and translating them

into ad images and text is a time taking task which inherently requires human creativity.

Numerous online tools have emerged to help strategists in translating raw ideas (themes) into

actual images and text, e.g., via querying stock image libraries [6], and by offering generic

insights on the attributes of successful ad images and text [7]. In a similar spirit, there

is room to further assist strategists by automatically recommending brand specific themes

which can be used with downstream tools similar to the ones described above. In the absence

of human creativity, inferring such brand specific themes using the multi-modal (images and

text) data associated with successful past ad campaigns (spanning multiple brands) is the

focus of this study.

A key enabler in pursuing the above data driven approach for inferring themes is that of

a dataset of ad creatives spanning multiple advertisers. Such a dataset [1] spanning 64, 000
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ad images was recently introduced in [113], and also used in the followup work [266]. The

collective focus in the above works [113, 266] was on understanding ad creatives in terms of

sentiment, symbolic references and VQA. In particular, no connection was made with the

brands inferred in creatives, and the associated world knowledge on the inferred brands. As

the first work in connecting the above dataset [1] with brands, [181] formulated a keyword

ranking problem for a brand (represented via its Wikipedia page), and such keywords could

be subsequently used as themes for ad creative design. However, the ad images were not used

in [181], and recommended themes were restricted to single words (keywords) as opposed to

longer keyphrases which could be more relevant. For instance, in Figure 4.1, the phrase take

anywhere has much more relevance for Audi than the constituent words in isolation.

In this study, we primarily focus on addressing both the above mentioned shortcomings by

(i) ingesting ad images as well as textual information, i.e., Wikipedia pages of the brands and

text in ad images (OCR), and (ii) we consider keyphrases (themes) as opposed to keywords.

Due to the multi-modal nature of our setup, we propose a VQA formulation as exemplified in

Figure 4.1, where the questions are around the advertised product (as in [266, 113]) and the

answers are in the form of keyphrases (derived from answers in [1]). Brand specific keyphrase

recommendations can be subsequently collected from the predicted outputs of brand-related

VQA instances. Compared to prior VQA works involving questions around an image, the

difference in our setup lies in the use of Wikipedia pages for brands, and OCR features; both

of these inputs are considered to assist the task of recommending ad themes.

4.1.2 Contributions

• We study two formulations for VQA based ad theme recommendation (classification

and ranking) while using multi-modal sources of information (ad image, OCR, and

Wikipedia),

• We show the efficacy of transformer based visual-linguistic representations for our task,

with significant performance lifts versus using separate visual and text representations,
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• We show that using multi-modal information (images and text) for our task is signifi-

cantly better than using only visual or textual information, and

• We report selected ad insights from the public dataset [1].

4.1.3 Visual-linguistic representations and VQA

With an increasing interest in joint vision-language tasks like visual question answering

(VQA) [17], and image captioning [224], there has been lot of recent work on visual-linguistic

representations which are key enablers in the above mentioned tasks. In particular, there

has been a surge of proposed methods using transformers [72], and we cover some of them

below.

In LXMERT [237], the authors proposed a transformer based model that encodes different

relationships between text and visual inputs trained using five different pre-training tasks.

More specifically, they use encoders that model text, objects in images and relationship

between text and images using (image,sentence) pairs as training data. They evaluate the

model on two VQA datasets. More recently ViLBERT [165] was proposed, where BERT [72]

architecture was extended to generate multi-modal embeddings by processing both visual and

textual inputs in separate streams which interact through co-attentional transformer layers.

The co-attentional transformer layers ensure that the model learns to embed the interactions

between both modalities. Other similar works include VisualBERT [145], VLBERT [232],

and Unicoder-VL [144].

In this study, our goal is to focus on leveraging visual-linguistic representations to solve

an ads specific VQA task formulated to infer brand specific ad creative themes. In addition,

VQA tasks on ad creatives tend to relatively challenging (e.g., compared to image captioning)

due to the subjective nature and hidden symbolism frequently found in ads [266]. Another

difference between our work and existing VQA literature is that our task is not limited to

understanding the objects in the image but also the emotions the ad creative would evoke

in the reader. Our primary task is to predict different themes and sentiments that an ad
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Figure 4.2: Cross modality encoder architecture, and subsequent feed forward (FF) network

with softmax layer for the classification objective.

creative image can invoke in its reader, and use such brand specific understanding to help

creative strategists in developing new ad creatives.

4.1.4 Methods

4.1.4.1 Theme recommendation: classification formulation

In our setup, we are given an ad image Xi (indexed by i), and associated text denoted by

Si. Text Si is sourced from: (i) text in ad image (OCR), (ii) questions around the ad,

and (iii) Wikipedia page of the brand in the ad. Given Xi, we represent the image as a

sequence of objects xi = {xi,1, xi,2, ..., xi,n} together with their corresponding regions in the

image ri = {ri,1, ri,2, ..., ri,n} (details in Section 4.1.4.2). The sentence Si is represented

as a sequence of words wi = {wi,1, wi,2, ..., wi,m}. Given the three sequences xi, ri, wi, the

objective is to recommend a keyphrase k̂i ∈ K, where K is a pre-determined vocabulary of

keyphrases. In other words, for k ∈ K, the goal is to estimate the probability P(k|xi, ri, wi),
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and then the top keyphrase k̂i for instance i can be selected as:

k̂i = argmax
k∈K

P(k|xi, ri, wi). (4.1)

The above classification formulation is similar to that for VQA in [266]; the difference is in

the multi-modal features explained below.

4.1.4.2 Text and image embeddings

Text embedding. We first use WordPiece Tokenizer [260] to convert a sentence wi into a

sequence of tokens ti = {ti,1, ti,2, ..., ti,l}. Then, the tokens are projected to vectors in the

embedding layer leading to t̄i (as shown in (4.2)). Their corresponding positions pi are also

projected to vectors leading to p̄i (as shown in (4.3)). Then, t̄i and p̄i are added to form hi

as shown in (4.4) below:

t̄i = Et ∗ ti, (4.2)

p̄i = Ep ∗ pi, (4.3)

hi = 0.5 ∗ (t̄i + p̄i), (4.4)

where Et ∈ R|Vt|×Dt and Ep ∈ R|Vp|×Dp are the embedding matrices. |Vt| and |Vp| are the

vocabulary size of tokens, and token positions. Dt and Dp are the dimensions of token and

position embeddings.

Image embedding. We use bounding boxes and their region-of-interest (RoI) features to

represent an image. Same as [165, 237], we leverage Faster R-CNN [209] to generate the

bounding boxes and RoI features. Faster R-CNN is an object detection tool which identifies

instances of objects belonging to certain classes, and then localizes them with bounding

boxes. Though image regions lack a natural ordering compared to token sequences, the

spatial locations can be encoded (e.g., as demonstrated in [237]). The image embedding

layer takes in the RoI features xi and spatial features ri and outputs a position-aware image
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embedding vi as shown below:

x̄i = Wx ∗ xi + bx,

r̄i = Wr ∗ ri + br,

vi = 0.5 ∗ (x̄i + r̄i), (4.5)

where Wx and Wr are weights, and bx and br are biases.

4.1.4.3 Transformer-based cross-modality encoder

We apply a transformer-based cross-modality encoder to learn a joint embedding from both

visual and textual features. Here, without loss of generality, we follow the LXMERT ar-

chitecture from [237] to encode the cross-modal features. As shown in Figure 4.2, the to-

ken embedding hi is first fed into a language encoder while the image embedding vi goes

through an object-relationship encoder. The cross-modality encoder contains two unidirec-

tional cross-attention sub-layers which attend the visual and textual embeddings to each

other. We use the cross-attention sub-layers to align the entities from two modalities and

to learn a joint embedding ei of dimension De. We follow [72] to add a special token [CLS]

to the front of the token sequence. The embedding vector learned for this special token is

regarded as the cross-modal embedding∗. In terms of query (Q), key (K), and value (V ),

the visual cross-attention(Q,K, V ) = softmax(QK
T

√
d

)V where Q, K, and V are linguistic

features, visual features, and visual features, respectively; d represents the dimension of lin-

guistic features [237]. Textual cross-attention is similar with visual and linguistic features

swapped.

4.1.4.4 Learning and optimization.

Based on the joint embedding for each image and sentence pair, the keyphrase recommen-

dation task can now be tackled with a fully connected layer. Given the cross-modal em-

bedding, the probability distribution over all the candidate keyphrases is calculated by a

∗Recently proposed ViLBERT [165], and VisualBERT [145] can serve as alternatives.
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fully-connected layer and the softmax function as shown below:

P̂(k|xi, ri, wi) = softmax(Wf · ei + bf ) (4.6)

where Wf and bf are the weight and bias of a fully connected layer, and ei is the cross modal

embedding.

4.1.4.5 Theme recommendation: ranking formulation

We also consider solving the theme recommendation problem via a ranking model, where

the model outputs a list of keyphrases in decreasing order of relevance for a given (image,

sentence) pair, i.e., (Xi, Si). We use the state-of-the-art pairwise deep relevance matching

model (DRMM) [93] whose architecture for our theme recommendation setup is shown in

Figure 4.3. It is worth noting that our pairwise ranking formulation can be changed to

accommodate other multi-objective or list-based loss-functions. We chose the DRMM model

since it is not restricted by the length of input, as most ranking models are, but relies on

capturing local interactions between query and document terms with fixed length matching

histograms. Given an (image, sentence, phrase) combination, the model first computes fixed

length matching histogram between cross-modal embedding and the phrase embedding. Each

matching histogram is passed through a multi-layer perceptron (MLP), and the overall score

is aggregated with a query term gate which is a softmax function over all terms in that query.

The ranking segment of the model takes two inputs: (i) cross-modal embedding for

(Xi, Si) (as explained in Section 4.1.4.3), and (ii) the phrase embedding. It then learns to

predict the relevance of the given phrase with respect to the query (image, sentence) pair.

Given that our input documents (i.e., keyphrases) are short, we select top θ interactions

in matching histogram between the cross-modal embedding, and the keyphrase embedding.

Mathematically, we denote the (image, sentence) pair by just the imgq below. Given a triple

(imgq, p+, p−) where p+ is ranked higher than p− with respect to image-question, the loss

function is defined as:

L(imgq, p+, p−; θ) = max(0, 1− s(imgq, p+) + s(imgq, p−)), (4.7)
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Figure 4.3: DRMM for the keyphrase ranking objective.

where s(imgq, p) denotes the predicted matching score for phrase p, and the query image-

question pair.

4.1.5 Experiments

In this section, we go over the public dataset used in our experiments, classification and

ranking results, and inferred insights.

4.1.5.1 Dataset

We rely on a publicly available data set [113, 1] that consists of 64, 000 advertisement cre-

atives, spanning 700 brands across 39 categories, among which 80% is training set and 20%

is test set. We select 10% data from the training set for validation. Crowdsourcing was

used to gather following labels for each creative: (i) topics (39 types), (ii) questions and

answers as reasons for buying from the brand depicted in the creative (∼3 per creative). In
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addition to the existing annotations, we add the following annotations: (i) brand present in

a creative, (ii) Wikipedia page relevant to the brand-category pair in a creative, and (iii) the

set of target themes (keyphrases) associated with each image. In particular, for (i) and (ii)

we follow the method in [181], and for (iii) the keyphrases (labels) were extracted from the

answers using the position-rank method [42, 83] for each image. The number of keyphrases

was limited to at most 5 (based on the top keyphrase scores returned by position-rank). We

define a score for each keyphrase. All five keyphrases have scores of 1.0, 0.9, 0.8, 0.7, and 0.6

in order †.

The minimum, mean and maximum number of images associated with a brand are 1, 19

and 282 respectively. The top three categories of advertisements are clothing, cars and beauty

products with 7798, 6496 and 5317 images respectively. Least number of advertisements are

associated with gambling (32), pet food (37) and security and safety services (47) respectively.

Additional statistics around the dataset (i.e., keyphrase lengths, images per category, and

unique keyphrases per category) are shown in Figures 4.4, 4.5, and 4.6.

2
0.7%
3
1.8%
4
4.4%

5
93.1%5 

(93.1%)

4 
(4.4%)

3 (1.8%)
2 (0.7%)

(a) #keyphrases per instance

3
3.1%
2
20.0%

1
77.0%

2 
(20.0%)

3 (3.1%)

1 
(77.0%)

(b) #words per keyphrase

Figure 4.4: Frequency and length distribution of keyphrases.

4.1.5.2 Evaluation Metrics

We use different evaluation metrics to measure performance of our classification and ranking

models. We use three different metrics to evaluate the performance of each model. []a)

†The annotated ads dataset can be found at https://github.com/joey1993/ad-themes.
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Figure 4.5: Distribution of images per category.

Figure 4.6: Distribution of unique phrases per category.

accuracy, similarity, VQA recall (as defined below) to evaluate our proposed method to

evaluation classification and b) precision (P@K), recall (R@K), and normalized cumulative

discounted gain [118] (NDCG@K) to evaluate our model with ranking formulation.

Classification metrics. We rely on accuracy, text similarity and set-intersection based

recall to evaluate model performance.

• Accuracy. We predict the keyphrase with the highest probability for each image and

match it with the labels (ground truth keyphrases) for the image. We use the score of

the matched phrase as the accuracy. If no labels match for a sample, the accuracy is

0. We average the accuracy scores over all the test instances to report test accuracy.

• Similarity: Accuracy neglects the semantic similarity between the predicted phrase

and the labels. For example, a predicted keyphrase “a great offer” is similar to one

of the labels, “great sale”, but will gain 0 for accuracy. So we calculate the cosine
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similarity [96] between the embeddings of the predicted keyphrase and each label.

Then we multiply the similarity scores with each label’s score and keep the maximum

as the final similarity score for the sample.

• VQA Recall@3: we use Recall at 3 (RV QA@3) as an evaluation metric for the classi-

fication task (essentially like the VQA formulation in [266]). For each test instance i,

the ground truth is limited to top 3 keyphrases leading to set K∗i . From the classifica-

tion model’s predictions the top 3 keyphrases are chosen leading to set K̂i. RV QA@3 is

simply
|K̂i∩K∗i |

3
.

Ranking metrics. We use the same evaluation metrics from prior work [181], mainly

precision (P@K), recall (R@K), and NDCG@K [118] to evaluate the proposed ranking model.

It is worth noting that recall is computed differently for evaluating ranking and classification

models proposed in this work. Formally, given a set of queries Q = {q1 · · · qn}, set of phrases

Di labeled relevant for each query qi and the set of relevant phrases Dik retrieved by the

model for qi at position k, we define R@K = 1
N
·∑N

i=1
|Dik|
|Di| .

4.1.5.3 Implementation details

For the classification model, we set the number of object-relationship, language, and cross-

modality layers as 5, 9, 5, and leverage pre-trained parameters from [237]. We fine-tune

the encoders with our dataset for 4 epochs. The learning rate is 5e−5 (adam optimizer),

and the batch size is 32. We also set Dt, Dp, and De equal to 768. For the similarity

evaluation, we average the GloVe [200] embeddings of all the words in a phrase to calculate

the phrase embedding. For the DRMM model (ranking formulation), we used the MatchZoo

implementation [5], with 300 for batch size, 10 training epochs, 10 as the last layer’s size, and

learning rate of 1.0 (adadelta optimizer). We combine textual data from different sources in

a consistent order separated by a [SEP] symbol before feeding them into the encoder.
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Figure 4.7: Performance lifts across different categories after using text features.

4.1.5.4 Results

For different sets of multi-modal features, the performance results are reported in Table 4.1

(for classification) and Table 4.2 (for ranking) respectively. The presence of Wikipedia and

OCR text gives a significant lift over using only the image. Both classification and ranking

metrics show the same trend in terms of feature sets.

Table 4.1 shows that linguistic features dramatically lift the performance by 103%, 5%,

and 6% in accuracy, similarity, and RV QA@3, compared to the performance of the model

trained only with visual features while only using linguistic features (Q+W+O) causes a big

drop in all the performances. It occurs that the OCR features bring more performance lift,

compared to the Wiki. We think knowing more about the brand with the Wikipedia pages

is beneficial to recommend themes to designers [181] while the written texts on the images

(OCR) are sometimes more straightforward for recommendations. In addition, as reported

in Table 4.1 (non cross-modal), using separate text and image embeddings (obtained from

the model in Figure 4.2) is inferior in performance compared to the cross-modal embeddings.

We notice that the accuracy scores are comparatively low; this reflects the difficult nature

of understanding visual ads [113].

In Table 4.2, we observe very similar patterns: OCR features bring more benefits to
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Table 4.1: Classification performance with different features.

features accuracy (%) similarity (%) RV QA@3

I 10.05 58.05 0.447

I×Q 12.18 58.26 0.450

I×(Q+W) 19.01 60.12 0.467

I×(Q+O) 19.50 60.34 0.470

I×(Q+W+O) 20.40 60.95 0.473

Q+W+O 13.39 60.13 0.450

non cross-modal 18.65 60.68 0.460

Table 4.2: Ranking performance with different features.

Features
Precision Recall NDCG

@5 @10 @5 @10 @5 @10

I 0.150 0.126 0.161 0.248 0.158 0.217

I×Q 0.152 0.124 0.158 0.259 0.162 0.227

I×(Q+W) 0.154 0.130 0.160 0.271 0.161 0.234

I×(Q+O) 0.174 0.137 0.182 0.287 0.185 0.254

I×(Q+W+O) 0.183 0.141 0.191 0.294 0.198 0.265

ranking than Wikipedia pages. We notice that in P@10 and R@5, only using image feature

(I) achieves a better score compared to adding the question features. This may indicate

that the local interactions in DRMM are not effective with short questions, but favor longer

textual inputs such as OCR and Wikipedia pages.

4.1.5.5 Insights

Figure 4.7 shows the performance lifts in accuracy and similarity metrics per category (where

lift is defined as ratio of improvement to baseline result without using text features in the
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keyphrases:

friends (1),

fun (0.9),

lot (0.8),

use (0.7),

messaging (0.6).

image ID: 5/88215 accuracy (I) = 0, accuracy (I+W+O+Q) = 1

query

Figure 4.8: The ad image on the left is a sample in the public dataset [1], and the ground

truth keyphrases with scores are as shown.

classification task). As shown, multiple categories, e.g., public service announcement (PSA)

ads around domestic violence and animal rights benefit from the presence of text features;

this may be related to the hidden symbolism [266] common in PSAs, where the text can

help clarify the context even for humans. Also, similarity and accuracy metrics do not have

the same trend in general. Along the lines of inferring themes from past ad campaigns,

and assisting strategists towards designing new creatives, we show an example based on

our classification model in Figure 4.8. In general, a strategist can aggregate recommended

keyphrases across a brand or product category, and use them to design new creatives.

4.1.6 Conclusion

In this study, we make progress towards automating the inference of themes (keyphrases)

from past ad campaigns using multi-modal information (i.e., images and text). The proposed

method can increase diversity in ad campaigns (and potentially reduce ad fatigue), reduce

end-to-end design time, and enable faster exploratory learnings from online ad campaigns

by providing multiple themes per brand (and multiple images per theme via stock image

libraries).
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4.2 Pronunciation-attentive Contextualized Pun Recognition

4.2.1 Motivation

During the last decades, social media has promoted the creation of a vast amount of

humorous web contents [188]. Automatic recognition of humor has become an impor-

tant task in the area of figurative language processing, which can benefit various down-

stream NLP applications such as dialogue systems, sentiment analysis, and machine trans-

lation [171, 22, 90, 33, 40, 274]. However, humor is one of the most complicated behaviors

in natural language semantics and sometimes it is even difficult for humans to interpret.

In most cases, understanding humor requires adequate background knowledge and a rich

context.

Puns are a form of humorous approaches using the different meanings of identical words

or words with similar pronunciations to explain texts or utterances. There are two main

types of puns. Homographic puns rely on multiple interpretations of the same word. As

shown in Table 4.3, the phrase all right means good condition or opposite to left ; the word

reaction means chemical change or action. The two meanings of the same expression are

consistent with its context, which creates a humorous pun in both sentences when there is a

clear contrast between two meanings. On the other hand, heterographic puns take advantage

of phonologically same or similar words. For example, the word pairs sale and sail, weak

and week in Table 4.3 have the same or similar pronunciations. The sentences are funny

because both words fit the same context. Understanding puns is a big fish to fry for deep

comprehension of complex semantics.

These two forms of puns have been studied in literature from different angles. To rec-

ognize puns in a sentence, word sense disambiguation techniques (WSD) [187] have been

employed to identify the equitable intention of words in utterances [198]. External knowl-

edge bases such as WordNet [178] have been applied in determining word senses of pun

words [191]. However, these methods cannot tackle heterographic puns with distinct word

spellings and knowledge bases that only contain a limited vocabulary. To resolve the issues
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Homographic Puns

1. Did you hear about the guy whose whole left side was cut off? He’s all right now.

2. I’d tell you a chemistry joke but I know I wouldn’t get a reaction.

Heterographic Puns

1. The boating store had its best sail (sale) ever.

2. I lift weights only on Saturday and Sunday because Monday to Friday are weak (week) days.

Table 4.3: Examples of homographic and heterographic puns.

of sparseness and heterographics, the word embedding techniques [176, 199] provide flexible

representations to model puns [112, 115, 45]. However, a word may have different meanings

regarding its contexts. Especially, an infrequent meaning of the word might be utilized for

creating a pun. Therefore, static word embeddings are insufficient to represent words. re-

placing a word with another word with the same or similar pronunciation as examples shown

in Table 4.3. Therefore, to recognize puns, it is essential to model the association between

words in the sentence and the pronunciation of words. Despite existing approaches attempt

to leverage phonological structures to understand puns [76, 117], there is a lack of a general

framework to model these two types of signals in a whole.

In this work, we propose Pronunciation-attentive Contextualized Pun Recognition (PCPR)

to jointly model the contextualized word embeddings and phonological word representations

for pun recognition. To capture the phonological structures of words, we break each word

into a sequence of phonemes as its pronunciation so that homophones can have similar

phoneme sets. For instance, the phonemes of the word pun are {P, AH, N}. In PCPR, we

construct a pronunciation attentive module to identify important phonemes of each word,

which can be applied in other tasks related to phonology. We jointly encode the contextual

and phonological features into a self-attentive embedding to tackle both pun detection and

location tasks.
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4.2.2 Contributions

• To the best of our knowledge, PCPR is the first work to jointly model contextualized

word embeddings and pronunciation embeddings to recognize puns. Both contexts and

phonological properties are beneficial to pun recognition.

• Extensive experiments are conducted on two benchmark datasets. PCPR significantly out-

performs existing methods in both pun detection and pun location. In-depth analyses also

verify the effectiveness and robustness of PCPR.

• We release our implementations and pre-trained phoneme embeddings‡ to facilitate future

research.

4.2.3 Methods

4.2.3.1 Problem Statement

Suppose the input text consists of a sequence of N words {w1, w2, · · · , wN}. For each

word wi with Mi phonemes in its pronunciation, the phonemes are denoted as R(wi) =

{ri,1, ri,2, · · · , ri,Mi
}, where ri,j is the j-th phoneme in the pronunciation of wi. These

phonemes are given by a dictionary. In this work, we aim to recognize potential puns in

the text with two tasks, including pun detection and pun location, as described in the fol-

lowing.

Task 1: Pun Detection. The pun detection task identifies whether a sentence contains a

pun. Formally, the task is modeled as a classification problem with binary label yD.

Task 2: Pun Location. Given a sentence containing at least a pun, the pun location task

aims to unearth the pun word. More precisely, for each word wi, we would like to predict a

binary label yLi that indicates if wi is a pun word.

In addition to independently solving the above two tasks, the ultimate goal of pun recog-

nition is to build a pipeline from scratch to detect and then locate the puns in texts. Hence,

‡Codes can be found at https://github.com/joey1993/pun-recognition.
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Figure 4.9: The overall framework of PCPR.

we also evaluate the end-to-end performance by aggregating the solutions for two tasks.

4.2.3.2 Framework Overview

Figure 4.9 shows the overall framework of the proposed Pronunciation-attentive Contextualized

Pun Recognition (PCPR). For each word in the input text, we first derive two continuous

vectors, including contextualized word embedding and pronunciation embedding, as repre-

sentations in different aspects. Contextualized word embeddings derive appropriate word

representations with consideration of context words and capture the accurate semantics in

the text. To learn the phonological characteristics, each word is divided into phonemes while

each phoneme is projected to a phoneme embedding space, thereby obtaining pronunciation

embeddings with the attention mechanism [25]. Finally, a self-attentive encoder blends con-

textualized word embeddings and pronunciation embeddings to capture the overall semantics

for both pun detection and location.

4.2.3.3 Contextualized Word Embeddings

The context is essential for interpreting a word in the text. Hence, we propose to apply con-

textualized word embeddings to derive word representations. In the framework of PCPR, any

contextualized word embedding method, such as BERT [72], ELMo [202], and XLNet [265],
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can be utilized. Here, we choose BERT to derive contextualized word embeddings without

loss of generality.

BERT deploys a multi-layer bidirectional encoder based on transformers with multi-head

self-attention [248] to model words in the text after integrating both word and position

embeddings [233]. As a result, for each word, a representative contextualized embedding

is derived by considering both the specific word and all contexts in the document. Here

we denote TCi as the dC-dimensional contextualized word embedding for the word wi. In

addition, BERT contains a special token [CLS] with an embedding vector in BERT to

represent the semantics of the whole input text.

4.2.3.4 Pronunciation Embeddings

To learn the phonological characteristics of words, PCPR models the word phonemes. For

each phoneme ri,j of the word wi, we project ri,j to a dP -dimensional embedding space as a

trainable vector ui,j to represent its phonological properties.

Based on the phoneme embeddings of a word, we apply the attention mechanism [25] to

simultaneously identify important phonemes and derive the pronunciation embedding T Pi .

Specifically, the phoneme embeddings are transformed by a fully-connected hidden layer to

measure the importance scores αPi as follows:

vi,j = tanh(FP (ui,j)),

αPi,j =
vᵀi,jvs∑
k v

ᵀ
i,kvs

,

where FP (·) is a fully-connected layer with dA outputs and dA is the attention size; vs is

a dA-dimensional context vector that estimates the importance score of each pronunciation

embedding. Finally, the pronunciation embeddings T Pi can be represented as the weighted

combination of phoneme embeddings as follows:

T Pi =
∑
j

αi,jui,j.
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Moreover, we can further derive the joint embedding T Ji to indicate both word semantics

and phonological knowledge for the word wi by concatenating two different embeddings as

follows:

T Ji =
[
TCi ;T Pi

]
.

Note that the joint embeddings are dJ -dimensional vectors, where dJ = dC + dP .

4.2.3.5 Pronunciation-attentive Contextualized Embedding with Self-attention

For the task of pun detection, understanding the meaning of input text is essential. Due

to its advantages of interpretability over convolutional neural network [136] and recurrent

neural network [221], we deploy the self-attention mechanism [248] to capture the overall se-

mantics represented in the joint embeddings. For each word wi, the self-attention mechanism

estimates an importance vector αSi :

FS(T ) = Softmax(
TT ᵀ

√
d

)T,

αSi =
exp(FS(T Ji ))∑
j exp(FS(T Jj ))

,

where FS(·) is the function to estimate the attention for queries, and d is a scaling factor to

avoid extremely small gradients. Hence, the self-attentive embedding vector is computed by

aggregating joint embeddings:

T J[ATT] =
∑
i

αSi · T Ji .

Note that the knowledge of pronunciations is considered by the self-attentive encoder but not

the contextualized word encoder. Finally, the pronunciation-attentive contextualized repre-

sentation for the whole input text can be derived by concatenating the overall contextualized

embedding and the self-attentive embedding:

T J[CLS] =
[
TC[CLS];T

J
[ATT]

]
.

Moreover, each word wi is benefited from the self-attentive encoder and is represented by a

joint embedding:

T Ji,[ATT] = αSi · T Ji .

77



4.2.3.6 Inference and Optimization

Based on the joint embedding for each word and the pronunciation-attentive contextualized

embedding for the whole input text, both tasks can be tackled with simple fully-connected

layers.

Pun Detection. Pun detection is modeled as a binary classification task. Given the overall

embedding for the input text T J[CLS], the prediction ŷD is generated by a fully-connected layer

and the softmax function:

ŷD = argmax
k∈{0,1}

FD(T J[CLS])k,

where FD(·) derives the logits of two classes in binary classification.

Pun Location. For each word wi, the corresponding self-attentive joint embedding T Ji,[ATT]

is applied as features for pun location. Similar to pun detection, the prediction ŷLi is gener-

ated by:

ŷLi = argmax
k∈{0,1}

FL(T Ji,[ATT])k,

where FL(·) derives two logits for classifying if a word is a pun word.

Since both tasks focus on binary classification, we optimize the model with cross-entropy

loss.

4.2.4 Experiments

In this section, we describe our experimental settings and explain the results and interpre-

tations. We will verify some basic assumptions of this work: (1) the contextualized word

embeddings and pronunciation embeddings are both beneficial to the pun detection and

location tasks; (2) the attention mechanism can improve the performance.
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Table 4.4: Homographic and Heterographic Pun Data statistics.

Dataset
SemEval

PTD
Homo Hetero

Examples w/ Puns 1,607 1,271 2,423

Examples w/o Puns 643 509 2,403

Total Examples 2,250 1,780 4,826

4.2.4.1 Experiment settings

Experimental Datasets. We conducted experiments on the SemEval 2017 shared task 7

dataset§ (SemEval) [180] and the Pun of The Day dataset (PTD) [264]. For pun detection,

the SemEval dataset consists of 4, 030 and 2, 878 examples for pun detection and location

while each example with a pun can be a homographic or heterographic pun. In contrast,

the PTD dataset contains 4, 826 examples without labels of pun types. Table 4.4 further

shows the data statistics. The two experimental datasets are the largest publicly available

benchmarks that are used in the existing studies. SemEval-2017 dataset contains punning

and non-punning jokes, aphorisms, and other short texts composed by professional humorists

and online collections. Hence, we assume the genres of positive and negative examples should

be identical or extremely similar.

Evaluation Metrics. We adopt precision (P), recall (R), and F 1-score [222, 204] to com-

pare the performance of PCPR with previous studies in both pun detection and location.

More specifically, we apply 10-fold cross-validation to conduct evaluation. For each fold, we

randomly select 10% of the instances from the training set for development. To conduct fair

comparisons, we strictly follow the experimental settings in previous studies [281, 45] and

include their reported numbers in the comparisons.

Implementation Details. For data pre-processing, all of the numbers and punctuation

marks are removed. The phonemes of each word are derived by the CMU Pronouncing Dictio-

§http://alt.qcri.org/semeval2017/task7/
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nary¶. We initialize the phoneme embeddings by using the fastText word embedding [175]

trained on Wikipedia articles‖ crawled in December, 2017. The PCPR is implemented in

PyTorch while the fused Adam optimizer [123] optimizes the parameters with an initial

learning rate of 5 × 10−5. The dropout and batch size are set as 10−1 and 32. We follow

BERT (BASE) [72] to use 12 Transformer layers and self-attention heads. To clarify, in PCPR,

tokens and phonemes are independently processed, so the tokens processed with WordPiece

tokenizer [260] in BERT are not required to line up with phonemes for computations. To

deal with the out-of-vocabulary words, we use the output embeddings of the first WordPiece

tokens as the representatives, which is consistent with many state-of-the-art named entity

recognition approaches [72, 139]. We also create a variant of PCPR called CPR by exploit-

ing only the contextualized word encoder without considering phonemes to demonstrate the

effectiveness of pronunciation embeddings.

To tune the hyperparameters, we search the phoneme embedding size dP and the attention

size dA from {8, 16, 32, 64, 128, 256, 512} as shown in Figure 4.10. For the SemEval dataset,

the best setting is (dP = 64, dA = 256) for the homographic puns while heterographic puns

favor (dP = 64, dA = 32). For the PTD dataset, (dP = 64, dA = 32) can reach the best

performance.

Baseline Methods. For the SemEval dataset, nine baseline methods are compared in

the experiments, including Duluth [198], JU CES NLP [205], PunFields [174], UWAV [246],

Fermi [115], and UWaterloo [249]. While most of them extract complicated linguistic features

to train rule based and machine learning based classifiers. In addition to task participants,

Sense [45] incorporates word sense representations into RNNs to tackle the homographic

pun location task. The CRF [281] captures linguistic features such as POS tags, n-grams, and

word suffix to model puns. Moreover, the Joint [281] jointly models two tasks with RNNs

and a CRF tagger.

For the PTD dataset, four baseline methods with reported performance are selected for

¶http://svn.code.sf.net/p/cmusphinx/code/trunk/cmudict/
‖https://dumps.wikimedia.org/enwiki/latest/
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Figure 4.10: Pun location performance over different phoneme embedding sizes dP and

attention sizes dA on the SemEval dataset.

comparisons. MCL [173] exploits word representations with multiple stylistic features while

HAE [264] applies a random forest model with Word2Vec and human-centric features. PAL [56]

trains a convolutional neural network (CNN) to learn essential feature automatically. Based

on existing CNN models, HUR [57] improves the performance by adjusting the filter size and

adding a highway layer.

4.2.4.2 Experimental Results

Pun Detection. Table 4.5 presents the pun detection performance of methods for both

homographic and heterographic puns on the SemEval dataset while Table 4.6 shows the

detection performance on the PTD dataset. For the SemEval dataset, compared to the nine

baseline models, PCPR achieves the highest performance with 3.0% and 6.1% improvements of

F 1 against the best among the baselines (i.e. Joint) for the homographic and heterographic

datasets, respectively. For the PTD dataset, PCPR improves against HUR by 9.6%. Moreover,

the variant CPR beats all of the baseline methods and shows the effectiveness of contextualized

word embeddings. In addition, PCPR further improves the performances by 2.3% and 1.1%

with the attentive pronunciation feature for detecting homographic and heterographic puns,

respectively. An interesting observation is that pronunciation embeddings also facilitate
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Table 4.5: Performance of detecting and locating puns on the SemEval dataset.

Model

Homographic Puns Heterographic Puns

Pun Detection Pun Location Pun Detection Pun Location

P R F 1 P R F 1 P R F 1 P R F 1

Duluth 78.32 87.24 82.54 44.00 44.00 44.00 73.99 86.62 68.71 - - -

JU CSE NLP 72.51 90.79 68.84 33.48 33.48 33.48 73.67 94.02 71.74 37.92 37.92 37.92

PunFields 79.93 73.37 67.82 32.79 32.79 32.79 75.80 59.40 57.47 35.01 35.01 35.01

UWAV 68.38 47.23 46.71 34.10 34.10 34.10 65.23 41.78 42.53 42.80 42.80 42.80

Fermi 90.24 89.70 85.33 52.15 52.15 52.15 - - - - - -

UWaterloo - - - 65.26 65.21 65.23 - - - 79.73 79.54 79.64

Sense - - - 81.50 74.70 78.00 - - - - - -

CRF 87.21 64.09 73.89 86.31 55.32 67.43 89.56 70.94 79.17 88.46 62.76 73.42

Joint 91.25 93.28 92.19 83.55 77.10 80.19 86.67 93.08 89.76 81.41 77.50 79.40

CPR 91.42 94.21 92.79 88.80 85.65 87.20 93.35 95.04 94.19 92.31 88.24 90.23

PCPR 94.18 95.70 94.94 90.43 87.50 88.94 94.84 95.59 95.22 94.23 90.41 92.28

homographic pun detection, implying the potential of pronunciation for enhancing general

language modeling. All improvements of PCPR and CPR over baseline methods are statistically

significant at a 95% confidence level in paired t-tests.

Pun Location. Table 4.5 shows that the proposed PCPR model achieves highest F 1-scores

on both homographic and heterographic pun location tasks with 10.9% and 15.9% incredible

increment against the best baseline method. The improvement is much larger than that on

pun detection task. We posit the reason is that predicting pun locations relies much more on

the comparative relations among different tokens in one sentence. As a result, contextualized

word embeddings acquire an enormous advantage. By applying the pronunciation-attentive

representations, different words with similar pronunciations are linked, leading to a much

better pinpoint of pun word for the heterographic dataset. We notice that some of the

baseline models such as UWaterloo, UWAV and PunFields have poor performances. These

methods consider the word position in a sentence or calculate the inverse document frequency

of words. We suppose such rule-based recognition techniques can hardly capture the deep
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Table 4.6: Performance of pun detection on the PTD dataset.

Model P R F 1

MCL 83.80 65.50 73.50

HAE 83.40 88.80 85.90

PAL 86.40 85.40 85.70

HUR 86.60 94.00 90.10

CPR 98.12 99.34 98.73

PCPR 98.44 99.13 98.79

Table 4.7: Performance of pipeline recognition in the SemEval dastaset.

Model
Homographic Puns Heterographic Puns

P R F 1 P R F 1

Joint 67.70 67.70 67.70 68.84 68.84 68.84

PCPR 87.21 81.72 84.38 85.16 80.15 82.58

semantic and syntactic properties of words.

Pipeline Recognition. The ultimate goal of pun recognition is to establish a pipeline

to detect and then locate puns. Table 4.7 shows the pipeline performances of PCPR and

Joint, which is the only baseline with reported pipeline performance for recognizing the

homographic and heterographic puns in the SemEval dataset. Joint achieves suboptimal

performance and the authors of Joint attribute the performance drop to error propagation.

In contrast, PCPR improves the F 1-scores against Joint by 24.6% and 20.0% on two pun

types.

4.2.4.3 Ablation Study and Analysis

Ablation Study. To better understand the effectiveness of each component in PCPR, we

conduct an ablation study on the homographic puns of the SemEval dataset. Table 4.8
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Table 4.8: Ablation study on different features of PCPR for homographic pun detection on

the SemEval dataset.

Model P R F 1

PCPR 90.43 87.50 88.94

w/o Pre-trained Phoneme Emb. 89.37 85.65 87.47

w/o Self-attention Encoder 89.17 86.42 87.70

w/o Phonological Attention 89.56 87.35 88.44

Table 4.9: A case study of the model predictions for the pun location task of SemEval 2017.

Sentence Pun CPR PCPR

In the dark? Follow the son. son - son

He stole an invention and then told patent lies. patent patent lies

A thief who stole a calendar got twelve months. got - -

shows the results on taking out different features of PCPR, including pre-trained phoneme

embeddings, the self-attentive encoder, and phonological attention. Note that we use the

average pooling as an alternative when we remove the phonological attention module. As a

result, we can see the drop after removing each of the three features. It shows that all these

components are essential for PCPR to recognize puns.

Attentive Weights Interpretation. Figure 4.12 illustrates the self-attention weights αSi of

three examples from heterographic puns in the SemEval dataset. The word highlighted in the

upper sentence (marked in pink) is a pun while we also color each word of the lower sentence

in blue according to the magnitude of its attention weights. The deeper colors indicate higher

attention weights. In the first example, busy has the largest weight because it has the most

similar semantic meaning as harried. The barber also has relatively high weights. We suppose

it is related to hairy which should be the other word of this double entendre. Similar, the zoo

is corresponded to lion while phone and busy indicate line for the pun. Moreover, boating
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Figure 4.11: Pun recognition performance over different text lengths for homographic and

heterographic puns on the SemEval dataset.

confirms sail while store supports sale. Interpreting the weights out of our self-attentive

encoder explains the significance of each token when the model detects the pun in the

context. The phonemes are essential in these cases because they strengthen the relationship

among words with distant semantic meanings but similar phonological expressions.

Sensitivity to Text Lengths. Figure 4.11 shows the performance of pun detection and

location over different text lengths for homographic and heterographic puns in the SemEval

dataset. For both tasks, the performance gets higher when the text lengths are longer

because the context information is richer. Especially in the pun detection task, we observe

that our model requires longer contexts (more than 20 words) to detect the homographic

puns. However, shorter contexts (less than 10 words) are adequate for heterographic pun

detection, which indicates the contribution from phonological features. In short, the results

verify the importance of contextualized embeddings and pronunciation representations for

pun recognition.

Case Study and Error Analysis. Table 6.2 shows the results of a case study with the

outputs of CPR and PCPR. In the first case, the heterographic pun comes from the words son

and sun. CPR fails to recognize the pun word with limited context information while the

phonological attention in PCPR helps to locate it. However, the pronunciation features in
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A busy barber is quiet harried.
<latexit sha1_base64="kfBMZz+Jzk/uX3yV8s7kFSdRdls=">AAACCnicbVC7TsNAEDyHVwgvAyXNQYREZdmhgDJAQxkk8pCCFZ3P6+SU89ncnZGsKDUNv0JDAUK0fAEdf8MlcQEJI600mtnV7k6Qcqa0635bpaXlldW18nplY3Nre8fe3WupJJMUmjThiewERAFnApqaaQ6dVAKJAw7tYHg18dsPIBVLxK3OU/Bj0hcsYpRoI/XswwscZCrHAZEBSMwUvs8YaDwgUjIIHYx7dtV13CnwIvEKUkUFGj376y5MaBaD0JQTpbqem2p/RKRmlMO4cpcpSAkdkj50DRUkBuWPpq+M8bFRQhwl0pTQeKr+nhiRWKk8DkxnTPRAzXsT8T+vm+no3B8xkWYaBJ0tijKOdYInueCQSaCa54YQKpm5FVMTAqHapFcxIXjzLy+SVs3xTp3aTa1avyziKKMDdIROkIfOUB1dowZqIooe0TN6RW/Wk/VivVsfs9aSVczsoz+wPn8ASQKZWg==</latexit>

A busy barber is quiet harried.
<latexit sha1_base64="kfBMZz+Jzk/uX3yV8s7kFSdRdls=">AAACCnicbVC7TsNAEDyHVwgvAyXNQYREZdmhgDJAQxkk8pCCFZ3P6+SU89ncnZGsKDUNv0JDAUK0fAEdf8MlcQEJI600mtnV7k6Qcqa0635bpaXlldW18nplY3Nre8fe3WupJJMUmjThiewERAFnApqaaQ6dVAKJAw7tYHg18dsPIBVLxK3OU/Bj0hcsYpRoI/XswwscZCrHAZEBSMwUvs8YaDwgUjIIHYx7dtV13CnwIvEKUkUFGj376y5MaBaD0JQTpbqem2p/RKRmlMO4cpcpSAkdkj50DRUkBuWPpq+M8bFRQhwl0pTQeKr+nhiRWKk8DkxnTPRAzXsT8T+vm+no3B8xkWYaBJ0tijKOdYInueCQSaCa54YQKpm5FVMTAqHapFcxIXjzLy+SVs3xTp3aTa1avyziKKMDdIROkIfOUB1dowZqIooe0TN6RW/Wk/VivVsfs9aSVczsoz+wPn8ASQKZWg==</latexit>

I phoned the zoo but the lion was busy.
<latexit sha1_base64="o+8bhmVCom+04auGjuI6lKzh2vY=">AAACEHicbZC7TkJBEIb34A3xhlrabCRGK3IOFloSbbTDRC4JELJnGWDDnt2T3TkaJDyCja9iY6ExtpZ2vo3LpVBwkk2+/P9MZucPYyks+v63l1paXlldS69nNja3tneyu3sVqxPDocy11KYWMgtSKCijQAm12ACLQgnVsH859qt3YKzQ6hYHMTQj1lWiIzhDJ7Wyx9c07mkFbYo9oA9a0zDBCUvn03tmnWAH+VY25+f9SdFFCGaQI7MqtbJfjbbmSQQKuWTW1gM/xuaQGRRcwijTSCzEjPdZF+oOFYvANoeTg0b0yClt2tHGPYV0ov6eGLLI2kEUus6IYc/Oe2PxP6+eYOe8ORQqThAUny7qJJKipuN0aFsY4CgHDhg3wv2V8h4zjKPLMONCCOZPXoRKIR+c5gs3hVzxYhZHmhyQQ3JCAnJGiuSKlEiZcPJInskrefOevBfv3fuYtqa82cw++VPe5w8vy5wN</latexit>

I phoned the zoo but the lion was busy.
<latexit sha1_base64="o+8bhmVCom+04auGjuI6lKzh2vY=">AAACEHicbZC7TkJBEIb34A3xhlrabCRGK3IOFloSbbTDRC4JELJnGWDDnt2T3TkaJDyCja9iY6ExtpZ2vo3LpVBwkk2+/P9MZucPYyks+v63l1paXlldS69nNja3tneyu3sVqxPDocy11KYWMgtSKCijQAm12ACLQgnVsH859qt3YKzQ6hYHMTQj1lWiIzhDJ7Wyx9c07mkFbYo9oA9a0zDBCUvn03tmnWAH+VY25+f9SdFFCGaQI7MqtbJfjbbmSQQKuWTW1gM/xuaQGRRcwijTSCzEjPdZF+oOFYvANoeTg0b0yClt2tHGPYV0ov6eGLLI2kEUus6IYc/Oe2PxP6+eYOe8ORQqThAUny7qJJKipuN0aFsY4CgHDhg3wv2V8h4zjKPLMONCCOZPXoRKIR+c5gs3hVzxYhZHmhyQQ3JCAnJGiuSKlEiZcPJInskrefOevBfv3fuYtqa82cw++VPe5w8vy5wN</latexit>

The boating store had its best sail ever.
<latexit sha1_base64="xfuWqSeWPFQyKRKtnygUbE7UgA4=">AAACEnicbVC7TgMxEPSFVwivA0oaiwgJmuguFFBG0FAGKS8piSKfs0ms+OyTvYcURfkGGn6FhgKEaKno+BucRwEJI1kaz+yuvRMlUlgMgm8vs7a+sbmV3c7t7O7tH/iHRzWrU8OhyrXUphExC1IoqKJACY3EAIsjCfVoeDv16w9grNCqgqME2jHrK9ETnKGTOv5FZQA00u6m+tSiNkAHrEsFWhqBRWqZkBTchELHzweFYAa6SsIFyZMFyh3/q9XVPI1BIZfM2mYYJNgeM4OCS5jkWqmFhPEh60PTUcVisO3xbKUJPXNKl/a0cUchnam/O8YstnYUR64yZjiwy95U/M9rpti7bo+FSlIExecP9VJJUdNpPrQrDHCUI0cYN8L9lfIBM4yjSzHnQgiXV14ltWIhvCwU74v50s0ijiw5IafknITkipTIHSmTKuHkkTyTV/LmPXkv3rv3MS/NeIueY/IH3ucPBS2dDQ==</latexit>

The boating store had its best sail ever.
<latexit sha1_base64="xfuWqSeWPFQyKRKtnygUbE7UgA4=">AAACEnicbVC7TgMxEPSFVwivA0oaiwgJmuguFFBG0FAGKS8piSKfs0ms+OyTvYcURfkGGn6FhgKEaKno+BucRwEJI1kaz+yuvRMlUlgMgm8vs7a+sbmV3c7t7O7tH/iHRzWrU8OhyrXUphExC1IoqKJACY3EAIsjCfVoeDv16w9grNCqgqME2jHrK9ETnKGTOv5FZQA00u6m+tSiNkAHrEsFWhqBRWqZkBTchELHzweFYAa6SsIFyZMFyh3/q9XVPI1BIZfM2mYYJNgeM4OCS5jkWqmFhPEh60PTUcVisO3xbKUJPXNKl/a0cUchnam/O8YstnYUR64yZjiwy95U/M9rpti7bo+FSlIExecP9VJJUdNpPrQrDHCUI0cYN8L9lfIBM4yjSzHnQgiXV14ltWIhvCwU74v50s0ijiw5IafknITkipTIHSmTKuHkkTyTV/LmPXkv3rv3MS/NeIueY/IH3ucPBS2dDQ==</latexit>

Figure 4.12: Visualization of attention weights of each pun word (marked in pink) in the

sentences. A deeper color indicates a higher attention weight.

some cases can mislead the model to make wrong predictions. For example, patent in the

second sentence is a homographic pun word and has several meanings, which can be found

with the contextual features. Besides, the phonemes in lies are ubiquitous in many other

words like laws, thereby confusing the model. In the last case, got is a widely used causative

with dozens of meanings so that the word is hard to be recognized as a pun word with its

contextual and phonological features.

4.2.5 Conclusions

In this work, we propose a novel approach, PCPR, for pun detection and location by leveraging

a contextualized word encoder and modeling phonemes as word pronunciations. Moreover,

we would love to apply the proposed model to other problems, such as general humor recog-

nition, irony discovery, and sarcasm detection, as the future work.

4.3 Acknowledgment

Section 4.1 and Section 4.2 are versions of [277] and [274]. Section 4.1 introduces a work dur-

ing my summer internship at Yahoo Research. I want to thank my colleagues for contributing

to the papers.

86



CHAPTER 5

Few-shot Attribute Extraction from Semi-structured

Web Documents

In this chapter, we introduce our work on few-shot attribution extraction: given a web page,

extracting an object along with various attributes of interest (e.g. price, publisher, author,

and genre for a book). We propose a novel method, Simplified DOM Trees for Attribute

Extraction (SimpDOM) to model the problem as a tree node tagging task. The key insight

is to learn a contextual representation for each node in the DOM tree where the context

explicitly takes into account the tree structure of the neighborhood around the node.

5.1 Motivation

The World Wide Web contains vast amounts of information in a semi-structured format.

Translating this information into structured knowledge has long been an important re-

search goal [53, 102, 278]. Extracting structured objects with relevant attributes from

semi-structured HTML can power applications including large-scale knowledge base/graph

construction [75, 259], e-commerce product search [38, 102], and personalized recommenda-

tion [253]. Attribute extraction from web pages is complicated by the semi-structured data

format, noisy page contents, complex formatting, and imperfect alignment of the source and

visual representations. Whereas unstructured texts can easily be modeled as a sequence [162],

web pages demand more sophisticated techniques.

In this work, we focus on the problem of extracting structured objects with a given

target schema (like a book, such as in Figure 5.1, to extract attributes of interest like {title,
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Harry Potter and 
the Sorcerer's Stone
by J.K. Rowling

Harry Potter's life is miserable. His 
parents are dead and he's stuck with his 
heartless relatives, who force him to live 
in a tiny closet under the stairs ...more

ISBN 10:               059035342X 
ISBN 13:               9780590353427
Publisher:             Scholastic Paperbacks
Publication Date:  1999
Binding:                Softcover                                     

<body>

<h1>
Harry Potter and the 

Sorcerer’s Stone

<div>

by

J.K. Rowling
…

<tr>

<td>

ISBN 13:

<td>

9780590353427

<tr>

<td>

Publisher:

<td>

Scholastic Paperbacks
…

Title

Author

ISBN13

Publisher

Seed Websites

Transferable 
Extraction Model

Unseen Websites
Web Page Dom Tree Task

Figure 5.1: Learning a transferable model based on HTML DOM trees to extract attributes

from unseen websites of various domains.

author, isbn13, publisher}) using a small amount of labeled data (e.g. a few websites). We

consider two challenging scenarios in this work, (i) intra-domain few-shot extraction, where

the training data consists of a few labeled seed websites from a given domain and the task is

to extract the structured object from unseen websites in the same domain; (ii) cross-domain

few-shot extraction, where the training data consists of a few labeled seed websites from

a given domain (say A) and additional labeled websites from a different domain (say B)

and the task is to extract structured objects from unseen websites in domain A. The key

difference in the cross-domain setting is the availability of additional labeled websites from

a different domain. At first glance, one may wonder why training data about one domain

(say books) might help an extraction model on a completely unrelated domain (say cars).

The experimental evidence in this work suggests that this is indeed helpful. We believe this
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(b) job-Dice (c) book-Bookdepository(a) job-Techcentric

Figure 5.2: Graph visualization of the DOM node neighborhood.

is because the model is able to take advantage of this additional data to learn transferable

contextual representations for the nodes. Practically, this is of significant value: the task

of building each successive extractor is made easier by leveraging the websites labeled for

previous tasks.

Our proposed SimpDOM model builds a rich representation for each node in the DOM tree

by focusing on contextual features. This representation is then used to train a classifier to

decide which attribute type the node belongs to. A key insight in this work is an algorithm

to identify “friend” and “partner” nodes that are a particularly valuable context signal. For

instance in Figure 5.1, we notice that the closest text node to “J. K. Rowling” contains

information “by” which means “J. K. Rowling” is likely to be the author of this book.

Knowing that the node containing “by” is a critical part of the contextual clue a human

might rely on to determine that “J. K. Rowling” is the author of this book.

Summarizing node contexts using simplified neighborhood representations can allow us

to leverage website-invariant features like semantically informative expressions and domain-

invariant clues such as the co-occurrence of multiple attribute values. Visualizing the neigh-

bor relationship of DOM nodes for three websites from two domains in figure 5.2 shows that

in all three cases the nodes that contain attribute values are close to one another. One
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explanation for this clustering is to draw readers’ attention.

5.2 Contributions

• To the best of our knowledge, this is the first work to learn contextual representations

for DOM tree nodes in a web page by leveraging the local tree structure.

• We are the first to present the cross-domain, few-shot attribute extraction task and

demonstrate that it results in improved performance compared to the intra-domain

setting.

• Extensive experiments show that SimpDOM significantly outperforms the SOTA method

by 1.44% (F1 score), and the out-of-domain knowledge helps beat the SOTA by a

further 1.37%.

• We open-source our implementations∗ to provide a testbed and facilitate future research

in this direction.

There’s a rich history of related work in this space which we address in the next section.

In particular, we distinguish our work from the literature on wrapper induction [131, 185, 23]

which relies on the fact that many websites are created from Document Object Model (DOM)

tree [94] templates. These techniques have two drawbacks: 1) They typically require a

labeled example for each site in the target domain to induce a wrapper for other pages on

that site, 2) The wrappers yield work well for exact copies of the DOM structure but can

be brittle in the face of minor structural variation or web page evolution over time [195].

Thus considerable human effort is required to periodically update templates. Our approach,

SimpDOM eschews wrapper induction and learns attribute extraction models from a limited

amount of annotated data that are capable of generalizing to web sites not present in the

training data.

∗The codes can be found at https://github.com/google-research/google-research/tree/master/

simpdom.
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Figure 5.3: The overall architecture of SimpDOM.

5.3 Problem Formulation and Approach

In this section, we formally define the problem and introduce the outline of our proposed

method, SimpDOM.

5.3.1 Few-shot attribute extraction from semi-structured websites

We tackle the problem of extracting structured objects from unseen websites. Each domain

V has a set of websites. Each website W is composed of a collection of detailed pages which

share a similar template. This is a fairly typical assumption since most such web pages are

built by instantiating an HTML template with item details that are actually stored in an

underlying database.

Attribute Extraction. Given a set of attributes of interest for the target domain, the task

at hand is to extract a value (when present) for each attribute from each web page. We
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<body>

<h1> <div>

Harry 
Potter .. by

…

<html>

J . K . Rowling

<font> <div>

<span>

<div>

Harry Potter's life is 
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<tr>

<td> <td>

ISBN 13: 9780590353472

<div>
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<div>

……

<img>

Trimmed
Branches

❌

…Target Node

Friend Partner

Figure 5.4: We extract the partner (by) and friends for each node by trimming unrelated

branches.

make the simplifying assumption that one node can correspond to at most one pre-defined

attribute type, consistent with prior work [102]. We formulate the attribute extraction as a

node tagging task. Given a detailed page p with a set of variable nodes X, we aim to learn a

model to classify each node x ∈ X into one of the given attributes (e.g. title, author, isbn13,

publisher) or none representing that this node does not contain any attribute values.

Few-shot Intra-domain Extraction.

Given a set of annotated seed websites {W a
1 ,W

a
2 , ...,W

a
i } from domain V , we aim to learn a

model M to extract attributes from a larger set of unseen websites {W u
1 ,W

u
2 , ...,W

u
j } from

the same domain.

Few-shot Cross-domain Extraction.

Given a set of annotated seed websites {W a
1 ,W

a
2 , ...,W

a
i } from domain V1, we aim to learn

a model M to extract attributes from a larger set of unseen websites {W u
1 ,W

u
2 , ...,W

u
j }
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from the same domain. However, in this setting, we also have access to annotated websites

{W a′
1 ,W

a′
2 , ...,W

a′

k } from domain V2, where V 2 6= V1.

5.3.2 Approach Overview

Figure 5.3 shows the overall framework of the proposed SimpDOM model for the few-shot

attribute extraction task. First, we extract context features for each node called friend and

parent nodes. Textual features corresponding to each node, its friends, and parents are then

fed into a text encoder to generate a dense semantic embedding. We augment this with

discrete features built from markup information such as XPath and leaf node types. We

then add the relative position of each node as a global feature for the extraction task. The

combined node embedding is used for predicting the type of a node. In the intra-domain

scenario, we directly apply a multi-class classifier to the node embedding and output the at-

tribute type probability distribution. In the cross-domain scenario, the attribute sets differ

from domain to domain. Therefore, we have to alter the inference strategy to binary clas-

sification to achieve a matching probability for each attribute type. We select the attribute

with the highest probability as the prediction.

Each page has a DOM tree T which contains a variable node set X and a fixed node set

Y , where text contents are stored, and also a set of non-text nodes. Fixed nodes remain the

same across different detailed pages on the same website (boilerplate like the site’s name,

navigation elements, etc.) while variable nodes may contain content specific to the object

being described on the page. Without loss of generality, we enforce the constraint that the

fixed nodes are always mapped to none.

5.4 Node Encoder and Classifier

The node encoder consists of three components: a module to extract friend and partner

nodes from the DOM tree, the text encoder, and a discrete feature module.
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5.4.1 Friend and Partner Nodes

Given a node x in the DOM tree, we define two kinds of nodes partner and friends that

constitute the “friend circle” for the node. The whole DOM tree is a collection of nodes

that originate from a unique starting node called the root. Recall that the set of nodes A

on the path from root to node x (not including x) are ancestors of node x. The friends of

x denotes a set of text nodes XF such that for each xf ∈ XF , the distances from both xf

and x to their lowest common ancestor a ∈ A is no more than a constant N . We compute

the distance by counting the number of edges on the path. The partner xp of x is a special

friend node for which x and xp are the only two text nodes in the tree that originate from

their lowest common ancestor. Note that each node has at most one partner in the DOM

tree while it could have zero or multiple friends. Usually, partner xp is the closest friend

to x in the DOM tree. The intuition behind defining partner and friend nodes is simple –

while real-world DOM trees can be extremely complicated, most of the context for a node

is present in DOM nodes that are either friends, and when there’s a partner, it contains

particularly important context. In Figure 5.5, we plot a common subtree structure (a) and

its three possible variants (b,c,d). We simplify and normalize the three variants to (a) in

order to extract the friend circle features.

For each variable node x ∈ X, we decode its XPath information to record the K clos-

est ancestors of x. For instance, if the XPath of x is “/body/tr/td/”, we consider both

“/body/tr/” and “/body/” as the ancestor of x. Conversely, we can easily obtain all the

descendants of each ancestor node to construct the candidate set for retrieving the partner

and friends. By limiting the size of K, we can narrow down the search area in the tree such

that the noisy textual features from distant branches can be efficiently trimmed, as shown

in Figure 5.4.

In the extraction process, we keep all the basic HTML element tags like ¡tr¿ and ¡td¿

while remove the formatting and style tags such as ¡strong¿ and ¡font¿†. With partner and

†We refer the reader to the HTML tag categories described at https://www.w3schools.com/TAGS/ref_

byfunc.asp.
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Figure 5.5: Subtree skeletons of web page DOMs including a common structure (a) and its

three possible variants (b), (c) and (d).

friends extracted from the DOM tree for each node x, we feed the three sets of textual features

separately into the text encoder as described in section 5.4.2 to generate three representations

ex, ep, and ef which are all dw-dimensional vectors. We derive the joint semantic embedding

es by simply concatenating the three representations as follows:

es = [ex; ep; ef ] .

Note that the joint embedding is a 3dw-dimensional vector.

5.4.2 Text Encoder

Node x contains a sequence of text S1 = [w1, w2, ..., wL1], where wi ∈ W and L1 denotes

the word sequence length. We can easily split each word into a sequence of characters

S2 = [c1, c2, ..., cL2], where ci ∈ C and L2 is the character sequence length. W and C are

vocabularies of words and characters. We employ a hierarchical LSTM-CNN text encoder

to encode the character-level and word-level features.
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We notice that the attribute values usually contain useful morphological patterns in the

character-level semantics [148]. For example, (aa’bb ft) and (aa-bb ft) are two common

patterns of height attribute in the nbaplayer domain. Their character-level representation

can be very important. Therefore, we leverage a Convolutional Neural Network to encode

the character-level embeddings (dimension dc) of each word w, resulting in hcw. We simply

concatenate hcw with its word-level representation gw retrieved from external pretrained word

embeddings: hw = [gw;hcw].

The LSTM [105] has been widely used as the unit of Recurrent Neural Network for

learning the latent representation of sequence data [156]. Therefore, we feed the latent

word representations [hw1 , hw2 , ..., hwL1
] into a bi-directional LSTM network, resulting in

ex =
[
hforwardw ;hbackwardw

]
.

Similarly, we can achieve the semantic representations for the node’s partner and friends,

ep and ef .

5.4.3 Discrete Feature Module

Xpath embeddings. Markup features such as XPath can be very useful for node tagging.

An XPath of a DOM node “/html/body/tr/td/” can be seen as a sequence of HTML tags

[¡html¿, ¡body¿, ¡tr¿, ¡td¿]. We learn a separate bi-directional LSTM to get the dense rep-

resentation expath of dimension dxpath for each XPath sequence such that it can make use of

all the meaningful tags in the sequence.

Leaf node type embeddings. The tag type of the DOM leaf node such as “¡h1¿” can also

be meaningful. “¡h1¿” means the node is likely to be the title of the page, highly correlating

with the name of a nbaplayer or the title of a book. We collect the vocabulary set of the

HTML tags and randomly initialize an embedding eleaf of dimension dleaf for each of them.

Position embeddings. We also leverage the relative position of each node x as a discrete

feature. This global information can benefit the task. For example in the auto domain, the

model usually lies on the top of the page. We apply depth-first-search to traverse the tree
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and get the occurrence position posx of each node. Then we compute its relative position

via d posx
maxx{posx}e. Similarly, a random embedding epos of dimension dpos is initialized for each

position.

Semantic similarity. We notice that for each node x the text in the partner node xp can

help determine x’s attribute type and modeling the semantic relation between the text in

xp and the attribute types allows us to best leverage this data. Specifically, we compute the

cosine similarity‡ between the partner embedding ep and each attribute embedding eai to

model their semantic relations, which results in a semantic similarity vector ecos of dimension

M , where M denotes the number of pre-defined attribute types.

Upon achieving these discrete features, we concatenate them into a vector ed = [expath; eleaf ; epos; ecos]

of dimension dxpath+dleaf+ dpos+M .

5.4.4 Inference and Optimization

We design different inference strategies for the two scenarios. Under the intra-domain sce-

nario, the node embedding is connected to a multi-layer perceptron (MLP) for multi-class

classification, as illustrated below:

en = [es; ed]

h = MLP(en),h ∈ RM+1.

where M + 1 denotes the number of pre-defined attribute types plus a none type.

Under the cross-domain scenario, we notice that the MLP layer for multi-class classifi-

cation can no longer be used for different domains which have different sizes of attribute

sets. Therefore, we alter the inference strategy to binary classification. Specifically for each

attribute type, we concatenate the node embedding en to a randomly initialized attribute

embedding eai of dimension da. We then feed it to a separate MLP and compute a score hi

to denote the probability of this attribute type:

ebi = [en; eai ] , 1 ≤ i ≤M + 1

‡We compute the scores via cosine similarity (ep, eai
) =

ep·eai

|ep||eai
| .
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hi = MLP(ebi),hi ∈ R

Under both scenarios, we lastly apply the softmax function to normalize h and select the

largest as the prediction ŷ:

pi =
ehi∑M+1
j=1 ehj

; ŷ = argmax
i

pi.

The loss function optimizes the cross-entropy between the true labels y and the normal-

ized probabilistic scores p.

loss = −
|X|∑
n=1

M+1∑
m=1

ym,n log pm,n

5.5 Experiments

In this section, we first introduce the dataset and evaluation metrics. We also explain the

implementation details to guarantee the reproducibility of our method. Then, a collection of

baseline models are introduced to compare with our model under the intra-domain few-shot

extraction scenario. We also conduct a series of ablation studies to answer the following

questions: (i) What are the contributions from each set of features? (ii) Will sequence

modeling work well on DOM tree nodes? (iii) What is the performance of different word

embedding strategies? Lastly, we evaluate the effectiveness of the out-of-domain knowledge

under the cross-domain few-shot extraction scenario.

5.5.1 Dataset

We rely on a public data set, SWDE [102] that consists of more than 124,000 web pages from

80 websites of 8 domains to train and evaluate the proposed model. Detailed statistics are

shown in Table 5.1. Each domain consists of 10 websites and contains 3 to 5 attributes of

interest. We notice that the book and job domains have the most variable nodes on average,

roughly three times the number of variable nodes in the auto and university domains.

In the intra-domain few-shot experiments, we follow the methodology in FreeDOM [148]
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Table 5.1: SDWE Dataset Statistics.

Domain #Sites #Pages #Var. Nodes Attributes

auto 10 17,923 130.1 model, price, engine, fuel

book 10 20,000 476.8 title, author, isbn13, pub, date

camera 10 5,258 351.8 model, price, manufacturer

job 10 20,000 374.7 title, company, location, date

movie 10 20,000 284.6 title, director, genre, mpaa

nbaplayer 10 4,405 321.5 name, team, height, weight

restaurant 10 20,000 267.4 name, address, phone, cuisine

university 10 16,705 186.2 name, phone, website, type

to select k seed websites as the training data and use the remaining 10 − k websites as the

test set. For example, when k = 2, we build 10 training sets by picking 10 permutations from

all the 2-seed-website combinations such as (auto, book), (book, camera), ..., and (university,

auto). The corresponding test set for the first training set is the remaining 8 websites from

camera to university. Note that in this few-shot extraction task, none of the pages in the

10 − k websites have been visited in the training phase. This setting is abstracted from

the real application scenario where only a small set of labeled data is provided for specific

websites and we aim to infer the attributes on a much larger unseen website set.

In the cross-domain few-shot experiments, we leverage one domain as the out-of-domain

knowledge to train a model. Then we conduct the same intra-domain extraction experiments

by loading the checkpoints from the pretrained model for parameter initialization. We create

this experimental setting to enable a broader knowledge transfer across various domains,

which can tackle the scenario where the domain of the existing annotation is inconsistent

with the unseen websites.
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5.5.2 Evaluation Metrics

We evaluate the extraction performance by page-level F1 scores, following the evaluation

metrics from SWDE and FreeDOM [148, 102]. Page-level F1 score is the harmonic mean of

extraction precision and recall in each page. Specifically, we evaluate the predicted attribute

values with the true values for each detailed page. We compute an average F1 score over

all the domains (Table 5.2) to compare with the baselines. We also compute the average F1

score for each domain (Figure 5.6) and each attribute (Figure 5.7) for detailed analysis.

5.5.3 Implementation details

For data pre-processing, we use the open-source LXML library§ to extract DOM tree struc-

tures from each page. Then, we follow the simple heuristic used in [148] to filter nodes

whose values are constant in all pages of a website. Thus most of the noisy page-invariant

textual nodes such as the footer and navigation contents are removed and training speed

is significantly accelerated. We use GloVe pretrained representations [199] to initialize our

word embeddings. Other representations such as character embeddings and attribute em-

beddings are all randomly initialized. We also truncate every node’s text to a maximum of

15 words. We set both maximum edge number N and maximum ancestor number K as 5

for extracting friend circle features and only keep the closest 10 friends for each DOM tree

node by comparing their relative positions on the web page.

We conduct a grid search for all the hyper-parameters. We use 100 for both word em-

bedding size dw and character embedding size dc. We select dpath, dleaf , dpos as 30, 30, 20,

respectively. For the CNN network, we use 50 filters and a kernel size of 3. For the LSTM

network, we set the hidden layer size as 100. The model is implemented in Tensorflow. We

train the model using 15 epochs and a batch size of 32. We apply a dropout mechanism

following the MLP layer to avoid over-fitting issues. The dropout rate is 0.3. We use Adam

as the optimizer with a learning rate of 0.001. It takes less than 30 minutes to finish the

§https://lxml.de/
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complete training and evaluation cycle for each domain with one NVIDIA V100 GPU.

5.5.4 Baseline Models

We compare against several baselines:

Stacked Skews Model (SSM). SSM [46] utilizes expensive hand-crafted features and tree

alignment algorithms to align the unseen web pages with seed web pages. Attribute values

are extracted from each page of the unseen websites. Like our model, this method does not

require visual rendering features.

Rendering-feature Model (Render-full). Render-full [102] employs visual features to

express the distances between node blocks rendered with the web browser. Visual distances

have proven to be a good method to encode the neighboring relationships among nodes [163]

but this method requires the time-consuming rendering process and needs extra memory

space to save the images, CSS, and JavaScript that can easily be out-of-date. Render-full

employs a sophisticated heuristic algorithm to compute the visual distances, which gives the

best performance [102], compared to other variants Render-PL and Render-IP.

Relational Neural Model (FreeDOM-X). FreeDOM leverages a relational neural network to

encode features such as the relative distance and text semantics. This method is composed

of two stages. The first stage model (FreeDOM-NL) learns a dense representation for each

DOM tree node via node-level classification. The relational neural network in the second

stage (FreeDOM-Full) claims to capture the distance and semantic relatedness between pairs

of nodes in the DOM trees. This two-stage model does not rely on visual features but is hard

to deploy in practice. Additionally, only modeling the relatedness between pairs of nodes

neglects the rich structural information in the tree such as the friend circles. We compare

with both FreeDOM-NL and FreeDOM-Full because the single-stage FreeDOM-NL is closer to

our model and FreeDOM-Full achieves the state-of-the-art experimental results.
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Table 5.2: Comparing the extraction performance (F1 score) of five baseline models to our

method SimpDOM using different numbers of seed sites k = {1, 2, 3, 4, 5}.

Model \ #Seed Sites k = 1 k = 2 k = 3 k = 4 k = 5

SSM 63.00 64.50 69.20 71.90 74.10

Render-Full 84.30 86.00 86.80 88.40 88.60

FreeDOM-NL 72.52 81.33 86.44 88.55 90.28

FreeDOM-Full 82.32 86.36 90.49 91.29 92.56

SimpDOM 83.06 88.96 91.63 92.84 93.75

auto university camera movie job book restaurant nbaplayer average

w/o Friend Circle Feat. w/o Discrete Feat. w/ Node Sequence Modeling SimpDOM w/ Out-of-domain Knowledge

Figure 5.6: Ablation study results that demonstrate the contribution from different features

and modules.

5.5.5 Intra-domain Few-shot Extraction Results

Table 5.2 shows the overall comparisons between our model SimpDOM and all four baselines

using different numbers of seed websites. Our model achieves slightly worse performance

when k = 1 while it largely outperforms Render-Full when k = {2, 3, 4, 5}. We can con-

clude that the delicately crafted visual features can capture more patterns in the scenario

where extremely small training data exists. However, they are not as transferable as the

rich semantic features extracted from our simplified DOM trees as k increases. Our method
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Figure 5.7: Per-attribute F1 performance comparisons between SimpDOM w/ and w/o friend

circle features.

also consistently outperforms the state-of-the-art method FreeDOM-Full (an average im-

provement of 1.44% over all values of k) and achieves a 3.47%-10.54% improvement over the

single-stage approach, FreeDOM-NL.

We plot the detailed performance of SimpDOM on different domains in figure 5.8. In

general, the performance improves as k increases. This is not surprising because more

training data yields better coverage of all possible instances. We also observe that the

rate of performance growth slows down and sometimes the F1 scores of some domains (e.g.

nbaplayer and restaurant) even fluctuate as more data is added to the training set (i.e.

as k increases). We surmise that the reason for this behavior is that the model becomes

more robust and less new knowledge can be transferred from annotated websites to unseen

websites in these domains.
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Figure 5.8: Comparing the extraction performance (F1 score) of different numbers of seed

sites k = {1, 2, 3, 4, 5} per domain.

5.5.6 Ablation Study

In Figure 5.6, we present an ablation study on different features of SimpDOM, including

discrete features and friend circle features. We find that both sets of features improve

the attribute extraction performance dramatically. For instance, the friend circle features

increase the F1 score of the nbaplayer domain from 82.18% to 91.37% and the discrete

features increase the performance on the book domain by 8.51%. However, restaurant is a

special case where the score drops when we employ either of the two feature sets. We believe

the node texts in some attribute values such as name and address are distinguishable enough

and adding more features just adds more noise to the classification. This is also corroborated

by Figure 5.7, which explains the detailed performance change when adding the friend circle

features per attribute. We observe that the improvement on height of nbaplayer is significant.

The nodes containing height value always share a similar pattern xx-yy¶ with some other

nodes on the same page. With the friend circle features, we find that weight is always a

¶For instance, NBA player Kobe Bryant’s height (6-6) has the same value as his shooting record (6-6)

in one game. It is impossible to distinguish two nodes by the text.
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Table 5.3: Comparing different word embedding approaches when k = 3.

Embedding Approach F1 Performance Change

GloVe Embedding Trainable 91.63 0

GloVe Embedding Fixed 91.25 -0.38

Randomized Word Embedding 89.66 -1.97

Contextualied Embedding 81.83 -9.80

friend node of height, which makes height distinguishable from other nodes with similar text

patterns. The extraction of some attributes such as company in the job domain and address

in the restaurant domain was not improved. We believe this is caused by the comparatively

diverse positions of these attributes in different websites.

Another interesting ablation study is done with an additional sequence modeling layer‖

which is commonly applied to sequence labeling tasks such as named entity recognition

on plain text [134, 263]. We first obtain a sequence of node embeddings before the MLP

classifier where all the nodes are from one web page. Then a new representation can be

achieved from the sequence model for each node. The same classifier is used to predict the

attribute type with the updated node representation. As shown in Figure 5.6 (marked as

“w/ Node Sequence Modeling”), the additional sequence modeling layer fails to optimize the

node representations for all the domains especially those with more variable nodes such as

nbaplayer and job. We suppose that the information from all other DOM tree nodes can

be selectively attended to the current node with this mechanism, however this introduces

more noise than useful knowledge. This further demonstrates the importance of utilizing the

structure of the DOM tree to eliminate noise from distant and irrelevant nodes.

We also compare different embedding approaches for encoding textual features. As shown

in Table 5.3, we conduct experiments to test the randomized word embedding, fixed GloVe

word embedding, and trainable GloVe word embedding. In the trainable setting we can con-

‖We utilize the Transformer [248] as the sequence modeling layer. LSTM is another option.
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Figure 5.9: Heatmap denoting the performance improvements per F1 score from the out-of-

domain knowledge (k = 3).

tinue to optimize the parameters in the embedding layer, initialized from GloVe, achieving

the best performance. We think that a specific “web-language” model can serve the web

information extraction tasks better. Drawing on recent developments in contextualized lan-

guage models, we also tried using BERT [72]∗∗ to generate the contextualized embeddings

but it decreases the performance by 9.8%. This is not surprising given that the context

in each node is very limited†† and the huge size of parameters (110M in BERT-BASE) for

fine-tuning can easily cause an over-fitting problem.

5.5.7 Cross-domain Few-shot Extraction Results

We plot a heatmap in Figure 5.9 to denote the performance improvements from the out-of-

domain knowledge. Each entry in the heatmap relates to a pair of domains, where the domain

∗∗We choose BERT without loss of generality. It can be replaced by its alternatives like ELMo [202] or

XLNet [265].
††On average, each variable node contains only 2-5 words in different domains.
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in the upper case is used as the out-of-domain knowledge while the domain in the lower case is

used to train and test the model. We do not plot the scores in the diagonal because domains

cannot serve as their own out-of-domain resource. One interesting observation is that this

heatmap is roughly symmetric with respect to the diagonal, which demonstrates a mutual

relationship between pairs of domains. For instance, job and movie, book and nbaplayer,

restaurant and book can all significantly improve the extraction performance for each other,

while auto and job, camera and nbaplayer seem to be irrelevant to each other. We show the

performance of each domain achieved by using the most helpful out-of-domain knowledge in

Figure 5.6. We achieve the highest average F1 score of 93% over all the domains (k = 3),

which improves the performance of our intra-domain experiment by a further 1.37% (absolute

value). This evidence proves our assumption that a better contextual node representation

can be learned from additional knowledge, which is extremely helpful in the scenario where

only a few labeled data are provided for specific domains.

5.6 Conclusion

In this work, we present a simple but effective method, SimpDOM, for the attribute extraction

task. SimpDOM uses the tree structure of the neighborhood around a node to learn a contextual

representation for each node in the DOM tree. This method does not require the expensive

generation of visual features and is more robust than wrapper induction.
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CHAPTER 6

Social Media Information Extraction for Pandemic

Surveillance

COVID-19 has caused lasting damage to almost every domain in public health, society, and

economy. In this chapter, we present a work that (i) takes advantage of the social media

data to construct heterogeneous knowledge graphs based on the events and relationships;

(ii) conducts time series prediction to provide both short-term and long-term forecasts of

the confirmed cases and fatality at the state-level in the United States and simultaneously

discovers risk factors for COVID-19 interventions.

6.1 Motivation

Over 200 countries and territories have been deeply impacted by the outbreak of the coro-

navirus disease 2019 (COVID-19). As of 2021 May, a total of 164 million cases and 3.4

million deaths were reported all over the world∗. It is critical to forecast the short-term and

long-term trends of the epidemic, to help governments and health organizations determine

the prevention strategies and help researchers understand the transmission characteristics of

the virus.

Modeling the COVID-19 pandemic is challenging. Previous studies present three types

of disease transmission approaches to explain and model the pandemic, which are expo-

nential growth models [160], self-exiting branching process [128], and compartment mod-

els (e.g., Susceptible-infected-resistant (SIR) [121], Susceptible-Exposed-Infected-Removed

∗https://covid19.who.int/
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Figure 6.1: Social media users can serve as a “social sensor” for monitoring the pandemic

trend.

(SEIR) [19] and Herd Immunity [81]). However, exponential growth models can only ad-

dress the initial outbreak while self-exiting-branching process and compartment models favor

the development and peak stages [34]. Besides, the pandemic trend varies dramatically across

different locations and times in response to real-time breaking events. To tackle these chal-

lenges, some data-driven approaches [68, 15] that ensembles statistical and machine learning

models emerge for monitoring the confirmed cases, fatality, and hospitalizations. [193, 89]

leverage graph neural networks to incorporate the population mobility data, i.e., how many

people traveled from one place to another, to encode the underlying diffusion patterns into

the learning process. However, these models take into consideration only a small number of

homogeneous features. They are incapable of capturing potential risk factors and identifying

various intervention mechanisms of this new pandemic as well.

As the quarantine life takes over the world and people turn to online platforms for com-

munication and information, social media become more influential than ever [101, 186]. The

vast collections of social media streams can capture local activities (e.g., public gatherings

and vaccination progress) that may affect the transmission of the virus in real-time. Over
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170 million tweets are posted every day in the United States related to observations, behav-

iors, and thoughts of individual users [65]. The social media users can be naturally treated

as robust “social sensors” [119] to unveil the surveillance evidence over time and space. For

example, in Figure 6.1, the severe discussions related to the coming social events such as

“Marathon” and “Parade” may indicate a potential risk of virus spread while some hot hash-

tags like “#StayHome” or “#GetVaccine” may represent the safety awareness of individuals

in the prevailing areas. Over the past decades, researchers have successfully applied social

media data to monitor the earthquakes [213] or air quality [119]. Inspired by these works,

we aim to incorporate social media content to forecast the pandemic.

To this end, we want to answer the following interesting research questions:

• Can social media contents further enhance the short-term and long-term COVID-19

forecasts?

• How to identify potential risk factors from the social media data as these factors may

vary over time and space?

Motivated by them, we collaborate with Twitter and use their COVID-19 stream API service

to crawl large-scale tweets related to COVID-19 based on Twitter’s internal COVID-19

annotations. We propose a novel framework, Social Media enhAnced pandemic suRveillance

Technique (SMART), which is composed of two modules, information extraction module and

time series prediction module [273]. Specifically, in the information extraction process, we

recognize named entities and identify relationships among them from the large-scale tweet

corpora. Based on the entities and relationships, we build a spatial-temporal heterogeneous

knowledge graph. We then propose a Dynamic Graph Neural Network (DGNN) with a

Bidirectional Recurrent Neural Network (Bi-RNN) to forecast pandemic trends and suggest

risk factors for each location.
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6.2 Contributions

• To the best of our knowledge, we are the first to simultaneously detect social events

for pandemic surveillance and suggest the risk factors.

• We propose a novel framework, SMART, for domain-specific information extraction from

social media data and time series prediction on dynamic spatial-temporal graphs. Ex-

tensive experiments show the effectiveness of our approach. We achieve 7.3% and

7.4% improvements from the state-of-the-art methods for confirmed case/fatality pre-

dictions.

6.3 Pandemic Forecast

Epidemic Prediction Models. There are three types of epidemic prediction models in lit-

erature, including exponential growth models [160], self-exiting branching process [128], and

compartment models [211, 19, 103, 30, 129, 219, 121, 26, 183, 39, 104, 81]. The dynamics of in-

fectious diseases are expressed by the compartment models for predicting the epidemic trends

using ordinary differential equations [211]. SIR [121], as the most prevailing compartment

model, segments the population into three parts: Susceptible, Infectious, and Recovered and

express the population flow among them with evolving equations. Later, many cumulative

studies based on SIR emerge, including SEIR [19], SEIS [252], MSEIR [104], SuEIR [280], and

MSIR [183]. In specific, SEIR includes the Exposed compartment and SEIS, MSIR, MSEIR,

SuEIR extend SEIR by taking into account either Immunity or untested/unreported com-

partments. However, as concluded in [34], the exponential growth models can only address

the initial outbreak while self-exiting-branching process and compartment models favor the

development and peak stages. None of these models are expected to be precise and robust

in the long-term pandemic prediction.

Statistical and Machine Learning Models. Researchers also apply statistical time

series prediction models such as ARIMA and PROPHET for COVID-19 pandemic predic-
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Figure 6.2: Overview of the information extraction pipeline on social media data.

tion [130, 167]. ARIMA [43] is an Autoregressive Integrated Moving Average model, relying

on a basic assumption that the future time series are linear aggregations of the past ones.

PROPHET [240] is an additive model that emphasizes seasonal effects so that the model

works better on time series with periodical patterns. [212, 210, 62] aggregate neural net-

works to an Autoregressive model, to enhance inter-region connections or temporal depen-

dencies. However, these models conduct pandemic forecasts highly depending on the trend

and seasonality instincts behind the historical COVID-19 statistics, incapable of incorporat-

ing heterogeneous features. [193, 89, 120] apply graph neural networks to take advantage of

the mobility data across different regions but still cannot detect hidden risk factors for the

pandemic modeling. Therefore, in this study, we propose a social media enhanced pandemic

forecast framework to incorporate the extracted entities and relationships for confirmed

case/fatality prediction with strong interpretability.

6.4 Social Media Enhanced Pandemic Surveillance

Given a large-scale collection of social media data together with the historical confirmed

cases/fatalities and the population mobility statistics, we aim to forecast the pandemic trend

and recognize potential risk factors. The framework of our SMART model consists of two

components: (i) information extraction module including a named entity recognizer and a

relation identifier (as shown in Figure 6.2); (ii) spatial-temporal dynamic graph encoder for
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pandemic trend forecast (as shown in Figure 6.3).

6.4.1 Constructing Dynamic Knowledge Graphs from Social Media Data

We propose a bottom-up solution to extract entities and relations to construct the hetero-

geneous dynamic knowledge graphs.

Named Entity Recognition (NER). NER is a natural language processing (NLP) task

which labels the tokens in a sequence with tags from a desired tag pool. In this work, we

adopt the NER setting to extract entities of interest from the social media data by labeling

the words or phrases in the tweet sentences. As examples in Figure 6.2, we want to recognize

nurse as OCCUPATION, stay home as INDIVIDUAL BEHAVIOR, race as EVENT, and

so on.

Traditional NER approaches [47, 84, 196] heavily rely on expensive and time-consuming

feature engineering including parsing the Part-of-Speech tags of each word and the syntactic

dependency structures of the sentences. Some recent studies [67, 111, 155] incorporate neural

networks with statistical models, such as conditional random fields [133], to improve the

model performance. With deep language models like BERT [72] and RoBERTa [159], the

NER performance can be further improved. Without the loss of generality, we leverage BERT

model to provide contextualized embeddings and learn a supervised named entity recognizer.

To overcome the problem with the nonexistence of annotated tweets as training data, we

collect the benchmark corpora and their annotations for multiple NER tasks, including I2B2-

2010 [69], CORD-NER [255] and MACCROBAT-2018 [50]. Based on those external datasets,

we jointly learn a recognition model to extract entities on the COVID-19 related tweets data.

On average, we extracted 10,040 unique entities of 45 entity types 270k tweets corpus every

day.

Relation Extraction. Given the extracted entities, the next step is to identify the re-

lationships among the entities. Note that we only extract intra-tweet relations. In other

words, we do not predict the relation between entities in different tweets. Existing solu-
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tions [250, 143, 194, 270] formulate the problem as a sequence classification task, given a

textual sequence and the positions of two named entities. Specifically, a multi-class classifi-

cation is conducted to assign a label from a desired set for the relationship. However, this

formulation highly depends on the quality and quantity of the annotated datasets to achieve

satisfactory performance. It is obviously incapable of identifying emerging new relation

types.

To overcome the above challenge, we convert the multi-class prediction task to a binary

classification problem of only identifying the existence of a potential relationship between

any entity pair in each tweet instance. We aggregate datasets from multiple tasks including

Wiki80 [100], I2B2-2012 [235], and MAACROBAT-2018 [50] to create the positive training

data (labeled as ‘True’). In order to achieve balanced training, validation and test datasets,

we apply negative sampling to create the same number of instances with the label ‘False’.

Note that we assume no relation between any two entities exists if the entities were not

annotated. Similarly, we acquire the sequence representations from the fine-tuned BERT

language model and feed them into a binary classification layer for label prediction. During

the inference stage, we enumerate all possible pairs of entities in each tweet and assign binary

labels for them.

Domain-specific Pre-trained Language Model. To tackle domain-specific tasks, such

as Clinical information extraction [271] and Bioinformatics knowledge acquisition [135], re-

cent studies pre-train new language models with large-scale corpora collected from those

domains [140, 13] to learn customized token and sequence representations. Motivated by

these approaches, we leverage all COVID-19 relevant text corpora together with the social

media data to pre-train a CoronaBERT language model with 12 layers of Transformers and

over 110 million parameters, in order to equip our models with powerful input embeddings.

We ceaselessly fine-tune the parameters in CoronaBERT as more COVID-19 stream corpora

become available and release the models on a quarterly basis.

Heterogeneous Knowledge Graph Aggregation. After named entity recognition and

relation extraction, we apply the DBSCAN clustering model [79] to merge semantically
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similar entities for reducing the noises in the entity sets. This step is essential for cleaning the

entities extracted from tweets. For example, “Marathon” and “Marathon:)” are supposed

to be merged and “COVID-19” is indeed the same as “COVID2019”. In specific, we cluster

the entities based on the similarity among their entity embeddings acquired by CoronaBERT.

We assign the node in each cluster with the highest occurrence in tweets as the cluster head.

Other nodes in the same cluster will be replaced by the cluster head.

Based on the clustering results, we aggregate the denoised knowledge pieces into a het-

erogeneous knowledge graph. Two types of nodes exist in the graph, including location

nodes and entity nodes. Here we set the location nodes as the 50 states in the United States

while our methods can be easily extended to the county-level locations or applied to other

countries and regions. Next, we build three types of edges as follows:

• Entity-Entity edges: we add an edge between any two entities if there is a ‘True’

relationship identified.

• Location-Entity edges: we look up the geo-location attribute of the tweet where each

entity is extracted and add an edge between the entity node and the geo-location.

• Location-Location edges: we add an edge between a location pair under two circum-

stances, (i) two locations are adjacent to each other on the US map; (ii) we detected

population transition from one location to another according to the mobility data.

More details of the mobility data are provided in Section 6.5.1.

We build one knowledge graph for each day. Later, knowledge graphs within a certain time

period will be further aggregated for time series prediction, as described in Section 6.4.2.

6.4.2 Time Series Prediction with Dynamic Graph Attention Network

Dynamic graph aggregation. We represent the heterogeneous knowledge graph of the t-

th day as G(t) = (V (t), E(t)) where n = |V (t)| denotes the number of nodes, V (t) = V
(t)
L ∪V

(t)
E ,

where V
(t)
L is the location node set and V

(t)
E is the entity node set. Given a sequence of
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Figure 6.3: Overview of the time series prediction module.

knowledge graphs {G(1), G(2), ..., G(T )} of length T , we aim to predict the COVID-19 courses

including confirmed cases and fatality cases on the day T + l. We regard it as a short-term

prediction when l < 14 or a long-term prediction when l ≥ 14. We formulate the time series

prediction problem as a regression task.

We continue to aggregate the length-T graph sequence into one spatial-temporal graph

GS = (V S, ES) as shown in Figure 6.3. First, we keep all the location nodes from different

times in the period, i.e. V S
L = V

(1)
L ∪ V (2)

L ∪ ... ∪ V (T )
L . On the other hand, we merge entity

nodes of different times, i.e. V S
E = V

(1)
E ∪\t V (2)

E ∪\t ... ∪\t V (T )
E , where ∪\t denotes a time-

unaware set union. For example, the entity node e1 is recognized in the location si on both

time 1 and time 2, but we only keep one e1 in V S
E by connecting e1 to s

(1)
i and s

(2)
i . In

this way, we introduce the inter-time propagation edges to expand the node neighbors along

the temporal dimension so that we can easily model the structural temporal dependencies

among the nodes.
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Node Features. Our pre-trained CoronaBERT is applied to generate the initial semantic

features xsei of dimension de for node i of any type. We also incorporate the historical COVID-

19 statistics xst of dt days ahead of the current time as an extra feature set for location nodes,

resulting in a node feature embedding xi = xsei ||xsti of dimension de + dt, where || denotes a

vector concatenation. Note that we keep the embedding dimensions of location nodes and

entity nodes the same, in order to smooth the graph propagation computation. Hence, we

append a zero vector of length dt at the end of each entity vector.

Dynamic Graph Neural Network. We propose a multi-head DGNN architecture to

perform the graph propagation. We first conduct a linear transformation on the input node

embeddings:

zi,p = Wpxi,

where Wp is a learnable weight matrix; p = {1, ..., H}; H is the number of heads. Then, we

compute a pair-wise un-normalized attention score of an edge between any two neighbors

(two nodes i and j) in the graph:

eij,p = LeakyReLU(wTp (zi,p||zj,p)),

where wp is a learnable weight vector and LeakyReLU [261] is applied as a non-linear trans-

formation. We use the attention score to indicate the importance of a neighbor node in the

message passing process, especially when we interpret the risk entities to each location. A

Softmax is applied to normalize the attention weights to a probability distribution so that

we can easily interpret and compare the importance of all incoming edges,

αij,p =
exp(eij,p)∑

k∈NS(i)∪NE(i) exp(eik,p)
,

where NS(·) and NE(·) denote the sets of neighboring location nodes and entity nodes. We

finally aggregate the embeddings of neighboring nodes. The aggregation is scaled by the
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normalized attention scores. We compute the averaged embeddings over different heads,

x′i = σ

 1

H

H∑
p=1

∑
j∈NS(i)∪NE(i)

αij,pzj,p

 .

Attentive Bi-Recurrent Neural Network. We intend to further encode the tempo-

ral dependencies between the location nodes over times and learn a hidden state of the

overall graph using an Attentive Bi-RNN module. We collect embeddings from the same

location of different times [x
′(1)
i , x

′(2)
i , x

′(T )
i ] and recursively feed them into a Bi-RNN with

Gated Recurrent Units (GRU) [63]. We choose GRU instead of Long Short Term Memory

(LSTM) [105] unit due to its computational efficiency and capability of tackling shorter se-

quences like tweets [64]. The hidden representation of each location in time t is learned from

two directions,
←−
h

(t)
i = GRU(

←−
h

(t+1)
i , x

′(t)
i ),
−→
h

(t)
i = GRU(

−→
h

(t−1)
i , x

′(t)
i ),

h
(t)
i =

←−
h

(t)
i ⊕

−→
h

(t)
i ,

We then aggregate the hidden states with another attention mechanism,

vi =
T∑
t=1

β
(t)
i h

(t)
i , β

(t)
i =

exp(uTh
(t)
i )∑

k exp(uTh
(k)
i )

,

where u denotes a context vector and β
(t)
i are attention scores reflecting the contribution of

the hidden representation in time t.

Learning Objective. We feed the context-aware node representation vi into two layers of

Feed Forward Networks (FFN) and lastly generate a scalar ŷ
(t̄+l)
i representing the predicted

COVID-19 confirmed case or fatality number in l days ahead of time t̄. We compute the loss

with the following Mean-Squared-Error (MSE) objective [215],

L =
1

mn

n∑
t̄=1

m∑
i=1

(y
(t̄+l)
i − ŷ(t̄+l)

i )2,

where m is the number of location nodes and n is the number of days that requires a

prediction.
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Figure 6.4: Comparison between the spatial distributions of US population and the number

of tweets over 20 states.

6.5 Experiments

6.5.1 Datasets

Twitter Stream Data. We collaborate with Twitter and build a real-time tweet crawler to

steadily acquire relevant social media tweets using their COVID-19 streaming API† [169]. In

detail, the streaming API returns real-time tweets related to COVID-19 based on Twitter’s

internal COVID-19 tweet annotation system. The data collected for this study start on

May 15, 2020 and end on April 8, 2021. Figure 6.4 compares the distributions of the US

population and the number of tweets over 20 states. We notice except that New York people

are more passionate about posting COVID-19 related tweets while California people do the

opposite, other states have relatively similar spatial distributions over the population and

number of tweets.

Mobility Data. As [193] conclude a strong relationship between the population transition

†https://developer.twitter.com/en/docs/labs/covid19-stream/api-reference/.
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and regional COVID-19 trends, we also collect the mobility data that describe the population

transition in the United States from SafeGraph‡ for pandemic forecast.

COVID-19 Statistics. We leverage the US state-level COVID-19 statistics gathered by

the New York Times§ based on reports from state and local health agencies for building

the ground truths of pandemic forecasts. We use the statistics of confirmed new cases and

fatalities from May 5, 2020 to April 8, 2021. Note that the start date is the earliest date

when we have Twitter Stream data available. The average new confirmed cases and fatalities

over 50 states are 1788.3 and 28.7 per day while the standard deviations are 3374.8 and 63.5.

California has the highest average number of new confirmed cases (10988.5) and fatalities

(173.4). Vermont has the lowest numbers (60.0 new confirmed cases and 0.5 fatalities).

6.5.2 Experimental Setup and Evaluation Metrics

Following the experimental setup in [193], we train a model with the data from time 1 to

time t̄ and use it to predict the numbers on time t̄+ l¶. We evaluate the model on short-term

(l = {1, 7}) and long-term (l = {14, 28}) predictions. Note that we learn a different model

to predict the cases for time t̄+ li and t̄+ lj, where i 6= j. In the training process, we select

5 data points from the training set as the validation set to identify the best model.

We evaluate the performance of our method by computing the Mean-Absolute-Error

(MAE) [214],

errorMAE =
1

mn

n∑
t̄=1

m∑
i=1

|y(t̄+l)
i − ŷ(t̄+l)

i |,

where m and n denote the numbers of test instances and location nodes. We also follow

[125, 8] to compute the symmetric Mean-Absolute-Percentage-Error (sMAPE) to show the

‡https://www.safegraph.com/.
§https://github.com/nytimes/covid-19-data.
¶For example, if we predict the next-day (i.e., l = 1) case number for date 12-31-2020, we make use of

all the data between 5-15-2020 and 12-31-2020 to build the training set.
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average error rate over times and locations,

errorsMAPE =
1

mn

n∑
t̄=1

m∑
i=1

|y(t̄+l)
i − ŷ(t̄+l)

i |
|y(t̄+l)
i + ŷ

(t̄+l)
i |

.

6.5.3 Baselines

We select three types of baselines and benchmark models to compare to our approach.

Compartment models. As there are a large number of compartment models proposed in

recent days for COVID-19 forecast, we select three of them with the top performance and

complete results in the desired time period from the COVID-19 Forecast Hub‖: JHU IDD-

CovidSP [142], UCLA-SuEIR [280], and RobertWalraven-ESG [251]. In detail, JHU IDD-CovidSP

proposes a modified SEIR compartment model where the time in the Infected compartment

follows an Erlang distribution to produce more realistic infectious periods. RobertWalraven-

ESG is a mathematical model that approximates the SEIR method with a particular skewed

Gaussian distribution. UCLA-SuEIR extends SEIR by explicitly modeling the untested and

unreported compartment. Note that the 1-day-ahead pandemic forecast results are not pro-

vided in the COVID-19 Forecast Hub.

Statistical time series prediction models. Two commonly used statistical models are

compared to our approach: ARIMA and PROPHET. ARIMA [130] is an autoregressive moving

average model, explaining a given time series based on its past values. PROPHET [167] is

a time series prediction model∗∗ where non-linear trends can be fit with seasonality, plus

holiday effects.

Neural network-based models. A simple two-layer LSTM-based neural network (LSTM)

is used for COVID-19 pandemic prediction [62], taking the sequence of case numbers from

the previous week as the input. MPNN [193] is a message passing neural network, building

graphs to aggregate the historical case numbers from the neighboring locations based on

‖The model descriptions and up-to-date predicted results can be found at https://github.com/

reichlab/covid19-forecast-hub.
∗∗https://github.com/facebook/prophet.
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the mobility magnitude. MPNN+LSTM [193] takes advantage of both MPNN and LSTM by jointly

learning the graph propagation and temporal dependencies over case numbers of different

times.

6.5.4 Implementation Details

Information Extraction. We train the named entity recognition and relation extraction

models both for a maximum of 10 epochs. The models are implemented in PyTorch and

we use Adam optimizer [123] to optimize the model parameters. We randomly select 10%

instances from the training set as the validation set to select the optimal models. To avoid

the GPU out-of-memory problem, we filter out tweets with more than 40 words (around

0.17%). In this work, we focus on the information extraction from English tweets so we also

remove the tweets if 90% of the contents are non-English.

Time Series Prediction. We train the model for a maximum of 300 epochs. Early stopping

occurs after 100 epochs. Similarly, we utilize PyTorch to implement the model and leverage

Adam [123] for parameter optimization. Batch normalization [116] and dropout [230] are

applied to the outputs of DGNN and FFN layers to avoid over-fitting. It takes around 8 hours

to finish the complete training and evaluation cycle with one NVIDIA V100 GPU. We employ

grid search to find the optimal hyperparameters of our model. Detailed hyperparameter

values are listed in Table 6.1.

6.5.5 Results

Confirmed Case Forecast. Results of the confirmed case short-term and long-term fore-

casts are shown in Table 6.2. Compared to the best baseline method MPNN+LSTM, our model

improves the average MAE and sMAPE by 7.3% and 2.3%, respectively. The results show

SMART significantly outperforms the compartment models, such as JHU IDD-CovidSP and

UCLA-SuEIR. We think the big gap between our method and the compartment models re-

sults from the serious over-fitting issue in the SEIR model and its extensions. The SEIR
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Table 6.1: Grid-search is used to find the optimal hyperparameters of our model.

Hyperparameter Value

Learning Rate 0.001

Batch Size 4

Dropout Ratio 0.5

Bi-RNN Hidden State Size 64

DGNN Hidden Unit Size 64

Graph Sequence Length T 7

Semantic Feature Dim. de 768

Historical COVID-19 Statistics Feature Dim. dt 7

model tends to assume that the peak would come right after the current data and is especially

weak at predicting the progression at the early pandemic stage [89]. We also notice that

the two statistical time series prediction models perform differently, and ARIMA gets much

lower errors than PROPHET especially in the long-term prediction. This could be because

PROPHET is supposed to work best with time series that have strong seasonal effects which

is obviously not the situation in the COVID historical statistics. It turns out that a sim-

ple linear aggregation over the past case numbers can achieve relatively good performance.

Besides, MPNN gets higher errors compared to its temporal variant, MPNN+LSTM, denoting the

effectiveness of learning the temporal dependencies together with the graph aggregation.

However, solely using LSTM to conduct the pandemic forecast achieves quite inaccurate pre-

dictions. We think it is because sequence modeling approaches like LSTM are unstable to

handle the sequential inputs with sharply changing patterns [193]. For instance, it may be

hard for LSTM to recognize turning points, such as lockdowns and reopens. SMART initially

outperforms other models by a small margin (1-day-ahead forecast) while the improvement

increases as the model predicts on later days. Compared to MPNN+LSTM, SMART achieves the

largest error reduction of 9.5% and 9.4% while forecasting the case numbers in the next 7th

and 14th day. This could be because the ongoing events discussed on social media would
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Table 6.2: Performance of the short-term (1 day & 7 days ahead) and long-term (14 days &

28 days ahead) new confirmed case number forecast.

Confirmed Case
1 day ahead 7 days ahead 14 days ahead 28 days ahead Average

MAE sMAPE MAE sMAPE MAE sMAPE MAE sMAPE MAE sMAPE

JHU IDD-CovidSP - - 1123.721 0.387 1253.138 0.409 1534.643 0.452 1303.834 0.416

RobertWalraven-ESG - - 768.433 0.310 978.533 0.369 2472.093 0.466 1406.353 0.382

UCLA-SuEIR - - 755.365 0.258 1099.761 0.335 1591.006 0.439 1148.711 0.344

ARIMA 604.181 0.200 802.977 0.250 961.297 0.286 1300.487 0.364 917.235 0.275

PROPHET 791.066 0.296 991.049 0.697 1341.798 0.810 2019.242 0.518 1285.789 0.581

LSTM 1262.333 0.393 1248.080 0.381 1235.201 0.357 1204.188 0.347 1237.450 0.369

MPNN 485.520 0.193 567.745 0.213 825.410 0.266 1304.112 0.352 795.697 0.256

MPNN+LSTM 455.677 0.172 523.770 0.209 672.049 0.211 967.123 0.286 654.655 0.220

SMART 430.007 0.163 474.164 0.203 608.984 0.216 913.202 0.279 606.589 0.215

not immediately affect the COVID-19 confirmed case numbers. More precisely, we need 1-2

weeks on average for the newly infected cases to be self-identified, tested and confirmed,

based on our observations.

To observe the detailed forecast performance on every test instance, we plot the smoothed

MAE curve for SMART and three neural network-based baselines (LSTM, MPNN, MPNN+LSTM).

Note that every data point on the curves represents the MAE over all the test instances

before the corresponding date. We observe that an error explosion becomes more and more

clearly visible at the early stage of MPNN. We think MPNN is quite unstable especially when

the training data are limited. In contrast, our SMART model remains stable of all time. In

addition, we observe the average MAE comes to a peak in the middle of January for all

the models. This is consistent with the fact that the new confirmed case numbers in the

US come to a peak at around the same time. We also plot the smoothed sMAPE curve in

Figure 6.6 which shows the sMAPE over the test instances before that date. All the curves

quickly converge as the models obtain enough training instances, denoting the stability of

our method.

Fatality Forecast. We show the results of fatality forecasts in Table6.3. SMART achieves

7.4% and 5.5% lower MAE and sMAPE, compared to the best baseline model MPNN+LSTM.
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Figure 6.5: The comparison between SMART and three neural network-based baselines (LSTM,

MPNN, MPNN+LSTM) on the smoothed MAE curve.
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1 day ahead 7 days ahead 14 days ahead 28 days ahead

Figure 6.6: The comparison of smoothed sMAPE curve of SMART on four forecast tasks.

Among the three compartment models, UCLA-SuEIR performs the best. We surmise that

taking unreported/untested cases leads to better modeling on fatalities. We notice the MAE

of LSTM model is lower than SMART by 2.9% while its sMAPE is higher than SMART by 26.1%.

We believe the LSTM model has been over-fitted to some extremely large or small values

so that a large MAE can be avoided but the sMAPE will explode. Again, we find that

the improvements of SMART on the 7,14-28-day-ahead forecast tasks (7.3%, 9.1%, and 8.7%)

are much more significant than the 1-day-ahead forecast task (3.2%), demonstrating the

long-term advantages of our method.
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Table 6.3: Performance of the short-term (1 day & 7 days ahead) and long-term (14s day &

28 days ahead) new fatality number forecast.

Fatality
1 day ahead 7 days ahead 14 days ahead 28 days ahead Average

MAE sMAPE MAE sMAPE MAE sMAPE MAE sMAPE MAE sMAPE

JHU IDD-CovidSP - - 18.911 0.465 19.851 0.480 24.362 0.516 21.041 0.487

RobertWalraven-ESG - - 15.490 0.452 18.590 0.484 26.179 0.541 20.086 0.492

UCLA-SuEIR - - 14.235 0.429 15.603 0.451 19.064 0.495 16.301 0.458

ARIMA 16.589 0.372 18.649 0.492 22.223 0.437 31.766 0.591 22.307 0.473

PROPHET 19.323 0.423 21.914 0.445 24.469 0.464 29.204 0.500 23.728 0.458

LSTM 18.039 0.423 17.937 0.432 17.770 0.542 17.744 0.531 17.872 0.482

MPNN 12.129 0.356 12.897 0.372 14.871 0.380 19.733 0.434 14.908 0.386

MPNN+LSTM 12.175 0.354 12.785 0.351 14.572 0.379 20.005 0.446 14.884 0.383

SMART 11.783 0.346 11.847 0.331 13.236 0.349 18.263 0.421 13.782 0.362

6.5.6 Ablation Study

We present the ablation study on the 7-day-ahead new confirmed case forecast task to demon-

strate the effectiveness of each module in our framework. We observe similar results on other

forecast tasks. Here we explain the different settings of our model variants as follows.

w/o RE module. Under this setting, we exclude the Entity-Entity edges in the heteroge-

neous knowledge graphs so that we can observe the improvement from our relation extraction

module.

w/o NER module. We continue to exclude the Location-Entity edges to check the contri-

bution of our named entity recognition module. Under this setting, all the edge propagation

between location nodes and entity nodes are eliminated.

w/o Attentive Bi-RNN module. We remove the Attentive Bi-RNN module from our

framework. We alternatively compute an element-wise averaged representation for each lo-

cation node and feed it into the FNN layer for the pandemic forecast.

w/o DGNN module. To verify the contribution of our DGNN module, we remove the

DGNN module but instead recursively feed the sequence of historical COVID-19 statistics

features into the Attentive Bi-RNN units for each location node.
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Table 6.4: Ablation study on the 7-day-ahead forecast task. Similar results can be achieved

from other forecast tasks.

Model MAE Error Lift(%)

SMART 474.164 -

w/o RE module 495.688 +4.3

w/o NER module 518.389 +8.9

w/o Attentive Bi-RNN module 528.025 +10.4

w/o DGNN module 1112.334 +120.8

w/o CoronaBERT Language Model 500.878 +5.6

w/o CoronaBERT Language Model. We also observe the contribution from our pre-

trained CoronaBERT language model by replacing it with a BERT language model (BERT-

BASE) to initialize the semantic representations for each node.

In summary, every component in our framework is proved effective. Removing Entity-

Entity and Location-Entity edges leads to 4.3% and 8.9% error lifts, respectively. When we

jump over the DGNN module, the error dramatically increases, proving the capability of

the heterogeneous graph to encode a rich spatial-temporal representation for each location

node. The Attentive Bi-RNN module also makes a significant improvement of 10.4% on the

forecast performance.

6.5.7 Risk Factor Discovery

To identify the potential location-wise risk factors of the COVID-19 pandemic, we make

use of the normalized attention score αi,j (introduced in Section 6.4.2) which indicates the

contribution of each entity node i when node i’s message is passed to the location node j. For

each location, we first rank all the dates based on the number of confirmed cases in decreasing

order. We then pick the top 20% dates with the biggest numbers from all the dates to build

a high set. Ultimately, we aim at discovering a group of significant entities from the tweets
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Table 6.5: Top-5 risk factors in six different states related to COVID-19 pandemic.

California New York Florida

#1 pharmacists traveler workers

#2 #endthelockdown doctors #stopcovidcorruption

#3 mexico city test results crimes

#4 covid-positive bill gates voting

#5 msm public health #stayconnected

Ohio Hawaii Vermont

#1 golf mental health #endthelockdown

#2 #hydroxychloroquine immigrants rape

#3 #wwg1wgaworldwide surf #wakeupamerica

#4 crush 2ndwave burger

#5 traveler patients sickness

that are used to predict the confirmed cases on the dates from the high set. Specifically,

during each inference process, we retrieve the attention scores of all the Location-Entity

edges for each location node. We then compute a risk score for each (Location, Entity) pair

by averaging the attention scores over all dates in the high set. Finally, the entities with

top-k risk scores for each location can be considered as the risk factors.

Table 6.5 shows the top-5 risk factors of six states: California, New York, Florida, and

Ohio, Hawaii, and Vermont with distinct spatial distributions as shown in Figure 6.4. Some

of the entities can be easily connected with the increasing trend of the COVID-19 pandemic.

For example, when people are seeking for ending the lock down in California and Vermont,

or staying connected to each other in Florida, they are likely to go out, inevitably facilitating

the spread of the virus. When people pay more attention to the local doctor resource or

public health condition in New York, the peak of the pandemic should not be far away.

However, it may be hard to interpret some entities like msm without the contexts since msm

can be the abbreviation of either mainstream media or master of science in management.
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Table 6.6: Top-5 risk factors under four different entity categories related to COVID-19

pandemic.

HASHTAG SIGN OR SYMPTOM

#1 #wakeupamerica cough

#2 #covidiot sneezes

#3 #breakingnews headaches

#4 #staysafe chill

#5 #ppeshortage sickness

SOCIAL INDIVIDUAL BEHAVIOR ORGANIZATION

#1 genocide @youtube

#2 loyalty @nytimes

#3 discord nih

#4 voting amazon

#5 racism msm

We also incorporate the named entity recognition results to show in Table 6.6 the

top5 risk factors under 4 different categories: HASHTAG, SIGN OR SYMPTOM, SO-

CIAL INDIVIDUAL BEHAVIOR and ORGANIZATION. We notice msm is categorized as

an organization, so it is more likely to be interpreted as the mainstream media. It is obvious

that the pandemic is getting more serious if we are facing the personal protective equipment

shortage. The government and health institutes are better to be prepared if more and more

people become sick and have the symptoms such as cough and sneezes. There are limitations

if we only rely on the entities with high attention scores to interpret the risk factors. For ex-

ample, we cannot simply conclude that the prevailing entity amazon results in an increasing

trend of the pandemic. The relationship between amazon and increasing trend might not be

causal but just co-occurrence.
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6.6 Conclusion

In this study, we conduct the first trial to incorporate the entities and relationships extracted

from social media data to simultaneously enhance the pandemic surveillance and detect the

potential risk factors. We propose a dynamic graph neural network to learn the temporal

dependency among nodes of different times and propagate the messages among the hetero-

geneous nodes. Extensive experiments show the effectiveness and robustness of our forecast

model. We will open-source our framework and release the pre-trained CoronaBERT language

model to facilitate future research in this direction.
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CHAPTER 7

Discussion and Future Directions

In this thesis, we present different strategies for information extraction under a low resource

scenario including acquiring supervision from auxiliary knowledge and transferable represen-

tations. In all cases, we show the efficient information extraction can be achieved by carefully

learning the representations of words, sentences and documents. We analyze the proposed

algorithms and provide extensive experimental results. In this chapter, we conclude the

thesis by discussing some directions for future research.

For the clinical information extraction, we present a comprehensive extraction pipeline.

We first propose ACROBAT, a clinical typing system to facilitate producing resources for train-

ing clinical information extraction models and better understanding the concepts with clin-

ical documents and publications. The typing system is proved to be able to reflect diverse

vocabulary and phenomena described with the clinical documents without requiring direct

connections to curated concepts or terminology. This typing system serves as a precious

test bed for clinical researchers considering the limited public resources in this domain. We

then propose a contextualized language model enhanced named entity recognition model to

extract significant entities and events from the clinical narratives. Two pre-trained clinical

language models, Clinical-ELMo and Clinical-Flair are released to facilitate further re-

search in the clinical community. Next, we propose CTRL-PG which focuses on the temporal

relation extraction task by incorporating the probabilistic soft logic rules to model the tran-

sitivity constraints and symmetric dependencies among relevant relationships. In this study,

we prove the effectiveness of taking advantage of the auxiliary supervision for information

extraction. Last but not least, we introduce our CREATe system, which incorporates all
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the aforementioned advanced information extraction algorithms for building an end-to-end

query system. The system is capable of indexing relevant case reports from the heteroge-

neous entity graphs according to the matched keywords and chronologies (prioritized). In

this thesis, we focus on the research topics of named entity recognition and temporal relation

extraction, while there remains many significant directions to explore in the clinical domain,

such as co-reference resolution in the clinical narratives and knowledge graph construction.

Aligning the knowledge graphs based on the information extraction results can benefit many

down-streaming applications including medical question answering and medicine discovery.

Chapter 4 discusses the effectiveness of learning multi-modal representations for infor-

mation extraction. We build a cross-modality encoder to digest both linguistic and visual

features in Section 4.1 to facilitate the theme (keyphrase) recommendation process for ad im-

ages. This cross-attentive method can be applied broadly. For example, it can be applied for

solving the visual question answering problems and tackling the visual semantic role labeling

tasks. The PCPR framework proposed in Section 4.2 jointly learns the multi-modal represen-

tations for pun recognition in the figurative language processing task based on both word

and pronunciation embeddings. We notice that the pronunciation embeddings can facilitate

also facilitate the homographic pun detection, implying the potential of pronunciation for

enhancing general language modeling. This observation opens up several directions for fu-

ture research. Though some advanced language models such as BERT and RoBERTa have

pushed the performance on many NLP tasks dramatically, there remains room to improve

the language modeling, for example, by incorporating the pronunciation modeling. More-

over, the proposed framework can also be applied to other figurative language processing

tasks such as irony detection and poem generation.

We propose SimpDOM to build rich DOM node representations for the few-shot attribute

extraction tasks in chapter 5. There are several directions worth exploring to improve

SimpDOM algorithms including a better implementation that could further cut down the

clock time for extracting the contextual information for each node, experimental study of

additional cross-domain prediction problems, and the study on extracting attributes from
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further more unannotated websites and pages. Automatic evaluation should also be explored

for the open information extraction tasks.

We introduce the SMART framework in Chapter 6 which extracts named entities and

relationships from the social media corpus and builds heterogeneous knowledge graphs to

enhance the pandemic time series prediction model. Overall, we provide a generic solution

for taking advantage of the informative entities and relationships in the social media data.

It is straightforward to apply our approach to any future epidemiological surveillance. Our

approach also has the potential to tackle other real-world problems, such as environment

monitoring and crime detection. In the future, it will be beneficial to detect the risk factors

in a more strict manner by identifying the relationship between the risk factors and the

pandemic trends or predicted targets.
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