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The advent of high throughput single cell genomic technologies has revolutionized the 

study of cell biology. It has enabled scientists to discover rare cell types that were hidden in 

gene expression measurements of bulk cell populations. This led to many discoveries in 

complex tissues made up of heterogeneous cell populations, notably the mammalian brain. 

However, cells function in coordination with their environment and neighboring cells. Because 

these high throughput single cell technologies dissociate the cells from their native tissue, the 

spatial context is lost. In situ methods that examine cells in fixed tissue have existed for decades 

and are used routinely by doctors to diagnose diseases. But those traditional in situ methods do 

not have the capability to measure the expression of more than a handful of genes necessary to 

correlate with single cell. Presented here is one in situ approach for highly multiplexed RNA 

quantification that is also the first to be successfully used in human cortical sections, to the best 

of our knowledge. 

The first chapter of my dissertation covers the development of DARTFISH, a method 

that enables highly multiplexed in situ digital quantification of targeted RNA transcripts in fresh 

frozen tissue. 

The second chapter describes efforts to map cell types identified by single-cell or single-

nuclei RNA sequencing to spatially defined cells from DARTFISH cortical sections. 

The third and final chapter details ongoing improvements to DARTFISH to achieve 

better cell type classification of single cells in DARTFISH. 
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INTRODUCTION 

The direct translation of biological discoveries to improving human health is a great 

incentive for studying living organisms. The more we understand healthy and diseased 

organisms, the better we can invent solutions to improve our own lives. In order to do so, we 

must have a complete description of cells, the basic unit of life. Cell populations are 

heterogeneous, containing multiple distinct cell types, and each cell can be defined by its 

molecular profiles, morphology, location, functional properties, etc. It is the goal of The Human 

Cell Atlas (HCA) to define the human cell types by these traits in a comprehensive reference. 

Much like the periodic table of elements is a fundamental tool in chemistry, the  HCA will 

provide a framework for studying biology (Regev et al., 2017).  

The monumental effort to catalog all cell types is only possible with the development 

of new technologies. History has shown that discoveries in cell biology have always been driven 

by technology; for example Robert Hooke observed cells for the first time in a cork slice when 

he viewed it under the microscope he invented. Recently, use of single-cell RNA sequencing 

(scRNA-seq) has exploded for two reasons: next generation sequencing (NGS) has greatly 

increased data collection throughput and significantly decreased the cost of sequencing DNA 

and RNA (Shendure & Ji, 2008); and advanced experimental techniques for isolating and lysing 

single cells as well as reverse transcribing and amplifying transcripts have made sequencing the 

picogram scale inputs possible (Trapnell, 2015). These technologies combined with the 

recognition that the transcriptome is a mediator of cellular phenotypes (Kim & Eberwine, 2010) 

has made scRNA-seq a powerful tool for defining cell types in a large population of cells based 

on transcriptomic state (Klein et al., 2015; Lake et al., 2016; Macosko et al., 2015; Zheng et al., 

2017).  
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Cell type discovery and representation by scRNA-seq is important but a comprehensive 

description of cells must include more than just a transcriptome profile for each cell type.  Other 

cell characteristics provide very useful information to differentiate cell types, are indicators of 

disease, and lead to a better understanding of cell biology. For example, chromatin accessibility 

profiles can be used to define cell types and can also shed light on transcriptional regulation 

when linked with transcription profiles (Cao et al., 2018; Chen, Lake, & Zhang, 2019). Other 

cell characteristics such as the connections between cells cannot be measured in isolated cells 

but require information about the cell in its native environment. MAPseq uses barcoded viruses 

and NGS to map where single neuron processes connect to, hopefully one day providing insight 

on how different cell types form the circuitry of the brain (Kebschull et al., 2016).  

A more direct way to study cells in their tissue context, aka in situ, is fixed on a glass 

surface under a microscope. This is not novel today; histology has been a research discipline 

since scientists began examining dye-stained biological specimens under a microscope 

hundreds of years ago (Y. Wang, 2018). Early histologists used common dyes like indigo to 

study the structure of plant and animal tissue. Soon after, advancements in chemicals for tissue 

preservation, dyes for staining, and microscopes for observing led to many new histology 

techniques that began to have use for diagnostic pathology . There were stains for glycogen, 

(involved in many cancers), amyloid fibrils (indication of amyloidosis), myelin (demyelination 

is a sign of neuron degeneration), just to name a few (Titford, 2009). Covering all the various 

histology techniques is beyond the scope of this dissertation but the more recent developments 

in fluorescence in situ hybridization (FISH) are highly relevant and will be explored in depth. 

In situ hybridization (ISH) and FISH, which uses fluorescence microscopy, are 

techniques for localization and quantification of specific DNA or RNA segments in a histologic 
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specimen using nucleic acid probes. Any ISH assay must have three components: probes, a 

label on the probes, and a way to detect the label. Developments in all three areas have led to 

ISH methods that are faster, more sensitive, higher spatial resolution, and have more flexibility 

of targets. 

The probes are always single-stranded oligonucleotides that take advantage of the 

complementary base-pairing nature of nucleic acids for their target specificity. ISH probes can 

vary in length, number, and how they are produced. Initially, probes were cellular DNA and 

RNA that could be purified and selected from cultured cells. The first published experiments 

used rRNA and RNA transcribed from microsatellite DNA largely because there were no other 

probes available. Despite these limitations, the findings were impactful towards understanding 

chromosomal organization in nuclei (Gall, 2016). When gene cloning was established, ISH 

probes that targeted specific genes began to be used, however, these probes still had off-target 

activity due to repetitive sequences in the probes (Sealey, Whittaker, & Southern, 1985). With 

the reference genome created by efforts like the Human Genome Project, ISH probes could be 

strategically designed with bioinformatics tools to target specific sequences on chromosomes 

or RNA. In addition, with the increased ease and affordability of oligonucleotide synthesis on 

DNA microarrays, many probes can be used to tile a single chromosome or transcript, making 

detection of single molecules possible. The design of these probes is not trivial and there is 

continual development of computational tools for designing ISH probes (Beliveau et al., 2018). 

Finally, to address thermodynamic limitations of DNA and RNA, DNA analogues like locked 

nucleic acids (LNA) can be synthesized to make probes with higher specificity and melting 

temperature than DNA probes of the same length (Fontenete et al., 2016). 
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The first tags used to label probes were 3H uridine that was incorporated by in vivo or 

in vitro transcription (Gall, 2016) and 32P deoxynucleoside triphosphate that was incorporated 

by nick translation with DNA polymerase I (Rigby, Dieckmann, Rhodes, & Berg, 1977). These 

tags were able to be detected directly by autoradiography but the signal-to-noise ratio was low 

making it difficult to detect targets with low copy numbers (Jilbert, Burrell, Gowans, & 

Rowland, 1986). Haptens such as biotin and digoxigenin are used as tags that are detected 

indirectly by proteins conjugated to reporter molecules. One advantage of these indirect systems 

is that they could amplify the signal thus increasing sensitivity. It is worth mentioning other 

reporter molecules besides radioisotopes and fluorophores exist, namely enzymes such as 

horseradish peroxidase (HRP) and alkaline phosphatase (AP), which react with chromogenic 

substrates that precipitate into colored product. Chromogenic dyes are very convenient for 

pathologists because they can be viewed simply under a standard light microscope but are 

capable of less multiplexing and lower resolution (Gupta, Middleton, Whitaker, & Abrams, 

2003).  

As fluorescence microscopy became more accessible, FISH became the gold-standard 

for ISH assays (Gall, 2016). Using spectrally distinct fluorophores, multiple targets can be 

visualized in the same sample at higher resolution. Fluorophores can either be conjugated 

directly to nucleotides on the probe or to antibodies that bind to haptens on the nucleotide. 

Using a secondary protein to detect haptens amplifies the signal, which was necessary for 

improving detection sensitivity before incorporating fluorophore-labeled nucleotides into 

probes was efficient enough for direct detection (Huber, Voith von Voithenberg, & Kaigala, 

2018). While fluorescence microscopy developed, fluorophore chemistry also improved with 

the invention of fluorophores that are brighter, more spectrally distinct, more stable, and that 
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come in a variety of spectral positions (Dempsey, Vaughan, Chen, Bates, & Zhuang, 2011). 

These technological advances in fluorescence microscopy enabled more powerful FISH 

techniques to be used. 

Early RNA FISH was limited to high abundance targets in order for the fluorescence 

signal to be detected above background autofluorescence in the cell. But with the recent 

availability of synthetic oligo pools combined with the improved probe labeling and 

fluorophore chemistry, individual molecules of RNA can be detected and counted in fixed cells 

(Raj, van den Bogaard, Rifkin, van Oudenaarden, & Tyagi, 2008). This single-molecule RNA 

FISH (smFISH) method uses 48 singly labeled 20-mer probes that tile across the target to 

reliably generate uniform intensity diffraction-limited spots. Previous approaches for single 

molecule detection used a few multi-labeled 50-mer probes (Femino, Fay, Fogarty, & Singer, 

1998), which meant one or two probes binding off-target could result in a false positive or a 

target missing one probe could become a false negative. The introduction of smFISH was a 

huge step for spatial transcriptomics. It has higher sensitivity than scRNA-seq (>95% detection 

rate) while also retaining the spatial information of the RNA and cell (Levesque & Raj, 2013). 

However, there were still two limitations preventing it from being used to create a human cell 

atlas: the number of targeted genes is limited to the number of spectrally distinct fluorescence 

channels available and the signal is not bright enough to overcome the higher autofluorescence 

typical of tissues. 

This work aims to address the limitations of scRNA-seq by demonstrating a new 

technique that is capable of mapping cells onto a spatial map of a tissue section. In order to 

achieve this, it must be highly multiplexed for broad cell type classification, have signal 

amplification for use in tissue, and have a fast imaging protocol for higher throughput. The first 
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chapter will cover the development of this technique, dubbed DARTFISH for Decoding 

Amplified taRgeted Transcripts with Fluorescence in situ Hybridization. The second chapter 

will demonstrate proof-of-concept by mapping cell types from scRNA-seq data to the human 

and mouse cerebral cortex. Lastly, the final chapter will report ongoing improvements to 

DARTFISH that are in response to recent developments in the spatial transcriptomics field. 
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CHAPTER 1. DEVELOPMENT OF A HIGHLY MULTIPLXED IN SITU RNA METHOD 

1.1. Abstract 

Technology to analyze gene expression of a cell population with single-cell resolution 

and localization is critical for understanding the heterogeneity of structured tissues such as 

human brain and tumors. Advancements in single-cell sequencing allow the full transcriptome 

of isolated cells to be profiled, but it neglects the native spatial context of the cell. While several 

methods have been reported, in situ RNA mapping in post-mortem human specimens, remains 

to be demonstrated.  We have developed a highly multiplexed method, called DARTFISH, for 

mapping of an arbitrary subset of RNA transcripts in situ. To achieve robust detection in 

complex tissue samples that has significant background autofluorescence, DARTFISH adopted 

an in situ cDNA transcription and rolling circle amplification strategy similar to FISSEQ. We 

leverage the multiplex capability and high specificity of padlock probes to capture thousands 

of targets in situ and include a hybridization-based combinatorial barcode scheme that allows 

amplicons to be decoded with quick reaction kinetics and under isothermal conditions.  

As a proof of concept we performed DARTFISH on human culture fibroblast cells and 

cortical sections from mouse and human post-mortem brains. With a probe set targeting 240 

genes we detected 800 amplicons per cell in fibroblast monolayer and 140 amplicons per cell 

in 10µm human cortical sections. In a 0.6mm2 cortical section, we decoded 27,812 amplicons 

representing 235 of the 240 genes. We also demonstrated that amplicon copy number can be 

used to quantify transcript abundance. 

1.2. Introduction 

Organs and tissues contain multiple cell types structurally organized in a way to carry 

out specific functions. High-throughput RNA sequencing of dissociated single cells has shown 
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that cells can be classified by their transcriptome profile (Lake et al., 2016) but to understand 

how cell types contribute to tissue function requires spatial information . Therefore there is a 

need for a method that can classify cells while retaining the spatial context of each cell. 

One organ of particular interest is the human cerebral cortex due to its complexity, 

significance to our species, and how little we understand its pathologies. It also poses significant 

challenges such as high autofluorescence from lipofuscin, which accumulates with age, 

degraded RNA and tissue quality due to post-mortem tissue collection, and the complexity of 

cell types requiring many genes to differentiate between cell types. 

There are a couple of methods that generate RNA sequencing libraries with spatial 

information encoded as sequences within the library. ‘DNA microscopy’ uses a mixture of 

unique DNA barcodes (UMI) that are added to fixed cells to tag RNA molecules. The UMI-

tagged RNA is then amplified and concatenated to nearby UMI-tagged RNA as it diffuses such 

that the closer the proximity between two RNA molecules the more concatemers will be 

sequenced (Weinstein, Regev, & Zhang, 2019). While the idea is clever, the scale and 

orientation of the resulting spatial coordinates is only relative and cannot be integrated with in 

situ data like histological stains. ‘Spatial transcriptomics’ places a tissue section on an array 

containing reverse transcription (RT) primers with a positional barcode. RNA is then primed 

and reverse transcribed on the slide to create an NGS library such that every sequenced 

molecule can then be traced to a spot on the array (Ståhl et al., 2016). This method conveniently 

allows you to image the section using traditional microscopy techniques and map the transcripts 

to the tissue, but the array pattern and feature size of RT primers means the spatial resolution is 

not quite single-cell level. 
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The other approach in the field of spatial transcriptomics are in situ methods that 

chemically or enzymatically alter a tissue section and then use a microscope to localize and 

quantify the transcriptome. The last half century has seen these methods evolve from low 

resolution ISH to smFISH, which can detect single-molecules in cells using 40 fluorophores 

tiled along the target. However, in order for fluorescence signal to be detected above 

background in human cortical sections and other tissues, some method of signal amplification 

is required. As an aside, there is some work on reducing background rather than amplifying 

signal but retaining the RNA is not trivial (Chung et al., 2013; Sylwestrak, Rajasethupathy, 

Wright, Jaffe, & Deisseroth, 2016). 

Signal amplification strategies for smFISH include DNA-based and enzyme-based 

methods. DNA-based methods use DNA oligos that assemble to each other on the target such 

that the site normally occupied by one fluorescently labeled probe can accommodate tens or 

hundreds. The two well-known methods are hybridization chain reaction (HCR) and branched 

DNA (bDNA) (Evanko, 2004; Sylwestrak et al., 2016). A newcomer called clampFISH 

combines click chemistry with multiple rounds of hybridization to achieve tunable signal gain 

and stably bound probes for applications like expansion microscopy (Rouhanifard et al., 2019). 

All of these methods use a more complex probe set limiting the ability to drastically multiplex 

the number of targeted genes.  

Enzyme-based amplification involves rolling circle amplification (RCA) of circular 

single-stranded DNA target using Φ29 DNA polymerase and a primer. The resulting RCA 

colony (rolony) contains thousands of copies of the target in a submicron nanoball that FISH 

probes can hybridize to. ‘FISSEQ’ uses random reverse transcription (RT) primers to generate 

cDNA in situ and then circularizes the cDNA to serve as a template for RCA (Lee et al., 2014). 
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‘In situ sequencing’ (ISS) uses padlock probes that target gene-specific cDNA and the ligated 

padlock probes are the circular template for RCA (Ke et al., 2013). Because the only sequence 

dependence of RCA lies in the primer, this method can amplify all targets in one step as long 

as they contain a universal primer sequence. However, each enzymatic step such as RT, ligation, 

and RCA has less than 100% efficiency that overall leads to detection rates between 1 and 30% 

(X. Wang et al., 2018). FISSEQ and ISS also both use a sequencing-by-ligation approach 

instead of FISH to decipher the rolonies. This has the advantage of reading de novo sequences 

but the imaging process is much more time-consuming and costly. 

The other important feature an in situ method must have to identify multiple cell types 

is being able to multiplex targets. Complex tissues like the cerebral cortex contain tens of 

different cell types, each defined by a combination of gene markers (Lake et al., 2016). 

Therefore determining the cell types in the same section requires a multiplexed assay that can 

detect tens of genes. The exact number of genes necessary depends on the number of cell types 

an experiment aims to resolve and how closely related the cells are. Pushing the limits of 

spectrally distinct fluorophores in a single FISH experiment reaches a maximum of seven 

before encountering problems of cross-talk between channels (Bhakdi & Thaicharoen, 2018). 

One possible solution to this is to label molecules with a combination of fluorophores in a 

spatial pattern that can be visualized through super-resolution microscopy (Lubeck & Cai, 

2012). But the popular solution has been to do multiple rounds of fluorescence imaging in such 

a way that the color of each spot changes and after projecting across all rounds, the sequence 

of colors of each spot can be translated to its identity. The maximum number of genes able to 

be detected follows the equation 𝑁 = 𝑐𝑟 where 𝑐 is the number of colors and 𝑟 is the number 

of rounds. In the seqFISH method, sequential rounds of smFISH are carried out on the sample 
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using 24 fluorescent probes hybridized to each transcript per round (Lubeck, Coskun, 

Zhiyentayev, Ahmad, & Cai, 2014). While simultaneously detecting hundreds of genes is 

possible this way, the probe set becomes very costly since each gene needs 24 times 𝑟 

fluorophore-labeled probes, and 𝑟 increases with number of genes. MERFISH cleverly reduces 

the number of different expensive fluorophore-labeled probes that must be used by utilizing 

unlabeled ‘encoding probes’ as an intermediary. The encoding probes hybridize to the RNA 

targets and leave an unbound readout sequence that is hybridized by a fluorophore-labeled 

‘readout probe’. Many genes share the same readout sequence at each round, thus reducing the 

number of fluorescent probes needed (Moffitt et al., 2016). While both seqFISH and MERFISH 

can detect hundreds of genes with smFISH-like sensitivity, they also have limited smFISH-like 

signal-to-noise ratio. 

To summarize the existing in situ methods, there are three vital characteristics that make 

an idea assay for spatial transcriptomics in tissue: number of genes detected, signal 

amplification, and detection rate. All the methods mentioned above only excel at two of the 

three (see Figure 1). In addition, to create a cell atlas of a whole tissue, data acquisition should 

be fast to feasibly process the hundreds or thousands of sections required. Given the existing 

methods, to spatially map cell types in tissue sections there is a need for an in situ RNA method 

that can be multiplexed to detect hundreds of genes simultaneously, has high signal 

amplification, detection rate, and throughput. 
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Figure 1: The iron triangle for in situ RNA method characteristics. The ideal method would 

have all three: high number of genes, signal amplification, and detection rate. Current methods 

require choosing two and sacrificing the third. 

 

Our approach was to improve the detection rate and imaging throughput of enzyme-

based amplification methods like FISSEQ and ISS. FISSEQ demonstrated RCA of circular 

templates to be robust and introduced cross-linking chemistry that fixed rolonies in cells and 

mouse brain sections. It was revolutionary because it did not target specific genes using probes 

making it like RNA-seq in situ (Lee et al., 2014). The corollary to that is many reads in FISSEQ 

were of ribosomal RNA (rRNA) as well as housekeeping genes, and not informative for 

classifying the cell. Since the sequencing is confined to the volume of the tissue and can’t be 

dispersed across a flow cell, maximizing informative reads is vital. FISSEQ reports an average 

of ~2,800 reads per cell of which 82.7% are rRNA in cultured fibroblasts (Lee et al., 2014). We 

chose to use padlock probes, which can be highly multiplexed and specific in situ (Ke et al., 

2013), that serve two purposes. The first is that by targeting informative genes there will be no 

volume in the tissue wasted. Second, it obviates the CircLigase step in FISSEQ that has <1% 

efficiency. Although ISS also uses padlock probes, we target hundreds of genes rather than tens 
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and we use a FISH-based barcode. FISH’s compatibility with isothermal conditions and its fast 

kinetics makes the microscope ‘decoding’ simpler and quicker than ISS’ sequencing. The 

method presented here is called DARTFISH, for Decoding Amplified taRgeted Transcripts 

with FISH. 

1.3. Method Development 

1.3.1 DARTFISH Overview 

We initially used the FISSEQ protocol to fabricate rolonies in cultured fibroblasts and 

tried to multiply the number of targeted gene rolonies by using padlock probes that hybridize 

to the ‘primary’ rolonies. Theoretically every primary rolony contains thousands of targets so 

that even padlock probes with 1% efficiency will lead to a 10-fold increase in number of 

rolonies. However our experiments showed no improvement in rolony counts (see Figure S1). 

The finalized protocol uses padlock probes targeting cDNA and is outlined in Figure 2. 
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Figure 2: An overview of DARTFISH. (A) Outline of the protocol steps starting with a fresh 

frozen tissue section on a coverslip. If the sample is a cultured cell monolayer in a glass-bottom 

dish then gel embedding and attachment to dish is skipped. (B) Depiction of the three main 

enzymatic reactions that fabricate rolonies from RNA in situ. Maximizing the efficiency of each 

reaction is critical for increasing the detection rate. (C) The sample in a custom made glass-

bottom dish with 12x17 mm hole. The dish is a format that can easily be stained with FISH 

probes and washed by manually pipetting on the microscope stage. 
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The sample, either a 10 𝛍m fresh frozen tissue section or a monolayer of cultured cells, 

must be on a #1.5 glass coverslip to be compatible with the high resolution microscopy 

necessary to resolve rolonies. The tissue section is placed on a VECTABOND (Vector Labs) 

treated coverslip embedded in a hydrogel to prevent degradation during high temperature 

incubations and the coverslip is mounted to a petri dish to create a glass-bottom dish.  

Fixation and permeabilization conditions must be optimized for each sample and some 

general guidelines can be found here (Lee et al., 2015). The general principle is to fix enough 

to retain the RNA without over-fixing the tissue, making it inaccessible to probes and enzymes. 

Permeabilization is to open the cell membrane but too much and the tissue will disintegrate. 

Finally, pepsin digestion is critical for removing RNA-binding proteins that disrupt RT. 

However precise control of pepsin concentration and reaction time is necessary to prevent the 

tissue from being completely digested. 

SuperScript IV Reverse Transcriptase (ThermoFisher), an M-MLV mutant, reverse 

transcribes in situ RNA while incorporating free aminoallyl-dUTP (aa-dUTP) into cDNA, 

which is then covalently cross-linked by BS(PEG)9. The RNA is removed from the DNA:RNA 

hybrid so that padlock probes can hybridize to target sequences on the cDNA. RCA with Φ29 

and the circularized padlock probes synthesizes rolonies that also have aa-dUTP to be cross-

linked in the tissue. 

The padlock probes are designed with two target-complementary sequences at the 3’ 

and 5’ ends meant to hybridize adjacently on the cDNA and become ligated by Ampligase 

(Lucigen). In between the hybridizing ends is a common linker sequence for the RCA primer 

and a hybridization-based barcode. The barcode is associated with the target gene such that 

decoding the barcodes on rolonies reveals the location of transcripts within the tissue. 
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Decoding the cross-linked rolonies is a process of sequential rounds of FISH using 

decoding probes. The hybridization protocol can be done at room temperature on the 

microscope stage simply by pipetting 0.5 𝛍M of each decoding probe in a 2X SSC and 30% 

formamide buffer onto the sample and incubating for 10 minutes. Stripping the decoding probes 

is done by adding 80% formamide in 2X SSC buffer. Imaging can be done on any fluorescence 

microscope with an objective capable of resolving 0.5 𝛍m-diameter features. We like to use a 

laser scanning confocal because it generates 3D image stacks and reduces out-of-focus 

background. 

Images are analyzed using an in-house MATLAB package but can also be analyzed 

using Starfish, a python package developed by the SpaceTx consortium to analyze data from 

image-based transcriptomics methods like DARTFISH. We worked closely with Starfish 

developers so the two pipelines are very similar. The general principle is to align the images 

across all imaging rounds and then examine the intensities of each pixel across all channels and 

rounds. The intensities form a barcode and if adjacent pixels all share the same barcode forming 

a spot of the expected size, then we can confidently identify the spot as a rolony. 

1.3.2 Padlock probe design 

The first step of designing a DARTFISH experiment is to design padlock probes that 

hybridize and ligate with high specificity to genes of interest. At both ends of a padlock probe 

are hybridization ends, labeled H1 and H2 in Figure 3A, which have a sequence complementary 

to the target. The 5’ end must be phosphorylated in order for the 3’ and 5’ ends to be ligated, 

forming a circular ssDNA. The high specificity of padlock probes is attributed to the 

requirements of both ends hybridizing and a perfect sequence match at the ligation site in order 

for circularization to occur. The hybridization ends are designed to have a melting temperature 
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(Tm) of 55 °C to 65 °C so they are compatible with the thermostable DNA ligase, Ampligase, 

at 55 °C. The higher reaction temperature reduces non-specific hybridization that occurs 

between short complementary sequences at room temperature. 

Selecting the 40-50bp sequence on the gene for the padlock probe to hybridize is not 

trivial. We chose to target all exons and no intronic or untranslated regions, but one could design 

padlock probes to target introns if so desired. We did a comparison of padlock probes targeting 

all exons versus only constitutive exons and found that targeting all exons had better results 

(see Figure S1). To design the actual hybridization sequences, we use ppDesigner, a program 

developed in our lab that (Diep et al., 2012). The genome and coordinates of the selected exons 

are fed into ppDesigner, along with desired parameters such as Tm and length of probes, and 

ppDesigner outputs the best hybridization sequences based on a trained neural network that 

predicts probe efficiency. These sequences are then filtered for specificity by mapping to the 

genome and transcriptome and then removing sequences that have multiple alignments. 

Connecting the two ends is a common linker sequence universal to all padlock probes 

and serves as the primer site for RCA. On rolonies it can also be hybridized by a FISH probe 

to detect all rolonies. Also on the backbone of the padlock probe is a hybridization-based 

barcode that can be read by sequential rounds of FISH. The barcode consists of three to five 

20-nucleotide sequences depending on the number of rounds of sequencing. The length is 

limited by oligonucleotide synthesis technology but as the error rate improves, the potential 

barcode length of DARTFISH can as well.  

The barcode and error-checking decoding scheme is an adaptation of Illumina’s 

BeadArray. It was developed to decode the identity of randomly ordered DNA-linked beads on 

an array, which could achieve higher feature-density than an ink-jet printed microarray 
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(Gunderson et al., 2004). This problem is very similar to decoding the identity of rolonies in 

cells. The 20-nucleotide sequences used in the barcode and decoding FISH probes are shortened 

versions of the 22-nucleotide sequences designed to have minimal cross-complementarity, 

similar GC content and Tm, no runs of a single base longer than five, and low similarity to 

human genomic sequences.  

The decoding scheme includes error-checking, shown in Figure 3B, that accounts for 

the different probabilities of each error type. In our version, every round has three possible ON 

values, corresponding to three fluorophores, and an OFF state. To incorporate an OFF state into 

a rolony, simply omit the 20-nucleotide sequences for that round. Since the most common error 

type is a misclassification of an ON as an OFF, we can use a checksum that equals the number 

of ON states detected in the barcode. The most likely error where one of the rounds transitions 

from an ON state to OFF state would result in a checksum of one less than expected. The less 

likely error where an OFF state is misread as an ON state would result in a checksum of one 

greater than expected. Only if both error types occur concurrently would the rolony be 

misclassified. To implement this, our decoding scheme uses barcodes that have two OFF states, 

represented by zeroes in the barcode, and at least two different ON state values, represented by 

one, two, or three. 
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Figure 3: Padlock probe design. (A) Padlock probes for DARTFISH contain a common linker 

sequence for the RCA primer and a barcode for identifying the probe via FISH-based decoding. 

(B) The signal of each channel (color) is measured for every round and a threshold on the 

brightest channel for every round is used to generate a barcode. The barcode utilizes an error-

checking strategy that requires the checksum, the number of rounds greater than the threshold, 

to be exactly two less than the number of rounds. Barcodes that meet the checksum requirement 

are considered valid, but may be unused for that experiment. The number of unused valid 

barcodes is indicative of the misclassification rate. (C) The number of unique barcodes scales 

exponentially with the number of rounds of imaging, making the simultaneous detection of 

hundreds of genes possible in just five rounds of FISH. 

  



20 

1.3.3 Padlock probe production 

A differentiator between DARTFISH and ISS is that DARTFISH uses thousands of 

ssDNA probes >120bp making it too infeasible to order each probe individually. Instead, an 

oligo pool synthesized in parallel on a DNA microarray was used (Agilent Technologies, 

CustomArray, or Twist Bioscience). The low yield of an oligo pool required PCR amplification 

to produce enough DNA for a DARTFISH run and is described below.  

 The oligo pool was first amplified by PCR in a 100 𝛍l reaction with 0.1 nM template 

oligonucleotides, 400 nM each of AP1V4IU and AP2V4 primers, and 50 𝛍l KAPA SYBR fast 

Universal qPCR Master Mix at 95 °C for 30 s, 20 cycles of 95 °C for 30 s; 55 °C for 45 s; and 

72 °C for 45 s, and 72 °C for 2 min. The amplicon products were purified with Qiaquick PCR 

purification columns and then re-PCR’d in 96 x 100 𝛍l reactions. The conditions for the second 

round of PCR were the same except starting with 0.02 nM template and consisting of only 12 

cycles. The resulting product volume was reduced by ethanol precipitation and then purified 

with Qiaquick PCR purification columns. 

 In order to make the PCR amplicons single-stranded, <200 𝛍g of amplicon was digested 

with 240 U of λ Exonuclease (New England BioLabs) in 1X λ Exonuclease Reaction Buffer for 

2 hr at 37 °C. The ssDNA product was then purified using Zymo ssDNA/RNA Clean & 

Concentrator columns. To remove one of the flanking sequences used for PCR, the ssDNA was 

digested with 25 U USER (New England BioLabs) for 2.5 hr at 37 °C in 1X DpnII Buffer. To 

remove the other flanking sequence, 1 𝛍M RE-DpnII_V4 guide oligo was added, the sample 

heated to 94 °C for 2 min, followed by 37 °C for 3 min to anneal the guide oligo. Then 250 U 

DpnII (New England BioLabs) was added and the DNA was digested overnight at 37 °C in 1X 
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DpnII Buffer. The resulting DNA was then purified with Zymo ssDNA/RNA Clean & 

Concentrator columns. 

The digested probe needs to be size selected to remove partially digested probes and 

background from synthesis errors of the oligo pool (see Figure S2). The probes were purified 

with 6% denaturing TB-urea PAGE and then ethanol precipitated to the highest possible 

concentration, typically ~ 2.5 𝛍M. 

1.3.4 Hydrogel embedding of tissue section and fabrication of a glass-bottom dish 

One issue we constantly faced during early phases of development was the tissue section 

sloughing off after the pepsin digestion step. It was especially noticeable after overnight 

incubation steps at elevated temperatures, likely due to reversal of formaldehyde cross-linking 

(David, Fowler, Cunningham, Mason, & O’Leary, 2011). Inspired by CLARITY and 

Expansion Microscopy, we developed a hydrogel embedding method that uses Acryloyl-X, SE 

(ThermoFisher) to create covalent bonds between primary amines of the tissue and the 

surrounding polyacrylamide gel to reinforce the structural integrity of the tissue. The gel is 5% 

T acrylamide cross-linked with 0.5% C bis-acrylamide, which keeps the pore size large enough 

for diffusion of polymerases, ligases, and 150bp ssDNA probes (see Figure 3). The thickness 

of the gel is 70 𝛍m at time of polymerization by clamping the section to another coverslip with 

a layer of polyimide tape (Kapton) as a spacer in between as shown in Figure 4A. 
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Figure 4: Design of hydrogel embedding technique to preserve tissue integrity. (A) Hydrogel 

polymerization clamp device to control gel thickness uses 70 𝛍m thick Kapton tape in yellow 

as a spacer around the tissue. (B) Formula for calculating standard polyacrylamide monomer 

and cross-linker concentrations used to prepare gel. (C) There is a linear relationship between 

pore size and %T of a polyacrylamide gel for a given %C (Holmes & Stellwagen, 1991). 

Extrapolating from the curve for 0.5% C, the hydrogel used for embedding has a pore radius of 

>100 nm, marked by the red circle. Padlock probes are approximately 50 nm in length and 

polymerases are approximately 20 nm in diameter. (D) Differential interference contrast 

microscopy of human cortical tissue shows significantly more degradation from DARTFISH 

processing without hydrogel embedding. 
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Another issue we faced when switching from fibroblasts cultured in a glass-bottom dish 

to tissue sections on a #1.5 coverslip is how to mount the coverslip to the bottom of a 35 mm 

cell culture dish with minimal risk of leakage. The solution we came up with was to use a laser 

cutter (LaserCAMM) to cut a 10mm circle in the center of a sterile 35 mm cell culture dish 

(Corning Falcon). Covering both sides of the dish with painter’s tape prevents ablated 

polystyrene from leaving a cloudy residue on the surface as well as minimized the protrusion 

at the edge of the cut caused by melted polystyrene. Any protruding lip was shaved off to create 

a flat surface for the coverslip to adhere to. The ideal adhesive we found was ARcare 90106 

(Adhesives Research), a clear medical grade double-sided pressure-sensitive tape used for in 

vitro diagnostic applications. We used a vinyl cutter (Roland) to cut appropriately shaped 

adhesives with a 10 mm hole. After embedding the tissue section in hydrogel, the edges of the 

coverslip were wiped clean and attached to the bottom of the dish using light pressure on the 

adhesive. 

1.3.5 Selection of in situ reverse transcriptase and primer using NGS 

The M-MuLV Reverse Transcriptase (Enzymatics) used by FISSEQ was not optimal 

for the purposes of DARTFISH. M-MuLV has ribonuclease H (RNase H) activity that cleaves 

the RNA as it polymerizes the cDNA strand. Paired with a random nonamer primer, it is 

expected that the same RNA transcript could be primed in multiple locations and produce 

multiple cDNA fragments. RNase H activity would lead to truncated cDNA, which may be 

functional for FISSEQ as CircLigase has lower efficiency for long oligonucleotides. However 

for DARTFISH, having less truncated cDNA product is better as it increases the number of 

potential targets for the padlock probes. 
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Comparing potential reverse transcriptases and primers is not a trivial experiment in 

situ. It cannot be done in vitro because the fixation of RNA within cells changes the conditions 

of the reaction. However quantifying RT efficiency by FISH is not practical. The natural 

difference in gene expression between different regions of heterogeneous tissue is a 

confounding variable that is difficult to control for when comparing rolony counts. Even in 

cultured cells there is variability, which requires sampling large areas to remove. Second, 

confocal microscopy with high numerical aperture (NA) objectives is not the ideal tool for 

imaging large areas. Finally, the numerous conditions to test requires handling multiple dishes, 

which is impractical during the rolony synthesis stage as well as imaging. 

Here we devised a method for quantifying in situ RT efficiency that leverages the 

throughput of NGS to count. The protocol is exactly the same as DARTFISH through the RT 

step in order to keep all variables constant. But instead of cross-linking the cDNA to the tissue, 

the tissue is scraped off the coverslip with a sterile scalpel and placed in a PCR tube. The DNA 

is extracted using the Zymo Quick-DNA kit and then qPCR with technical triplicates is used to 

quantify. We used primers for 18S rRNA to quantify RT efficiency and primers for hLINE as 

a standard to normalize for number of cells in each sample (see Table 3 for sequences). 

The reverse transcriptases we tested were M-MuLV (Enzymatics) from the FISSEQ 

protocol, RevertAid H Minus from BaristaSeq, and SuperScript IV. RevertAid H Minus and 

SuperScript IV have no RNase H activity and should yield more cDNA than M-MuLV. The 

primers we tried were a random nonamer (N9), a quasi-random primer from Sigma Aldrich’s 

Transplex Whole Transcriptome Amplification kit (KN2), and a quasi-random LNA primer of 

our own design. The KN2 primer is 9 random G’s or T’s followed by 2 N’s to create a primer 

that hybridizes randomly and is also less likely to form primer dimers, thus leading to more 
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priming for RT. However, having 9 K’s limits the number of possible sites in the transcriptome 

so the LNA primer was designed. The LNA primer is a random hexamer of A’s, T’s, and +C’s 

where +C is an LNA nucleotide. The LNA ribose is modified with a bridge connecting the 2’ 

oxygen and 4’ carbon that locks it into the 3’-endo conformation making hybridization more 

energetically favorable. Effectively, the Tm is higher so a shorter primer, which complements 

more potential sequences of the transcriptome, can hybridize at the same temperature.  

Using this method, we quantified RT efficiency in human brain with different 

combinations of reverse transcriptases and primers and calculated each condition relative to M-

MuLV Reverse Transcriptase paired with the random nonamer primer (see Table 1). We found 

SuperScript IV Reverse Transcriptase paired with a random nonamer primer had almost 15 fold 

more cDNA from 18S rRNA per cell. 

 

Table 1: Relative Normalized RT Efficiency as measured by NGS 
 

M-MuLV RevertAid H Minus SuperScript IV 

N9 1 N/A 14.7 

KN2 1.9 2.33 4.05 

LNA 0.76 N/A N/A 

N9 + LNA 1.39 N/A 4.13 

 

1.3.6 Decoding by sequential hybridization 

One of the strengths of DARTFISH is the quick and simple decoding process shown in 

Figure 5A that can be done by manually pipetting. The optimal hybridization buffer is 30% 

formamide in 2X SSC and the optimal stripping buffer is 80% formamide in 2X SSC (see Figure 

S3). Imaging is done on a Leica SP8 laser scanning confocal microscope with a 63X 1.4NA 

oil-immersion objective and lasers with wavelengths of 448, 552, and 647 nm. The higher 
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resolution of a high NA objective was found to increase the detection rate when compared to a 

0.75NA objective (see Figure S4). The pixel size is set to 0.15 𝛍m, which satisfies the Nyquist-

Shannon sampling theorem for detecting a 0.5 𝛍m rolony. 

Each round, three decoding probes with fluorophores Alexa488, Cy3, and Cy5, are 

hybridized to rolonies with barcodes containing a complementary 20-nt sequence for that round. 

An important detail is that not every rolony will be hybridized by a probe in every round, the 

error-detection strategy purposely omits two rounds from every barcode as shown in Figure 5B. 

The sample is washed in 1 mL 2X SSC buffer twice before imaging in 2X SSC. Stripping is 

done by adding 80% formamide in 2X SSC, which disrupts the hydrogen bonding between 

probes and rolonies, and washing it away by repeating three times. 1X PBS is used to wash the 

sample twice before the next round of hybridization and as a storage buffer if the sample is to 

be kept at 4 °C. 
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Figure 5: (A) Protocol for decoding rolonies with sequential rounds of FISH on a microscope 

stage. (B) Example of how a barcode on a rolony is decoded through 7 rounds of hybridization, 

imaging, and stripping. Only one of the three probes is shown for each round for illustration 

purposes. Rounds 3 and 6 were designed to be OFF states so there is no site for those probes to 

bind on the rolony. (C) Raw maximum intensity projected images for every channel of every 

round showing what rolonies look like under the microscope and how the decoding works. 
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1.3.7 Image analysis software 

There are two algorithm paradigms for decoding a barcode or reading a sequence when 

the location of the features are not known a priori. The first is spot-based, where there is an 

image that is known to contain all features and image segmentation can identify the location 

and boundaries of all features. Then every feature is assigned a barcode based on the signal at 

that location for every round. The other approach is pixel-based, which assigns a barcode to 

every pixel. Adjacent pixels with the same barcode that also form a spot of the correct size is 

called a feature. 

For DARTFISH and most other in situ RNA methods, pixel-based decoding can detect 

more features than spot-based decoding. Spot-based decoding relies on image segmentation 

that is inaccurate in areas of high rolony density or high background (see Figure S5). However, 

pixel-based decoding can have its flaws as well. Stochastic noise is more likely to be 

misinterpreted as a barcode and lead to false positives. Having an error-checking barcode 

scheme like DARTFISH can reduce that. The clustering step of neighboring pixels can also 

lead to inaccurate quantification if rolonies with the same barcode overlap. This issue can be 

addressed by restricting the size of a feature and applying a watershed transformation. Lastly, 

the pixel-based algorithm is more memory intensive since it has to find the barcode of every 

pixel instead of narrowing it down to just rolonies beforehand. 

In DARTFISH, a FISH probe targeting the common linker sequence can hybridize to 

all rolonies to make it compatible with spot-based decoding but we use pixel-based decoding 

for the higher detection rate. An outline of the image processing and decoding algorithm for 

each field-of-view is shown in Figure 6A. After localizing rolonies in every field-of-view, the 
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field-of-view can be stitched together using their coordinates from the microscope or tile-

stitching function in ImageJ. 

The first step of decoding is to pre-process the images to improve data quality by 

removing noise and correcting for microscope stage drift. Since the confocal microscope 

produces image stacks in the format of multiple single-plane tiffs, a maximum intensity 

projection along the z-axis creates a single tiff image for every channel of every round. Then a 

Gaussian blur is applied with sigma of 100 nm to every image. A top-hat filter can also be used 

to remove spots larger than the expected rolony size (see Figure S6). Images from each round 

are then registered to a reference cycle using the SimpleITK package in python to find the affine 

transformation using the DIC images. Any round can be used as reference. If a round of imaging 

was done with no FISH probes to measure background autofluorescence, the background 

images are subtracted from every image in that channel. 

After the images are pre-processed, the FISH images are decoded. Due to differences 

between channels including fluorophore quantum efficiency, laser, and PMT properties, the 

brightness of pixels varies among channels as shown in Figure 6B. Therefore the intensities are 

normalized by the maximum value in each image. Then for every round, OFF pixels are called 

for any pixel where none of the three channels has a value greater than 0.5 (see Figure S7). 

These pixels have ‘0’ at that digit of their barcode. For remaining pixels, the digit of the barcode 

is determined by the distance between a vector of the normalized intensities in 3-dimensional 

space to the nearest axis shown in Figure 6C. 

With a digit called for every round, the barcode for each pixel is simply constructed by 

concatenating the rounds together. Invalid barcodes, those that don’t have two OFF states and 

at least two different ON state values, are discarded. Neighboring pixels of the same barcode 
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are then clustered and filtered by area and shape to remove noise. Finally a function like 

MATLAB’s regionprops is used to get the location and area of every decoded rolony to create 

a table. 

 

 

 

Figure 6: Hybridization-based decoding of rolony barcodes. (A) Protocol for decoding rolonies 

with sequential rounds of FISH on a microscope stage. (B) Histogram of pixel intensities of one 

round of images show how the different channels have different distributions and need to be 

normalized for an unbiased comparison. (C) Vector of channel intensities for each pixel plotted 

with threshold cut-offs 30° from the axes. (D) Example decoding of pre-processed images. 
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We also worked with the SpaceTx team at Chan Zuckerberg Initiative, who developed 

a Python library called Starfish that can be used to nearly replicate the MATLAB pipeline we 

created. The major difference is that the MATLAB pipeline processes the images of each round 

independently to call a digit before concatenating them to create a barcode. Starfish stores the 

intensity of every channel and round in a single N-dimensional vector and finds the nearest used 

barcode in that N-dimensional space. Despite this fundamental difference, they perform fairly 

similarly, suggesting they are both accurate. The advantage of using the Starfish package is the 

flexibility in trying different pipelines with relatively little effort (see Figure S8).

1.4 Results and Discussion 

1.4.1 Validation in fibroblasts 

The initial experiments used PGP1 fibroblasts cultured in glass-bottom petri dishes 

(MatTek). They are large, quick dividing, and have been previously used for FISSEQ studies. 

Cultured cells are also inherently easier than tissue to obtain FISH data because they have less 

background, are in a monolayer, and suffer no RNA degradation that occurs in tissue between 

the harvesting and fixation timeframe. 

We started with one padlock probe targeting just MALAT1 to establish the optimal 

padlock probe hybridization and ligation conditions (see Figure S9). MALAT1, also known as 

Nuclear Enriched Abundant Transcript 2 or NEAT2, is a highly expressed non-coding RNA 

found in the nucleus. The high abundance, ubiquity, and nuclear specificity of MALAT1 

transcripts makes it useful for evaluating different parameters like concentration and 

temperature of padlock probe capture. The drawback is that most other gene targets are 

expressed many orders of magnitude less than MALAT1 and the number of MALAT1 rolonies 

cannot be expected for other genes. 
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The first probe set was ordered as part of a 12,000 oligo pool from CustomArray that 

targets 240 genes determined to be the most differentially expressed in 1,000 human cortical 

nuclei. Between 5 and 30 probes target each gene with 3,500 probes total (see Figure S10). 

Padlock probes were designed and produced using methods outlined in Section 1.3. Another 

set was ordered in the same pool targeting 165 of the same genes with 2,500 probes but targeted 

only constitutive exons instead of contigs like the first set. 

We established that the padlock probes could be used quantitatively by doing an 

experiment where we captured FirstChoice Human Brain Reference RNA (ThermoFisher) in 

vitro. The RNA was first reverse transcribed using ProtoScript First Strand cDNA Synthesis 

Kit (New England BioLabs) following the standard protocol with the randomized primer mix. 

Then we used the padlock probes to capture cDNA. In another tube we set up the same reaction 

for capturing human genomic DNA. The padlock probe capture protocol is the standard from 

our lab (Diep et al., 2012). Since padlock probes have very high variance in efficiency, we 

characterize efficiencies by capturing genomic DNA that should have a uniform number of 

every target so that the count of captured padlock probes reflects their efficiencies (see Figure 

7B). Then to quantify the number of targets in cDNA we can normalize for the differences in 

efficiencies by dividing. When comparing the normalized padlock probe counts of each gene 

to the FPKM values from RNA-seq of the same reference RNA, we found a good Pearson’s 

correlation of 0.87 shown in Figure 7A. 

By comparing the two probe sets that share 165 of the same gene targets, we investigated 

possible biases our decoding protocol may have for certain barcodes (see Figure 7C). The two 

probe sets had barcodes randomly assigned to each gene and were used to fabricate rolonies in 

parallel PGP1 fibroblast samples. As expected, if there were no biases among barcodes, we 
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found no correlation between barcode counts of the two samples. We also verified that the result 

was not due to non-specificity in either sample by showing that the gene counts between the 

two still had high correlation. The Pearson’s r of less than one can be explained by the small 

sample size, stochastic gene expression, and that the probe sets target different sequences of 

each gene. 
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Figure 7: Padlock probes can be used to quantify target sequences in vitro and in situ. (A) By 

normalizing DARTFISH gene counts for padlock probe efficiency, we show at the bulk level 

that DARTFISH gene expression measurements in fibroblasts have high correlation with RNA 

sequencing. (B) Padlock probe efficiencies can vary over four orders of magnitude and is 

measured by capturing genomic DNA in vitro and sequencing. (C) Using two different probe 

sets targeting the same genes but with the barcodes shuffled, it is evident that there is no bias 

in terms of barcodes. There is no correlation between barcodes of each probe set but there is 

good correlation between genes of each probe set. (D) Example of rolonies decoded in a 

fibroblast. Padlock probes targeted exon contigs and no suppressor oligos were used. 
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In fibroblasts we detected an average of 70 genes per cell and 802 rolonies per cell 

without the use of suppressor oligos. For comparison, FISSEQ reports an average of 200 mRNA 

reads per cell in fibroblasts. Similar to findings in the FISSEQ publication, we noticed an 

enrichment of rolonies in the nuclei as can be seen in Figure 7D. This is despite the fact that the 

padlock probes target only exonic regions. A possible explanation is that the genes we chose to 

target were picked from an analysis of RNA sequenced from single-neurons. Alternatively, it 

could possibly be due to the in situ RT chemistry. In fibroblasts cultured at low cell density, the 

rolonies within the cell form a cloud that can be used for cell segmentation (see Figure S4). 

Ordering thousands of probes as an oligo pool rather than thousands of individual 

oligonucleotides is cost effective and obviates the need to handle thousands of tubes. However, 

it makes modifications to the probe set tricky. Here we have also developed a way to suppress 

specific padlock probes in a probe set by using suppressor oligos. The suppressor oligos have 

complementary sequences to both hybridization arms of the padlock probe that are separated 

by two extra bases. Therefore padlock probes will hybridize to the suppressors but be unable to 

ligate. Through in vitro capture of genomic DNA and sequencing, we identified the highest 

efficiency probes were ones that targeted repetitive regions. By adding suppressor oligos we 

could drastically reduce the number of captured probes in vitro (see Figure S11). Five 

suppressor oligos for the genes KCNC2, GNG4, PDE1A, and PTPRK were used for all 

experiments shown in this section unless explicitly stated. 

Utilizing a longer barcode with six rounds of decoding creates 1,170 valid barcodes that 

satisfy our error-detection scheme. By leaving a fraction of the valid barcodes unused, we can 

calculate the misclassification rate with the following formula where B is the number of 

decoded barcodes and C is the number of designed barcodes (Gunderson et al., 2004).  



36 

𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =  [
𝐵𝑢𝑛𝑢𝑠𝑒𝑑

𝐵𝑢𝑠𝑒𝑑 + 𝐵𝑢𝑛𝑢𝑠𝑒𝑑
] × [

(𝐶𝑢𝑠𝑒𝑑 − 1)

𝐶𝑢𝑛𝑢𝑠𝑒𝑑
] 

To measure the misclassification rate of our decoding algorithm, we designed a probe 

set that used only 391 out of 1,170 valid barcodes. We fabricated rolonies in fibroblasts and 

human brain tissue from Brodmann area 8 and achieved a misclassification rate of 1% and 4%, 

respectively. The higher misclassification rate in tissue is likely due to autofluorescence 

background that is sometimes punctate. This highlights the importance of an error-detection 

scheme. We also used spot-based decoding to inspect rolonies decoded to invalid barcodes and 

found that the majority of invalid barcodes assigned to rolonies were due to a single round 

transition from an ON state to OFF state or OFF state to ON state (see Figure S12). This 

confirms the assumptions of the error-detection scheme.   

1.4.2 Validation in mouse brain and human brain 

When moving onto experiments on mouse and human cortical sections, we had to 

establish the optimal fixation and permeabilization conditions. Since the experimental 

procedure for DARTFISH is a modification of FISSEQ, we used the density of FISSEQ 

rolonies as a metric to evaluate the fixation and permeabilization protocol (see Figure S13). The 

finalized fixation protocol was to immediately dry fresh frozen sections for 3 minutes on a 50 

°C hot plate when removed from -80 °C followed by fixing in 4% formaldehyde buffered in 1X 

PBS at 37 °C for 15 minutes. The permeabilization was with 0.25% Triton X-100 in 2X SSPE 

at room temperature for 10 minutes. Pepsin digestion was with 0.01% pepsin in 0.1 N HCl at 

37 °C for 90 seconds. Another key change we made was to use DEPC-treated buffers if we 

could not guarantee they were RNase-free. 
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For mouse brain we designed a probe set using genes curated by a consortium of 

scientists working on the SpaceTx project at CZI. These genes were picked for their high 

expression, many are canonical cell type markers in the mouse brain, and many more were 

computationally determined to have some cell type specificity in single-cell RNA-sequencing 

data. Ultimately, we targeted 478 genes using 7,133 probes designed similarly to the probes 

used in previous fibroblast experiments. 

DARTFISH with this probe set was done in a coronal section of a C57BL/6 mouse 

harvested postnatal 3.5 months of age. Imaging covered the visual cortex over an area of 0.8 

mm2 with image stacks 10 𝛍m thick and optical sections every 0.3 𝛍m (see Figure 8A). Staining 

DNA with DRAQ5 (ThermoFisher) to segment nuclei, we counted 668 cells within the imaged 

volume. Starfish decoding localized 15.1 rolonies per cell. Within the total volume imaged, 31 

genes had greater than 50 rolonies and 70 genes had greater than 25 rolonies. The rolony counts 

of top genes is shown in Figure 8B. To validate the specificity of DARTFISH, we compared 

the spatial expression of genes with high rolony counts to ISH images from the visual cortex of 

similarly aged mice available on the Allen Brain Atlas. As seen in Figure 8C there is very high 

concordance in gene expression. For example, there is a notable absence of Snap25, which 

encodes a t-SNARE protein, in Layer 1 of both images. In addition, Ptgds, which encodes 

Prostaglandin D synthase and is known to be expressed in glial cells and meninges, also shows 

very high expression in the pia mater of both images. Dysregulation in prostaglandin D synthase 

has been implicated in many neurological diseases including multiple sclerosis, Parkinson’s 

disease, and schizophrenia (Harrington, Fonteh, Biringer, Hühmer, & Cowan, 2006). Given the 

high efficiency of padlock probes for Ptgds, they may be a good candidate for a study looking 

into the spatial gene expression of Ptgds in diseased and control mice. 
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Figure 8: Validation of DARTFISH in a mouse visual cortex using a 478 gene probe set. (A) 

To measure the gene expression profile through the cortical layers a 1.3 mm tile approximately 

1.5 mm from the longitudinal fissure was imaged. Shown here is the nuclei stained with 

DRAQ5. (B) The number of rolonies for each gene drops off sharply after the top three genes. 

(C) Comparing the images from DARTFISH and ISH data in the Allen Brain Atlas shows that 

DARTFISH is able to accurately capture the spatial gene expression in a mouse cortical section. 

The rolonies of each gene in DARTFISH are highlighted in magenta on the tile image from 

(A). 
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1.4.3 Validation in human brain 

DARTFISH in human cortical sections is even more challenging than mouse cortical 

sections. Since human brain tissue isn’t readily available and can only be collected post-

mortem, the RNA quality as measured by RNA integrity number is low and the tissue is fragile, 

which necessitates the hydrogel embedding we developed. The old age of the donors means 

there is more autofluorescence background because lipofuscin accumulates with age, and the 

large size of the human brain makes imaging through all cortical layers time-consuming. 

Moreover, the area of cells in human brain tissue are approximately 1/7th the area of fibroblasts 

we used previously, which makes obtaining a high density of rolonies in cells particularly 

important. The difficulty in applying highly multiplexed in situ RNA methods to human brain 

tissue is evidenced by the lack of any reported studies.  

For initial trials in human brain sections, we decoded rolonies in white matter where the 

tissue was more intact, cell density was higher, and rolonies were more abundant. On average 

we saw 18 genes per cell and 137 rolonies per cell, which matches our results in fibroblasts 

after accounting for the difference in cell size.  

For human brain we designed a probe set using genes identified in Lake et al., 2016 to 

be marker genes for neurons, glial cells, neuronal subtypes, as well as genes used in the Allen 

Human Brain Atlas for ISH. Ultimately we targeted 368 genes using 4,978 probes designed 

similarly to the probes used in previous fibroblast experiments. This is the same 6 round barcode 

probe set used to measure the misclassification rate in fibroblasts. 

DARTFISH with this probe set was done in 10 𝛍m sections of fresh frozen occipital 

cortex (OCtx) and frontal cortex (FCtx) from patient #5342. The post-mortem interval was 14 

hours. In order to image through the cortex from pia mater to white matter a thin tile image of 



40 

0.77 mm2 was taken for each sample. The image stacks had optical sections every 0.3 𝛍m. Like 

the mouse cortex experiment, after decoding, the DNA was stained with DRAQ5 

(ThermoFisher) to perform image segmentation of nuclei. The number of cells and rolonies 

covered in each sample are summarized in Table 2 below. To validate the specificity of 

DARTFISH, we compared the spatial expression of genes that had distinct layer specificity 

with ISH images from the Allen Human Brain Atlas. We also selected a few genes for 

RNAscope validation in adjacent sections of the same sample. As seen in Figure 9D there is 

very high similarity in gene expression distribution when comparing DARTFISH OCtx and 

RNAscope OCtx. As a negative control, we compared DARTFISH OCtx to RNAscope FCtx 

and found the distributions to be significantly different using the 2-sample Kolmogorov–

Smirnov test. 

 

Table 2: Experimental Summary of DARTFISH in Mouse and Human Cortex 

Sample 
Human Frontal 

Cortex 
Human Occipital 

Cortex 
Mouse Visual 

Cortex 

Probe Set 
4,978 probes 
targeting 368 

genes 

4,978 probes 
targeting 368 

genes 

7,133 probes 
targeting 478 

genes 

Imaged Volume 
Dimensions 

150um x 5,000um 
x 10um 

(38 FOVs = 

1.7mm
2

) 

150um x 5,000um 
x 10um 

(38 FOVs = 

1.7mm
2

) 

300um x 1,300um 
x 10um 

(18 FOVs = 

0.8mm
2

) 

Number of cells 1,035 786 668 

Rolonies per cell 21.5 22.8 15.1 

Genes detected 
64 genes > 50 

rolonies 
62 genes > 50 

rolonies 

31 genes > 50 
rolonies 

70 genes > 25 
rolonies 
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Figure 9: DARTFISH in 10 𝛍m human cortical sections containing all six cortical layers. (A) 5 

mm x 150 𝛍m tiles were imaged in each section. (B) The distribution of number of genes per 

cells (top) and number of rolonies per cell (bottom). (C) Spatial distribution of select genes with 

layer specificity represented in a KDE plot of using a Gaussian kernel visualization. The 

expression matches ISH images on the left. (D) Two-sample KS test comparing DARTFISH 

gene distributions in OCtx and FCtx to RNAscope distributions in OCtx shows similarity 

between OCtx samples and dissimilarity between OCtx and FCtx as expected. 
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1.4.4 Conclusion 

 DARTFISH uses thousands of padlock probes with a hybridization-based barcode to 

capture hundreds of reverse transcribed RNA transcripts in situ. With rolling circle 

amplification, the signal-to-noise ratio is high enough to be used in tissues with high 

autofluorescence. DARTFISH is unique by being the only in situ RNA method with high signal 

amplification from RCA and is decoded by sequential rounds of FISH. Using FISH instead of 

sequencing is important in keeping the imaging process fast, simple, and affordable. In Chapter 

1 we showed there is no bias in the barcodes by using two probe sets that shared targets but had 

different barcodes assigned to each target. We also showed padlock probes can be used to 

quantify relative target abundance if the counts are normalized by padlock probe efficiency. We 

first captured cDNA from human brain in a tube and found high correlation with RNA-seq. 

Then we carried out DARTFISH on cultured fibroblasts and again found high correlation of 

total captured padlock probe counts with RNA-seq (r = 0.87). DARTFISH is the only method 

we know of that can use thousands of padlock probes simultaneously and at concentrations in 

the picomolar range.  

The main motivation for developing DARTFISH is for mapping cells in tissue sections, 

a much more challenging task than cultured cells. We demonstrated the use of DARTFISH in 

both mouse and human fresh frozen cortical sections as well as showed layer specific gene 

expression from DARTFISH matched reference ISH images from the Allen Brain Atlas and 

RNAscope data from serial sections. As expected, the human cortex was most difficult to 

process and we had to solve many issues such as tissue degradation and low RNA integrity. As 

far as we know, this is the only highly multiplexed in situ RNA data from human brain tissue. 
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1.5 Appendix to Chapter 1 

Table 3: DNA Oligonucleotides for DARTFISH 

Oligo Name Sequence 

AP1V4IU G*T*AGACTGGAAGAGCACTGTU 

AP2V4 /5Phos/TAGCCTCATGCGTATCCGAT 

RE-DpnII_V4 TGCGTATCCGATC 

RCA_Primer GATATCGGGAAGCTGA*A*G 

dcProbe0-488 /5Alex488N/TGTATCGCGCTCGATTGGCA 

dcProbe0-Cy3 /5Cy3/CGTATCGGTAGTCGCAACGC 

dcProbe0-Cy5 /5Cy5/ACGCTACGGAGTACGCCACT 

dcProbe1-488 /5Alex488N/TCTTGCGTGCGATACGGAGT 

dcProbe1-Cy3 /5Cy3/AACGGTATTCGGTCGTCATC 

dcProbe1-Cy5 /5Cy5/CTGGTTCGGGCGTACCTAAC 

dcProbe2-488 /5Alex488N/AGAACTTGCGCGGATACACG 

dcProbe2-Cy3 /5Cy3/CTACTTCGTCGCGTCAGACC 

dcProbe2-Cy5 /5Cy5/GACGAACGGTCGAGATTTAC 

dcProbe3-488 /5Alex488N/GAATTGTCCGCGCTCTACGA 

dcProbe3-Cy3 /5Cy3/CGTTTGATCGTTCGACCGAG 

dcProbe3-Cy5 /5Cy5/AACTGCGACCGTCGGCTTAC 

dcProbe4-488 /5Alex488N/CGGAATACGTCGTTGACTGC 

dcProbe4-Cy3 /5Cy3/TACCATTCGCGTGCGATTCC 

dcProbe4-Cy5 /5Cy5/CAGGGATCGGTCGAGTACGC 

dcProbe5-488 /5Alex488N/GAGTGTCGCGCAACTTAGCG 

dcProbe5-Cy3 /5Cy3/ACGTCTGCGTACCGGCTTAG 

dcProbe5-Cy5 /5Cy5/CATGCGATTAACCGCGACTG 

dcProbe6-488 /5Alex488N/CACGCTTACGATCCCGCTAT 

dcProbe6-Cy3 /5Cy3/TCGTAACCCGTGCGAAGTGC 

dcProbe6-Cy5 /5Cy5/CTCTCGTAGCGTGCGATGAG 

dcProbe-ALL /5Cy3/CTTCAGCTTCCCGATATCCG 

Common linker CTTCAGCTTCCCGATATCCG 

KN2 KKKKKKKKKNN 

hLINE1_F TCACTCAAAGCCGCTCAACTAC 

hLINE1_R TCTGCCTTCATTTCGTTATGTACC 

18SRNA_F CTCAACACGGGAAACCTCAC 

18SRNA_R CGCTCCACCAACTAAGAACG 
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Figure S1: Padlock probes targeting all exon sequences (contigs) versus padlock probes 

targeting only constitutive exons. (A) Contigs were defined as sequence fragments present in 

any gene isoform and constitutive exons were defined as only the sequence fragments that were 

present in every gene isoform. (B) Rolony and gene counts for an experiment comparing 

padlock probes that target constitutive exons versus contigs and targeting cDNA versus FISSEQ 

rolonies showed that targeting contigs has almost an order of magnitude higher detection rate 

and that targeting cDNA almost doubles the detection rate. 
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Figure S2: Image of a typical gel after size selection of correct band (155bp) during probe 

production. The two bands above the cut are the full length oligonucleotide after PCR (195bp) 

and the oligonucleotide with only one amplification arm removed (175bp). 

 

 

 

Figure S3: Experiment using two FISH probes, one with the correct sequence for hybridizing 

rolonies in the sample and the other with a sequence that isn’t complementary anywhere to the 

rolonies. The results of testing FISH with varying formamide concentrations show that the best 

specificity without sacrificing sensitivity is at 30%. 
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Figure S4: Comparison showing difference in detection rate by using two different objectives. 

The 20X objective is 0.75NA and the 63X objective is 1.4NA. Counting was done on a single 

maximum intensity projected 16-bit image using PISA. The rolonies here are FISSEQ rolonies 

and much higher density than typical DARTFISH experiments. The decoding algorithm is also 

fundamentally different than PISA, nonetheless, this still shows a high NA objective is better 

for resolving rolonies. 

 

 

 

Figure S5: Example of spot-based detection performance on a DARTFISH image from human 

cortical section. Accuracy diminishes in high rolony density areas. 
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Figure S6: Top-hat filtering removes spots larger than typical rolonies and significantly 

improves the misclassification rate. 

 

 

 

Figure S7: Finding the best threshold cutoff for calling an OFF state in the image analysis 

pipeline. Values between 0.01 to 0.1 were tested to see which threshold resulted in the most 

rolonies and lowest misclassification rate. A threshold of 0.05 consistently showed the best 

results across multiple experiments. 
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Figure S8: For field-of-view in Figure S6, images were decoded using three Starfish pipelines: 

2D pixel-based, 2D spot-based, and 3D pixel-based. The correlation between 2D pixel-based 

and the other two pipelines is quite good with a Pearson’s r of 0.86. 

 

 

Figure S9: Tests using only one padlock probe targeting MALAT1, a highly expressed nuclear-

enriched non-coding RNA transcript, were used to determine the best conditions for padlock 

probe hybridization and ligation. An experiment comparing 5 𝛍M and 0.1 pM concentration of 

padlock probe shows no significant difference in number of rolonies. 
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Figure S10: The distribution of number of probes designed per gene in the first probe sets used 

in PGP1 fibroblasts. The probe set targeting contigs targets 240 genes with 3,500 probes. The 

probe set targeting constitutive exon regions targets 165 genes with 2,500 probes. 

 

 

 

  

Figure S11: Suppressor oligos can be used to block the ligation of undesirably high efficiency 

padlock probes in a probe set obviating the need to reorder an oligo pool. (A) The first probe 

set used in fibroblasts had some probes targeting repetitive sequences in the genes: GNG4, 

KCNC2, PDE1A, and PTPRK. They also had extremely high efficiencies when measured by 

in vitro capture and sequencing. (B) Using suppressor oligos in an in vitro capture reaction 

successfully suppressed the number of ligated padlock probes for those genes as evidenced by 

the labeled markers left of the identity line. At the same time all other genes are shifted to the 

right because they make up more of the sequenced library.  
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Figure S12: The distribution of barcodes decoded using spot-based decoding where rolonies 

are first identified using PISA on universal FISH probe. This probe set used a 5 round barcode 

with 3 ON states and used all 240 barcodes so there are no unused barcodes. It shows the most 

common error types are a single transition from an ON to an OFF state and from an OFF to an 

ON state. 

 

Figure S13: FISSEQ generated rolonies in mouse brain and human brain tissue sections show 

characteristic rolony density in the tissue. Cells in the human brain and larger with enrichment 

of rolonies in nuclei.  
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Figure S14: With some modifications to the protocol, DARTFISH is compatible with antibody 

staining after the rolonies are crosslinked. The pepsin digestion step and gel embedding were 

omitted from a DARTFISH experiment of the human cortex followed by staining with anti-

NeuN and a fluorescent secondary antibody. The image here shows one field of view with 

nuclei in blue, anti-NeuN in red, neuronal-marker rolonies marked with cyan dots, and glial-

marker rolonies marked with green dots. 
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CHAPTER 2. MAPPING SINGLE-CELL RNA-SEQ CELLS TO HUMAN AND MOUSE 

CORTICAL SECTIONS 

2.1 Abstract 

To generate a comprehensive reference like the Human Cell Atlas, cells not only need 

to be mapped spatially, they must also be linked with other data types such as molecular profiles 

and morphology. Data from in situ RNA methods like DARTFISH need to be integrated with 

single-cell or single-nuclei RNA-sequencing data. Dissociative single-cell methods like 

scRNA-seq have the advantage of high-throughput and deep de novo sequencing that can lead 

to discoveries of new rare cell populations and types. DARTFISH would best serve as a way to 

add spatial information to these cells by creating a map that scRNA-seq cells can be projected 

onto. In this chapter we attempted to do this with DARTFISH data from Chapter 1. 

2.2 Introduction 

Given the limited volume inside cells, the amount of transcriptome information 

obtainable through microscopy cannot compare to the throughput of NGS. Moreover, all in situ 

RNA methods besides FISSEQ use targeted probes, limiting de novo discovery of new 

transcripts. However, we have shown DARTFISH can provide the spatial information of 

hundreds of genes simultaneously in tissues with high autofluorescence like the human brain. 

In addition, high-throughput single-cell or single-nuclei sequencing data is rapidly being 

published for all human organs (Cui et al., 2019; Reyfman et al., 2019). In order to create a cell 

atlas with the spatial information and the full transcriptome, one popular approach is to project 

cells or cell types from single-cell RNA sequencing onto maps generated by in situ methods 

using genes that intersect both sets of data (Stuart et al., 2019). 
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There are a number of computational steps for mapping to in situ images. The first of 

which is how to cluster RNA spots or rolonies belonging to the same cell. Defining the boundary 

of a cell can be done by using the cloud of RNA spots (Tsanov et al., 2016) or using 

counterstains. However, both these methods work significantly better on cultured cell 

monolayers with separation between cells. Cell segmentation in tissue is not trivial. Without 

complete cell segmentation, assigning spots or rolonies to cells also becomes a hurdle. 

DARTFISH rolonies make the problem even more difficult than traditional RNA FISH because 

the rolonies are sparse. 

The other aspect of mapping the cell types from scRNA-seq onto DARTFISH cells is 

the actual integration of the two types of data. The first published study to map single-cells 

from scRNA-seq to a spatial map used binarized WMISH data from the brain of a marine 

annelid (Achim et al., 2015).  By matching gene expression profiles, it was able to map 81% of 

cells with high confidence using only 72 genes, but in the discussion also noted the information 

content of the genes was very important in determining the success of mapping. Genes that are 

more spatially restricted and have less overlap are most useful. This means the complexity and 

heterogeneity is also a determinant in the success of mapping. With the advent of reference 

atlases of much higher resolution and more gene information, more sophisticated methods 

(Stuart et al., 2019) are available. However, they are only compatible with spatial data nearing 

scRNA-seq level of sequencing depth.  

2.3 Approach 

Before cells from single-cell or single-nuclei RNA sequencing can be mapped, the 

DARTFISH data must be partitioned into cells. DARTFISH data after decoding is a list of RNA 

targets detected along with their spatial coordinates, rolony size, and a quality metric if 
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decoding was done using Starfish. The overlapping field-of-views are stitched together so 

rolonies are all on the same coordinate system and DIC and DRAQ5 stained tile images become 

one large image. 

The first step is to segment cells. There are two paradigms for doing this on in situ data. 

One is using the density cloud and sometimes identity of RNA spots, or rolonies in the case of 

DARTFISH, to predict the boundaries of cells. This method requires a high density of rolonies 

and separation between cells. Of course cells in tissue often interact and make contact with 

other cells via cell junctions. In the cases where rolonies from two cells cannot be distinguished 

by rolony density, the identity of RNA may help separate them. For example if the RNA are 

gene markers for two distinct cell types and there’s a clear division between the two types. 

However, if two of the same cell type are in close proximity, this method will count them as 

one cell. We tried spatially clustering DARTFISH data from human cortex where the cells were 

sparse and the rolonies were mostly in and around the nuclei using density-based spatial 

clustering of applications with noise (DBSCAN). 

The other paradigm is to threshold the stained nuclei image and use the nuclei as an 

approximate center for the cell. The challenge here is accurately thresholding nuclei since their 

brightness from DRAQ5 staining can vary between and within cells. Also, some nuclei are 

packed tightly together and watershed algorithms are required (see Figure S15). We were 

unable to automatically threshold and segment our DRAQ5 stained images to our satisfaction 

so we had to rely on a supervised program to get 100% accuracy. There are also some 

approaches to combine both paradigms, using the nuclei to seed the center of rolony density 

clouds. Currently, no gold standard method exists and cell segmentation algorithms are still 

actively being developed by the community. 
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The second step is to assign rolonies to cells. This is trivial if the rolonies were used to 

segment the cells. If however the nuclei were segmented, a straightforward approach is to assign 

rolonies to the nearest nuclei. This works better with more separation between cells and for 

round cells. The way we implemented this was to use the centroids of segmented nuclei as seeds 

to generate a Voronoi diagram that partitions the image into Voronoi cells. The Voronoi cells 

are regions where every point within the cell is closer to the seed point than any other seed 

point. Therefore we can assign rolonies to whichever Voronoi cell they are in. The weakness 

of this approach, as previously mentioned, is cells like neurons with many projections where 

parts of the cell may be closer to other cell’s nuclei than its own.  

The most accurate solution would be to use a membrane stain to determine the 

boundaries of a cell but unfortunately there is no stain compatible with cortical tissue that has 

been permeabilized, that we are aware of. There is also an effort to use machine learning to 

train a convolutional neural network to segment cells by training it on tens or hundreds of 

thousands of human-segmented images. Creating the training data is an enormous task that will 

likely be crowdsourced. 

After cell segmentation and rolony assignment, the DARTFISH data can be formatted 

as a single-cell gene expression matrix with spatial information linked to each cell. The count 

matrix is of the same format as that of scRNA-seq, so mapping one set of data to the other, or 

integrating the two, seems logical. The two major differences are that DARTFISH counts have 

padlock probe efficiency bias that can be normalized, and the DARTFISH matrix is much 

sparser. Instead of over a thousand genes per cell and over ten thousand reads per cell it is just 

a handful of each. We explored if with the proper normalization we could use dimension 

reduction techniques and machine learning classifiers to integrate the two types of data. 
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2.4 Results 

Using DBSCAN from Python’s scikit-learn with ‘eps’ set to 0.2 and ‘min_samples’ set 

to 10 on human cortex from Brodmann area 8 results in clusters that look accurate as shown in 

Figure 10. One feature of this method is that not every rolony has to be included in a cluster. 

However the optimal parameters need to be adjusted depending on rolony density and cell-to-

cell proximity, which varies within a sample. This means a user has to manually run DBSCAN 

for every tile image, possibly many times. 

 

Figure 10: Density-based spatial clustering of applications with noise applied to rolonies in 

upper layers of human cortex from Brodmann area 8. Two dimensional spatial coordinates for 

decoded rolonies were standardized to have zero mean and unit variance on the left. The color 

coded clusters were found by scikit-learn’s DBSCAN with ‘eps’ = 0.2 and ‘min_samples’ = 10. 

 

We found thresholding nuclei-stained images and partitioning into Voronoi cells to be 

a more robust method, especially for deeper layers and white matter on brain tissue where 

rolonies were more distributed outside of the nucleus (see Figure S15). Images are preprocessed 

by subtracting a low offset value to remove obvious background and then contrast is enhanced 

with contrast-limited adaptive histogram equalization. Otsu’s method is used to threshold and 
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binarize the preprocessed image. Small foreground objects are removed with an opening 

operation and holes are filled with a closing operation. Finally, connected components that 

represent nuclei are labeled and displayed to the user for inspection. The user sees the labeled 

nuclei and original image and can decide whether to approve it, remove it, or use the watershed 

algorithm to split the nuclei into multiple. 

Voronoi tessellation only needs seed points, so regionprops in MATLAB is used to find 

the centroids of every connected component. The VoronoiLimit package in MATLAB is used 

to efficiently calculate the Voronoi cells. Then we assign every rolony to a labeled nuclei based 

on which Voronoi cell it is in. This can be organized as a gene expression matrix with genes 

and cells as rows and columns. It can also be formatted as a rolony table with every row being 

a rolony and columns being properties such as gene name, rolony size, spatial coordinates, and 

cell assignment. 

Our first attempt to classify single cells using DARTFISH that had been spatially 

partitioned was to use the gene markers included in the probe set. Some gene markers are for 

broad cell types: neurons, microglia, astrocytes, oligodendrocytes, and endothelial. Other gene 

markers are for neuron types like interneuron or excitatory neuron. At the finest level, there are 

neuron subtypes identified in Lake et al., 2016. We aimed to classify cells into broad cell types 

and used many genes as markers for each cell type (see Table #). Cells were classified based 

on the plurality of gene markers expressed as long as the plurality exceeded 1/3rd and there were 

more than three rolonies assigned to that cell. 

We tried this approach in a human tissue section from Brodmann area 8 using the same 

4,978 oligo probe set from Chapter 1. We characterized the proportion of neurons in the cortex 

and white matter and found approximately half of all cells in the cortex were classified as 
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neurons using this plurality of DARTFISH rolony gene markers approach. Also no neurons 

were detected in the white matter. We validated these finding by staining an adjacent tissue 

section with anti-NeuN, which only stains the nuclei of neurons. As seen in Figure 11, anti-

NeuN staining confirmed the absence of neurons in white matter and 53% neurons in 0.11 mm2 

cortex. 
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Figure 11: Classification of cells in cortex and white matter of Brodmann area 8 using marker 

genes of major cell types. Voronoi partitioned cells are color shaded by cell type and show 

approximately 50% neurons in the cortex and no neurons in white matter. This was confirmed 

by anti-NeuN staining (bottom images) in an adjacent section where anti-NeuN is red and 

DRAQ5 is blue. 
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We proceeded to apply the same method to human occipital cortex that we imaged 

across all six cortical layers including the pial surface. Like in Brodmann area 8, we detected 

approximately half the cortical cells to be neurons and the majority of cells in white matter to 

be oligodendrocytes. Most interestingly, at the pial surface there were a handful of neighboring 

endothelial cells that seemed to be part of a ring of cells (see Figure 12). Sectioning and 

attachment to the coverslip causes some damage to the tissue, especially at the edges, so it is 

expected to have worse RNA quality and therefore fewer rolonies for cell classification. We 

suspect if we had more rolonies in the cells that form a ring we would see that they are 

endothelial cells that are part of a pial vessel. 

 

 

Figure 12: DARTFISH reveals single cell resolution spatial heterogeneity of human occipital 

cortex. 10 𝛍m fresh frozen sections were processed using DARTFISH targeting 368 genes. 

Bottom left: Rolonies were decoded in a 5mm long tilescan that spanned pial surface and the 

six cortical layers. Top: DRAQ5 stained nuclei were used to seed a Voronoi diagram that 

partitioned rolonies into single cells. Top left: Cells with a gene marker majority of a distinct 

cell type were labeled by color. Left inset: Subpial tissue shown containing cells for blood 

vessels and macrophages. Middle inset: Layer II/III has a mixture of neurons and 

oligodendrocytes. 
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In the human visual cortex we tile imaged across the tissue from end to end and could 

clearly see white matter running down the center. Looking at the abundance of RELN, a layer 

I gene marker, we were able to confirm both ends contained the full six cortical layers. Oddly, 

on the right end, the peak in RELN overlapped with PVALB and CNR1, which should not be 

in layer I. Looking at the tissue by eye, it was a bit denser and more opaque, suggesting the 

tissue might have folded on itself. We confirmed this along with the position of the white matter 

by staining the myelin with a Kluver-Barrera stain in a few adjacent sections from the same 

batch (see Figure 13). The cell type classification looked similar to what we expected based on 

the occipital cortex and the Brodmann area 8 sections we analyzed previously. It is important 

to remember that the cell segmentation and rolony assignment is not accurate for cells with 

projections that extend far away from their nuclei, such as neurons. So the relatively few 

astrocytes and microglia in the cortex could be due to the fact that the probe set has many more 

neuron markers and the transcripts could be in axons and dendrites that are then incorrectly 

assigned to a neighboring nuclei. 
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Figure 13: DARTFISH cell classification in human frontal cortex. Images were tiled across 

cortical layers through white matter and then another six cortical layers. Top tile: KDE plot of 

rolonies for four genes detected along 5 mm tile image. RELN is a marker for layer I of the 

cortex and can be clearly seen on the left end. The right end shows RELN overlapping with 

PVALB, which is due to tissue folding over during sectioning as seen in bottom Kluver-Barrera 

stain. Middle tile: Nuclei stained image. Bottom tile: Voronoi partitioned cells colored by cell 

type classification using gene markers. 

 

More granular subtypes do not have single gene markers. Classifying the spatially 

segmented cells to subtypes requires considering the expression levels of sets of genes. Since 

the subtypes were defined from clusters found from scRNA-seq gene expression matrices, we 

attempted to apply a similar approach on our DARTFISH gene expression matrix. We tried two 

methods that follow the same principle: dimension reduction of scRNA-seq expression matrix, 
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train a classifier given knowledge of the cell types, and then apply the same transformation on 

the mouse visual cortex DARTFISH expression matrix. We chose to map to mouse because the 

rolonies were more enriched in nuclei, theoretically making the cell segmentation and rolony 

assignment more accurate (see Figure S16). For scRNA-seq we used publicly available data 

from mousebrain.org and selected the closest reference, middle cortex cells from a 60 day 

postnatal mouse. The reference included 2,361 cells with 1,564 genes per cell and 74,214 reads 

per cell. 

The first method took the reference gene expression count matrix and removed any 

genes not present in the DARTFISH data. For the DARTFISH gene expression count matrix, 

any cells with less than four rolonies were removed and then counts were normalized by 

padlock probe efficiency. Both sets of data were then normalized by ‘reads per cell’ and 

log(x+1)-scaled. Then PCA was run on reference data with 10 principal components and a k-

Nearest Neighbor (kNN) classifier was trained with reference cell types. Finally, we mapped 

the DARTFISH data with the kNN (see Figure S17). For validation we plotted the positions of 

rolonies and labeled them based on the cell type they belong to. The reference cell types have 

expected layer expression that we compared to. In particular, given the high expression of Ptgds 

in the pia mater and with Ptgds being a gene marker for VLMC2 (vascular leptomeningeal 

cells), we expected to see VLMC2 or VLMC1 labeled at the surface. Unfortunately, using this 

method classified those cells as mature oligodendrocytes, which also express Ptgds. However, 

given the location of those cells, it is much more likely that VLMC2 would be the correct 

classification. 
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Figure 14: DARTFISH rolonies in mouse visual cortex labeled by the cell type they mapped to 

with kNN. TEGLU8 is an excitatory neuron cluster likely found in layer IV and TEGLU3 is an 

excitatory neuron cluster likely found in layer VI. MOL1 is a mature oligodendrocyte and 

VLMC1 and 2 are vascular leptomeningeal cells. Based on high expression of Ptgds in the pia 

mater (see Figure 8C), the cells at the surface should be classified as VLMC but instead they 

are labeled MOL1. 

 For the second method, we tried changing the algorithms. The first change was to use a 

more sophisticated dimension reduction technique called Uniform Manifold Approximation 

and Projection (UMAP). Secondly, we tried to break the classification down into hierarchical 

levels by first classifying broad cell types and then taking those cells and trying to map to a 

more specific subtype. The data scaling and normalization stayed the same. 

 As a proof of concept, we randomly split the scRNA-seq reference into training and test 

data sets. We then used the training set to fit a UMAP embedding and train SVC and kNN 

classifiers on six broad cell types. To validate, we transformed the test set with the UMAP 

embedding and classified with SVC and kNN with an accuracy of 98.8%. To demonstrate a few 

hundred genes is enough for accurate classification, we trimmed the reference scRNA-seq data 

to only the 375 genes present in the DARTFISH probe set and then repeated the same process. 
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With only 375 genes, the SVC and kNN classifiers both had an accuracy of 99.1% (see Figure 

S18). 

 We then followed the same procedure with scaled DARTFISH data and bootstrapped 

DARTFISH data where the gene counts were permuted for each cell. The DARTFISH cells are 

embedded into clusters with a similar topography to the reference cell clusters and the 

bootstrapped data only forms a cluster in the location of some neurons. This suggests the 

DARTFISH cells near non-neuron clusters are not random. 

 

Figure 15: Supervised UMAP dimension reduction of scRNA-seq cells and DARTFISH cells. 

(A) scRNA-seq cells were embedded to cluster six broad cell types: vascular, cycling oligos, 

oligos, neurons, immune, and astrocyte. Neurons in yellow form a disperse cluster reflecting 

the diversity in neuronal subtypes. (B) DARTFISH cells embedded with the same 

transformation leads to clusters that match the reference. (C) Bootstrapped DARTFISH cells 

embedded with the same UMAP transformation only cluster in a location of part of the neuron 

reference cluster. 

As in the first PCA and kNN method, we validated by plotting the UMAP embedded 

SVC classified cells onto the mouse visual cortex (see Figure 16). We expect the Ptgds 

expressing cells in the pia mater to be labeled as vascular cells. However, only four cells out of 

twenty five are classified how we expected. The rest are a mixture of neurons and astrocytes, 

which is unlikely to be true. Also, there should be a majority of oligodendrocytes in the white 

matter but this classification method resulted in very few cells labeled as oligodendrocytes. 
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Figure 16: Mouse visual cortex cells labeled by a support vector classifier trained on UMAP 

embedded scRNA-seq data. Nuclei of vascular cells are colored white, and there are four on the 

pial surface. Based on Ptgds rolonies we would expect almost all cells in the pia mater to be 

vascular cells.  
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2.5 Conclusion 

To generate a comprehensive reference like the Human Cell Atlas, cells not only need 

to be mapped spatially, they must also be linked with other data types such as molecular profiles 

and morphology. Within the scope of this dissertation, that means data from in situ RNA 

methods like DARTFISH need to be integrated with single-cell or single-nuclei RNA-

sequencing data. As mentioned previously, dissociative single-cell methods like scRNA-seq 

have the advantage of high-throughput and deep de novo sequencing that can lead to discoveries 

of new rare cell populations and types. DARTFISH would best serve as a way to add spatial 

information to these cells by creating a map that scRNA-seq cells can be projected onto. In this 

chapter we attempted to do this with DARTFISH data from Chapter 1. 

We first showed that cells can be classified into broad cell types (e.g. neurons, 

astrocytes, oligodendrocytes, etc.) by simply using gene markers included in the probe set of 

DARTFISH. In human cortical sections we can distinguish between white matter and cortex 

based on abundance of neurons. We are also able to detect distinct cerebral structures like blood 

vessels in the pia mater. 

However, when we try to map cell clusters from single-cell RNA-seq the cells do not 

map to where we expect. After discussing with experts in the field who have experience 

integrating scRNA-seq data with other in situ methods, the conclusion was that the current data 

sets do not have enough rolonies per cell to integrate with scRNA-seq. We look into methods 

of improving DARTFISH in Chapter 3. 

 

2.6 Appendix to Chapter 2 
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Table 4: List of gene markers used for cell type classification by plurality 

Astrocytes Endothelial Microglia Neurons Oligodendrocytes 

HPSE2 PAPSS2 SFMBT2 ITGA8 CTNNA3 

GFRA1 RBM20 C10orf11 KIAA1217 OPALIN 

DKK3 TESC SWAP70 GAD2 NKX6-2 

FIBIN ATP10A SLC15A3 CRTAC1 KLHL1 

ABCC9 ITGA11 SLC25A45 ADRA2A CLMN 

FREM2 HCN4 NPAS4 NELL1 CAPN3 

RYR3 MYH11 UNC93B1 SLC17A6 FA2H 

ACOT11 RPH3AL SLCO2B1 GPR83 ASPA 

CDC14A GRAP IL10RA HTR3A EVI2A 

VAV3 PECAM1 KCNJ5 SYT10 CNP 

ANKRD35 ATP8B1 RASSF3 TAC3 GREB1L 

EMID1 RNF152 TMEM119 TRHDE MBP 

LTBP1 GDF15 SELPLG PAH MAG 

SERPINE2 COL24A1 GPR183 CUX2 PPP1R14A 

SLC6A11 RCSD1 RAB20 NOS1 TMEM125 

LRRC3B NOSTRIN PLD4 SRRM4 NHLH2 

FEZF2 CCDC141 TNFAIP8L3 POSTN TMEM63A 

GABRG1 HPGD HS3ST4 PCDH8 MAL 

PDLIM5 SLC12A7 ITGAM PCDH20 ERMN 

ARSJ ECSCR ZFHX3 SYNDIG1L PDE1A 

SLC7A11 DSP MAF BCL11B AOX1 

DCHS2 LAMA2 CCL3 MEG3 MOBP 

MYO10 GNG11 CCL4 MAGEL2 CLDN11 

MCC TEK HMHA1 CELF6 PLD1 

RNF182 ANXA1 GNA15 CRABP1 APOD 

MDGA1   VAV1 CALB2 PDGFRA 

HGF   RASAL3 NECAB2 SPOCK3 

DLC1   LRRC25 ATP2C2 ENPP6 

TOX   TYROBP P2RX5 SEMA5A 

SNTB1   TGFB1 RGS9 MOG 

ADCY8   C5AR1 SDK2 THEMIS 

CNTNAP3   CD37 GNAL CREB5 

RORB   CD33 CELF4 ANKRD18A 

PCSK5   SLC2A5 SLC17A7 GJB1 

NTNG2   TNFRSF1B GPR153 PLP1 

    C1QA GRIK3   

    C1QC NTNG1   

    C1QB TNNT2   
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    LAPTM5 SYT2   

    CSF3R GNG4   

    ZC3H12A GREM2   

    OLFML3 KMO   

    SYT6 PLD5   

    CTSS PDYN   

    FCGR2B LAMP5   

    OLFML2B VSTM2L   

    RGS1 SLC32A1   

    NLRP3 TSHZ2   

    RIN2 PCP4   

    CRYBB1 PVALB   

    OSM HPCAL1   

    NCF4 GALNT14   

    NFAM1 BCL11A   

    LIMS1 TACR1   

    IL1A SMYD1   

    NR4A2 LYPD6B   

    SLC11A1 TBR1   

    INPP5D KCNH7   

    CX3CR1 GAD1   

    CCR1 DLX1   

    CCR5 DLX2   

    CCRL2 PPP1R1C   

    TLR9 COL5A2   

    P2RY13 MARCH4   

    TLR2 IGFBP5   

    CSF1R SLC6A1   

    RASGEF1C ZNF385D   

    CD83 CCK   

    TNF CACNA2D2   

    TREM2 SYNPR   

    NCF1 ROBO2   

    FOXP2 PLCXD2   

    IRF5 CLSTN2   

    MAMDC2 GPR149   

    GSN SST   

    TLR7 RGS12   

      BEND4   

      SLC10A4   
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      KIT   

      NMU   

      FRAS1   

      CXXC4   

      COL25A1   

      NDNF   

      TRPC3   

      CDH9   

      PLCXD3   

      PCSK1   

      TRPC7   

      ADTRP   

      LHFPL5   

      HCRTR2   

      MRAP2   

      CNR1   

      HS3ST5   

      MYB   

      VIP   

      SP8   

      NPY   

      NEUROD6   

      ZNF804B   

      DYNC1I1   

      DLX6   

      DLX5   

      TAC1   

      TMEM130   

      RELN   

      PNOC   

      BHLHE22   

      SULF1   

      CALB1   

      FREM1   

      ADAMTSL1   

      GRIN3A   

      LHX6   

      VAV2   

      OLFM1   

      GLRA2   
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      IL1RAPL2   

      TRPC5   

      L1CAM   

 

 

Figure S15: Cell segmentation using DRAQ5-stained nuclei image. Left: Maximum intensity 

projected image stack of DRAQ5 image. There are many nuclei with no separation or overlap, 

making accurate segmentation challenging. Right: Labeled nuclei after thresholding and 

Voronoi partitioning without user intervention. Cells like #14 need the user to apply the 

watershed algorithm to separate the nuclei in two. 

 

 
 

Figure S16: Cell segmentation of mouse visual cortex. 
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Figure S17: Similarity of each DARTFISH cell to reference scRNA-seq cell types using kNN 

classifier. 

 

 
Figure S18: UMAP embedding of scaled scRNA-seq cells with only 375 genes randomly split 

into training and test sets. Trained SVC and kNN classifiers on embedded test set had 99.1% 

accuracy. 



74 

 

2.7 Acknowledgement for Chapter 2 

 Justin Dang for initial development of nuclei segmentation in MATLAB. Kian Kalhor 

for improving image registration with SimpleElastix and cell segmentation. Yan Wu for his 

cellMapper R package used for mapping scRNA-seq clusters to DARTFISH cells. 

Chapter 2 is coauthored with Wu, Yan; Kalhor, Kian; and Zhang, Kun. The dissertation 

author was the primary author of this chapter. 

  



75 

CHAPTER 3. IMPROVING THE DETECTION RATE OF DARTFISH 

3.1 Abstract 

During the development of DARTFISH, the value in spatial transcriptome data has led 

to many in situ RNA methods being invented and improved. Many of them have been discussed 

already. At the same time we recognized in Chapter 2 that DARTFISH needed to have higher 

sensitivity for it to be integrated with single-cell RNA-sequencing data and useful as a tool for 

creating a reference Human Cell Atlas. DARTFISH has advantages in being highly 

multiplexed, having high amplification, and having a hybridization-based barcode. To improve 

the sensitivity, we explored methods that would obviate in situ reverse transcription, which is 

a bottleneck for detection rate. First we tried using PBCV-1 DNA ligase but ultimately found 

it lacked the specificity of our original DNA ligase. We then tested using SNAIL probes in 

place of padlock probes. The results have been an improvement of at least five-fold and are 

reported here. 

3.2 Introduction 

Fundamentally, DARTFISH needs to use a hybridization-based barcode for decoding 

because it has the advantage of being fast and simple for adoption. Biology labs that want to 

use an in situ RNA method to localize RNA or spatially map single cells would find value in a 

method that does not require expertise to set up an automated temperature-regulated fluidics 

system and budget to purchase a high performance fluorescence microscope. The imaging for 

DARTFISH in its current form can be done by manually pipetting on a microscope in a core 

facility. We also determined RCA to be the best signal amplification for use in tissues with high 

background so that the method is not limited by sample type. But given the complexity and 



76 

heterogeneity of human brain tissue, DARTFISH using padlock probes does not have enough 

rolonies per cell to map scRNA-seq cells. 

One bottleneck in the process of converting RNA to rolonies has been in situ reverse 

transcription. The RNA is crosslinked by formaldehyde to proteins like RNA-binding proteins, 

which makes the transcript less accessible to primers and disrupts the reverse transcriptase as it 

polymerizes cDNA. Reverse transcription was necessary though because the DNA ligases used 

for padlock probe capture require a DNA splint oligo. In Chapter 1 we did our best to optimize 

this step by trying various primers and reverse transcriptases. 

In 2016, we learned of a commercially available DNA ligase that could ligate ssDNA 

on an RNA splint. SplintR (New England BioLabs) is PBCV-1 DNA Ligase from Chlorella 

virus and reportedly has a hundred times higher activity than T4 DNA ligase (Jin, Vaud, 

Zhelkovsky, Posfai, & McReynolds, 2016). It opened the possibility of using padlock probes 

to capture RNA directly without having to reverse transcribe it to cDNA. One concern we had 

was that SplintR is not thermostable at high temperatures like Ampligase, which we had been 

using. That meant we could not raise the temperature to control probe hybridization specificity. 

We rationalized that some background non-specific noise would be acceptable if the number of 

rolonies was high enough, and that we could still use higher temperatures during probe 

hybridization if we made the ligation a separate step after washing away non-hybridized probes. 

The wash step becomes critical because any probes that did not hybridize but also remained in 

the tissue would become non-specific rolonies. This chapter will cover the testing of SplintR 

for use in DARTFISH and why it ultimately failed.  

In 2018, a new type of probe called a SNAIL probe was published as part of the 

STARmap method (X. Wang et al., 2018). SNAIL probes solved the in situ reverse transcription 
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issue by cleverly adding another ssDNA oligo splint into the reaction for the terminal ends of 

the padlock probe to hybridize to for ligation. This way the traditional DNA ligases could be 

used. The target specific regions are no longer at the terminal ends of the padlock probe, but 

one is on the splint and the other is on the padlock such that both need to hybridize to the target 

for ligation to occur (see Figure S19). Since captured SNAIL probes are still circular ssDNA 

they can still be rolling circle amplified. Additionally, because they have a padlock probe 

component, we can insert our hybridization-based barcode into the backbone of the padlock 

and still carry out decoding with the exact same procedure. The second half of this chapter will 

cover our progress in testing DARTFISH with SNAIL probes in mouse and human cortical 

sections. 
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3.3 Results and Discussion 

3.3.1 SplintR in vitro tests 

Our initial SplintR testing was done using thousands of padlock probes in a probe set 

that was designed for capturing FISSEQ rolonies in situ. Since FISSEQ rolonies and RNA have 

the same strandedness, the same padlock probes have sequence complementary to both. The 

padlock probes were used to capture Universal Human Reference RNA (UHRR 740000-41) in 

a tube with 50 U SplintR circularizing the padlocks. The hybridization was done first by heating 

up the probe and template to 95 °C and slowly decreasing the temperature, as described in 

Chapter 1 for in vitro capture. Then SplintR was added along with the appropriate reaction 

buffer and incubated at room temperature overnight. Then RNase H and Riboshredder were 

added to digest the RNA, and Exonuclease I and Exonuclease III were added to digest non-

ligated padlock probes. The remaining circular ssDNA was then quantified by qPCR using a 

pair of primers that hybridize to the common linker sequence on the backbone. 

A range of RNA and padlock probe concentrations were used but the ratio between the 

two were kept constant. 8 ng of probes were used for every 30 ng of RNA. Quantitative PCR 

revealed that even without RNA template to serve as splints in the ligation reaction, padlock 

probes could still be ligated. The difference between Ct of the padlock probes capturing RNA 

and the Ct of the no template control (NTC) increased with lower padlock probe concentration. 

The qPCR curves are seen in Figure 17. 
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Figure 17: The qPCR curves for SplintR in vitro test at various padlock probe and RNA 

concentrations. The legend labels the curves by amount of RNA in the reaction. NTC means 

RNA was absent but all other components including padlock probe were added as if  RNA were 

present. 

The ligation of padlock probes in NTC samples means SplintR can ligate ssDNA on a 

DNA splint as well, although literature says it should favor RNA splints (Jin et al., 2016). The 

improvement of ΔCt at lower padlock probe concentrations further supports the hypothesis that 

the padlock probes are using each other as splints. The ΔCt of 5 cycles for 8 ng padlock probes 

is approximately a 30-fold difference and we deemed that to be promising. This test highlighted 

the importance of washing between hybridization and ligation steps in situ because padlock 

probes hybridized to other probes should be washed away, therefore greatly reducing the noise. 

Next we tried to improve specificity by using formamide, dimethylformamide, Betaine, 

or Extreme Thermostable Single-Stranded Binding Protein (ET SSB) in the reaction. Both of 

these alter the thermodynamics such that it is less favorable to hybridize unless there is 

significant sequence complement. Again, we used qPCR to measure the quantity of captured 
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padlock probes and aimed to find a protocol that maximized the amount of captured padlock 

probes in the template sample and maximize the difference between the sample and NTC. 

Ampligase and a DNA template were used as a reference. As shown in Figure 18, including 

7.5% formamide in the capture reaction had the best combination of specificity and sensitivity. 

ET SSB is not shown because it had poor results in other experiments. 

 

Figure 18: Testing formamide concentrations in padlock probe capture with SplintR to find the 

best condition for sensitivity and specificity. qPCR was used to quantify amount of ligated 

padlocks in the sample and NTC. Higher sensitivity is lower on the x-axis and higher specificity 

is higher on the y-axis. 

3.3.2 SplintR in situ 

 Implementing padlock probe capture with SplintR in situ required splitting the overnight 

padlock probe capture reaction into an overnight hybridization at 55 °C and then a 30 minute 

ligation reaction with SplintR and 7.5% formamide at 37 °C (see Figure S20). In between those 

two steps, washing with 1X PBS was done to remove padlock probes that weren’t hybridized 

to fixed RNA. Another concern was that if washing was done at a low temperature then the 
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padlock probes would non-specifically hybridize during the washes and wouldn’t end up being 

removed. So the washes were done with heated 1X PBS and on a hot plate both at 55 °C. 

 Using SplintR had a greater than five-fold increase in rolonies (see Figure S21) when 

we tested DARTFISH with SplintR and DARTFISH with Ampligase in parallel on adjacent 

human cortical sections. However, when looking at genes detected in the cortex versus white 

matter, only the Ampligase protocol showed a difference in genes detected (see Figure 19). 

Despite great effort to improve specificity we decided to move on from SplintR. 

 

Figure 19: Gene marker rolonies in human brain sections from DARTFISH with SplintR versus 

Ampligase. DARTFISH with Ampligase shows the majority of rolonies in white matter are 

gene markers for oligodendrocytes and in cortex they are more mixed. With SplintR, there is 

no distinction between rolonies in white matter and cortex. 
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3.3.3 SNAIL Probes 

The process of designing SNAIL probes was not dissimilar to padlock probes. SNAIL 

probes have a skeleton, which include the sequences where the two oligos hybridize to each 

other, and two variable sequences that hybridize to the RNA target. The variable sequences 

have 1-3 base pair gap on the RNA target. We also replace the sequencing barcode on the 

backbone of the circular oligo with our hybridization-based barcode. This significantly 

increases the length of the circular oligo because the sequencing barcode is 18 bases and a 

hybridization barcode can be 60 or 80 bases. This both significantly increases the cost of the 

oligo and could have an effect on circularization efficiency. 

The pilot experiment was to test the compatibility of SNAIL probes with longer 

hybridization-based barcodes. We used mouse probe sequences from the STARmap paper but 

replaced the sequencing barcode with our 80 base hybridization-based barcode that made the 

oligo length a total of 119 bases. The genes we chose were Gad1, Slc17a7, and Cux2 because 

of their well-defined specificity that allows us to identify non-specific rolonies. Gad1 and 

Slc17a7 are inhibitory and excitatory neuron markers, respectively, and should rarely be seen 

in the same cells. Cux2 is enriched in upper layers of the cortex and also a gene marker for a 

subset of excitatory neurons. We fabricated rolonies in a 10 𝛍m coronal mouse brain section 

following the STARmap protocol and imaged in the upper cortical layer approximately 1.5 mm 

from the medial longitudinal fissure. As shown in Figure 20, the abundance and location of 

rolonies matched expectations: Gad1 and Slc17a7 rolonies rarely overlapped in the same cell; 

Gad1 positive interneurons were sparser than Slc17a7 excitatory neurons, which is also seen in 

ISH data; The relative abundance of rolonies per cell matched FPKM values from scRNA-seq 

data; And Cux2 was only found in cells that were Slc17a7 positive. 
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Figure 20: SNAIL probes with 80 base hybridization-based barcode decoded in upper layer of 

mouse cortex (red box in ISH images). Rolonies for three genes show good specificity with 

very little overlap of Gad1 and Slc17a7. The abundance of rolonies per cell correlates with 

FPKM from scRNA-seq and the density of Gad1+ and Slc17a7+ cells matches ISH images. 

  

For SNAIL probes in human tissue we needed to design the variable sequence that binds 

to the RNA target. We chose the sequences from hybridization arms of the best padlock probes 

in Chapter 1. Although the ppDesigner algorithm we used for padlock probes is different from 
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Picky2.2 used by STARmap, the general principle of identifying two sequences specific to the 

target is the same. They both consider off-target binding, sequence length, GC content, and 

melting temperature. Four probes were designed for each gene and a 60 base barcode was 

added. Like in the mouse experiment, GAD1 and SLC17A7 were chosen and the other genes 

had layer specificity. 

The results of experiments in human middle temporal gyrus cortex (MTG) were mixed. 

For an unknown reason, many areas in the cortex had very few rolonies. But in areas that had 

rolonies, the number per cell and specificity were better than anything we had seen with padlock 

probes. Figure 21 shows an example of a field-of-view where a number of cells had rolonies. 

A couple GAD1+ had greater than 20 GAD1 rolonies, where with padlock probes we saw at 

most 4 GAD1 rolonies in a single cell. To measure the improvement in detection rate of using 

SNAIL probes, we compared the rolony count for GAD1, SLC17A7, and RORB in MTG cortex 

to that of occipital cortex using padlock probes in Chapter 1. We took the average gene rolony 

count per cell for cells that had at least one rolony of that gene and saw at least five-fold increase 

in number of rolonies (see Figure 21C). In the MTG we imaged 0.1 mm2 of the cortex and in 

the occipital cortex we imaged 0.75 mm2 across the cortex.  

In the MTG section using DARTFISH with SNAIL probes we also saw a GAD1+ cell 

with 5 PVALB rolonies. PVALB is the gene for paravalbumin and is a marker for a canonical 

interneuron subtype. We also saw a cell with SLC17A7, RORB, and FOXP2. From single-

nuclei RNA-seq of human neurons, RORB and FOXP2 are markers for Ex3d, Ex4, or Ex5 

excitatory neuronal subtypes and SLC17A7 confirms that the cell is an excitatory neuron (Lake 

et al., 2016). 
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Figure 21: DARTFISH with SNAIL probes for 7 genes in human MTG cortical section can 

identify neuronal subtypes. (A) The SNAIL probes are highly specific, with only interneuron 

subtype markers in GAD1+ cells and only excitatory neuron subtype markers in SLC17A7+ 

cells. In this area we were able to identify a PVALB+ interneuron and an excitatory neuron 

subtype from the middle layers of the cortex. (B) Violin plots of expression values for excitatory 

neuron subtype marker genes. (C) A gene-by-gene comparison of average rolony counts in cells 

with at least one rolony between DARTFISH with SNAIL probes and DARTFISH with padlock 

probes. 
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In conclusion, DARTFISH results with SNAIL probes have shown promise in initial 

experiments targeting a handful of genes. However, more troubleshooting needs to be done to 

make the method more robust for consistent results. Also, not shown here are results from 

experiments that used SNAIL probes targeting 52 genes. Those rolonies showed no layer 

specificity, similar to the SplintR in situ experiments. We suspect it is due to some barcodes 

possibly being used as non-specific binding sites for probes to anneal to and become ligated. 
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3.4 Appendix to Chapter 3 

 

Figure S19: Diagram of padlock probes and SNAIL probes capturing their respective targets. 

Both can accommodate a barcode (in red) and be rolling circle amplified in situ. 

 

Figure S20: Experimental protocol for DARTFISH using SplintR ligase. Reverse transcription 

is not needed, shortening the protocol by a day and removing a low efficiency bottleneck in the 

protocol. Because SplintR is not thermostable the hybridization and ligation must be done in 

two steps at two different temperatures. The lower temperature of ligation means washing away 

padlock probes that did not hybridize at 55 °C is critical so they do not non-specifically capture 

at 37 °C. 
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Figure S21: Comparing rolony counts between DARTFISH with Ampligase and DARTFISH 

with SplintR. SplintR_1 and Ampligase_1 used probe sets that target the same region on genes 

but are reverse complementary because one captures RNA and the other cDNA. SplintR_2 used 

a different probe set. 
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