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Abstract

Obtaining multiple series of magnetic resonance (MR) images with different contrasts is useful 

for accurate diagnosis of human spinal conditions. However, this can be time consuming 

and a burden on both the patient and the hospital. We propose a Bloch equation-based 

autoencoder regularization generative adversarial network (BlochGAN) to generate a fat saturation 

T2-weighted (T2 FS) image from T1-weighted (T1-w) and T2-weighted (T2-w) images of human 

spine. To achieve this, our approach was to utilize the relationship between the contrasts using 

Bloch equation since it is a fundamental principle of MR physics and serves as a physical basis of 
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each contrasts. BlochGAN properly generated the target-contrast images using the autoencoder 

regularization based on the Bloch equation to identify the physical basis of the contrasts. 

BlochGAN consists of four sub-networks: an encoder, a decoder, a generator, and a discriminator. 

The encoder extracts features from the multi-contrast input images, and the generator creates 

target T2 FS images using the features extracted from the encoder. The discriminator assists 

network learning by providing adversarial loss, and the decoder reconstructs the input multi-

contrast images and regularizes the learning process by providing reconstruction loss. The 

discriminator and the decoder are only used in the training process. Our results demonstrate 

that BlochGAN achieved quantitatively and qualitatively superior performance compared to 

conventional medical image synthesis methods in generating spine T2 FS images from T1-w, 

and T2-w images.

Graphical Abstract

Keywords

Magnetic resonance image; Image synthesis; Multi-contrast imaging; Geneartive adversarial 
networks; Autoencoder regularization; Bloch equation

1. Introduction

Magnetic resonance imaging (MRI) is the preferred non-invasive tool for diagnosing patients 

suffering from back pain. MRIs provide diagnostic information by showing a variety of 

contrasts between tissues. T1-weighted spin-echo (T1-w) and T2-weighted spin-echo (T2-w) 

images are routinely scanned to evaluate various spinal disorders (Saifuddin, 2001; Currie 

et al.,2011). Both sequences are essential parts of the spine MRI examination, but bright 

signal of the fat can obscure underlying pathology such as bone marrow edema (BME) and 

metastasis (Delfaut et al., 1999). Therefore, there is a consensus that adding fluid-sensitive 

sequences such as fat saturation (FS) T2 weighted imaging or short tau inversion recovery 

(STIR) which can aid in the detection of inflammation, edema, and neoplasms, although 

the spine MRI protocols vary depending on the in-stitutions (Saifuddin, 2001; Currie et al., 

2011; Delfaut et al., 1999; Maeder et al., 2018). However, because MRI has a relatively long 

scanning time per pulse sequences compared to other imaging modalities, such as computed 

tomography (CT) and X-ray imaging, acquiring FS images in addition to T1-w and T2-w 

images for patients suffering from pain that makes it difficult to lie down for long periods of 

time places a burden on both the patient and the hospital. MR image synthesis can overcome 
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this problem with low cost by generating those images. This study aimed to acquire FS 

T2-weighted spin-echo (T2 FS) images from T1-w and T2-w images in order to obtain 

enough information for an accurate diagnosis without additional scanning.

Bloch equations which serve as the physical basis of MR sequences are a set of 

phenomenological equations used to understand nuclear magnetic resonance. Because the 

contrast of an MR images is based on the MR sequence, Bloch equations can be used 

as prior information for MR image synthesis. A model-based approach using this prior 

information has been proposed in studies related to MR parameter quantification map 

reconstruction (Maier et al., 2019; Huang et al., 2012; Sumpf et al., 2014; Zhao et al., 2015). 

Most MR image synthesis studies do not use the Bloch equations as prior information. 

Kim et al. showed that the deep learning network can learn the relationship between each 

contrast images by training and testing the deep learning network with the simulation dataset 

created on the Bloch equation basis, although, again, Bloch equations are not used as prior 

knowledge (Kim et al., 2020). Jog et al. synthesized the target-contrast images by inferring 

the imaging formula of the source images using Bloch equations and a prepared atlas. 

However, the atlas needed in this method requires not only MR contrast images, but also 

corresponding quantitative maps (Jog et al., 2015).

In this study, we proposed a Bloch equation-based autoencoder regularization generative 

adversarial network (BlochGAN) for MR image synthesis. BlochGAN uses multi-contrast 

MR images to generate other contrast images without additional scanning. The main 

contributions of BlochGAN are as follows.

First, our BlochGAN can efficiently learn the relationship between MR images of various 

contrasts given in the training process based on the Bloch equation and can properly 

generate target-contrast images. To our knowledge, there has been no study about medical 

image synthesis using the Bloch equation and generative adversarial network (GAN) or 

convolutional neural network (CNN) models. In this study, our BlochGAN generated spine 

T2 FS images from spine T1-w and T2-w images.

Second, the BlochGAN has a different network structure from other models used in image 

synthesis methods. BlochGAN consists of four sub-networks: an encoder, a decoder, a 

generator, and a discriminator. Figure 1 shows a simplified structure of the image generation 

part, which consists of the encoder, the decoder, and the generator. The encoder extracts 

important features from input images for the generator and the decoder. The generator 

creates a target-contrast image based on the features extracted by the encoder. The decoder 

generates MR parameter maps based on the features from the encoder and restores the input 

images like an autoencoder with the Bloch equation functions. Because the relationships 

between the input and the target-contrast images are based on the MR parameter maps and 

the Bloch equations of each sequence, the decoder in the training process could help the 

encoder to learn the efficient feature extraction for generating the target-contrast images. 

Several studies on image segmentation and classification have shown that the use of an 

autoencoder regularization in the training process improves a feature extraction performance 

of the encoder (Myronenko, 2018; Dorent et al., 2019; Wu et al., 2020; Zhang et al., 2020). 

However, to our knowledge, there has been no attempt to apply autoencoder regularization 
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in MR image synthesis. This study is the first attempt to improve MR image synthesis 

performance by applying the autoencoder regularization based on the Bloch equation. 

A preliminary work for this study was presented in 2021 at the annual meeting of the 

International Society for Magnetic Resonance in Medicine (Kim et al., 2021).

2. Related Works

Various medical image synthesis methods have been developed based on several basic 

technologies. These methods can be classified into three groups: 1) registration-based 

methods, 2) intensity transformation-based methods, and 3) deep learning-based methods.

2.1. Registration-based methods

The earliest medical image synthesis methods were registration-based methods, which 

are based on registration algorithms using atlas and deformation fields (Miller et 

al., 1993; Burgos et al., 2014; Lee et al., 2017). These methods construct atlas 

A = (x, y) ∣ x ∈ X, y ∈ Y  based on co-registered images x and y from a source domain 

X and a target domain Y. Here warping function W is generated by the test image x1 

and its nearest neighbor x2 ∈ A. The target domain image y1 which corresponds to the test 

image x1 is obtained as follows: y1 = W y2 , where y2 ∈ A is a corresponding image of x2. 

Because these methods use only one input image and its nearest neighbor, they are difficult 

to apply when the morphological difference between x1 and x2 is severe. Therefore, methods 

were developed that construct a multi-atlas to reconstruct images through spatially varying 

weighted summation of multiple neighbors. Methods were also developed that use one or 

more input images for advancing the output image quality (Burgos et al., 2014; Lee et 

al., 2017). However, these methods also have limitation, in that they rely heavily on the 

composition of the atlas, and thus they show low performance when data deviate from the 

pathological information of the atlas.

2.2. Intensity transformation-based methods

Intensity transformation-based methods are similar to registration-based methods in that they 

constitute atlases. However, there is a difference in that the process is performed in units of 

patches. These methods divide the input image x1 into n ∈ ℤ small-sized patches and select 

atlas patches associated with each input patch from the composed patch-based atlas. The 

output patch is generated as a linear combination of selected atlas patches, and finally, the 

output patches are collected to become the target image y1 (Roy et al., 2011). Hofmann et al. 

were the first to use this method to generate pseudoCT images for attenuation correction of 

PET images (Hofmann et al., 2008, 2011). MR image example-based contrast synthesis 

(MIMECS) generated magnetization prepared rapid gradient echo images from T1-w 

spoiled gradient recalled images by using an example-based approach with sparse dictionary 

reconstruction (Roy et al., 2013). Ye et al. generated T2-w images from T1-w images 

by using a modality propagation (MP) method that applied a data-driven regularization 

approach to label propagation (Ye et al., 2013). And Cordier et al. improved the performance 

of the MP method by applying a multi-scale patch-based atlas and label-matching technique 

using tissue masks (Cordier et al., 2016). These intensity transformation-based methods 
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improved the performance of synthetic MRIs, but they need a lot of time for the patch-

matching process. Chen et al. proposed a multi-channel registration framework to reduce 

the high computation cost of the single-way image synthesis method (Chen et al., 2017). 

To generate better images, Jog et al. proposed a new MR image synthesis framework based 

on random forest regression incorporating the information of pulse sequence equations and 

the atlas composed with MR images and the corresponding quantitative maps (Jog et al., 

2015). REPLICA, regression ensembles with patch learning for image contrast agreement, 

that applied random forest regression based on multi-scale patches of multi-modality inputs 

for overcoming these temporal limitations. REPLICA showed improved results compared to 

other intensity transformation-based methods (Jog et al., 2017).

2.3. Deep learning-based methods

Deep learning methods, which show high performance in many image processing fields, 

have also been used for medical image synthesis. Van Nguyen et al. proposed a location-

sensitive deep network (LSDN) that can cross-generate T1-w and T2-w images by using a 

multi-layer perceptron composed of four layers including two hidden layers (Van Nguyen 

et al., 2015). Sevetlidis et al. constructed an encoder-decoder model based on a CNN to 

generate fluid attenuated inversion recovery images and T2-w images from T1-w images 

(Sevetlidis et al., 2016). Multimodal imaging proposed by Chartsias et al. showed an MR 

image synthesis method that could be applied to multi-modality inputs by constructing a 

U-net-like encoder based on CNN and a decoder using fully convolutional layers (Chartsias 

et al., 2017). The contrast-conversion deep neural network (CC-DNN) generates STIR 

images including detailed information using T1-w, T2-w, and gradient echo images for knee 

diagnosis. To preserve detailed information, it is composed of only convolutional layers 

without any down or up-sampling, and it is trained by various loss functions for registration 

error compensation and representing variations of label images (Kim et al., 2020).

As a field of deep learning, GANs have shown high performance with regard to image 

generation. Conventional GANs use random noise as their inputs, but Nie et al. proposed 

a GAN-based model composed of fully convolutional networks using MR images as input 

to generate corresponding CT images (Nie et al., 2018). Pix2pix GAN, which is used in 

various image translation, uses a patch-based Markovian discriminator and pixel-wise error 

loss function to generate a clearer image compared to conventional GANs (Isola et al., 

2017). Dar et al. showed high-quality MR image synthesis using single-modality inputs 

by using perceptual loss function based on pre-trained VGG-16 networks to represent the 

texture of target-contrast images (Dar et al., 2019). MustGAN integrates all features from 

both single and multiple inputs by composing a multi-stream network (Yurt et al., 2021). 

Unsupervised learning for medical image synthesis with GAN is performed with cyclic loss 

function designed to enable the network to train with unpaired data (Dar et al., 2019; Karthik 

et al., 2021). Several studies integrate MR image synthesis with MR image super-resolution 

based on GAN (Dar et al., 2020a; Yurt et al., 2020). Dar et al. designed a network that 

converts under-sampled MR images into full-sampled images using full-sampled images 

of another contrast (Dar et al., 2020a). Moreover, Yurt et al. proposed a semi-supervised 

super-resolution network trained with full-sampled images of another contrast (Yurt et al., 

2020).
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3. Method description

3.1. Theoretical background

3.1.1. Generative adversarial network for image generation—GAN is a neural 

network architecture designed for image generation and consists of two sub-networks based 

on CNN: generator (G) and discriminator (D). G receives input vector z and generates 

output image y = G(z) whose distribution is pg. D distinguishes whether the output image y
generated by G is a real or generated image. D is trained to perfectly distinguish y from y, 

and G is trained to make pg close to the target distribution ptarget so that D cannot distinguish 

y from y. The learning of GAN is the hostile training of these two sub-networks, and this is 

expressed as follows:

min
G

min
D

Ey ∼ ptarget[logD(y)] + Ez ∼ pz[1 − logD(G(z))], (1)

where pz denotes the distribution of z and E denotes expected value. Conventionally, input 

vector z is a random noise and pz is normal distribution. z could be a latent variable or a 

latent feature and is usually the source image in image translation. However, the learning 

process may be unstable, because it hardly considers the distance between the decision 

boundary of D and the fake sample y. Mao et al. applied the least square function to D to 

overcome this limitation and stabilize the learning process (Mao et al., 2017).

The distribution of generated images in image translation is statistically dependent on the 

distribution of source images. Pix2pix GAN showed that conditional GAN is generally 

effective for image translation based on this statistical dependency (Isola et al., 2017). As the 

least square function and conditional input mentioned above are applied to the discriminator, 

the objective functions LD, LG for learning D and G are defined as follows:

ℒD = 1
2Ey ∼ ptarget (D(x, y) − 1)2 + 1

2Ex ∼ px D(x, G(x))2 , (2)

ℒG = 1
2Ex ∼ px (D(x, G(x)) − 1)2 , (3)

where x and px denote the source image and its distribution.

3.1.2. Physics for multi-contrast magnetic resonance imaging—Spin-echo 

pulse sequences are one of the most commonly used pulse sequences for diagnosis of 

musculoskeletal problems. A spin-echo pulse sequence is composed by repeating a 90 slice 

selective radio frequency (RF) pulse and a 180 refocusing RF pulse. The slice selective RF 

pulse is repeated for each repetition time, TR, and is followed by one (typical spin-echo 

pulse sequence) or more (fast or turbo spin-echo; TSE) refocusing RF pulse. The position 

of the refocusing RF pulse is half of the echo time, TE, which is MR signal sampling time. 

The signal obtained by the spin-echo pulse sequence is represented by the following Bloch 

equation:
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S = S0 1 − exp− TR
T1 exp− TE

T2 , (4)

where S 0 represents a signal amplitude without an excitation event and is proportional to 

the proton density value of tissue in the body, voxel size, data sampling period, number of 

phase-encoding steps, number of excitations, and strength of the magnetic field (Melhem 

et al., 1997). T1 and T2 refer to T1 and T2 relaxation times for each tissue, respectively. 

The MR contrast images obtained by the spin-echo pulse sequences include the T1-w image 

and the T2-w image. T1-w and T2-w images are determined by the TR and the TE. Images 

acquired by the sequences with short TR and short TE are usually considered as T1-w 

images, and with the long TR and long TE are usually considered as T2-w images (Helms et 

al., 2008; Bitar et al., 2006).

There are many reasons that fat suppression is used in MR imaging. The main purposes are 

to suppress the signal of normal adipose tissue to obtain visually superior contrast images, 

and to characterize abnormal tissues related to fat such as bone marrow infiltration (Delfaut 

et al., 1999). There are some various effective methods for fat suppression including the 

Dixon method, water excitation method, and inversion recovery-based methods (Del Grande 

et al., 2014). Among them, the most popular and versatile method is a chemical shift 

selective saturation (CHESS)/fat-saturation (Fat-Sat) method (Haase et al., 1985). Because 

fat and water have a chemical shift difference of 3.5 ppm (parts per million), they have a 

resonance frequency difference under the same external magnetic field (about 145 Hz in 

1.0 T, and about 210 Hz in 1.5 T, about 420 Hz in 3.0 T). CHESS uses this difference in 

resonance frequency to apply a saturation RF pulse that can selectively excite only water 

or fat before applying an imaging pulse of the target sequence, so that a signal of only one 

component can be obtained during the target sequence. Therefore, it is hard to represent 

this sequence to an equation. For example, when the magnetization of fat is excitation into 

the X-Y plane due to the saturation RF pulse, a spoiling gradient is applied immediately to 

effectively dissipate the fat magnetization signal by dispersing the X-Y components of the 

fat magnetization. Then, the following imaging pulse affects only the magnetization signal 

of water (Del Grande et al., 2014).

3.2. Our approach

We propose BlochGAN, which generates spine T2 FS images from multi-contrast (T1-w 

and T2-w) spine MR images. BlochGAN can learn the relationship between T1-w, T2-w 

and T2 FS images and generate corresponding T2 FS images from the given T1-w and 

T2-w images. BlochGAN is composed of four sub-networks: an encoder, a decoder, a 

generator, and a discriminator. The encoder receives multi-contrast images x ∈ ℝw × ℎ × 2

(w and h denote the width and height of the image, respectively) as network inputs and 

extracts the features to be delivered to the decoder and the generator. The decoder generates 

MR parameter maps from the features of the encoder and restores synthetic input multi-

contrast images x ∈ ℝw × ℎ × 2 with the Bloch equation functions. The generator receives 

features from the encoder and generates synthetic T2 FS images y ∈ ℝw × ℎ. Finally, the 
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discriminator distinguishes y generated by the generator from the acquired T2 FS image, 

y ∈ ℝw × ℎ. The detailed architecture of BlochGAN is shown in Fig. 2.

3.2.1. Bloch equation-based generative adversarial network for MR image 
generation—In the GANs conventional learning process, a discriminator is used to 

efficiently train generators. In the same way, the discriminator of BlochGAN is used to 

efficiently train the encoder and the generator of the BlochGAN, which are responsible for 

generating synthetic T2 FS images, y, which is defined as below:

y = Ge(En(x)), (5)

where Ge and En denote the generator and the encoder of BlochGAN. According to 

equation (2) and (5), the loss function ℒD for learning the discriminator of the BlochGAN is 

represented as follows:

ℒD = 1
2Ex, y (D(x, y) − 1)2 + 1

2Ex D x, Ge(En(x))2 . (6)

According to equation (3) and (5), adversarial loss function ℒadv is represented as follows:

ℒadv = 1
2Ex (D(x, Ge(En(x))) − 1)2

(7)

The decoder of BlochGAN was used for regularization to help the encoder avoid overfitting 

problem and learn efficient feature extraction during training. To do so, the decoder is 

trained to figure out the T1, T2, and S0 values which is a basis of the relationships between 

T1-w, T2-w, and T2 FS images and reconstructs the input T1-w and T2-w images based 

on the Bloch equation. Therefore, according to equation (4), the regularization function ℒR
used in BlochGAN is defined as follows:

ℒR = 1
w × ℎ × 2 ∑

i

w
∑

j

ℎ
∑

k

2
xi, j, k − B(De(En(x)))i, j, k , (8)

B(t; TR, TE) = t3 1 − exp− TR
t1 exp− TE

t2 , (9)

Where TR = TRT1 − w, TRT2 − w , TE = TET1 − w, TET2 − w , and t = t1, t2, t3 . t1, t2, and 

t3 ∈ ℝw × ℎ represent hypothetic quantitative T1, T2, and S 0 images, respectively. De denotes 

the decoder of BlochGAN. According to equation (8), the decoder is trained to generate 

hypothetic quantitative T1, T2, and S 0 images, and they generate x = B(De(En(x))) together 

with equation (9) with the given TR and TE used to obtain x.
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When the source and target images are perfectly registered, the training process of most 

conventional image translation networks relies on the pixelwise loss function between y
and y. However, this pixelwise loss function aims to train the networks not for generating 

semantically similar images, but for generating mathematically similar images. Johnson et 

al. proposed a perceptual loss function that measures semantic differences by comparing 

high-level features obtained through a pre-trained classification network (Johnson et al., 

2016). This perceptual loss function has been tried in various studies and is known to 

measure the similarity of images more robustly than the pixel-wise loss function (Johnson 

et al., 2016; Ledig et al., 2017; Yang et al., 2018). In the learning process of BlochGAN, 

we used both pixel-wise l1 loss function, ℒl1, and perceptual loss function, ℒvgg based 

on a pre-trained VGG-16 (Simonyan and Zisserman, 2014). The two loss functions are 

represented as the following equations:

ℒl1 = 1
w × ℎ ∑

i

w
∑

j

ℎ
yi, j − Ge(En(x))i, j , (10)

ℒvgg = 1
nk × wk × ℎk

×

∑
c

nk
∑

i

wk
∑

j

ℎk
V GGk(y)c, i, j − V GGk(Ge(En(x)))c, i, j ,

(11)

where VGGk(y) denotes the feature of the kth convolutional layer in the VGG-16 network 

pre-trained with the ImageNet dataset for the input y, and nk, wk, and hk denote the number 

of channels, width, and height of it, respectively.

As a result, the total loss function, ℒEDG, for the encoder, the decoder, and the generator, 

which constitute the image generation part of BlochGAN, is defined as the weighted 

summation of each loss function as follows.

ℒEDG = λadvℒadv + λRℒR + λl1ℒl1 + λV GGℒV GG (12)

where λadv, λR, λl1 and λVGG denote the relative weighting for each loss function.

3.2.2. Experimental details—The detailed structures of the encoder, the decoder, 

the generator and the discriminator are shown in Fig. 2. The encoder which generates 

256-channel feature maps from the inputs, is composed of a 7 × 7 convolutional layer, 

a 3 × 3 convolutional layer, two down-sampling layers, and four residual blocks. The 

decoder is composed of three 3 × 3 convolutional layers, two up-sampling layers, and 

three residual blocks. The generator has the same structure as the decoder. The decoder 

and the generator receive the features from the encoder and generate hypothetical MR 

parameter maps and synthetic T2 FS images, respectively. The Bloch equation function is 

used to generate synthetic input images with the hypothetical MR parameter maps. For 

the encoder, the decoder, and the generator, every convolutional layer is followed by an 

instance normalization layer, and a rectified linear unit (ReLU) as an activation function. 
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The hyperbolic tangent is used as the last activation function following the last convolutional 

layer of the generator. Haar wavelet decomposition and reconstruction used as a down- 

and up-sampling layer, respectively, to preserve detail information. Low frequency data 

generated from the wavelet decomposition is delivered to the next layer as layer input, 

and the remaining high frequency data is delivered to the decoder and the generator at the 

same resolution for the wavelet reconstruction. The residual block consists of sequential 

connection of a 3 × 3 convolutional layer, an instance normalization layer, ReLU, a 3 

× 3 convolutional layer, and an instance normalization layer. There is a residual path 

connecting input and output of the residual block. The discriminator is composed of four 4 

× 4 convolutional layers, and each convolutional layer is followed by a leaky ReLU, and an 

instance normalization layer. (2, 2) strides are applied to the first three convolutional layers 

and the others apply (1, 1) strides.

The optimizer used in the training process of BlochGAN was Adam, and 0.002 learning 

rate was applied. Various λadv, λR, λl1 and λVGG were applied to obtain optimal results: 

λadv=[1,2,3,4,5], λR=[100, 200, 300], λl1=[100, 200, 300], and λVGG=[100, 200, 300]. 

Based on the performance of the validation set, the optimal parameters were selected as 

follows: λadv, 5; λR, 100; λl1, 200; λVGG, 200.

3.3. Data acquisition and preprocessing

All experiments in our study were conducted under the approval of the institutional review 

board. We used two datasets, dataset 1 and 2. Dataset 1 was obtained from a total of 

240 subjects, 40 subjects for each age group from their 20s to 70s. It was acquired from 

2015 to 2016, regardless of diseases. Dataset 2 was obtained from a total of 70 subjects 

suspected of bone metastasis or red marrow hyperplasia. It was acquired from 2012 to 2019 

regardless of age and gender. Both datasets were obtained by clinical 1.5 T MRI scanners 

(Avanto, Simens, Medical Solutions, Erlangen, Germany) from the same hospital (Gangnam 

Severance Hospital, Seoul, Korea). Seventeen slices for each contrast (T1-w TSE, T2-w 

TSE, T2 FS TSE images) were obtained from each subject. The pulse sequence parameters 

for each contrast were as follows: TR = 450 ms, TE = 9.8 ms, echo train length (ETL) = 3, 

matrix size = 448 × 448, acquisition matrix size = 448 × 314, field of view = 350 × 350 mm2 

(T1-w TSE); TR = 3760 ms, TE = 100 ms, ETL = 20, matrix size = 512 × 512, acquisition 

matrix size = 512 × 338, field of view = 350 × 350 mm2 (T2-w TSE); TR = 4580 ms, TE = 

113 ms, ETL = 17, flip angle = 150 matrix size = 448 × 448, acquisition matrix size = 448 

× 224, field of view = 350 × 350 mm2 (T2 FS TSE). To unify the matrix size, the T2-w TSE 

images were resized by bicubic interpolation to a size of 448 × 448 for each slice. Because 

the intensity values of the MR images are relative values unlike quantitative images such as 

CT images, all the images were not normalized by individual, by volume, or by contrast. 

They were divided by the maximum intensity of the entire datasets to be entered into the 

network as values between 0 and 1.

Our training and the testing process apply four-fold cross validation using dataset 1. In each 

fold, 120 subjects from 240 subjects (2040 slices from 4080 slices for each contrast) were 

used for the training, 60 subjects (1020 slices for each contrast) were used for the validation, 
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and the remaining 60 subjects (1020 slices for each contrast) were used for testing. Dataset 2 

was used as an extra test set for the network trained with dataset 1.

3.4. BlochGAN model comparison

The main contribution of BlochGAN is the application of the Bloch equation-based 

autoencoder regularization for proper network learning. In addition to this, we used the 

up- and down-sampling process using the wavelet decomposition and reconstruction to 

generate images more accurately. In order to validate their effect, we performed two 

comparisons. First, we showed the performance of the Bloch equation-based autoencoder 

regularization by comparing three different models: BlochGAN, BlochGAN(AE), 

and BlochGAN(NAE). BlochGAN(NAE) uses no autoencoder regularization and 

BlochGAN(AE) uses conventional autoencoder regularization instead of the Bloch equation-

based autoencoder regularization. For this model, the skip connection between the 

intermediate features of the encoder and the decoder is not used for proper learning. 

Secondly, we performed other comparisons to see the effect of the resizing process 

using wavelet transform. We compared BlochGAN with BlochGAN(NW), which uses max-

pooling layers and up-sampling layers instead of wavelet decomposition and reconstruction.

3.5. Comparison with other methods

We compared the performance of BlochGAN with other conventional methods, two CNN-

based methods including Multimodal imaging and CC-DNN, and two GAN-based methods 

including Pix2pix GAN and pGAN. All methods were implemented on an Intel Xeon 3.50 

GHz octa-core CPU E5–1620 v4, 126 GB memory, and GeForce GTX 1080 Ti. Multimodal 

imaging was implemented on Keras 1.2.2 with Theano 1.0.2 backended based on Python 

2.7, and CC-DNN and Pix2pix GAN were implemented on Keras 2.2.4 with TensorFlow 

1.9.0 backended based on Python 2.7. pGAN and BlochGAN were implemented on Pytorch 

0.4.1 based on Python 2.7. The hyperparameters used for training Pix2pix GAN and pGAN 

were test in various combinations and selected as follows based on the results of the 

validation set: λ, 100 in 1, 10, 100, 200, 300 (Pix2pix GAN); λ, 100 in 10, 100, 150; λVGG, 

100 in 10, 100, 150 (pGAN).

3.6. Quantitative analysis

Two quantitative evaluation metrics, peak signal-to-noise ratio (PSNR) (Wang et al., 2004) 

and structural similarity (SSIM), were used for quantitative comparisons. PSNR evaluates 

image distortion and noise level between two images and SSIM evaluates the structural 

similarity of two images based on the human visual system (Hore and Ziou, 2010; Yu 

et al., 2019). All of the resulting images were normalized from 0 to 1 for applying both 

quantitative evaluation metrics. Paired t-tests (McDonald, 2009) were used to demonstrate 

statistical differences between the evaluation results. A p-value less than 0.05 indicated that 

the two groups were statistically different.

3.7. Expert analysis

Expert evaluation was conducted by two musculoskeletal radiologists (Y.S.H and H.Y.K, 

each with four years of experience in musculoskeletal radiology) for 30 subjects (15 subjects 
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were randomly chosen from each dataset). The reference images were provided to them 

without subject information, and the synthetic T2 FS images generated by five different 

medical image synthesis methods (Multimodal imaging, Pix2pix GAN, CC-DNN, pGAN, 

and BlochGAN) were also provided to them sequentially in a random order. They compared 

the reference and the generated T2 FS images from a clinical point of view and scored them 

on a scale one to five for seven different categories. The scoring criteria were as follows: 

1, bad; 2, poor; 3, fair; 4, good; 5, almost perfect. The scoring categories were as follows: 

bone marrow, BME, disc, cerebrospinal fluid (CSF), muscle, spinal cord, and nerve root. We 

used intraclass correlation coefficient (ICC) to assess the level of interobserver agreement. 

This coefficient is interpreted as follows: 0.751.00, excellent; 0.600.75, good; 0.400.60, fair; 

00.40, poor (Cicchetti, 1994).

4. Results

4.1. Model comparison results

Figure 3 shows the comparison between the generated T2 FS images by BlochGAN(NAE), 

BlochGAN(AE), and BlochGAN. The images of the first and the second rows are from 

dataset 1, and the images of the third and the fourth rows are from dataset 2. The second 

and the fourth row images are enlarged images of the areas indicated by the red arrows in 

the first and the third row images, respectively. As the images show, all three comparison 

methods properly reproduced the contrasts and the texture, so that they were similar to the 

reference images. However, the edema regions inside the vertebral bodies indicated by the 

red arrows in the enlarged images were not properly represented in both BlochGAN(NAE) 

and BlochGAN(AE). In the reference image in the second row, edema regions are in the 

three vertebral bodies. BlochGAN properly represented such regions brightly. On the other 

hand, BlochGAN(NAE) and BlochGAN(AE) represented only a part of the middle vertebral 

body brightly and the rest of such regions with low contrasts. In the fourth row images, 

BlochGAN properly represented most of the edema region in the vertebral body which has 

high contrast in the reference image, but BlochGAN(NAE) and BlochGAN(AE) represented 

only a central part of the region with high contrast.

The quantitative comparisons of the three networks is shown in Table 1. In all quantitative 

evaluations, BlochGAN achieved the highest scores. Compared to BlochGAN(NAE) and 

BlochGAN(AE), BlochGAN achieved significantly higher scores in all categories of dataset 

1 and 2 (p < 0.001). The number of parameters used in each of BlochGAN, BlochGAN(AE), 

and BlochGAN(NAE) is 12,888,757 (2,764,737 for the discriminator and 10,124,020 

for others), 12,516,980 (2,764,737 / 9,752,243), and 12,141,874 (2,764,737 / 9,377,137), 

respectively.

Figure 4 shows examples of reconstructed T1-w and T2-w images by BlochGAN(AE) and 

BlochGAN. As shown in the images, both BlochGAN(AE) and BlochGAN reconstructed 

the input multi-contrast images almost identically. Synthetic input images reconstructed by 

BlochGAN(AE) achieved 41.8869 PSNR, 0.9636 SSIM scores on average, and synthetic 

input images reconstructed by BlochGAN achieved 42.7403 PSNR, 0.9641 SSIM scores on 

average.
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For the training set, the result images of BlochGAN(NAE), BlochGAN(AE) and BlochGAN 

achieved MSE of 4.0756 ± 0.9281×103, 4.0942±0.9567×103, and 4.0456±0.9289×103, 

respectively, and Wasserstein distances of 64.0038 ± 8.3872, 64.7908 ± 8.7691, and 65.4122 

± 7.5860, respectively. For the test set, BlochGAN (NAE), BlochGAN (AE), and BlochGAN 

achieved MSE of 4.3082 ± 1.0145 × 103, 4.2156 ± 1.0321 × 103, and 3.9446 ± 1.0220 

× 103, respectively, and Wasserstein distances of 66.6301 ± 5.4938, 67.3097 ± 5.1740, 

and 63.9565 ± 6.3218, respectively. In both MSE and Wasserstein distance scores, both 

BlochGAN(NAE) and BlochGAN(AE) showed worse results in the test set than in the 

training set, but BlochGAN showed similar results in both the training and test sets (As 

a result of t-test, no significant difference exists between the results of BlochGAN for the 

training and test sets).

Figure 5 shows images generated by two different models, BlochGAN(NW) and 

BlochGAN. The images of the first and the second rows are from dataset 1, and the images 

of the third and the fourth rows are from dataset 2. The second and the fourth row images 

are enlarged images of the areas indicated by the red arrows in the first and the third row 

images, respectively. Results from the two models are similar to the reference T2 FS images. 

However, BlochGAN(NW) did not accurately represent the boundary of degenerated area 

in the vertebral body in the second row images of Fig. 5 or the closed circular structure of 

the spinal cord as shown in the fourth row images of Fig. 5. On the other hand, BlochGAN 

properly represented the clear boundary of the degenerated area in the vertebral body in 

the second row images of Fig. 5, and the circular structure of spinal cord at the connection 

point to the vertebral body in the fourth row images of Fig. 5. It also accurately identified 

the small circular edema region at the middle of the vertebral body in the fourth row 

images of Fig. 5. Table 1 shows the quantitative evaluation results of both networks. For 

both datasets, BlochGAN achieved significantly higher SSIM scores than BlochGAN(NW). 

For PSNR scores, BlochGAN and BlochGAN(NW) were not statistically different (p ≥ 

0.05) for dataset 1. On the other hand, BlochGAN achieved statistically higher scores than 

BlochGAN(NW) (p < 0.01) for dataset 2.

4.2. Comparisons with other methods

Figure 6 compares the synthetic T2 FS images generated by various MR image synthesis 

methods for dataset 1. The result images of pGAN and BlochGAN have a texture similar to 

the reference image, while other images have blurring artifacts and artificial textures. The 

second, fourth, and sixth rows of Fig. 6 are enlarged images of the area indicated by the red 

arrows in the first, third, and fifth rows, respectively. The images in the second row of Fig. 

6 show the degenerated area in the vertebral body, but the area could not be identified in 

the result of Multimodal imaging. In the Pix2pix GAN results, the contrast of the vertebral 

body is lower, and the contrast of the degenerated area is much higher than in the reference 

image. The CC-DNN image represents the degenerated area, but it has a morphological 

difference and an artificial texture. The results of pGAN shows a similar texture to the 

reference image, but the shape of the degenerated area is morphologically different from 

the reference image. On the other hand, the degenerated area in the result of BlochGAN 

has a texture and bottleneck structure that are similar to the reference image. In the fourth 

row, the red and the yellow arrows indicate the blood vessel and the nucleus pulposus of 
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the intervertebral discs, respectively. The images of Multimodal imaging, Pix2pix GAN, 

and CC-DNN show the blurring artifacts in the nucleus. On the other hand, the results of 

pGAN and BlochGAN clearly represent the hook-like shape of the nucleus pulposus. Also, 

Multimodal imaging, Pix2pix GAN, and CC-DNN do not properly represented blood vessels 

extending toward the inside of the vertebral body, whereas pGAN represented a shape that is 

close to it. Moreover, BlochGAN properly represented its entire closed shape. The last row 

images of Fig. 6 indicate BME that plays a key role in diagnosing spine disease. Multimodal 

imaging and pGAN did not properly identify the edema region. Pix2pix GAN and CC-DNN 

identified BME, but there are blurring artifacts and contrast differences compared to the 

reference image. BlochGAN, on the other hand, represented the bright edema region with a 

contrast and texture similar to the reference image.

Figure 7 shows the comparison of T2 FS images generated by different MR image synthesis 

methods for dataset 2. The second and fourth rows of Fig. 7 are enlarged images of the 

area indicated by the red arrows in the first and third rows, respectively. In the first row of 

Fig. 7, the images, except for BlochGAN, show entirely different contrast compared to the 

reference. Only BlochGAN represents the suppressed contrasts like the reference image. The 

red arrows in row 2 images in Fig. 7 indicate BME regions. pGAN failed to identify the 

edema region. Multimodal imaging and CC-DNN identified the edema region, but they has 

different contrasts from the reference image. Pix2pix GAN properly represents the edema 

region but failed to represent the proper texture. On the other hand, in the BlochGAN 

image, the edema region and the overall contrasts and textures are similar to the reference 

image. The yellow and red arrows of row 4 images in Fig. 7 indicate tiny BME regions. 

Only BlochGAN properly identified them with contrast and texture similar to the reference 

images.

Figure 8 shows the quantitative evaluation results of the compared MR image synthesis 

methods. A and B are for dataset 1, and C and D are for dataset 2. A and C show PSNR 

scores, and B and D show SSIM scores. For both datasets, BlochGAN achieved the highest 

quantitative evaluation scores among all the compared methods. For all categories of dataset 

1 and 2, the quantitative scores of BlochGAN and those of other methods were significantly 

different (p < 0.001).

Table 2 shows the expert evaluation results. Interobserver agreement for the expert 

evaluations was excellent (ICC, 0.7912). BlochGAN achieved the highest scores and the 

lowest standard deviation among the compared methods for all categories. There was 

a significantly large difference between the BlochGAN results and the results of other 

comparative methods (p < 0.001). Multimodal imaging, Pix2pix GAN, and CC-DNN 

showed large difference for all categories compared to BlochGAN. In the case of pGAN, 

the average difference was less than 0.1 point from BlochGAN in most categories, but the 

difference was 0.56 points for BME which is the most clinically important in fat suppression 

images. BlochGAN is the only method that scored 4 points or more in all categories among 

the compared methods.
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5. Discussion

Compared to other non-invasive diagnostic modalities, advantage of MRI is that it can 

provide multiple contrasts. However, acquiring images with different contrasts adds scan 

time, which can be a burden for both patient and hospital. To solve this problem, studies 

have been conducted to develop a fast MRI reconstruction that can generate an MRI using 

less data (Eo et al., 2018; Zhu et al., 2018; Eo et al., 2020; Dar et al., 2020b). Another 

way to shorten the time it takes to acquire multi-contrast images is to generate them without 

scanning. That is, it is possible to shorten the total scan time through image translation, 

which generates images of different contrasts from existing images. In this study, we 

evaluated the performance of BlochGAN when generating T2 FS images from T1-w and 

T2-w images for spine MRI. Our proposed network, BlochGAN, is an artificial neural 

network model that combines GAN and the Bloch equation, which is a basic principle of 

MR physics. Compared to other conventional image synthesis methods, BlochGAN showed 

a markedly better performance.

As we shown in Section 4.2, conventional methods such as Multimodal imaging and Pix2pix 

GAN, have limitations when it comes to representing texture and detailed information of 

target-contrast images. In 2019, the CC-DNN proposed improved restoration of detailed 

information by adding custom loss functions for compensating misregistration error and 

representing image variation (Kim et al., 2020), but it could not completely resolve the 

problems of blurring artifacts and artificial textures. pGAN, proposed in 2019, can represent 

the proper textures in a way that is similar to the target-contrast MR images (Dar et al., 

2019). It achieves this by taking adversarial loss function and perceptual loss function 

which can help the network learning for high-level features using the pre-trained VGG-16 

network. This combination of the perceptual loss function and GAN shows some advantages 

in representing the textures of acquired MR images but has difficulty in representing detailed 

information used for diagnosis. Our proposed BloclhGAN represents the textures of the 

acquired MR images and restores detailed information by using perceptual loss function, 

adversarial loss function, and the Bloch equation-based autoencoder regularization. Figure 

6 and 7 show that BlochGAN properly represents the contrasts and textures similar to 

the reference images and also properly restores detailed structures of tissues necessary for 

diagnosis.

This study demonstrated the performance of the structural elements introduced by model 

comparison. The most important element of BlochGAN is the Bloch equation-based 

autoencoder regularization. The distribution covering the Bloch equation is followed 

because the MR image data is obtained based on the Bloch equation and other various image 

processing algorithms. Therefore, network models are trained in automatic consideration 

of the Bloch equation when they trained with the MR image data. However, the dataset 

used for the training is sampled from the distribution covering not only the Bloch equation 

but also noise. Moreover, when network models are trained with only the dataset, they 

do not learn the real distribution but only the sampled distribution. These can cause an 

overfitting problem. Several studies on image classification and segmentation have already 

demonstrated a decrease of the overfitting problem and performance improvement by 

regularizing features from the encoder using an autoencoder (Myronenko, 2018; Dorent et 
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al., 2019; Wu et al., 2020; Zhang et al., 2020). However, applying proper regularization 

using the conventional autoencoder regularization technique is difficult for MR image 

translation, because it does not consider the physical basis of the MR image data and 

only focuses on preserving the key information of input images to restore themselves. 

On the other hand, the BlochGAN regularization technique is based on the MR physics. 

The decoder of BlochGAN aims to generate hypothetical quantitative T1, T2, and S 0 

maps and combine them using the Bloch equation to restore the input images. Therefore, 

the decoder regulates the encoder to generate the appropriate features to make the 

proper T1, T2, and S 0 maps. This regularization is also effective for the generator 

because target-contrast MR image is also based on the same T1, T2, and S 0 maps. The 

results of Section 4.1 show that BlochGAN is more robust to overfitting compared with 

BlochGAN(NAE) and BlochGAN(AE). Although both BlochGAN(AE) and BlochGAN 

reconstructed the input multi-contrast images almost identically, quantitative and qualitative 

differences exist between the T2 FS results of BlochGAN(AE) and BlochGAN. In addition, 

BlochGAN(NAE) and BlochGAN(AE) showed worse performance in the test than in the 

training, whereas BlochGAN showed similar performance in both the test and training.

In Section 4.1, BlochGAN achieved higher quantitative evaluation scores than 

BlochGAN(NAE) and BlochGAN(AE). However, a difference between BlochGAN and the 

other two comparative models exists beyond the numerical difference. Figure S1 in the 

Supplementary materials shows that BlochGAN has a lower risk of misrepresenting the 

critical regions compared to the other two comparative models by comparing the histograms 

of the intensity difference between the results of the three models and the reference T2 

FS images. Using the model in clinical use is difficult if such risk is high because the 

purpose of acquiring T2 FS image is to obtain information necessary for accurate diagnosis. 

In this regard, BlochGAN can provide more reliable images than BlochGAN(NAE) and 

BlochGAN(AE). In addition, the network should be applicable to various devices for clinical 

use. Table S1 and Figure S2 in the Supplementary materials show the performance of 

BlochGAN(NAE), BlochGAN(AE), and BlochGAN on the external device dataset. In these 

experiments, BlochGAN showed better performance compared to BlochGAN(NAE) and 

BlochGAN(AE). This indicates that BlochGAN is less susceptible to the device differences 

compared with the other comparative models.

In a conventional U-net structure, a pooling layer such as max-pooling improves the learning 

efficiency of the network by discarding some feature information that the network regards 

as not important (Goodfellow et al., 2016). However, information, such as high frequency 

information, discarded in this process could be important for successful image synthesis. 

Therefore, loss of such information may lead to the omission of a detailed structure from 

the generated image. It is possible to restore detailed information without abandoning 

the learning efficiency of the network by using wavelet decomposition and reconstruction 

because wavelet transformation can reduce and restore the image size without discarding 

any information. Ye et al. theoretically supported this and showed performance improvement 

in image segmentation (Ye et al., 2018). In this study, we compared BlochGAN(NW), which 

applies the max-pooling layer and interpolations for the down- and up-sampling process, and 

BlochGAN. The latter one generated more detailed outputs. The difference of quantitative 

evaluation scores between the two models was higher in SSIM scores than in PSNR scores. 
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SSIM and PSNR are quantitative evaluation metrics used to evaluate the structural difference 

between two images. SSIM quantifies the structural difference between two images based 

on the human visual system, PSNR is mainly used to determine the noise level difference 

between two images because it is calculated based on the pixelwise mean squared error 

and maximum intensity of the images. That is, PSNR gives more focus on noise and 

SSIM gives more focus on structural difference (Hore and Ziou, 2010; Yu et al., 2019). 

Therefore, it can be seen that the images generated by BlochGAN(NW) and BlochGAN 

have a similar noise level, but the structural difference between the reference images and 

BlochGAN(NW) results is statistically bigger than the difference between the reference 

images and BlochGAN results. This indicates that the downand up-sampling process by 

wavelet decomposition and reconstruction preserves more detailed structural information 

than the max-pooling layer and the up-sampling layer.

In the current study, when radiologists evaluated the similarity of the generated T2 FS 

images to the acquired T2 FS images used as standard reference, pGAN and BlochGAN 

showed higher agreement than other conventional image synthesis methods in all evaluated 

structures and tissues. In particular, BlochGAN showed highest degree of agreement 

for BME, which is the main clinical goal to be obtained through the acquisition of 

fat-suppressed T2-weighted images. Although it should be further verified by using more 

meticulously obtained data later whether the images synthesized using BlochGAN are 

not inferior to the fat-suppressed T2-weighted images in the evaluation of the lesion of 

bone marrow, we believe that this study was sufficient at least to verify the feasibility of 

BlochGAN for the evaluation of BME.

The use of 3D data instead of 2D data is a good way to improve inter-slice consistency 

and solve the misalignment in zaxis. And many studies of medical image processing 

showed the use of 3D data produces better results than using only 2D data (Dou et al., 

2016; Mzoughi et al., 2020). However, a hardware limitation exists in the implementation 

because 3D-based networks require several times bigger memory than 2D-based networks. 

Therefore, the current experiments were carried out for 2D data. Table S2 shows the results 

of the additional experiments for BlochGAN using multi-slice inputs. BlochGAN using 

multi-slice inputs achieved higher quantitative evaluation scores than BlochGAN using 

single-slice inputs for both dataset 1 and 2. Increasing the dimension of the input is expected 

to improve BlochGAN performance based on these results. This can be realized through 

network optimization and hardware development and will be covered in our future works.

This study showed the performance of BlochGAN for MR image synthesis. In various 

experiments, synthetic T2 FS images generated by BlochGAN were quantitatively and 

qualitatively superior to the synthetic images generated by other comparative methods. 

However, the T1-w and T2-w spin-echo sequences used in this study are the most basic 

and simple pulse sequences which do not consider many additional variables (e.g., field 

and RF inhomogeneities). Therefore, BlochGAN should be verified with more complicated 

pulse sequences and various anatomies to be used clinically. Figure S3 and Table S3 in the 

Supplementary materials show that BlochGAN can be applied to knee STIR MRIs. Based 

on these results, BlochGAN is expected to be applied to more complicated pulse sequences 

Kim et al. Page 17

Med Image Anal. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and different anatomies although more validation is still needed. Thus, our future work will 

focus on the validation of BlochGAN under various conditions.

6. Conclusion

In this paper, we demonstrated the feasibility of our proposed network, a Bloch equation-

based autoencoder regularization generative adversarial network, termed BlochGAN, which 

generates T2 FS spine MR images from T1-w and T2-w images without additional scanning. 

It is a first attempt to train the network in medical image synthesis using a Bloch equation. 

Our network achieved quantitatively and qualitatively higher performance compared to other 

conventional image synthesis methods. Our method can potentially be used to shorten the 

scanning time for acquiring multi-contrast MRIs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Bloch Equation-based Autoencoder Regularization GAN (BlochGAN).

• BlochGAN uses multi-contrast MR images to generate other contrast images.

• BlochGAN can learn the multi-contrast MR relationship based on the Bloch 

equation.

• Performance of BlochGAN is quantitatively and qualitatively demonstrated.

• BlochGAN can reduce the scan time of multi-contrast MR images.
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Fig. 1. 
A simplified structure of the image generation part in BlochGAN. The network input images 

are fed into the encoder, which generates features from them. Moreover, the features are fed 

into the Bloch equation-based decoder and the fat saturation T2-weighted (T2 FS) image 

generator, and the reconstructed inputs and the synthetic T2 FS images are generated.
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Fig. 2. 
The entire network structure of BlochGAN, which consists of four subnetworks: 1) The 

encoder which generates features from the multi-contrast magnetic resonance (MR) images. 

2) The decoder which generates hypothetical MR parameter maps from the features 

provided by the encoder. The reconstructed input images are generated from the hypothetical 

MR parameter maps by applying the Bloch equations. 3) The generator generates fat 

saturation T2-weighted (T2 FS) images from the features provided by the encoder. 4) The 

discriminator classifies both real T2 FS images and generated T2 FS images from the 

generator.
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Fig. 3. 
Acquired T1-weighted, T2-weighted, and fat saturation T2-weighted (T2 FS) images 

and generated T2 FS images using BlochGAN(NAE), BlochGAN(AE), and BlochGAN. 

BlochGAN(NAE) uses no autoencoder regularization, and BlochGAN(AE) uses 

conventional autoencoder regularization instead of the Bloch equation-based autoencoder 

regularization of BlochGAN. Images in rows 1 and 2 are from dataset 1, and images from 

rows 3 and 4 are from dataset 2. Rows 2 and 4 are the magnified images of the areas in rows 

1 and 3 indicated by the red arrows. Red arrows in rows 2 and 4 indicate edema regions.
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Fig. 4. 
Comparison between reference and reconstructed T1- and T2-weighted images by 

BlochGAN(AE) and BlochGAN from dataset 1 (rows 1 and 2) and 2 (rows 3 and 4). 

BlochGAN(AE) uses conventional autoencoder regularization instead of the Bloch equation-

based autoencoder regularization of BlochGAN.
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Fig. 5. 
Acquired T1-weighted, T2-weighted, and fat saturation T2-weighted (T2 FS) images 

and generated T2 FS images using BlochGAN(NW) and BlochGAN. BlochGAN(NW) 

uses max-pooling layers and up-sampling layers instead of wavelet decomposition and 

reconstruction. Rows 1 and 2 are from dataset 1 and rows 3 and 4 are from dataset 2. Rows 

2 and 4 are the magnified images of the areas indicated by red arrows in rows 1 and 3. Red 

arrows in row 2 indicate degenerated areas, and red arrows in row 4 indicate bone marrow 

edema regions and portions of spinal cords.
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Fig. 6. 
Acquired T1-weighted, T2-weighted, and fat saturation T2-weighted (T2 FS) images and 

generated T2 FS images using Multimodal Imaging, Pix2pix GAN, CC-DNN, pGAN, and 

BlochGAN from dataset 1. Rows 2, 4, and 6 are the magnified images of the areas indicated 

by red arrows in rows 1, 3, and 5. Red arrows in row 2 indicate degenerated areas. Red 

and yellow arrows in row 4 indicate the blood vessel and the nucleus pulposus of the 

intervertebral discs, respectively. Red arrows in row 6 indicate bone marrow edema regions.
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Fig. 7. 
Acquired T1-weighted, T2-weighted, and fat saturation T2-weighted (T2 FS) images and 

generated T2 FS images using Multimodal Imaging, Pix2pix GAN, CC-DNN, pGAN, and 

BlochGAN from dataset 2. Rows 2, 4, and 6 are the magnified images of the areas indicated 

by red arrows in rows 1, 3, and 5. Red arrows in row 2 indicate bone marrow edema (BME) 

regions. Red and yellow arrows in row 4 indicate tiny BME regions.
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Fig. 8. 
Quantitative evaluation results of the proposed method and other comparative methods. (A, 

B) Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) scores for dataset 

1. (C, D) PSNR and SSIM scores for dataset 2. The numbers in parenthesis indicate the 

number of parameters used in each network.
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