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ABSTRACT OF THE DISSERTATION

Automorphy Lifting Theorems

by

Sudesh Kalyanswamy

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2017

Professor Chandrashekhar Khare, Chair

This dissertation focus on automorphy lifting theorems and related questions. There are two

primary components.

The first deals with residually dihedral Galois representations. Namely, fix an odd prime

p, and consider a continuous geometric representation ρ : GF → GLn(O), where F is either a

totally real field if n = 2, or a CM field if n > 2, and O is the integer ring of a finite extension

of Qp. The goal is to prove the automorphy of representations whose residual representation

ρ̄ has the property that the restriction to GF (ζp) is reducible, where ζp denotes a primitive p-

th root of unity. This means the classical Taylor-Wiles hypothesis fails and classical patching

techniques do not suffice to prove the automorphy of ρ. Building off the work of Thorne, we

prove an automorphy theorem in the n = 2 case and apply the result to elliptic curves. The

case n > 2 is examined briefly as well.

The second component deals with the generic unobstructedness of compatible systems

of adjoint representations. Namely, given a compatible system of representations, one can

consider the adjoints of the residual representations and determine whether the second Galois

cohomology group with the adjoints as coefficients vanishes for infinitely many primes. Such

a question relates to classical problems such as Leopoldt’s conjecture. While theorems are

hard to prove, we discuss heuristics and provide computational evidence.
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CHAPTER 1

Introduction

1.1 Main Questions

The overarching theme of this dissertation will be automorphy lifting theorems. The ques-

tions addressed in this thesis are of the following flavors:

Question 1.1.1. Under what conditions will a geometric Galois representation be “the

same” as a Galois representation arising from an automorphic representation of GLn over

some adele ring.

Question 1.1.2. Given a compatible system of Galois representations, in what situations

will a specific deformation problem be “generically unobstructed” as the prime varies.

All the terms used above will be defined in due course. Questions similar to 1.1.1 have

been a focus of number theorists since around the time of Wiles’ proof of Fermat’s Last

Theorem. Indeed, as will be discussed in the next section, Wiles’ proof relied on proving

the Shimura-Taniyama-Weil conjecture for semistable elliptic curves, which asked when the

representations arising from semistable elliptic curves are the same as those arising from

modular forms. There has been extensive work on Question 1.1.1 in the case n = 2, but not

as much has been done in the higher dimensional (i.e. n > 2) setting.

The second question, on the other hand, is not one that has been thoroughly examined.

It will be discussed in Chapter 5.
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1.2 Galois Representations, Fermat’s Last Theorem, and Auto-

morphy Lifting

Number theorists are interested in finding rational solutions to polynomial equations. This

is done not by trying to necessarily find every solution, but by studying the “symmetries”

in the solutions. There is a group which encodes the symmetries to all solutions to every

polynomial equation with rational coefficients, called the absolute Galois group of Q, which is

denoted GQ. This group is too large and mysterious, so instead we study its representations,

which are continuous homomorphisms GQ → GLn(A) for some ring A.

Writing down such maps is not much easier than studying GQ, so it would be nice to

have some natural sources of representations. The story of Fermat’s Last Theorem and

automorphy lifting has two main characters, both geometric objects from which Galois rep-

resentations naturally arise: elliptic curves and modular forms. These representations will

be introduced in Chapter 2.

We briefly describe the ideas of the proof of Fermat’s Last Theorem. Recall that the

theorem asserts:

Theorem 1.2.1. For n > 2, the following holds:

FLT(n) : a, b, c ∈ Z and an + bn = cn =⇒ abc = 0.

The case n = 3 was proved by Euler in the 18th century, and the case n = 4 is due to

Fermat. It is relatively straightforward to see that it suffices to prove FLT(p) for odd primes

p. Kummer made the biggest contributions towards a proof when he showed that FLT(p) is

true if p does not divide the class number of Q(ζp)/Q, where ζp is a primitive p-th root of

unity. However, a proof eluded mathematicians until the end of the 20th century.

A big step towards a proof was made when Frey [15] connected the problem to elliptic

curves. His insight was to take a nontrivial solution to FLT(p), say ap + bp + cp = 0, where

a, b, c are all coprime, and create the elliptic curve

E = Ea,b,c : y2 = x(x− ap)(x+ bp).

2



Assume a ≡ −1 mod 4 and 2|b. Attached to this elliptic curve, for any prime number q,

is a corresponding Galois representation, denoted ρE,q : GQ → GL2(Zq) and an associated

residual representation ρ̄E,q : GQ → GL2(Fq). This residual representation can be gotten

geometrically using torsion points of E, and it can also be gotten by reducing ρE,q modulo

the ideal qZq.

Frey and Serre studied the properties of the residual representation. More precisely, they

showed:

Theorem 1.2.2. [35, Theorem 3.1] Let q = p. With the assumptions and notation as above,

the representation ρ̄E,p is:

• Absolutely irreducible,

• Odd,

• Unramified outside 2p, flat at p, and semistable at 2.

To prove Fermat’s Last Theorem, it would suffice to prove that no such representation

exists. This statement was unknown at the time of Wiles’ proof, though it is now known

from the proven Serre’s conjecture. However, without the power of Serre’s conjecture, Wiles

needed a different approach. The observation was that it is true if one restricts to Galois

representations arising from separate geometric objects, namely modular forms (to be ex-

plained in Chapter 2). Representations which are isomorphic to a representation arising

from modular forms is called modular. An elliptic curve is called modular if ρE,q is modular

for some (equivalently all) q. The next chapter will make this more precise.

Wiles [44] and Taylor-Wiles [45] showed that semistable elliptic curves over Q are mod-

ular. Namely, that the representations gotten from this class of elliptic curves can also be

gotten from modular forms. This is where they proved an modularity (or automorphy) lift-

ing theorem. Such a theorem has the following shape: If ρ is a representation and there is

an associated “residual” representation ρ̄, then the modularity of ρ̄ implies the modularity

of ρ. In practice, such a theorem is hard to prove without imposing some conditions on the

representations ρ and ρ̄.

3



A deep theorem of Langlands and Tunnell gives the modularity of ρ̄E,3 assuming ρ̄E,3 is

irreducible. Under this assumption, the automorphy lifting theorem of Wiles and Taylor-

Wiles gives the automorphy of E. Wiles used a clever trick and the automorphy lifting

theorem to deal with the cases where this assumption did not hold. A theorem of Ribet

then shows that a modular representation with the required properties could not exist. The

details of Wiles’ ingenious “3-5 switch” trick will be given near the end of Chapter 3.

Since the time of this proof, number theorists have tried to prove the automorphy of other

representations, not just those arising from elliptic curves. In the two-dimensional setting,

many representations are known to be automorphic. However, in the higher dimensional

case, less is known, partially due to the unproven Ihara’s lemma.

1.3 Basic Notation

We first will take the time to establish the notation and terminology used throughout this

dissertation. The basics of algebraic number theory and Galois theory will be assumed.

If F is a field, we will let F denote a choice of algebraic closure of F . If F is a number

field and v is a place of F , then we write Fv for the completion of F at v, and F v will be

a choice of algebraic closure (in the case of v an archimedean place, the algebraic closure of

Fv = R is C).

If p is a rational prime, then Sp will denote the places of F above p. The infinite places

of F will be denoted S∞. The p-adic valuation valp on Qp is normalized so that valp(p) = 1.

With these choices having been made, we define the absolute Galois groups

GF = Gal(F/F ), GFv = Gal(F v/Fv),

and IFv ⊂ GFv will denote the inertia subgroup.

If v is a finite place of F , then we can fix embeddings F ↪→ F v which extend the standard

embeddings F ↪→ Fv. These choices determine embeddings GFv ↪→ GF . We will use qv to

denote the size of the residue field of F at v.

If S is a finite set of places of F , then FS ⊂ F will be the maximal extension of F

4



unramified outside S, with Galois group GF,S = Gal(FS/F ), which is naturally a quotient

of GF . If v /∈ S is a finite place of F , then the composite map GFv ↪→ GF → GF,S factors

through the quotient GFv/IFv , and Frobv ∈ GF,S will be the image of a geometric Frobenius

element. If F is a number field, then AF will denote the adele ring of F , and A∞F will denote

the finite adeles.

1.4 Structure of Dissertation

In Chapter 2, much of the necessary background information will be introduced. This dis-

sertation uses ideas from Galois cohomology and Galois deformation theory, and so this

material is carefully introduced, though most of the proofs are omitted and references are

given instead. The topics include Galois representations, Galois cohomology, Galois defor-

mation theory, and automorphic representations, in varying amounts of detail. The end of

the chapter contains a discussion of the two methods of modularity lifting used in Chapter

3.

The last three chapters contain the original work for the purposes of this dissertation.

Chapter 3 contains the work done on automorphy lifting in the two dimensional setting.

Building off the work of Thorne [41], we examine the automorphy of geometric Galois repre-

sentations which are residually dihedral. We then apply the theorem to the setting of elliptic

curves.

Chapter 4 details our quest to prove the analogue of the main theorem of Chapter 3 for

higher dimensional representations. This is very much a work in progress, and we describe

the future of the project at the end of the chapter.

Chapter 5 describes work done jointly with Chandrashekhar Khare, Gebhard Boeckle,

and David Guiraud on questions such as Question 1.1.2. This is mainly a computational

project, and we provide heuristics and computational evidence for a couple of questions.

This is also a project with future work to be done, again detailed at the end of the chapter.

5



CHAPTER 2

Background Information

This chapter is designed to introduce the reader to the concepts necessary for this disserta-

tion. Section 2.1 first introduces a few examples of Galois representations and then delves

into a survey of the theory of local representations. In Section 2.2, all the important def-

initions and theorems of Galois cohomology are presented with an eye towards the Galois

deformation theory of Section 2.3, which is arguably the most important section for under-

standing this dissertation. Section 2.4 gives the very basics of the theory of automorphic

representations, just enough to understand the notation and terminology of the next chapter,

and finally Section 2.5 describes the two methods of automorphy lifting that will be used in

the next chapter. Knowledge of both algebraic number theory and class field theory will be

assumed throughout the chapter.

2.1 Galois Representations

2.1.1 Examples of Galois Representations

Galois representations seem mysterious at first, which is why it is important to keep in mind

the examples which appear repeatedly. When studying these representations, it is best to find

“natural sources,” and these usually come from studying a Galois action on some geometric

object. The objects themselves (e.g. elliptic curves, modular forms, etc.) would take some

time to introduce, so we instead direct the reader to a few sources for more information.

6



2.1.1.1 Cyclotomic Character

Let F be a number field. For an integer m ≥ 1, let µm(F
×

) denote the m-th roots of unity

of F
×

, i.e.

µm(F
×

) = ker(F
× x 7→xm−→ F

×
).

Consider the projective limit

µp∞(F
×

) = lim←−
n

µpn(F
×

).

This is sometimes denoted Tp(F
×

), called the p-adic Tate module of F
×

. Each µpn(F
×

) is

isomorphic to Z/pnZ, the isomorphism sending a primitive pn-th root of unity to 1. Choosing

a compatible system of primitive pn-th roots of unity (ζpn)n≥1 (compatible in the sense that

ζppn = ζpn−1) yields an isomorphism µp∞(F
×

) ∼= Zp. The group GF acts compatibly on all

µpn(F
×

), and thus acts on µp∞(F
×

). This gives rise to a representation

εp : GF → Aut(µp∞(F
×

)) ∼= Z×p ,

called the p-adic cyclotomic character of F . Note that for σ ∈ GF , the element εp(σ) describes

the action of σ on the p-power roots of unity of F
×

.

Lemma 2.1.1. The representation εp is unramified outside Sp, and for a finite place v /∈ Sp,

we have εp(Frobv) = q−1
v .

We can also consider the reduction ε̄p of εp modulo p, which is a representation

ε̄p : GF → F×p ,

called the mod p cyclotomic character. This map can also be gotten by considering the

action of GF on µp(F
×

).

Remark 2.1.2. (1) This construction works over any field F of characteristic zero, not just

number fields.

(2) If the prime p is clear from context, it is dropped from the notation.

7



2.1.1.2 Elliptic Curves

One possible source for this section is [33, Chapter III.6-7]. Let E be an elliptic curve over

a number field F , and let m ≥ 2 be an integer. As an abelian group, the m-torsion E[m] of

the elliptic curve is isomorphic to Z/mZ × Z/mZ ([33, Corollary 6.4]). As in the previous

section, we consider the p-adic Tate module, this time of E:

Tp(E) = lim←−
n

E[pn],

the inverse limit being taken with respect to the multiplication by p maps on E. As a Zp-

module, the Tate module Tp(E) ∼= Zp × Zp. The group GF acts compatibly on each of the

E[pn], and so we obtain a representation

ρE,p : GF → Aut(Tp(E)) ∼= GL2(Zp).

We can again reduce ρE,p modulo the maximal ideal pZp ⊂ Zp, and this yields a representa-

tion

ρ̄E,p : GF → GL2(Fp),

which is also gotten by considering the action of GF on the p-torsion of E, i.e. on E[p]. The

most important property of ρE,p (for the purposes of this thesis) is the following:

Proposition 2.1.3. The determinant of ρE,p is the p-adic cyclotomic character εp of F .

Proof. This comes from the Weil pairing. See, for example [32, Page 21].

2.1.1.3 Modular Forms

There are many good sources for modular forms, including [10] and [29]. Let f denote

a newform of level N , weight k ≥ 2, and character χ, i.e. f is a Hecke eigenform in

Sk(Γ0(N), χ)new. Write

f =
∑
n≥1

an(f)qn

for the Fourier expansion of F , and note that a1(f) = 1 since f is normalized by assumption.

Let K = Q({an(f)}n≥1) be the field gotten by adjoining the Fourier coefficients of f to Q. A
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well known result is that K is, in fact, a number field. The following result due to Shimura

for k = 2 and Deligne for k ≥ 2:

Theorem 2.1.4. ([8]) Let p be a prime of K lying above p. Then there exists a continuous

representation

ρf,p : GQ → GL2(Kp)

such that:

(1) ρf,p is unramified outside Np,

(2) The trace and determinant of ρf,p(Frobl) for l - Np are al(f) and lk−1χ(l), respectively.

In fact, this representation ρf,p is equivalent to a representation taking values in OKp , the

integer ring of the completion. Letting k denote the residue field, composing ρf,p with the

natural projection GL2(OKp)→ GL2(k) gives a representation

ρ̄f,p : GQ → GL2(k).

It is actually better to consider the semi-simplification of this representation, and so it will

simply be assumed that ρ̄f,p refers to the semi-simplification.

Definition 2.1.5. (1) Let ρ : GQ → GL2(L) be a representation, where L/Qp is a finite

extension. Then ρ is called modular if it is isomorphic over Qp to some ρf,p.

(2) If ρ̄ : GQ → GL2(k) is a continuous semi-simple representation with k a finite field of

characteristic p, then ρ̄ is modular if it is isomorphic over Fp to some ρ̄f,p.

It is now known that all elliptic curves over Q are modular, which is to say that if E/Q is

an elliptic curve, then some (equivalently all) ρE,p is modular. This is a result due to many,

and appropriate sources will be provided in the next chapter.

2.1.1.4 Adjoint Representations

Let F be a either a number field or a finite extension of Qp for some prime p, and let

ρ : GF → GLn(K) be a representation, with K some field. The adjoint representation ad ρ

9



is defined as follows. As a set, the module ad ρ is just the set of n × n matrices over K. It

becomes a GF -module via the action:

g · A = ρ(g)Aρ(g)−1.

Namely, GF acts through conjugating by ρ. The set of trace zero matrices are invariant under

the action, and hence is a GF -submodule, denoted by ad0 ρ ⊂ ad ρ. These two GF -modules

will be essential later on.

2.1.1.5 Tate Twists

Let F be any field of characteristic zero. Consider Tp(F
×

), the p-adic Tate module of F
×

.

From Section 2.1.1.1, there is an isomorphism Tp(F
×

) ∼= Zp, and that GF acts on Tp(F
×

)

via the p-adic cyclotomic character εp : GF → Z×p . Write Zp(1) = Tp(F
×

), called the Tate

twist of Zp. We also let Qp(1) := Qp ⊗Zp Zp(1).

More generally, for r ∈ Z, let

Zp(r) := Symr
ZpZp(1), Zp(−r) := HomZp(Zp(r),Zp).

As a set Zp(r) = Zp(−r) = Zp, but the action of GF on Zp(r) is

g ·m = εp(g)rm.

There are corresponding modules

Qp(r) = Qp ⊗Zp Zp(r).

In fact, for any Zp-module T on which GF acts, we can form the GF -module

T (r) := T ⊗Zp Zp(r).

2.1.2 Local Representations: l 6= p

Ultimately, the goal will be to study representations of GF , where F is a number field.

However, it is desirable to impose local behavior of these representations. Namely, if ρ is

10



the representation in question, then we will be imposing conditions on the restrictions ρ|GFv ,

where v is a finite place of F . Such representations can be studied independently of the

global representation ρ, and there are many interesting properties. Both this section and the

next section will examine these local representations.

For this section, let K/Qp be a finite extension, and consider GK = Gal(K/K). The

representations of interest are of the form

ρ : GK → GLn(L),

where L/Ql is an algebraic extension with integer ring OL. Equivalently, one can examine

finite dimensional L-vector spaces V with a continuous and linear action of GK , which gives

a map

ρ : GK → Aut(V ) ∼= GLn(L),

the isomorphism coming after a basis for V is chosen. As it turns out, the cases l 6= p

(the l-adic case) and l = p (the p-adic case) behave very differently, and so each is treated

individually, the former being treated in this section and the latter in the next section. The

main source for this section is [13], although [16] and [36] are good references.

Assume l 6= p.

Definition 2.1.6. An l-adic representation of GK is a finite dimensional L vector space V ,

together with a continuous, linear action of GK .

Remark 2.1.7. Every l-adic representation V of GK has a GK-stable lattice T , meaning the

representation V has a free OL-module T of rank dimL V which is stable under the action of

GK (here OL is the integer ring of L). In matrix terms, this means that the representation

ρ : GK → Aut(V ) ∼= GLn(L)

is conjugate to a representation ρ′ : GK → GLn(OL). Conversely, if T is a free OL-module

of rank d with a continuous, linear action of GK , then one can form an associated l-adic

representation of dimension d over Ql by considering

V = L⊗OL T.
11



Example 2.1.8. (1) Take L = Ql and T = Zl. Then GK acts on T via the cyclotomic

character εl : GK → Z×l (section 2.1.1.1). By the above remark, this gives rise to a

one-dimensional l-adic representation of GK .

(2) Again let L = Ql. If E is an elliptic curve over K, then GK acts on the l-adic

Tate module Tl(E) of E (section 2.1.1.2). This produces a two-dimensional l-adic

representation of GK .

There is useful terminology when discussing l-adic representations.

Definition 2.1.9. ([13, Definition 1.22]) Let V be an l-adic representation of GK .

(1) The representation V is unramified (or has good reduction) if the inertia group IK acts

trivially on V .

(2) The representation V is semi-stable if the inertia group IK acts unipotently (equiva-

lently, if the semi-simplification of V has good reduction).

Remark 2.1.10. For any property X, the representation V is said to be potentially X if there

is a finite extension K ′/K such that the restricted representation V |GK′ has characteristic

X. For example, V is potentially semi-stable if there is a finite extension K ′/K such that

V |GK′ is semi-stable.

While l-adic representations are the objects of interest, it turns out that the category of

l-adic representations is equivalent to the category of a different sort of representation. We

describe this other category, called Weil-Deligne representations.

Let OK ⊂ K be the integer ring, mK ⊂ OK the maximal ideal, and k = OK/mK the

residue field. We will let Frobk ∈ Gk denote the geometric Frobenius element. There is a

short exact sequence

1→ IK → GK
π−→ Gk → 1.

Definition 2.1.11. The Weil group WK of K is defined to be

WK = {g ∈ GK : π(g) = Frobnk for some n ∈ Z}.
12



Clearly IK ⊂ WK , and the topology on WK is determined by declaring that IK be an open

subgroup with its usual topology. Let α : WK → Z be the map g 7→ n, where π(g) = Frobnk .

We can now define representations on WK .

Definition 2.1.12 ([16, Definition 2.9], [13, p.16]). Let E be any field of characteristic zero.

(1) A representation of WK over E is a representation over a finite dimensional E vector

space V which is continuous when E is given the discrete topology. In other words, it

is a homomorphism

ρ : WK → Aut(V )

such that ker ρ ∩ IK ⊂ IK is open.

(2) A Weil-Deligne representation of WK over E is a pair (r,N), where r : WK → Aut(V )

is a representation of WK over E and N ∈ End(V ) is an endomorphism such that, for

σ ∈ WK , we have

r(σ)Nr(σ)−1 = q−α(σ)N,

where q = #k.

Remark 2.1.13. (1) The endomorphism N is necessarily nilpotent.

(2) There is an object called the Weil-Deligne group whose representations are the Weil-

Deligne representations of WK defined above, hence the name.

(3) If (r,N) is a Weil-Deligne representation, then the pair (rss, N), where rss denotes

the semi-simplification of r, is also a Weil-Deligne representation, called the Frobenius

semi-simplification of (r,N) (which from now on will be written as (r,N)ss or (r,N)F-ss).

If r is semi-simple, then (r,N) is called Frobenius semisimple.

One of the advantages of Weil-Deligne representations is that there is no need to worry

about topological issues since the field E is given the discrete topology. This will prove to

be useful later on.

There are two more definitions needed before introducing the main theorem of the section.

13



Definition 2.1.14. (1) If L/Ql is algebraic, thenA ∈ GLn(L) is called bounded if det(A) ∈

O×L and the characteristic polynomial of A is in OL[X].

(2) A Weil-Deligne representation (r,N) of WK over L is bounded if r(σ) is bounded for

all σ ∈ WK .

The upshot of all these definitions is the following theorem of Grothendieck.

Theorem 2.1.15 ([16, Proposition 2.14]). Suppose l 6= p (which has been the running

assumption). There is an equivalence of categories from the category of continuous rep-

resentations of GK over L to the category of bounded Weil-Deligne representations over

L.

As remarked earlier, this means that studying l-adic representations of GK is equivalent

to studying this new class of representations for which topology is not as big of an issue.

2.1.3 Local Representations: l = p

As in the previous section, let K/Qp be a finite extension, except now let l = p, which is the

so called p-adic representation setting. Namely, we will examine representations

ρ : GK → GLn(L),

where L/Qp is an algebraic extension. These representations are much more difficult to

study than the l 6= p case, simply because there are many more representations to consider.

In the l 6= p case, representations of GK had to be trivial on some open subgroup of the wild

inertia group, but this is not the case in the l = p setting.

The study of p-adic representations has been carried out in detail by Fontaine and others.

The two types of representations which we will need most are Hodge-Tate and de Rham

representations. To study these in detail would require the study of Fontaine’s period rings

([11, 12]). We will briefly describe the idea of the period rings, omitting proofs, and then

examine Hodge-Tate, de Rham, and crystalline representations (the latter two in minimal

detail).
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2.1.3.1 Fontaine’s Period Rings

In this section, we follow [13, Chapters 2,5] and [3]. Let B be a topological ring with fraction

field C = Frac(B), and G a topological group which acts continuously on B. Assume that

the subring BG ⊂ B is a field, and let F ⊂ BG be a subfield. If B is a domain, then the

action of G can be extended to C in the natural way. Further assume:

Definition 2.1.16 ([13, Definition 2.8]). An (F,G)-regular ring B is a topological ring such

that:

(1) B is a domain.

(2) BG = CG

(3) If 0 6= b ∈ B such that F · b is stable under under the action of G, then b ∈ B×.

Remark 2.1.17. Eventually, the rings of periods will be (Qp, GK)-regular rings, so for the

purposes of the dissertation, the reader may think F = Qp and G = GK .

We will want to consider F -representations of G (i.e. representations of G over F ) and

somehow transform them into B-representations of G.

Definition 2.1.18 ([13, Definitions 2.2, 2.3, 2.5]). (1) A B-representation of G is a B-

module V of finite type equipped with a semi-linear and continuous action of G, i.e.

g · (v1 + v2) = g · v1 + g · v2, g(bv) = g(b)g(v)

for v1, v2, v ∈ V , b ∈ B, and g ∈ G.

(2) If the module V is free over B, then V is called a free B-representation of G.

(3) The B-representation V is called trivial if there is a basis for V consisting of elements

of V G.

Let V be a F -representation of G. Notice that under the definition above, this is just

a usual linear representation of G over F since G acts trivially on F ⊂ BG. Consider the

module B ⊗F V , which is a free B-module of rank dimF (V ). The G-action on the tensor

product is g(b⊗ v) = g(b)⊗ g(v).
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Definition 2.1.19. Let V be a F -representation of G. Then V is B-admissible if B ⊗F V

is a trivial B-representation of G.

There is an equivalent formulation of B-admissible representations. Consider

DB(V ) := (B ⊗F V )G.

This is a BG-vector space on which G acts trivially. There is a natural map

α : B ⊗BG DB(V )→ B ⊗F V

given by b⊗ x 7→ bx. This map is B-linear and commutes with the action of G.

Theorem 2.1.20 ([13, Theorem 2.13]). If B is a period ring, then the map α is injective

and dimBG(DB(V )) ≤ dimF (V ). Moreover, α is an isomorphism if and only if equality holds

and if and only if V is B-admissible.

The specific classes of p-adic representations of interest are B-admissible representations

for various choices of B.

2.1.3.2 Hodge-Tate Representations

Now let K/Qp be a finite extension, L/Qp be an algebraic extension, and V a p-adic repre-

sentation of GK of dimension n (i.e. an n-dimensional L-vector space on which GK acts).

Let Cp = K̂, the p-adic completion of the algebraic closure of K. The action of GK on K

extends, by continuity, to an action of GK on Cp. The Hodge-Tate period ring will be:

Definition 2.1.21. The Hodge-Tate ring BHT is

BHT =
⊕
i∈Z

Cp(i),

where Cp(i) is the i-th Tate twist of Cp (see section 2.1.1.5).

Proposition 2.1.22 ([13, Proposition 5.2]). The ring BHT is (Qp, GK)-regular, and BGK
HT =

K.
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Definition 2.1.23. The p-adic representation V is Hodge-Tate if it is BHT-admissible (where

we regard V as a Qp-representation of GK instead of one over L).

Write DHT(V ) = DBHT
(V ). By Theorem 2.1.20, we have the following:

Proposition 2.1.24. The natural map

αHT : BHT ⊗K DHT(V )→ B ⊗Qp V

is an injection, and dimK DHT(V ) ≤ dimQp(V ), with equality if and only if αHT is an iso-

morphism, and if and only if V is Hodge-Tate.

Hodge-Tate representations acquire additional structure from grading of BHT. If V is a

p-adic representation of GK over L, then DHT(V ) is a graded ring. Indeed,

DHT(V ) =

(⊕
i∈Z

Cp(i)⊗Qp V

)GK

=
⊕
i∈Z

(Cp(i)⊗Qp V )GK .

Definition 2.1.25. Let hi = dimK(Cp(i)⊗Qp V )GK . The i’s for which hi 6= 0 are called the

Hodge-Tate weights of V , and the multiplicity of the weight i is hi. If V is Hodge-Tate, the

multiset of Hodge-Tate weights will be denoted HT(V ).

Note that if V is Hodge is Hodge-Tate, then the sum of the multiplicities of the weights

should be dimQp(V ).

Example 2.1.26. If V = Tp(K
×

)⊗Zp Qp, then V is a Hodge-Tate representation of GK of

weight −1.

As it is, the sum of the multiplicities of the weights is dimQp(V ) if V is Hodge-Tate.

However, there is more to be said here. Suppose L contains the normal closure of K/Qp.

The direct summand (V ⊗Qp Cp(i))GK , a priori a K-vector space, is actually an (L⊗Qp K)-

module. The tensor L⊗Qp K is a direct sum

L⊗Qp K =
⊕
ι:K↪→L

L,
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and so DHT(V ) becomes the direct sum of vector spaces over L, each n-dimensional and

graded. In this case, attached to each embedding ι : K ↪→ L is a multiset HTι(V ) of

Hodge-Tate weights. Written another way, for an embedding ι : K ↪→ L, an integer i is a

Hodge-Tate weight of V with respect to ι if

dimL(V ⊗K,ι Cp(i))GK 6= 0.

2.1.3.3 de Rham Representations

A p-adic representation V of GK is de Rham if it is BdR-admissible, where BdR denotes the

appropriate ring of periods. See [3] or [13] for details. Since it will not be strictly necessary

for this dissertation, the definition of BdR will not be included. Instead, the relevant facts

about de Rham representations will be presented without proof.

Theorem 2.1.27. Let K/Qp be a finite extension, L/Qp an algebraic extension and V a

finite dimensional L-vector space with a continuous action of GK . Then:

(1) ([3, Theorem 14.2]) The representation V is de Rham if and only if V is potentially

semistable.

(2) ([3]) If V is potentially de Rham, then V is de Rham.

(3) ([13, Theorem 5.30]) If V is de Rham, then V is Hodge-Tate.

(4) ([13, Theorem 5.32]) If X/K is a proper, smooth variety over K, then the étale coho-

mology groups H i
ét(XK ,Qp) are de Rham representations of GK .

(5) ([3]) If V is de Rham, then there is an associated Weil-Deligne representation WD(V )

of WK .

Remark 2.1.28. (1) Statement (4) of the theorem says that de Rham representations cap-

ture those p-adic representations which come from geometry.

(2) There are examples of representations which are Hodge-Tate but not de Rham, but

because of statement (4) they cannot come from geometry.
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2.1.3.4 Crystalline Representations

The last type of representation needed is a crystalline representation. A p-adic representation

V of GK is crystalline if it is Bcris-admissible, where Bcris denotes another ring of periods

(see [13]). As with de Rham representations, no details will be given. In fact, this section

is only included because the term will be used occasionally in the next chapter. The useful

facts about crystalline representations are:

Proposition 2.1.29. (1) If the representation V is crystalline, then V is de Rham.

(2) ([16]) If WD(V ) = (r,N) denotes the corresponding Weil-Deligne representation (see

(5) of Theorem 2.1.27), then V is crystalline if and only if r is unramified and N = 0.

2.1.4 Compatible System of Representations

In the examples of Galois representations given in the beginning of the chapter, the geomet-

ric objects (e.g. elliptic curves) produced not just one Galois representation, but a whole

collection of them, one for each prime in an appropriate number field. Such representations

are interesting individually, but are often more useful together. This leads into the notion of

compatible systems of representations, which will be a central object in Chapter 5. Essen-

tially, compatible systems of representations are collections of representations which share

useful properties, some away from p and some at p.

Definition 2.1.30. ([16]) Let F and K be number fields, n be a positive integer, and P be

the set of finite places of K. Let S denote a finite set of places of F . A weakly compatible

system of l-adic representations is a family of continuous semisimple representations

ρλ : GF → GLn(Kλ)

for λ ∈ P , such that:

• If v /∈ S is a finite place of F , for all λ not dividing the characteristic of the residue

field of v, the representation ρλ is unramified at v and the characteristic polynomial of

ρλ(Frobv) is in K[X] and is independent of λ.
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• Each representation ρλ is de Rham at the places of F above the residue characteristic

of λ.

• For each embedding ι : F ↪→ K, the ι-Hodge-Tate numbers are independent of λ.

Example 2.1.31. (1) If F is a number field, then the cyclotomic characters εl : GF → Z×l
form a compatible system of representations with S = ∅.

(2) If E is an elliptic curve over a number field F , then the representations ρE,p form a

compatible system of representations, where S can be taken to be the set of places

where E has bad reduction.

There is also the notion of a strictly compatible system of representations, but as these

are not needed, they will not be defined here.

2.2 Galois Cohomology

The results of this dissertation rely heavily on Galois cohomology groups, so they will be

introduced fairly thoroughly here. Often times, the results stated are not in the greatest

generality, and this is done intentionally. Some sources for this material are [31], [27, Chapter

1], and [42].

2.2.1 Definition of Cohomology Groups

Let G be a group (could be either finite or profinite). The cases to keep in mind are G = GF,S

for some number field F and finite set of places S of F , or G = GK for some finite extension

K/Qp. Let A be a G-module, namely some abelian group on which G acts. For example, if

G = GF for a number field F , then an example of A would be A = F
×

. Of course, this does

not require F to be a number field, but this is usually the situation we will be in. If G and

A have topologies (for example, if G is profinite and A is given the discrete topology), then

we will require that the action of G on A be continuous, and that all the maps we consider

in this section be continuous.
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We will follow [27] for most of this section. Let C0(G,A) = A and Ci(G,A) be the set

of (continuous) maps φ : Gi → A for i ≥ 1. These Ci are naturally abelian groups (from

the structure on A). There are homomorphisms δi+1 : Ci(G,A) → Ci+1(G,A) defined as

follows: δ1(a)(g) = ga− a, and for i ≥ 2,

δi(φ)(g1, . . . , gi) = g1φ(g2, . . . , gi) +

q−1∑
j=1

(−1)iφ(g1, . . . , gjgj+1, . . . , gi) + (−1)iφ(g1, . . . , gi−1).

A standard exercise shows δi+1 ◦ δi = 0, which means there is a cochain complex:

C0(G,A)
δ1−→ C1(G,A)

δ2−→ C3(G,A)
δ3−→ C4(G,A)→ · · · .

Definition 2.2.1. The group of i-cocycles is Zi(G,A) = ker δi+1. The group of i-coboundaries

is Bi(G,A) = im δi.

The condition δi+1 ◦ δi = 0 shows Bi(G,A) ⊆ Zi(G,A), and so we can consider the

quotient.

Definition 2.2.2. For i ≥ 1, the i-th cohomology group, denoted H i(G,A), is defined to be

H i(G,A) = Zi(G,A)/Bi(G,A).

The zeroth cohomology group is defined to be the group H0(G,A) = Z0(G,A).

In fact, the only cohomology groups which will be needed are H i(G,A) for i = 0, 1, 2, so

we examine these groups more concretely.

2.2.2 The groups H i(G,A) for i = 0, 1, 2

2.2.2.1 Zeroth Cohomology Group

The cohomology group H0(G,A) is the easiest to describe, since H0(G,A) = Z0(G,A). By

definition,

H0(G,A) = Z0(G,A) = ker δ1 = {a ∈ A : ga = a ∀g ∈ G} = AG,

the fixed points of A under the action of G.

Example 2.2.3. Taking G = GF for a field F and A = F
×

, we have

H0(GF , F
×

) = F×.
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2.2.2.2 First Cohomology Group

The group H1(G,A) is a bit more complex. If f : G→ A be a (continuous) map, then f is

a 1-cocycle if f(g1g2) = f(g1) + g1 · f(g2) for all g1, g2 ∈ G. The map f is a 1-coboundary

if there exists a ∈ A such that f(g) = ga − a for all g ∈ G. The first cohomology group is

H1(G,A) = Z1(G,A)/B1(G,A).

A special case to consider is the one where G acts trivially on A. In this case, Z1(G,A)

just becomes the set of continuous homomorphisms f : G → A, and a 1-coboundary is

automatically the zero map, i.e. B1(G,A) = 0. Thus, in this setting,

H1(G,A) = Homcts(G,A).

Another case to consider is the one where G is infinite cyclic or a profinite completion of

an infinite cyclic group, and A is finite. Let g be a topological generator of G.

Lemma 2.2.4. In the situation described above,

H1(G,A) ∼= A/(g − 1)A.

Proof. See [42].

This lemma will be primarily used in the Galois deformation theory section.

2.2.2.3 Second Cohomology Group

Just as in the previous subsection, the group H2(G,A) will be the quotient of the 2-cocyles

by the 2-coboundaries. A function f : G×G→ A is a 2-cocycle if for all σ, τ, µ ∈ G,

f(στ, µ)− f(σ, τµ)− σf(τ, µ)− f(σ, τ) = 0.

The map f is a 2-coboundary if there is a map g : G→ A such that

f(σ, τ) = σg(τ)− g(στ) + g(σ),

for all σ, τ ∈ G.
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The group H2(G,A) naturally appears when studying group extensions of A by G. For

a description of this process, see [27].

These definitions seem mysterious at first glance, and the groups appear difficult to

compute. As we will see, this is true in many cases. Instead, there are several theorems

which enable us compute the sizes of these groups without digging into the definitions.

To illustrate how these groups arise, we state a theorem which shows how they are used

in some classical settings.

Example 2.2.5. (1) (Hilbert’s Theorem 90) If L/K is a Galois extension of fields, then

H1(Gal(L/K), L×) = 0.

(2) (Local Class Field Theory) [42, Proposition 1] If p is a prime, thenH2(GQp ,Q
×
p ) ∼= Q/Z.

2.2.2.4 General Facts

We briefly state a few facts, directing the reader to the sources for proofs. The first is

standard result in homological algebra which provides a method to move from short exact

sequences of G-modules to a long exact sequences in cohomology.

Theorem 2.2.6. Suppose 0 → A → B → C → 0 is a short exact sequence of G-modules.

Then there is a long exact sequence

0→ H0(G,A)→ H0(G,B)→ H0(G,C)→ H1(G,A)

→ H1(G,B)→ H1(G,C)→ H2(G,A)→ · · · .

Example 2.2.7. Let K be a field, and let n ≥ 1 be prime to the characteristic of K.

Consider µn = µn(K
×

), the n-th roots of unity of K
×

(see Section 2.1.1.1). There is an

exact sequence

0→ µn → K
× x 7→xn−→ K

×
.

By Theorem 2.2.6, this induces a long exact sequence in cohomology

· · · → H0(GK , K
×

)→ H0(GK , K
×

)→ H1(GK , µn)→ H1(GK , K
×

).
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This first map is induced by the n-th power map on K
×

, and by Example 2.2.5, the last

group is 0. Thus,

H1(GK , µn) ∼= K×/(K×)n.

Another useful fact is the following:

Proposition 2.2.8. [19, Proposition 4.1] If both G and A are finite with coprime cardinal-

ities, then H i(G,A) = 0 for i > 0.

The next example highlights how the proposition will be utilized in later chapters.

Example 2.2.9. If V is a finite dimensional vector space over a finite field of characteristic

p, and F is a number field, then H1(Gal(F (ζp)/F ), V ) = 0, where ζp is a primitive p-th

root of unity in F
×

. Indeed, [F (ζp) : F ] is coprime to p, so the statement follows from the

proposition.

Remark 2.2.10. Since it showed up in the example, at this point it is useful to remark that if

A is a finite dimensional vector space over a field k, then H i(G,A) also becomes an k-vector

space.

The next theorem about the Galois cohomology of the Galois group of a local field will

be used continuously.

Theorem 2.2.11. IfK/Qp is a finite extension, and A is a finiteGK-module, thenH i(GK , A)

is finite as well.

Corollary 2.2.12. If A is a finite dimensional vector space over a finite field k, and K/Qp

is a finite extension, then H i(GK , A) is a finite dimensional k-vector space. We often write

hi(GK , A) = dimhi(GK , A).

Remark 2.2.13. If K is assumed to be a number field instead of a local field, then the theorem

is no longer true.
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2.2.3 Inflation-Restriction Exact Sequence

Theorem 2.2.6 in the previous section showed that an exact sequence of G-modules induces

a long exact sequence in cohomology. Namely, it produced morphisms on cohomology from

a sequence morphisms of the coefficients. This section is about getting maps on cohomology

by considering subgroups and quotients of G as opposed to the coefficients.

Let G be as in the previous section, namely either finite or profinite. Let H ≤ G be a

normal subgroup of G, closed if G is profinite. Let A be a G-module. In this section, the

term cocycle will mean either a 1- or 2-cocycle, i.e. i = 1 or 2.

First, note that if A is a G-module, then A becomes an H-module by simply restricting

the G-action to H. It therefore makes sense to restrict cocycles for G to cocycles for H.

This gives restriction maps

resH : H i(G,A)→ H i(H,A).

Now consider the quotient G/H. Any cocycle of G/H can be regarded as a cocycle of G

by composing with the projection G → G/H. Though A is not naturally a G/H-module,

the subgroup AH (fixed points of A under the action of H) is one. Thus, there are inflation

maps

inf : H i(G/H,AH)→ H i(G,H).

Lastly, G/H acts on the cohomology group H1(H,A). The action is as follows: if g is a

representative for a coset in G/H and f : H → A is a 1-cocycle, then

(g · f)(h) = g · f(g−1hg).

A simple calculation shows that this action is well-defined as an action of G/H on the group

H1(H,A).

The following proposition shows that the inflation and restriction maps produce an exact

sequence, known as the inflation-restriction sequence.

Proposition 2.2.14. [42, Proposition 2] We have an exact sequence

0→ H1(G/H,AH)
inf→ H1(G,A)

resH→ H1(H,A)G/H → H2(G/H,AH)
inf→ H2(G,X).

25



2.2.4 Unramified Cohomology

There is a specific application of Proposition 2.2.14 that we want to consider. Let K/Qp

be a finite extension, and let GK = Gal(K/K) be its absolute Galois group. Write Kur for

the maximal unramified extension of K inside K, and let IK = Gal(K/Kur) ≤ GK be the

inertia subgroup. Then GK/IK ∼= Gal(Kur/K).

If A is a GK-module, then consider the first cohomology group H1(GK , A). By inflation-

restriction, the map H1(GK/IK , A
IK ) ↪→ H1(GK , A) is an injection.

Definition 2.2.15. A class [φ] ∈ H1(GK , A) is called unramified if [φ] ∈ H1(GK/IK , A
IK ).

We write H1
ur(GK , A) := H1(GK/IK , A

IK ) and refer to this group as the unramified

cohomology. By the inflation-restriction sequence,

H1
ur(GK , A) = ker(H1(GK , A)→ H1(IK , A)),

so the unramified cohomology classes are those in H1(GK , A) whose restriction to IK is

trivial, hence the name unramified.

The next proposition will help us compute the size of the unramified cohomology.

Proposition 2.2.16. [42, Lemma 1] Let A be a finite GK-module. Then #H1
ur(GK , A) =

#H0(GK , A) = #AGK . In particular, the unramified cohomology is finite.

Proof. The proof follows from the exact sequence

0→ AGK → AIK
FrobK −1−→ AIK → AIK/(Frob−1)AIK → 0

and Lemma 2.2.4.

2.2.5 Local Computations

This subsection will introduce two theorems which reduce the time needed to compute the

sizes of the first and second cohomology groups in the local field setting.

26



Again, let K/Qp be a finite extension. If A is a finite GK-module of size m, let µm denote

the set of m-th roots of unity in K
×

, and let A∗(1) denote the GK-module

A∗(1) = HomZ(A, µm),

with the action of GK being by (σ · f)(a) = σ · f(σ−1a). This is the Tate twist of the usual

dual. For this reason, this is sometimes called the Tate dual.

Theorem 2.2.17 (Local Tate Duality). For 0 ≤ i ≤ 2, there is a perfect pairing

H i(GK , A)×H2−i(GK , A
∗(1))→ Q/Z.

Moreover, if i = 1 and m is relatively prime to p, the unramified cohomology groups

H1
ur(GK , A) and H1

ur(GK , A
∗(1)) are mutual annihilators under the pairing.

Remark 2.2.18. (1) The pairing itself is induced by the cup product. However, the cup

product is never mentioned in the dissertation so it will not be defined here.

(2) When i = 2, the theorem implies #H2(GK , A) = #H0(GK , A
∗(1)). The latter is much

easier to compute, as it just counts fixed points under the GK-action.

The next theorem will assist in calculating the size of H1.

Theorem 2.2.19 (Local Euler Characteristic Formula). [19, Theorem 4.52] Let A be a finite

GK-module of size m. Then

#H0(GK , A) ·#H2(GK , A)

#H1(GK , A)
= p−vp(m)[K:Qp].

Remark 2.2.20. If m is coprime to p, then the right hand side is just 1.

Since we can compute #H2(GK , A) as #H0(GK , A
∗(1)), Theorem 2.2.19 gives us a way

of computing #H1(GK , A) in terms of two H0 terms.

2.2.6 Global Computations

Theorem 2.2.11 guaranteed the finiteness of the cohomology groups in the case of local fields

and finite modules. The remark following the theorem mentioned how this was not true with
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global fields. However, if it is guaranteed that only finitely many primes ramify, then the

theorem will hold. This section will introduce an analogues for formulas such as 2.2.19 in

the global setting.

The two main results of this section are the Poitou-Tate exact sequence and the global

Euler characteristic formula. Let F be a number field, let S be a finite set of primes of F ,

and consider the group GF,S as in Section 2.1.1. Recall that there are embeddings GFv ↪→ GF

for places v of F . If v ∈ S, then the map GFv → GF,S is still an embedding. If v /∈ S, then

the composite GFv → GF,S factors through GFv/IFv .

Let M be a finite GF,S-module. If v ∈ S, then we can restrict a class in H i(GF,S,M) to

GFv to get a class in H i(GFv ,M). Considering all v ∈ S together produces a map

H i(GF,S,M)→
∏
v∈S

H i(GFv ,M).

The Poitou-Tate exact sequence describes the kernel and cokernel of the maps for i = 0, 1, 2

by fitting them into an exact sequence.

Theorem 2.2.21 (Poitou-Tate Exact Sequence). [19, Theorem 4.50] Let S be a finite set of

primes of F containing all the infinite places. Let M be a finite GF,S-module with v(#M) = 0

for all v /∈ S (equivalently, S contains the places above the primes dividing #M). Then there

is an exact sequence

0→ H0(GF,S,M)→
∏
v∈S

H0(GFv ,M)→ H2(GF,S,M
∗(1))∗

→ H1(GF,S,M)→
∏
v∈S

H1(GFv ,M)→ H1(GF,S,M
∗(1))

→ H2(GF,S,M)→
∏
v∈S

H2(GFv ,M)→ H0(GF,S,M
∗(1))∗ → 0.

It is a fact that in the setting of Theorem 2.2.21, the groups H i(GF,S,M) are finite. The

second big theorem of the section is an analogue of Theorem 2.2.19.

Theorem 2.2.22 (Global Euler-Poincaré Characteristic Formula). [19, Theorem 4.53] Let

S and M be as in Theorem 2.2.21. Then

#H0(GF,S,M) ·#H2(GF,S,M)

#H1(GF,S,M)
=

1

(#M)[F :Q]

∏
v∈S∞

H0(GFv ,M).
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This theorem is useful in part because in the global setting, it is often nice to know the

difference in sizes between H1(GF,S,M) and H2(GF,S,M), which is easy to get from the

theorem.

Remark 2.2.23. In the case M is a finite dimensional vector space over a finite field, both

Theorems 2.2.19 and 2.2.22 can be translated to formulae involving the dimension of the H i.

This is done freely later on.

2.2.7 Selmer Groups

In the last section, there were restriction maps which paved a way to move from global to local

cohomology groups. This is closely tied to the idea that we will ultimately want global Galois

representations to have very specific local behavior. However, this is not always enough. For

example, if F is a number field and ρ : GF → GL2(Qp) is a continuous representation, then

it is sometimes useful to impose, for example, that ρ|GFv is crystalline at the places above

p, or is unramified at places above 3. In such cases, simply restricting global cohomology

classes to local ones will not be sufficient. In fact, it will be required that the restriction lies

in a certain subgroup of the local cohomology, where these subgroups somehow parametrize

the desired local behavior (this is the idea of the Galois deformation theory section). First,

we need some machinery for dealing with such situations from the cohomology standpoint.

Continue with setting from the previous section. Namely, let F be a number field, and

let S be a finite set of places including the infinite places. Let M be a finite GF,S-module

such that S contains the places above the primes dividing #M . For each v ∈ S (including

the infinite places), choose a subgroup Lv ⊂ H1(GFv ,M), and let L = (Lv)v∈S denote the

collection of subgroups (usually called the collection of local conditions).

Definition 2.2.24. The Selmer group with respect to L is the group

H1
L(GF,S,M) = ker

(
H1(GF,S,M)→

∏
v∈S

H1(GFv ,M)

Lv

)
.

Thus, the Selmer group is the set of classes in H1(GF,S,M) whose restrictions to each

GFv lies in the desired subgroup Lv.
29



Recall from Theorem 2.2.17 that there is a perfect pairing

H1(GFv ,M)×H1(GFv ,M
∗(1))→ Q/Z.

For each v ∈ S, we will let L⊥v ⊆ H1(GFv ,M
∗(1)) denote the annihilator of Lv under this

pairing, and L⊥ = (L⊥v )v∈S.

Definition 2.2.25. The dual Selmer group with respect to L⊥ is

H1
L⊥(GF,S,M

∗(1)) = ker

(
H1(GF,S,M

∗(1))→
∏
v∈S

H1(GFv ,M
∗(1))

L⊥v

)
.

The dual Selmer group will be one of the most important objects of this dissertation, in

particular because it is usually necessary to have H1
L⊥(GF,S,M

∗(1)) = 0 (for a specific M).

In fact, the goal will, most of the time, be to add primes to S so that this happens.

Both the Selmer and dual Selmer groups are finite groups, and there is a formula which

relates the sizes of the two groups.

Theorem 2.2.26 (Greenberg-Wiles). [42, Theorem 2] In the setting described above,

#H1
L(GF,S,M)

#H1
L⊥(GF,S,M∗(1))

=
#H0(GF,S,M)

#H0(GF,S,M∗(1))

∏
v∈S

#Lv
#H0(GFv ,M)

.

This is a powerful theorem, and [42] gives a nice illustration of how it can be applied to

prove the Kronecker-Weber theorem.

2.3 Galois Deformation Theory: Two Dimensional Setting

2.3.1 Definitions and Universal Rings

Let p be an odd prime number. Let K/Qp be a finite extension, O ⊂ K the integer ring

with maximal ideal m, and residue field k = O/m. Let G be either:

• GF,S for some number field F and finite set of places S of F , or

• GK , where K is a finite extension of Ql for l prime (both l 6= p and l = p are allowed).
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Denote by CNLO the category of complete Noetherian local O-algebras with residue field k.

If A ∈ CNLO, then mA will denote its maximal ideal. Let ρ̄ : G → GL2(k) be a continuous

representation.

Definition 2.3.1. Let A ∈ CNLO.

(1) A lift ρ of ρ̄ to A is a continuous representation ρ : G→ GL2(A) such that ρ mod mA =

ρ̄, i.e. the following diagram commutes:

GL2(A)

G GL2(k)

ρ

ρ̄

(2) A deformation of ρ̄ to A is an equivalence class of lifts, where two lifts ρ and ρ′ to A are

equivalent if there exists a matrix M ∈ ker(GL2(A)→ GL2(k)) such that ρ′ = MρM−1.

Out of this definition comes two functors:

• D�
ρ̄ : CNLO → Sets will be the functor which sends A to the set of lifts of ρ̄ to A.

• Dρ̄ : CNLO → Sets will be the functor which sends A to the set of deformations of ρ̄

to A.

Theorem 2.3.2. (1) The functor D�
ρ̄ is representable with representing object R�

ρ̄ ∈

CNLO.

(2) If Endk[G](ρ̄) = k, then Dρ̄ is representable by Runiv
ρ̄ ∈ CNLO.

Proof. See [4], Proposition 1.3.1.

Remark 2.3.3. (1) The object R�
ρ̄ is called the universal lifting ring, and Runiv

ρ̄ is called the

universal deformation ring, when it exists.

(2) If ρ̄ satisfies the condition Endk[G](ρ̄) = k, then ρ̄ is said to be Schur.
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(3) One very useful example to keep in mind is the case when K = Qp and ρ̄ is the

representation ρ̄ = ρ̄E,p for some elliptic curve over a number field F . Then the

representation ρE,p is a lift of ρ̄E,p to the ring Zp.

2.3.2 Tangent Spaces

Definition 2.3.4. The Zariski tangent space of D�
ρ̄ is defined to be the k-vector space

D�
ρ̄ (k[ε]/(ε2)). Similarly, the Zariski tangent space of Dρ̄ is Dρ̄(k[ε]/(ε2)).

Perhaps it is not immediately clear why these tangent spaces are k-vector spaces at all.

One way to see this is from the following lemma.

Lemma 2.3.5. Let D be either the functor Dρ̄ or D�
ρ̄ , and let R be the corresponding

universal object (assuming it exists in the former case). Then there is a natural bijection

between D(k[ε]/(ε2)) and Homk(mR/(m
2
R,m), k).

Proof. See [26], page 271.

There is a nice cohomological interpretation of the Zariski tangent spaces. Before stating

the lemma, recall the definition of the adjoint representation from Section 2.1.1.4.

Lemma 2.3.6. (1) There is a natural isomorphism of k-vector spaces D�
ρ̄ (k[ε]/(ε2)) →

Z1(G, ad ρ̄).

(2) There is also a natural isomorphism of k-vector spaces Dρ̄(k[ε]/(ε2))→ H1(G, ad ρ̄).

Proof. The inverse map for both (1) and (2) sends a cocycle φ to the representation ρ : G→

GL2(k[ε]/(ε2)) given by ρ(g) = (1+φ(g)ε)ρ̄(g). In the latter case, this is a map of equivalence

classes. The details are left to the reader, and good references for alternate proofs are [4]

and [26].

Corollary 2.3.7. (1) The tangent space for Dρ̄ is finite dimensional over k.

(2) We have dimkD�
ρ̄ (k[ε]/(ε2)) = dimkH

1(G, ad ρ̄) + 4−dimkH
0(G, ad ρ̄), so the tangent

space for D�
ρ̄ is finite dimensional as well.
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Proof. Part (1) follows from the lemma and the fact that H1(G, ad ρ̄) is finite dimensional.

Part (2) follows from Lemma 2.3.6 and the exact sequence

0→ (ad ρ̄)G → ad ρ̄→ Z1(G, ad ρ̄)→ H1(G, ad ρ̄)→ 0.

We can actually say more about the relationship between R�
ρ̄ and Runiv

ρ̄ . First, a defini-

tion.

Definition 2.3.8. [4, Definition 1.4.5] Let D,D′ : CNLO → Sets be two functors, and

ϕ : D′ → D a natural transformation. Then ϕ is called formally smooth if for any surjection

A→ A′ ∈ CNLO, the map

D′(A)→ D′(A)×D(A′) D(A)

is surjective.

Remark 2.3.9. If D and D′ are representable with representing objects R and R′, respectively,

then ϕ is formally smooth if and only if R′ is a power series ring over R ([30, Proposition

2.5]).

Going back to the situation at hand, observe that there is a natural transformation

ϕ : D�
ρ̄ → Dρ̄, where on objects A ∈ CNLO, the map D�

ρ̄ (A) → Dρ̄(A) sends a lift to A to

the corresponding deformation (i.e. its equivalence class).

Lemma 2.3.10. [4, Corollary 1.4.6] The map ϕ just described is formally smooth.

Thus, by the remark preceding the lemma:

Corollary 2.3.11. If Dρ̄ is representable, then R�
ρ̄ is a power series ring over Runiv

ρ̄ , of

relative dimension 4− h0(G, ad ρ̄).

Remark 2.3.12. Recall that hi(G, ad ρ̄)) = dimkH
i(G, ad ρ̄).
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2.3.3 Obstruction Classes and Presentations

This section briefly outlines the concept and construction of obstruction classes, following

[25]. The notion of an “unobstructed deformation problem” will be central in the last chapter

of this thesis. The construction leads nicely into a presentation result for the rings R�
ρ̄ and

Runiv
ρ̄ over O.

Choose a surjection A → A′ of artinian local rings in CNLO. Suppose that the kernel I

satisfies I ·mA = 0, meaning I can be viewed as a finite dimensional k-vector space. Suppose

there is a deformation ρA′ : G → GL2(A′) of ρ̄. The question is: when we can deform this

to a deformation ρA : G→ GL2(A) of ρ̄ compatible with ρA′? In fact, there is a cohomology

class which vanishes when such a deformation exists.

To construct the class, choose a representative lifting in the equivalence class of ρA′ let

γ : G→ GL2(A) be a set-theoretic lift of this representative. If γ is a homomorphism, then

we are done. To determine whether γ is a homomorphism, consider the function

c(g1, g2) = γ(g1g2)γ(g2)−1γ(g1)−1 ∈ 1 + I ·M2(k) ∼= I ⊗ ad ρ̄.

One checks that c is a 2-cocycle, and so it determines a class [c] ∈ H2(G, ad ρ̄ ⊗ I) =

H2(G, ad ρ̄)⊗ I. If this class is 0, then there is a deformation of ρA′ to a ρA, as desired.

For this reason, if H2(G, ad ρ̄) = 0, then the lifting problem for ρ̄ is said to be unob-

structed.

Recall that the tangent space for R�
ρ̄ is isomorphic to Z1(G, ad ρ̄), and the tangent space

for Runiv
ρ̄ is isomorphic to H1(G, ad ρ̄). Let the dimension of these two spaces be d and d′,

respectively. There are surjections

φ : OJx1, . . . , xdK→ R�
ρ̄ , φ′ : OJx1, . . . , x

′
dK→ Runiv

ρ̄ .

The following result is due to Mazur:

Proposition 2.3.13. [25, Proposition 2] The number of generators for kerφ and kerφ′ is

bounded by dimH2(G, ad ρ̄). Thus, if we are in the unobstructed setting, both R�
ρ̄ and Runiv

ρ̄

are power series rings over O.
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2.3.4 Fixing Determinants

In many instances, it is useful to consider lifts and deformations which fix the determinant.

Namely, given the residual representation ρ̄ : G → GL2(k), fix a character µ : G → O×

which lifts det ρ̄. We then look at lifts ρ : G → GL2(A), where A ∈ CNLO such that det ρ

agrees with the composition

G
µ→ O× → A×,

the latter map coming from the structural morphism of A as an O-algebra. Since determi-

nants are invariant under conjugation, this notion makes sense for both lifts and deforma-

tions.

Even in this setting, the work we have done goes through similarly. The only difference

to make is that one uses ad0 ρ̄ instead of ad ρ̄, where ad0 ρ̄ denotes the set of traceless

matrices in M2(k) with the same action of G. One way to see that this is the correct

change is by examining the Zariski tangent spaces of the new functors/representing objects.

Recall that the isomorphism between Z1(G, ad ρ̄) and D�
ρ̄ (k[ε]/(ε2)) sends a cocycle φ to the

representation given by ρ(g) = (1 + φ(g)ε)ρ̄(g). Taking determinants and using that ε2 = 0,

we get

det ρ(g) = µ(g)(1 + trφ(g)ε).

Thus, we need trφ(g) = 0 for all g ∈ G, which means φ takes values in ad0 ρ̄, as desired.

2.3.5 Local Deformation Problems

For this section, we will not work in the greatest generality, and instead restrict to the setting

necessary for the next chapter. Keep all the notation from the beginning of the section,

except now let G = GF for some number field F (so, for example ρ̄ is a representation

ρ̄ : GF → GL2(k)). Assume that k is large enough to contain all the eigenvalues of all the

elements in the image ρ̄(GF ). Fix a finite set of finite places S of F . Ultimately, the goal

will be to consider deformations of ρ̄, but it will be useful to impose some restrictions on the

deformations of local representations ρ̄|GFv .
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For reasons that we will see in the next chapter, for v ∈ S, fix a ring Λv ∈ CNLO. This is

in greater generality than most references on the subject, but it is the setting of [41], which

is needed later on. Most works on the subject simply take Λv = O. For the remainder of the

chapter, we will consider only lifts and deformations to objects in the subcategory CNLΛv of

CNLO, though the reader can just as easily think of working in CNLO.

Definition 2.3.14. If v ∈ S, then a local deformation problem at v is a collection Dv of

liftings of ρ̄|GFv to objects in CNLΛv satisfying:

(1) (k, ρ̄|GFv ) ∈ Dv.

(2) If f : R→ S is a morphism and (R, ρ) ∈ Dv, then (S, f ◦ ρ) ∈ Dv.

(3) Suppose (R1, ρ1) and (R2, ρ2) ∈ Dv, and let Ii be a closed ideal of Ri, and suppose there

is an isomorphism f : R1/I1
∼→ R2/I2 in CNLΛv such that f(ρ1 mod I1) = ρ2 mod I2.

If R3 ⊂ R1⊕R2 denotes the subring of elements with the same image in R1/I1
∼= R2/I2,

then (R3, ρ1 ⊕ ρ2) ∈ Dv.

(4) If (Rj, ρj) ∈ Dv forms an inverse system, then

(lim←−Rj, lim←− ρj) ∈ Dv.

(5) If (R, ρ) ∈ Dv, then so is any equivalent lifting.

(6) If S ↪→ R is an injective morphism in CNLΛv and ρ : GFv → GL2(S) is a lifting of

ρ̄|GFv with (R, ρ) ∈ Dv, then (S, ρ) ∈ Dv.

Let R�
v denote the universal lifting ring of ρ̄|GFv . It would be nice to know when lifts are

in Dv in terms of the ring R�
v . First observe that an element A ∈ ker(GL2(R�

v )→ GL2(k)) =

I2 +M2(mR�
v
) acts on R�

v . Indeed, if ρ� : GFv → GL2(R�
v ) denotes the universal lift, then A

acts on ρ� via A−1ρ�A, and by universality, this gives a map R�
v → R�

v , which is defined to

be the action of A on R�
v . With this in mind, we can give a description of local deformation

problems in terms of the universal lift.

Lemma 2.3.15. [6, Lemma 2.2.3] Let mv = mR�
v
.
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(1) If I is a I2 +M2(mv)-invariant ideal of R�
v , then the collection of all liftings ρ over rings

R such that I ⊂ ker(R�
v → R) is a local deformation problem.

(2) If Dv is a local deformation problem, then there is a I2 +M2(mv)-invariant ideal Iv of

R�
v such that Dv is the deformation problem from (1). Namely, (R, ρ) ∈ Dv if and only

if Iv ⊂ ker(R�
v → R).

The lemma allows for an alternate definition of a local deformation problem, as is done

in [41, Definition 5.5].

Definition 2.3.16. Let D�
v = D�

ρ̄|GFv
. A local deformation problem is a subfunctor Dv ⊂ D�

v

such that:

(1) Dv is represented by a quotient Rv of R�
v .

(2) For all R ∈ CNLΛv and A ∈ ker(GL2(R) → GL2(k)), if ρ ∈ Dv(R), then AρA−1 ∈

Dv(R).

By viewing local deformation problems as a subfunctor of D�
v , we can also get a descrip-

tion of its tangent space as a subspace of the tangent space of D�
v , which is isomorphic to

Z1(GFv , ad ρ̄) by Lemma 2.3.6. Also recall that Lemma 2.3.5 gives an isomorphism between

D�
v (k[ε]/(ε2)) (the Zariski tangent space) and Homk(mv/(m

2
v,m), k).

Definition 2.3.17. ([6]) Suppose Dv is a local deformation problem, and let Iv ⊂ R�
v be

the ideal as in the previous lemma.

(1) Let L1
v ⊂ Z1(GFv , ad ρ̄) be the annihilator of the image of Iv in mv/(m

2
v,m) under the

isomorphism

Homk(mv/(m
2
v,m), k) ∼= Z1(GFv , ad ρ̄).

(2) Let Lv = Lv(Dv) be the image of L1
v in H1(GFv , ad ρ̄).

Remark 2.3.18. (1) Because Iv is I2 + M2(mv)-invariant, the subspace L1
v is the preimage

of Lv.
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(2) The isomorphism Homk(mv/(m
2
v,m), k) ∼= Z1(GFv , ad ρ̄) induces an isomorphism

Homk(mv/(m
2
v, Iv,m), k) ∼= L1

v.

(3) The exact sequence

0→ H0(GFv , ad ρ̄)→ ad ρ̄→ Z1(GFv , ad ρ̄)→ H1(GFv , ad ρ̄)→ 0

and remark (2) above give

dimk L1
v = 4 + dimk Lv − dimkH

0(GFv , ad ρ̄).

We will look at specific examples of local deformation problems in the next chapter. Just

as before, if determinants are fixed, then everything goes through unchanged, except ad ρ̄ is

replaced by ad0 ρ̄ (which may lead to a slight change in the dimension counts).

2.3.6 Global Deformations

2.3.6.1 Global Deformation Problems and T -framed deformations

Keep the notation from the previous subsection. Having defined local deformation problems,

the focus will shift to global deformations. However, as remarked in the beginning of the

previous section, we will want our global lifts to adhere to some local restrictions.

At this point, fix a continuous character µ : GF → O× which lifts det ρ̄. Also assume

that ρ̄ is absolutely irreducible. Recall that for v ∈ S, there is a fixed ring Λv ∈ CNLO. Let

Λ =
⊗̂

vΛv, the tensor product being over O. As with the previous section, references for

this section typically have Λv = O, in which case Λ = O.

Definition 2.3.19. [41, Definition 5.6] A global deformation problem S is a tuple

S = (ρ̄, µ, S, {Λv}v∈S, {Dv}v∈S),

where:

(1) The objects ρ̄, µ, and Λv are as already defined.
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(2) The Dv for v ∈ S are local deformation problems for ρ̄|GFv .

Remark 2.3.20. In most of the references (e.g. [16], [6]) Λv = O, and this is usually removed

from the notation.

We will only want to consider deformations of ρ̄ which are “of type S.” We define what

this means.

Definition 2.3.21. Let S = (ρ̄, µ, S, {Λv}v∈S, {Dv}v∈S) be a global deformation problem.

A continuous lift ρ : GF → GL2(R) to R ∈ CNLΛ is of type S if:

(1) The lift ρ is unramified outside S.

(2) For each v ∈ S, the representation ρ|GFv ∈ Dv(R), where R is regarded as a Λv algebra

through the natural map Λv → Λ.

(3) det ρ = µ (when considered as characters GF → R×).

We have the usual equivalence relation on lifts of type S since this relation preserves the

property of being type S. It therefore makes sense to speak of deformations of ρ̄ of type S.

In keeping with our usual notation, let D�
S : CNLΛ → Sets be the functor which maps an

object R to the set of lifts of ρ̄ to R of type S, and DS will be the functor mapping R to the

set of deformations of ρ̄ of type S.

Theorem 2.3.22. [41, Theorem 5.9] Both D�
S and DS are representable functors, with

representing objects denoted R�
S and RS of CNLΛ, respectively.

Now fix a subset T ⊆ S.

Definition 2.3.23. (1) A T -framed lifting of ρ̄ to R ∈ CNLΛ is a tuple (ρ;αv)v∈T where

ρ is a lifting of ρ̄ and αv ∈ I2 +M2(mR).

(2) Two framed liftings (ρ;αv)v∈T , (ρ′;α′v)v∈T are equivalent if there exists β ∈ In+Mn(mR)

such that

ρ′ = βρβ−1 and α′v = βαv.
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(3) A T -framed deformation of ρ̄ is an equivalence class of framed lifts.

Remark 2.3.24. From the definition, any T -framed deformation [(ρ;αv)v∈T ] gives rise to a

deformation [ρ] of ρ̄ and, for each v ∈ T , a well-defined lifting α−1
v ρ|GFvαv of ρ̄|GFv . It is well

defined because if [(ρ;αv)] and [(ρ′;α′v)] are two tuples which define the same equivalence

class, then there exists β ∈ I2 +M2(mR) such that α′v = βαv and ρ′ = βρβ−1. But then

α′−1
v ρ′|GFvα

′
v = α−1

v β−1(βρ|GFvβ
−1)βαv = α−1

v ρ|GFvαv.

The point of T -framed deformations is that it facilitates the study of deformations of ρ̄

even when some of the local representations ρ̄|GFv are reducible. By the remark, the αv allow

us to get well-defined elements of Dv(R).

Definition 2.3.25. A T -framed deformation [(ρ;αv)v∈T ] is of type S if ρ is of type S. Let

D�T
S : CNLΛ → Sets denote the functor which takes R to the set of T -framed deformations

of ρ̄ to R of type S.

Theorem 2.3.26. [41, Theorem 5.9] The functor D�T
S is representable by an object RT

S ∈

CNLΛ.

One more bit of notation is needed before moving on to cohomology. For a global de-

formation problem S = (ρ̄, µ, S, {Λv}v∈S, {Dv}v∈S), let Rv denote the representing object of

Dv. Following [41], let

ΛT =
⊗̂

v∈T
Λv, ATS =

⊗̂
v∈T

Rv.

Then ATS is canonically a ΛT -algebra. It is very easy to see what role ATS plays: it represents

the functor CNLΛT → Sets which maps an object R to the set of tuples (ρv)v∈T , where ρv

is a lift of ρ̄|GFv to R. There is a map ATS → RT
S induced by the natural transformation of

functors:

(ρ, {αv}v∈T ) 7→ (α−1
v ρ̄|GFvαv).

This map is a homomorphism of ΛT -algebras.
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2.3.6.2 Cohomology

Recall that the object R�
v from Section 2.3.5 has a Zariski tangent space isomorphic to

Z1(GFv , ad ρ̄). It was noted that if Dv is a local deformation problem, the tangent space of

the representing object Rv is a subspace L1
v of this set of 1-cocycles. If

S = (ρ̄, µ, S, {Λv}v∈S, {Dv}v∈S)

is a global deformation problem, since the determinant is fixed, the tangent space is now a

subspace of Z1(GFv , ad0 ρ̄). That is, there is an isomorphism

Homk(mRv/(m
2
Rv ,mΛv), k) ∼= L1

v.

Lastly, recall from Proposition 2.3.13 and the preceding remarks that there is a presentation

for the universal lifting ringsR�
v overO in terms of a power series in some number of variables,

given by the dimension of the tangent space, which in turn is given by the dimension of a

cohomology group.

The goal of this section is to generalize these ideas to global deformations. Specifically,

we want to examine RT
S , figure out the tangent space of the corresponding functor, and

determine whether this ring can be expressed as a quotient of a power series over ATS in some

number of variables. All of this will require cohomology. However, the usual cohomology

groups will not be sufficient, as global deformations need to keep track of local information

as well. Thus, cohomology groups which keep track of both the global and local information

are needed. The result is a cone construction.

Let T ⊂ S be a nonempty subset, and assume Λv = O for v ∈ S − T . In this case,

ΛT
∼= Λ, and the map ATS → RT

S is a homomorphism of Λ-algebras.

If G is a group and A is a G-module, then let Ci(G,A) be as in Section 2.2.1. The

cochain complex to consider is Ci
S,T (GF,S, ad0 ρ̄), defined as follows:

C0
S,T (GF,S, ad0 ρ̄) = C0(GF,S, ad ρ̄),

C1
S,T (GF,S, ad0 ρ̄) = C1(GF,S, ad0 ρ̄)⊕

⊕
v∈T

C0(GFv , ad ρ̄),
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C2
S,T (GF,S, ad0 ρ̄) = C2(GF,S, ad0 ρ̄)⊕

⊕
v∈T

C1(GFv , ad0 ρ̄)⊕
⊕
v∈S−T

C1(GFv , ad0(ρ̄))

L1
v

,

Ci
S,T (GF,S, ad0 ρ̄) = Ci(GF,S, ad0 ρ̄)⊕

⊕
v∈S

Ci−1(GFv , ad0 ρ̄), i ≥ 3.

Essentially, the complexes for the global cohomology and each of the local cohomology groups

are put together. The coboundary maps are given by

δi+1 : Ci
S,T (GF,S, ad0 ρ̄)→ Ci+1

S,T (GF,S, ad0 ρ̄),

where (φ, (ψv)) 7→ (δφ, (φ|GFv−δψv)), where the δ’s are the usual coboundary maps from Sec-

tion 2.2.1. The cohomology groups H i
S,T (GF,S, ad0 ρ̄) are then defined to be the cohomology

of this cochain complex.

Perhaps unsurprisingly, there is a long exact sequence in cohomology, relating the new

cohomology groups to the old ones.

Lemma 2.3.27. We have a long exact sequence

0 → H0
S,T (GF,S, ad0 ρ̄)→ H0(GF,S, ad ρ̄)→

⊕
v∈T

H0(GFv , ad ρ̄)

→ H1
S,T (GF,S, ad0 ρ̄)→ H1(GF,S, ad0 ρ̄)→

⊕
v∈S−T

H1(GFv , ad0 ρ̄)/Lv ⊕
⊕
v∈T

H1(GFv , ad0 ρ̄)

→ H2
S,T (GF,S, ad0 ρ̄)→ H2(GF,S, ad0 ρ̄)→

⊕
v∈S

H2(GFv , ad0 ρ̄)

→ · · ·

Remark 2.3.28. Observe that if T = ∅, then in the above exact sequence, the first few terms

are

0→ H1
S(GF,S, ad0 ρ̄)→ H1(GF,S, ad0 ρ̄)→

⊕
q∈S

H1(GFv , ad0 ρ̄)/Lv,

so that H1
S(GF,S, ad0 ρ̄) just becomes a Selmer group.

Before stating the big consequence of all this work, we need one more definition. Since

p is odd (by assumption), the representation ad0 ρ̄ is self-dual, i.e. (ad0 ρ̄)∗ = ad0 ρ̄ (coming

from the trace pairing). The group that will play the role of the dual Selmer group is:

H1
S,T (GF,S, ad0 ρ̄(1)) = ker

(
H1(GF,S, ad0 ρ̄(1))→

⊕
v∈S−T

H1(GFv , ad0 ρ̄(1))

L⊥v

)
,
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where L⊥v is as in Section 2.2.7. Notice that this is essentially Definition 2.2.25 for the places

outside T .

Recall that if H i(G, V ) denotes the cohomology of a group G with coefficients in a finite

dimensional vector space V over a field F, then hi(G, V ) will denote the dimension hi(G, V ) =

dimFH
i(G, V ) (assuming this is finite). Going back to our notation, let lv = dimLv, and

hiS,T (GF,S, ad0 ρ̄) = dimH i
S,T (GF,S, ad0 ρ̄). In other words, lower case letters simply mean

the dimension of the corresponding group.

Proposition 2.3.29. ([16, Proposition 3.24], [41, Proposition 5.10]) Keep all the assump-

tions as above.

(1) The ring RT
S is a quotient of a power series ring over ATS in h1

S,T (GF,S, ad0 ρ̄) variables.

(2) There is a canonical isomorphism

Homk(mRTS
/(m2

RTS
,mATS

,m), k) ∼= H1
S,T (GF,S, ad0 ρ̄).

(3) There is an equality

h1
S,T (GF,S, ad0 ρ̄) = h1

S,T (GF,S, ad0 ρ̄(1))− h0(GF,S, ad0 ρ̄(1))− 1 + #T

+
∑

v∈S−T

(lv − h0(GFv , ad0 ρ̄))−
∑
v|∞

h0(GFv , ad0 ρ̄).

Proof. Though we omit the proof, we note that it involves comparing the exact sequence

from the lemma to the Poitou-Tate exact sequence.

2.4 Automorphic Representations

The full theory of automorphic representations is much too long to describe in detail. We

will only present the material needed for the later chapters. As such, we will not work in

full generality, and we will direct the reader to appropriate sources for proofs.

Keep the notation from Section 1.3. Let F be a number field.
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2.4.1 Representations of GLn(Fv)

Let v be a finite place of F . The representations of GLn(Fv) to consider will be on C-vector

spaces, usually infinite dimensional. Let W be a representation of GLn(Fv) (i.e. a C-vector

space with a map π : GLn(Fv)→ Aut(W )).

Definition 2.4.1. (1) The representation (π,W ) is smooth if for any w ∈ W , the stabilizer

of w in GLn(Fv) is open.

(2) The representation is admissible if it is smooth and if for any compact open subgroup

U ⊂ GLn(Fv), the space WU is finite dimensional.

Example 2.4.2. ([16]) Consider the case n = 2. Let B ⊂ GL2(Fv) be the subset of upper

triangular matrices. Define a map δ : B → K× by

δ

 a b

0 d

 = ad−1.

Suppose that there are two characters χ1, χ2 : K× → C×. The tensor product χ1 ⊗ χ2 can

be viewed as a representation of B via:

(χ1 ⊗ χ2)

 a b

0 d

 = χ1(a)χ2(d).

The normalized induction, denoted iGL2
B , gives a representation χ1 × χ2 of GL2(Fv). As a

set, χ1 × χ2 = iGL2
B (χ1 ⊗ χ2) is

{φ : GL2(Fv)→ C : φ smooth, φ(bg) = (χ1 ⊗ χ2)(b)|δ(b)|1/2v φ(g) ∀b ∈ B, g ∈ GL2(Fv)},

and GL2(Fv) acts on this set by right translation, i.e. (g′φ)(g) = φ(gg′), giving a represen-

tation of GL2(Fv).

Definition 2.4.3. If χ1 × χ2 is irreducible, it is called a principal series representation.

However, χ1 × χ2 need not be irreducible. In fact:

Proposition 2.4.4. The representation χ1 × χ2 is irreducible if and only if χ1/χ2 6= | · |±1
v .

The representation χ × χ| · | has a one-dimensional irreducible subrepresentation, and the

corresponding quotient is irreducible.
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Remark 2.4.5. The irreducible quotient in the proposition is denoted Sp2(χ).

2.4.2 Local Langlands Correspondence

The local Langlands correspondence gives a family of bijections recFv between the set of

isomorphism classes of irreducible admissible representations of GLn(Fv) over C and the set of

isomorphism classes of two-dimensional Frobenius-semisimple Weil-Deligne representations

of WFv over C. Since there is a family of maps, there needs to be some way of normalizing

the map, and there is a method using an equality of certain ε- and L-factors, neither of

which we are going to discuss here. Instead, we direct the reader to [18] and [17] for details.

Instead, we will follow [16] and simply state some of the properties.

Before we state the proposition, we need one more normalization. From local class

field theory, there is a local Artin map ArtFv : F×v → W ab
Fv

, and we normalize it so that

uniformisers are sent to geometric Frobenius elements. For future reference, we make the

same normalization for the global Artin map ArtF : A×F → Gab
F .

Proposition 2.4.6. [16, Fact 4.5] Let recFv be normalized as stated above.

(1) If n = 1, then recFv(χ) = χ ◦ Art−1
Fv

.

(2) If χ is a smooth character, then recFv(π ⊗ (χ ◦ det)) = recFv(π)⊗ recFv(χ).

(3) We have recFv(Sp2(χ)) = Sp2(recFv(χ)).

Following Thorne [41], there is a new map recTFv defined by

recTFv(π) = recFv(π ⊗ | · |−1/2
v ).

The map recTFv commutes with automorphisms of C, and so it makes sense over any field Ω

which is isomorphic to C. For example, one could take Ω = Qp.

Let χ : WFv → Ω× be a character with open kernel. Consider the Weil-Deligne representa-

tion (r,N), where r = χ⊕χ|·|−1
v and N =

 0 1

0 0

. Write St2(χ◦ArtFv) = (recTFv)
−1(r,N).
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Definition 2.4.7. If Ω = C, the representation St2(1) is called the Steinberg representation,

and we will denote it St2.

Remark 2.4.8. The Steinberg representaion is what was called Sp2(| · |−1/2
v ) in the previous

section.

2.4.3 Galois Representations Attached to Automorphic Representations

In the next chapter, following [41], the automorphic representations to be considered are

those π =
⊗′

v πv of GL2(AF ) such that for each v|∞, the representation πv is the local

discrete series representation of GL2(R) with trivial central character. Such a representation

will be called a cuspidal automorphic representation of GL2(AF ) of weight 2.

Theorem 2.4.9. If π is a cuspidal automorphic representation of GL2(AF ) of weight 2, for

every isomorphism ι : Qp → C, there is an associated Galois representation rι(π) : GF →

GL2(Qp) such that:

(1) The representation rι(π) is de Rham, and for every embedding τ : F ↪→ Qp, we have

HTτ (ρ) = {0, 1}.

(2) If v is a finite place of F , then

WD(rι(π)|GFv )F-ss ∼= recTFv(ι
−1πv).

(3) If ωπ : F×\A×F → C× denotes the central character of π, then

det rι(π) = ε−1ι−1(ωπ ◦ Art−1
F ),

where ArtF is the global Artin map.

Remark 2.4.10. Recall from section 1.3 that ε denotes the p-adic cyclotomic character.

2.5 Modularity Lifting

This section gives the idea, but not many of the details, of two methods of modularity lifting.

The first is due to Taylor and Wiles [45], and the second is due to Khare [22]. Let K/Qp be a
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finite extension with integer ring O, maximal ideal m, and residue field k. Let Q be a number

field, and let ρ : GQ → GL2(O) be a representation whose reduction ρ̄ : GQ → GL2(k) is

modular. In this section we will not be terribly precise, as the ideas are more important for

later use.

2.5.1 Taylor-Wiles Method

The goal is to somehow lift the modularity of ρ̄ to deduce the modularity of ρ. Let S0 denote

the set of primes at which ρ̄ is ramified, and let S ⊃ S0 denote a set of places containing S0.

One way of proving the modularity of ρ is through the use of an R = T theorem.

Given the set S, we can consider a global deformation problem SS similar to the ones

defined in Section 2.3. For now, it is enough to know that SS should consider deformations

of ρ̄ which are unramified outside S and share the same local properties as ρ̄ at the primes

in S. Associated to this deformation problem is a universal deformation ring RS.

On the other hand, one can prove the existence of a universal modular deformation ring

TS, which parametrizes deformations of ρ̄ of type SS which are also modular. By universality

of RS, there is a map ϕS : RS → TS. It is not hard to show the surjectivity of ϕS. An R = T

theorem is the assertion that ϕS is an isomorphism.

Taylor and Wiles [45] proved that ϕS0 is an isomorphism, which is the so-called minimal

case. The passage from the minimal to the non-minimal case (when S ⊃ S0) was carried out

by Wiles [44]. Right now, we will focus on the minimal case.

The strategy to prove that ϕS0 is an isomorphism is known as the Taylor-Wiles method.

We now work only with S = S0 and drop it from the notation. An issue with proving R = T

is that the ring R, in theory, can be much bigger than the ring T. To get around this, Taylor

and Wiles introduced auxiliary rings RQn and TQn for n ≥ 1, where Qn is a set of primes

such that, for q ∈ Q, q ≡ 1 mod pn and ρ̄(Frobq) has distinct eigenvalues. The primes are

chosen so that there is some control on the size of the rings RQn . In fact, the number of

generators of this ring as an O-algebra is finite and independent of n. With these auxiliary

rings in hand, they were able to pass to a limit to get rings R∞ and T∞ which they showed
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are isomorphic, and then deduced that R and T are isomorphic. This is sometimes called a

patching method. In essence, they were able to patch all the rings together to deduce the

isomorphism in the limit.

They key to bounding the sizes of the RQn is Proposition 2.3.29. If the size of Qn

is independent of n and the dual Selmer group term can be made 0, then the number of

generators of RQn would be independent of n as well. Thus, the goal becomes to find auxiliary

primes which, when added, “kills dual Selmer,” in the sense that the augmented deformation

problem has vanishing dual Selmer group.

2.5.2 Khare’s Method

For this section, assume O = W (k). An R = T does not seem like the most natural approach

to modularity approach. In some sense, what an R = T theorem is doing is putting ρ into

a collective family of representations and showing that the set is the same as the set of

representations arising from modular forms. Perhaps the simpler approach would be to

lift the modularity of ρ̄ one step at a time. Namely, consider the mod pn representation

ρn : GQ → GL2(Wn(k)), where Wn(k) denotes the Witt vectors of length n of k, so that

ρ̄ = ρ1. Since ρ1 is modular, there might be a way to show that each ρn is modular and

somehow pass to the limit to deduce the modularity of ρ. The advantage of this approach

would be that it deals directly with ρ and its reductions instead of considering the collection

of ρ and many other representations. This method is carried out by Khare [22].

Khare also introduces auxiliary primes with additional ramification conditions, as was

done in the Taylor-Wiles method (though the conditions for the primes are different). These

conditions are not satisfied by ρ, but he shows they are satisfied by the mod pn representation

ρn. From this, he is able to show that ρn arises from a modular form of level Nn, a priori

dependent on n. In order to effectively pass to the limit to deduce the modularity of ρ, this

level should be independent of n.

At this point, Khare uses Mazur’s principle [28, Section 8] to deduce that each ρn arises

from a modular form of fixed level N , independent of n. He then passes to the limit to
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deduce the modularity of ρ.
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CHAPTER 3

Two-Dimensional Residually Dihedral Representations

3.1 Introduction and Main Theorems

3.1.1 Automorphy Theorems

Let F be a totally real field, and let O be the integer ring of a finite extension of Qp. In

a change from the previous chapter, write λ ⊂ O for the maximal ideal, and k = O/λ for

the residue field. Let ρ : GF → GL2(O) be a geometric representation. In proving the

automorphy of ρ, there is usually an assumption made (the Taylor-Wiles hypothesis) on the

residual representation, namely that ρ̄|GF (ζp)
be absolutely irreducible. This was the setting

of Wiles [44] and Taylor-Wiles [45] in their proof of the modularity conjecture for semistable

elliptic curves over Q.

Since the original proof, there have been a few attempts to remove the Taylor-Wiles

hypothesis. Skinner and Wiles [34] were able to remove the assumption in the case that ρ is

ordinary. Recently, Thorne [41] removed the Taylor-Wiles hypothesis in many cases, asking

that ρ̄ be absolutely irreducible and the quadratic subfield K of F (ζp)/F be totally real.

The purpose of this chapter is to prove the automorphy of representations ρ which do

not satisfy the Taylor-Wiles hypothesis, and in fact the main automorphy theorem of this

chapter is slightly more general than the corresponding one in [41]. Namely, the assumption

that K be totally real is replaced by the assumption that there is a “level raising” place v

of F that splits in K such that the ratio of eigenvalues of ρ̄(Frobv) is qv with qv 6≡ 1 mod p.

The details will be provided in the next section. However, it is useful to note that this

assumption is automatic when K is totally real, so the results of this chapter do generalize

50



the ones in loc. cit.

The main theorem we prove is the following:

Theorem 3.1.1. ([21]) Let F be a totally real number field, let p be an odd prime, and let

ρ : GF → GL2(Qp) be a continuous representation satisfying the following:

(1) The representation ρ is almost everywhere unramified.

(2) For each v|p of F , the local representation ρ|GFv is de Rham. For each embedding

τ : F ↪→ Qp, we have HTτ (ρ) = {0, 1}.

(3) For each complex conjugation c ∈ GF , we have det ρ(c) = −1.

(4) The residual representation ρ̄ is absolutely irreducible, but ρ̄|GF (ζp)
is a direct sum

of two distinct characters. If K denotes the unique quadratic subfield of F (ζp)/F

and γ̄ : GK → k× is the ratio of the two characters, then further suppose F (ζp) 6⊂

K(γ̄ε̄−1) ∩K(γ̄ε̄).

Then ρ is automorphic: there exists a cuspidal automorphic representation π of GL2(AF ) of

weight 2, an isomorphism ι : Qp → C, and an isomorphism ρ ∼= rι(π).

Note that the hypothesis on K in item (4) is equivalent to the existence of the “level

raising” place described above. Also note that there is no assumption on the residual auto-

morphy of ρ̄.

The proof has two parts: a Galois theory argument and an automorphic forms argument.

The Galois theory argument contains the original arguments for the purposes of the disser-

tation (and will be in Section 3.4), and the automorphic side is the same as [41]. As such,

all the proofs from the Galois theory side are provided, but we will refer to loc. cit. for the

proofs of the automorphic arguments.

The proof will blend the Taylor-Wiles method and the method of Khare of proving

automorphy of ρ by using p-adic approximation (see Section 2.5). Along the way, we will

describe how our arguments differ from the arguments of Thorne [41].
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3.1.2 Automorphy of Elliptic Curves

It was once a conjecture that all elliptic curves over Q are modular, i.e. that the represen-

tations ρE,p are modular for some (equivalently all) prime p. Wiles [44] and Taylor-Wiles

[45] were able to prove that all semistable elliptic curves over Q are modular. This has since

been extended to all elliptic curves over Q by work of Breuil, Conrad, Diamond, and Taylor

([5], [7], [9]).

Since then, the question has shifted to proving the automorphy of elliptic curves over

totally real fields. After proving Theorem 3.1.1, we will describe this work and prove a new

result in this setting. Specifically, we will prove:

Theorem 3.1.2. ([21]) Let F be a totally real field, and let E be an elliptic curve over F .

Suppose:

(1) F ∩Q(ζ7) = Q.

(2) E has no F -rational 7-isogeny.

(3) Either ρ̄E,7(GF (ζ7)) is absolutely irreducible, or it is reducible and is conjugate to a

subgroup of a split Cartan subgroup of GL2(F7).

Then E is modular.

Throughout this chapter, we will adhere to the notation and normalizations described in

the opening chapter of the dissertation.

3.1.3 Structure of Chapter

The chapter will begin with a discussion about Shimura curves and Hida varieties. We will

introduce Hecke operators acting on an appropriate O-module, and introduce the Galois

representations to be considered later. In addition, there will be theorems outlining the

procedure for level raising and level lowering.

At that point, there will be a brief discussion on ordinary Galois representations before

the bulk of the original work for the chapter is done in Section 3.4. When this is done, we
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go through the arguments to prove an R = T theorem which will be applied to proving the

main theorem in Section 3.6. The chapter ends with an application to elliptic curves.

The original work for the purposes of this dissertation is concentrated in Section 3.4 and

the final section on elliptic curves. The other arguments are unchanged from [41].

3.2 Shimura Curves and Hida Varieties

3.2.1 Quaternion Algebras and Reductive Groups

The source material for this section is [41]. Let F be a totally real number field of degree d

over Q, and assume d is even. Write τ1, τ2, . . . , τd for the d real embeddings F ↪→ R. Let Q

be a finite set of finite places of F . For each Q, fix a choice of quaternion algebra BQ over

F , where:

• If #Q is odd, then BQ is ramified at Q ∪ {τ2, . . . , τd}, and

• If #Q is even, then BQ is ramified at Q ∪ {τ1, . . . , τd}.

Remark 3.2.1. Recall that a quaternion algebra D over F is ramified at v if D ⊗v Fv is a

division algebra. The places where the algebra ramifies determines the quaternion algebra

up to isomorphism, and it can be any set of places of even cardinality. This is why the cases

for #Q odd and even are separated.

For each Q, fix a maximal order OQ ⊂ BQ. This means an isomorphism

O ⊗OF
∏
v-Q∞

OFv ∼=
∏
v-Q∞

M2(OFv)

can be found and fixed.

Associated to this maximal order is a reductive group GQ over OF . Indeed, its functor of

points is given by GQ(R) = (OQ ⊗OF R)×. Notice that, by the above isomorphism, if v /∈ Q

is a finite place, then

GQ(OFv) = (OQ ⊗OF OFv)× ∼= M2(OFv)× = GL2(OFv),
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so GQ(OFv) ∼= GL2(OFv).

Now let v be any finite place of F . For each n ≥ 1, we can define a sequence of compact

open subgroups of GL2(OFv). Letting $v denote a uniformizer of OFv :

• U0(vn) :=


 a b

c d

 ∈ GL2(OFv) : c ≡ 0 mod $n
v


• U1(vn) :=


 a b

c d

 ∈ GL2(OFv) : c ≡ 0 mod $n
v , ad

−1 ≡ 1 mod $n


• U1

1 (vn) :=


 a b

c d

 ∈ GL2(OFv) : c ≡ 0 mod $n
v , a ≡ d ≡ 1 mod $n


Observe that U1

1 (vn) ⊂ U1(vn) ⊂ U0(vn). If v /∈ Q, use the same notation to denote the open

compact subgroups of GQ(OFv) under the isomorphism GL2(OFv) ∼= GQ(OFv).

Let v0 be a fixed placed of F such that qv0 > 4d. We will always assume that the sets Q

are chosen so that v0 /∈ Q.

Definition 3.2.2. Let U ⊂ GQ(A∞F ) be an open compact subgroup. Then U is called a good

subgroup if:

(1) U =
∏

v Uv for open compact subgroups Uv ⊂ GQ(Fv).

(2) If v ∈ Q, then Uv is the unique maximal compact subgroup of GQ(Fv).

(3) Uv0 = U1
1 (v0).

The set of good subgroups U ⊂ GQ(A∞F ) will be denoted JQ.

3.2.2 Hecke Operators

The goal of this section is to define Hecke operators acting on certain GQ(Fv)-modules. Let

Q be a finite set of finite places of F (again, assuming v0 /∈ Q), and let U ∈ JQ.

Definition 3.2.3. [41, Section 4.1] If v is a finite place of F , write H(GQ(Fv), Uv) for the

Z-algebra of compactly supported Uv-biinvariant functions f : G(Fv)→ Z.
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Remark 3.2.4. A basis for this algebra as a Z-module is given by the characteristic functions

of the double cosets UvgvUv. Write [UvgvUv] for this characteristic function.

Let M be a smooth Z[GQ(Fv)]-module. Then MUv is a H(GQ(Fv), Uv)-module. Indeed,

writing UvgvUv =
∐

i hiUv, for any m ∈MUv :

[UvgvUv] ·m =
∑
i

hi · x.

We will now isolate a few elements of interest. Assume v /∈ Q and that Uv = GL2(OFv). We

write

Tv =

GL2(OFv)

 $v 0

0 1

GL2(OFv)

 , Sv =

GL2(OFv)

 $v 0

0 $v

GL2(OFv)

 .
Then Tv, Sv ∈ H(GL2(Fv),GL2(OFv)) ∼= H(GQ(Fv),GL2(OFv)). If v /∈ Q and Uv is a smaller

subgroup, say U1
1 (vn) ⊂ Uv ⊂ U0(vn), then write

Uv =

Uv
 $v 0

0 1

Uv

 .
If v ∈ Q, then as U is a good subgroup by assumption, we know Uv is the maximal compact

subgroup of GQ(Fv) = (BQ ⊗F Fv)× by definition, and define

Uv = [Uv$̃vUv] ,

where $̃v ∈ OQ ⊗OF OFv is a uniformizer. In this case, H(GQ(Fv), Uv) = Z[Uv,U
−1
v ].

It is true that we have used Uv to mean two different things. However, we have the

following lemma.

Lemma 3.2.5. [41, Lemma 4.1] If v ∈ Q and χ : F×v → C× is an unramified character,

then let π = St2(χ). Write JL(π) = χ◦det for the one-dimensional representation of GQ(Fv)

associated to π under the local Jacquet-Langlands correspondence. Then

recTFv(π) =

χ⊕ χ| · |−1,

 0 1

0 0

 .

The Uv-eigenvalues on πU0(v) and JL(π)Uv coincide, and are both equal to the eigenvalue of

Frobv on recTFv(π)N=0.

55



This lemma justifies the use of Uv for the two different operators.

Let π be a cuspidal automorphic representation of GL2(AF ) of weight 2 (in the sense of

Chapter 2). Let p be a prime and let ι : Qp → C be an isomorphism. Let v be a place

dividing p. For each n ≥ 1, the operator Uv acts on ι−1π
U1
1 (vn)

v . The eigenvalues for the

operator lie in Zp.

Definition 3.2.6. We say πv is ι-ordinary if there exists n ≥ 1 such that ι−1π
U1
1 (vn)

v 6= 0,

and Uv has an eigenvalue which lies in Z×p .

We will eventually see how this notion relates to the usual definition of an ordinary Galois

representation.

3.2.3 Hida Varieties and Shimura Curves

Suppose #Q is even, and let U ∈ JQ be a good subgroup. Consider the double quotient

XQ(U) = GQ(F )\GQ(A∞F )/U.

If g ∈ GQ(Av0,∞F ), then g−1Ug ∈ JQ as well, and there is a map

XQ(U)→ XQ(g−1Ug)

induced by right multiplication on G(A∞F ). This gives a right action of GQ(Av0,∞F ) on the

projective system {XQ(U)}U∈JQ .

Now assume #Q is odd. Fix an isomorphism BQ ⊗F,τ1 R ∼= M2(R), and let X denote

the GQ(F ⊗QR)-conjugacy class of the homomrphism h : ResC/RGm → (ResF/QGQ)R which

maps z = x+ iy to the element
 x y

−y x

−1

, 1, 1, . . . , 1

 .

For U ∈ JQ, we can consider the space

MQ(U)(C) = GQ(F )\GQ(A∞F )×X/U.
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Associated to this topological space is a projective algebraic curve MQ(U)/F such that

MQ(U)(C) is the set of complex points. As before, right multiplication in GQ(A∞F ) in-

duces a system of isomorphisms MQ(U)(C)→MQ(g−1Ug)(C), and this gives a right action

of GQ(Av0,∞F ) on the projective system {MQ(U)(C)}U∈JQ . It can be shown, as is done in [41,

Section 4.4, 4.5] that the curves MQ(U) admit integral models over OFv . From now on, we

will use MQ(U) to denote these integral models.

3.2.4 Hecke Algebras

Let p be a prime, and let L/Qp be a finite extension with integer ring O, and let λ ⊂ O

denote the maximal ideal. Let k = O/λ for the residue field.

Let Q be a finite set of finite places of F , with v0 /∈ Q. Let S be a finite set of finite

places with Q ⊂ S. Write TS,univ = O[Tv, Sv]v/∈S, and TS,univ
Q for the polynomial algebra over

TS,univ in the Uv for v ∈ Q. If U ∈ JQ, then define

HQ(U) =

 H1(MQ(U)F ,O) if #Q odd

H0(XQ(U),O) if #Q even
.

The O-module HQ(U) is finite and free over O.

Now assume that S is chosen so that if v /∈ S, then Uv = GL2(OFv). Then TS,univ
Q

acts on HQ(U). If #Q is odd, then the action commutes with the action of GF , and the

Eichler-Shimura relation holds: for finite v /∈ S ∪ Sp of F , the action of GFv is unramified

and

Frob2
v−S−1

v Tv Frobv +qvS
−1
v = 0 ∈ EndO(HQ(U)).

If M is a TS,univ-module (resp. TS,univ
Q -module), we write T S(M) (resp. T SQ(M)) for the

image of TS,univ (resp. TS,univ
Q ) in EndO(M). If U ∈ JQ is a good subgroup, then T S(HQ(U))

and T SQ(HQ(U)) are reduced and O-torsion free.

Suppose that k′/k is a finite extension, and that there is a homomorphism TS,univ → k′

with kernel m. If m ∈ Supp(HQ(U)) for some Q and some U ∈ JQ, then there is a semi-simple

Galois representation

ρ̄m : GF → GL2(TS,univ/m),
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uniquely determined by the following: if v /∈ S∪Sp, then ρ̄m|GFv is unramified, and ρ̄m(Frobv)

has characteristic polynomial X2 − TvX + qvSv (here, the symbols represent their images in

TS,univ/m).

Definition 3.2.7. If ρ̄m is absolutely reducible, then m is called Eisenstein. Otherwise, ρ̄m

is non-Eisenstein.

If, on the other hand, we have a homomorphism TS,univ
Q → k′ with kernel m, then m

is called Eisenstein if m ∩ TS,univ is Eisenstein, and otherwise is called non-Eisenstein. In

either case, there is an associated Galois representation ρ̄m : GF → GL2(TS,univ
Q /m). The

next proposition gives the existence of a lift of ρ̄m.

Proposition 3.2.8. [41, Proposition 4.7] Assume #Q is odd, and let m ⊂ TS(HQ(U)) be a

non-Eisenstein maximal ideal. Then there exists:

(1) A continuous representation ρm : GF → GL2(TS(HQ(U))m) lifting ρ̄|m and satisfying:

for finite v /∈ S ∪ Sp of F , the representation ρm|GFv is unramified, and ρm(Frobv) has

characteristic polynomial X2 − TvX + qvSv.

(2) A finite TS(HQ(U))m module M , together with an isomorphism of TS(HQ(U))m[GF ]-

modules

HQ(U)m ∼= ρm ⊗TS(HQ(U))m (ε det ρm)−1 ⊗TS(HQ(U))m M.

3.2.5 Level-Raising

The next two sections will be devoted to stating the relevant level-raising and level-lowering

results needed to prove the main automorphy lifting theorem. The relevant source is [41,

Sections 4.8, 4.9].

Fix a finite set R of finite places of F , and assume #R is even and R ∩ (Sp ∪ {v0}) = ∅.

Let U ∈ JR be a good subgroup. Now let Q be a finite set of finite places of F , disjoint from

Sp ∪R ∪ {v0} and of even cardinality, satisfying the following: if w ∈ Q, then qw 6≡ 1 mod p

and Uw = GL2(OFw). If J ⊂ Q is a subset, define a new subgroup UJ ⊂ GR∪J(A∞F ) by the

following:
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• If w /∈ J , then UJ,w = Uw.

• If w ∈ J , then UJ,w is the unique maximal compact subgroup of GR∪J(Fw).

Let S be a finite set of finite places of F with Sp∪R∪Q ⊂ S and such that S contains all the

places w such that Uw 6= GL2(OFw). Let m ⊂ TS,univ denote a non-Eisenstein maximal ideal

with m ∈ Supp(HR(U)). By definition, ρ̄m is absolutely irreducible, and for each v ∈ Q, the

restriction ρ̄m|GFv is unramified. Assume k is large enough that for all v ∈ Q, the eigenvalues

αv, βv of ρ̄m(Frobv) lie in k (if not, enlarge the field L). Also assume that for v ∈ Q, the

ratio βv/αv = qv. This is a well-known level-raising congruence for the place v.

Lemma 3.2.9. [41, Lemma 4.11] If J ⊂ Q, let mJ ⊂ TS,univ
J denote the maximal ideal

generated by m and the elements Uv − αv for v ∈ J . Then mJ ∈ Supp(HR∪J(UJ)).

Proof. See the proof of Lemma 4.11 in [41].

More relevant for us will be the following two propositions. Again, we refer the reader to

loc. cit. for the proofs.

Proposition 3.2.10. [41, Proposition 4.12] We have

1 ≤ dimk(HR∪J(UQ)⊗O k) ≤ 4#Q dimk(HR(U)⊗O k)[m].

Proposition 3.2.11. [41, Lemma 4.13] Let σ ⊂ Sp, and let ι : Qp → C be an isomorphism.

Let π be a cuspidal automorphic representation of GL2(AF ) of weight 2 which satisfies:

• The representation rι(π) is irreducible.

• If v ∈ σ, then πv is ι-ordinary and π
U0(v)
v 6= 0.

• If v ∈ Sp\σ, then πv is not ι-ordinary and πv is unramified.

• If v ∈ R, then πv is an unramified twist of the Steinberg representation.

• If v = v0, then π
U1
1 (v0)

v0 6= 0

• If v /∈ Sp ∪R ∪ {v0} is a finite place of F , then πv is unramified.
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• If v ∈ Q, then the eigenvalues αv, βv of rι(π)(Frobv) satisfy βv/αv = qv.

Then there exists a cuspidal automorphic representation π′ of weight 2 satisfying:

• There is an isomorphism rι(π) ∼= rι(π′).

• If v ∈ σ, then π′v is ι-ordinary and (π′)
U0(v)
v 6= 0.

• If v ∈ Sp\σ, then π′v is not ι-ordinary and π′v is unramified.

• If v ∈ R∪Q, then π′v
∼= St2(χv) for some unramified character χv : F×v → C. If v ∈ Q,

then ι−1χv($v) is congruent to αv modulo the maximal ideal of Zp.

• If v = v0, then (π′)
U1
1 (v0)

v0 6= 0

• If v /∈ Sp ∪R ∪Q ∪ {v0} is a finite place of F , then π′v is unramified.

Essentially, we have increased the set of ramification for our automorphic representation

but have left the residual representation unchanged.

3.2.6 Level-Lowering

As in the previous section, fix a finite set R of finite places of F with R ∩ (Sp ∪ {v0}) = ∅

and #R even. Let U =
∏

w Uw ∈ JR be a good subgroup. If Q is a finite set of finite

places of F , disjoint from Sp ∪ R ∪ {v0}, with Uv = GL2(OFv) for all v ∈ Q, then define

UQ =
∏

v UQ,v ∈ JR∪Q as follows:

• If v /∈ Q, then UQ,v = Uv.

• If v ∈ Q, then UQ,v ⊂ GR∪Q(Fv) is the unique maximal compact subgroup.

Let S be a finite set of finite places of F with Sp ⊂ S, and such that Uv = GL2(OFv) for

v /∈ S. Let m ⊂ TS,univ be a non-Eisenstein maximal ideal with m ∈ Supp(HR(U)).

We now state a theorem and subsequent corollary from [41]. Essentially, the idea is to

model Khare’s method in [22].
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Theorem 3.2.12. [41, Theorem 4.14] Fix an integer N ≥ 1, and let ρ : GF → GL2(O/λN)

be a continuous representation lifting ρ̄m. Assume that:

(1) The representation ρ is unramified outside S.

(2) There exists a set Q (as above) with #Q even, and a homomorphism

f : TS∪QQ (HR∪Q(UQ))→ O/λN

such that:

– For each v ∈ Q, the size of the residue field satisfies qv 6≡ 1 mod p.

– For each finite v /∈ S ∪Q of F , we have f(Tv) = tr ρ(Frobv).

– If I = ker f , then (HR∪Q(UQ) ⊗O O/λN)[I] contains a submodule isomorphic to

O/λN .

Then there exists a homomorphism f ′ : TS∪Q(HR(U)) → O/λN such that for all

v /∈ S ∪Q, we have f(Tv) = tr ρ(Frobv).

Corollary 3.2.13. [41, Corollary 4.15] Let ρ : GF → GL2(O) be a continuous lift of ρ̄m

unramified outside S. Suppose that for each N ≥ 1, there exists a set Q (depending on N)

as in the previous theorem and a homomorphism f : TS∪QQ (HR∪Q(U))→ O/λN satisfying:

• For each v ∈ Q, the size of the residue field satisfies qv 6≡ 1 mod p.

• For each finite v /∈ S ∪Q of F , we have f(Tv) = tr ρ(Frobv).

• If I = ker f , then (HR∪Q(UQ)⊗OO/λN)[I] contains a submodule isomorphic to O/λN .

Then ρ is automorphic. That is, there exists a cuspidal automorphic representation π of

GL2(AF ) of weight two and an isomorphism ρ⊗O Qp
∼= rι(π).

3.3 Ordinary Galois Representations

In this section, we will state a series of lemmas which will be necessary in later arguments.

The material comes from [41, Section 5.1]. For this section, let p be odd and L/Qp a finite
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extension. Let ρ : GL → GL2(Qp) be a representation such that:

• ρ is de Rham, and

• for each τ : L ↪→ Qp, we have HTτ (ρ) = {0, 1}.

Definition 3.3.1. The representation ρ is ordinary if it is conjugate to a representation of

the form

ρ ∼

 ψ1 ∗

0 ψ2ε
−1

 ,

where ψ1, ψ2 : GL → Q×p are continuous characters such that ψi|IL has finite order. If ρ is

not ordinary, we say it is non-ordinary.

Recall from item (5) of Theorem 2.1.27 that, as ρ is de Rham, there is an associated Weil-

Deligne representation WD(ρ). The first lemma we state describes how the condition of

being ordinary is detected by the Weil-Deligne representation.

Lemma 3.3.2. [41, Lemma 5.1] Let ρ be as above. Then one of the following must be true:

(1) The Frobenius semi-simplification WD(ρ)F−ss is irreducible, in which case ρ is non-

ordinary.

(2) We have WD(ρ)F−ss is indecomposable, in which case ρ is ordinary.

(3) The representation WD(ρ)F−ss is decomposable, and is the direct sum of two smooth

characters χi : WL → Q×p , i.e. WD(ρ)F−ss = χ1 ⊕ χ2. If FrobL ∈ WL denotes a

geometric Frobenius element, assume that valp(χ1(FrobL)) ≤ valp(χ2(FrobL)). Then

valp(χ1(FrobL)) + valp(χ2(FrobL)) ≤ [L0 : Qp],

where L0 is the maximal absolutely unramified subfield of L. The representation ρ is

ordinary if and only if equality holds.

Let F be a totally real field, and let ι : Qp → C be a fixed isomorphism. Let π be a

cuspidal automorphic representation of GL2(AF ) of weight 2 (in the sense of Chapter 2).

62



If v ∈ Sp, recall the definition of being ι-ordinary (see Definition 3.2.6). This next lemma

describes when the component πv is ι-ordinary. We will then see how πv being ι-ordinary

relates to rι(π) being ordinary at places above p.

Lemma 3.3.3. Let π be as above, and let v ∈ Sp. Then exactly one of the following must

be true:

(1) The local component πv is supercuspidal. In this case, πv is not ι-ordinary.

(2) There is a character χ : F×v → Q×p of finite order and an isomorphism πv ∼= St2(ιχ)

(recall the definition of St2(ιχ) from the remarks preceding Definition 2.4.7). In this

case, πv is ι-ordinary.

(3) There exist characters χ1, χ2 : F×v → Q×p with open kernel and an isomorphism πv ∼=

iGL2
B ιχ1 ⊗ ιχ2. Suppose the χi are labelled so that valp(χ1($v)) ≤ valp(χ2($v)). Then

− valp(qv)/2 ≤ valp(χ1($v)), and πv is ι-ordinary if and only if equality holds.

In some sense, the previous two lemmas seem to be mirroring one another. One should

believe, then, that there is some relationship between an automorphic representation being

ι-ordinary at a local component and the associated Galois representation being ordinary.

The next lemma shows this is the case.

Lemma 3.3.4. [41, Lemma 5.3] Let π be as above, and let v ∈ Sp.

(1) The representation rι(π)|GFv is ordinary if and only if πv is ι-ordinary.

(2) If πv is supercuspidal and if L/Fv is a finite extension such that recTFv(πv)|WL
is unram-

ified, then rι(π)|GL is crystalline and non-ordinary.

Ultimately, we are going to want to consider automorphic representations whose local

components are ι-ordinary at some places above p and supercuspidal at others. The next

(and last) lemma of this section shows that if we have a cuspidal automorphic representation

of GL2(AF ) of weight 2, then we can find another with the above property whose associated

residual Galois representation is isomorphic to the original’s.
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Lemma 3.3.5. [41, Theorem 5.4] Assume [F : Q] is even, and let π be a cuspidal automor-

phic representation of GL2(AF ) of weight 2. Suppose that, for each finite place v /∈ Sp of

F , either πv is unramified or qv ≡ 1 mod p and πv is an unramified twist of the Steinberg

representation. Suppose further that if v ∈ Sp, then πv is ι-ordinary and π
U0(v)
v 6= 0. Lastly,

suppose rι(π) is irreducible and [F (ζp) : F ] ≥ 4. Let σ ⊂ Sp be any subset (possibly empty).

Then there exists a cuspidal automorphic representation π′ of GL2(AF ) of weight 2 such

that:

(1) There is an isomorphism of residual representations rι(π) ∼= rι(π′).

(2) The representations π and π′ have the same central character.

(3) If v ∈ σ, then π′v is ι-ordinary. If v ∈ Sp − σ, then π′v is supercuspidal.

(4) If v - p∞ is a place of F and v is unramified, then π′v is unramified. If πv is ramified,

the π′v is a ramified principal series representation.

3.4 Killing Dual Selmer

We now move to the crux of our work, which is finding auxiliary primes that do the job of

killing the mod p dual Selmer group. There is some care needed when doing so, because

we need to make sure these places fit into our general strategy of automorphy lifting (recall

this will be a blend of the Taylor-Wiles primes and Khare’s method). We will first describe

the local deformation problems used, and then move to the process of choosing the auxiliary

primes. Along the way we will make note of which arguments are from [41] and which are

new.

3.4.1 Notation

The theory for this chapter has been developed in Chapter 2, specifically Section 2.3. How-

ever, we will remind the reader of the notation now. This notation will apply to the rest of

Section 3.4. Let p be an odd prime, and let O be the integer ring of a finite extension L of
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Qp. We let m ⊂ O be the maximal ideal, and k = O/m the residue field.

Let F be a totally real number field, and suppose ρ̄ : GF → GL2(k) is an absolutely

irreducible, continuous representation. Let µ : GF → O× be a continuous character lifting

det ρ̄. Assume k contains the eigenvalues of all elements in ρ̄(GF ). Let S be a finite set of

finite places of F , with S containing Sp and the places at which ρ̄ and µ are ramified. For

each place v ∈ S, fix a ring Λv ∈ CNLO, and define Λ =
⊗̂

v∈SΛv, the tensor product being

over O. As in Section 2.3.6, the ring Λ ∈ CNLO.

Lastly, if v ∈ S, then R�
v ∈ CNLΛv will be the representing object for the functor

D�
v : CNLΛv → Sets which takes R to the set of lifts of ρ̄|GFv to R such that the determinant

agrees with the composite GFv → O× → R×.

We refer the reader to Sections 2.3.5 and 2.3.6 for the definitions of local and global

deformation problems.

3.4.2 Local Deformation Problems

We are going to be defining four different local deformation problems. For the first three,

we define the local deformation problem by defining the representing ring.

3.4.2.1 Ordinary Deformations

Assume v ∈ Sp and ρ̄|GFv is trivial. Assume L contains the image of all embeddings Fv ↪→ Q×p .

If G is a profinite group, let G(p) denote the maximal pro-p subgroup of G.

Set Λv = OJO×Fv(p)K. Write ηuniv : O×Fv → Λ× for the universal character. Let Iab
Fv

denote

the inertia subgroup of the Galois group of the maximal abelian extension of Fv. The local

Artin map ArtFv gives an isomorphism O×Fv(p) ∼= Iab
Fv

(p).

Definition 3.4.1. The ordinary deformation ring Rord
v is defined as follows: let x : R�

v → Qp

be a homomorphism. The map x factors through Rord
v if and only if x ◦ ρ�v is GL2(Zp)-
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conjugate to a representation

x ◦ ρ�v ∼

 ψ1 ∗

0 ψ2

 ,

where ψ1|IabFv (p) = x ◦ ηuniv ◦ Art−1
Fv

.

Remark 3.4.2. This ring exists, and defines a local deformation problem. See, for example,

[41, Proposition 5.13].

Let Dord
v be the local deformation problem with representing object Rord

v .

3.4.2.2 Crystalline non-ordinary deformations

Again assume that v ∈ Sp and ρ̄|GFv is trivial. For this problem, let Λv = O.

Proposition 3.4.3. [41, Proposition 5.14] There is a reducedO-torsion free quotient Rnon-ord
v

of R�
v satisfying the following property: If E/L is a finite extension and x : R�

v → L is a

homomorphism, then x factors through Rnon-ord
v if and only if x ◦ ρ�v is crystalline of Hodge-

Tate weights HTτ (x ◦ ρ�v ) = {0, 1} and is non-ordinary.

If Rnon-ord
v 6= 0, then Rv defines a local deformation problem whose corresponding sub-

functor of D�
v we denote by Dnon-ord

v .

3.4.2.3 Steinberg Deformations when qv ≡ 1 mod p

Suppose v ∈ S\Sp, and assume qv ≡ 1 mod p and ρ̄|GFv is trivial. As with the non-ordinary

deformations, for this deformation problem we will have Λv = O.

Proposition 3.4.4. [41, Proposition 5.15] There is a reduced O-torsion free quotient RSt
v

of R�
v satisfying the following property: If E/L is a finite extension and x : R�

v → L is a

homomorphism, then x factors through RSt
v if and only if x ◦ ρ�v is GL2(OE)-conjugate to a

representation of the form

x ◦ ρ�v ∼

 χ ∗

0 χε−1

 ,

where χ : GFv → E× is an unramified character.
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As with the previous cases, this ring RSt
v defines a local deformation problem which we

denote by DSt
v .

3.4.2.4 Special Deformations when qv 6≡ 1 mod p

This deformation problem was originally defined in [41]. For reasons discussed later, Thorne

imposed the stricter restriction that qv ≡ −1 mod p. We remove this assumption, asking

only that qv 6≡ 1 mod p.

Let v ∈ S be a prime not dividing p, and suppose that qv 6≡ 1 mod p. Suppose further

that ρ̄|GFv is unramified, and that ρ̄(Frobv) has two distinct eigenvalues αv, βv ∈ k such that

βv/αv = qv. Let Λv = O. We define a subfunctor DSt(αv)
v ⊂ D�

v directly. Let R ∈ CNLO and

let r : GFv → GL2(R) be an element ofD�
v (R). If φv ∈ GFv is a choice of geometric Frobenius,

then by Hensel’s lemma the characteristic polynomial of r(φv) factors as (X −Av)(X −Bv),

where Av, Bv ∈ R× with Av lifting αv and Bv lifting βv. We will say r ∈ DSt(αv)
v (R) if

Bv = qvAv and IFv acts trivially on (r(φv)−Bv)R
2, which is a direct summand R-submodule

of R2. One checks that this condition is independent of the choice of φv.

Proposition 3.4.5. The functor DSt(αv)
v is a local deformation problem. The representing

object R
St(αv)
v is formally smooth over O of (absolute) dimension 4.

Proof. That DSt(αv)
v is a local deformation problem is easy. Let R

St(αv)
v denote the represent-

ing object. To see that the dimension of R
St(αv)
v is 4, consider the unframed deformations

of this type and its representing object Sv. Then Sv is smooth of relative dimension 1 over

O. There is a map Sv → R
St(αv)
v which is formally smooth, and R

St(αv)
v is a power series ring

over Sv in

dimk ad ρ̄− dimkH
0(Fv, ad ρ̄) = 4− 2 = 2

variables. Thus R
St(αv)
v has relative dimension 3 over O, as desired.

67



3.4.3 Existence of Auxiliary Primes

Continue with the notation from the previous section, and assume further that ρ̄ is totally

odd, i.e. that µ(c) = −1 for all choices of complex conjugation c ∈ GF . Write ζp ∈ F for a

primitive p-th root of unity, and now fix a choice of complex conjugation c ∈ GF .

Assume that ρ̄|GF (ζp)
is the direct sum of two distinct characters (so that the Taylor-

Wiles hypothesis does not hold). By Clifford theory, the representation ρ̄ is induced from a

continuous character χ̄ : GK → k×, where K is the unique quadratic subfield of F (ζp)/F .

That is, ρ̄ ∼= IndGFGK χ̄. Write w ∈ GF for a fixed choice of element with nontrivial image

in Gal(K/F ). Consider the twisted character χ̄w : GK → k×, which is defined by χ̄w(g) =

χ̄(w−1gw). We can assume that, possibly after conjugation, that ρ̄ has the form:

ρ̄(σ) =

 χ̄(σ) 0

0 χ̄w(σ)

 , for σ ∈ GK ,

ρ̄(w) =

 0 χ̄(w2)

1 0

 .

Now let γ̄ = χ̄/χ̄w. By assumption, as ρ̄|GF (ζp)
is the direct sum of two distinct characters,

the character γ̄ is nontrivial, even after restriction to GF (ζp).

Lemma 3.4.6. The adjoint representation ad0 ρ̄ decomposes as ad0 ρ̄ ∼= k(δK/F )⊕ IndGFGK γ̄

as a GF -module, where δK/F : Gal(K/F )→ k× is the unique nontrivial character.

Proof. As a GK-representation, the representation ad0 ρ̄ decomposes as k ⊕ k(γ̄) ⊕ k(γ̄−1).

Therefore, by Frobenius reciprocity and Clifford theory, the representation IndGFGK γ̄ is an

irreducible subrepresentation of ad0 ρ̄ as a GF -module. The k(δK/F ) term comes from con-

sidering the GF action on the matrix

 1 0

0 −1

 ∈ ad0 ρ̄.

From now on, we will let M0 = k(δK/F ) and M1 = IndGFGK γ̄. Fix the standard basis for

ad0 ρ̄:

E =

 0 1

0 0

 , H =

 1 0

0 −1

 , F =

 0 0

1 0

 .
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If M ∈ ad0 ρ̄, we write kM ⊂ ad0 ρ̄ for the line that it spans.

We have the following easy lemma:

Lemma 3.4.7. Let v - p be a finite place of F which splits in K, and suppose that the local

deformation problem Dv = DSt(αv)
v is defined.

(1) The subspace Lv ⊂ H1(Fv, ad0 ρ̄) respects the decomposition ad0 ρ̄ = M0 ⊕M1. That

is,

Lv = (Lv ∩H1(Fv,M0))⊕ (Lv ∩H1(Fv,M1)).

(2) The subspace L⊥v ⊂ H1(Fv, ad0 ρ̄(1)) respects the decomposition ad0 ρ̄(1) = M0(1) ⊕

M1(1).

Proof. The second part is dual to the first, so we only prove the first part. The fact that

DSt(αv)
v is defined means qv 6≡ 1 mod p, that ρ̄|GFv is unramified, and that ρ̄(Frobv) takes two

distinct eigenvalues αv, βv ∈ k with βv/αv = qv. The fact that v splits in K means M0 = kH

and M1 = kE(1)⊕ kF (−1) as k[GFv ]-modules. The case qv ≡ −1 mod p was proved in [41].

Namely, if qv ≡ −1 mod p, then M1 = kE(1) ⊕ kF (1) as k[GFv ]-modules, as ε̄ = ε̄−1 in

this case. The subspace Lv ⊂ H1(GFv , ad0 ρ̄) is one-dimensional, and lies in H1(GFv ,M1),

being spanned by either H1(GFv , kE(1)) or H1(GFv , kF (1)). If qv 6≡ ±1 mod p, then Lv is

1-dimensional, and is contained in H1(GFv ,M1), being spanned by H1(GFv , kE(1)).

Remark 3.4.8. The difference between this lemma and the corresponding Lemma 5.18 from

[41] is that we do not make the assumption that the inducing field K is totally real. However,

we do need to make sure that we choose primes of F which split in K for the rest of the

method to work. In loc. cit., the assumption that K be totally real coupled with the

assumption that qv ≡ −1 mod p guaranteed the place v split in K.

Let S = (ρ̄, µ, S, {Λv}v∈S, {Dv}v∈S) be a global deformation problem, and let T ⊂ S be

a subset containing Sp (the set of places above p). Suppose that for v ∈ S − T , the local

deformation problem Dv = DSt(αv)
v . For ease of notation, for the global cohomology groups,

write

H1
S,T (M) := H1

S,T (GF,S,M),
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which makes sense because the set S is encoded in S. The lemma implies we can decompose

H1
S,T (ad0 ρ̄(1)) = H1

S,T (M0(1))⊕H1
S,T (M1(1)).

We now show that we can kill the M1(1) portion of dual Selmer using the special deformation

problem we defined in the previous section, and then kill the M0(1) portion using traditional

Taylor-Wiles primes.

3.4.3.1 Killing the M1(1) portion

First, we show that lemmas 5.21, 5.22, and 5.23 of [41] continue to hold even if K is not

totally real. Indeed, the only one which requires proof is the second, since this is the only

place where Thorne used this assumption. However, we will need to impose an additional

restriction. We state the other two lemmas here for convenience.

Lemma 3.4.9. Let Γ be a group, and α : Γ → k× a character. Let k′ ⊂ k be the subfield

generated by the values of α. Then k′(α) is a simple Fp[Γ]-module. If β : Γ→ k× is another

character, then k′(α) is isomorphic to a Fp[Γ]-submodule of k(β) if and only if there is an

automorphism τ of k such that β = τ ◦ α.

Proof. See the proof of [41, Lemma 5.21].

Lemma 3.4.10. Let K(γ) be the fixed field of ker γ̄, let L = F (ζp)∩K(γ) and assume that

#ε̄(GL) > 1. Then the Fp[GK ]-module k(ε̄γ) has no Jordan-Holder factors in common with

k, k(γ), or k(γ−1). The characters ε̄γ and γ are nontrivial.

Proof. The second claim follows from the fact that γ|GF (ζp)
is nontrivial. For the first claim,

we show there are no Fp[GK ]-module homomorphisms from k(ε̄γ) to k(γ) or k(γ−1). Let

f : k(ε̄γ)→ k(γ) be such a homomorphism, choose a ∈ k(ε̄γ), and assume f(a) = b . By the

hypothesis of the lemma, there is an element τ ∈ GL ⊂ GK such that ε̄(τ) 6= 1 and γ̄(τ) = 1.

Since f is a Fp[GK ]-module homomorphism and ε̄(τ) ∈ F×p , we know

f(ε̄(τ)γ(τ)a) = ε̄(τ)f(a).
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On the other hand,

f(ε̄(τ)γ(τ)a) = γ(τ)b = b.

Thus, ε̄(τ)b = b, which implies b = 0. Since a ∈ k(ε̄γ) was arbitrary, this implies f = 0.

Thus, there are no nontrivial homomorphisms between k(ε̄γ) and k(γ).

The same proof shows there are no nontrivial homomorphisms between k(ε̄γ) and k(γ−1)

or k.

Lemma 3.4.11. Let N ≥ 1 and let KN = F (ζpN , ρN), i.e. KN is the splitting field of

ρN |F (ζ
pN

). Then H1(KN/F,M1(1)) = 0.

Proof. When K is totally real, this is proved in Lemma 5.23 of [41]. The same proof proves

the lemma in the case K is CM using the preceding lemma.

The following proposition is the analog of [41, Proposition 5.20] and is the only place

where we argue differently from Thorne because of not having (in the case that K is not

totally real) the luxury to choose places v such that ρN(Frobv) is the image of complex

conjugation under ρN . This convenient choice is part of the reason Thorne imposed the

restriction qv ≡ −1 mod p.

The proof relies on the simple observation that given an element g in GL2(O/pM), then

for N >> 0, the element gq
N

has a ratio of eigenvalues that are the Teichmüller lift of the

ratio of eigenvalues of the reduction of g.

Proposition 3.4.12. Let S = (ρ̄, µ, S, {Λv}v∈S, {Dv}v∈S) be a global deformation problem,

and let T = S. Let N0 ≥ 1 be an integer. Let ρ : GF → GL2(O) be a lifting of type S.

Let K(γε̄) (resp. K(γε̄−1)) be the fixed field of ker γ̄ε̄ (resp. ker γ̄ε̄−1), and assume that

F (ζp) 6⊂ K(γε̄) ∩ K(γε̄−1). Then for any m ≥ h1
S,T (GF,S,M1(1)), there exists a set Q0 of

primes, disjoint from S, and elements αv ∈ k×, satisfying the following:

(1) The size #Q0 = m.
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(2) For each v ∈ Q0, the local deformation problem DSt(αv)
v is defined. We define the

augmented deformation problem

SQ0 = (ρ̄, µ, S ∪Q0, {Λv}v∈S ∪ {O}v∈Q0 , {Dv}v∈S ∪ {DSt(αv)
v }v∈Q0).

(3) Let ρN0 = ρ mod λN0 : GF → GL2(O/λN0O). Then ρN0(Frobv) has distinct eigenvalues

whose ratio is qv for each v ∈ Q0.

(4) H1
SQ0

,T (M1(1)) = 0.

Proof. We wish to find a set Q0 of primes such that h1
SQ0

,T (M1(1)) = 0. Suppose r =

h1
S,T (GF,S,M1(1)) ≥ 0. Using induction, it suffices to find a single prime v satisfying the

conditions of the theorem such that h1
S{v},T (M1(1)) = max(r − 1, 0). The case r = 0 is easy,

so assume r ≥ 1.

Let 0 6= [ϕ] ∈ H1
S,T (M1(1)) be a nonzero class. We wish to find a place v /∈ S such that:

(i) v splits in K

(ii) ρN0(Frobv) has distinct eigenvalues with ratio qv mod λN0 .

(iii) qv 6≡ 1 mod λN0

(iv) ϕ(Frobv) 6= 0 (∈M1(1)).

Indeed, the first three conditions imply that DSt(αv)
v is defined for the appropriate choice of

αv. We also have an exact sequence

0→ H1
S{v},T (GF,S∪{v},M1(1))→ H1

S,T (GF,S,M1(1))→ k.

If qv 6≡ ±1 mod λ, then the last map in the sequence comes from the restriction map

H1
S,T (M1(1)) → H1(GFv ,M1(1)) ∼= k. If qv ≡ −1 mod λ, then this last map is either

φ 7→ 〈E, φ(Frobv)〉 (if αv = 1) or φ 7→ 〈F, φ(Frobv)〉 (if αv = −1). By choosing αv appropri-

ately, we can ensure the sequence is exact on the right. Condition (iv) implies the final map

is surjective, which gives h1
S{v},T (GF,S∪{v},M1(1)) < h1

S,T (GF,S,M1(1)), as desired.

By the Cebotarev density theorem, it suffices to find an element σ ∈ GK such that:
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(a) ρN0(σ) has distinct eigenvalues with ratio ε(σ) mod λN0 .

(b) ε(σ) 6≡ 1 mod λN0

(c) ϕ(σ) 6= 0.

If N0 = 1, then the assumption in the Proposition ensures we can find σ1 in GK such that

γ(σ1) = ε(σ1) mod λ. Indeed, the assumption F (ζp) 6⊂ K(γε̄) ∩K(γε̄−1) ensures that either

GK(γε̄) or GK(γε̄−1) is not contained in GF (ζp). This means there exists σ1 in either GK(γε̄) or

GK(γε̄−1) such that ε(σ1) 6≡ 1 mod p. In the latter case, we find our desired σ1. In the former

case, by exchanging the roles of the eigenvalues, we get our desired σ1.

If ϕ(σ1) 6= 0, then take σ = σ1, so suppose ϕ(σ1) = 0. We have the inflation-restriction

sequence:

0→ H1(K1/F,M1(1)GK1 )→ H1(F,M1(1))→ H1(K1,M1(1))Gal(K1/F ).

By the previous lemma, the first group is zero, so the image of ϕ in H1(K1,M1(1)) is

nonzero. This restriction is a nonzero homomorphism ϕ|GK1
: GK1 → M1(1). Thus, we can

find τ ∈ GK1 such that ϕ(τ) 6= 0. Then take σ = τσ1. Then

ρ(σ) = ρ(τ)ρ(σ1) = ρ(σ1)

as τ ∈ ker(ρ). We also find

ε(σ) = ε(τ)ε(σ1) ≡ ε(σ1) mod λ

as ε(τ) ≡ 1 mod λ. Thus, γ(σ) ≡ ε(σ) mod λ. Moreover,

ϕ(σ) = ϕ(τ) + ϕ(σ1),

meaning ϕ(σ) 6= 0, as required.

If N0 > 1, then consider the element σ1 defined above. Then ρN0(σ1) has distinct eigenval-

ues by Hensel’s lemma, and we know this ratio modulo λ is γ(σ1) ≡ ε(σ1) mod λ. Consider

σN0 = σq
M

1 for some M to be determined and q = #k. For some sufficiently high power

of M , ε(σN0) mod λN0 will be the Teichmuller lifting of ε(σ1) mod λ to the mod λN0 ring
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(indeed, M = qN0−1 should do). But since γ(σ1) ≡ ε(σ1) mod λ, we deduce that the ratio of

the eigenvalues of ρN0(σN0) will be equivalent to ε(σN0) mod λN0 .

We still need to make sure ϕ(σ) 6= 0. If ϕ(σN0) 6= 0, then we can take σ = σN0 . If

ϕ(σN0) = 0, consider τ ∈ GKN with ϕ(τ) 6= 0 as before. Let σ = τσN0 . By the same

reasoning as in the N0 = 1 case, the ratio of the eigenvalue of ρN(σ) will still be equivalent

to ε(σ) mod λN0 , and moreover ϕ(σ) = ϕ(τ) + ϕ(σN0) 6= 0 by construction. This concludes

the proof.

Remark 3.4.13. (1) Crucial to the proof was the idea that while the subspace L⊥v is not

contained in the unramified cohomology group H1
ur(GFv , ad0 ρ̄(1)), the subspace L⊥v ∩

H1(GFv ,M1(1)) is contained in the unramified cohomology group H1
ur(GFv ,M1(1)) =

H1
ur(GFv , ad0 ρ̄(1)). In some sense, while the cohomology class is not unramified, the

ramification is simply being pushed to the M0(1)-portion of dual Selmer. This will be

handled by the Taylor-Wiles primes next.

(2) Note that the assumption F (ζp) 6⊂ K(γε̄) ∩K(γε̄−1) is implied by the more checkable

condition that (#ε̄(GL),#γ(GL)) > 1, where L = F (ζp)∩K(γ). Indeed, the condition

implies that there exist σ, τ ∈ GL such that ε̄(σ) = γ̄(τ). Since ε̄ and γ̄ induce maps on

Gal(F (ζp)/L) and Gal(K(γ̄)/L), respectively, we can project σ and τ to the quotient

groups, yielding (non-identity) elements σ̄ ∈ Gal(F (ζp)/L) and τ̄ ∈ Gal(K(γ̄)/L) such

that ε̄(σ̄) = γ̄(τ̄) ∈ k×. Letting M = K(γ̄)F (ζp), we can find an element ν̄ ∈ Gal(M/L)

such that ν̄|K(γ̄) = τ̄ and ν̄|F (ζp) = σ̄. Lifting ν̄ to GL produces an element ν ∈ GL

such that γ̄(ν) = ε̄(ν), meaning ν ∈ GK(γ̄ε̄−1). However, ν /∈ GF (ζp) since σ̄ was not the

identity element in Gal(F (ζp)/F ), and the claim follows.

3.4.3.2 Killing the M0(1) portion

Having killed the M1(1) portion of dual Selmer, we can try and get auxiliary primes that

take care of the remaining part of the group. First, we have an easy lemma.

Lemma 3.4.14. If N ≥ 1, then H1(Gal(F (ζpN )/F ),M0(1)) = 0.
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Proof. See the proof of [41, Lemma 5.25].

Proposition 3.4.15. Let S = (ρ̄, µ, S, {Λv}v∈S, {Dv}v∈S) be a global deformation problem.

Let T ⊂ S, and suppose for v ∈ S − T we have Dv = DSt(αv)
v . Suppose further that

h1
S,T (M1(1)) = 0, and let N1 ≥ 1 be an integer. Then there exists a finite set Q1 of finite

places of F , disjoint from S, satisfying:

(1) We have #Q1 = h1
S,T (M0(1)), and for each v ∈ Q1, the norm qv ≡ 1 mod pN1 and

ρ̄(Frobv) has distinct eigenvalues.

(2) Define the augmented deformation problem

SQ1 = (ρ̄, µ, S ∪Q1, {Λv}v∈S ∪ {O}v∈Q1 , {Dv}v∈S ∪ {D�
v }v∈Q1).

Then h1
SQ1

,T (ad0 ρ̄(1)) = 0.

Proof. We give the proof from [41, Proposition 5.24], as this argument is unchanged. Let

r = h1
S,T (GF,S,M0(1)) = h1

S,T (GF,S, ad0 ρ̄(1)). Assume r ≥ 1. If v /∈ S satisfies item (1)

above, then h1
S{v},T (GF,S∪{v},M1(1)) = h1

S,T (GF,S,M1(1)) = 0. Therefore, it is enough to

find a place v /∈ S satisfying (1) above, and such that h1
S{v},T (GF,S∪{v},M0(1)) = r − 1.

Let 0 6= [ϕ] ∈ H1
S,T (GF,S,M0(1)) be a nontrivial class. It suffices to find a place v /∈ S

such that:

• qv ≡ 1 mod pN1

• γ̄(Frobv) 6= 1.

• ϕ(Frobv) 6= 0.

Indeed, the first two points show that v satisfies point (1) from the theorem. We have an

exact sequence

0→ H1
S{v},T (GF,S∪{v},M0(1))→ H1

S,T (GF,S,M0(1))→ k,

where this last map is given by ϕ 7→ ϕ(Frobv), and the third point shows this sequence is

exact on the right, whence the desired effect on the dual Selmer group occurs.
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By the Cebotarev density theorem, it is enough to find an element σ ∈ GF such that:

• ε(σ) ≡ 1 mod pN1

• γ̄(σ) 6= 1

• ϕ(σ) 6= 0.

Write FN = F (ζpN ). We know γ̄|GF1 6= 1 by assumption. Since χ̄ has order prime to p, we

know γ̄|GFN1
6= 1 as well. Choose an element σ0 ∈ GFN1

with γ̄(σ0) 6= 1. If ϕ(σ0) 6= 0, we

are done with σ = σ0.

If, on the other hand, ϕ(σ0) = 0, then let τ ∈ GK1(ζ
pN1

) be an element with ϕ(τ) 6= 0. To

see that such an element exists, notice we have the inflation-restriction exact sequence

0→ H1(Gal(K1(ζpN1 )/F ),M0(1))→ H1(GF,S,M0(1))→ H1(GK1(ζ
pN1

),M0(1)).

Since Gal(K1(ζpN1 )/FN1) has order prime to p, Proposition 2.2.8 and the previous lemma

give that this first group is zero, meaning the restriction map is injective. Thus, the image

of ϕ in this last group is nonzero, so such a τ exists. Then simply take σ = τσ0, and this σ

will satisfy all the desired points.

3.5 R = T

For this section, the arguments are unchanged from [41]. For this reason, we will not go into

much detail with regards to proofs, as the reader can simply refer to loc. cit.

As usual, let p be an odd prime, and let L/Qp be a finite extension with integer ring O.

Let λ ⊂ O denote the maximal ideal, and k = O/λ the residue field. Let F be a totally

real number field with [F : Q] even. Fix a continuous, absolutely irreducible representation

ρ̄ : GF → GL2(k). Assume k is large enough that it contains the eigenvalues of every element

in ρ̄(GF ). Write ψ : GF → O× for the Teichmuller lift of ε̄ det ρ̄. We will also write ψ for

ψ ◦ ArtF : A∞,×F → O×. Suppose ρ̄ satisfies:

• If K ⊂ F (ζp) is the unique quadratic subfield of F (ζp)/F , then there exists a continuous
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character χ̄ : GK → k× such that ρ̄ ∼= IndGFGK χ̄. As in the previous section, w ∈ GF

will denote an element with nontrivial image in Gal(K/F ).

• We have F (ζp) 6⊂ K(γ̄ε̄) ∩K(γ̄ε̄−1), where γ̄ = χ̄/χ̄w. (This is a deviation from [41].)

• The character γ̄ is nontrivial, even after restricting to GF (ζp).

• For each place v - p of F , the representation ρ̄|GFv is unramified.

• For each place v|p of F , the restriction ρ̄|GFv is trivial.

• The character ε̄ det ρ̄ is everywhere unramified.

• There is a finite set R of finite places of F , of even cardinality, such that for v ∈ R, we

have qv ≡ 1 mod p and ρ̄|GFv is trivial.

• There is a finite set Q0 of finite places of F , again of even cardinality, disjoint from

Sp ∪ R, and a tuple (αv)v∈Q0 of elements of k, such that for each v ∈ Q0, the local

deformation problem DSt(αv)
v is defined.

• There is an isomorphism ι : Qp → C and a cuspidal automorphic representation π0 of

weight 2 such that:

– There is an isomorphism rι(π0) ∼= ρ̄.

– The central character of π0 is ιψ

– For each finite place v /∈ Sp ∪Q0 ∪R of F , we have π0,v is unramified.

– For each v ∈ R ∪ Q0, there is an unramified character χv : F×v → Q×p and an

isomorphism π0,v
∼= St2(ιχv). For each v ∈ Q0, the element χv($v) is congruent

to αv modulo the maximal ideal of Zp.

– If σ ⊂ Sp denotes the places where π0,v is ι-ordinary, then for each v ∈ σ, we have

π
U0(v)
0,v 6= 0, and for each v ∈ Sp\σ, we have π0,v is unramified.

We have the following lemma.
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Lemma 3.5.1. [41, Lemma 6.1] There exists v0 /∈ Sp ∪ Q0 ∪ R such that qv0 > 4[F :Q] and

tr ρ̄(Frobv0)
2/ det ρ̄(Frobv0) 6= (1 + qv0)

2/qv0 .

Throughout this section, a place v0 from the lemma will be fixed. We will consider the

global deformation problem

S = (ρ̄, ε−1ψ, Sp ∪Q0 ∪R, {OJO×Fv(p)K}v∈σ ∪ {O}v∈(Sp\σ)∪Q0∪R,

{Dord
v }v∈σ ∪ {Dnon-ord

v }v∈Sp\σ ∪ {DSt(αv)
v }v∈Q0 ∪ {DSt

v }v∈R).

Let T = Sp ∪R, so that the rings RS and RT
S from section 2.3.6 are defined.

3.5.1 Automorphic Forms

In order to get the theorem we want, we need to study congruences between automorphic

forms. We do this by working through a quaternion algebra as in section 3.2.1.

Let B = BQ0∪R be a quaternion algebra ramified at Q0 ∪ R ∪ {v|∞}. Note that, by all

the assumptions, this is a set with even cardinality. Let OB ⊂ B be a maximal order. As in

section 3.2.1, we there is an associated reductive group G over OF , given by G(R) = (OB⊗OF
R)×. If v /∈ Q0∪R is a finite place of F , we will fix an isomorphism OB⊗OF OFv ∼= M2(OFv),

which yields an isomorphism G(Fv) ∼= GL2(Fv) and G(OFv) ∼= GL2(OFv).

We will now define an open compact subgroup U =
∏

v Uv ⊂ G(A×F ) as follows:

• If v /∈ Q0 ∪R ∪ {v0}, then Uv = G(OFv) ∼= GL2(OFv).

• If v ∈ Q0 ∪R, then Uv will be the unique maximal compact subgroup of G(Fv).

• If v = v0, then Uv0 = U1
1 (v0).

We can now define the space of automorphic forms which we want to study.

Definition 3.5.2. If V =
∏

v Vv ⊂ U is an open compact subgroup and A is an O-module,

then we will write Hψ(V,A) for the set of functions f : G(F )\G(A×F )→ A satisfying

f(zgu) = ψ(z)f(g) ∀z ∈ A∞,×F , g ∈ G(A×F ), u ∈ V.
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Choose a double coset decomposition

G(A∞F ) =
∐
i

G(F )giV A∞,×F .

Let A(ψ−1) denote the O[UA∞,×F ]-module with underlying set A on which U acts trivially

and A∞,×F acts by ψ−1. The double coset decomposition above yields an injection

Hψ(V,A)→
⊕
i

A(ψ−1), f 7→ (f(gi))i.

Determining the image amounts to asking when gi = ggiuz for g ∈ G(F ), u ∈ V , and

z ∈ A∞,×F . Thus, we see we have an isomorphism

Hψ(V,A) ∼=
⊕
i

A(ψ−1)(giG(F )g−1
i ∩V A

∞,×
F )/F× .

(See [16, Section 5.2] for further explanation.) In fact, the groups (giG(F )g−1
i ∩V A

∞,×
F )/F×

are finite of order prime to p. Consequently, we have the following:

Lemma 3.5.3. The map Hψ(V,O)⊗O A→ Hψ(V,A) is an isomorphism.

We also have the following lemma.

Lemma 3.5.4. [41, Lemma 6.2] Suppose V1 =
∏

v V1,v ⊂ V2 =
∏

v V2,v are open compact

subgroups of U with V1 normal in V2 and V2 ∩ A∞,×F = V1 ∩ A∞,×F . Suppose further that

V2/V1 is abelian of p-power order. Then:

(1) The trace map trV2/V1 : Hψ(V1,O) → Hψ(V2,O) factors through an isomorphism

Hψ(V1,O)V2
∼= Hψ(V2,O).

(2) The space Hψ(V1,O) is a free O[V2/V1]-module.

In truth, we will actually want to work with an ordinary subspace of Hψ(V,A), and so

we take the time to define it now. To do this, we first define two families of open compact

subgroups of U .

Definition 3.5.5. For each n ≥ 1, we define U0(σn) =
∏

v U0(σn)v and U1(σn) =
∏

v U1(σn)v

as follows:
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(1) If v ∈ σ, then U0(σn)v = U0(vn) and U1(σn)v = U1(vn).

(2) If v /∈ σ, then U0(σn)v = U1(σn)v = Uv.

Remark 3.5.6. If n = 1, then it is dropped from the notation.

Recall from the definition of the global deformation problem S that if v ∈ σ, then

Λv = OJO×Fv(p)K. Write Λ =
⊗̂

v∈σΛv (this agrees with the definition of Λ from section

2.3.6).

Definition 3.5.7. If S is a finite set of finite places of F , then we write TΛ,S,univ for

TΛ,S,univ = Λ[Tv, Sv]v/∈S.

If Q ⊂ S, then we write TΛ,S,univ
Q for the polynomial ring

TΛ,S,univ
Q = TΛ,S,univ[Uv]v∈Q.

Fix S = σ ∪Q0 ∪R ∪ {v0}. If v ∈ Sp\σ, then by definition, we have Tv ∈ TΛ,S,univ.

Definition 3.5.8. (1) If M is a TΛ,S,univ-module, we write TΛ,S(M) for the image of

TΛ,S,univ in EndΛ(M).

(2) If M is a TΛ,S,univ
Q -module, we write TΛ,S

Q (M) for the image of TΛ,S,univ
Q in EndΛ(M).

It turns out we can make each of the spaces Hψ(Ui(σ
n), A), for n ≥ 1 and i ∈ {0, 1}, into

a TΛ,S,univ
Q0

-module. Indeed, the operators Tv, Sv,Uv ∈ TΛ,S,univ
Q0

acts by the Hecke operators

of the same name, as in Section 3.2.2. We therefore only need to define the action of Λ, and

for this it is enough to define an action of
∏

v∈σO
×
Fv

(p) on each Hψ(Ui(σ
n), A) (already an

O-module). To do this, if α ∈ O×Fv(p) act via the double coset operator

〈α〉 =

Ui(σn)v

 α 0

0 1

Ui(σ
n)v

 .
The inclusions Hψ(Ui(σ

n), A) ↪→ Hψ(Ui(σ
n+1), A) are maps of TΛ,S,univ

Q0
-modules.
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Set Uσ =
∏

v∈σ Uv. Note that Uσ acts on Hψ(U1(σn),O). We form the ordinary idem-

potent

e = lim
N→∞

UN !
σ ,

which acts on Hψ(U1(σn),O) for each n ≥ 1, and hence on Hψ(U1(σn), A) for any O-module

A (by Lemma 3.5.3). We can define the ordinary subspace

Hord
ψ (U1(σn),O) = eHψ(U1(σn), A),

and

Hord
ψ (U1(σ∞)) = lim−→

n

Hord
ψ (U1(σn), L/O).

Write

TΛ,S
Q0

(Hord
ψ (U1(σ∞))) = lim←−

n

TΛ,S
Q0

(Hord
ψ (U1(σn), L/O)).

This algebra is reduced, since each of the algebras in the inverse limit is reduced. We have

the following lemma:

Lemma 3.5.9. [41, Lemma 6.3] Let A be an O-module.

(1) For any n ≥ 1, the inclusion Hord
ψ (U0(σ), A)→ Hord

ψ (U0(σn), A) is an isomorphism.

(2) If n ≥ m ≥ 1, then the inclusion Hord
ψ (U1(σm), A) → Hord

ψ (U1(σm) ∩ U0(σn), A) is an

isomorphism.

We can use this lemma to relate Hord
ψ (U1(σn), A) with Hord

ψ (U1(σm), A). To do this, we

define some more notation. If v ∈ σ and n ≥ 1, let Λv,n = O[(1 +$vOFv)/(1 +$n
vOFv)] (so

Λv,1 = O). We let Λn =
⊗̂

v∈σΛv,n, and an for the kernel of the surjection

an = ker(Λ→ Λn).

Then for n ≥ m ≥ 1, the lemma gives

Hord
ψ (U1(σn), A)[am] = Hord

ψ (U0(σn) ∩ U1(σm), A) = Hord
ψ (U1(σm), A).

Before we state the proposition, recall that the Pontryagin dual of an O-module M is defined

to be M∨ = HomO(M,L/O).
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Proposition 3.5.10. [41, Proposition 6.4]

(1) For each n ≥ 1, there is an isomorphism

Hord
ψ (U1(σ∞))∨/anH

ord
ψ (U1(σ∞))∨ ∼= HomO(Hord

ψ (U1(σn),O),O).

(2) The space Hord
ψ (U1(σ∞))∨ is a free Λ-module of rank dimkH

ord
ψ (U1(σ), k).

(3) The algebra TΛ,S
Q0

(Hord
ψ (U1(σ∞))) is a finite faithful Λ-module.

3.5.2 Galois Representations

Recall the hypothesis of the section included a cuspidal automorphic representation π0 of

weight 2. Associated to this automorphic representation is a homomorphism

TΛ,S
Q0

(Hord
ψ (U1(σ), L/O))→ Fp.

Notice that, since ρ̄ is defined over k, and each αv (for v ∈ Q0) lies in k, this homomorphism

is really a homomorphism

TΛ,S
Q0

(Hord
ψ (U1(σ), L/O))→ k.

Consider the composition

TΛ,S
Q0

(Hord
ψ (U1(σ∞)))→ TΛ,S

Q0
(Hord

ψ (U1(σ), L/O))→ k,

and let m ⊂ TΛ,S
Q0

(Hord
ψ (U1(σ∞))) denote the kernel.

Proposition 3.5.11. [41, Proposition 6.5] There is a lift of ρ̄ to a continuous representation

ρm : GF → GL2(TΛ,S
Q0

(Hord
ψ (U1(σ∞))m))

of type S such that, for all finite places v /∈ Sp ∪ Q0 ∪ R ∪ {v0}, the representation ρm is

unramified, and ρm(Frobv) has characteristic polynomial X2 − TvX + qvSv.

By universality, there is a map RS → TΛ,S
Q0

(Hord
ψ (U1(σ∞)))m and, consequently, the space

Hord
ψ (U1(σ∞))m has an RS-module structure.

Before stating the main theorem, recall that T = Sp ∪R.
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Theorem 3.5.12. [41, Theorem 6.6] If h1
S,T (M1(1)) = 0, then FittRS H

ord
ψ (U1(σ∞))∨m = 0.

The proof of Theorem 3.5.12 will utilize the Taylor-Wiles patching argument. We will

then use this theorem as a tool for Khare’s method of modularity lifting via the following

corollary.

Corollary 3.5.13. [41, Corollary 6.7] Suppose C,N, n ≥ 1 are all integers. Assume

dimkH
ord
ψ (U1(σn), k)[m] ≤ C,

and suppose we have the following commutative diagram:

Λ Λn

RS O/ΛN

corresponding to a lift ρN : GF → GL2(O/λN) of type S. Let I = ker(RS → O/λbN/Cc).

Then (Hord
ψ (U1(σn),O)m⊗OO/λbN/Cc)[I] contains an O-submodule isomorphic to O/λbN/Cc,

and the map RS → O/λbN/Cc factors as

RS → TΛ,S∪Sp
Q0

(Hord
ψ (U1(σn), L/O)m)→ O/λbN/Cc.

The rest of the section is devoted to proving Theorem 3.5.12. To do this, we introduce

the Taylor-Wiles primes and a patching argument. Sources for the overall method, aside

from [41], are [16] and [19].

Suppose there is a finite Q1 of finite places of F with Q1 ∩ (Sp ∪R∪Q0 ∪{v0}) = ∅, such

that:

• For each v ∈ Q1, we have qv ≡ 1 mod p, and

• For each v ∈ Q1, the matrix ρ̄(Frobv) has distinct eigenvalues αv, βv ∈ k.

For v ∈ Q1, we let ∆q denote the maximal p-power quotient of k(v)×, and ∆Q1 =
∏

v∈Q1
∆q,

which is the maximal p-power quotient of
∏

v∈Q1
k(v)× (here, k(v) denotes the residue field
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at v). Let aQ1 ⊂ O[∆Q1 ] denote the augmentation ideal, namely the ideal generated by the

σ − 1 for σ ∈ ∆Q1 . We will define an augmented global deformation problem

SQ1 = (ρ̄, ε−1ψ, Sp ∪Q0 ∪R ∪Q1, {OJO×Fv(p)K}v∈σ ∪ {O}v∈(Sp\σ)∪Q0∪R∪Q1 ,

{Dord
v }v∈σ ∪ {Dnon-ord

v }v∈Sp\σ ∪ {DSt(αv)
v }v∈Q0 ∪ {DSt

v }v∈R ∪ {D�
v }v∈Q1).

Let ρSQ1
: GF → GL2(RSQ1

) denote a representative of the universal deformation. For

each v ∈ Q1, there are characters Av, Bv : Gab
Fv
→ R×SQ1

such that Av mod mRSQ1
and

Bv mod mRSQ1
are unramified (since ρ̄ is unramified at v by assumption), and such that

Av(Frobv) mod mRSQ1
= αv, Bv(Frobv) mod mRSQ1

= βv.

Moreover, there is an isomorphism

ρSQ1
|GFv ∼

 Av 0

0 Bv

 .

The ring RSQ1
is naturally a O[∆Q1 ]-algebra from the maps

k(v)× → R×SQ1
, σ 7→ Av(ArtFv(σ)).

A deformation of type S is automatically of type SQ1 , and so there is a map RSQ1
→ RS

with kernel aQ1RSQ1
, i.e.

RSQ1
/aQ1RSQ1

∼= RS .

These RSQ1
will be our auxiliary Galois deformation rings, but we need corresponding aux-

iliary Hecke modules.

To do this, let H0 = Hord
ψ (U1(σ∞))∨m.

Lemma 3.5.14. [41, Lemma 6.8] There exists an RSQ1
-module HQ1 which is free over Λ[∆Q1 ]

and such that

HQ1/aQ1HQ1
∼= H0

as RS-modules.
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Proof. We replicate the proof from [41] here. We first define new open compact subgroups

of U to deal with the new primes in Q1. Before giving the definitions, notice that if v ∈ Q1,

there is a canonical homomorphism g : U0(v)→ ∆v given by a b

c d

 7→ ad−1.

We will let U0(Q1) =
∏

v U0(Q1)v and U1(Q1) =
∏

v U1(Q1)v, where:

• If v /∈ Q1, then U0(Q1)v = U1(Q1)v = Uv, and

• If v ∈ Q1, then U0(Q1)v = U0(v), and U1(Q1)v = ker g, where g is as above.

Notice that U1(Q1) is a normal subgroup of U0(Q1), and (essentially by definition)

U0(Q1)/U1(Q1) ∼= ∆Q1 .

The Hecke algebra TΛ,S∪Q1,univ
Q0∪Q1

acts on each Hord
ψ (U1(σn) ∩ Ui(Q1), A) for i = 0, 1. Recall

from the beginning of this subsection that there is a homomprphism

f : TΛ,S
Q0

(Hord
ψ (U1(σ), L/O))→ k

with m = ker f . Write mQ1 ⊂ T
Λ,S∪Q1

Q0∪Q1
(Hord

ψ (U1(σ) ∩ U0(Q1), L/O)) for the maximal ideal

generated by mΛ, Tv − f(Tv) for v /∈ S ∪Q1, and Uv −αv for v ∈ Q0 ∪Q1. We use the same

mQ1 to denote the pullback of this maximal ideal to TΛ,S∪Q1

Q0∪Q1
(Hord

ψ (U1(σ)∩U1(Q1), L/O)) as

well. By the same arguments made in [37, Section 2], we have the following:

(1) For each n ≥ 1, there is an isomorphism

Hord
ψ (U1(σn) ∩ U0(Q1), L/O)mQ1

∼= Hord
ψ (U1(σn), L/O)m

of Hecke modules, and an isomorphism

TΛ,S∪Q1

Q0∪Q1
(Hord

ψ (U1(σn) ∩ U0(Q1), L/O))mQ1

∼= TΛ,S∪Q1

Q0∪Q1
(Hord

ψ (U1(σn), L/O))m

of Λ-algebras.
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(2) For each n ≥ 1, the Λ-subalgebra of EndΛ(Hord
ψ (U1(σn) ∩ U1(Q1), L/O))mQ1

gener-

ated by O[∆Q1 ] is a subset of TΛ,S∪Q1

Q0∪Q1
(Hord

ψ (U1(σn) ∩ U1(Q1), L/O))mQ1
, and there is

a map RSQ1
→ TΛ,S∪Q1

Q0∪Q1
(Hord

ψ (U1(σn) ∩ U1(Q1), L/O))mQ1
of Λ[∆Q1 ]-algebras such that

tr ρSQ1
(Frobv) 7→ Tv and det ρSQ1

(Frobv) 7→ Sv for v /∈ Sp ∪R ∪Q0 ∪ {v0} ∪Q1.

For i ∈ {0, 1}, define

Hord
ψ (U1(σ∞) ∩ Ui(Q1)) = lim−→

n

Hord
ψ (U1(σn) ∩ Ui(Q1), L/O),

so that

TΛ,S∪Q1

Q0∪Q1
(Hord

ψ (U1(σ∞) ∩ Ui(Q1))) = lim←−
n

TΛ,S∪Q1

Q0∪Q1
(Hord

ψ (U1(σn) ∩ Ui(Q1), L/O)).

We will let HQ1 = Hord
ψ (U1(σ∞)∩U1(Q1))∨mQ1

. By Lemma 3.5.4, we know that Hord
ψ (U1(σn)∩

U1(Q1), L/O)∨ is free over Λn[∆Q1 ], and, by taking limits, we see HQ1 is free over Λ[∆Q1 ].

Moreover, by the isomorphism in (1) above, we know

H∨Q1
[aQ1 ] = Hord

ψ (U1(σ∞) ∩ U1(Q1))mQ1
[aQ1 ]

= Hord
ψ (U1(σ∞) ∩ U0(Q1))mQ1

∼= Hord
ψ (U1(σ∞))m

= H∨0 .

By dualizing, we get the result.

The following lemma is a consequence of Proposition 2.3.29 and the work on killing the

M0(1) portion of the dual Selmer group.

Lemma 3.5.15. Assume h1
S,T (M1(1)) = 0, and let q = h1

S,T (M0(1)). Then for any N ≥ 1,

there exists a finite set QN of finite places of F such that:

(1) The set QN is disjoint from Sp ∪Q0 ∪R ∪ {v0} and #QN = q.

(2) For each v ∈ QN , the size of the residue field satisfies qv ≡ 1 mod pN , and ρ̄(Frobv)

has distinct eigenvalues αv, βv ∈ k.

86



(3) We have h1
SQN ,T

(ad0 ρ̄(1)) = 0.

(4) The ring RT
SQN

can be written as a power series over ATSQN
= ATS in q− [F : Q]−1+#T

variables.

With these sets QN in hand, let m = q−[F : Q]−1+#T and R∞ = ATS JX1, X2, . . . , XmK.

The ring R∞ is reduced, and for any minimal prime Q ⊂ Λ, the space SpecR∞/(Q) is

geometrically irreducible of dimension

dimATS +m = dim Λ + q − 1 + 4#T,

and the generic point is of characteristic zero. Fix a place v′ ∈ T , and let

T = OJ{Yv,i,j}v∈T,1≤i,j≤2}K/(Yv′,1,1).

Fix representatives ρS and ρSQN for every N ≥ 1 for the universal deformations over RS and

RSQN , respectively, such that each ρSQN specializes to ρS . This yields compatible isomor-

phisms

RT
S
∼= RS⊗̂OT , RT

SQN
∼= RSQN ⊗̂OT

corresponding to the equivalence classes of the T -framed lifts (ρS , (1 + (Yv,i,j))v∈T ) and

(ρSQN , (1 + (Yv,i,j))v∈T ), respectively.

Let ∆∞ = Zqp. For each N , fix a surjection ∆∞ → ∆QN . Let S∞ = ΛJ∆∞K⊗̂OT , and let

a∞ ⊂ S∞ denote the kernel of the augmentation map S∞ → Λ. The isomorphisms above give

RT
S and RT

SQN
an S∞-algebra structure, and the auxiliary Hecke modules HT

0 = H0 ⊗RS RT
S

and HT
QN

= HQN ⊗RSQN RT
SQN

are free over Λ⊗̂OT [∆QN ]. A standard patching argument

(cf. [39]) yields the following:

• A finitely generated R∞-module H∞.

• A homomorphism S∞ → R∞ of Λ-algebras, which makes H∞ a free S∞-module.

• A surjection R∞/a∞R∞ → RS and an isomorphism H∞/a∞H∞ ∼= H0 of RS-modules.
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To finish the argument, let P ⊂ Λ be a minimal prime. Then H∞/(P ) is a free S∞/(P )-

module, and S∞/(P ) is a regular local ring. In particular, we have

depthR∞/(P )(H∞/(P )) ≥ depthS∞(p)H∞/(P ) = dimS∞/(P ) = dimR∞/(P ).

Consequently (cf. [38]), H∞/(P ) is a nearly faithful R∞/(P )-module. As P is arbitrary, H∞

is a faithful R∞-module, which means FittR∞ H∞ = 0. Therefore

0 = FittRS (H∞ ⊗R∞ RS) = FittRS H0.

3.6 Proof of the Main Theorem

The goal is to now prove Theorem 3.1.1. Here we differ only in the slightest fashion from

[41], replacing Thorne’s condition that the quadratic subfield of F (ζp)/F be totally real with

the condition from section 3.4. As such, we only give a proof of the theorem where the

level-raising and level-lowering developed in the earlier sections are used, and refer to [41,

Section 7] for the rest of the proofs.

There are necessary preliminary results before moving to the main theorem.

Lemma 3.6.1. Let F be a totally real number field, and let F ′/F be a totally real, soluble

extension. Let p be a prime and let ι : Qp
∼→ C be a fixed isomorphism.

(1) Let π be a cuspidal automorphic representaion of GL2(AF ) of weight 2, and suppose

that rι(π)|GF ′ is irreducible. Then there exists a cuspidal automorphic representation

πF ′ of GL2(AF ′) of weight 2, called the base change of π, such that rι(πF ′) ∼= rι(π)|GF ′ .

(2) Let ρ : GF → GL2(Qp) be a continuous representation such that ρ|GF ′ is irreducible.

Let π′ be a cuspidal automorphic representation of GL2(AF ′) of weight 2 with ρ|GF ′ ∼=

rι(π
′). Then there exists a cuspidal automorphic representation π of GL2(AF ) of weight

2 such that ρ ∼= rι(π).

Proof. This is stated in [41, Lemma 5.1]. The proof follows from results of [24], using

arguments of [2, Lemma 1.3].
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Theorem 3.6.2. Let F be a totally real field, and let p be an odd prime. Let ρ : GF →

GL2(Qp) be a continuous representation. Suppose that:

(1) [F : Q] is even.

(2) Letting K be the quadratic subfield of F (ζp)/F , there exists a continuous character

χ̄ : GK → F×p such that ρ̄ ∼= IndGFGK χ.

(3) Letting w ∈ Gal(K/F ) be the nontrivial element, the character γ̄ = χ̄/χ̄w remains

nontrivial even after restriction to GF (ζp) (in particular, ρ̄ is irreducible).

(4) We have F (ζp) 6⊂ K(γ̄ε̄−1) ∩K(γ̄ε̄).

(5) The character ψ = ε det ρ is everywhere unramified.

(6) The representation ρ is almost everywhere unramified.

(7) For each place v|p, ρ|GFv is semi-stable, and ρ̄|GFv is trivial. For each embedding

τ : F ↪→ Qp, we have HTτ (ρ) = {0, 1}.

(8) If v - p is a finite place of F at which ρ is ramified, then qv ≡ 1 mod p, WD(ρ|GFv )F−ss ∼=

recTFv(St2(χv)) for some unramified character χv : F×v → Q×p , and ρ̄|GFv is trivial. The

number of such places is even.

(9) There exists a cuspidal automorphic representation π of GL2(AF ) of weight 2 and an

isomorphism ι : Qp → C satisfying:

(a) There is an isomorphism rι(π) ∼= ρ.

(b) If v|p and ρ is ordinary, then πv is ι-ordinary and π
U0(v)
v 6= 0. If v|p and ρ is

non-ordinary, then πv is not ι-ordinary and πv is unramified.

(c) If v - p∞ and ρ|GFv is unramified, then πv is unramified. If v - p∞ and ρ|GFv is

ramified, then πv is an unramified twist of the Steinberg representation.

Then ρ is automorphic: there exists a cuspidal automorphic representation π′ of GL2(AF )

of weight 2 and an isomorphism ρ ∼= rι(π
′).
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Remark 3.6.3. Here, U0(v) is the set of matrices in GL2(OFv) whose reduction modulo a

fixed uniformizer of OFv is upper triangular.

Remark 3.6.4. This is [41, Theorem 7.2] with the necessary modifications (namely, the ad-

dition of condition (4) instead of the condition that K be totally real). One can just repeat

the proof the author gives in that paper, replacing Proposition 5.20 of loc. cit. with the

corresponding theorem from section 3.4. For completeness, we will give the proof from [41]

now, with the aforementioned modifications.

Proof. After replacing ρ by a conjugate, we can find a finite extension L/Qp such that ρ

takes values in GL2(O) and χ̄ takes values in k×. The goal is to show that ρ satisfies the

conditions of Corollary 3.2.13. To do this, we will use Theorem 3.5.12 and the subsequent

corollary. Fix N ≥ 1, and write σ ⊂ Sp for the set of places such that ρ|GFv is ordinary. Let

R denote the set of places away from p at which πv is ramified.

The global deformation problem we will consider is

S = (ρ̄, ε−1ψ, Sp ∪R, {Λv}v∈σ ∪ {O}v∈(Sp\σ)∪R, {Dord
v }v∈σ ∪ {Dnon-ord

v }v∈Sp\σ ∪ {DSt(αv)
v }v∈R).

Let T = Sp ∪R. By Proposition 3.4.12, there exists a finite set Q0 of finite places of F and

αv ∈ k (for v ∈ Q0) such that:

• Q0 is disjoint from Sp ∪R.

• #Q0 = 2dh1
S,T (M1(1))/2e.

• For each v ∈ Q0, the local deformation problem DSt(αv)
v is defined.

• If SQ0 is the global deformation problem:

S = (ρ̄, ε−1ψ, Sp ∪R ∪Q0, {Λv}v∈σ ∪ {O}v∈(Sp\σ)∪R∪Q0 ,

{Dord
v }v∈σ ∪ {Dnon-ord

v }v∈Sp\σ ∪ {DSt(αv)
v }v∈R ∪ {DSt(αv)

v }v∈Q0),

then h1
SQ0

,T (M1(1)) = 0.
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To apply Lemma 3.2.11, we need to fix a place v0. Let v0 be any place satisfying Lemma

3.5.1. By Lemma 3.2.11, we can find a cuspidal automorphic representation π0 of GL2(AF )

of weight 2, satisfying the following conditions:

• There is an isomorphism rι(π0) ∼= ρ.

• If v ∈ σ, then π0,v is ι-ordinary and π
U0(v)
0,v 6= 0. If v ∈ Sp\σ, then π0,v is not ι-ordinary

and π0,v is unramified.

• If v /∈ Sp∪R∪Q0 is a finite place of F , then π0,v is unramified. If v ∈ R∪Q0 then π0,v

is an unramified twist of the Steinberg representation. If v ∈ Q0, then the eigenvalue

of Uv on ι−1π
U0(v)
0,v is congruent to αv modulo the maximal ideal of Zp.

After replacing π0 by a character twist, we can assume π0 has central character ιψ.

Theorem 3.5.12 now applies to the deformation problem SQ0 .

Let S = Sp ∪ R ∪ {v0}. Let m∅ ⊂ TS,univ be the maximal ideal corresponding to π, so

that m∅ ∈ Supp(HR(U)). Let C0 = dimk(HR(U)⊗O k)[m∅]. By Proposition 3.2.10, we know

dimk(HR∪Q0(UQ0)⊗O k)[mQ0 ] ≤ 4#Q0C0.

Now apply the corollary to Theorem 3.5.12 with C = 4#Q0C0 and n = 1. This produces a

homomorphism f : TS∪Q0

Q0
(HR∪Q0(UQ0))→ O/λbN/Cc such that:

• For each finite v /∈ S ∪Q0, we have f(Tv) = tr ρ(Frobv) mod λbN/Cc.

• If I = ker f , then (HR∪Q0(UQ0)⊗O O/λbN/Cc)[I] contains an O-submodule isomorphic

to O/λbN/Cc.

Now use Corollary 3.2.13.

Using this theorem, we arrive at the main theorem.

Theorem 3.6.5. Let F be a totally real number field, let p be an odd prime, and let

ρ : GF → GL2(Qp) be a continuous representation satisfying the following:

(1) The representation ρ is almost everywhere unramified.
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(2) For each v|p of F , the local representation ρ|GFv is de Rham. For each embedding

τ : F ↪→ Qp, we have HTτ (ρ) = {0, 1}.

(3) For each complex conjugation c ∈ GF , we have det ρ(c) = −1.

(4) The residual representation ρ̄ is absolutely irreducible, but ρ̄|GF (ζp)
is a direct sum of

two distinct characters. Further suppose that if K is the unique quadratic subfield of

F (ζp)/F and γ̄ : GK → k× is the ratio of the two characters, then we have F (ζp) 6⊂

K(γ̄ε̄−1) ∩K(γ̄ε̄).

Then ρ is automorphic: there exists a cuspidal automorphic representation π of GL2(AF ) of

weight 2, an isomorphism ι : Qp → C, and an isomorphism ρ ∼= rι(π).

Proof. The proof is exactly the same as [41, Theorem 7.5], replacing Theorem 7.2 of loc.

cit. with Theorem 3.6.2 above. The idea is to construct a soluble extension F ′/F such that

ρ̄|GF ′ satisfies the conditions of Theorem 3.6.2 above. We then apply Lemma 3.6.1 to deduce

the automorphy of ρ. We should note that in [41], the author makes use of Corollary 7.4 in

loc. cit., but that goes unchanged for us because that corollary made no assumptions on the

quadratic subfield K.

3.7 Application to Elliptic Curves

In this section we give the application of Theorem 3.6.5 to elliptic curves. As mentioned

in Section 3.1.2, through the work of Wiles [44], Taylor-Wiles [45], and Breuil, Conrad,

Diamond and Taylor ([5], [7], [9]), it was shown that all elliptic curves over Q are modular.

Since then, the question has shifted to proving the automorphy of elliptic curves over totally

real fields.

In a paper of Freitas, Le Hung, and Siksek (see [14]) the authors prove there are only

finitely many non-automorphic elliptic curves over any given totally real field. The major

idea in their proof is the idea of a “3-7 switch”, building off the idea of Wiles’ “3-5 switch”.

After Wiles proved an appropriate R = T theorem, he applied it to the setting of elliptic
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curves as follows (note that each of the following points is a theorem in its own right, but

we merely want the reader to see the logic of the argument, not the details of the proofs):

• If E/Q is any elliptic curve with ρ̄E,3 irreducible, then ρ̄E,3 is modular. (This is a

consequence of a deep theorem of Langlands and Tunnell.)

• Let E/Q be a semistable elliptic curve and suppose ρ̄E,p is irreducible and modular for

some prime p ≥ 3. Then E is modular.

Remark 3.7.1. This is a consequence of Serre’s observation that for a semistable elliptic

curve, the residual representation ρ̄E,p is either surjective or reducible for every prime

p ≥ 3. Then apply the first point and Wiles’ R = T theorem.

• If E/Q is a semistable elliptic curve and suppose ρ̄E,5 is irreducible. Then there is

another semistable elliptic curve E ′/Q for which ρ̄E′,3 is irreducible and ρ̄E′,5 ∼= ρ̄E,5.

• If E/Q is a semistable elliptic curve, then at least one of ρ̄E,3 or ρ̄E,5 is irreducible.

The “3-5” switch is the following: Let E be a semistable elliptic curve over Q. If ρ̄E,3 is

irreducible, then it is modular by the first and second points above. If it is reducible, then

the fourth point implies ρ̄E,5 is irreducible, and the third point gives a curve E ′/Q with ρ̄E′,3

irreducible, which implies E ′ is modular. Since the mod 5 representations of E and E ′ are

isomorphic ρ̄E,5 is modular, which implies E is modular.

In [14], the authors show that for elliptic curves over totally real fields, there is a similar

“3-7 switch” that can be performed. The following theorem is [14], Theorems 3 and 4.

Theorem 3.7.2. Let p ∈ {3, 5, 7}. Let E be an elliptic field over a totally real field F and

let ρ̄E,p : GF → GL2(Fp) be the representation given by the action on the p-torsion of E. If

ρ̄E,p(GF (ζp)) is absolutely irreducible, then E is modular.

We make the following definition.

Definition 3.7.3. If E/F is an elliptic curve over a totally real field F , then E is called

p-bad if E[p] is an absolutely reducible Fp[GF (ζp)]-module. Otherwise E is p-good.
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Theorem 3.7.2 says exactly that the only elliptic curves E which are potentially non-

modular are those which are p-bad for p = 3, 5, and 7. In [41], the author deals with some

of these remaining cases:

Theorem 3.7.4. Let E be an elliptic curve over a totally real field F . Suppose:

(1) 5 is not a square in F .

(2) E has no F -rational 5-isogeny.

Then E is modular.

The reason Thorne used p = 5 is that he needed the quadratic subfield of F (ζp)/F

to be totally real, which implies p ≡ 1 mod 4. Our modifications allow us to work with

p = 7 instead. Before stating and proving our main theorem for the section, we recall [14,

Proposition 9.1].

Proposition 3.7.5. Let F be a totally real number field and let E be an elliptic curve over

F . Suppose F ∩ Q(ζ7) = Q and write ρ̄ = ρ̄E,7. Suppose ρ̄ is irreducible but ρ̄(GF (ζ7)) is

absolutely reducible. Then ρ̄(GF ) is conjugate in GL2(F7) to one of the groups

H1 =

〈 3 0

0 5

 ,

 0 2

2 0

〉 , H2 =

〈 0 5

3 0

 ,

 5 0

3 2

〉 .
The group H1 has order 36 and is contained as a subgroup of index 2 in the normalizer of a

split Cartan subgroup. The group H2 has order 48 and is contained as a subgroup of index

2 in the normalizer of a non-split Cartan subgroup. The images of H1 and H2 in PGL2(F7)

are isomorphic to D3
∼= S3 and D4, respectively.

We can now prove our main application.

Theorem 3.7.6. Let F be a totally real field, and let E be an elliptic curve over F . Suppose:

(1) F ∩Q(ζ7) = Q.

(2) E has no F -rational 7-isogeny.
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(3) Either ρ̄E,7(GF (ζ7)) is absolutely irreducible, or it is reducible and ρ̄E,7(GF ) is conjugate

to the group H1 from the previous proposition.

Then E is modular.

Proof. Let ρ : GF → GL2(Q7) be the representation given by the action of GF on the

étale cohomology H1(EF ,Z7), after a choice of basis. The goal is to show ρ is automorphic.

Hypothesis (2) is equivalent to ρ̄ being irreducible, hence absolutely irreducible because of

complex conjugation. If ρ̄|GF (ζ7)
is irreducible, then ρ is automorphic by Theorem 3.7.2 above.

We now deal with the case when this restriction is not irreducible.

If ρ̄|GF (ζ7)
is absolutely reducible, the third hypothesis combined with the previous proposi-

tion gives that the projective image of ρ̄ in PGL2(F7) is isomorphic to D3. This implies that

ρ̄|GF (ζ7)
cannot be scalar since Gal(F (ζ7)/F ) is cyclic, and therefore cannot surject onto D3.

Let K be the quadratic subfield of F (ζ7)/F , so that [F (ζ7) : K] = 3 by hypothesis (1).

Let γ̄ : GK → F×7 be the character which gives the ratio of the eigenvalues. We need to

examine the subgroup

H1 =

〈 3 0

0 5

 ,

 0 2

2 0

〉 ⊂ GL2(F7).

It is easy to check that these two matrices generate the projective image as well. By simply

checking the ratio of eigenvalues of each of the matrices, one can check that the possible

values for the image of γ̄ are elements of {1, 2, 4}. Therefore, [K(γ̄) : K] = 3 or 1. However,

it cannot be the latter as γ is nontrivial as a character on GK by assumption. Therefore

[K(γ̄) : K] = 3, so K(γ̄) ∩ F (ζ7) = K or F (ζ7). But we know it cannot be F (ζ7) since

the image of ρ̄|GF (ζ7)
is non-scalar. Thus, K(γ̄) is disjoint over K from F (ζ7) and [K(γ̄) :

K] = [F (ζ7) : K] = 3. Thus, hypothesis (4) of the main theorem above is satisfied, and the

theorem implies E is modular.

We can extend Theorem 3.7.6 to primes other than p = 7, and we prove this more general

version.
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Theorem 3.7.7. Let F be a totally real field, and let E be an elliptic curve over F . Let

p ≥ 7 be a prime such that (p− 1)/2 = qn for some odd prime q and n ≥ 1. Suppose:

(1) F ∩Q(ζp) = Q.

(2) E has no F -rational p-isogeny.

(3) ρ̄E,p(GF ) normalizes a split Cartan subgroup of GL2(Fp).

Then E is modular.

Proof. Let ρ : GF → GL2(Qp) be the representation given by the action of GF on the étale

cohomology H1(EF ,Zp), after a choice of basis. The goal is to show ρ is automorphic. Hy-

pothesis (2) is equivalent to ρ̄ = ρ̄E,p being irreducible, hence absolutely irreducible because

of complex conjugation. Hypothesis (3) says ρ̄(GF ) is contained in the normalizer of a split

Cartan subgroup. Note that the absolute irreducibility of ρ̄ implies the projective image is

non-cyclic, for if it were cyclic, the image of ρ̄ would be abelian. Thus, ρ̄(GF (ζp)) cannot be

scalar, since Gal(F (ζp)/F ) is cyclic, and hence cannot surject onto a non-cylic group.

Let K be the quadratic subfield of F (ζp)/F , so that [F (ζp) : K] = qn = (p − 1)/2 by

hypothesis (1). Let γ̄ : GK → F×p be the character which gives the ratio of eigenvalues of

ρ̄|GK . We want to examine [K(γ̄) : K], where K(γ̄) = F̄ ker(γ̄) as always. In particular, we

will show that K(γ̄)∩F (ζp) is a field L which satisfies (#ε̄(GL),#γ̄(GL)) > 1, which implies

hypothesis (4) of the main theorem. Note that hypothesis (1) implies that, as a character of

GK , that ε̄ takes values in (F×p )2.

Using the fact that det ρ̄ is the mod p cyclotomic character, we find that χ̄χ̄w = ε̄,

so that γ̄ = χ̄/χ̄w = χ̄2ε̄−1, which is a character GK → (F×p )2. Thus, the order of γ̄

divides (p − 1)/2 = qn, and moreover cannot equal 1 as γ̄ is a nontrivial character of GK .

Thus, 1 < [K(γ̄) : K]
∣∣qn. Moreover, [F (ζp) : K] = qn by hypothesis (1) of the theorem.

Lastly, we know K(γ̄) 6⊆ F (ζp) since γ̄ is nontrivial upon restriction to GF (ζp), and thus

K(γ̄) ∩ F (ζp) is neither K(γ̄) nor F (ζp). This intersection is therefore a field L which

satisfies (#ε̄(GL),#γ̄(GL)) > 1 as q divides both quantities. Thus, hypothesis (4) of the

main theorem is satisfied, and therefore E is modular.
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3.8 Future Work

Khare and Thorne [23] are jointly working on dealing with the cases not handled by the work

above and [41]. However, there is still work to be done. One case not being considered is the

p = 2 setting. Recently, Allen [1] proved the modularity of nearly ordinary 2-adic residually

dihedral representations. The case when the representation is not nearly ordinary has not

yet been treated.

One of the main issues in the p = 2 case is that the deformation problem DSt(αv)
v used in

the work above may not be smooth. Instead, it may be possible to consider primes v such

that ρ̄(Frobv) of the form

 1 1

0 1

, but this has not been examined in any detail as of yet.

This is a natural direction to move given what has been done already in the p > 2 setting

in the work of [21], [23], and [41].
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CHAPTER 4

Higher Dimensional Setting

The previous chapter examined residually dihedral representations in the two-dimensional

setting. Ideally, there would be some way of generalizing the methods of that work to the

higher dimensional case.

Technically, all the work from Section 2.3 works for representations valued in GLn, though

dimension arguments need to be modified accordingly. However, to prove automorphy lifting

theorems, one works with a modified group, denoted Gn, in part because the Taylor-Wiles

argument does not carry over well to the GLn setting (see [6, Section 1] for more details).

This modified group looks very similar to GLn, but carries additional information. Also,

importantly, the l-adic points of this group are connected to automorphic forms on unitary

groups, and so there is hope for proving automorphy lifting theorems in this setting as well.

This chapter is incomplete, in the sense that there is still much work to be done in this

setting before getting full results. This chapter can essentially be regarded as the basis for

a future project. From that perspective, the ideas of this chapter are preliminary and will

hopefully lead to a nice automorphy lifting theorem.

In this chapter, we will first introduce this group Gn, and rather than developing the full

deformation theory again, we will simply remark that the same definitions as in Section 2.3

apply. We will then describe the results, which try to emulate the Galois theory work of

Section 3.4, and the future work, which involves the automorphic arguments.
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4.1 The group Gn

The main source for this section is [6], though [39] is also a good reference. We first define

the group Gn:

Definition 4.1.1. (1) If n > 0 is a positive integer, then Gn is defined to be the group

scheme over Z given by

Gn = (GLn×GL1)o {1, j},

where the group {1, j} acts on GLn×GL1 by

j(g, µ)j−1 = (µ · (g−1)t, µ).

(2) There is a homomorphism ν : Gn → GL1 given by

ν(g, µ) = µ, ν(j) = −1.

(3) G0
n will be the connected component of Gn.

(4) gn will denote LieGLn ⊂ LieGn, and ad will denote the adjoint action of Gn on gn. In

particular,

(ad(g, µ))(x) = gxg−1, (ad(j))(x) = −xt.

(5) g0
n ⊂ gn will be the subspace of trace zero elements.

Throughout this section, let Γ be a group, and ∆ ≤ Γ an index 2 subgroup. If Γ is a

topological group, assume ∆ is closed (and hence open as it is closed of finite index). This

is the setting of [6], but we will only apply these results to the situation where Γ = GF+,S

and ∆ = GF,S, where F/F+ is a quadratic imaginary extension of number fields, F+ is a

totally real field, and S some finite set of primes of F+ split in F . We want to consider

homomorphisms r : Γ → Gn(R), where R is a ring. The following will help us define these

homomorphisms.

Lemma 4.1.2. [6, Lemma 2.1.1] Let R be a ring, and γ0 ∈ Γ−∆. Then there is a natural

bijection between:
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(1) Homomorphisms r : Γ→ Gn(R) which induce isomorphisms Γ/∆ ∼= Gn/G0
n.

(2) Triples (ρ, µ, 〈−,−〉), where ρ : ∆ → GLn(R) and µ : Γ → R× are homomorphisms,

and

〈−,−〉 : Rn ×Rn → R

is a perfect R-linear pairing such that for all x, y ∈ Rn and δ ∈ ∆, we have

(i) 〈x, ρ(γ2
0)y〉 = −µ(γ0) 〈y, x〉

(ii) µ(δ) 〈x, y〉 =
〈
ρ(δ)x, ρ(γ0δγ

−1
0 )y

〉
.

Under the correspondence, µ = ν ◦ r, and if r(γ0) = (A,−µ(γ0))j, then

〈x, y〉 = xt · A−1 · y.

This lemma gives us a way of translating between GLn-representations of ∆ and Gn-

representations of ∆. If r : Γ → Gn(R) is a homomorphism, then we will also let r : ∆ →

GLn(R) by restricting to ∆ and then projecting the image to GLn, though most of the time

we denote this restriction as r|∆.

Now given a homomorphism ρ : Γ → GLn(R), the question is when it will lift to a

homomorphism r : Γ→ Gn(R).

Lemma 4.1.3. [6, Lemma 2.1.2] Let R be a ring, and (−,−) a perfect bilinear pairing

Rn ×Rn → R, which satisfies

(x, y) = (−1)a(y, x),

say (x, y) = xtJy for J ∈Mn(R). Let δΓ/∆ : Γ/∆→ {±1} be an isomorphism, and suppose

µ : Γ→ R× and ρ : Γ→ GLn(R) are homomorphisms satisfying

(ρ(γ)x, ρ(γ)y) = µ(γ)(x, y)

for all γ ∈ Γ and x, y ∈ Rn. Then there is a homomorphism r : Γ→ Gn(R) defined by

r(δ) = (ρ(δ), µ(δ)), r(γ) = (ρ(γ)J−1, (−1)aµ(γ))j

for δ ∈ ∆ and γ ∈ Γ−∆. Moreover,

ν ◦ r = δa+1
Γ/∆µ.
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Another question is when homomorphisms ∆→ GLn(k), where k is a field, can be lifted

to a homomorphism Γ→ Gn(k).

Lemma 4.1.4. [6, Lemma 2.1.4]

(1) Suppose that k is a field, and γ0 ∈ Γ − ∆. Suppose further that χ : Γ → k× is a

homomorphism, and

ρ : ∆→ GLn(k)

is absolutely irreducible and satisfies χρ∨ ∼= ργ0 . Then there exists a homomorphism

r : Γ→ Gn(k)

such that r|∆ = (ρ, χ|∆) and r(γ0) ∈ Gn(k)−GLn(k).

(2) If α ∈ k×, define

rα : Γ→ Gn(k)

by rα|∆ = ρ, and if γ ∈ Γ−∆ and r(γ) = (A, µ)j, then

rα(γ) = (αA, µ)j.

This produces a bijection between GLn(k)-conjugacy classes of extensions of ρ to Γ→

Gn(k) and k×/(k×)2.

Proof. There exists a perfect pairing

〈−,−〉 : kn × kn → k

such that

χ(δ)
〈
ρ(δ)−1x, y

〉
=
〈
x, ρ(γ0δγ

−1
0 )y

〉
,

for x, y ∈ kn and δ ∈ ∆. As ρ is absolutely irreducible, 〈−,−〉 is unique up to k×-multiples.

Set

〈x, y〉′ =
〈
y, ρ(γ2

0)x
〉
.

101



One checks that

χ(δ)
〈
ρ(δ)−1x, y

〉′
=
〈
x, ρ(γ0δγ

−1
0 )y

〉′
.

By uniqueness,

〈−,−〉′ = ε 〈−,−〉

for some ε ∈ k×. Notice

〈x, y〉′′ =
〈
ρ(γ2

0)x, ρ(γ2
0)y
〉

=
〈
ρ(γ2

0)x, ρ(γ0γ
2
0γ
−1
0 )y

〉
= χ(γ2

0) 〈x, y〉 .

Thus

ε2 = χ(γ0)2.

Now use Lemma 1.2 with (ρ, χ, 〈−,−〉) to get r.

The classical deformation theory usually requires some ρ̄ : G→ GLn(k) to be absolutely

irreducible. There is an analogue of this criterion in this modified setting.

Definition 4.1.5. Let k be a field, and r : Γ → Gn(k) be a homomorphism with ∆ =

r−1(GLn×GL1)(k). Suppose γ0 ∈ Γ − ∆. Then r is called Schur if all irreducible ∆-

subquotients of kn are absolutely irreducible, and if for all ∆-invariant subspaces W2 ⊂

W1 ⊂ kn with kn/W1 and W2 irreducible, we have

W∨
2 (ν ◦ r) � (kn/W1)γ0 .

This is independent of the choice of γ0.

Remark 4.1.6. If r|∆ is absolutely irreducible, then clearly r is Schur. In general, this is

enough for the deformation theory to work, but it also works in this more general setting.

Lemma 4.1.7. [6, Lemma 2.1.7] Let k be a field, and r : Γ → Gn(k) be a homomorphism

with ∆ = r−1(GLn×GL1)(k). If r is Schur, then the following hold:

(1) r|∆ is semisimple.

(2) If r′ : Γ→ Gn(k) is another representation with ∆ = (r′)−1(GLn×GL1)(k) and tr r|∆ =

tr r′|∆, then r′ is GLn(k)-conjugate to r.
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(3) If char k 6= 2, then gΓ
n = 0.

Proof. We may suppose k = k. For (1), choose γ0 ∈ Γ−∆. As in Lemma 1.2, r corresponds

to a triple (r|∆, µ, 〈−,−〉). Let V ⊂ kn be an irreducible ∆-submodule.

Claim. (kn/V ⊥)γ0 ∼= V ∨(ν ◦ r).

Proof of Claim. We have a homomorphism of vector spaces

ϕ : kn → V ∨, x 7→ (v 7→ 〈v, x〉).

The kernel is clearly V ⊥, and surjectivity is standard linear algebra (using dual bases). Thus,

we need to show it is a ∆-module homomorphism, i.e. ϕ(δx)(v) = δϕ(x)(v) for δ ∈ ∆ and

v ∈ V . The left side is ϕ(r(γ0δγ
−1
0 )x)(v) =

〈
v, r(γ0δγ

−1
0 )x

〉
. The right side is

(ν ◦ r)(δ)ϕ(x)(r(δ)−1v) = (ν ◦ r)(δ)
〈
r(δ)−1v, x

〉
.

The claim follows from the properties of the inner product.

By definition of Schur, we cannot have V ⊂ V ⊥, and thus kn ∼= V ⊕ V ⊥ as ∆-modules.

Iterate this recursively to get a decomposition

kn = V1 ⊕ V2 ⊕ · · · ⊕ Vr,

and

〈−,−〉 = 〈−,−〉1 ⊥ 〈−,−〉2 ⊥ . . . ⊥ 〈−,−〉r ,

where each Vi is an irreducible k[∆]-module, each 〈−,−〉i is a perfect pairing on Vi, each

Vi � Vj for i 6= j, and V γ0
i
∼= V ∨i (ν ◦ r).

For (2), if ρ and τ are representations ∆ → GLn(k) with ρ semi-simple and tr ρ = tr τ ,

then the semisimplifications of ρ and τ are equivalent. Thus r′|∆ has the same Jordan-

Holder factors as r|∆. So r′ satisfies same hypotheses as r, and thus r′|∆ is semisimple as

well, meaning r′|∆ ∼= r|∆, and we may assume they are equal. The triple for r′ is thus

(r|∆, µ, µ1 〈−,−〉1 ⊥ . . . ⊥ µr 〈−,−〉r),
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since the inner products are unique up to k×-multiples. Conjugation by the element of

GLn(k̄) which acts on Vi by
√
µi will take r to r′.

Lastly, for (3), note

g∆
n = {A ∈Mn(k) : r(δ)Ar(δ)−1 = A}

= Endk[∆](k
n)

= Endk[∆](V1)⊕ · · · ⊕ Endk[∆](Vr)

= kr,

as Vi � Vj are irreducible submodules and k is algebraically closed. Then γ0 sends (α1, . . . , αr)

to (−α∗11 , . . . ,−α∗rr ) = (−α1, . . . ,−αr), since −α∗ii = −αi, where ∗i denotes the adjoint with

respect to 〈−,−〉i. Thus gΓ
n = 0.

4.2 Notation

We now introduce the notation for the remainder of the chapter. Let p be an odd prime, and

k/Fp be a finite extension. Let K be a totally ramified extension of W (k), and let O ⊂ K

denote the integer ring with maximal ideal λ (so O/λ = k).

Let F+ be a totally real number field, and F/F+ a totally imaginary quadratic extension

split at all primes above p. Let S be a finite set of finite places of F+ which split in F , and

let F (S)/F be the maximal extension unramified outside S and ∞. Notice that F (S)/F+

may ramify at places outside S if they ramify in F/F+. We will let GF+,S = Gal(F (S)/F+)

and GF,S = Gal(F (S)/F ), so that GF,S is an index two subgroup of GF+,S. For v ∈ S,

choose a place ṽ of F above v, and write S̃ = {ṽ}v∈S, so that #S̃ = #S.

Suppose r̄ : GF+,S → Gn(k) is a continuous homomorphism withGF,S = r̄−1(GLn×GL1)(k).

Let χ : GF+,S → O+ be a continuous lift of ν ◦ r̄ : GF+,S → k×. If ṽ is a finite place of F ,

we let r̄|GFṽ denote the composite

GFṽ → GF,S
r̄→ Gn(k)→ GLn(k).
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In this context, it makes sense to define local deformation problems as was done in Section

2.3. For v ∈ S, let Dv be a local deformation problem for r̄|GFṽ . A global deformation

problem for r̄ will be the collection of data

S = (F/F+, S, S̃,O, r̄, χ, {Dv}v∈S).

Notice that this is slightly different than what was done in Section 2.3.6.

4.3 Highlights of the Two-Dimensional Argument

If one were to make a broad summary of the arguments in Section 3.4 without fretting the

details, it might look something like this:

(1) Firstly, for a representation ρ̄ : GF → GL2(k) whose restriction to GF (ζp) is reducible,

the corresponding adjoint representation ad ρ̄ also decomposes.

(2) If the deformation problems are chosen nicely and the tangent spaces Lv respect the

decomposition of ad ρ̄, then the dual Selmer group also decomposes into the diagonal

and off-diagonal pieces.

(3) In killing dual Selmer, the first step is to kill the off-diagonal piece. For this argument

it is important that:

– The off-diagonal component of the tangent space of the deformation problem lies

in the unramified cohomology of this off-diagonal component.

– The mod pn has primes for which the local deformation problem is defined.

– The deformation problem serves as a level-raising tool.

As mentioned in Remark 3.4.13, essentially all the ramification for the cohomology

group is being pushed into the diagonal piece.

(4) Use Taylor-Wiles primes to kill the diagonal component of the dual Selmer group.

For the remainder of this chapter, we will discuss the corresponding ideas in the higher

dimensional setting.
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4.4 Reducible Restriction

The goal is to study higher dimensional representations whose restriction to GF (ζp) is re-

ducible, as was done in the previous chapter. The immediate consequences of this reducibility

are similar to the beginning of Section 3.4.

Let r̄ : GF+,S → Gn(k) be a homomorphism with GF,S = r̄−1(GLn×GL1)(k). The

composite GF,S → (GLn×GL1)(k) → GLn(k) will still be denoted r̄. Suppose r̄|GF (ζp),S
is

reducible, where ζp is a primitive p-th root of unity. By Clifford theory, the restriction is

semisimple, and there is a decomposition

kn ∼= a
m⊕
i=1

Si,

where the Si are simple k[GF (ζp),S]-modules, and the dimSi is independent of i, call it d. By

dimension counting, we get n = amd. Suppose a = 1, m = n, and d = 1. (As a side note,

observe if n is prime and the restriction is reducible, then the only other case is the one in

which there is only one isotypic component.) This means r̄|GF (ζp),S
is the direct sum of n

distinct characters. Assuming r̄|GF,S is irreducible, then letting D = [F (ζp) : F ], Clifford

theory says that n|D (which implies p ≡ 1 mod n) and r̄|GF,S is induced from a character

χ̄ of GK,S, where K/F is the (unique) degree n extension contained in F (ζp)/F . Moreover,

GF/GK is cyclic of order n, and if σ is a generator, then

r̄|GK,S =
n−1⊕
i=0

χ̄σ
i

,

where χ̄σ
i
(τ) = χ̄(σ−iτσi).

4.5 Decomposition of ad

Write GLn(k) = GL(V ). The adjoint representation of V is ad(V ) = End(V ), so ad(V ) =

V ⊗ V ∗. As a GK,S-representation, ad(V ) therefore decomposes as

ad(V ) =
(
χ̄⊕ χ̄σ ⊕ · · · ⊕ χ̄σn−1

)
⊗
(
χ̄−1 ⊕ (χ̄σ)−1 ⊕ · · · ⊕ (χ̄σ

n−1

)−1
)

= I⊕n ⊕
⊕

0≤i<j≤n−1

(
χ̄σ

i

/χ̄σ
j ⊕ χ̄σj/χ̄σi

)
.
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Namely, identifying ad(V ) = Mn(k), this decomposition is a reflection of that fact that

GK,S acts trivially on the diagonal entries and acts on the (i, j)-entry via χ̄σ
i−1
/χ̄σ

j−1
. For

each j ≥ 1, χ̄/χ̄σ
j

has n distinct conjugates, and therefore IndFK(χ̄/χ̄σ
j
) is an irreducible

subrepresentation of ad(V ).

Remark 4.5.1. The fact that IndFK(χ̄/χ̄σ
j
) is irreducible is from Clifford theory, and IndFK(χ̄/χ̄σ

j
)

is a subrepresentation of ad(V ) by Frobenius reciprocity.

While IndFK I is not irreducible, it is a GF,S-subrepresentation of ad(V ). By dimension

counting, all the pieces are accounted for, and therefore

ad(V ) = IndFK I⊕
n−1⊕
j=1

IndFK(χ̄/χ̄σ
j

) = M0 ⊕M1,

where M0 = IndFK I and M1 =
⊕n−1

j=1 IndFK(χ̄/χ̄σ
j
). Notice that this is precisely what occurred

in the Section 3.4, and this takes care of item (1) in Section 4.3.

4.6 Modified Taylor-Wiles Primes

We can now move to point (2) of Section 4.3 in trying to define appropriate local deformation

problems. It is important that the tangent space respect the decomposition of ad r̄ above.

There is a modification of Taylor-Wiles primes, first introduced in [39], which we can use

to kill the M0(1) portion of the dual Selmer group. What we do not have as of yet is an

analogue of the deformation condition DSt(αv)
v from Section 3.4. This will be talked about

more in the section on future work. We can, however, define these modified Taylor-Wiles

primes.

Suppose qṽ ≡ 1 mod p, and that r̄ is unramified at ṽ. Write r̄|GFṽ = ψ̄v ⊕ s̄v, where

ψ̄v is an eigenspace of Frobenius corresponding to an eigenvalue αv on which Frobṽ acts

semisimply. Let DJTv be the set of lifts which are strictly equivalent to one of the form

ψv⊕sv, where sv is an unramified lift of s̄v and does not contain ψv as a subquotient, and ψv

may be ramified but the image of inertia under ψv is contained in the set of scalar matrices.
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Thus LJTv is the subspace of

H1(GFṽ , ad(r̄)) = H1(GFṽ , ad(ψ̄v))⊕H1(GFṽ , ad(s̄v))

whose projection to H1(IFṽ , ad(s̄v)) is trivial and the projection to H1(IFṽ , ad(ψ̄v)) actually

lives in H1(IFṽ , Z(ψ̄v)).

It turns out these primes will do the work of killing the M0(1) portion of the mod p dual

Selmer group. The following is an easy lemma:

Lemma 4.6.1. Suppose v - p is a finite place of F+ which splits in F and suppose that the

local deformation problem DJTv is defined. Then both Lv and L⊥v respect the decomposition

ad(r̄) = M0 ⊕M1. That is:

(1) Lv = (Lv ∩H1(GFṽ ,M0))⊕ (Lv ∩H1(GFṽ ,M1)), and

(2) L⊥v = (L⊥v ∩H1(GFṽ ,M0(1)))⊕ (L⊥v ∩H1(GFṽ ,M1(1))).

Proof. We know v splits in F , and if ṽ is a prime of F above v, then the condition qṽ ≡

1 mod p means ṽ splits in K (as it splits in F (ζp)). Thus ad r̄ splits into the direct sum of

1-dimensional modules as a k[GFṽ ]-module, from which the lemma follows easily.

4.7 Killing Dual Selmer

Suppose S = (F/F+, S, S̃,O, r̄, χ, {Dv}v∈S) is a global deformation problem and T ⊂ S a

set of places containing all those above p. Suppose that for each v ∈ S\T , the deformation

problem Dv has a tangent space Lv which respects the decomposition of ad r̄. Then as in

[41] and the previous chapter, the dual Selmer group decomposes as

H1
L⊥,T (GF+,S, ad(r̄)(1)) = H1

L⊥,T (GF+,S,M0(1))⊕H1
L⊥,T (GF+,S,M1(1)).

The object is to kill this dual Selmer group, and so we can just work to add primes to S

so that each summand vanishes. As mentioned in the previous section, we need to find an

appropriate deformation condition which does the job of killing the M1(1) portion, and such

that we can prove a proposition which mirrors Proposition 3.4.12.
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However, using primes for which the deformation problem DJTv is defined, we can kill the

M0(1) portion.

In [39], the author defines what it means for a subgroup G ⊆ GLn(k) to be adequate,

which built off a definition of a big subgroup in [6]. We will not need that full notion, so let

us make the following definition.

Definition 4.7.1. (1) Let G ≤ GLn(k) = GL(V ) be a subgroup. Then G is sufficient

if for every irreducible k[G]-submodule W ⊂ ad0(V ), there exists g ∈ G with an

eigenavalue α with tr eg,αW 6= 0, where eg,α : V → V is the g-equivariant projection

onto the generalized α-eigenspace of V .

(2) Let G ≤ Gn(k) be a subgroup. Then G is sufficient if for every irreducible k[G]-

submodule W ⊂ ad(V ), there exists g ∈ G ∩ G0
n(k) with an eigenvalue α such that

tr eg,αW 6= 0.

Remark 4.7.2. As sufficiency is just the fourth condition of adequacy from [39], we have big

=⇒ adequate =⇒ sufficient.

Theorem 4.7.3. Suppose p > 2 and satisfies the necessary congruence conditions as above.

Suppose we are given a deformation problem

S = (F/F+, S, S̃,O, r̄, χ, {Dv}v∈S),

and T ⊂ S is a subset containing the places above p and where for v ∈ S − T , the corre-

sponding Lv decomposes according to the decomposition of ad(r̄) as in the previous section.

Suppose further that h1
L⊥,T (GF+,S,M1(1)) = 0, and let N ≥ 1 be an integer. Finally, assume

that r̄(GF+(ζp)) is sufficient. Then there are sets Q and Q̃ such that:

(1) |Q| = h1
L⊥,T (GF+,S,M0(1)), and for each q ∈ Q, qv ≡ 1 mod pN .

(2) The augmented deformation problem

S[Q] = (F/F+, S ∪Q, S̃ ∪ Q̃,O, r̄, χ, {Dv}v∈S∪Q),

where for v ∈ Q, Dv = DJTv , satisfies H1
L[Q]⊥,T (GF+,S∪Q, ad(r̄)(1)) = 0.
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Proof. Let m = h1
L⊥,T (GF+,S,M0(1)), and suppose m ≥ 1. Observe that (LJTv )⊥ is the

subspace of unramified cohomology classes in H1(GFṽ , ad(r̄)(1)) whose projection to

H1(GFṽ , ad(ψ̄v)(1)) actually takes values in H1(GFṽ , ad0(ψ̄v)(1)). Thus, if v /∈ S satisfies

qv ≡ 1 mod p, then

h1
L[{v}]⊥,T (GF+,S∪{v},M1(1)) = h1

L⊥,T (GF+,S,M1(1)) = 0.

We have an exact sequence

0→ H1
L[Q]⊥,T (GF+,S∪Q,M0(1))→ H1

L⊥,T (GF+,S,M0(1))→
⊕
v∈Q

k,

where the last map is given by [φ] 7→ (tr eFrobṽ ,αvφ(Frobṽ))v∈Q. Let [φ] ∈ H1
L⊥,T (GF+,S,M0(1))

be a nonzero class. We want a place v of F+, with v /∈ S, such that v splits in F (ζpN ) and

tr eFrobṽ ,αvφ(Frobṽ) 6= 0. By Cebotarev, it suffices to find σ0 ∈ GF (ζ
pN

) with tr eσ0,αφ(σ0) 6= 0

for some eigenvalue α of r̄(σ0).

Now, as M0(1)
GF+(ζ

pN
)

= 0, inflation-restriction yields

0→ H1(GF+,S,M0(1))→ H1(GF+(ζ
pN

),M0(1)).

Thus φ is nonzero after restricting to GF+(ζ
pN

). Moreover, as [F (ζpN ) : F+(ζpN )] ≤ 2 and

p > 2, Lemma 2.2.8 yields an injection

0→ H1(GF+(ζ
pN

),M0(1))→ H1(GF (ζ
pN

),M0(1))
GF+(ζ

pN
)

= HomGF+(ζ
pN

)
(GF (ζ

pN
),M0(1)).

Thus φ(GF (ζ
pN

)) is a nonzero GF+(ζ
pN

)-submodule of M0(1). Thus the existence of σ0 and α

follow from the definition of sufficiency.

4.8 Future Work

We have already outlined a few things that need to be done, but here we expand on the

checklist of things still left to do to complete this project.

Firstly, in order to complete the Galois theory arguments of the previous section, there

needs to be a deformation problem Dv such that:
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• The tangent space Lv respects the decomposition of ad r̄.

• The intersection of Lv with H1(GFṽ ,M1(1)) lies in the unramified cohomology

H1
ur(GFv ,M1(1)). This is necessary to have an exact sequence similar to the one used

in the proof of Proposition 3.4.12.

• The deformation problem can be used in some level raising arguments similar to the

ones used in the previous chapter. The issue here is the yet unproven Ihara’s lemma

for GLn (for n > 2). In the previous chapter, there was no explicit mention of the

lemma (which is known for GL2), but it does appear in the proof of Lemma 3.2.11 (see

[41] for details).

A potential candidate for such a deformation problem can be found in [6] and [40]. However,

this has not been thoroughly examined, and it will certainly need to be the first order of

business before continuing.

After this is done, the automorphic arguments need to be filled in. At this point in time,

no work on this aspect of the argument has been done. Certainly, both [6] and [39] will

be extraordinarily useful, but once again Ihara’s lemma will be one of the major obstacles.

Analogues of Lemma 3.2.11 and Corollary 3.2.13 will need to be proven, and this will also

be closely tied to the Galois work mentioned above.
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CHAPTER 5

Generic Unobstructedness

This chapter, the final of the dissertation, details work completed jointly with Chandrashekhar

Khare, Gebhard Böckle, and David Guiraud. The project is computational in nature, and

does not address one question in particular, but rather a broad idea which is examined in

several specific situations. The chapter begins by describing possible motivation for the type

of question being asked. We then state a result of Weston which shows how one may obtain

results using R = T theorems. The situations new to this dissertation are ones where this

R = T machinery does not exist, and as such, theorems are hard to prove. However, we de-

scribe heuristics and expectations, and provide some computer evidence for these heuristics.

5.1 Motivation

Let F be a number field, and let r1 and r2 denote the number of real and complex places

of F , respectively. Note that [F : Q] = r1 + 2r2. The following is a famous conjecture of

Leopoldt.

Conjecture 5.1.1 (Leopoldt). The number of Zp-extensions of F is r2 + 1.

Put another way, it asserts that the Galois group of the maximal pro-p extension of F

unramified outside the places above p and infinity has Zp-rank equal to r2 +1. This question

can be framed in terms of Galois cohomology as well. Indeed, consider the group GF,S,

where S = Sp ∪S∞ (the places above p and the places above infinity), and let it act trivially

on Zp. Then as in Section 2.2.2.2, the cohomology group H1(GF,S,Zp) = Homcts(GF,S,Zp).

Thus, Leopoldt’s conjecture can be stated in terms of the Zp-rank of this cohomology group.
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Indeed, Leopoldt’s conjecture is equivalent to the assertion that

rankZp H
1(GF,S,Zp) = r2 + 1.

Using the global Euler-Poincaré characteristic formula (Theorem 2.2.22), this is equiva-

lent to rankZp H
2(GF,S,Zp) = 0, which means H2(GF,S,Zp) is finite. By considering the

tensor product of each of these two Zp-modules with Qp, the conjecture is equivalent to

dimQp H
1(GF,S,Qp) = r2 + 1 and also to dimQp H

2(GF,S,Qp) = 0.

Recall from Section 2.3.3 that the vanishing of second cohomology groups is important

in deformation theory, as it says that an associated lifting problem is unobstructed. For this

reason, the focus will be on this final form of Leopoldt’s conjecture.

An interesting question to ask is whether there is a mod p analogue:

Question 5.1.2. Is H2(GF,S,Z/pZ) = 0 for almost all primes p?

Remark 5.1.3. Here, “almost all” can mean either “all but finitely many” or “all outside a

set of density zero.” Indeed, we would be satisfied with either answer.

Note that, by the global Euler-Poincaré characteristic formula, Question 5.1.2 is equiv-

alent to dimH1(GF,S,Zp) = r2 + 1, which confirms Leopoldt’s conjecture for the primes in

question.

Question 5.1.2 has an affirmative answer when F = Q. Indeed, the groupH2(GQ,S,Z/pZ) =

0 for all p > 2 and dimH2(GQ,S,Z/2Z) = 1 when p = 2. This follows from the fact that

when p is odd there is a unique Galois extension of Q of degree p unramified outside p and

∞, whereas when p = 2 there are two such extensions, namely Q(
√

2) and Q(
√
−2).

The question also has an affirmative answer when F is an imaginary quadratic field.

However, if F is a real quadratic field, then the answer is unknown, despite the fact that

H2(GF,S,Qp) = 0 is easy.

One way to view Question 5.1.2 is the following: view Z/pZ as a trivial representation of

GF,S, so the adjoint representation adZ/pZ = Z/pZ as a GF,S-module. Thus, the question

is asking for the unobstructedness of the trivial representation, and whether this happens

“generically.”
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In this chapter, we will be asking questions related to the vanishing of this second co-

homology group with coefficients arising from compatible systems of representations. In

general, proving the “generic vanishing” (which will be defined in the next section) is diffi-

cult, but we can examine the question in various settings and make guesses as to the answer

and the heuristics behind them.

5.2 Modular Forms Setting

Before giving the definition of generic unobstructedness, we recall a result of Weston which

gives the type of answer we are looking for. Let f be a newform of level N , weight k ≥ 2, and

character χ, and let K = Q(an(f)) denote the number field gotten by adjoining the Fourier

coefficients of the q-expansion of f . Let S denote a finite set of places of Q, including all

primes dividing N and the infinite place. Section 2.1.1.3 introduced the representations ρf,λ

and the residual representations ρ̄f,λ for finite places λ of F . The collection of (ρf,λ)λ, as λ

ranges over the finite places of F , form a compatible system in the sense of Section 2.1.4.

Let Rf,S,λ be the universal deformation ring parametrizing deformations of ρ̄f,λ which

are unramified outside S ∪ {l}, where l denotes the residue characteristic of λ. Weston [43,

Section 5.3] proved the following:

Theorem 5.2.1. (1) If k ≥ 3, then for almost all but finitely many places λ, the deforma-

tion ring is unobstructed, i.e. H2(GQ,S∪{l}, ad(ρ̄f,λ)) = 0 andRf,S,λ
∼= W (kλ)JX1, X2, X3K.

(2) If k = 2, then the above is true for all λ outside a set of places of density zero. More

precisely, it is true for all but finitely many λ such that al(f)2 6= ε(l) mod λ.

Sketch of Proof. For the full proof of the theorem, see [43, Section 5.3]. The sketch is as

follows. Consider the minimal deformation ring R associated to ρ̄f,λ, where λ is of character-

istic l � 0. By the modularity lifting theorems of Wiles and Taylor-Wiles, one shows that

R is isomorphic to a Hecke ring acting on S2(Γ1(N),O)mλ . This Hecke ring is isomorphic to

W (kλ), whence the isomorphism R ∼= W (kλ) follows. Thus, the Zariski tangent space of R is

trivial, which means that a Selmer group H1
L(GQ,S∪{l}, ad0(ρ̄f,λ)) = 0. One then applies the
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Greenberg-Wiles formula to obtain the vanishing of the corresponding dual Selmer group

H1
L⊥(GQ,S∪{l}, ad0(ρ̄f,λ)(1)) = 0.

Poitou-Tate yields the following exact sequence:

0→ H1(GQ,S∪{l}, ad0(ρ̄f,λ))→
⊕

v∈S∪{l}

H1(Qv, ad0(ρ̄f,λ))/Lv →

0→ H2(GQ,S∪{l}, ad0(ρ̄f,λ))→
⊕

v∈S∪{l}

H2(Qv, ad0(ρ̄f,λ))→ H0(GQ, ad0(ρ̄f,λ)(1)).

If k > 2, then the local H2-terms vanish for sufficiently large l. If k = 2, then the local

term H2(Ql, ad0(ρ̄f,λ)) may not vanish if l is in the exceptional set of primes described in

the theorem. This is why the two cases are split in the statement of the theorem.

In the spirit of the above theorem, we make the following definition.

Definition 5.2.2. Let F be a number field, and let (ρλ : GF → GLn(Kλ))λ be a compatible

system of Galois representations with ramification set S, where λ runs over the set of finite

places of some number field K. Let ρ̄λ : GF → GLn(kλ) denote the residual representations.

Then the compatible system is called generically unobstructed if H2(GF,S∪{l}, ad ρ̄λ) = 0 for

almost all λ, where l is the residue characteristic of λ.

5.3 Wieferich Primes

The sketch of the proof of Theorem 5.2.1 took advantage of the existence of an R = T

theorem. In general, this tool will not exist for the situations we want to consider, so instead

we are left to describe heuristics for the various settings and examine them computationally.

The overarching theme of the heuristics throughout the chapter is illustrated by Wieferich

primes.

Definition 5.3.1. A prime p of Z is a Wieferich prime if 2p−1 ≡ 1 mod p2.

Since 2p−1 ≡ 1 mod p by Fermat’s little theorem, Wieferich primes require divisibility by

an additional power of p. Such primes are connected to Fermat’s Last Theorem, but it is
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unknown whether infinitely many Wieferich primes exist. However, there are guesses as to

how many there should be, based on the following heuristic argument.

Since 2p−1 ≡ 1 mod p, the number 2p−1 modulo p2 must be of the form 2p−1 ≡ 1 +

kp mod p2, where 0 ≤ k ≤ p − 1. If k = 0, then p is a Wieferich prime. Treating this

as a genuinely random event where each possible k is equally likely, the probability of this

happening should be 1/p. If the primes are treated as “independent events,” then the number

of Wieferich primes less than or equal to X can roughly be modeled by

∑
p≤X

1

p
∼ log(log(X)).

Perhaps the better way to view this analysis is the following. There is a set, in this case

K = ker(Z/p2Z→ Z/pZ), and a desired point, namely 1+p2Z ∈ K. The analysis comes from

treating the object 2p−1 + p2Z ∈ K as a random point in K, and asking for the probability

that this random point is the desired target point.

5.4 Trivial Motive

We return to Question 5.1.2. To remind the reader of the notation, F is a number field, and

S = Sp ∪ S∞. The goal is to examine H2(GF,S,Z/pZ).

By the Euler-Poincaré characteristic formula, if hi = dimZ/pZH
i(GF,S,Z/pZ), then

h1 = 1 + h2.

If p does not divide the class number of F , the group H1(GF,S,Z/pZ) = Homcts(GF,S,Z/pZ)

is dual to the p-part of the ray class group of F of conductor p2. Therefore, there is an exact

sequence

1→ O×F ∩ (1 + pOF )

O×F ∩ (1 + p2OF )
→ (1 + pOF )

(1 + p2OF )
→ H1(GF,p,Z/pZ)∨ → 1.

By counting dimensions, we see that

h1 = 2− dimZ/pZ
O×F ∩ (1 + pOF )

O×F ∩ (1 + p2OF )
.
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Comparing the two expressions, the dimension h2 = 0 precisely when

dimZ/pZ
O×F ∩ (1 + pOF )

O×F ∩ (1 + p2OF )
= 1.

If ε denotes the fundamental unit of F , then h2 6= 0 is the same as saying that εp
2−1 ∈

O×F ∩ (1 + pOF ) is p-th power. Equivalently, that εp
2−1 ≡ 1 mod p2OF . One would expect

this to happen with probability 1/p, and so the number of primes p up to X for which h2 6= 0

should be ∑
p≤X

1

p
,

which again grows like log(log(X)) as in the Wieferich primes setting. From this, we should

expect a density one set of primes for which H2(GF,S,Z/pZ) = 0. We used magma to check

the primes 1 < p < 10000 for which H2(GF,S,Z/pZ) 6= 0 as F ranges over real quadratic

fields F = Q(
√
D) for 2 ≤ D ≤ 30. The data is shown in Table 5.1 at the end of the chapter.

In these small cases, the nonvanishing of H2(GF,S,Z/pZ) seems to be quite rare. One should

check a larger set of primes to see if the log(log(X)) heuristic holds.

5.5 Weight 2 forms

Let ρ̄ : GQ → GL2(k) be a representation, where k is a finite field of characteristic p. Suppose

ρ̄ arises from S2(Γ0(N)), corresponding to a maximal ideal m of the Hecke algebra acting on

this space. The set X of primes q such that ρ̄(Frobq) has eigenvalues with ratio q has positive

density. Let q ∈ X, and let m′ denote the maximal ideal of the Hecke algebra acting on

S2(Γ0(Nq)), which is the same as m away from q, and such that U2
q − 1 ∈ m′. The question

we want to ask is the following:

Question 5.5.1. Is dimS2(Γ0(Nq))q−newm′ = 1 for a density one set of primes q ∈ X?

We have analyzed this question a bit in the case N = 11 and p = 11, building off

numerical investigations carried out by Tommaso Centeleghe. In this case S2(Γ0(11),F11) =

S12(SL2(Z),F11) = F11 ·∆ as Hecke modules, where ∆ denotes the Ramanujan delta function

with Fourier coefficients τ(n). Suppose ρ̄ = ρ̄∆,11, and consider primes q for which τ(q) ≡
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±(q + 1) mod 11. Question 5.5.1 in this setting asks whether there is a unique q-new form

in S2(Γ0(11q)) which gives rise to ρ̄.

Before presenting our findings, we analyze this problem from a deformation theory

perspective. Consider as before the primes q for which Ribet’s level raising condition

τ(q) ≡ ±(q + 1) mod 11 is satisfied, but ignore those primes for which q ≡ 1 mod 11 and

ρ̄(Frobq) is a scalar matrix. Let R denote the deformation ring parametrizing deformations

of ρ̄ which are unramified outside 11 and q, and which at 11 and q are of the form ε11 ∗

0 1

 ,

(up to sign) where ε11 denotes the 11-adic cyclotomic character. (The reason for ignoring the

primes 1 mod 11 for which ρ̄(Frobq) is scalar is that the problem may not be representable

in this case.) The cases q 6≡ −1 mod 11 and q ≡ −1 mod 11 behave slightly differently.

The tangent space for this deformation problem is given by a Selmer group. Indeed, the

local problems at 11 and q give subspaces Lv ⊂ H1(GQv , ad0(ρ̄)) for v ∈ {11, q}. If L =

(Lv)v∈{11,q}, then the tangent space is the Selmer group H1
L(GQ,S, ad0(ρ̄)), where S = {11, q}.

By the Greenberg-Wiles formula, we have

dimH1
L(GQ,S, ad0(ρ̄)) ≤ dimH0(GQq , ad0(ρ̄)(1)) =

 2 if q ≡ −1 mod 11

1 if q 6≡ ±1 mod 11
.

We have the following dimensions of the local problems:

q ≡ −1 mod 11 : dimH1(GQq , ad0(ρ̄)) = 3, dimLq = 1,

q 6≡ ±1 mod 11 : dimH1(GQq , ad0(ρ̄)) = 2, dimLq = 1.

Now let us consider a relaxed Selmer group. Define L′ = (L′v)v∈{11,q}, where L′11 corresponds

to the ordinary condition above, but at q there is no condition imposed, meaning L′q =

H1(GQq , ad0(ρ̄)). Consider the Selmer group H1
L′(GQ,S, ad0(ρ̄)). Let R′ be the universal

deformation ring corresponding to this deformation problem, so that this relaxed Selmer

group is the tangent space of R′. Then it is known R′ ∼= T, where T is the Hecke algebra

acting on S2(Γ0(11)), a one-dimensional space. Greenberg-Wiles then gives that

dimH1
L′(GQ,S, ad0(ρ̄)) = dimH0(GQq , ad0(ρ̄)(1)).
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We want to compute dimH1
L(GQ,S, ad0(ρ̄)), and to do that we need to see what the image

of our relaxed Selmer group is in the local cohomology H1(GQq , ad0(ρ̄)), and compare this

image to the line given by Lq giving the local tangent space at q.

If q 6≡ −1 mod 11, then the image overlaps with Lq if and only if they are the same line in

H1(GQq , ad0(ρ̄)). We know Lq is not the unramified line. The probability that a random line

in F2
11 is the same as our given line is therefore 1/11, as there are 11 distinct 1-dimensional

subspaces of F2
11 once the distinguished unramified line is removed.

If q ≡ −1 mod 11, then the probability that the two subspaces intersect is the same as

the probability of a random hyperplane in F3
11 containing the given line Lq. There are 145

total subspaces of F3
11 of dimension at most 2. There are 12 which contain the given line Lq,

so the probability of the two subspaces intersecting is roughly 12/145.

Thus, it seems like dimH1
L(GQ,S, ad0(ρ̄)) > 0 roughly 1/12 of the time, meaning

dimS2(Γ0(11q))q−newm′ > 1 this often.

We used magma to see when there was a unique Ribet level-raising form congruent to ∆

in S2(Γ0(11q))q−new. It is easy to check which primes satisfy Ribet’s level-raising condition:

τ(q)2 ≡ (q + 1)2 mod 11. Table 5.2 (at the end of the chapter) gives all such q up to 10000.

For each such prime, there was a “coarse check” done to quickly determine whether there

was a unique level-raising form. The check considered the l-th Hecke polynomial of the

operator Tl acting on the two spaces S2(Γ0(11),F11) and S2(Γ0(11q),F11), call them pl,s and

pl,b, respectively (with s and b meaning smaller and bigger spaces). The polynomial pl,b will

have pl,s as a factor. If the exponent is three, then uniqueness is shown, as two factors will

come from the old forms and one from the (unique) q-new form.

The output of this quick check was a list of primes for which there was a unique form,

and the rest were deemed “exceptional primes.” The exceptional primes up to 10000 are:

593, 1117, 2221, 2767, 3187, 3251, 3331, 3343, 3557, 3727, 3761, 3889, 4241, 4243,

4483, 4817, 4861, 5081, 5387, 5521, 6271, 6959, 7451, 7937, 8053, 8093, 9007, 9221.

This set seems small compared to the number of primes for which the level-raising condition is
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satisifed. For these exceptional primes, a more thorough analysis was needed. In these cases,

we simply tried to count the number of forms congruent to ∆ modulo 11. For the primes

593 and 1117, magma produced precisely two level-raising forms, each prime containing

two forms which happened to be Galois conjugates. For the larger primes, a more efficient

algorithm will be necessary as the computation time was unreasonable.

5.6 Future Work

Jointly with Gebhard Böckle, David Guiraud, and Chandrashekhar Khare, this project will

continue after the writing of this dissertation. There are two main questions we wish to

study:

• Per a suggestion by Professor David Roberts, we will try a smaller prime than p = 11

for the setting of the previous section. Namely, instead of considering the mod 11

representation of the ∆ function in S2(Γ0(11),F11), we can try to consider mod 3 or mod

5 coefficients in a different space of forms. We may be able to push our computations

further to obtain more sets of data since right now there is an obstruction in the

computational power of our algorithm.

• We can consider a similar question the p-adic weight one forms. Namely, given a

classical form f ∈ S1(Γ0(N)), we can consider the forms in Sp(Γ1(N))ord which are

congruent to f . If this number is bounded, then the space of ordinary p-adic weight

one forms localized at the maximal ideal associated to f is bounded in dimension.

In each case, it will probably be necessary to develop more efficient algorithms in order to

avoid the computational obstructions we have hit so far. The last question, in particular,

seems difficult at first glance, since the dimension of the space of weight p forms grows quickly

with p.

5.7 Tables

120



D p

2 13, 31

3 103

5

6 7, 523

7

10 191, 643

11

13 241

14 2

15 181, 1039, 2917

17

19 79

21

22 43, 73, 409

23 7, 733

26 2683, 3967

29 3, 11

Table 5.1: Primes p to 10000 for which H2(GQ(
√
D),S,Z/pZ) 6= 0
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n primes q with n− 1000 < q ≤ n which satisfy level raising condition

1000 59, 103, 151, 157, 179, 191, 193, 251, 281, 367, 379, 383, 397, 409, 419, 467, 491, 509, 541,

587, 593, 673, 701, 733, 743, 827, 883, 911, 937, 983

2000 1039, 1091, 1097, 1103, 1117, 1123, 1223, 1249, 1279, 1283, 1303, 1487, 1667, 1931, 1999

3000 2017, 2039, 2113, 2131, 2137, 2141, 2221, 2239, 2311, 2341, 2383, 2399, 2531, 2549, 2609

2633, 2689, 2741, 2767, 2791, 2801, 2897, 2971, 2999

4000 3037, 3061, 3083, 3109, 3137, 3163, 3187, 3229, 3251, 3331, 3343, 3391, 3449, 3491, 3539,

3557, 3659, 3677, 3691, 3727, 3761, 3767, 3793, 3823, 3847, 3889, 3917

5000 4013, 4241, 4243, 4283, 4373, 4397, 4441, 4451, 4481, 4483, 4513, 4517, 4523, 4583, 4637,

4639, 4649, 4691, 4759, 4787, 4817, 4861, 4877, 4889, 4919, 4933, 4987, 4993

6000 5081, 5087, 5101, 5171, 5231, 5281, 5303, 5387, 5443, 5449, 5521, 5563, 5749, 5839, 5857,

5987

7000 6047, 6053, 6067, 6151, 6163, 6221, 6271, 6299, 6301, 6317, 6323, 6329, 6367, 6427, 6571,

6701, 6719, 6829, 6857, 6949, 6959, 6977

8000 7027, 7057, 7103, 7109, 7129, 7283, 7297, 7307, 7333, 7351, 7417, 7451, 7547, 7559, 7561,

7673, 7703, 7717, 7789, 7817, 7823, 7883, 7993, 7937, 7949

9000 8053, 8069, 8093, 8287, 8291, 8297, 8363, 8377, 8419, 8423, 8429, 8501, 8537, 8669, 8677,

8753, 8839, 8867, 8923, 8941, 8971

10000 9007, 9067, 9187, 9221, 9337, 9467, 9533, 9587, 9689, 9721, 9739, 9787, 9791, 9851, 9941

Table 5.2: Primes q up to 10000 for which τ(q)2 ≡ (q + 1)2 mod 11
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