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ABSTRACT OF THE DISSERTATION 

 

Fully Automated 
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using a Phonocardiogram-Based System 

 

by 

 

Kanav Saraf 

Doctor of Philosophy in Bioengineering 

University of California, Los Angeles, 2020 

Professor William J. Kaiser, Co-Chair 

Professor Jacob J. Schmidt, Co-Chair 

 

Individuals with undiagnosed heart disease and those unable to seek advanced 

care for existing heart-disease related disabilities face a risk of premature death. 

Guidelines released by the American Heart Association aim to increase healthy life 

expectancy in such individuals over the next decade. Timely diagnosis and evaluation of 

heart disease in these individuals with existing tools is a challenge, especially in low-

resource primary care settings. Presented here is a computer-aided heart-sound-based 

system that carries the potential to overcome this challenge and provide these individuals 

with the opportunity to pursue an accelerated path of care to recovery. This system 

analyzes phonocardiogram signals collected using acoustic sensors to identify variations 

in cardiac physiology that are otherwise measured by resource-intensive imaging tools. 
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Signal acquisition is noninvasive, and the entire system operates in a fully automated 

manner without requirements of training or expert supervision. The acquired signal 

waveforms are processed using filtering, noise subtraction, heartbeat segmentation, and 

heartbeat quality assurance algorithms to extract physiologically motivated features for 

heart disease diagnosis and evaluation. The system and its algorithms were developed 

and validated using real-world heart sound data from hospital inpatients. When tested on 

96 inpatients at the Ronald Reagan University of California Los Angeles Medical Center, 

the system was able to identify aortic stenosis with a sensitivity and specificity of 92% and 

95%. When tested on 34 inpatients being evaluated for heart failure at the Oregon Health 

& Science University Hospital, the system was able to generate echocardiography-like 

parameters for left ventricular diastolic function and left atrial pressure evaluation with 

accuracies of 87.5% and 75%. These results demonstrate the potential of this 

phonocardiogram-based system in providing clinically relevant heart disease diagnosis 

and evaluation at the point of primary care and in fulfilling the immediate critical need 

for improving outcomes in at-risk individuals. 
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C H A P T E R  1 
INTRODUCTION 

1.1 Structure and Function of the Heart 

The human heart is a fist-sized muscular organ located in the thoracic cavity in 

between the lungs [1]. Its muscle walls are composed of connective tissue and specialized 

cardiac muscle tissue. The walls enclose an internal cavity that can be divided into four 

chambers: right atrium, right ventricle, left atrium, and left ventricle (Figure 1-1). Each 

atrium is thin walled and acts as a primer pump for the ventricles, and each ventricle is 

thick walled and provides the main pumping action to propel blood. On the right side of 

the heart, deoxygenated blood from the organs arrives into the right atrium via the vena 

cava. This blood then enters the right ventricle from where it is circulated to the lungs for 

oxygenation via the pulmonary artery. On the left side of the heart, oxygenated blood 

from the lungs enters the left atrium via the pulmonary vein. This blood then moves into 

the left ventricle from where it is pumped out to the rest of the body via the aorta. The 

unidirectional nature of this blood flow is maintained by four heart valves: two 
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atrioventricular valves (i.e., the tricuspid and mitral valves) between each atrium and 

ventricle, and two semilunar valves (i.e., the pulmonary and aortic valves) at the base of 

vessels leaving the ventricles. A small portion of the oxygenated blood flowing out of the 

aorta is also redirected to be supplied to the muscles of the heart via the coronary 

arteries. 

The series of events that take place from the start of one heartbeat to the next 

constitute the cardiac cycle [1] (Figure 1-2). The rhythmic nature of this cycle is 

controlled by a specialized neural conduction system that stimulates cardiac muscle 

tissue to contract. The action potential for contraction is initiated at the sinoatrial node 

Figure 1-1  Anatomy of the human heart, showing four chambers (right atrium, right 

ventricle, left atrium, and left ventricle), four major blood vessels (vena cava, pulmonary 

artery, pulmonary vein, and aorta), and four heart valves (tricuspid, pulmonary, mitral, and 

aortic). The right side of the heart pumps deoxygenated blood (blue) to the lungs and the 

left side pumps oxygenated blood (red) to the rest of the body. 
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located in the superior wall of the right atrium. This potential is generated roughly 72 

times per minute, and travels down to depolarize the atria and ventricles and causes these 

chambers to contract one after the other. The contraction of the atria leads to ventricular 

filling, and this period of the cardiac cycle is referred to as diastole. Towards the end of 

diastole, high pressures in the now-filled ventricles cause the tricuspid and mitral valves 

to close shut, which produces the first heart sound (S1). At the same time, the pulmonary 

and aortic valves open and the ventricles now contract to push blood out. This period of 

contraction is referred to as systole. At the end of systole, ventricular relaxation begins, 

and ventricular pressure drops, which causes the semilunar valves to close shut and 

Figure 1-2  Phases of the cardiac cycle, showing a period of ventricular filling (diastole), 

followed by the closure of the tricuspid and mitral valves producing the first heart sound 

(S1), a period of ventricular contraction (systole), and the closure of the pulmonary and 

aortic valves producing the second heart sound (S2).   
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produce the second heart sound (S2). This is closely followed by the re-opening of the 

tricuspid and mitral valves, and the whole cycle then repeats.  

1.2 Diagnosing and Evaluating Heart Disease 

Disruptions in the cardiac cycle can reduce the ability of the heart to pump 

enough blood to meet the body’s needs [1]. Such disruptions can be due to structural or 

functional abnormalities in the heart by birth or acquired during an individual’s lifetime. 

Although the heart has natural mechanisms in place to temporarily compensate for any 

abnormalities, these can cause severe damage or disease to the heart over time if left 

untreated (Table 1-1). 

 Periodic physical examinations at the point of primary care are a quick, safe, and 

relatively inexpensive way to diagnose heart disease. The goal of such examinations is to 

confirm the presence of the disease, determine potential causes, and identify any 

comorbidities. For this purpose, the provider first conducts a thorough review of the 

individual’s medical history. This includes assessment of risk factors for heart disease 

mortality such as advanced age, physical inactivity, obesity, high-cholesterol diet, high-

blood pressure, heavy use of tobacco, and other family history [2]. The provider also looks 

for signs and symptoms of heart disease such as chest pain, dizziness, syncope (fainting), 

heart murmurs, irregular heartbeats, dyspnea (shortness of breath), fatigue, and 

decreased exercise tolerance [3]. This is information is then supplemented with results 
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from laboratory investigations such as blood tests, chest radiography, and resting and 

exercise electrocardiography. Individuals determined to be at risk or symptomatic are 

then referred to a cardiologist for further assessment and evaluation to determine the 

etiology and severity of the disease [3] (Figure 1-3). This is carried out using a case-

specific combination of advanced imaging modalities such as transthoracic and stress 

echocardiography, computed tomography, magnetic resonance imaging, and cardiac 

catheterization. The cardiologist uses results from these tests to then guide treatment and 

care.  

 

Structural or Functional Abnormality Resultant Heart Disease 

Elevated pressure in the circulatory system against 
which the heart must pump 

Hypertension 

Abnormalities in nervous excitation of the heart 
causing variations in rhythm 

Arrhythmia 

Blockage in coronary arteries Ischemic heart disease 

Failure of heart valves to open or close normally Valvular heart disease 

Enlarged, thickened and/or stiffened heart muscle Cardiomyopathy 

Structural malformations by birth Congenital heart disease 

Table 1-1  Examples of heart abnormalities and their resultant heart disease. 
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1.3 The Need for New Care Delivery Tools 

As of 2020, heart disease is the leading cause of death in the United States and 

nearly 50% of American adults are afflicted with some form of heart disease [4] [5]. 

Although the past decade has seen a 15% reduction in mortality due to heart disease, this 

drop is significantly smaller than in previous decades due to increased prevalence of 

obesity and high blood pressure [6]. Care outcomes are especially poor in individuals who 

are apparently asymptomatic at the point of primary care, individuals who are 

misdiagnosed, individuals who do not follow up with a cardiologist or skip a 

recommended test, and individuals in low resource settings who are unable to access 

Figure 1-3  Path of care for diagnosing and evaluating heart disease. Individuals determined 

to be at risk or symptomatic at the point of primary care are referred to the cardiologist for 

further assessment to determine the etiology and severity of the disease. 
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quality care [6] [7] (Figure 1-4). In addition to concerning mortality trends and missed 

opportunities in care delivery, the total health expenditure on heart disease is also 

expected to double to $1.1 trillion by 2035 [4]. Limiting this growing burden of heart 

disease requires new care-delivery strategies and evidence-based technologies that can 

provide risk identification, disease diagnosis, and medical evaluation well in advance of 

the onset of a life-threatening heart disease [7]. The introduction of such technologies 

and tools will allow to shift the emphasis of healthcare delivery from urgent “sick care” to 

preventive “well care” [7].  

A tool that addresses this need must overcome limitations of existing risk 

assessment tools and imaging modalities [3] (Table 1-2). It must be usable at the point of 

Figure 1-4  Examples of individuals with heart disease for whom care outcomes are poor. 

Such missed opportunities in care delivery, coupled with increased mortality and healthcare 

expenditures necessitate the introduction of new tools and technologies for diagnosing and 

evaluating heart disease. 
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primary care, must be noninvasive, must not require training and experience to operate, 

and must be free of inter-operator variability. The diagnostic goal of this tool would be to 

identify apparently asymptomatic patients at the point of primary care without expert 

supervision, and the evaluative goal would be to assess heart function without requiring 

resource-intensive imaging modalities or follow-up visits. In addition, in order to be 

clinically relevant, this tool must have been developed and validated using real-world 

data. 

Tool / Imaging 
Modality 

Advantages Limitations 

Blood pressure 
monitor 

Noninvasive, cost effective, 
available at the point of primary 
care, requires minimum training 
for use  

High blood pressure 
is only one of many 
risk factors for heart 
disease 

Blood test Highly sensitive to metabolic 
disturbances in heart disease  

Invasive 

Auscultation Noninvasive, available at the 
point of primary care, can identify 
structural pathologies even in 
their presymptomatic phase 

Using a stethoscope 
requires training and 
expertise 

Chest radiography Noninvasive, useful for initial 
diagnosis and risk stratification 

X-ray findings are 
usually nonspecific 

Electrocardiography Noninvasive, cost-effective, 
available at the point of primary 
care, quick way to detect 
underlying heart disease 

Limited in types of 
disease that can be 
diagnosed, high 
false-positive rate 
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1.4 The Utility of Phonocardiogram Signals 

Computer-aided heart-sound-based tools carry the potential to fulfil this need. 

Such tools analyze phonocardiograms, which are digital recordings of sounds produced 

by the heart as it pumps blood [1]. Phonocardiogram signals are collected using 

microphones placed on the chest that are specially designed to capture low frequency 

vibrations in heart sounds that cannot be heard through a stethoscope [1]. This reveals 

characteristics of heart-valve motion, muscle-wall motion and blood-flow dynamics that 

can be analyzed to identify anatomical and physiological abnormalities in the heart [1]. 

Phonocardiogram signals can be collected and analyzed in an automated fashion without 

Echocardiography Noninvasive, useful for visualizing 
hemodynamics, can help evaluate 
disease progression, portable or 
handheld machines now available 
at the point of primary care 

Requires training 
and experience to 
operate, subject to 
inter-operator 
variability 

Computed 
tomography / 
magnetic resonance 
imaging 

Noninvasive, allows for detailed 
assessment of heart structure and 
function 

Too resource 
intensive to be used 
for screening at the 
point of primary care 

Cardiac 
Catheterization 

Helps determine severity of 
disease and optimal timing for 
intervention 

Highly invasive 

Table 1-2  Advantages and limitation of existing risk assessment tools and imaging 

modalities used for heart disease diagnosis and evaluation. 
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expert supervision, which makes them an ideal candidate to form the technological basis 

of a noninvasive tool that can support healthcare providers in the diagnosis and 

evaluation heart disease in low-resource settings.  

Prior research has demonstrated the utility of phonocardiogram signals (with or 

without a simultaneously recorded electrocardiogram signal) in establishing the presence 

of a heart murmur [8], in differentiating between innocent and pathological heart 

murmurs [9], and in evaluating the severity of a previously identified disease [10] [11]. 

This is done by extracting temporal or spectral features from the phonocardiogram signal 

and supplying these as inputs to linear classifiers or artificial neural networks. Although 

existing studies provide good proof of concept, some have only been primarily validated 

on pediatric patients [9] [11], and some used completely healthy subjects [10] or subjects 

without any comorbidities in their control group [8]. Such limitations prevent existing 

phonocardiogram-based tools from being clinically relevant at the point of primary care 

for patients with unpredictable medical histories across all age groups. 
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1.5 Developing a Phonocardiogram-Based System 

Presented here is a phonocardiogram-based system that overcomes existing 

challenges to provide clinically relevant diagnosis and evaluation at the point of primary 

care (Figure 1-5). This system analyzes simultaneously recorded phonocardiogram and 

electrocardiogram signals to characterize physiological phenomena of interest. It is 

capable of both detecting disease in their preclinical phase and evaluating their severity 

over time. The system has been developed and validated using real-world data collected 

from a variety of inpatients at the Ronald Reagan University of California Los Angeles 

Medical Center and the Oregon Health & Science University Hospital. The use of this 

system at the point of primary care can support healthcare providers in decision making 

Figure 1-5  Overview of the proposed phonocardiogram-based system and dissertation 

chapter content. 
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and allow for better funneling of patients to the cardiologist. This system also shows 

potential in pre- and post-operative evaluation of patients undergoing cardiac 

interventions and can also be incorporated in a wearable form factor for day-to-day 

activity and exercise monitoring. 

The design of the proposed system is introduced in Chapter 2 (Phonocardiogram 

Signal Processing). This includes a description of signal acquisition techniques, 

challenges in signal processing, and the novel signal processing algorithms designed to 

address these. Chapter 3 (Diagnosing Heart Disease) describes the utility of the proposed 

system in diagnosing aortic stenosis in a n=96 subject set. This involves a description of 

feature extraction and classification algorithms used and the results obtained. Chapter 4 

(Evaluating Heart Disease) expands on this discussion and presents the utility of the 

proposed system in evaluating left ventricular diastolic function in a n=34 subject set. 

Chapter 5 summarizes this development and proposes ideas for future development.  
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C H A P T E R  2 
PHONOCARDIOGRAM 

SIGNAL PROCESSING  

2.1 Signal Acquisition  

For the purpose of developing and validating the proposed system, synchronous 

phonocardiogram and electrocardiogram signals were acquired from hospital inpatients 

using acoustic sensors and electrodes (Figure 2-1). Each acoustic sensor consisted of an 

electret microphone housed in an acrylonitrile-butadiene-styrene plastic body with a 

0.4mm-thick nitrile membrane at one end. These were placed membrane side down by 

the provider at each of the four auscultation points on the anterior chest wall: aortic 

(second intercostal space, right sternal border), pulmonic (second intercostal space, left 

sternal border), tricuspid (fourth intercostal space, left sternal border) and mitral (fifth 

intercostal space, left mid-clavicular line) [1]. Locations for sensor placement were 
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determined relative to the suprasternal notch and did not require provider intervention. 

The membrane provided coupling with the chest wall and allowed for the transfer of 

heart sound signals into the sensor chamber for measurement by the microphone. Three 

electrocardiography electrodes were placed proximally on the two upper limbs and lower 

left abdomen. These measured the cardiac action potential in an augmented-unipolar-

limb-lead configuration [1]. The acoustic sensors and electrodes were connected to a 

computer-based device [12] and phonocardiogram and electrocardiogram signals were 

acquired at sample rates of 512 and 300 Hz, respectively (Figure 2-2). Signal acquisition 

Figure 2-1  An illustration of tools and techniques used in signal acquisition. a) Four 

acoustic sensors for acquiring phonocardiogram signals. b) Three electrodes for acquiring 

electrocardiogram signals. c) Computer-based device used to record and store the acquired 

signals. Locations for sensor and electrode were determined relative to the suprasternal 

notch (d3). Acoustic sensors were placed at the four auscultation points: aortic (d2), 

pulmonic (d4), tricuspid (d8), and mitral (d6). The electrocardiography electrodes were 

placed at the right upper limb (d1), left upper limb (d5), and lower left abdomen (d7). 
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was designed to last for 5 to 7 minutes (depending on the hospital schedule) during 

which subjects were asked to relax and refrain from motion or speaking if possible. The 

acquired signals were stored in 10-second-long intervals and were later imported into 

Matlab (MathWorks, MA, USA) for offline exploration and analysis.  

2.2 Challenges in Signal Processing 

Analyzing these phonocardiogram signals to extract valuable heart sound 

information required overcoming challenges of variable signal quality. The first source of 

this variability was the non-controlled and fast-paced nature of the hospital environment. 

This led to occasional physiological, environmental, and instrumental noise artifacts in 

Figure 2-2  Examples of unprocessed phonocardiogram (a) and electrocardiogram (b) signal 

waveforms acquired from each subject. 
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the phonocardiogram signal, including those from subject speech and motion, bystander 

speech, hospital alarms and announcements, and poor coupling between the acoustic 

sensors and chest. The second source of variability was the dynamic nature of subject 

physiology. This included variable heart rates, variable heart structures, and unique 

pathophysiology that only manifested in certain heartbeats. The challenges posed by 

variable signal quality were addressed by creating a novel signal processing algorithm that 

allowed for the identification of noise-free, high-quality, and reliable heartbeats. This was 

a three-step process (Figure 2-3). The first step involved filtering and noise subtraction to 

obtain phonocardiogram signals of qualitatively higher audio fidelity than raw signals. 

The second step involved segmentation algorithms that divided the clean 

Figure 2-3  An overview of the signal processing algorithm created to address challenges 

posed by variable signal quality. Feature extraction algorithms defined in Chapters 3 and 4 

use these processed phonocardiogram signals for heart disease diagnosis and evaluation. 
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phonocardiogram signal from step one into individual heartbeats. And the third step 

consisted of a quality assurance algorithm designed to identify high-quality heartbeats 

even in severely afflicted subjects or those with variable heart rate. The entire 

phonocardiogram signal processing algorithm operated in a fully automated fashion. 

2.3 Filtering and Noise Subtraction 

The process of designing a filtering and noise subtraction algorithm for the raw 

phonocardiogram signal (originally sampled at 512 Hz) began with a visualization of its 

frequency-domain representation between 1 and 256 Hz (Figure 2-4). The discrete 

Fourier transform of short signal segments chosen at random showed recurring low-to-

mid frequency range patterns matching closely with the spectrum of heart sounds [1]. 

The raw signal was subsequently filtered using a fourth-order Butterworth band-pass 

filter with cutoff frequencies of 25 and 140 Hz (Figure 2-5). These cutoff frequencies were 

chosen empirically to retain the maximum amount of heart sound information while 

removing most low and high-frequency noise artifacts.  

The remaining noise artifacts overlapping with the mid-frequency heart sound 

signal spectrum were removed using a spectral noise subtraction technique commonly 

used in speech processing [13]. This technique involved estimating the noise spectrum 

during brief pauses in heart sound activity and then subtracting this estimate from the 

entire signal’s spectrum to obtain a clean heart sound signal (Figure 2-6). 
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Regions of the phonocardiogram signal corresponding to pauses in heart sound 

activity were identified by visualizing the histogram distribution of the signal envelope in 

each 10-second phonocardiogram recording. For this purpose, a fourth-order 

Butterworth low-pass filter with a cutoff frequency of 38 Hz was applied to the 

phonocardiogram signal. The signal envelope obtained as a result was then divided into 

93 millisecond-long frames with 31 millisecond (33%) overlaps between adjacent frames. 

The frame and overlap lengths here were empirically determined to provide the best 

noise subtraction. Next, the amplitude distribution for the signal envelope was obtained 

Figure 2-4  Time (a) and frequency-domain (b) representation of a raw phonocardiogram 

signal segment chosen at random. a) The time domain representation shows normalized 

signal amplitude for a 2-second-long signal segment. b) The frequency domain 

representation shows normalized power for this segment in the frequency range 1 to 256 

Hz. An analysis of multiple segments revealed similar recurring patterns in the 25 to 140 

Hz range (shaded box) matching closely with the spectrum of heart sounds. These 

frequencies were therefore chosen to design a band-pass filter to extract this heart sound 

information. 
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by arranging the root-mean-square amplitude values of individual frames in increasing 

order. This amplitude distribution had a roughly bimodal shape with one peak for lower 

amplitude values corresponding to pauses in heart sound activity and another peak for 

higher amplitude values corresponding to physiological and pathological heart sounds. 

Frames in the first peak of the amplitude distribution with amplitude values between the 

60th to 99th percentile of this peak were then selected to estimate the noise spectrum, as 

these were observed to provide the best denoising during algorithm development (Figure 

2-7). The individual frequency spectra for the selected frames were calculated using a 

discrete Fourier transform, and these spectra were then averaged to approximate one 

overall noise spectrum for that recording. This average noise spectrum was then 

Figure 2-5  Illustration of a phonocardiogram signal segment before (a) and after (b) the 

application of a fourth-order Butterworth band-pass filter with cutoff frequencies of 25 and 

140 Hz to remove most low and high-frequency noise artifacts. The plots show normalized 

signal amplitudes for the 2-second-long phonocardiogram signal segment. 
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subtracted from individual discrete Fourier transforms of all available frames, including 

those belonging to heart sound activity. The resulting frequency spectrum for each frame 

was now noise-free, and its corresponding time-domain signal was recovered by 

performing an inverse Fourier transform. Noise-free signals in each frame were then 

added together while accounting for the original 33% overlap to reconstruct the 

phonocardiogram signal for the entire 10-second recording. Finally, the same band-pass 

filter as before with cutoff frequencies of 25 and 140 Hz was reapplied to the resulting 

Figure 2-6  Visual representation of the spectral noise subtraction technique used to obtain 

a clean heart sound signal. The noisy phonocardiogram signal (y[n]) is assumed to be 

composed of the clean signal (s[n]) degraded by statistically independent noise (d[n]). This 

relation also holds true in the short-time Fourier transform domain for the respective power 

spectra of these signals: |Y(ω)|2, |S(ω)|2, and |D(ω)|2. Here, the clean signal spectrum 

(|S^(ω) |2) is obtained by subtracting the average noise estimate spectrum (|D^(ω) |2) from 

the noisy signal spectrum on a frame-by-frame basis. The inverse Fourier transforms of 

clean signals in individual frames are then added up to recover the clean heart sound signal 

in the time domain. 
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waveform to obtain a clean phonocardiogram signal. The signal-to-noise ratio for this 

denoised phonocardiogram signal was found to be significantly higher than the raw signal 

(Figure 2-8).  

 

 

 

Figure 2-7  Identifying frames corresponding to pauses in heart sound activity for the 

purpose of noise subtraction. a) Amplitude distribution plot for 93 millisecond-long frames 

in the signal envelope of a 10-second long recording. This amplitude distribution shows a 

roughly bimodal shape with one peak for lower amplitude values (centered around 0.15 on 

the x-axis) corresponding to pauses in heart sound activity, and one peak for high 

amplitudes (centered around 0.27 on the x-axis) corresponding to heart sound. Frames in 

the first peak with amplitude values between the 60th to 99th percentile of this peak are 

highlighted in black and were chosen to estimate the noise spectrum. b) Normalized signal 

amplitude for the corresponding 10-second phonocardiogram recording. Frames that fell in 

the 60th to 99th percentile of the peak above and were used to estimate the noise spectrum 

are marked in black. 
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2.4 Heartbeat Segmentation 

After obtaining a filtered and denoised signal, the next step involved identifying 

the start and end times of individual heartbeats in the phonocardiogram signal. This was 

done using the electrocardiogram signal as reference. The onset of the R wave in each 

cardiac cycle of the electrocardiogram signal was regarded as the transition point 

between the end of one heartbeat and start of the next one. This point corresponded to 

the start of the S1 heart sound in the phonocardiogram signal [1]. To identify this point, a 

Figure 2-8  Illustration of a phonocardiogram signal segment before (a) and after (b) 

filtering and noise subtraction. The plots show normalized signal amplitude for a 2-second-

long phonocardiogram signal segment. a) The raw phonocardiogram signal had a low 

signal-to-noise ratio due to physiological, environmental, and instrumental noise. b) The 

denoised phonocardiogram signal showed clearly defined periodic heart-sound waveforms 

and was of qualitatively higher audio fidelity than the raw signal. 
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fourth-order Butterworth band-pass filter with cutoff frequencies of 1 and 30 Hz was 

applied to the electrocardiogram signal (originally sampled at 300 Hz). The cutoff 

frequencies here were chosen to reject 0.5 Hz baseline-drift noise from incorrect 

electrode attachment or subject motion, and 60 Hz noise from power-line interference 

[14]. The resulting signal represented the characteristic recurring P-QRS-T pattern of a 

cardiac action potential [1]. While R waves were expected to show the largest signal 

amplitude, signal peaks were seen to be equally likely to correspond to either R or T 

waves. Although these were of similar amplitudes, the R peaks were observed to be 

sharper than the T peaks. Multiplying the signal with its derivative therefore helped 

emphasize R peaks, thereby allowing for their identification in the electrocardiogram 

signal (Figure 2-9). Outlier peaks that were much larger (>5x) or much smaller (<0.5x) 

than median peak height were rejected as these were most likely due to noise or 

abnormalities in cardiac electrophysiology [1]. Peaks that were within 0.25 seconds of 

adjacent peaks were also rejected to account for variations in heart rate. The exclusion of 

occasional outlier peaks did not pose a challenge to further signal processing. The onset 

of each R wave in each remaining peak was determined by searching backwards from the 

peak to the time point corresponding to 50% peak height. The electrocardiogram signal 

between two consecutive onset points was then identified as one cardiac cycle, and the 

corresponding phonocardiogram signal was therefore identified as one heartbeat (Figure 

2-10).  
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Once individual heartbeats were identified in the phonocardiogram signal, the 

next step involved identifying start and end times for the two heart sounds, S1 and S2. 

This was done by utilizing the short-term periodicity of the cardiac cycle which existed 

even in severely afflicted cases. To identify the first heart sound, the denoised but 

unsegmented phonocardiogram signal was low-pass filtered using a fourth-order 

Butterworth filter with a cutoff frequency of 10 Hz. The signal envelope hence obtained 

showed peaks corresponding to the recurring S1 and S2 heart sounds. Using the 

Figure 2-9  Determining the onset of R waves for segmenting electrocardiogram signals. a) 

The electrocardiogram signal shows normalized signal amplitude for a 2-second-long 

filtered signal segment. Signal peaks were equally likely to correspond to either R or T 

waves. b) Multiplying the signal with its derivative helped emphasize R peaks as these were 

sharper than T peaks. The onset of the R wave was determined by searching backwards for 

the time point corresponding to 50% peak height, marked as black dots. The 

electrocardiogram signal in (a) between two consecutive black dots was then identified as 

one cardiac cycle. 
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previously acquired knowledge of endpoints for individual heartbeats, this signal 

envelope was then divided into two-heartbeat-long frames with an overlap of one 

heartbeat among adjacent frames. A cross correlation was performed for each frame in 

this filtered signal envelope with a comb function of value zero at all points except t=0 

and t=T (where T was the time period of the first of the two heartbeats). The location of 

impulses in this function were expected to be close to the onset of R waves in the 

electrocardiogram signal, and therefore the onset of the S1 heart sound in the 

phonocardiogram signal. The first most prominent peak in the cross-correlation time 

Figure 2-10  Using the electrocardiogram signal as reference to segment the 

phonocardiogram signal into individual heartbeats. a) The electrocardiogram signal 

showing normalized amplitude for a 2-second-long filtered signal segment. Time points 

corresponding to the start and end of individual cardiac cycles are marked with vertical 

dotted lines. b) The corresponding phonocardiogram signal segment showing normalized 

signal amplitude. The phonocardiogram signal between two vertical dotted lines was 

identified as one heartbeat. 
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series was therefore expected to occur when the first comb function impulse aligned 

perfectly with the S1 peak of the first heartbeat. This helped determine the location of the 

first S1 peak in this frame. The S1 peak belonging to the second heartbeat was 

subsequently determined to occur T seconds after the first S1 peak. Once both S1 peak 

locations were known, the corresponding start and end times for the S1 heart sounds 

were determined by searching backwards and forwards from the peak to the time point 

corresponding to 60% peak height (Figure 2-11). The one frame overlaps between 

consecutive frames allowed for each beat (except the first and last) to be processed twice 

to increase detection rate for heart sounds. Start times for individual heartbeats were also 

updated to coincide with start times for S1 heart sounds instead of the previously used 

points corresponding to the onset of the R wave in the electrocardiogram signal. 
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Figure 2-11  Identifying start and end times of S1 heart sound in each two-heartbeat-long 

frame. a) Signal envelope calculated using a cutoff frequency of 10 Hz, showing normalized 

amplitude for the denoised but unsegmented phonocardiogram signal in each frame. b) The 

comb function showing two impulses at t=0 and t=T seconds (where T was the time period 

of the first heartbeat). c) The cross-correlation time series showing the point of zero time 

delay as a vertical dotted line, and the point of the first prominent peak as a vertical solid 

line. The time delay between these two points represented the location of the S1 peak 

relative to the start of the heartbeat containing it. The location of the S1 peak for the 
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second heartbeat was subsequently determined to be T seconds after the first. d) 

Phonocardiogram signal showing points corresponding to the start and end times of the S1 

heart sounds, determined by searching for signal amplitudes equal to 60% of peak height on 

either side of the peak.  

The same method was used to identify the second heart sound, however this time 

the signal envelope was computed using a cutoff frequency of 15 Hz. This value was 

empirically chosen to preserve a greater resolution of the original signal and gave 

prominent correlation peaks allowing for the identification of the start and end times for 

the S2 heart sound. For this purpose, a cross correlation was performed for each frame in 

the new filtered signal envelop with the same comb function as above. Previous signal 

analysis experiments revealed that S2 peaks were found within 0.2T and 0.55T seconds of 

the S1 peak. Therefore, the peak in the cross-correlation time series occurring in this time 

interval after the first most prominent peak was expected to occur when the first comb 

function impulse aligned perfectly with the S2 peak of the first heartbeat. The S2 of the 

second heartbeat, as well as start and end times for S2 heart sounds were determined in 

the same manner as above (Figure 2-12). Once the endpoints for the two heart sounds 

were established in each heartbeat, the phonocardiogram signal between the of S1 and 

start of S2 was identified as the systolic interval, and that between the end of S2 and start 

of S1 of the next heartbeat was identified as the diastolic interval (Figure 2-13). This 

segmented denoised signal was then used as reference to mark corresponding endpoints 

in the raw phonocardiogram signal. 
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Figure 2-12  Identifying start and end times of S2 heart sound in each two-heartbeat-long 

frame. a) Signal envelope calculated using a cutoff frequency of 15 Hz, showing normalized 

amplitude for the denoised but unsegmented phonocardiogram signal in each frame. b) The 

comb function showing two impulses at t=0 and t=T seconds (where T was the time period 

of the first heartbeat). c) The cross-correlation time series showing the point of zero time 

delay as a vertical dotted line, the period of search for the second most prominent peak 

(0.2T to 0.55T) in the shaded box, and the point of the second most prominent peak as a 

vertical solid line. The time delay between the two vertical lines represented the location of 
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the S2 peak relative to the start of the heartbeat containing it. The location of the S2 peak 

for the second heartbeat was subsequently determined to be T seconds after the first. d) 

Phonocardiogram signal showing points corresponding to the start and end times of the S2 

heart sounds, determined by searching for signal amplitudes equal to 60% of peak height on 

either side of the peak.  

 

Figure 2-13  Example of a fully segmented heartbeat. a) The normalized signal amplitude 

for the denoised phonocardiogram signal belonging to one heartbeat, showing successfully 

identified S1 and S2 heart sounds along with the systolic and diastolic intervals between 

them. b) Normalized amplitude for the raw phonocardiogram signal for the same heartbeat, 

also showing S1, systolic interval, S2, and diastolic interval. Although the heartbeat 

segmentation algorithm used denoised phonocardiogram signals, marking the 

corresponding endpoints in the raw signal allowed for the use of both type of signals in the 

feature extraction process. Solid vertical lines represent start and end times for the 

heartbeat, and dotted vertical lines represent start and end times for S1 and S2 heart 

sounds. 
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2.5 Heartbeat Quality Assurance 

Not all heartbeats in the resulting dataset were perfectly segmented due to weak 

signal quality. For example, heartbeats in subjects with variable heart rates occasionally 

had incorrectly identified endpoints. Heartbeats in subjects with variable heart structure 

and pathophysiology occasionally had missing or misidentified S1 or S2 sounds. There 

were also a few heartbeats that were still plagued with noise due to poor sensor coupling. 

A subset of high-quality heartbeats was therefore created for diagnostic and evaluative 

applications where the entire dataset of heartbeats was not necessary. A heartbeat was 

identified as a quality heartbeat if its signal: (1) had a heartbeat duration within ± 20% of 

the median beat duration for the subject, (2) had both S1 and S2 successfully identified, 

and (3) had systolic and diastolic intervals free of signal excursions greater than 50% 

height of S1 or S2. Although segmentation was performed on the denoised 

phonocardiogram signal, knowledge of heart sound endpoints in time were also used to 

segment the raw phonocardiogram signal for applications requiring analysis of heart 

sound acquired as-is. The feature extraction process in each of the diagnostic and 

evaluative applications was therefore designed to utilize a case-specific selection of either 

raw or denoised phonocardiogram signals belonging to either all or exclusively quality 

heartbeats. 
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C H A P T E R  3 
DIAGNOSING 
HEART DISEASE 

3.1 Goal: Diagnosing Aortic Stenosis 

Two criteria were set forward while searching for a disease to validate the 

diagnostic capability of the proposed phonocardiogram-based system: first, this disease 

must have a large population of individuals who are apparently asymptomatic at the point 

of primary care, and second, diagnosing this disease early must provide a considerable 

improvement in the patient outcomes. 

A disease that satisfied both the above criteria was aortic stenosis, which is the 

most prevalent valvular heart disease in the United States [4]. In this disease, the fibrous 

opening of the aortic valve becomes narrow, which obstructs the flow of blood from the 

left ventricle to the rest of the body [1] (Figure 3-1). In the early stages, the left ventricle 
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muscle increases in size and develops high muscle-wall tension to compensate for the 

increased workload. This prevents significant abnormalities in circulatory function and 

the individual continues to believe that they are free of any serious heart disease. 

However, over time, this compensation reaches a critical limit beyond which the left 

ventricle is unable to keep up with the increased demand [1]. At this point, blood begins 

to back up in the left atrium and lungs, and the overall pumping ability of the heart 

decreases, eventually causing systolic heart failure. Aortic valve replacement surgery is 

the only treatment in such severe cases of aortic stenosis [15].  

Around half the individuals with severe aortic stenosis are apparently 

asymptomatic at the point of primary care [15]. The care provider is therefore unable to 

Figure 3-1  Transverse views of normal and stenosed aortic valves. While the normal valve 

opens and closes fully, the stenosed valve does not open enough, which restricts blood flow 

from the left ventricle to the rest of the body. 
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diagnose them, and they do not receive any life-saving surgical intervention. As a result, 

70% of asymptomatic individuals end up experiencing sudden death [15]. Prior studies 

have shown that timely intervention in such individuals is closely associated with 

increased chances of survival [16]. Early diagnosis of this disease at the point of primary 

care using the proposed phonocardiogram-based system can therefore have a live-saving 

impact on these individuals. 

3.2 Subject Population 

The phonocardiogram and electrocardiogram signals used to validate analytical 

methods for this purpose were collected after obtaining informed consent from 96 adult 

inpatients at the Ronald Reagan University of California Los Angeles (UCLA) Medical 

Center (Los Angeles, CA) between March 2016 and September 2017. This clinical study 

was approved by the UCLA Office of the Human Research Protection Program (Study 

Identifier: 14-000670). The subjects were males and females between 19 and 95 years of 

age (mean age of 57±18 years), between 40 and 116 kg in weight (mean weight of 79±17 

kg), and exhibited one or more of 81 types of cardiac and non-cardiac afflicted conditions 

in their medical history. Signal acquisition lasted between 1 to 16 minutes per subject 

(mean duration of 7±3 minutes). Out of the 96 subjects, 12 were diagnosed as having 

aortic stenosis by a medical sonographer using echocardiography (Table 3-1), and these 

diagnoses were independently confirmed through auscultation by a physician. The 

availability of this real-world data with reliable ground-truth diagnoses established aortic 
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stenosis as a valid diagnostic goal for demonstrating the potential of the proposed 

phonocardiogram-based tool.  

3.3 Feature Extraction 

Phonocardiogram signal processing for diagnosing aortic stenosis relied on the 

identification of systolic ejection murmurs (Figure 3-2). These murmurs are pathological 

rumble sounds heard during systole and often indicate abnormalities in heart anatomy or 

physiology. However, systolic murmurs are also seen in other valvular heart disease such 

as mitral regurgitation or pulmonic stenosis, in congenital heart disease such as patent 

ductus arteriosus, in atrial and ventricular septal defects, and in hypertrophic 

Subject 
Population 

Subject Count Age (years) Weight (kg) 

All Subjects 96 Between 19 to 95 
(mean 57±18) 

Between 40 to 116 
(mean 79±17) 

Aortic 
Stenosis 
Subjects 

12 Between 24 to 95 
(mean 68±21) 

Between 55 to 97 
(mean 74±14) 

Non-Aortic-
Stenosis 
Subjects 

84 Between 19 to 91 
(mean 55±17) 

Between 40 to 116 
(mean 79±17) 

Table 3-1  Subject demographics for aortic stenosis and non-aortic-stenosis subject 

subgroups. 
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cardiomyopathy [3]. Therefore, the challenge in signal processing was to identify those 

systolic murmurs unique to aortic stenosis subjects. This motivated the development of a 

phonocardiogram feature extraction process that leveraged the location, quality, timing, 

and intensity of such murmurs.  

For this purpose, the filtering, noise subtraction, heartbeat segmentation, and 

heartbeat quality assurance algorithms described in Chapter 2 were applied to 

phonocardiogram signals acquired from the n=96 subject set. Signals recorded at the 

aortic auscultation point were chosen for this analysis due to the proximity of this site to 

the stenosed aortic valve, allowing for the recording of minimally attenuated broadband 

Figure 3-2  Example of systolic murmurs seen in subjects with aortic stenosis. a) 

Normalized signal amplitude for the phonocardiogram signals belonging to one heartbeat 

of a non-aortic-stenosis subject. b) Normalized signal amplitude for the phonocardiogram 

signals belonging to one heartbeat of a subject with aortic stenosis showing a systolic 

murmur (shaded box). 
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systolic murmurs. The denoised version of these signals was chosen over the raw version 

because these were free of any background noise artifacts that could be mistaken as 

murmurs. Only high-quality heartbeats were included in the analysis dataset because 

these had reliable markers for the start and end times of systolic intervals. The final heart-

sound dataset had 2 to 484 eligible heartbeats per subject (mean beat-count of 127±121 

beats).  

All subjects with systolic-murmur-inducing conditions were expected to show 

correspondingly high phonocardiogram signal amplitudes during systole. However, only 

those subjects that had systolic murmurs due to aortic stenosis were expected to also 

show elevated levels of high-frequency systolic content [3]. In these subjects, this high-

frequency trend was caused by turbulent blood flow through the stenosed aortic valve 

during systole as a result of the high-pressure gradient between the left ventricle and 

aorta [1]. While an amplitude-based feature measure systolic interval signal amplitude to 

detect the presence of systolic murmurs regardless of their physiological origin, a 

frequency-based feature measured levels of high-frequency systolic content to identify 

systolic murmurs uniquely seen in aortic stenosis subjects. These features were computed 

as follows: 

1. Extract the systolic signal segment, dsys, from each heartbeat: Each heartbeat 

in the heart-sound dataset contained a well-defined systolic interval. However, 

some systolic murmurs were known to blend in with S1 or S2 [3]. To take all types 

of systolic murmurs into account, the phonocardiogram signal segment used for 
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feature extraction included the second half of S1, full systolic interval, and the first 

half of S2 (Figure 3-3). A fourth-order Butterworth band-pass filter with cutoff 

frequencies of 38 and 154 Hz was applied to this segment, and the resulting 

filtered signal was stored in the data vector dsys.  

2. Compute the signal envelope for each dsys: In order to extract the amplitude-

based feature, the signal envelope for each dsys was computed by first calculating 

the absolute value of the Hilbert transform [17] of dsys, and then applying a fourth-

order Butterworth low-pass filter with a cutoff frequency of 51 Hz to it. The 

resulting signal envelope faithfully recreated the original signal shape of dsys.  

3. Estimate systolic noise floor for each dsys: The 10th percentile value of the 

above signal envelope provided a good approximation of the noise level and was 

therefore used to estimate the noise floor for dsys. 

4. Obtain vector of systolic amplitude estimates, Asys and Anorm, for each 

subject: To ensure S1 and S2 did not influence systolic amplitude computation, 

the first 25% and last 15% of the signal envelope obtained in Step 2 were removed. 

The 60th percentile value of the remaining signal envelope provided a good 

approximation of the systolic interval signal amplitude, Asys, that was independent 

of any outlier excursions due to non-cardiac events. All Asys values for a subject 

were then stored in the form of an Asys vector. Each value in this Asys vector was 

then divided by the mean noise floor estimate for that subject (the mean of all 
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values for a subject obtained in Step 3) and then stored in the form of an Anorm 

vector. These vectors were used in Step 7 to compute the amplitude-based feature.  

5. Compute the frequency distribution for each dsys: The single-sided frequency 

distribution for each dsys was required to compute the frequency-based feature. 

Since the systolic murmur for aortic stenosis was expected to be most prominent 

during mid-systole [1], a 64-point discrete Fourier transform was computed for the 

Figure 3-3  Example of amplitude-based-feature extraction. a) Normalized signal amplitude 

for the denoised phonocardiogram signal belonging to one heartbeat. The signal segment 

between the vertical dotted lines corresponding to the second half of S1, entire systolic 

interval, and the first half of S2 was extracted in the form of a dsys vector. b) Normalized 

signal amplitude for extracted dsys vector. c) Signal envelope for the signal in (b) calculated 

after applying a lowpass filter to the Hilbert transform of dsys. The noise floor was estimated 

as the 10th percentile value of this signal envelope, and the systolic amplitude was 

estimated as the 60th percentile value of the signal envelope between the two vertical lines. 
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middle 125 milliseconds (64 samples) of dsys after application of a Hamming 

window to obtain this distribution (Figure 3-4).  

6. Obtain vector of high-frequency estimate, fcom, for each subject: The high-

frequency content in each frequency distribution was estimated by computing its 

frequency center of mass as: 

𝑓𝑐𝑜𝑚   =  ∑(𝑥𝑖 𝑝𝑖) 

21

𝑖=3

     ∑(𝑝𝑖) 

21

𝑖=3

⁄   ,                (1) 

Figure 3-4  Example of frequency-based-feature extraction. a) Normalized signal amplitude 

for the denoised phonocardiogram signal belonging to one heartbeat. The signal segment 

between the vertical dotted lines corresponding to the middle 125 milliseconds of the dsys 

vector was used for extracting the frequency-based feature. b) Normalized signal amplitude 

for the extracted middle 125 milliseconds of the dsys vector. c) Frequency distribution for 

the signal in (b) calculated using a discrete Fourier transform after applying a Hamming 

window to it. The high-frequency content for the signal was estimated using the center of 

mass of the frequency distribution. 
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where pi and xi were the amplitude and frequency of the ith bin in the discrete 

Fourier transform, and limits 3 and 21 corresponded to the frequencies 16 and 

160 Hz, respectively. All frequency center of mass values for a subject were then 

stored in the form of an fcom vector. This vector was used in Step 7 to compute the 

frequency-based feature. 

7. Calculate the amplitude feature, A, and frequency feature, Fcom, for each 

subject: Not all heartbeats in a subject were expected to exhibit systolic murmurs 

due to variations in underlying physiology and sensor coupling. Therefore, the 85th 

percentile value of each of the Asys, Anorm, and fcom vectors were chosen to represent 

individual Asys, Anorm, fcom values for each subject. These individual Asys, Anorm, and 

fcom values for all 96 subjects were then standardized by subtracting the mean and 

dividing by standard deviation. The resulting standardized Asys and Anorm values 

were then summed to yield a single systolic amplitude feature, A. The resulting 

standardized fcom values were designated as the frequency feature, Fcom. One A and 

Fcom value each were available for each of the 96 subjects. 

3.4 Diagnostic Results 

Subjects with aortic stenosis were expected to show both high systolic signal 

amplitudes (measured by A) and elevated levels of systolic high-frequency content 

(measured by Fcom) (Figure 3-5). This was visualized in a scatter plot of standardized 
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center-of-mass of systolic frequency distribution (Fcom) vs. standardized systolic envelope 

amplitude (A) for all 96 subjects (Figure 3-6). Subjects with aortic stenosis visibly 

clustered in the top-right quadrant, whereas subjects with systolic murmurs due to other 

conditions exceeded the threshold on A but not on Fcom and hence appeared in the 

bottom-right quadrant. For diagnostic purposes, a subject was classified as having aortic 

stenosis if their A and Fcom values exceeded thresholds of 0.7 and ─1.0, respectively. 11 of 

12 aortic stenosis subjects and 80 of 84 non-aortic stenosis subjects had standardized 

Figure 3-5  Comparison of feature extraction in aortic stenosis (a, c) and non-aortic-

stenosis (b, d) subjects. a) Normalized systolic envelope amplitude for an aortic stenosis 

subject, showing a mid-systolic murmur and A = 3.4. b) Normalized systolic envelope 

amplitude for a non-aortic-stenosis subject showing A = 0.41. c) Normalized systolic 

frequency distribution for an aortic stenosis subject, showing elevated high-frequency 

content and Fcom = 3.4. d) Normalized systolic frequency distribution for a non-aortic-

stenosis subject showing Fcom = ─1.06. 



43 
 

feature values above both diagnostic thresholds, corresponding to a sensitivity of 92% 

and specificity of 95%. 

The complementary nature of the two features was observed by applying either 

threshold first and then performing a standard receiver operating characteristic (ROC) 

analysis of the other feature for the remaining set of subjects (Figure 3-7). For example, 

applying the Fcom > ─ 1.0 criteria removed 16 subjects, and ROC analysis of the amplitude-

based feature for the remaining set of 80 subjects yielded an area under the curve (AUC) 

value of 0.94. Similarly, ROC analysis of the frequency-based feature for the set of 22 

Figure 3-6  Standardized center-of-mass of systolic frequency distribution (Fcom) vs. 

standardized systolic envelope amplitude (A) for n=96 subjects. Diagnostic criteria are 

shown as dashed lines. 11 of 12 aortic stenosis subjects and 4 of 84 non-aortic-stenosis 

subjects had Fcom > ─ 1.0 and A > 0.7. Aortic stenosis subjects visibly cluster in the top-right 

quadrant (shaded box), whereas non-aortic-stenosis subjects exhibiting other systolic-

murmur inducing conditions exceeded threshold on A but not on Fcom, and hence appeared 

in the bottom-right quadrant. 
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subjects with A > 0.7 yielded an AUC value of 0.87. These high AUC values confirmed 

that the frequency-based feature provided significant complementary information to the 

amplitude-based feature, and that the two features were independently informative and 

specific to aortic stenosis.  

The end-to-end phonocardiogram signal processing, feature extraction, and 

classification algorithms operated in a fully automated fashion with a per-subject 

computational runtime of 6 to 125 seconds on a 2.3 GHz Intel Core i7 processor (mean 

runtime of 52±22 seconds). This demonstrates the utility of the proposed 

phonocardiogram-based system in offering the healthcare provider a clinically relevant 

Figure 3-7  Receiver operating characteristic (ROC) curves on the amplitude (a) and 

frequency-based (b) features. a) ROC curve on the amplitude-based feature (A) for subjects 

with Fcom > ─ 1.0 yielded an area under the curve value of 0.94. b) ROC curve on the 

frequency-based feature (Fcom) for subjects with A > 0.7 yielded an area under the curve 

value of 0.87. 
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heart disease diagnosis within minutes of acquiring signals in the real-world environment 

of a hospital, thereby allowing the diseased individual to embark on an accelerated path 

of care.   
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C H A P T E R  4 
EVALUATING 
HEART DISEASE 

4.1 Goal: Evaluating Heart Failure 

While diagnosing a heart disease involved establishing its presence or absence, 

evaluating a heart disease involved assessing its underlying etiology, severity, and effects 

[3]. Two criteria were set forward while searching for a disease to validate the evaluative 

capability of the proposed phonocardiogram-based system: first, this disease must be 

prevalent enough to benefit from evaluation at the point of primary care, and second, this 

disease must currently be evaluated using tools that might be unavailable in low-resource 

settings due to lack of training and experience for operating these.  

Heart failure – characterized by structural or functional impairment of ventricular 

filling or ejection of blood [18] – is one such disease that satisfied both the above criteria. 
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20% to 45% of the American population above 45 years of age is at risk of developing 

heart failure during their lifetime, and around 4 of 10 heart failure patients are at a risk of 

mortality within the first 5 years of diagnosis [4]. Heart failure may be a result of a 

spectrum of disorders, the most common being left ventricular diastolic dysfunction 

present in around half the cases [18]. In these individuals, the left ventricle shows 

increased chamber stiffness and impaired relaxation which renders it unable to accept 

blood during diastole [18] [19].  

Evidence of left ventricular diastolic dysfunction is obtained through 2-

dimensional and Doppler echocardiography and involves the calculation of several 

parameters to assess left ventricular dimensions, wall motion, ejection fraction, and 

valvular blood-flow patterns [19]. Cutoff values for these parameters are then analyzed to 

determine the degree of diastolic dysfunction and to estimate left ventricular filling 

pressures [19]. While a physician can independently analyze these echocardiographic 

parameters, the calculation of these indices requires interpretation of echocardiographic 

images by a credentialed sonographer [20]. These sonographers undergo regular training 

and education to ensure quality and consistency in image interpretation [20]. 

Echocardiography is therefore a resource-intense tool that might be unavailable in low 

resource primary care settings. In these settings, a tool that can aid the physician in 

evaluating left ventricular diastolic function without requirements of training and 

experience in operating it therefore carries great potential in accelerating the path of care 
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in individuals with heart failure. This was the evaluative goal for the proposed 

phonocardiogram-based system. 

4.2 Subject Population 

The phonocardiogram and electrocardiogram signals used to validate analytical 

methods for this purpose were collected after obtaining informed consent from 34 adult 

inpatients scheduled for right heart catheterization at the Oregon Health & Science 

University Hospital (Portland, OR) between 2018 and 2019 (Institutional Review Board 

Number: 19067). The subjects included 13 females and 21 males between 24 and 84 

years of age (mean age of 62±17 years, age data available for n=23 subjects) with left 

ventricular ejection fraction values between 5% and 78% (mean ejection fraction value of 

49±17%, data available for n=30 subjects). Signal acquisition lasted between 4 and 80 

minutes per subject depending on the catheterization laboratory schedule. 

Echocardiographic reports from transthoracic examinations performed in close proximity 

to the right heart catheterization were obtained for each subject, and each report 

contained one or more of five parameters based on the quality of the study (Table 4-1). 

The availability of this real-world data and echocardiographic parameters further 

established the validity of this evaluative goal for demonstrating the potential of the 

proposed phonocardiogram-based system.  
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4.3 Feature Extraction 

Left ventricular diastolic function evaluation was carried out by computing 

phonocardiogram-based proxies for the five echocardiographic parameters. Proxy metric 

Parameter Description Observed 
Range 

Number of 
Subjects 

Peak E 
velocity 

The peak early diastolic flow 
velocity measured at the 
mitral valve leaflet tips 

0.42 – 1.55 m/s 26 

E/A ratio The ratio of early-to-late peak 
diastolic flow velocities 
measured at the mitral valve 
leaflet tips 

0.66 – 3.66 18 

e’ 
velocity* 

The average early diastolic 
flow velocity measured at the 
mitral valve annulus 

0.03 – 0.17 m/s 23 

Peak TR 
velocity 

The peak regurgitant systolic 
jet velocity measured at the 
tricuspid valve 

2.07 – 3.71 m/s 22 

LAVi The maximum left atrial 
volume indexed to body 
surface area 

14.2 – 85.8 
ml/m2 

25 

Table 4-1  Summary of parameters available in echocardiographic reports. *Derived 

indirectly by dividing each peak E velocity parameter value by the available tissue Doppler 

imaging E/e’ ratio parameter value. 
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computation involved extraction of features that characterized physiological phenomena 

such as cardiac pressure gradients, muscle motion, and blood flow that were otherwise 

measured by the echocardiographic parameters [19]. The clinical value of these proxy 

metrics was determined using an algorithm described in the joint recommendations of 

the American Society of Echocardiography (ASE) and the European Association of 

Cardiovascular Imaging (EACVI) in 2016 [19] (Figure 4-1). The first part of this algorithm 

used peak E velocity, e’ velocity, peak TR velocity, and LAVi parameters to identify left 

ventricular diastolic dysfunction in subjects with normal left ventricular ejection fraction 

values. The second part of this algorithm used the above four parameters along with the 

E/A ratio parameter to estimate left atrial pressure (as an indirect measurement of left 

ventricular filling pressure) in subjects with reduced ejection fraction values or in those 

with normal left ventricular ejection fraction values in the presence of underlying 

myocardial disease. Ground truth diastolic dysfunction and left atrial pressure evaluations 

were obtained for each subject using their echocardiographic parameters irrespective of 

their ejection fraction value. For each of these evaluations, subjects were assigned to be 

either “afflicted” (presence of diastolic dysfunction, or presence of elevated left atrial 

pressure), “normal”, or “indeterminate”, with the “indeterminate” evaluation reserved for 

subjects with discordant echocardiographic parameters or those that required evaluation 

beyond the scope of the algorithm [19] [21]. For subjects with “afflicted” or “normal” 

ground truths, the corresponding phonocardiogram-based evaluations were obtained 

using the computed proxy metrics. The accuracies of proxy metric-based diastolic 
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function and left atrial pressure evaluations were then determined by calculating their 

Figure 4-1  The algorithm described in the joint recommendations of the American Society 

of Echocardiography and the European Association of Cardiovascular Imaging in 2016 for 

left ventricular diastolic function (a) and mean left atrial pressure (b) evaluation. The cutoff 

value for “average” e’ velocity was chosen as the mean of those for “lateral” and “septal” e’ 

velocities. 
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sensitivity and specificity against echocardiographic parameter-based ground truths.  

For this purpose, the filtering, noise subtraction, heartbeat segmentation, and 

heartbeat quality assurance algorithms described in Chapter 2 were applied to 

phonocardiogram signals acquired from the n=34 subject set. Signals recorded at the 

aortic, pulmonic, and mitral auscultation points were chosen for this analysis depending 

on the proxy metric being computed. Feature extraction for proxy metric computation 

utilized either raw or denoised phonocardiogram signals belonging to either all or 

exclusively high-quality heartbeats depending on the underlying physiology being 

characterized (Table 4-2). Three types of features were extracted from the systolic or 

diastolic signal interval of each heartbeat: an amplitude-based feature, a frequency-based 

feature, and a spectral entropy-based feature. For calculating the amplitude-based 

feature, a Hilbert transform [17] was applied to the selected phonocardiogram signal 

segment followed by the application of a fourth-order Butterworth low-pass filter with a 

cutoff frequency of 51 Hz. The amplitude-based feature was then calculated as the 60th 

percentile value of this signal envelope (like Asys calculation in Chapter 3) and was used to 

compute the proxy metric for the peak E velocity parameter. For calculating the 

frequency-based feature, a 64-point discrete Fourier transform was calculated from the 

selected phonocardiogram signal segment after application of a Hamming window. The 

frequency-based feature was then calculated as the center-of-mass for the frequency 

distribution between 16 and 160 Hz (like fcom calculation in Chapter 3) and was used to 

compute the proxy metrics for e’ velocity and LAVi parameters. The spectral entropy 
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feature was calculated as the negative product of the signal probability distribution for 

the selected phonocardiogram signal segment with its logarithm [22] and was used to 

compute the proxy metrics for E/A ratio and peak TR velocity parameters.  

Parameter Type of 
Phono-
cardiogram 
Signal used 

Type of 
Heartbeats 
used 

Segment of 
Phono-
cardiogram 
Signal used 
for Feature 
Extraction 

Feature used to 
Compute Proxy 
Metric 

Peak E 
velocity 

Denoised High-
quality 

Diastolic 
interval 

Ratio of pulmonic-
to-aortic signal 
amplitude 

E/A ratio Raw High-
quality 

Diastolic 
interval 
(early = first 
half, late = 
second half) 

Ratio of early-to-
late pulmonic 
spectral entropy 

e’ velocity Denoised All Second half 
of systolic 
interval 

Aortic frequency 
center of mass 

Peak TR 
velocity 

Denoised High-
quality 

Diastolic 
interval 

Ratio of pulmonic-
to-aortic spectral 
entropy 

LAVi Raw All First half of 
diastolic 
interval 

Mitral frequency 
center of mass 

Table 4-2  Summary of features extracted to compute proxies for each echocardiographic 

parameter. 
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Peak E velocity: This parameter was a measure of peak early diastolic flow 

velocity at the mitral valve leaflet tips during passive emptying of the left atrium into the 

left ventricle [19]. The value of this parameter reflected the pressure gradient between the 

left atrium and left ventricle and was affected by any alterations in the rate of left 

ventricular relaxation or left atrial pressure [19]. As seen in Chapter 3, subjects with high 

flow velocities showed corresponding high signal amplitudes. The ratio of pulmonic-to-

aortic amplitude-based features calculated for the diastolic denoised phonocardiogram 

signals in high-quality beats was therefore chosen to characterize this trend. Since the 

direction of diastolic blood flow was away from the location of aortic and pulmonic 

auscultation points, lower amplitude-based feature values were seen for high peak E 

velocity values. The ratio of pulmonic-to-aortic feature values here allowed for the 

comparison of this trend on the left and right sides of the heart. As a result, greater 

diastolic amplitude ratios were seen for subjects with larger peak E velocity values, and 

this ratio was therefore chosen to compute the proxy metric for the peak E velocity 

parameter.  

E/A ratio: This parameter was a measure of the ratio of early-to-late peak diastolic 

flow velocities at the mitral valve leaflet tips during the passive and subsequent active 

emptying of the left atrium into the left ventricle [19]. The value of this parameter was 

used to identify the state of left ventricular function: normal, impaired relaxation, 

moderate diastolic dysfunction (pseudoformal filling), or restrictive left ventricular filling 

(impaired left ventricular compliance) [19]. Diastolic phonocardiogram signal segments 
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associated with left ventricular filling-related muscular contractions were identified using 

the spectral-entropy based feature. Lower spectral entropy values were seen in late-

diastolic signal segments corresponding to active left atrial contractions when compared 

to early-diastolic signal segments corresponding to passive left atrial emptying. This trend 

was strongest for raw phonocardiogram signals in high-quality heartbeats acquired at the 

pulmonic auscultation point. A ratio of early-to-late pulmonic diastolic signal spectral 

entropy-based features was therefore chosen to compute the proxy metric for the E/A 

ratio parameter.  

e’ velocity: This parameter was a measure of the average early diastolic flow 

velocity at the mitral valve annulus during passive emptying of the left atrium into the 

left ventricle [19]. The value of this parameter was seen to be associated with the time 

constant of left ventricular relaxation [19]. The left ventricular hemodynamic forces 

responsible for these early-diastolic mitral annulus deflections were indirectly estimated 

during systole. While high-frequency vibrations associated with high-velocity blood flow 

showed corresponding elevated levels of high-frequency signal content (as seen in 

Chapter 3), low-frequency vibrations associated with cardiac muscle motion showed 

corresponding elevated levels of low-frequency signal content [23]. Subjects with high e’ 

velocity values due to larger mitral annulus deflections also showed greater muscle 

motion-related low frequency content during systole. This phenomenon was 

characterized by calculating the frequency-based feature for the denoised end-systolic 
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phonocardiogram signals in all heartbeats acquired at the aortic auscultation point. This 

feature was therefore chosen to compute the proxy metric for the e’ velocity parameter. 

Peak TR velocity: This parameter was a measure of the peak regurgitant systolic 

jet velocity at the tricuspid valve during right ventricular contraction [19]. The value of 

this parameter provided an indirect measure of the pulmonary artery systolic pressure 

which was seen to be directly correlated to left atrial pressure [19]. Subjects with greater 

peak TR velocity values and therefore higher pulmonary artery pressures have been 

observed to show organized heart sound patterns in phonocardiogram signals collected at 

the pulmonic auscultation point [11]. These patterns were characterized by calculating 

the ratio of the spectral entropy-based feature for the diastolic interval phonocardiogram 

signal acquired at the pulmonic and aortic auscultation points. Lower spectral entropy 

values were seen at the pulmonic auscultation point for subjects with greater peak TR 

velocity values. This trend was strongest for denoised phonocardiogram signals in high-

quality heartbeats, and this ratio was therefore chosen to compute the proxy metric for 

the peak TR velocity parameter.  

LAVi: This parameter was a measure of the maximum left atrial volume indexed to 

body surface area [19]. The value of this parameter reflected the cumulative effects of 

increased left atrial pressures over time [19]. Subjects with greater LAVi values and 

therefore larger left atria showed greater muscle-motion related low-frequency signal 

content during left ventricular filling in early diastole. This trend was characterized by 

calculating the frequency-based feature for the early diastolic interval phonocardiogram 
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signal acquired at the mitral auscultation point and was strongest for raw 

phonocardiogram signals in all heartbeats. This feature was therefore chosen to compute 

the proxy metric for the LAVi parameter.  

 Individual per-heartbeat feature values were averaged to obtain one mean feature 

value per-parameter per-subject. These per-subject feature values were then plotted 

against their corresponding echocardiographic parameter values, and the proxy metric 

was calculated using a linear fit (Table 4-3 and Figure 4-2). Each proxy metric was 

adjusted by subtracting the linear model’s intercept and dividing by its slope, and those 

proxy values that were outside physiologically feasible ranges were truncated accordingly. 

Proxy metrics could not be computed for all subjects either due to absence of 

Proxy 
Metric 

Number of 
Subjects 

R2-value p-value Bland-Altman 
Bias and Limits 
of Agreement 

Peak E 
velocity 

20 0.47 0.0009 0.00 ± 0.64 m/s 

E/A ratio 18 0.58 0.0003 -0.03 ± 1.24 

e’ velocity 20 0.49 0.0006 0.01 ± 0.06 m/s 

Peak TR 
velocity 

16 0.51 0.0018 -0.05 ± 0.89 m/s 

LAVi 24 0.44 0.0004 -1.0 ± 31.5 ml/m2 

Table 4-3  Statistical measures for phonocardiogram-based proxy metrics. 
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corresponding parameters in their echocardiographic reports or due to occasional signal 

quality deficiencies during measurement in the noisy catheterization laboratory 

environment. These metrics were therefore unavailable for peak E velocity and peak TR 

velocity parameters in 6 subjects each, for the e’ velocity parameter in 3 subjects, and for 

the LAVi parameter in 1 subject. 
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 (Figure 4-2 continued from previous page) 

 

 

 

 

(Figure 4-2 continued next page) 
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(Figure 4-2 continued from previous page) 

 

 

Figure 4-2  Proxy metric vs. echocardiographic parameter scatter plots (left column) and 

Bland-Altman plots (right column) for peak E velocity (a), E/A ratio (b), e’ velocity (c), peak 

TR velocity (d), and LAVi (e). Markers represent subjects. Scatter plots show solid linear 

regression lines and Bland-Altman plots show bias (horizontal solid line) and 95% limits of 

agreement (horizontal dotted lines), also summarized in Table 4-3.  

4.4  Evaluative Results 

Echocardiographic parameter-based ground truth evaluations for left ventricular 

diastolic function obtained by applying the 2016 ASE/EACVI algorithm were available for 

29 of 34 subjects, with 12 subjects showing diastolic dysfunction and 17 subjects showing 

normal diastolic function. Proxy-metric based evaluations were “indeterminate” for 5 of 

these 29 subjects. For the remaining 24 subjects, the sensitivity and specificity for proxy 
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metric-based left ventricular diastolic function evaluation were 70% and 100% (Figure 

4-3). Similarly, echocardiographic parameter-based ground truth evaluations for left 

atrial pressure were available for 17 of 34 subjects, with 11 subjects showing elevated left 

atrial pressures and 6 subjects showing normal left atrial pressures. Proxy-metric based 

evaluations were “indeterminate” for 5 of these 17 subjects. For the remaining 12 

subjects, the sensitivity and specificity for proxy metric-based left atrial pressure 

evaluation were 75% and 75%. The overall evaluative accuracy for this phonocardiogram- 

based system was 87.5% for evaluating left ventricular diastolic function and 75% for 

evaluating left atrial pressures. These results were closely in line with those reported in 

studies comparing evaluative accuracy of echocardiographic parameters with gold- 

standard catheter-based pressure measurements [24].  

The end-to-end phonocardiogram signal processing, feature extraction, and proxy 

metric computation algorithms for left ventricular diastolic function evaluation operated 

in a fully automated manner without expert supervision. While the clinical value of the 

proxy metrics was determined using the 2016 ASE/EACVI algorithm, the proxy metric 

computation itself was independent of this algorithm and therefore immune to any 

guideline modifications that might be introduced in the future. This demonstrates the 

utility and potential of the proposed phonocardiogram-based system in providing 

echocardiography-like parameters to the interpreting physician within minutes of signal 

acquisition in the real-world environment of a hospital, thereby allowing individuals with 

heart failure to embark on an accelerated path of care. 
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Figure 4-3  Summary of left ventricular diastolic dysfunction (a) and left atrial pressure (b) 

evaluations for 34 subjects. a) Echocardiographic parameter-based ground truth left 

ventricular diastolic function evaluations were available for 29 subjects. The overall 

evaluative accuracy of proxy metrics was 87.5%. b) Echocardiographic parameter-based 

ground truth left atrial pressure evaluations were available for 17 subjects. The overall 

evaluative accuracy of proxy metrics was 75%. (TN=True negatives, FP=False positives, 

TP=True positives, FN=False negatives). 
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C H A P T E R  5 
CONCLUSION 

5.1 Impact of the Presented System 

Every 10 years since the late 1990’s, the American Heart Association has updated 

its mission statement to set forward new research, advocacy, and public health goals for 

the upcoming decade [5]. Over the past 20 years, these guidelines have focused on 

decreasing risk factors for heart disease such as obesity, diabetes, and hypertension as 

well as promoting healthy behaviors such as regular physical activity, maintaining a 

healthy weight, and smoking cessation [5]. The 2020-30 guidelines expand on this 

mission and call for an equitable increase in healthy life expectancy through the 

prevention of premature death due to heart disease [5]. Achieving this goal requires the 

use of evidence-based preventive tools capable of early identification and effective 

management of heart disease [7]. While existing diagnostic and evaluative tools come 

close to filling this need, these are either limited in their capability, require extensive 

training and experience for their use, or are unavailable in low-resource settings. This 
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poses a challenge in the successful realization of the 2030 American Heart Association 

goals, especially in the early diagnosis of individuals who may otherwise experience 

sudden death or in the timely evaluation of individuals who may otherwise continue to 

live with disease-related disabilities. The phonocardiogram-based system presented here 

was shown to overcome these challenges to provide clinically relevant heart disease 

diagnosis and evaluation at the point of primary care. This system analyzed 

phonocardiogram signals acquired noninvasively and operated in a fully automated end-

to-end manner without any expert supervision. Its operation was based on fundamental 

principles of physiology and its potential was demonstrated through the diagnosis of 

aortic stenosis in 96 subjects and the evaluation of left ventricular diastolic function in 34 

subjects. Diagnostic and evaluative results from the use of this system were produced 

within minutes of signal acquisition without requirements for any follow-up visits and 

were comparable to those from existing risk assessment tools and advanced imaging 

modalities. This system offers great value as part of the primary care provider’s toolkit 

and carries great potential in improving a patient’s care outcomes. 

5.2 Recommendations for Future Development 

The filtering, noise subtraction, heartbeat segmentation, heartbeat quality 

assurance, and feature extraction algorithms presented here can be leveraged to diagnose 

and evaluate other heart disease conditions. For example, the systolic murmur 

identification technique created for aortic stenosis can be extended to other valvular and 
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congenital heart disease. Proxy metric computation techniques developed for left 

ventricular diastolic function evaluation can be used for evaluating pulmonary 

hypertension and left ventricular size, or for calculating left ventricular stroke volume or 

cardiac output. These techniques can also be used to evaluate the health of coronary 

arteries or to ensure proper functions of prosthetic valves and grafts. This system can also 

be used to establish the presence of any comorbidities in a pre-diagnosed disease or as 

part of the pre- or post-operative evaluation of inpatients. Future validation goals could 

expand on existing subject counts and adapt this system into a portable form factor for 

evaluating the heart’s exercise-response or for use in telemedicine visits for vulnerable 

patients.  
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