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ABSTRACT OF THE DISSERTATION

On The Theory and Application of Pattern Maximum Likelihood

by

Shengjun Pan

Doctor of Philosophy in Computer Science

University of California, San Diego, 2012

Professor Alon Orlitsky, Chair

Pattern Maximum Likelihood (PML) is a method of probability estimation

that works well for large alphabets. It does not assume that all elements from the

unknown alphabet have been observed. PML outperforms the traditional Maxi-

mum Likelihood for sequences, and it is particularly useful when the sample size

is small.

In this dissertation we study both the theory and application of PML. For

the theory part, we extend the the previous results on the properties of PML,

and also show how to find the PML distributions analytically for patterns of sim-

ple forms. For general patterns, PML probabilities can be approximated using

a previously developed EM algorithm, which we will prove to be equivalent to

xiii



a generalized Gradient Ascend Method. We also use the algorithm to conduct

experiments on different distributions and evaluate the performance of PML.

In addition, we investigate the calculation of pattern probability. We show

that the pattern probability is closely related to symmetric polynomials, and it can

be written as a summation over graphs using power sums. Along the way we reveal

a relation between pattern probability and the enumeration of certain connected

graphs as well as inversion-free trees.

For applications, we show how PML can be used to predict the number

of new symbols that would appear in a future sample. We conduct experiments

on various distributions and compare PML to the method of Good & Toulmin

and the method of Efron & Thisted. We demonstrate that PML outperforms the

other methods even if the future sample size is large. Finally we apply PML to

authenticating the authorship of the Taylor poem, attributed to Shakespeare, and

conclude that it is consistent with Efron and Thisted’s models.

PML deals with samples from a single distribution. In the last part of this

dissertation we extend PML to set-patterns where multiple samples are observed

from concurrent Bernoulli processes. Analogous to the single-process patterns,

we show that for certain forms of set-patterns we can find the exact Set-pattern

Maximum Likelihood (SPML) probabilities analytically. Furthermore, for gen-

eral set-patterns we extend the previous EM algorithm to approximate the SPML

probabilities. We also show that for samples taken from Poisson distributions the

set-pattern is reduced to the single-process pattern problem.

xiv



Chapter 1

Introduction

Predicting the future has been of interest for a long time in human history.

Probability estimation is the scientific approach of guessing, statistically, the un-

derlying distribution based on observations in the past, and use it to estimate the

likelihood of future events. It has applications in a variety of fields, such as weather

forecast, economics, finance, etc. Particularly, in the age of computers it has been

widely used in data compression, machine learning, communication, Internet, and

other areas. For example, in data compression probability estimation allows us to

assign shorter codewords to more frequent symbols so as to reduce the size of the

compressed data. Another example is online advertising where advertisers would

like to maximize the probability that an Internet user clicks through their ads.

A probability distribution can be regarded as two parts: the multiset of

probabilities, and the association between the probabilities and the symbols in the

underlying alphabet. Many applications require only the probability multiset. For

example, a biologist might want to estimate the number of endangered species in

an area, a bank may be interested in determining the proportion of customers with

potentially high investments, and a shopping mall could benefit from estimating

the amount of customers before increasing stocks. In all these applications, it is

sufficient to estimate the probabilities as a multiset; the probability of a specific

object is not of concern.

Sequence Maximum Likelihood (SML) is a commonly used method for es-

timating probabilities. It finds the distribution that maximizes the probability of

1



2

the observed sequence. SML is useful when all symbols appear sufficiently many

times. However, there are unavoidable drawbacks when the sample is taken from

a large data set where many symbols have low frequencies. Furthermore, SML

always assigns zero probabilities to unseen symbols.

More practical approaches have been proposed to work better with samples

from large alphabets. One line of work started from Fisher [FCW43], followed by

Good and Toulmin [GT56], and Efron and Thisted [ET76, TE87]. A comprehensive

survey can be found in Bunge and Fitzpatrick [BF93]. A more recent approach by

Valiants appeared in [Val08, VV11a, VV11b].

An information-theoretically motivated method was pursued by Orlitsky

et al. in [OSZ04, OSVZ04] with more recent development in [OP09, AOP09,

ADJ+11, OSVZ12, OPS+12]. Their approach was based on the observation that,

since we do not care about the association between the probabilities and the un-

derlying symbols, the information that matters is how different symbols repeat.

For example, intuitively the estimate of probabilities for the i.i.d. sequences aba

should not differ from that for the sequence @∧@. Thus we can extract the crucial

information by replacing the symbols with their order of appearance, called the

pattern. For example, The pattern for both aba and @ ∧@ are 121. It is a way of

saying that these two sequences repeat alike. Analogous to SML, which maximizes

the sequence probability, the Pattern Maximum Likelihood maximizes the pattern

probability.

To see the advantage of PML intuitively, consider estimating the distribu-

tion of human DNAs. If we take a sample of 100 DNAs from the population, with

high probability we would get 100 distinct DNAs (without twins). Then SML

would say that each observed DNA has probability 1%, and any DNA not ob-

served has probability 0. This is clearly far from the truth since the pool of DNAs

is so vast that a sample of size 100 is nowhere close to being sufficient. On the

other hand, assuming zero-knowledge of the underlying alphabet, PML would say

that the sample has a pattern that all symbols are distinct, and such a pattern

would most likely rise from a continuous distribution. Indeed, if we sample from a

continuous distribution over real numbers, with probability 1 we wouldn’t see any
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repetitions, which is exactly the case as in sampling DNAs.

Note that SML always assign zero probabilities to symbols that have not

been observed, and thus it tends to overestimate the probabilities of observed

symbols. As a comparison, PML does not assume that the underlying support

size is known; it maximizes the pattern probability over all discrete distributions,

with a possible continuous part, of all support sizes. Thus PML can be potentially

useful for estimating the support size of the underlying distribution, as well as

missing probabilities.

Let’s take a look at another example in text classification. Suppose we

have observed two sequences aaabbb and ααββγγ from two distributions P1 and

P2 respectively. We would like to classify a third sequence xxyyzz as from P1 or P2.

Using SML we would obtain two estimates P 1
SML =

(
a→ 1

2
, b→ 1

2

)
and P 2

SML =(
α→ 1

3
, β → 1

3
, γ → 1

3

)
. Since the sequences have no common observations, both

P 1
SML(xxyyzz) and P 2

SML(xxyyzz) are zero, thus SML is unable to classify xxyyzz.

On the other hand, PML would classify xxyyzz as from P2, which seems more

reasonable, since it has the same pattern as ααββγγ, namely 112233.

The results are deployed in the remaining chapters as follows.

In Chapter 2 we formally define pattern and PML, introduce necessary no-

tions, and describe previous known results.

In Chapter 3, we extend the previous results on the PML support size and

the continuous probability.

In Chapter 4, we find the PML for patterns of simple forms.

In Chapter 5 we analyze the computational complexity of the deterministic

calculation of pattern probabilities.

In Chapter 6 we describe the EM algorithm and Metropolis algorithm used

to approximate PML distributions for general patterns, and show how to

apply PML to practical problems.

Finally, in Chapter 7 we extend techniques and results for patterns to set-

patterns where the observation comes from multiple sampling processes.

Some of the technical proofs are put in Appendix A.



Chapter 2

Preliminaries

In this chapter we formally define PML, give necessary notations, and de-

cribe some basic properties that have been previously proved [OSVZ12, Zha05].

The notations used here may be different from those in published papers. We will

be using or extending these properties and result in the other chapters.

In Section 2.1 we define pattern-related notations.

In Section 2.2 we briefly describe some known results.

2.1 Definitions

We define necessary notations that will be used throughout this dissertation.

2.1.1 Patterns

Let A be an alphabet of symbols. Let x̄ = x1x2 · · · xn be a sequence of

symbols with xi ∈ A for all i ∈ [n]
def
= {1, 2, . . . , n}. The pattern of x̄, denoted

by ψ(x̄), is a sequence of integers ψ1ψ2 · · ·ψn obtained from x̄ by replacing each

symbol with its order of appearance. More precisely, ψ(x̄) is recursively defined

as: ψ1
def
= 1, and for all i ≥ 2,

ψi
def
=

ψj if xi = xj for some j ∈ [i− 1],

max{ψ1, ψ2, . . . , ψi−1}+ 1, otherwise.

4



5

For example, ψ(@) = 1, ψ(@∧) = 12, ψ(@ ∧ @) = 121, and ψ(alanpan) =

1213413.

An integer sequence ψ̄ = ψ1ψ2 · · ·ψn is called a pattern if there exists at

least once sequence x̄ such that ψ(x̄) = ψ̄. Note that not all integer sequences

are patterns. For example, 131 is not the pattern of any sequence. Given al-

phabet A, a pattern of length n can be regarded as a subset of sequences in

An def
= {(a1, a2, . . . , an) | ai ∈ A}. For example, for A = {a, b, c},

121 = {aba, aca, bab, bcb, cac, cbc}.

Let m be the largest number in ψ̄, which is also the number of distinct

symbols. For each ψ ∈ [m], the multiplicity of ψ, denoted by µψ, is the number

of times ψ appear in ψ̄. Let M(ψ̄) be the multiset of multiplicities. For any

µ ∈ M(ψ̄), the prevalence of µ, denoted by ϕµ, is the number of times µ appears

in M(ψ̄).

For example, for the pattern ψ̄ = 1213414, m = 4, µ1 = 3, µ2 = 1, µ3 =

1, µ4 = 2, and M = {3, 2, 1, 1}∗, where we use {. . . }∗ to denote a multiset , and

the prevalences are ϕ1 = 2, ϕ2 = ϕ3 = 1.

For simplicity, if a number ψ appears i times consecutively, we abbreviate it

as ψi. For example, we may write 11222111 in a shorter form 122333. A pattern of

the form 1µ12µ2 · · ·mµm such that µ1 ≥ µ2 ≥ · · · ≥ µm is canonical . For example,

the canonical form of pattern 1213414 is 132234. Clearly any pattern has a unique

canonical form.

2.1.2 Probabilities

Let P be a discrete distribution over alphabet A. The probability of se-

quence x̄ = x1x2 · · · xn is

P (x̄) = P (x1) · P (x2 | x1) · · · · · P (xn | x1x2 · · · xn−1).

In this dissertation we consider only i.i.d. sequences. Then

P (x̄) = P (x1)P (x2) · · ·P (xn).
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The probability of a pattern ψ̄ is the total probability of all sequences in ψ̄, i.e.,

P (ψ̄) =
∑
x̄∈ψ̄

P (x̄).

For example, let A = {a, b, c} and p1 = P (a), p2 = P (b), p3 = P (c). Then

P (121) = P (aba) + P (aca) + P (bab) + P (bcb) + P (cac) + P (cbc)

= p2
1p2 + p2

1p3 + p2
2p1 + p2

2p3 + p2
3p1 + p2

3p2.

Some observations:

• The pattern probability depends only on the multiplicities. For example, it

is easy to see that P (121) = P (112) = P (122), since they all have the same

collection of multiplicities M = {1, 1}∗. Thus as far as pattern probability

is concerned we only need to consider canonical patterns.

• The pattern probability is a symmetric polynomial in the probabilities, thus

it depends only on the multiset of probabilities, not how they are associated

with symbols in A. Let k be the support size of P . Then we may sort the

probabilities and regard P as a vector in Rk: P = (p1, p2, . . . , pk) such that

p1 ≥ p2 ≥ · · · ≥ pk ≥ 0 and
∑k

i=1 pi = 1. When the context is clear, we use

distribution and probability multiset interchangeably.

In general, given the distribution P = (p1, p2, . . . , pk), the probability of the pattern

ψ̄ = 1µ12µ2 · · ·mµm can be written as

P (ψ̄) =
∑

(i1,i2,...,im)∈[k]m

pµ1

i1
pµ2

i2
· · · pµmim , (2.1)

where [k]m
def
= {(i1, i2, . . . , im) ∈ [k]m | it 6= it′ for all t 6= t′}, the set of vectors

with distinct elements from [k].

2.1.3 Pattern Maximum Likelihood

Let x̄ = x1x2 · · · xn be an i.i.d. sequence. Recall that Sequence Maximum

Likelihood (SML) maximizes the probability of the sequence x̄, i.e.,

PSML
def
= arg max

P∈Pd
P (x̄),
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where

Pd
def
=

{
(p1, p2, . . .) | pi ≥ 0,

∞∑
i=1

pi = 1

}
,

the set of all discrete distributions. For any i ∈ [k], let

µi(x̄)
def
= |{j | xj = ai}|,

the number of times the i-th symbol appears in x̄. It can be shown that

PSML(ai) =
µi(x̄)

n
.

Note that the support size of PSML is always the number of distinct symbols in x̄,

and PSML(a) = 0 for any a /∈ {x1, x2, . . . , xn}.
Given pattern ψ̄, the Pattern Maximum Likelihood (PML) of ψ̄ is its largest

possible probability over all discrete distributions:

P̂ (ψ̄)
def
= max

P∈Pd
P (ψ̄),

and the PML distribution of ψ̄ achives the PML:

P̂ψ̄
def
= arg max

P∈Pd
P (ψ̄).

As mentioned earlier, P (ψ̄) does not depend on the association between probabili-

ties and symbols. Denote the set of discrete distributions with sorted probabilities

as

P sorted
d

def
=

{
P = (p1, p2, . . .) | p1 ≥ p2 ≥ · · · ≥ 0,

∞∑
i=1

pi = 1

}
The following definitions are equivalent to the previous definitions:

P̂ (ψ̄)
def
= max

P∈P sorted
d

P (ψ̄), and P̂ψ̄
def
= arg max

P∈P sorted
d

P (ψ̄),

where P̂ψ̄ differs from its previous definition by a permutation of the probabilities.

Note that in the domain of the maximization we are not restricting the

support size of P to the number of observed distinct symbols m. We will show

that there are indeed patterns maximized by distributions with supports size larger

than m.

Examples:
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(1) For pattern 1, any distribution P is a PML distribution since P (1) ≡ 1.

(2) For pattern 1n, where n > 1, it is easy to see that the singleton distribution

P = (1) is the only one that can achieve the highest probability P (1n) = 1.

Thus P̂1n = (1).

(3) For pattern 112 and any distribution P = (p1, p2, . . . , pk),

P (12) =
∑
i∈[k]

∑
j∈[k]\{i}

p2
i pj =

∑
i∈[k]

p2
i (1− pi) ≤

k∑
i=1

pi ·
1

4
=

1

4
,

where the inequality follows from pi(1 − pi) ≤ 1
4
. Clearly the maximum

probability 1
4

is achieved if and only if pi = 1
2

for all i ∈ [k], namely P =(
1
2
, 1

2

)
.

(4) Consider the pattern 12. For any discrete distribution P = (p1, p2, . . . , pk),

P (12) =
∑
i∈[k]

∑
j∈[k]\{i}

pipj =
∑
i∈[k]

pi(1− pi) = 1−
∑
i∈[k]

p2
i .

Since
∑

i∈[k] p
2
i is strictly greater than 0, P (12) can never achieve 1. However,

if p1 = p2 = · · · = pk, ∑
i∈[k]

p2
i = k · 1

k2
=

1

k
,

which goes to 0 as k goes to infinity, and hence P (12) goes to, but never equal

to, 1. This means that P̂12 is not well-defined over discrete distributions.

To ensure the existence of PML distributions, we modify the domain of

distributions as follows. Instead of discrete distributions, we consider mixture

distributions that have both discrete part and a continuous part. Note that the

pattern probability depends on only the total probability in the continuous part;

the density function does not matter. Thus we can represent a mixture distribution

P as a vector of real values P = (p1, p2, . . . , pk), where p1 ≥ p2 ≥ · · · ≥ pk > 0 and∑k
i=1 pi ≤ 1; the continuous probability q is implicit:

q
def
= 1−

k∑
i=1

pi.
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The probability of a pattern underlying a mixture distribution can be cal-

culated similarly. For example, let P = (p1, p2, p3) be a mixture distribution with

continuous probability q = 1− (p1 + p2 + p3). Then

P (112) = (p2
1p2 + p2

1p3 + p2
2p1 + p2

2p3 + p2
3p1 + p2

3p2) + (p2
1q + p2

2q + p2
3q).

Recall that ϕ1 is the number of multiplicities equal to 1, i.e.

µ1 ≥ µ2 ≥ · · · ≥ µm − ϕ1 > µm−ϕ1+1 = · · · = µm = 1.

Then, for any mixture distribution P = (p1, p2, . . . , pk),

P (ψ̄) =

ϕ1∑
`=0

(
ϕ1

`

)
q`

∑
(i1,i2,...,im−`)∈[k]m−`

pµ1

i1
pµ2

i2
· · · pµm−`im−`

(2.2)

With the modified definition, it is easy to see that P̂12 = ( ), i.e., the PML

distribution has no discrete part and the continuous part has probability q = 1.

Let

P sorted
mix =

{
(p1, p2, . . .) | p1 ≥ p2 ≥ · · · ≥ 0,

∞∑
i=1

pi ≤ 1

}
,

the set of all mixture distributions with sorted discrete probabilities. Then the

following modified definitions are well-defined:

P̂ (ψ̄)
def
= max

P∈P sorted
mix

P (ψ̄), and P̂ψ̄
def
= arg max

P∈P sorted
mix

P (ψ̄).

Occasionally, we need to consider only discrete distributions. To allow the

existence of maxima, we need to bound the support size. Given pattern ψ̄, let

K ≥ m be an upper bound on the support size. Then the following bounded PML

is also well-defined:

P̂ (K)(ψ̄)
def
= max

P∈P sorted
d : k≤K

P (ψ̄), and P̂
(K)

ψ̄

def
= arg max

P∈P sorted
d : k≤K

P (ψ̄),

where k is the support size of P . It can be shown, by continuity, that

lim
K→∞

P̂ (K)(ψ̄) = P̂ (ψ̄).

Table 2.1 summaries some of the notations we will be using frequently.
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Table 2.1: Notations

symbol description
ψ̄ pattern
n pattern length
m number of distinct symbols
µt multiplicity
ϕµ prevalence
µS summation of multiplicities with indices in S
ψ̄ ⊗ ψ̄′ concatenation

P, P̂ distribution (probability multiset), PML distribution

P̂ (K) PML distribution with bounded support size
pi, p̂i discrete probability, PML probability
q, q̂ continuous probability, PML continuous probability

k, k̂ support size, PML support size
P sorted
d set of discrete distributions with sorted probabilities
P sorted

mix set of mixture distributions with sorted discrete probabilities
Pi(ψ̄) defined as

∑
x̄∈ψ̄: ai /∈x̄ P (x̄)

2.1.4 More notations

We introduce additional notations that we will use in most chapters. Let

ψ̄ = 1µ12µ2 · · ·mµm be a canonical pattern. Given a subset S ⊆ [m], the sub-

pattern of ψ̄ restricted to S, denoted by ψ̄S, is the canonical pattern obtained by

removing integers not in S from ψ̄, and then re-label the remaining ones. In other

words, ψ̄S has multiplicities

M(ψ̄S) = {µt | t ∈ S}.

For example, given pattern 13223245 and S = {1, 3, 4}, we haveM(ψ̄S) = {3, 2, 1}∗,
hence ψ̄S = 13223.

For simplicity, if S contains all indices in [m] except for a few, we use the

missing indices in the subscript. For example,

ψ̄t
def
= ψ̄[m]\{t}, ψ̄t1,t2

def
= ψ̄[m]\{t1,t2},

and so on.

Given two patterns ψ̄ = 1µi2µi · · ·mµi and ψ̄′ = 1µ
′
12µ

′
2 · · ·m′µ

′
m′ , their con-

catenation is

ψ̄ ⊗ ψ̄′ def
= 1µi2µi · · ·mµi(m+ 1)µ

′
1(m+ 2)µ

′
2 · · · (m+m′)

µ′
m′ .
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Given a list of ordered values (real numbers or integers) V = (V1, V2, . . .),

and a set of indices S ⊆ N def
= {1, 2, . . . }, let

VS
def
=
∑
i∈S

Vi.

For example, for multiplicities (µ1, µ2, . . . , µm), we use µS for
∑

i∈S µi. For a

distribution (p1, p2, . . . , pk), we use pS for
∑

i∈S pi.

Given pattern ψ̄, a distribution P = (p1, p2, . . . , pk) over an alphabet A =

{a1, a2, . . . , ak}, and a set of indices I ⊆ [k], let PI(ψ̄) be the probability that a

sequence has pattern ψ̄ and it has only symbols from AI
def
= {ai | i ∈ I}. More

precisely,

PI(ψ̄)
def
=

∑
x̄∈AI :ψ(x̄)=ψ̄

P (x̄).

For simplicity, when I contains all indices in [k] except a few, we use the missing

indices in the subscript instead. For example,

Pi(ψ̄)
def
= P[k]\{i}(ψ̄), Pi,j(ψ̄)

def
= P[k]\{i,j}(ψ̄)

and so on.

Given a pattern ψ̄ = 1µ12µ2 · · ·mµm and a distribution P ∈ P sorted
d , the

pattern probability can be expanded in two ways:

(1) For a given t ∈ [m], by considering what the first symbol is in ψ̄, we can

write the pattern probability as

P (ψ̄) =
k∑
i=1

pµti Pi(ψ̄t) + Iµt=1 · qP (ψ̄m), (2.3)

where Iµt=1 is the {0, 1} indicator function.

(2) For a given i ∈ [k], by considering the number of times the i-th symbol

appears, we have

P (ψ̄) = Pi(ψ̄) +
m∑
t=1

pµti Pi(ψ̄t). (2.4)
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We will be using both Expansions (2.3) and (2.4) frequently. More generally, for

any S ⊆ [m],

P (ψ̄) =
∑
I⊆[k]

PI(ψ̄S)PĪ(ψ̄S̄), (2.5)

where Ī = [k] \ I and S̄ = [m] \ S. On the other hand, given any I ⊆ [k],

P (ψ̄) =
∑
S⊆[m]

PI(ψ̄S)PĪ(ψ̄S̄). (2.6)

Sometimes we also need to expand P (ψ̄) by the continuous probability q.

By considering which singletons , symbols that appear only once, are from the

continuous part, we have

P (ψ̄) =

ϕ1∑
`=0

(
ϕ1

`

)
q`Pq(ψ̄[1..m−`]), (2.7)

where Pq(·) is the probability of a pattern with no symbols from the continuous

part.

2.2 Previous results

We briefly describe some of the known results in [OSVZ12, Zha05] that

we will be using or extending in the remaining chapters. To distinguish existing

results from the new results that we will show in this dissertation, we use Fact for

the existing results.

To get started, we first answer the following two questions:

(1) Does the PML distribution always exist?

(2) Does the PML distribution converge to the underlying distribution?

The answers to both questions are positive.

2.2.1 Existence

Note that the PML distribution is defined as a maximization problem over

the domain P sorted
mix . The existence of the maximum is guarantee by the well-known
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Extreme Value Theorem, which states that the maximum/minimum of a continu-

ous function can be achieved in a compact space. The compactness of P sorted
mix can

be proved by showing that it is both complete (every Cauchy sequence converges)

and totally bounded (it can be covered by finitely many open balls of any fixed

size). For any pattern ψ̄, the continuity of P (ψ̄) as a function of P ∈ P sorted
mix can be

proved inductively on m, the number of distinct symbols in ψ̄. Thus the existence

of P̂ψ̄ follows from the Extreme Value Theorem:

Fact 2.1. For all patterns ψ̄, the maximum of P (ψ̄) over mixed distributions can

be achieved.

It remains open whether the PML distribution of any pattern is always

unique, although no example with two different PML distributions has been found

except for the trivial pattern 1 whose PML distribution is any distribution. Unless

otherwise specified, all the properties mentioned in this dissertation apply to any

PML distribution, if not unique.

2.2.2 Consistency

Let xn1 = x1x2 · · · xn be an i.i.d. sequence of length n drawn from an

unknown discrete distribution P ∈ Pd. An estimator fn is a function that estimates

P upon observing xn1 . A sequence of estimators {fn} is consistent if fn converges

to P in probability. In other words, {fn}∞n=1 is consistent if for all ε > 0 and all

P ∈ Pd,
lim
n→∞

Pr(‖fn − P‖ > ε) = 0,

where the norm ‖ · ‖ represents the metric of interest. The sequence {fn}∞n=1 is

uniformly consistent, if for all ε > 0,

lim
n→∞

sup
P∈Pd

Pr(‖fn − P‖ > ε) = 0.

The definition of consistency can be refined to incorporate the notation of the rate

of convergence. The sequence {fn}∞n=1 is uniformly kn-consistent if there exists

M > 0 such that

lim
n→∞

sup
P∈Pd

Pr(kn · ‖fn − P‖ > M) = 0.
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For any P,Q ∈ Pd, define the L∞ distance as ‖P −Q‖∞ = max∞i=1{pi− qi}.
It can be shown that the PML estimator P̂n

def
= P̂ψ(xn1 ) is consistent under L∞ dis-

tance:

Fact 2.2. The PML estimator {P̂} is uniformly n1/4

lnn
-consistent for P ∈ P sorted

d

with respect to L∞.

2.2.3 Majorization

Given two distributions P = (p1, p2, . . .) ∈ P sorted
d and Q = (q1, q2, . . .) ∈

P sorted
d , P majorizes Q, written as P � Q or Q � P , if for all i ≥ 1,

i∑
j=1

pj ≥
i∑

j=1

qj.

Intuitively, Q is “smoother” than P . Note that any distribution in P sorted
d ma-

jorizes the uniform distribution of the same support size. Roughly speaking, uni-

form distributions are the “smoothest”. It can be shown for any pattern the PML

distribution is always smoother than the SML distribution:

Fact 2.3. For all patterns ψ̄ = 1µ12µ2 · · ·mµm,

PSML � P̂ψ̄,

where PSML
def
=
(
µ1

n
, µ2

n
, . . . , µm

n

)
.

We can define majorization between patterns in a similar way. Let ψ̄ =

1µ12µ2 · · ·mµm and ψ̄′ = 1µ
′
12µ

′
2 · · ·mµ′m be canonical patterns with equal length

n = n′ and the same number of distinct symbols m = m′. Then ψ̄ majorizes ψ̄′,

written ψ̄ � ψ̄′ or ψ̄′ � ψ̄, if for all i ∈ [m],

i∑
j=1

µj ≥
i∑

j=1

µ′j.

For any discrete distribution P ∈ Pd, it follows directly from Muirhead’s Inequal-

ity [Mui02] that P (ψ̄) ≥ P (ψ̄′). For a mixture distribution P ∈ P sorted
mix , the same

inequality follows from the continuity of P (ψ̄) as a function of P and that P sorted
mix
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is complete. It immediately follows that P̂ (ψ̄) ≥ P̂ψ̄(ψ̄′) ≥ P̂ (ψ̄′).

Fact 2.4. For any pattern ψ̄ and ψ̄′ such that ψ̄ � ψ̄′,

P̂ψ̄(ψ̄) ≥ P̂ψ̄′(ψ̄).

Given n and m, let µ = dn/me , ϕ = µm− n. The patterns

ψ̄↑
def
= 1n−m+123 · · ·m and

ψ̄↓
def
= 1µ2µ · · · (m− ϕ)µ(m− ϕ+ 1)µ−1 · · ·mµ−1

are called skewed and 1-uniform patterns, respectively. it is easy to see that ψ̄↑

majorizes, while ψ̄↓ is majorized by, all other patterns with the same length and

number of distinct symbols. Thus, the PML of any pattern ψ̄ can be bounded

using skewed and 1-uniform patterns:

P̂ (ψ̄↑) ≥ P̂ψ̄(ψ̄) ≥ P̂ (ψ̄↓).

We’ll further study skewed patterns and 1-uniform patterns Chapter 4.

2.2.4 Continuous Probability

As we have seen before, given pattern ψ̄, its PML distribution P̂ψ̄ may have

positive continuous probability q̂ > 0. Recall that ϕ1 is the number of symbols in

ψ̄ that appear only once. It can be shown that q̂ can be bounded using ϕ1:

Fact 2.5. For all patterns ψ̄ 6= 1,

q̂ ≤ ϕ1

n
.

In a singleton-free pattern ϕ1 = 0, In a unique-singleton pattern ϕ1 = 1, i.e., no

symbols appear once. A direct consequence of Fact 2.5 is that the PML distribu-

tion of any singleton-free pattern is discrete. In fact, we can show that this also

holds for unique-singleton patterns:

Fact 2.6. The PML distribution is dicrete, i.e., q = 0, for any pattern ψ̄ 6= 1 such

that ϕ1 ≤ 1.
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2.2.5 Support Size

Given pattern ψ̄, it can be shown that the discrete support size k̂ of the

PML distribution must be finite, by bounding the the number of distinct PML

probabilities:

Fact 2.7. For all patterns ψ̄ 6= 1,

|{p̂1, p̂2, . . .}| ≤ min{n− 1, 2m}.

Furthermore, if the smallest multiplicity µm is greater than 1, k̂ can be bounded

from both below and above:

Fact 2.8. For all patterns ψ̄ 6= 1 such that q̂ = 0,

m− 1 +

∑
i∈[2 ..m] 2−µi

2µ1 − 2
≤ k̂ ≤ m+

m− 1

2µm − 2
.

It is easy to see that by Fact 2.8, if µm > log2(m + 1), then k̂ = m, i.e., there is

no unseen symbol in the PML estimate.

2.2.6 Patterns with Known PML

We have seen that for some very simple patterns the PML distribution can

be found analytically. We describe a list of patterns whose PML distributions were

previous found. These results will be extended in Chapter 4.

The patterns 1n and 12 · · ·n are trivial. It is easy to see that

Fact 2.9. P̂1n = (1), P̂1 is any distribution, and P̂12···n = ( ) for all n ≥ 2.

In a uniform pattern all the multiplicities are the same, i.e., µ1 = · · · = µm. The

PML distribution of a non-trivial uniform pattern is always uniform. Its support

size k̂ can be found as follows. Let P =
(

1
k
, . . . , 1

k

)
. Then

P (ψ̄) = f(k)
def
= km

(
1

k

)n
,

where km
def
= k(k − 1) · · · (k −m+ 1). Note that

f(k + 1)

f(k)
=

k + 1

k −m+ 1
·
(

k

k + 1

)n
,
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which can be shown to have a unique maxima. Then k̂ can be found as the smallest

k such that
k + 1

k −m+ 1
·
(

k

k + 1

)n
≤ 1.

Fact 2.10. For any µ ≥ 2, P̂1µ2µ···mµ is uniform with support size

k̂ = arg min
k≥m

k + 1

k −m+ 1
·
(

k

k + 1

)n
≤ 1.

In a 1-uniform pattern the multiplicities differ by at most 1, i.e.µ1 − µm ≤ 1. It

was shown that the PML of all non-trivial 1-uniform patterns can be achieved at

a uniform distribution. The support size can be found in the same way as for

uniform patterns.

Fact 2.11. The PML of any 1-uniform pattern can be achieved at a uniform dis-

tribution with support size

k̂ = arg min
k≥m

k + 1

k −m+ 1
·
(

k

k + 1

)n
≤ 1.

A binary pattern 1µ12µ2 has two distinct symbols, i.e., m = 2. It was

shown that the PML distribution of any non-trivial binary pattern is discrete with

support size 2. Let P̂1µ12µ2 = (p, 1− p). Then

P̂ (1µ12µ2) = max
1
2
≤p<1

pµ1(1− p)µ2 + (1− p)µ1pµ2 .

It is easy to see that the optimal p can be obtained by solving the equation

d

dp
[pµ1(1− p)µ2 + (1− p)µ1pµ2 ] = 0,

which can be rewritten as
(

p
1−p

)µ1−µ2

+ µ2−np
µ1−np = 0.

Fact 2.12. The PML distribution of any non-trivial binary pattern 1µ12µ2 is dis-

crete with support size 2, and the probabilities p̂i, i = 1, 2, can be found by solving

the equation (
p̂i

1− p̂i

)µ1−µ2

+
µ2 − np̂i
µ1 − np̂i

= 0.

Furthermore, if (µ1 − µ2)2 ≤ n, then P̂1µ12µ2 is uniform, i.e., p̂1 = p̂2 = 1
2
.
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In a skewed pattern ψ̄ = 1r23 · · · (u + 1) one symbol repeats r times and

the other u symbols are unique. For r = 1, ψ̄ degenerates to a trivial pattern. For

r = 2, ψ̄ becomes 1-uniform. For u = 1, ψ̄ is binary.

The other cases are truly skewed , i.e., r ≥ 3 and u ≥ 2. The conjecture for

a truly skewed pattern is that

Conjecture 1. For any r ≥ 3 and u ≥ 2,

P̂1r23···(u+1) =

(
r

r + u

)
.

That is, the PML distribution of a truly skewed pattern has only a single discrete

probability p̂1 = r
r+u

; all the other probability q̂ = u
r+u

goes to the continuous part.

This conjecture was shown to be true asymptotically:

Fact 2.13. For u sufficiently large and r ≥ 2
√
u,

P̂1r23···(u+1) =

(
r

r + u

)
.

We will show in Section 4.2 of Chapter 4 that the conjecture holds for all truly

skewed patterns.

2.2.7 Approximation Algorithm

For general pattern finding the exact PML distribution may be difficulty.

An EM algorithm was proposed [OSS+04, Zha05]. We will describe the algorithm

in details in Chapter 6, and show that it is equivalent to a Generalized Gradient

Ascend method. We will use the algorithm to evaluate the performance of PML on

various distributions, and apply it to the authorship authentication of the Taylor

poem. In Chapter 7 We will extend the algorithm to set-patterns.



Chapter 3

Properties of PML

Chapter 2 described some basic properties of PML. We further extend the

results on the support size and continuous probability.

In Section 3.1 we prove a few useful (in)equalities concerning the partial

derivatives of the pattern probability with respect to the probabilities.

In Section 3.2 we extend previous bounds on the discrete PML support size.

In addition, we show upper bounds on the number of identical probabilities.

In Section 3.3 we show a larger class of patterns whose PML distribution has

no continuous part.

3.1 Partial Derivatives

We first give some (in)equalities that we will be frequently using. Recall

that, as given in Expansion (2.2), the pattern probability can be regarded as a

multi-variate function of the discrete probabilities p1, p2, . . . , pk and the continu-

ous probability q. We show the following relations between the partial derivatives.

19
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Lemma 3.1. Let P = (p1, p2, . . . , pk) = P̂ψ̄ ∈ P sorted
mix be the PML distribution of a

non-trivial pattern ψ̄. Then, for any i ∈ [k],

∂P (ψ̄)

∂pi
= nP (ψ̄) ≥ ∂P (ψ̄)

∂q
= ϕ1P (ψ̄m),

where the second equality holds if q > 0.

Proof. Maximizing P (ψ̄) is equivalent to maximizing lnP (ψ̄). Using Lagrangian

multiplier, we remove the constraint
∑k

i=1 pk + q = 1 by maximizing

f(P, λ)
def
= lnP (ψ̄) + λ

(
1− q −

k∑
i=1

pi

)
.

It follows that P = P̂ψ̄ satisfies, for all i ∈ [k],

∂f

∂pi
(P, λ) =

1

P (ψ̄)

∂P (ψ̄)

∂pi
− λ = 0,

∂f

∂q
(P, λ) =

1

P (ψ̄)

∂P (ψ̄)

∂q
− λ ≤ 0,

where the last equality holds if the optimal q = q̂ is positive. Thus

∂P (ψ̄)

∂p1

=
∂P (ψ̄)

∂p2

= · · · = ∂P (ψ̄)

∂pk
= λP (ψ̄) ≥ ∂P (ψ̄)

∂q
.

By Expansion (2.7),

∂P (ψ̄)

∂q
=

ϕ1∑
`=1

(
ϕ1

`

)
`q`−1Pq(ψ̄[1 ..m−`])

= ϕ1

ϕ1∑
`=1

(
ϕ1 − 1

`− 1

)
q`−1Pq(ψ̄[1 ..m−`])

= ϕ1P (ψ̄m).

Thus it remains to show that the optimal λ is n. To see this, note that from

Expansion (2.4) that

pi
∂P (ψ̄)

∂pi
=

m∑
t=1

µtp
µt
i Pi(ψ̄t).

There are two cases.



21

• If q = 0, then

λ =
k∑
i=1

piλ =
1

P (ψ̄)

k∑
i=1

pi
∂P (ψ̄)

∂pi
=

1

P (ψ̄)

m∑
t=1

µt

k∑
i=1

pµti Pi(ψ̄t).

On the other hand, since q = 0, it follows from Expansion (2.3) that, for any

t ∈ [m],
∑k

i=1 p
µt
i Pi(ψ̄t) = P (ψ̄). Thus

λ =
1

P (ψ̄)
·
m∑
t=1

µtP (ψ̄) = n.

• If q > 0, it follows from Expansion (2.7) that

q
∂P (ψ̄)

∂q
=

∑
S: ∀t∈S, µt=1

|S|q|S|Pq(ψ̄S̄),

which can be rewritten as

q
∂P (ψ̄)

∂q
=
∑
t:µt=1

∑
S3t: ∀t′∈S, µt′=1

q|S|Pq(ψ̄S̄) =
∑
t:µt=1

qP (ψ̄t).

Then

λ =

(
k∑
i=1

pi + q

)
λ

=
1

P (ψ̄)

[
k∑
i=1

pi
∂P (ψ̄)

∂pi
+ q

∂P (ψ̄)

∂q

]

=
1

P (ψ̄)

m∑
t=1

µt

[
k∑
i=1

pµti Pi(ψ̄t) +
∑
t:µt=1

qP (ψ̄t)

]
.

It follows from Expansion (2.3) that

λ =
1

P (ψ̄)

m∑
t=1

µtP (ψ̄) = n.

3.2 PML Support Size

In Chapter 2 we introduced previous results on the support size of PML dis-

tributions. In Fact 2.8, it was shown that for PML distributions with no continuous

part,

m− 1 +

∑
i∈[2 ..m] 2−µi

2µ1 − 2
≤ k̂ ≤ m+

m− 1

2µm − 2
.
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Note that the upper bound is useful only if µm > 1. In this section we find bounds

that can be applied to more patterns.

We will first show the following two lower bounds on k̂.

Theorem 3.2. For any pattern ψ̄, if q̂ = 0, then

k̂ ≥
(
ϕ1

2

)
m− ϕ1

+m− 1,

where the equality holds only if P̂ψ̄ is uniform.

Theorem 3.3. For any pattern ψ̄, if q̂ = 0, then

k̂ ≥ m− 1 +

∑
{t,t′} 2−(µt+µt′−1)

m−
∑

t 2−(µt−1)
.

For some patterns the lower bound in Theorem 3.3 is better than that in Theo-

rem 3.2. Furthermore, we can derive a simpler lower bound from Theorem 3.3 as

follows, which is although slighter weaker than that in Thmosition 3.2. For any

t ∈ [m],∑
{t,t′} 2−(µt+µt′−1)

m−
∑

t 2−(µt−1)
=

2−(µt−1) ·
∑

t′ 6=t 2−µt′ +
∑
{t′,t′′}: t′,t′′ 6=t 2−(µt′+µt′′−1)

1− 2−(µt−1) +
∑

t′ 6=t (1− 2−(µt′−1))
,

which decreases in µt. Let µt →∞ for all µt ≥ 2. Then∑
t,t′ 2

−(µt+µt′−1)

m−
∑

t 2−(µt−1)
≥

1
2

(
ϕ1

2

)
m− ϕ1

.

We will also show the following upper bounds.

Theorem 3.4. For any pattern such that c = 2(m−1)ϕ2

(n−1)ϕ1
> 1,

k̂ ≤ c(n− 1)

c− 1
.

In a unique-singleton pattern ϕ1 = 1. We will show that the PML support size in

linear in m for all unique-singleton patterns.
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Theorem 3.5. For any pattern such that ϕ1 = 1,

k̂ < m+
m− 1

µ∗m−1

,

where

µ∗m−1
def
=

1 if µm−1 = 2,

µm−1 otherwise.

Let

µ∗
def
= µm−ϕ1 = min{µt : µt ≥ 2},

the smallest multiplicity that is greater than one. Furthermore, let

ψ̄∗
def
= ψ̄m−ϕ1 ,

the pattern obtained from ψ̄ with the symbol corresponding to µ∗ times removed.

In a quasi-skewed pattern prev2 = 0, i.e., µ∗ ≥ 3. We will prove the following

upper bounds on the PML support size for quasi-skewed patterns.

Theorem 3.6. For any pattern ψ̄ such that ϕ2 = 0,

k̂ ≤ µ∗−2

√
m− ϕ1(

ϕ1

2

) · P̂ (ψ̄∗)

P̂ (ψ̄)
.

Note that In Theorem 3.6 although the exact values of P̂ (ψ̄∗) and P̂ (ψ̄) may be

unknown, we can get a finite upper bound on k̂ by replacing P̂ (ψ̄∗) and P̂ (ψ̄) with

an upper bound and a lower bound respectively. We will show that

Corollary 3.7. For any pattern ψ̄ such that µ∗ ≥ 3,

k̂ ≤ µ∗−2

√
m− ϕ1(

ϕ1

2

) e2n.

In a singleton-free pattern ϕ1 = 0. Given P = (p1, p2, . . . , pk) ∈ P sorted
mix , let ν(pi)

be the number of probabilities in P that are equal to pi. Using a different approach

we will also show the following upper bounds for singleton-free patterns and quasi-

skewed patterns:
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Theorem 3.8. The PML distribution of any pattern ψ̄ 6= 1 satisifies

• If ϕ1 = 0, then,for all i ∈ [k̂],

ν(p̂i) ≤ max
S⊆[m]:nS−mS≥1

(nS − 1)(mS − 1)

nS −mS

+ 1,

which implies that ν(p̂i) ≤ 2m.

• If ϕ2 = 0, then, for all i ∈ [k̂],

ν(p̂i) ≤ max
S⊆[m]:nS−mS≥2

(nS − 1)(mS − 1)

nS −mS − 1
,

which implies that ν(p̂i) ≤ m2 and

k̂ ≤ m2 ·min{n− 1, 2m}.

Theorem 3.2: First Lower Bound

Proof of Theorem 3.2. For simplicity, let P = (p1, p2, . . . , pk) = P̂ψ̄. For any i ∈
[k], let P (i) be the distribution with pi moved to the continuous part, i.e.,

P (i) = (p1, p2, . . . , pi−1, pi+1, . . . , pk) .

Using Expansion (2.4), we have

P (ψ̄) = Pi(ψ̄) + ϕ1piPi(ψ̄m) +
∑
t:µt≥2

pµti Pi(ψ̄t).

On the other hand, using Expansion (2.7), we have

P (i)(ψ̄) = Pi(ψ̄) + ϕ1piPi(ψ̄m) +

ϕ1∑
`=2

(
ϕ1

`

)
p`iPi(ψ̄[1 ..m−`]).

Since P is the PML distribution, P (i)(ψ̄) ≤ P (ψ̄), and hence

ϕ1∑
`=2

(
ϕ1

`

)
p`iPi(ψ̄[1 ..m−`]) ≤

∑
t:µt≥2

pµti Pi(ψ̄t).

Summing over all i ∈ [k] yields

ϕ1∑
`=2

(
ϕ1

`

)
P (ψ̄+`) ≤

∑
t:µt≥2

P (ψ̄), (3.1)
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where ψ̄+` is the pattern obtained from ψ̄ by identifying ` singletons, i.e., ψ̄+` has

multiplicities

M(ψ̄+`) = {µ1, µ2, . . . , µm−`, `}∗ .

Note that

(µ1, µ2, . . . , µm) � (µ1, µ2, . . . , µm−`, `, 0, 0, ..., 0︸ ︷︷ ︸
k−m+`−1

).

By the majorization property in Fact 2.4, we have

P (ψ̄) ≤ (k −m+ `− 1) `−1 · P (ψ̄+`).

Thus Equation (3.1) implies that

ϕ1∑
`=2

(
ϕ1

`

)
(k −m+ `− 1) `−1

≤ m− ϕ1.

Taking only the term for ` = 2 on the left, we have

k ≥
(
ϕ1

2

)
m− ϕ1

+m− 1.

Theorem 3.3: Second Lower Bound

Proof of Theorem 3.3. For simplicity, let P = (p1, p2, . . . , pk) = P̂ψ̄. For any

{i, j} ∈
(

[k]
2

)
, by Expansion (2.6),

P (ψ̄) = Pi,j(ψ̄) +
∑
t

(pµti + pµtj )Pi,j(ψ̄t) +
∑

{t,t′}∈([m]
2 )

(pµti p
µt′
j + p

µt′
i pµtj )Pi,j(ψ̄t,t′).

Let P (i) be the distribution with pi split into two pi
2

’s. Using Expansion (2.6) again

we have

P (ψ̄) = Pi(ψ̄) +
∑
t

pµti Pi(ψ̄t),

P (i)(ψ̄) = Pi(ψ̄) +
∑
t

2
(pi

2

)µt
Pi,j(ψ̄t) +

∑
{t,t′}∈([m]

2 )

2
(pi

2

)µt+µt′
Pi(ψ̄t,t′).

Since P is the PML distribution, P (i)(ψ̄) ≤ P (ψ̄), and hence∑
t:µt≥2

2
(pi

2

)µt
Pi(ψ̄t) +

∑
{t,t′}∈([m]

2 )

2
(pi

2

)µt+µt′
Pi(ψ̄t,t′) ≤

∑
t:µt≥2

pµti Pi(ψ̄t).
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Summing over all i ∈ [k],∑
t:µt≥2

1

2µt−1
P (ψ̄) +

∑
{t,t′}∈([m]

2 )

1

2µt+µt′−1
P (ψ̄+{t,t′}) ≤ (m− ϕ1)P (ψ̄),

where ψ̄+{t,t′} is obtained from ψ̄ by combining µt and µt′ , i.e.,

M(ψ̄+{t,t′}) =M(ψ̄) \ {µt, µt′} ∪ {µt + µt′}.

By the majorization property in Fact 2.4, we have

P (ψ̄) ≤ (k −m+ 1)P (ψ̄+{t,t′}).

Then ∑
t:µt≥2

1

2µt−1
+
∑
t,t′

1

2µt+µt′−1
· 1

k −m+ 1
≤ m− ϕ1.

Theorem 3.5: Upper Bound on k̂ for ϕ1 = 1

Proof of Theorem 3.5. For simplicity, let P = (p1, p2, . . . , pk) = P̂ψ̄. Let P ′ be the

distribution with pk−1 and pk merged, i.e., replacing pk−1 and pk by p′k−1 = pk−1+pk

and p′k = 0. by Expansion (2.6),

P (ψ̄) = Pk−1,k(ψ̄) +
∑
t

(pµtk−1 + pµtk )Pk−1,k(ψ̄t) +
∑

(t,t′)∈[m] 2

pµtk−1p
µt′
k Pk−1,k(ψ̄t,t′),

P ′(ψ̄) = Pk−1,k(ψ̄) +
∑
t

(pk−1 + pk)
µtPk−1,k(ψ̄t).

Since P is the PML distribution, P ′(ψ̄) ≤ P (ψ̄). Then

∑
t:µt≥2

µt−1∑
s=1

(
µt
s

)
psk−1p

µt−s
k Pk−1,k(ψ̄t) ≤

∑
(t,t′)∈[m] 2

pµtk−1p
µt′
k Pk−1,k(ψ̄t,t′). (3.2)

Note that by Fact 2.6 P is discrete. Then, for any (t, t′) ∈ [m] 2,

Pk−1,k(ψ̄t) =
k−2∑
i=1

p
µt′
` Pk−1,k,i(ψ̄t,t′) ≥ p

µt′
k−1

k−2∑
i=1

Pk−1,k,i(ψ̄t,t′),

where the equality holds only if P is uniform. Furthermore, since for each monomial

term in Pk,k−1(ψ̄t,t′) there are k −m missing indices i ≤ k − 2, we have

k−2∑
i=1

Pk−1,k,i(ψ̄t,t′) = (k −m)
k−2∑
i=1

Pk−1,k(ψ̄t,t′).
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Thus

Pk−1,k(ψ̄t) ≥
k −m
m− 1

∑
t′ 6=t

p
µt′
k−1Pk−1,k(ψ̄t,t′),

and hence the left-hand side LHS of Inequality (3.2) satisfies

LHS ≥ k −m
m− 1

∑
t:µt≥2

µt−1∑
s=1

(
µt
s

)∑
t′ 6=t

psk−1p
µt−s
k · pµt′k−1Pk−1,k(ψ̄t,t′),

where the equality holds only if P is uniform. Note that

µt−1∑
s=1

(
µt
s

)
psk−1p

µt−s
k

= 2pk−1pk = pk−1p
µt−1
k + pµt−1

k−1 pk, if µt = 2,

≥ µt
(
pk−1p

µt−1
k + pµt−1

k−1 pk
)
, if µt > 2,

where the equality holds only if µt = 3. Thus

LHS ≥ k −m
m− 1

µ∗m−1

∑
(t,t′):µt≥2

(pk−1p
µt−1
k + pµt−1

k−1 pk) · p
µt′
k−1Pk−1,k(ψ̄t,t′),

where the equality holds only if µt = 3 for all t ≤ m − 1, and P is uniform.

Combining with Inequality (3.2), we get

k −m
m− 1

µ∗m−1

∑
(t,t′):µt≥2

(pk−1p
µt−1
k + pµt−1

k−1 pk) · p
µt′
k−1Pk−1,k(ψ̄t,t′)

≤
∑

{t,t′}∈([m]
2 )

[
(pµtk−1p

µt′
k + p

µt′
k−1p

µt
k )
]
Pk−1,k(ψ̄t,t′).

Note that the left-hand side has more terms (strictly more if m ≥ 3), and on the

right-hand side either µt ≥ 2 or µt′ ≥ 2 since ϕ1 = 1. Further notice that

(pk−1p
µt−1
k + pµt−1

k−1 pk) · p
µt′
k−1 ≥ (pµtk−1p

µt′
k + p

µt′
k−1p

µt
k ).

It follows that k−m
m−1

µ∗m−1 ≤ 1, i.e.,

k ≤ m+
m− 1

µ∗m−1

,

where the equality holds only if P is uniform and ψ̄ = 1112. However, it was shown

in Fact 2.12 that P̂1112 =
(

1
2
, 1

2

)
. Thus the strict inequality holds for all patterns

with ϕ1 = 1.
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Theorem 3.4: Upper Bound on k̂ for Large ϕ2

Proof of Theorem 3.4. For simplicity, let P = (p1, p2, . . . , pk) = P̂ψ̄. Without loss

of generality, assume that pk >
1

n−1
. For any i ∈ [k], by Expansion (2.4),

P (ψ̄) = Pi(ψ̄) + ϕ1piPi(ψ̄m) +
∑
t:µt≥2

pµti Pi(ψ̄t).

Note that

Pi(ψ̄) ≤ (1− pi)nP̂ (ψ̄) = (1− pi)nP (ψ̄) ≤
[
1− npi +

(
n

2

)
p2
i

]
P (ψ̄).

Then

P (ψ̄) ≤
[
1− npi +

(
n

2

)
p2
i

]
P (ψ̄) + ϕ1piPi(ψ̄m) +

∑
t:µt≥2

pµti Pi(ψ̄t),

i.e., (
1− n− 1

2
pi

)
· nP (ψ̄) ≤ ϕ1Pi(ψ̄m) +

∑
t:µt≥2

pµt−1
i Pi(ψ̄t).

On the other hand,

nP (ψ̄) =
∂P (ψ̄)

∂pi
= ϕ1Pi(ψ̄m) +

∑
t:µt≥2

µtp
µt−1
i Pi(ψ̄t).

Then [(
1− n− 1

2
pi

)
· 2− 1

] ∑
t:µt≥2

pµt−1
i Pi(ψ̄t) ≤

n− 1

2
pi · ϕ1Pi(ψ̄m).

For ϕ2 > 0,

(1− (n− 1)pi) · ϕ2Pi(ψ̄1) ≤ n− 1

2
· ϕ1Pi(ψ̄m).

Since

Pi(ψ̄1) ≥ m− 1

1− pi
Pi(ψ̄m),

we have

(1− (n− 1)pi) · ϕ2(m− 1) ≤ n− 1

2
· ϕ1(1− pi).

By assumption, ϕ2 · 2(m− 1) ≥ c(n− 1)ϕ1. Then

(1− (n− 1)pi) · c ≤ 1− pi.
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Solving for pi,

pi ≥
c− 1

(n− 1)c− 1
≥ c− 1

cn
.

Then

k ≤ (n− 1)c− 1

c− 1
<

c

c− 1
(n− 1).

Theorem 3.6: Implicit Upper Bound on k̂ for ϕ2 = 0

Proof of Theorem 3.6. For simplicity, let P = (p1, p2, . . . , pk) = P̂ψ̄. For any i ∈
[k], Similar to Equation (3.1) in the proof of Theorem 3.2, we can show that

ϕ1∑
`=2

(
ϕ1

`

)
p`iPi(ψ̄[1 ..m−`]) ≤

∑
t:µt≥2

pµti Pi(ψ̄t).

Note that, for any ` ≥ 2,

Pi(ψ̄m) ≤ (1− pi)`−1Pi(ψ̄[1 ..m−`]).

Taking only the term for ` = 2, we get(
ϕ1

2

)
p2
i

1− pi
Pi(ψ̄m) ≤

∑
t:µt≥2

pµti Pi(ψ̄t). (3.3)

Since Pi(ψ̄) ≤ (1− pi)Pi(ψ̄m),

P (ψ̄) = Pk(ψ̄) + ϕ1pkPk(ψ̄m) +
∑
t:µt≥2

pµtk Pk(ψ̄t)

≤ (1 + (ϕ1 − 1)pk)Pk(ψ̄m) +
∑
t:µt≥2

pµtk Pk(ψ̄t). (3.4)

Canceling Pk(ψ̄m) from Inequalities (3.3) and (3.4), we have(
ϕ1

2

)
p2
iP (ψ̄) ≤

[(
ϕ1 − 1

2

)
p2
i + (ϕ1 − 2)pi + 1

] ∑
t:µt≥2

pµti Pi(ψ̄t) (3.5)

Next we show that

Claim 3.1.
∑

t:µt≥2 p
µt
k Pk(ψ̄t) ≤ (m− ϕ1)pµ∗k Pk(ψ̄∗).

To this see, note that for each t ∈ [m] such that µt ≥ 2 and t 6= m− ϕ1,

pµtk Pk(ψ̄t)− p
µ∗
k Pk(ψ̄∗) = pµtk

∑
i6=k

pµ∗k Pk,i(ψ̄t,m−ϕ1)− pµ∗k
∑
i6=k

pµtk Pk,i(ψ̄t,m−ϕ1)

=
∑
i6=k

Pk,i(ψ̄t,m−ϕ1)(pµtk p
µ∗
k − p

µ∗
k p

µt
k ) ≤ 0.
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Thus Claim 3.1 holds. Further note that

Pk(ψ̄∗) ≤ (1− pk)n−µ∗P̂ (ψ̄∗) ≤ (1− pk)ϕ1P̂ (ψ̄∗).

Then ∑
t:µt≥2

pµtk Pk(ψ̄t) ≤ (m− ϕ1)pµ∗k ≤ (m− ϕ1)pµ∗−2
k (1− pk)ϕ1P̂ (ψ̄∗).

Combining with Inequality (3.5), we get(
ϕ1

2

)
P̂ (ψ̄) ≤

[(
ϕ1 − 1

2

)
p2
k + (ϕ1 − 2)pk + 1

]
(m− ϕ1)pµ∗−2

k (1− pk)ϕ1P̂ (ψ̄∗).

It can verified that[(
ϕ1 − 1

2

)
p2
k + (ϕ1 − 2)pk + 1

]
(1− pk)ϕ1 ≤ 1

by showing that the left-hand side decreases in pk ∈ [0, 1]. Therefore

(m− ϕ1)pµ∗−2
k ≥

(
ϕ1

2

)
P̂ (ψ̄)

P̂ (ψ̄∗)
.

Solving for pk completes the proof.

Corollary 3.7: Explicit Upper Bound on k̂ for ϕ2 = 0

Proof of Corlollary 3.7. In general, by combinatorial arguments it is easy to see

that the number of patterns having the same canonical pattern 1µ12µ2 · · ·mµm is

the number of partitions of the set [n] into disjoint subsets of sizes µ1, µ2, . . . , µm,

i.e., (
n

µ1,µ2,...,µm

)∏
µ>0 ϕµ!

=
n!/
∏m

t=1 µt!∏
µ>0 ϕµ

=
n!∏m

t=1 µt!
∏

µ>0 ϕµ!
.

Thus

P̂ (ψ̄) ≤
∏m

t=1 µt!
∏

µ>0 ϕµ!

n!
.

Here we are interested in an upper bound for P̂ (ψ̄r). For simplicity, let r = m−ϕ1.

Then µ∗ = µr and ψ̄∗ = ψ̄r, and

P̂ (ψ̄r) ≤
∏r

t=1 µt!
∏

µ>0 ϕµ!

(n− µr)! · µr!ϕµr
.
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On the other hand, using distribution P ′ =
(
µ1

n
, µ2

n
, . . . , µr

n

)
we get a lower bound

on P̂ (ψ̄):

P̂ (ψ̄) ≥
r∏
t=1

(µt
n

)µt ∏
µ>1

ϕµ! ·
(ϕ1

n

)ϕ1

.

It follows that

P̂ (ψ̄r)

P̂ (ψ̄)
≤ 1

ϕµr
·
∏r

t=1 µt!∏r
t=1 µ

µt
t

· nn

(n− µr)!µr!
· ϕ1!

ϕϕ1

1

.

Note that

nn

(n− µr)!µr!
=
nn

n!

(
n

µr

)
≤ nn

n!

(
n

n/2

)
=

nn

(n/2)!(n/2)!
.

Furthermore, for any integer n > 0 from [Rob55] the factorial n! can be bounded

as
√

2πn
(n
e

)n
e

1
12n+1 ≤ n! ≤

√
2πn

(n
e

)n
e

1
12n .

Thus
P̂ (ψ̄r)

P̂ (ψ̄)
≤ 1

ϕµr
·

r∏
t=1

√
2πµt e

1
12µt

eµt
· nn en

πn (n/2)n e
2

6n+1

·
√

2πϕ1e
1

12ϕ1

eϕ1
.

Note that
r∏
t=1

√
2πµt ·

√
2πϕ1 ≤

(
2πn

r + 1

) r+1
2

≤ e
πn
e ,

and

n =
r∑
t=1

µt + ϕ1 > 3r.

Then

P̂ (ψ̄r)

P̂ (ψ̄)
≤ 1

ϕµr
· e

πn
e · 2n

πn
· e

∑r
t=1

1
12µt

+ 1
12ϕ1

− 2
6n+1 < e

πn
e

+n ln 2+
n/3
12·3 < e2n.

The conclusion follows from Theorem 3.6.

Theorem 3.8: Another Bound on k̂

Proof of Theorem 3.8. For simplicity, let P = P̂ψ̄ and let p1 > p2 > · · · > pd > 0

be the distinct probabilities. Furthermore, let ki = ν(pi) and αi = kipi. For any

S ⊆ [m], let

mS
def
= |S| and nS

def
=
∑
t∈S

µt.
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Then, for a given i ∈ [d],

P (ψ̄) =
∑
S⊆[m]

(
1

ki

)nS−mS
· k

mS
i

kmSi
αnSi Pi(ψ̄S̄) =

∑
S⊆[m]

fS(x) · αnSi Pi(ψ̄S̄),

where we used x = 1
ki

for simplicity, and

fS(x)
def
= xnS−mS

mS−1∏
t=1

(1− tx).

We consider the monotonicity of fS(x) for x ≤ 1
m

. By direct calculation, we have

f ′S(x) = xnS−mS−1

mS−1∏
t=1

(1− tx) ·

[
nS − 1−

mS−1∑
t=1

1

1− tx

]
,

f ′′S(x) = xnS−mS−2

mS−1∏
t=1

(1− tx)

·

[(
nS − 1−

mS−1∑
t=1

1

1− tx

)(
nS − 2−

mS−1∑
t=1

1

1− tx

)
−

mS−1∑
t=1

tx

(1− tx)2

]
.

Case 1 ϕ1 = 0. Suppose x < nS−mS
(mS−1)(nS−1)

. Then, for all S ⊆ [m] such that S 6= ∅,

nS − 1−
mS−1∑
t=1

1

1− tx
≥ nS − 1− mS − 1

1− (mS − 1) · nS−mS
(mS−1)(nS−1)

= 0.

Then f ′S(x) ≥ 0, where the strict inequality holds if mS ≥ 2 or nS ≥ 2, which

is true since ϕ1 = 0 and S 6= ∅. In other words, P (ψ̄) increases in ki if, for

all S ⊆ [m] such that S 6= ∅,

ki >
(mS − 1)(nS − 1)

nS −mS

.

Since the value of ki defined for P = P̂ψ̄ is optimal, we must have

fS
(
(ki ± 1)−1

)
≤ fS(k−1

i ),

which means that fS(x) is not strictly increasing for x ≤ 1
ki−1

; otherwise

ki − 1 gives a higher pattern probability. Thus

ki − 1 ≤ max
S⊆[m]

(mS − 1)(nS − 1)

nS −mS

≤ max
S⊆[m]

(mS − 1)(2mS − 1)

mS

≤ 2m− 1 +
1

m
,

where the second inequality follows from the fact that ϕ1 = 0 and hence

nS ≥ 2mS.
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Case 2 ϕ2 > 0. We look for a sufficient condition so that f ′′S(x) > 0 for all S 6= ∅.
Note that since ϕ2 = 0, for any S ⊆ [m] either nS = mS or nS −mS ≥ 2.

• If nS −mS = 0, then

f ′′S(x) =

mS−1∏
t=1

(1− tx) ·
∑
t1 6=t2

t1t2
(1− t1x)(1− t2x)

> 0.

• If nS −mS ≥ 2, then f ′′S(x) > 0 if(
nS − 1−

mS−1∑
t=1

1

1− tx

)(
nS − 2−

mS−1∑
t=1

1

1− tx

)
>

mS−1∑
t=1

tx

(1− tx)2
,

which is clearly true if mS = 1. Without loss of generality we assume

mS ≥ 2. Note that

mS−1∑
t=1

tx

(1− tx)2
≤ (mS − 1)2x

[1− (mS − 1)x]2
=

(mS − 1)y

(1− y)2
,

mS−1∑
t=1

1

1− tx
≤ mS − 1

1− (mS − 1)x
=
mS − 1

1− y
,

where

y = (mS − 1)x.

Then f ′′S(x) > 0 if

nS − 2− mS − 1

1− y
≥ 0, (3.6)(

nS − 1− mS − 1

1− y

)(
nS − 2− mS − 1

1− y

)
>

(mS − 1)y

(1− y)2
. (3.7)

Assume that x ≤ 1
m

. Then y < 1. Solving Inequality (3.6) for y < 1,

we get

y ≤ nS −mS − 1

nS − 1
,

or equivalently

x ≤ nS −mS − 1

(mS − 1)(nS − 1)
.

Inequality (3.7) can be written as

(nS−1)(nS−2)y2−2(nS−mS)(nS−2)y+(nS−mS)(nS−mS−1) > 0.

(3.8)
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Since we assumed that nS −mS ≥ 2, we have nS ≥ 3. Then

y ≤ nS −mS − 1

nS − 1
≤ 1

2
(nS −mS − 1),

and hence

(nS − 1)(nS − 2)y2 > 0,

−2(nS −mS)(nS − 2)y + (nS −mS)(nS −mS − 1) ≥ 0.

It follows that Inequality (3.8) holds, and hence Inequality (3.7) holds.

In summary, P (ψ̄) is strictly convex in x = 1
ki

if x ≤ nS−mS−1
(mS−1)(nS−1)

for all

S ⊆ [m] such that nS −mS ≥ 2. Support ki > m, then we must have

fS((ki ± 1)−1) ≤ fS(k−1
i ),

which means that fS(x) is not strictly convex for x ≤ 1
ki−1

; otherwise either

ki − 1 or ki + 1 gives a higher pattern probability. It follows that

1

ki − 1
> min

S⊆[m]:nS−mS≥2

nS −mS − 1

(mS − 1)(nS − 1)
,

i.e.,

ki < max
S⊆[m]:nS−mS≥2

mS(nS − 2)

nS −mS − 1
≤ m2.

From Fact 2.7 we know that d ≤ min{n− 1, 2m}. Thus

k̂ ≤ max
i∈[d]

ki ·min{n− 1, 2m} ≤ m2 ·min{n− 1, 2m}.

3.3 Continuous Probability

We given a sufficient condition such that the PML distribution has posi-

tive continuous probability, as well as a sufficient condition such that it has no

continuous part.
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3.3.1 Patterns with q̂ > 0

Recall that µ∗ is the smallest multiplicity greater than 1, i.e.µ∗ = µm−ϕ1 ,

and ψ̄∗
def
= ψ̄m−ϕ1 .

Theorem 3.9. For any pattern such that ϕ2 = 0 and e
2n

µ∗−1 ≤ (ϕ1
2 )

m−ϕ1
, the PML

distribution satisfies

k̂ ≤
(
ϕ1

2

)
m− ϕ1

and q̂ > 0.

Proof. By Corollary 3.7

k̂ < µ∗−2

√
m− ϕ1(

ϕ1

2

) · e2n ≤
(
ϕ1

2

)
m− ϕ1

.

This proves the first part. For the second part, suppor q̂ = 0. Then it follows from

Theorem 3.2 that

k̂ ≥
(
ϕ1

2

)
m− ϕ1

+m− 1 >

(
ϕ1

2

)
m− ϕ1

,

a contradiction. Thus we must have q̂ > 0.

3.3.2 Patterns with q̂ = 0

It was previously shown that, as shown in Fact 2.6, for any pattern ψ̄ 6= 1

such that ϕ1 = 0 or ϕ1 = 1, th PML distribution is discrete. In this section we

extend the results by providing a more general condition.

Theorem 3.10. For any pattern ψ̄, if

ϕ2 ≥
n− 1

2(m− 1)

(
ϕ1

2

)
,

then q̂ = 0.

Proof. For simplicity, let P = (p1, p2, . . . , pk) = P̂ψ̄. Suppose q > 0. For any

ε ∈ [0, q] let P ε be the distribution obtained from P with continuous probability
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ε, out of q, moved to a new discrete symbol. Then

P (ψ̄) = Pε(ψ̄) +
∑
`≥1

(
ϕ1

`

)
ε`Pε(ψ̄[1 ..m−`]),

and

Qε(ψ̄) = Pε(ψ̄) +
m∑
t=1

εµtPε(ψ̄t),

Let r = m− ϕ1. Since P is the PML distribution, P ε(ψ̄) ≤ P (ψ̄), and hence

ϕ2ε
2Pε(ψ̄r) +

∑
t:µt≥3

εµtPε(ψ̄t) ≤
(
ϕ1

2

)
ε2Pε(ψ̄m−1,m) +

∑
`≥3

(
ϕ1

`

)
ε`Pε(ψ̄[1 ..m−`]),

i.e.,

ϕ2Pε(ψ̄r) +
∑
t:µt≥3

εµt−2Pε(ψ̄t) ≤
(
ϕ1

2

)
Pε(ψ̄m−1,m) +

∑
`≥3

(
ϕ1

`

)
ε`−2Pε(ψ̄[`]),

Letting ε→ 0 we get

ϕ2P (ψ̄r) ≤
(
ϕ1

2

)
P (ψ̄m−1,m).

Note that

P (ψ̄r) =
∑
t6=r

P (ψ̄t,r ⊗ 1µt+1) + P (ψ̄r ⊗ 1)

> (m− 1)P (ψ̄m) + P (ψ̄r)

(
1−

m−1∑
t=1

µt
n

)
≥ (m− 1)P (ψ̄m) + P (ψ̄r) ·

1

n
,

where the first inequality follows from (i) ψ̄r,t ⊗ 1µt+1 � ψ̄m and Fact 2.4, and (ii)

Fact 2.3. Note that the inequality is strict since q > 0. Then

P (ψ̄r) ≥
n(m− 1)

n− 1
P (ψ̄m).

Moreover,

P (ψ̄m) ≥ P (ψ̄m−1,m) ·

(
1−

m−2∑
t=1

µt
n

)
≥ P (ψ̄m−1,m) · 2

n
.

It follows that

(m− 1)ϕ2 ≤
(
ϕ1

2

)
P (ψ̄m−1,m)

P (ψ̄m)
<

(
ϕ1

2

)
· n− 1

2
,

a contradiction.



Chapter 4

Patterns of Simple Forms

Chapter 2 analytically determines the PML distributions for trival, uniform,

1-uniform, binary and some of the skewed patterns. In this chapter we find the

PML distributions for patterns of more general forms.

In Section 4.1 we give an alternative proof for binary patterns.

In Section 4.2 we prove that Conjecture 1 holds for all truly skewed patterns.

In Section 4.3 we show that quasi-uniform patterns have uniform PML.

In Section 4.4 we further extend quasi-uniform to almost-uniform patterns.

4.1 Binary Patterns Revisited

As stated in Fact 2.12, the PML distribution of a non-trivial binary pattern

is
(

1
2
, 1

2

)
if (µ1 − µ2)2 ≤ n. We give a proof, different from the original proof,

using induction and the Inequality of Arithmetic and Geometric Means (AM-GM

Inequality).

Theorem 4.1. For any p ∈ [0, 1], q = 1 − p, and integers a ≥ 0, b ≥ 0 such that

p+ q = 1 and (a− b)2 ≤ a+ b,

paqb + pbqa ≤ 2

(
1

2

)a+b

,

where the equality holds if and only if p = q = 1
2
.

37



38

Proof. Without loss of generality, assume a ≥ b. Let δ
def
= a− b > 0. It is easy to

verify that the condition (a− b)2 ≤ a+ b is equivalent to

b ≥
(
δ

2

)
,

and

paqb + pbqa = (pq)b(pδ + qδ).

We use induction on a+ b = 2b+ δ. For 2b+ δ = 3, i.e., a = 2, b = 1,

paqb + pbqa = p2q + pq2 = pq ≤ 1

4
= 2

(
1

2

)2+1

.

For 2b+ δ > 3, suppose (pq)b
′
(pδ
′
+ qδ

′
) ≤ 2

(
1
2

)2b′+δ′
for all b′ ≥ 0, δ′ ≥ 0 such that

2b′ + δ′ < 2b+ δ. We consider two cases.

• If δ is even, let δ = 2k. Then

(pq)b(pδ + qδ) =
1

2
(pq)b−k · 2(pq)k

[
(pk + qk)2 − 2(pq)k

]
.

By AM-GM Inequality,

2(pq)k
[
(pk + qk)2 − 2(pq)k

]
≤ 1

4

[
2(pq)k + (pk + qk)2 − 2(pq)k

]2
=

1

4
(pk + qk)4.

Then

(pq)b(pδ + qδ) ≤ 1

2
(pq)b−k · 1

4
(pk + qk)4 =

1

8
(pq)b−k−4(k2)

[
(pq)(

k
2)(pk + qk)

]4

.

Let δ′ = k, b′ =
(
k
2

)
. By inductive hypothesis,

(pq)(
k
2)(pk + qk) = (pq)b

′
(pδ
′
+ qδ

′
) ≤ 2

(
1

2

)2b′+δ′

= 2

(
1

2

)k2

.

Furthermore, it is easy to see that pq ≤
(

1
2

)2
. Thus

(pq)b(pδ + qδ) ≤ 1

8

(
1

2

)2b−2k−8(k2)
·

[
2

(
1

2

)k2
]4

= 2

(
1

2

)2b+2k

.
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• If δ is odd, let δ = 2k + 1. Then

(pq)b(pδ + qδ) = (pq)b
[
(pk + qk)(pk+1 + qk+1)− (pq)k

]
.

By AM-GM Inequality,

(pq)k
[
(pk + qk)(pk+1 + qk+1)− (pq)k

]
≤ 1

4

[
(pk + qk)(pk+1 + qk+1)

]2
.

Then

(pq)b(pδ + qδ) ≤ 1

4
(pq)b−k

[
(pk + qk)(pk+1 + qk+1)

]2
=

1

4
(pq)b−k−2(k2)−2(k+1

2 )

·
[
(pq)(

k
2)(pk + qk)(pq)(

k+1
2 )(pk+1 + qk+1)

]2

.

By inductive hypothesis, we have

(pq)(
k
2)(pk + qk) ≤ 2

(
1

2

)2(k2)+k

,

(pq)(
k+1

2 )(pk+1 + qk+1) ≤ 2

(
1

2

)2(k+1
2 )+k+1

.

Thus

(pq)b(pδ + qδ) ≤ 1

4

(
1

2

)2b−2k−4(k2)−4(k+1
2 )
[

2

(
1

2

)k2

· 2
(

1

2

)(k+1)2
]2

,

which can be simplified to 2
(

1
2

)2b+2k+1
.

4.2 Skewed Patterns

Recall that a truly skewed pattern has the form ψ̄ = 1r23 · · · (u+ 1), where

r ≥ 3 and u ≥ 2. As stated in Conjecture 1, it was believed that P̂1r23···(u+1) =(
r

r+u

)
, which has been shown to hold for r ≥ 2

√
u � 1. In this section we show

that the conjecture indeed holds for all truly skewed patterns:

Theorem 4.2. For any r ≥ 3 and u ≥ 2,

P̂1r23···(u+1) =

(
r

r + u

)
.

The structure of the remaining part of this section is illustrated in Figure 4.1.
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Theorem 4.2 Theorem 4.3

Lemma 4.4

Lemma 4.5 Prop. 4.9 Prop. 4.8 Prop. 4.6

Prop. 4.7

Figure 4.1: Roadmap to the Proof for Skewed Patterns

4.2.1 Pattern 11123

We first give a proof to the smallest truly skewed pattern ψ̄3,2 = 11123 and

then extend it to the others.

Theorem 4.3.

P̂11123 =

(
3

5

)
.

Proof. For simplicity, let P = (p1, p2, . . . , pk) = P̂11123 ∈ P sorted
mix . We first show

that p1 can’t be too small:

Claim 4.1. p1 > 0.4549.

To show Claim 4.1, by Lemma 3.1 we have

5piP (11123) = 3p3
iPi(12) + 2piPi(1112). (4.1)

On the other hand, expanding P (11123) by pi, we have

P (11123) = Pi(11123) + p3
iPi(12) + 2piPi(1112). (4.2)

Using 3× (4.2)− (4.1), we get

(3− 5pi)P (11123) = 3Pi(11123) + 4piPi(1112)

≤ 3(1− pi)5P (11123) + 4pi(1− pi)4 · 1

8
,

i.e., [
(3− 5pi)− 3(1− pi)5

]
P (11123) ≤ 1

2
pi(1− pi)4.
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Since P is the PML distribution, P (11123) ≥
(

3
5

)3 (2
5

)2
, and hence

[
(3− 5pi)− 3(1− pi)5

](3

5

)3(
2

5

)2

≤ 1

2
pi(1− pi)4.

Solving for pi gives

pi < 0.3531, or pi > 0.4549.

However, (
3

5

)3(
2

5

)2

≤ P (11123) ≤ p1P (1123) ≤ p1

(
1

5

)4

· (5 · 4 · 3),

which implies p1 ≥ 0.36. Thus we must have p1 > 0.4549.

Next we show that

Claim 4.2. For all i ∈ [k],

10p3
i − 8p2

i + 3pi ≥ 3piP (11) + 2P (111).

To show Claim 4.2, we rewrite P (11123) as

P (11123) = P (1112)− [P (11112) + P (11122)]

= [P (111)− P (1111)]− [P (1111)− P (11111)]

− [P (111)P (11)− P (11111)]

= P (111)− 2P (1111)− P (111)P (11) + 2P (11111)

= f(p1, p2, . . . , pk)
def
=

k∑
i=1

p3
i − 2

k∑
i=1

p4
i −

k∑
i=1

p3
i

k∑
i=1

p2
i + 2

k∑
i=1

p5
i .

Note that q = 1−
∑k

i=1 pi does not explicitly appear in f(p1, p2, . . . , pk). For any

i ∈ [k],
∂f

∂pi
=

∂

∂pi
P (11123)− ∂

∂q
P (11123) ≥ 0,

where the inequality follows from Lemma 3.1, and thus Claim 4.2 follows.

We use Claims 4.1 and 4.2 to show that k = 1.

• Suppose k ≥ 3. By Claim 4.2,

10p3
3 − 8p2

3 + 3p3 ≥ 3p3P (11) + 2P (111).
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Since

P (11) ≥ p2
1 + p2

2 + p2
3 ≥ 0.45492 + 2p2

3,

P (111) ≥ p3
1 + p3

2 + p3
3 ≥ 0.45493 + 2p3

3,

we have

10p3
3 − 8p2

3 + 3p3 ≥ 3p3

(
0.45492 + 2p2

3

)
+ 2

(
0.45493 + 2p3

3

)
.

However, no real number p3 ∈ [0, 1] satisfies the above inequality.

• Suppose k = 2. Then

P (11123) = f(p1, p2) = (p3
1 + p3

2)− 2(p4
1 + p4

2)− (p2
1p

3
2 + p3

1p
2
2) + (p5

1 + p5
2).

By the majorization property in Fact 2.3,

p1 + p2 ≤ (3 + 1)/5 < 1.

Thus f(p1, p2) is not maximized at the boundary p1 + p2 = 1. Hence

∂f

∂p1

=
∂f

∂p2

= 0,

i.e.,

p1(5p3
1 − 8p2

1 − 3p1p
2
2 + 3p1 − 2p3

2) = 0,

p2(5p3
2 − 8p2

2 − 3p2p
2
1 + 3p2 − 2p3

1) = 0.

Then

5p3
1 − 8p2

1 − 3p1p
2
2 + 3p1 − 2p3

2 = 5p3
2 − 8p2

2 − 3p2p
2
1 + 3p2 − 2p3

1,

i.e.,

(p1 − p2)
[
7(p2

1 + p2
2) + 10p1p2 − 8(p1 + p2) + 3

]
= 0.

Since

p1 − p2 ≥ p1 − (4/5− p1) > 2 · 0.4549− 1 > 0,

we have

7(p2
1 + p2

2) + 10p1p2 − 8(p1 + p2) + 3 = 0.
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However,

7(p2
1 + p2

2) + 10p1p2 − 8(p1 + p2) + 3

= 6

(
p1 + p2 −

2

3

)2

+ (p1 − p2)2 +
1

3

> 0,

a contradiction.

In conclusion we must have k = 1. Then it is easy to show that p1 = 3
5
.

4.2.2 Inequalities

We’ll break the main proof of Theorem 4.2 into the following steps. In

Lemma 4.4, we upper bound p̂1 in terms of p̂2. In Lemma 4.5 we show that p̂1

is close to r
r+u

, and all other p̂i’s are close to 0. We then prove Theorem 4.2 by

showing that Lemmas 4.4 and 4.5 contradict each other if the discrete support size

k̂ exceeds 1. It follows that k must be one, and the values of p̂1 and q̂ can then be

calculated.

Lemma 4.4. For all r ≥ 3 and u ≥ 2, P̂1r23···u+1 satisfies, for all i ∈ [k̂],

u(u− 1)P̂i(1
r23 · · ·u− 1) ≤ rp̂ r−2

i P̂i(12 · · ·u)− up̂ r−1
i P̂i(1

r23 · · ·u− 1).

Furthermore, if p̂2 6= 0 then

u(u− 1)p̂ r1 ≤ rp̂ r−2
2 [1 + (u− 1)p̂1 − p̂2] (1− p̂1 − p̂2).

To state Lemma 4.5 we define Lr,u and Ur,u as in Table 4.1.

Lemma 4.5. For all r ≥ 3, if (i) u = 2, or (ii) u > 2 and P̂1r23···u =
(

r
r+u−1

)
then

P̂1r23···u+1 satisfies

p̂1 ∈
(
Ur,u,

r

r + u

]
,

and, for all i ∈ [2..k̂],

p̂i ∈ [0, Lr,u) .
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Table 4.1: Definitions of Lr,u and Ur,u

Lr,u u = 2 u = 3 u ≥ 4

r = 3 0.3531 0.07869 1
4u

r ≥ 4 1
r

1
r+u

Ur,u u = 2 u = 3 u ≥ 4

r = 3 0.4549 0.4199 r−1
r+u

r ≥ 4 r−1
r+u

Lemma 4.4: upper bound of p̂1 using p̂2

We prove the inequalities in Lemma 4.4.

Proof of Lemma 4.4. For simplicity, let P = P̂1r23···u+1 = (p1, p2, . . . , pk). For con-

venience, let pj = 0 for any j > k. Then for any i 6= j,

P (1r23 · · ·u+ 1) = Pi,j(1
r23 · · ·u+ 1) + u(pi + pj)Pi,j(1

r23 · · ·u)

+ u(u− 1)pipjPi,j(1
r23 · · ·u− 1)

+ (pri + prj)Pi,j(12 · · ·u)

+ u(pripj + pip
r
j)Pi,j(12 · · ·u− 1).

Suppose i ∈ [k] and let j = k + 1, then pi > 0 and pj = 0. For any α ∈ [0, 1]

consider a new distribution Pα, where pi is replaced by (1−α)pi and pj is replaced

by pj + αpi = αpi. In other words, we split pi into two probabilities αpi and

(1− α)pi. Then

Pα(1r23 · · ·u+ 1)

= Pi(1
r23 · · ·u+ 1) + upiPi(1

r23 · · ·u)

+ u(u− 1)(1− α)αp2
iPi(1

r23 · · ·u− 1)

+ [(1− α)r + αr]Pi(12 · · ·u)

+ u [(1− α)rα + αr(1− α)] pr+1
i Pi(12 · · ·u− 1).

Note that, for α = 0, Pα = P . Since α ≥ 0, we have ∂
∂α
Pα(1r23 · · ·u+ 1)

∣∣
α=0
≤ 0,

i.e.

u(u− 1)p2
iPi(1

r23 · · ·u− 1) ≤ rpri · Pi(12 · · ·u)− upr+1
i · Pi(12 · · ·u− 1).
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Then the first half of Lemma 4.4 follows by removing a factor of p2
i on both sides

since pi > 0.

To show the second half of Lemma 4.4, if p2 > 0, then the previous inequal-

ity implies that

u(u− 1)P2(1r23 · · ·u− 1) ≤ rpr−2
2 P2(12 · · ·u). (4.3)

On the other hand, expanding P2(1r23 · · ·u− 1) by p1, we get

P2(1r23 · · ·u− 1) = P1,2(1r23 · · ·u− 1)

+ pr1P1,2(12 · · ·u− 2) + (u− 2)p1P1,2(1r23 · · ·u− 2),

where P1,2(∅) def
= 1 in case u = 2. It follows that

P2(1r23 · · ·u− 1) ≥ pr1 · P1,2(12 · · ·u− 2). (4.4)

Furthermore, expanding P2(12 · · ·u) by p1, we get

P2(12 · · ·u) = P1,2(12 · · ·u) + up1P1,2(12 · · ·u− 1).

It is easy to see that

P1,2(12 · · ·u) ≤ (1− p1 − p2)P1,2(1212 · · ·u− 1),

P1,2(12 · · ·u− 1) ≤ (1− p1 − p2)P1,2(12 · · ·u− 2).

Thus

P2(12 · · ·u) ≤ (1− p1 − p2 − up1)(1− p1 − p2)P1,2(12 · · ·u− 2). (4.5)

Combining Inequalities (4.3), (4.4), and (4.5), we get

u(u−1)pr1P2(1r23 · · ·u−2) ≤ rpr−2
2 (1−p1−p2−up1)(1−p1−p2)P1,2(12 · · ·u−2)

(4.6)

To cancel P1,2(12 · · ·u − 2) on both sides of Inequality (4.6), we need to

show that P1,2(12 · · ·u − 2) > 0. For u = 2 it is clearly true since P1,2(∅) = 1.

For u > 2, suppose that P1,2(12 · · ·u − 2) = 0, then we must have q = 0 and

k−2 < u−2, i.e., k < u. We would then have P (1r23 · · ·u+ 1) = 0, contradicting

the assumption that P = P̂1r23···u+1. Therefore P1,2(12 · · ·u− 2) > 0 for all u ≥ 2.

Canceling P1,2(12 · · ·u− 2) in Inequality (4.6) yields

u(u− 1)pr1 ≤ rpr−2
2 [1 + (u− 1)p1 − p2] (1− p1 − p2).
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Lemma 4.5: p̂i’s are small or close to r
r+u

The proof of Lemma 4.5 consists of the following steps. Consider the ratio

P̂1r23···u(1
r23 · · ·u)

P̂1r23···u+1(1r23 · · ·u+ 1)
.

In Proposition 4.6 we give a lower bound for the ratio, and in Proposition 4.7 we

give an upper bound. Using the lower and upper bounds, we prove in Proposi-

tion 4.9 that all pi’s in P̂1r23···u+1 are either close to 0 or r
r+u

, and then Lemma 4.5

follows.

For any p ∈ (0, 1), let

Fr,u(p)
def
=
r − (r + u)p− r(1− p)r+u

(r − 1)u · p(1− p)r+u−1
.

Proposition 4.6. For all r ≥ 3 and u ≥ 2, P̂1r23···u+1 satisfies, for all i ∈ [k̂],

Fr,u(p̂i) ≤
P̂1r23···u(1

r23 · · ·u)

P̂1r23···u+1(1r23 · · ·u+ 1)
.

Proof. For simplicity, let P = P̂1r23···u+1 = (p1, p2, . . . , pk). For any i ∈ [k] and

0 ≤ α < p−1
i , consider a new distribution Pα where pi is scaled by α and all other

parts, including q, are scaled by 1−αpi
1−pi . By Expansion (2.3),

P (1r23 · · ·u+ 1) = Pi(1
r23 · · ·u+ 1) + upiPi(1

r23 · · ·u) + priPi(12 · · ·u), (4.7)

and

Pα(1r23 · · ·u+ 1) =

(
1− αpi
1− pi

)r+u
Pi(1

r23 · · ·u+ 1)

+ u(αpi)

(
1− αpi
1− pi

)r+u−1

Pi(1
r23 · · ·u)

+ (αpi)
r

(
1− αpi
1− pi

)u
Pi(12 · · ·u).

Note that, for α = 1, Pα = P . Thus, as a function of α, Pα(1r23 · · ·u + 1) is

maximized at α = 1. Note that p−1
i > 1. Then α = 1 is not at the boundary. Thus

∂

∂α
Pα(1r23 · · ·u+ 1)

∣∣∣∣
α=1

= 0,
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i.e.,

0 = −(r + u)Pi(1
r23 · · ·u+ 1)

+ u [1− (r + u)pi]Pi(1
r23 · · ·u) + pr−1

i [r − (r + u)pi]Pi(12 · · ·u). (4.8)

Eliminating Pi(12 · · ·u) from Equations (4.7) and (4.8) yields

[r − (r + u)pi]P (1r23 · · ·u+ 1) = rPi(1
r23 · · ·u+ 1) + (r − 1)upiPi(1

r23 · · ·u).

Let P norm
i be the distribution obtain from P by removing pi and normalizing the

remaining probabilities. Then

P norm
i (1r23 · · ·u+ 1) ≤ (1− pi)r+uP norm

i (1r23 · · ·u+ 1)

≤ (1− pi)r+uP̂1r23···u+1(1r23 · · ·u+ 1),

and similarly

P norm
i (1r23 · · ·u) ≤ (1− pi)r+uP̂1r23···u(1

r23 · · ·u).

Thus

[r − (r + u)pi]P (1r23 · · ·u+ 1) ≤ r(1− pi)r+uP̂1r23···u+1(1r23 · · ·u+ 1)

+ (r − 1)upi(1− pi)r+uP̂1r23···u(1
r23 · · ·u),

which can be rewritten as

Fr,u(pi) ≤
P̂1r23···u(1

r23 · · ·u)

P̂1r23···u+1(1r23 · · ·u+ 1)
.

Let

Ar,u
def
=

(
r + u

r

)r (
r + u

u

)u
·


1
8
, if r = 3 and u = 2,

2
5r
, if r ≥ 4 and u = 2,(
r

r+u−1

)r ( u−1
r+u−1

)u−1
, if r ≥ 3 and u ≥ 3.

Proposition 4.7. For all r ≥ 3, if (i) u = 2, or (ii) u > 2 and P̂1r23···u =
(

r
r+u−1

)
,

then P̂1r23···u+1 satisfies, for all i ∈ [k̂],

P̂1r23···u(1
r23 · · ·u)

P̂1r23···u+1(1r23 · · ·u+ 1)
≤ Ar,u.
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Proof. Note that in the ratio P̂1r23···u(1r23···u)

P̂1r23···u+1(1r23···u+1)
the denominator can be bounded

by

P1r23···u+1(1r23 · · ·u+ 1) ≥
(
r + u

r

)r (
r + u

u

)u
.

Furthermore, if u > 2, by assumption

P1r23···u(1
r23 · · ·u) =

(
r

r + u− 1

)r (
u− 1

r + u− 1

)u−1

.

Examining the definition of Ar,u, we only need to show that

P̂1r2(1r2) ≤


1
8
, if r = 3,

2
5r
, if r ≥ 4.

For u = 2, the pattern 1r23 · · ·u = 1r2 becomes binary. As described in

Chapter 2, the PML distribution of any non-trivial binary pattern has support size

2, and the probabilities can be found by solving an uni-variate equation. As for

1r2, the PML distribution is P̂1r2 = (p, 1− p), where p satisfies[
rpr−1(1− p)− pr

]
+
[
(1− p)r − r(1− p)r−1

]
= 0.

For r = 3, it is easy to verify that P̂1112 =
(

1
2
, 1

2

)
and P̂1112(1112) = 1/8. For r > 3,

we can show that

Claim 4.3. For all r > 3, P̂1r2(1r2) ≤ 2
5r
.

see Appendix A.1 for the complete proof of Claim 4.3. Combining all cases we

have that
P̂1r23···u(1

r23 · · ·u)

P̂1r23···u+1(1r23 · · ·u+ 1)
≤ Ar,u.

Combining the lower bound in Propositions 4.6 and the upper bound in 4.7,

we get

Proposition 4.8. For all r ≥ 3, if (i) u = 2, or (ii) u > 2 and P̂1r23···u =
(

r
r+u−1

)
,

then P̂1r23···u+1 satisfies, for all i ∈ [k̂],

Fr,u(p̂i) ≤ Ar,u.

On the other hand, we show the following property of Fr,u(p):
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Claim 4.4. Given any r ≥ 3 and u ≥ 2, Fr,u(p) > Ar,u for all p ∈ (Ur,u, Lr,u).

See Appendix A.1 for the complete proof of Claim 4.4. Combined with Proposi-

tion 4.8 it implies that no p̂i in P̂1r23···u+1 lies in the interval [Lr,u, Ur,u]. Note that

the majorization property in Fact 2.3 implies that any p̂i is at most r
r+u

. Therefore

we have the following:

Proposition 4.9. For all r ≥ 3, if (i) u = 2, or (ii) u > 2 and P̂1r23···u =
(

r
r+u−1

)
,

then P̂1r23···u+1 satisfies, for all i ≥ 1,

p̂i ∈ (0, Lr,u)
⋃(

Ur,u,
r

r + u

]
.

Finally we can prove Lemma 4.5.

Proof of Lemma 4.5. For simplicity, let P = P̂1r23···u+1 = (p1, p2, . . . , pk). By

Proposition 4.9, for all i ∈ [k], pi ∈ (0, Lr,u) or pi ∈
(
Ur,u,

r
r+u

]
. It is then sufficient

to prove that p1 ≥ Lr,u and, for all i ∈ [2..k], pi ≤ Ur,u.

To show that p1 ≥ Lr,u, note that

P (1r23 · · ·u+ 1) ≥
(

r

r + u

)r (
u

r + u

)u
,

and

P (1r23 · · ·u+ 1) ≤ pr−2
1 P (1123 · · ·u+ 1) ≤ pr−2

1 · P̂1123···u+1(1123 · · ·u+ 1).

Then

pr−2
1 ≥ P̂1123···u+1(1123 · · ·u+ 1)(

r
r+u

)r ( u
r+u

)u . (4.9)

Note that 1123 · · ·u+1 is 1-uniform. As mentioned in 2, the probability of

a 1-uniform pattern can be maximized at a uniform distribution, and the support

size k1 can be found as arg mink1≥m k1 ≥ m k1+1
k1−(u+1)+1

·
(

k1

k1+1

)u+2

≤ 1.

For r = 3 and u = 2, it is easy to find that P̂1123 is uniform with support

size k1 = 5. Thus, for r = 3 and u = 2, Inequality 4.9 implies that

p1 ≥
P̂1123(1123)(

3
5

)3 (2
5

)2 ≥
9

25
= 0.36 > L3,2.



50

For r > 3 or u > 2, it can be shown that

Claim 4.5. For all m ≥ 2,

P̂1123···m(1123 · · ·m) ≤ 2/e

m(m− 1)
.

Furthermore,

Claim 4.6. If r ≥ 3 and u ≥ 2, but r 6= 3 or u 6= 2, then(
r

r + u

)r (
u

r + u

)u
· u(u+ 1)

2
> Lr−2

r,u .

See Appendix A.1 for the complete proofs of Claims 4.5 and 4.6. Combining

Inequality (4.9) with these two claims, we get p1 > Lr,u.

In either case, we have p1 > Lr,u. Hence

p1 ∈
(
Ur,u,

r

r + u

]
.

To show the second half of Lemma 4.5, by the majorization property in

Fact 2.3, for all i ∈ [2..k], p1 + pi ≤ p1 + p2 ≤ r+1
r+u

. Therefore

pi ≤
r + 1

2(r + u)
≤ Ur,u,

where the second inequality can be directly verified by calculation for all r ≥ 3

and u ≥ 2. It follows that, for all i ∈ [2..k], pi ∈ (0, Lr,u) .

4.2.3 Proof for Skewed Patterns

We use Theorem 4.3 and Lemmas 4.4 and 4.5 to complete the proof of

Theorem 4.2.

Proof of Theorem 4.2. For simplicity, let P = P̂1r23···u+1 = (p1, p2, . . . , pk). We use

induction on u ≥ 2 to show that k = 1. Then it is easy to show that p1 = r
r+u

.

Basis (u = 2) As show in Theorem 4.3, for u = 2 and r = 3, P̂11123 =
(

3
5

)
. For

u = 2 and r > 3,we show that k = 1 then it is easy to show that p1 = r
r+u

.
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Suppose k ≥ 2, then p2 > 0. By Lemmas 4.4 and 4.5 we have

2pr1 ≤ rpr−2
2 (1 + p1 − p2) (1− p1 − p2),

p1 ∈
(
Ur,2,

r

r + 2

]
.

Then

2U r
r,2 ≤ rpr−2

2

[
2(r + 1)

r + 2
− p2

]
(1− Ur,2 − p2) . (4.10)

Lemma 4.5 also says that p2 < Lr,u. Furthermore, we can show that the right-hand

side of Inequality 4.10 increases in p2:

Claim 4.7. If r ≥ 3 and u ≥ 2, but r 6= 3 or u 6= 2, then

pr−2

[
(r + 1)u

r + u
− p
]

(1− Ur,u − p)

increases for p ∈ (0, Lr,u].

See Appendix A.1 for the complete proof of Claim 4.7. Substituting Lr,u for p2 in

Inequality 4.10, we get

2U r
r,2 ≤ rLr−2

r,2

[
2(r + 1)

r + 2
− Lr,2

]
(1− Ur,2 − Lr,2) . (4.11)

However, we can verify case by case that one can show that the left-hand side of

Inequality (4.11) is always larger than the right-hand side:

Claim 4.8. If r ≥ 3 and u ≥ 2, but r 6= 3 or u 6= 2, then

u(u− 1)U r
r,u > rLr−2

r,u

[
(r + 1)u

r + u
− Lr,u

]
(1− Ur,u − Lr,u).

See Appendix A.1 for the complete proof of Claim 4.8. Thus Inequality (4.11) and

Claim 4.8 contradict each other. Thus our assumption that k ≥ 2 is false and we

must have k = 1, completing the proof of the basis.

Induction Step We show that for all u > 2 and r ≥ 3, if P̂1r23···u =
(

r
r+u−1

)
, then

P̂1r23···u+1 =
(

r
r+u

)
.

The proof resembles that of the basis. We prove by contradiction that

k = 1. Suppose k ≥ 2 then p2 > 0. By Lemmas 4.4 and 4.5 we have

u(u− 1)pr1 ≤ rpr−2
2 [1 + (u− 1)p1 − p2] (1− p1 − p2),

p1 ∈
(
Ur,u,

r

r + u

]
.
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Then

u(u− 1)U r
r,u ≤ rpr−2

2

[
(r + 1)u

r + u
− p2

]
(1− Ur,u − p2) .

Lemma 4.5 also says that p2 < Lr,u. Using Claim 4.7, we get

u(u− 1)U r
r,u ≤ rLr−2

r,u

[
(r + 1)u

r + u
− Lr,u

]
(1− Ur,u − Lr,u) ,

which contradicts Claim 4.8. It follows that our assumption k ≥ 2 does not hold;

we must have k = 1.

Combining both the basis and induction step, we have that ,for all r ≥ 3 and

u ≥ 2, P̂1r23···u+1 has discrete support size k = 1. It follows that P (1r23 · · ·u + 1)

is pr1(1− p1)u, which is maximized at p1 = p̂1 = r
r+u

.

4.3 Quasi-uniform Patterns

Recall that µ1 ≥ µ2 ≥ · · · ≥ µm denote the multiplicities of a canonical

pattern. In a uniform pattern µt = µt′ for all t, t′ ∈ [m]. In a 1-uniform pattern

|µt − µt′| ≤ 1 for all t, t′ ∈ [m]. As stated in Facts 2.10 and 2.11, the PML distri-

butions of uniform and 1-uniform patterns are essentially uniform. We generalize

the results by relaxing the bound constraint on the multiplicities. Let
(
S
i

)
be the

set of i-element subsets of a set S. For any {t, t′} ∈
(

[m]
2

)
, let

dt,t′
def
= (µt − µt′)2 − (µt + µt′ − 2).

In a quasi-uniform pattern dt,t′ ≤ 0 for all {t, t′} ∈
(

[m]
2

)
. We show that

Theorem 4.10. The PML of any non-trivial quasi-uniform ψ̄ can be achieved at

a uniform distribution.

We first prove an algebraic inequality.

Lemma 4.11. For any real numbers p 6= q and integer n ≥ 0,

pn − qn

p− q
≤ n

2

(
pn−1 + qn−1

)
,

where the equality holds if and only if n ∈ {0, 1}.
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Proof. We first rewrite the left-hand side as

pn − qn

p− q
=

n−1∑
i=0

piqn−1−i.

Note that for any i = 0, 1, . . . , n− 1,(
piqn−1−i + pn−1−iqi

)
−
(
pn−1 + qn−1

)
= −

(
pi − qi

) (
pn−1−i − qn−1−i) ≤ 0.

Then
pn − qn

p− q
≤ 1

2

n−1∑
i=0

(
pn−1 + qn−1

)
=
n

2

(
pn−1 + qn−1

)
.

Recall that, given pattern ψ̄ and K ≥ m, the bounded PML distribution is

P̂
(K)

ψ̄

def
= arg max

P∈P sorted
d : |P |≤K

P (ψ̄),

and

lim
K→∞

P̂ (K)(ψ̄) = P̂ (ψ̄).

If for every K ≥ m, P̂
(K)

ψ̄
is uniform, similar to finding the support size of the PML

distribution for uniform or 1-uniform patterns, limK→∞ P̂
(K)(ψ̄) can be achieved

at the uniform distribution with support

k̂ = arg min
k≥m

k + 1

k −m+ 1
·
(

k

k + 1

)n
≤ 1.

Thus to prove Theorem 4.10 it’s sufficient to show that, for any K ≥ m, the

bounded PML distribution P̂
(K)

ψ̄
is uniform. Without loss of generality, we assume

there is a fixed K, and P̂
(K)

ψ̄
= (p̂1, p̂2, . . . , p̂k) ∈ P sorted

d .

Proof of Theorem 4.10. For simplicity, let P = (p1, p2, . . . , pk) = P̂
(K)

ψ̄
be the

bounded PML distribution. Furthermore, without loss of generality we assume

that there is no other bounded PML distribution with smaller support size.

Suppose P is not uniform i.e., p1 > pk. By Expansion (2.6),

P (ψ̄) = P1,k(ψ̄) +
∑
t

(pµt1 + pµtk )P1,k(ψ̄t) +
∑

(t,t′)∈[m] 2

pµt1 p
µt′
k P1,k(ψ̄t,t′),
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where [m] 2 is the set of ordered pairs (t, t′) with t, t′ ∈ [m] such that t 6= t′. Let P ′

be the distribution with p1 and pk merged, i.e., replacing p1 and pk by p′1 = p1 +pk

and p′k = 0. Then P ′(ψ̄) can be expanded as

P ′(ψ̄) = P1,k(ψ̄) +
∑
t

(p1 + pk)
µtP1,k(ψ̄t).

Since we assumed that no other bounded PML distribution has smaller support

size, P ′(ψ̄) is strictly less than P (ψ̄), and hence combining the expansions for P (ψ̄)

and P ′(ψ̄) we get∑
t:µt≥2

[(p1 + pk)
µt − (pµt1 + pµtk )]P1,k(ψ̄t) <

∑
(t,t′)∈[m] 2

pµt1 p
µt′
k P1,k(ψ̄t,t′).

Note that, for any µt ≥ 2,

(p1 + pk)
µt − (pµt1 + pµtk ) ≥

(
µt
2

)
p1pk(p

µt−2
1 + pµt−2

k ).

Then ∑
t:µt≥2

(
µt
2

)
(pµt−2

1 + pµt−2
k )P1,k(ψ̄t) <

∑
(t,t′)∈[m] 2

pµt−1
1 p

µt′−1
k P1,k(ψ̄t,t′). (4.12)

On the other hand, let P ′′ be the distribution with p1 and pk replaced by p′′1 = p1+pk
2

and p′′k = p1+pk
2

. Then P ′′(ψ̄) can be expanded as

P ′′(ψ̄) = P1,k(ψ̄) +
∑
t

2

(
p1 + pk

2

)µt
P1,k(ψ̄t) +

∑
(t,t′)

(
p1 + pk

2

)µt+µt′
P1,k(ψ̄t,t′).

Combining the expansions for P (ψ̄) and P ′′(ψ̄), we get

∑
(t,t′)∈[m] 2

[(
p1 + pk

2

)µt+µt′
− pµt1 p

µt′
k

]
P1,k(ψ̄t,t′)

≤
∑
t:µt≥2

[
(pµt1 + pµtk )− 2

(
p1 + pk

2

)µt]
P1,k(ψ̄t). (4.13)

Note that

pµt1 −
(
p1 + pk

2

)µt
=
p1 − pk

2

µt−1∑
`=0

p`1

(
p1 + pk

2

)µt−1−`

pµtk −
(
p1 + pk

2

)µt
= −p1 − pk

2

µt−1∑
`=0

p`k

(
p1 + pk

2

)µt−1−`
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It follows that

(pµt1 + pµtk )− 2

(
p1 + pk

2

)µt
=
p1 − pk

2

µt−1∑
`=1

(
p`1 − p`k

)(p1 + pk
2

)µt−1−`

.

Since p1 6= pk, by Lemma 4.11, for any ` = 1, 2, . . . , µt − 1,

p`1 − p`k
p1 − pk

≤ `

2

(
p`1 + p`k

)
.

Furthermore, since xµt−1−` is a convex function,(
p1 + pk

2

)µt−1−`

≤ 1

2

(
pµt−1−`

1 + pµt−1−`
k

)
.

Thus

(pµt1 + pµtk )− 2

(
p1 + pk

2

)µt
≤ (p1 − pk)2

2

µt−1∑
`=1

`

2
(p`−1

1 + p`−1
k ) · 1

2
(pµt−1−`

1 + pµt−1−`
k ),

where

(p`−1
1 + p`−1

k )(pµt−1−`
1 + pµt−1−`

k ) =
(
pµt−2

1 + pµ2−2
k

)
+
(
p`−1

1 pµt−1−`
k + pmut−1−`

1 p`−1
k

)
≤ 2

(
pµt−2

1 + pµ2−2
k

)
.

Then

(pµt1 + pµtk )− 2

(
p1 + pk

2

)µt
≤ (p1 − pk)2

2

µt−1∑
`=1

`

2

(
pµt−2

1 + pµ2−2
k

)
=

(p1 − pk)2

4

(
pµt−2

1 + pµ2−2
k

)
· µt(µt − 1)

2
,

which implies, combined with Inequality (4.13), that

∑
(t,t′)∈[m] 2

[(
p1 + pk

2

)µt+µt′
− pµt1 p

µt′
k

]
P1,k(ψ̄t,t′)

≤ (p1 − pk)2

4

∑
t:µt≥2

(
µt
2

)
(pµt−2

1 + pµt−2
k )P1,k(ψ̄t). (4.14)

Eliminating
∑

t:µt≥2

(
µt
2

)
(pµt−2

1 + pµt−2
k )P1,k(ψ̄t) from Inequalities (4.12) and (4.14),

∑
(t,t′)∈[m] 2

[(
p1 + pk

2

)µt+µt′
− pµt1 p

µt′
k

]
P1,k(ψ̄t,t′)

<
(p1 − pk)2

4

∑
(t,t′)∈[m] 2

pµt1 p
µt′
k P1,k(ψ̄t,t′),
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which can be rewritten as

∑
{t,t′}∈([m]

2 )

[
2

(
p1 + pk

2

)µt+µt′−2

−
(
pµt−1

1 p
µt′−1
k + p

µt′−1
1 pµt−1

k

)]
P1,k(ψ̄t,t′) < 0.

Let r = p1

pk
> 1. Then

∑
{t,t′}∈([m]

2 )

[
2
(
r+1

2

)µt+µt′−2

rµt−1 + rµt′−1
− 1

] (
pµt1 p

µt′
k + p

µt′
1 pµtk

)
P1,k(ψ̄t,t′) ≤ 0. (4.15)

However, by Theorem 4.1,(
r

r + 1

)µt−1(
1

r + 1

)µt′−1

+

(
1

r + 1

)µt−1(
r

r + 1

)µt′−1

≤ 2

(
1

2

)(µt−1)+(µt′−1)

,

i.e.,

rµt−1 + rµt′−1 ≤ 2

(
r + 1

2

)µt+µt′−2

,

which contradicts Inequality (4.15). Therefore our assumption that P = P̂
(K)

ψ̄
is

non-uniform is false and the conclusion follows.

4.4 Almost-uniform Patterns

A pattern ψ̄ is almost-uniform if for all t, t′ ∈ [m],

(µ1 − 1)µ1−µm
∑
dt,t′>0

dt,t′ + (µm − 1)µ1−µm
∑
dt,t′<0

dt,t′ ≤ 0,

where we consider 00 = 1 in the case µ1 = µm = 1.

Note that a quasi-uniform pattern is also almost-uniform. Particularly, if

µm = 1, then ψ̄ is almost-uniform only if
∑

dt,t′>0 dt,t′ = 0, i.e., the almost-uniform

pattern degenerates to a quasi-uniform pattern.

In general, if µm > 1, the condition for a pattern being almost-uniform can

be rewritten as ∑
dt,t′<0 |dt,t′|∑
dt,t′>0 dt,t′

≥
(
µ1 − 1

µm − 1

)µ1−µm
.
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We show in Theorem 4.12 that the PML distribution of an almost-uniform pattern

is essentially uniform. We also show similar results in Theorem 4.13 for certain

patterns with largest multiplicity µ1 = 3 but not necessarily almost-uniform.

Theorem 4.12. The PML of any non-trivial almost-uniform ψ̄ can be achieved

at a uniform distribution.

Theorem 4.13. For any pattern ψ̄ such that µ1 = 3 and

4

(
ϕ2

2

)
≥ ϕ1ϕ3,

the PML of ψ̄ can be achieved at a uniform distribution.

Similar to the proof of Theorem 4.10, it’s sufficient to consider only bounded

PML distribution. Without loss of generality, we assume there is a fixed K, and

P̂
(K)

ψ̄
= (p̂1, p̂2, . . . , p̂k) ∈ P sorted

d .

We first show an inequality derived from merging two probabilities in the

PML distribution. We’ll use this inequality in the proofs of both Theorems 4.12

and 4.13. The structure of the proofs is illustrated in Figure 4.2.

Theorem 4.12 Lemma 4.15

Lemma 4.16 Prop. 4.14

Theorem 4.13

Figure 4.2: Roadmap to the proof for Almost-uniform Patterns
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Proposition 4.14. Let p̂i > p̂j > 0 be probabilities from a (bounded) PML distri-

bution P̂ψ̄ of pattern ψ̄. Let P̂ ′ be the distribution obtained from P̂ψ̄ by replacing

p̂i and p̂j with p̂′i
def
= p̂i + p̂j and p̂′j = 0 respectively. Then

p̂ip̂j
∑

{t,t′}∈([m]
2 )

ct,t′P̂i,j(ψ̄t,t′) ≥ P̂ψ̄(ψ̄)− P̂ ′(ψ̄) ≥ 0.

where

ct,t′ = (µt − 1)
p̂µt−1
i p̂

µt′
j − p̂

µt′
i p̂µt−1

j

p̂i − p̂j
+ (µt′ − 1)

p̂
µt′−1
i p̂µtj − p̂

µt
i p̂

µt′−1
j

p̂i − p̂j
.

Observation: The second inequality is strict if there is no (bounded) PML distri-

bution with smaller support size.

Proof. For simplicity, let P = (p1, p2, . . . , pk), either a PML distribution or a

bounded PML distribution. By Expansion (2.6), setting I = {i, j}, the pattern

probability P (ψ̄) can be written as

P (ψ̄) = Pi,j(ψ̄) +
m∑
t=1

(pµti + pµtj )Pi,j(ψ̄t)

+
∑

{t,t′}∈([m]
2 )

(pµti p
µt′
j + p

µt′
i pµtj )Pi,j(ψ̄t,t′), (4.16)

P ′(ψ̄) = Pi,j(ψ̄) +
m∑
t=1

(pi + pj)
µtPi,j(ψ̄t).

Taking the difference, we get

P (ψ̄)− P ′(ψ̄) =
∑

{t,t′}∈([m]
2 )

(pµti p
µt′
j + p

µt′
i pµtj )Pi,j(ψ̄t,t′)

−
m∑
t=1

[
(pi + pj)

µt − (pµti + pµtj )
]
Pi,j(ψ̄t).

Note that, for all integers µ ≥ 1,

(pi + pj)
µ − (pµi + pµj ) =

µ−1∑
t=1

(
µ

t

)
ptip

µ−t
j ≥ µ

µ−1∑
t=1

ptip
µ−t
j = µ(pipj)

pµ−1
i − pµ−1

j

pi − pj
,
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where the second equality holds if and only if µ ≤ 3. Then

P (ψ̄)− P ′(ψ̄) ≤ pipj
∑

{t,t′}∈([m]
2 )

(pµt−1
i p

µt′−1
j + p

µt′−1
i pµt−1

j )(pi − pj)Pi,j(ψ̄t,t′)

− pipj
m∑
t=1

µt(p
µt−1
i − pµt−1

j )Pi,j(ψ̄t), (4.17)

where the equality holds only if µt ≤ 3 for all t ∈ [m]. On the other hand, by

Expansion (4.16),

∂P (ψ̄)

∂pi
=

m∑
t=1

µtp
µt−1
i Pi,j(ψ̄t) +

∑
{t,t′}∈([m]

2 )

(µtp
µt−1
i p

µt′
j + µt′p

µt′−1
i pµtj )Pi,j(ψ̄t,t′),

∂P (ψ̄)

∂pj
=

m∑
t=1

µt′p
µt′
j Pi,j(ψ̄t) +

∑
{t,t′}∈([m]

2 )

(µt′p
µt
i p

µt′−1
j + µtp

µt′
i pµt−1

j )Pi,j(ψ̄t,t′).

By Lemma 3.1, ∂P (ψ̄)
∂pi

= ∂P (ψ̄)
∂pj

. Then

m∑
t=1

µt(p
µt−1
i − pµt−1

j )Pi,j(ψ̄t) +
∑

{t,t′}: t6=t′

[
µt(p

µt−1
i p

µt′
j − p

µt′
i pµt−1

j )

+µt′(p
µt′−1
i pµtj − p

µt
i p

µt′−1
j )

]
Pi,j(ψ̄t,t′) = 0. (4.18)

The conclusion follows by eliminating
∑m

t=1 µt(p
µt−1
i − pµt−1

j )Pi,j(ψ̄t) from Inequal-

ity (4.17) and Equation (4.18).

4.4.1 Theorem 4.12: Almost-uniform Patterns

The proof of Theorem 4.12 consists of two steps. In Lemma 4.15 we show

that both the PML distribution and bounded PML distribution of any non-trivial

pattern satisfies p̂1

p̂k
≤ µ1−1

µm−1
. In Lemma 4.16 we show that the bounded PML distri-

bution is uniform if
(
p̂1

p̂k

)µ1−µm
≤

∑
dt,t′<0 |dt,t′ |∑
dt,t′>0 dt,t′

, which holds for all almost-uniform

patterns, following Lemma 4.15 and the definition of almost-uniform patterns.
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Lemma 4.15. The (bounded) PML distribution of any non-trivial pattern satisfies

p̂1

p̂k
≤ µ1 − 1

µm − 1
,

where equality holds only if µt ∈ {2, 3} for all t ∈ [m], and there exists no other

(bounded) PML distribution with smaller support size.

If µ1 > 1 and µm = 1, we consider p̂1

p̂k
≤ µ1−1

µm−1
=∞ to be true.

Lemma 4.16. For the bounded PML distribution of any pattern, if p̂1 > p̂k, then(
p̂1

p̂k

)µ1−µm
≥

∑
dt,t′<0 |dt,t′|∑
dt,t′>0 dt,t′

,

where the equality holds only if the pattern is 1-uniform and there exists no other

bounded PML distribution with smaller support size.

If dt,t = 0 for all t, t′ ∈ [m], we consider
(
p̂1

p̂k

)µ1−µm
≥ 0

0
to be true.

Lemma 4.15: Upper Bound for p̂1

p̂k

Proof of Lemma 4.15. For simplicity, let P = (p1, p2, . . . , pk), either a PML dis-

tribution or a bounded PML distribution. If µm = 1, then p1

pk
≤ µ1−1

µm−1
is trivially

true. Without loss of generality suppose µm > 1.

If p1 = pk then
p1

pk
= 1 <

µ1 − 1

µm − 1
.

If p1 6= pk, by Proposition 4.14,

∑
{t,t′}∈([m]

2 )

[
(µt − 1)

(
pµt−1

1 p
µt′
k − p

µt′
1 pµt−1

k

)
+(µt′ − 1)

(
p
µt′−1
1 pµtk − p

µt
1 p

µt′−1
k

)]
P1,k(ψ̄t,t′) ≥ 0,

where the equality holds only if µt ≤ 3 for all t ∈ [m], and there is no other

bounded PML distribution with smaller support size.

Then there exists {t, t′} ∈
(

[m]
2

)
such that

(µt − 1)(pµt−1
1 p

µt′
k − p

µt′
1 pµt−1

k ) ≥ (µt′ − 1)(pµt1 p
µt′−1
k − pµt′−1

1 pµtk ),
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where strict inequality can be achieved if µt′′ > 3 for some t′′ ∈ [m]. Let r = p1

pk
.

Dividing both sides of the above inequality by p
µt+µt′−1
k , we get,

(µt − 1)(rµt−1 − rµt′ ) ≥ (µt′ − 1)(rµt − rµt′−1).

Then

rµt ≤ µt − 1

µt′ − 1
rµt−1 −

(
µt − 1

µt′ − 1
r − 1

)
rµt′−1 ≤ µt − 1

µt′ − 1
rµt−1.

Hence
p1

pk
= r ≤ µt − 1

µt′ − 1
≤ µ1 − 1

µm − 1
.

Lemma 4.16: Lower Bound for p̂1

p̂k

Proof of Lemma 4.16. For simplicity, let P = (p1, p2, . . . , pk) be the bounded PML

distribution P̂
(K)

ψ̄
. By Proposition 4.14,∑

{t,t′}∈([m]
2 )

ct,t′P1,k(ψ̄t,t′) ≥ 0,

where

ct,t′ = (µt − 1)
pµt−1

1 p
µt′
k − p

µt′
1 pµt−1

k

p1 − pk
+ (µt′ − 1)

p
µt′−1
1 pµtk − p

µt
1 p

µt′−1
k

p1 − pk
,

and the strict inequality holds if there is no other bounded PML distribution with

smaller support size.

Without loss of generality, assume µt ≥ µ′t′ . Let δ = δt,t′
def
= µt − µt′ ≥ 0.

Then

ct,t′

(p1pk)µt′−1
= (µt − 1)(p1pk)

pδ−1
1 − pδ−1

k

p1 − pk
− (µt′ − 1)

pδ+1
1 − pδ+1

k

p1 − pk
.

Since

pδ+1
1 − pδ+1

k

p1 − pk
= (pδ1 + pδk) + p1pk

δ−2∑
t=0

pt1p
δ−2−t
k = (pδ1 + pδk) + p1pk

pδ−1
1 − pδ−1

k

p1 − pk
.

It follows that

ct,t′

(p1pk)µt′−1
= δ · p

δ+1
1 − pδ+1

k

p1 − pk
− (µt − 1)(pδ1 + pδk). (4.19)
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On the other hand, By Lemma 4.11,

pδ+1
1 − pδ+1

k

p1 − pk
≤ 1

2
(δ + 1)(pδ1 + pδk), (4.20)

where the equality holds for all i if and only if δ ∈ {0, 1}. Canceling
pδ+1

1 −pδ+1
k

p1−pk
from

Equation (4.19) and Inequality (4.20), we get

ct,t′

(p1pk)µt′−1
≤
[

1

2
δ(δ + 1)− (µt − 1)

]
(pδ1 + pδk),

i.e.,

ct,t′ ≤
1

2

[
δ2
t,t′ − (µt + µt′ − 2)

]
(p
δt,t′
1 + p

δt,t′

k )(p1pk)
µt′−1

=
1

2
dt,t′ (p

µt
1 p

µt′
k + p

µt′
1 pµtk )(p1pk)

−1.

Thus∑
{t,t′}∈([m]

2 )

dt,t′(p
µt
1 p

µt′
k + p

µt′
1 pµtk )P1,k(ψ̄t,t′) ≥ 2

∑
{t,t′}∈([m]

2 )

ct,t′P1,k(ψ̄t,t′) ≥ 0, (4.21)

where the second inequality follows from Proposition 4.14, and the equalities hold

only if δt,t′ ≤ 1 for all pairs {t, t′}. Let

P (1→ t, k → t′)
def
= pµt1 p

µt′
k P1,k(ψ̄t,t′),

the probability that the indices of p1 and pk are t and t′ respectively. Let

P ({1, k} → {t, t′}) def
= P (1→ t, k → t′) + P (1→ t′, k → t).

Then Inequality (4.21) can be rewritten as∑
{t,t′}: t6=t′

dt,t′P ({1, k} → {t, t′}) ≥ 0.

Let r = p1

pk
. Then

P ({1, k} → {t, t′}) =
(
1 + r−δt,t′

)
P (1→ t, k → t′),

and hence∑
dt,t′>0

dt,t′
(
1 + r−δt,t′

)
P (1→ t, k → t′) ≥

∑
dt,t′<0

|dt,t′|
(
1 + r−δt,t′

)
P (1→ t, k → t′).



63

Note that, for any i1, i2 ∈ [k],

pµ1

i1
pµt1 p

µt′
k pµmi2

pµ1

1 p
µt
i1
p
µt′
i2
pµmk

=

(
pi1
p1

)µ1−µt ( pk
pi2

)µt′−µm
.

Since P is a bounded PML distribution, it does not have a continuous part. Thus

P (1→ t, k → t′)

P (1→ 1, k → m)
≤ max

i1,i2∈[k]

pµ1

i1
pµt1 p

µt′
k pµmi2

pµ1

1 p
µt
i1
p
µt′
i2
pµmk
≤ 1,

and

P (1→ t, k → t′)

P (1→ 1, k → m)
≥ min

i1,i2∈[k]

pµ1

i1
pµt1 p

µt′
k pµmi2

pµ1

1 p
µt
i1
p
µt′
i2
pµmk
≥
(
pk
p1

)(µ1−µm)−(µt−µt′ )

.

It follows that∑
dt,t′>0

dt,t′
(
1 + r−δt,t′

)
≥
∑
dt,t′<0

|dt,t′ |
(
1 + r−δt,t′

)
· r(µt−µt′ )−(µ1−µm),

i.e., (
p1

pk

)µ1−µm
≥

∑
dt,t′<0 |dt,t′ |

(
1 + rδt,t′

)∑
dt,t′>0 dt,t′

(
1 + r−δt,t′

) ≥ ∑dt,t′<0 |dt,t′|∑
dt,t′>0 dt,t′

,

where the equality holds only if δt,t′ ≤ 1 for all pairs {t, t′}.

Proof for Almost-uniform Patterns

At last, we prove Theorem 4.12 using Lemmas 4.15 and 4.16.

Proof of Theorem 4.12. Suppose for some K ≥ m, the bounded PML distribution

P̂
(K)

ψ̄
= (p1, p2, . . . , pk) of an almost-uniform pattern ψ̄ is not uniform, i.e., p1 > pk.

Furthermore, there are more than one such distributions, choose one that has the

smallest support size. Then Lemmas 4.15 and 4.16 imply that,∑
dt,t′<0 |dt,t′|∑
dt,t′>0 dt,t′

<

(
p1

pk

)µ1−µm
<

(
µ1 − 1

µm − 1

)µ1−µm
,

where the inequalities are strict. On other hand, by the definition of almost-

uniform patterns, ∑
dt,t′<0 |dt,t′|∑
dt,t′>0 dt,t′

≥
(
µ1 − 1

µm − 1

)µ1−µm
,

a contradiction. Thus the bounded PML distribution with the smallest support

size must be uniform.
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4.4.2 Theorem 4.13: Patterns with Small Multiplicities

For patterns with multiplicities at most 3 Theorem 4.13 provides a relaxed

condition for which the PML distribution is uniform, in the sense that such patterns

need not to be almost-uniform.

Proof of Theorem 4.13. Suppose for some K ≥ m, the bounded PML distribution

P̂
(K)

ψ̄
= (p1, p2, . . . , pk) of an almost-uniform pattern ψ̄ is not uniform, i.e., p1 > pk.

Furthermore, there are more than one such distributions, choose one that has the

smallest support size. By Proposition 4.14,∑
{t,t′}∈([m]

2 )

ct,t′Pi,j(ψ̄t,t′) > 0, (4.22)

where

ct,t′ = (µt − 1)
pµt−1
i p

µt′
j − p

µt′
i pµt−1

j

pi − pj
+ (µt′ − 1)

p
µt′−1
i pµtj − p

µt
i p

µt′−1
j

pi − pj
.

In the proof of Lemma 4.16, it has been shown in Equation (4.19) that

ct,t′

(pipj)µt′−1
= δ

pδ+1
i − pδ+1

j

pi − pj
− (µt − 1)(pδi + pδj).

For µt = µt′ = µ,

ct,t′ = −2(µ− 1)(pipj)
µ−1.

For δ = µt − µt′ ≥ 1,

ct,t′ = (pipj)
µt′−1

[
δ(pδ−1

i pj + · · ·+ pip
δ−1
j )− (µt′ − 1)(pδi + pδj)

]
≤ (pipj)

µt′−1

[(
δ

2

)
(pδ−1
i pj + pip

δ−1
j )− (µt′ − 1)(pδi + pδj)

]
≤ (pipj)

µt′−1 · 1

2
dt,t′(p

δ−1
i pj + pip

δ−1
j )

=
1

2
dt,t′(p

µt−2
i p

µt′
j + p

µt′
i pµt−2

j ).

where all equalities hold if and only if δ = 1. Then, by ignoring terms in Equa-

tion (4.22) with µt 6= µt′ such that dt,t′ < 0, we get∑
µ:ϕµ≥2

(
ϕµ
2

)
· 4(µ− 1)(pipj)

µ−1Pi,j(ψ̄rµ−1,rµ)

<
∑

{t,t′}: dt,t′>0

dt,t′(p
µt−2
i p

µt′
j + p

µt′
i pµt−2

j )Pi,j(ψ̄t,t′),
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where rµ = m −
∑

µ′≤µ ϕµ′ is the number of multiplicities at most µ, and thus

ψ̄rµ−1,rµ denotes the pattern with two multiplicities µ removed from ψ̄. For patterns

with µ1 = 3, we get

4

(
ϕ2

2

)
Pi,j(ψ̄r2−1,r2) < ϕ1ϕ3Pi,j(ψ̄r3,m),

where ψ̄r2−1,r2 is obtained from ψ̄ by removing two multiplicities 2, and ψ̄r3,m is

obtained from ψ̄ by removing one multiplicity 1 and the other multiplicity 3. In

the statement of the theorem, we assumed that 4
(
ϕ2

3

)
≥ ϕ1ϕ3. Then

Pi,j(ψ̄r2−1,r2) < Pi,j(ψ̄r3,m).

On the other hand, it is easy to see that ψ̄r2−1,r2 and ψ̄r3,m have the same length

n − 4 and number of distinct symbols m − 2, and that ψ̄r2−1,r2 � ψ̄r3,1. Then by

the majorization property in Fact 2.4 we have

Pi,j(ψ̄r2−1,r2) ≥ Pi,j(ψ̄r3,m),

a contradiction. Therefore our assumption that p1 > pk is false; the bounded

distribution P = P̂ (K) must be uniform.
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Chapter 5

Deterministic Calculation of

Pattern Probabilities

In this chapter we consider the calculation of pattern probabilities for any

given mixture distribution, not necessarily the PML distribution.

In Section 5.1 we analyze the complexity of a recursive algorithm.

In Section 5.2 we represent the pattern probability using power sums.

In Section 5.3 we present proofs for a related graph theory problem.

5.1 Recursive Algorithm

Recall that a pattern ψ̄ can be regarded as a set. It is easy to see that, as

sets,

ψ̄ = 1µ1 × 1µ2 · · · (m− 1)µm \ ∪
i≥2

ψ̄(i),

where ψ̄(i) is the canonical pattern with multiplicities

M(ψ̄(i)) = {µ1 + µi, µ2, . . . , µi−1, µi+1, µm}∗ .

Thus for any distribution P = (p1, p2, . . . , pk) ∈ P sorted
mix ,

P (ψ̄) = P (1µ1) · P
(

1µ2 · · · (m− 1)µm
)
−

m∑
i=2

P (ψ̄(i)). (5.1)
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For example, for ψ̄ = 142232, we have ψ̄(2) = ψ̄(3) = 1622, and

P (142232) = P (14) · P (1222)− P (1622)− P (1622).

For simplicity, for any list of numeric (real or integral) values L1, L2, . . . and

a set of indices S ⊆ {1, 2, . . .}, let

LS =
∑
i∈S

Li.

For example, µS =
∑

i∈[m] µi and pI =
∑

i∈I pi.

Observe that all patterns of the form 1µ appearing in the recursive calcu-

lation satisfy µ = µS for some S ⊆ [m]. Given pattern ψ̄ and distribution P ,

Equation (5.1) gives a recursive algorithm to calculate P (ψ̄):

Step 1: Calculate P (1µS) for all S ⊆ [m].

Step 2: Recursively calculate P (ψ̄) using Equation (5.1).

We show the following arithmetic computational complexities of the algorithm.

Theorem 5.1. For any distribution P , the probability of pattern ψ̄ =

1µ12µ2 · · ·mµm can be deterministically calculated in time

O
(
kmin {n, 2m} log n+ eπ

√
2n
3 logm

)
.

Theorem 5.2. For any distribution P , the probability of pattern ψ̄ =

1µ12µ2 · · ·mµm can be deterministically calculated in time

O
(
kmin {n, 2m} log n+ min{n2m, 3m, nmd,m2d} logm

)
.

5.1.1 Complexity for Step 1

In Step 1 P (1µS) =
∑k

i=1 p
µS
i can be calculated in time O(k log µS) by

repeatedly taking squares of pi all i ∈ [k] then sum up the final powers pµSi . Note

that µS ≤ n, and the number of distinct values of µS is at most min{n, 2m}. Then

Step 1 can be done in time O(kmin{n, 2m} log n). The big-O notation here refers

to arithmetic complexity, not bit-complexity.
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142232

1222

12 14

1622

16 18

Figure 5.1: Computation Graph for Pattern ψ̄ = 142232

5.1.2 Theorem 5.1: First Complexity for Step 2

Note that in Step 2 the same pattern may appear multiple times on the

right-hand of Equation (5.1). To avoid unnecessary repetition, we define the com-

putation graphG(ψ̄) for a pattern ψ̄, which is a directed graph, consisting of canon-

ical forms of all patterns ever appearing in Step 2. The (outgoing) neighbors of a

pattern ψ̄′ = 1µ
′
12µ

′
2 · · ·mµ′m are patterns on the right-hand side of Equation (5.1),

including

(1) 1µ
′
1 ,

(2) 1µ
′
2 · · · (m′ − 1)µ

′
m , and

(3) ψ̄′(i) for all i ∈ [2 ..m′].

For example, for pattern ψ̄ = 142232, G(ψ̄) is illustrated in Figure 5.1.

Proof of Theorem 5.1. We just need to show that Step 2 can be done in time

O(meπ
√

2n
3 ). We first consider the number of nodes (patterns) in the computation

graph G(ψ̄). It is easy to see that the multiplicities of any pattern in the compu-

tation graph can be obtained by first take a subset ofM(ψ̄), then partition it into

disjoint subsets and sum the multiplicities in each subset.

Recall that the nodes in G(ψ̄) are all canonical. It is easy to see that given

n, there is a one-to-one correspondence between canonical patterns and partitions

of n into unordered positive numbers (the multiplicities). Let p(n) be the number

of such partitions. Then the number of nodes in T (ψ̄) is at most
∑n

i=1 p(n).
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It is know that (e.g. [vLW92]), asymptotically

p(n) ∼ 1

4
√

3n
eπ
√

2n
3 .

Thus the number of nodes in G(ψ̄) is O
(
eπ
√

2n
3

)
, and it follows that Step 2 can

be done in time

O
(
eπ
√

2n
3 logm

)
,

where the factor O(logm) is the cost for calculating the product and sum on

the right-hand side of Recursion (5.1), assuming the pattern probabilities on the

right-hand side are already calculated.

5.1.3 Theorem 5.2: Second Complexity for Step 2

Recall that the computation graph G(ψ̄) consists of canonical patterns that

appear in Step 2 of calculating P (ψ̄) using the recursion (5.1).

We can further reduce unnecessary computation by the following observa-

tion. The multiplicities of any pattern in the computation graph can be obtained

by first partition a subset of M(ψ̄) into disjoint subsets, and then sum the multi-

plicities in each subset. However, note that in Equation (5.1) we always merge the

largest multiplicity with another multiplicity. Thus any pattern in the computation

graph can actually be obtained as follows:

(1) Partition M(ψ̄) into three disjoint sub-multisets

M0,M1,M2,

where M2 could be empty while the other two are not.

(2) Form a canonical pattern with multiplicities{ ∑
µ∈M0

µ
}⋃

M1,

where the union is for multisets.
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Let ν1 > ν2 > · · · > νd > 0 be the distinct multiplicities in a pattern

ψ̄, where d is the number of distinct multiplicities. Let ϕ+
1 , ϕ

+
2 , . . . , ϕ

+
d be the

corresponding prevalences, where the superscript + denotes that these prevalences

are positive.

For example, for ψ̄ = 1322324567, the distinct multiplicities are ν1 = 3, ν2 =

2, ν3 = 1, and the corresponding prevalenes are ϕ+
1 = 1, ϕ+

2 = 2, ϕ+
3 = 4.

Then a pattern ψ̄′ in G(ψ̄) can be represented by its profile-form( d∑
i=1

φ′iνi;φ1, φ2, . . . , φd

)
,

where φi and φ′i are the number of multiplicities µ inM0 andM1 respectively. In

addition, φµ and φ′µ could be 0, and

φµ + φ′µ ≤ ϕ′µ.

For example, for ψ̄ = 1322324567, the distinct multiplicities are ν1 = 3, ν2 =

2, ν3 = 1, and the corresponding prevalenes are ϕ+
1 = 1, ϕ+

2 = 2, ϕ+
3 = 4. Pattern

1523 appears in the computation graph, corresponding to the partition M0 =

{3, 2},M1 = {1, 1},M2 = {2, 1, 1}, and the profile-form of 1523 is (5; 0, 0, 2), that

is, we merge the multiplicities 3 and 2, and then select no multiplicities 3 or 2, but

select 2 multiplicities 1.

Proof of Theorem 5.2. We will find an upper bound for the number of patterns

in G(ψ̄) in an approach different that in the proof of Theorem 5.1. Recall that

a pattern in G(ψ̄) can be obtained from a partition of M(ψ̄) into three parts

M1,M2,M3, then removing multiplicities inM1 and merge multiplicities inM3,

and it can be represented by its profile-form( d∑
i=1

φ′iνi;φ1, φ2, . . . , φd

)
,

Thus we only need to count the number of profile-forms.

Note that φ′i ≥ 0, φi ≥ 0, and φ′i+φi ≤ ϕ+
i . It can be shown that the number

of possible pairs (φ′i, φi) is exactly
(
ϕ+
i +1
2

)
. Thus the number of profile-forms is at

most (
ϕ+
i + 1

2

)
.
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On the other hand, note that
∑d

i=1 φ
′
iνi < n and φi ≤ ϕ+

i . Then the number

of profile-forms can also be bounded as

n
d∏
i=1

(ϕ+
i + 1).

Thus the computational cost for Step 2 is

O

(
logm ·min

{ d∏
i=1

(
ϕ+
i + 2

2

)
, n

d∏
i=1

(ϕ+
i + 1)

})
,

where logm is again the cost for calculating the product and sum on the right-hand

side of the Equation (5.1). We simplify the bounds as follows. Since
∑d

i=1 ϕ
+
i = m,

d∏
i=1

(ϕ+
i + 1) ≤

(∑d
i=1(ϕi + 1)

d

)d

=
(m
d

+ 1
)d
≤ 2m,

where the last inequality follows from d ≤ m. Similarly,

d∏
i=1

ϕ+
i + 2

2
≤
(m

2d
+ 1
)d
≤ 1.5m.

It follows that

logmn
d∏
i=1

(ϕ+
i + 1) ≤ n2m logm, and

logm
d∏
i=1

(
ϕ+
i + 2

2

)
= logm

d∏
i=1

(ϕ+
i + 1)

d∏
i=1

ϕ+
i + 2

2
≤ 3m logm.

This proves two of bounds in the conclusion. Note that(m
d

+ 1
)d
≤ md, and

(m
2d

+ 1
)d
≤ md.

Then the other two bounds follow.

5.2 Formulation in Power sums

The algorithm using Recursion (5.1) achieves efficiency in time at the cost

of memory storage. Given pattern ψ̄ = 1µ12µ2 · · ·mµm and distribution P =
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(p1, p2, . . . , pk), a direct calculation of P (ψ̄) as sum of sequence probabilities re-

quires constant memory space. However, the computational time is in the order

of the size of ψ̄, i.e., km.

We show that the pattern probabilities can be calculated more efficiently

in memory cost, but with time complexity linear in the support size:

O(kmin{n, 2m} log n+mm logm).

The idea is to write as a polynomial in power sums

P (1t) =
k∑
i=1

pti, 2 ≤ t ≤ n.

Recall thatM(ψ̄) = {µ1, µ2, . . . , µm} is the multiset of multiplicities of pat-

tern ψ̄. Let Gψ̄ be the set of all graphs overM(ψ̄). Given G ∈ Gψ̄, let V1, V2, . . . , VD

be the vertex sets of the connected components of G. Then G induces a disjoint

partition of M(ψ̄), denoted as

PG
def
= {V1, V2, . . . , VD}.

The probability of graph G is

Pr(G)
def
=

t∏
i=1

P (1µVi ),

where µVi =
∑

t∈Vi µt.

For example, consider the pattern ψ̄ = 1µ12µ2 · · · 5µ5 . Let G be the graph

with edges

E = {{µ1, µ2}, {µ2, µ3}, {µ4, µ5}} .

Then G has two connected components with vertex sets

V1 = {µ1, µ2, µ3}, and V2 = {µ4, µ5}.

Then

Pr(G) = P (1µ1+µ2+µ3)P (1µ4+µ5).
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An even(odd) graph has even (odd) number of edges. Let

sign (G)
def
=

1, if G is even

−1, if G is odd,

i.e., sign (G) = (−1)|E(G)|.

We show that the pattern probability P (ψ̄) can be written as a summation

over graphs in Gψ̄.

Theorem 5.3. For any pattern ψ̄ and distribution P ,

P (ψ̄) =
∑
G∈Gψ̄

sign (G)Pr(G). (5.2)

Theorem 5.3 can be used to calculate P (ψ̄) as follows. First we pre-compute

all power sums P (1µS) for all S ⊆ [m], which we have shown previously to take

time O(kmin{n, 2m} log n). Then for each graph G ∈ Gψ̄, we calculate Pr(G)

as a product of at most m power sums. Since there are 2(m2 ) graphs, the overall

complexity is

O
(
k min{n, 2m} log n+ 2(m2 ) logm

)
.

Note that any graph G ∈ Gψ̄ induces a partition PG = {V1, V2, . . . , Vd} of

M(ψ̄). Note that the Vi’s are sufficient for calculating Pr(G). Let Pψ̄ be the set of

all partitions of M(ψ̄). The probability of a partition P ∈ Pψ̄ , denoted by Pr(P),

is the probability of any graph whose vertex sets of components are the parts in

P. In other words,

Pr(P) =
∏
V ∈P

P (1µV ),

where the product is over all subsets C of M(ψ̄) in P. Thus in the formulation

from Theorem 5.3 we may group together graphs that induce the partition. Given

partition P = {V1, V2, . . . , V|P|} ∈ Pψ̄, where |P| is the number of subsets in P, let

ni = |Vi| be the size of Vi. We will show that the pattern probability can also be

written as a summation over partitions:
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Theorem 5.4. For any pattern ψ̄ and distribution P ,

P (ψ̄) =
∑
P∈Pψ̄

|P|∏
i=1

(−1)ni−1(ni − 1)!P (1ni).

Similarly, using Theorem 5.4 we can calculate P (ψ̄) using Theorem 5.4 by first

pre-computing all power sums P (1n
′
) as well as factorials n′! for n′ ∈ [n], which

takes time O(kmin{n, 2m} log n). Here we refer O(·) to the arithmetic complexity.

For each partition P the computation of
∏|P|

i=1(−1)ni−1(ni− 1)!P (1ni) can be done

in time O(log |P|) = O(logm). The total number of partitions is at most mm.

Thus the overall complexity is

O (kmin{n, 2m} log n+mm logm) .

Further improvement on calculating P (ψ̄) can be obtained by considering profiles.

Note that any partition P ∈ Pψ̄ induces a decomposition of the pattern ψ̄ into

shorter patterns. Recall that the profile of a pattern is the list of prevalences:

ϕ̄
def
= (ϕ1, ϕ2, . . . , ϕµmax),

where µmax = µ1 is the largest multiplicity. Let the multi-profile of a partition P ∈
Pψ̄, denoted by ϕP, be the multiset of profiles of the shorter patterns decomposed

by P.

For example, for ψ̄ = 15233343, the partition P = {{5, 3}, {3, 3}}, decom-

poses ψ̄ into two shorter patterns 1523 and 1323, which have profiles (0, 0, 1, 0, 1)

and (0, 0, 2) respectively. Then the multi-profile of P is ϕ = {(0, 0, 1, 0, 1), (0, 0, 2)}.
For a given pattern ψ̄, let Pϕ be the set of all partitions P ∈ Pψ̄ having

the same multi-profile ϕ. Let ϕ̄1, ϕ̄2, . . . , ϕ̄D be the distinct profiles in ϕ, where

D is the total number of distinct profiles. Let di be the number of occurrences of

ϕ̄i in Pϕ. Let ϕ̄iµ be the prevalence of µ in ϕ̄i. Then by combinatorial arguments

the number of partitions in Pϕ is

|Pϕ| =

∏
µ>0

(
ϕµ

ϕ̄1
µ,ϕ̄

2
µ,...,ϕ̄

D
µ

)
∏D

i=1 di!
.

Note that the multi-profile of a partition is sufficient for calculating its probability.

Define the probability of multi-profile ϕ, denoted by Pr(ϕ), to be the probability
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of any partition whose multi-profile is ϕ. Then

Pr(ϕ) =
∏
ϕ̄∈ϕ

P (1
∑
µ>0 µϕµ) =

D∏
i=1

P
(

1
∑
µ µϕ̄

i
µ

)di
.

We can rewrite the formulation of P (ψ̄) in Theorem 5.4 by grouping together

partitions that have the same multi-profile.

Let Φ be the set of all possible distinct multi-profiles from pattern ψ̄ . For

any profile ϕ̄ let |ϕ̄| def
= {µ : ϕ̄µ > 0}. Then it follows from Theorem 5.4 that

Corollary 5.5. For any pattern ψ̄ and distribution P ,

P (ψ̄) =
∑
ϕ∈Φ

∏
µ>0

(
ϕµ

ϕ̄1
µ,ϕ̄

2
µ,...,ϕ̄

D
µ

)
∏D

i=1 di!
·
D∏
i=1

[
(−1)|ϕ̄

i|−1(|ϕ̄i| − 1)P (1
∑
µ µϕ̄

i
µ)
]di

.

Similar to calculating P (ψ̄) using Theorem 5.3 or 5.4, we can calculate P (ψ̄) using

Corollary 5.5 by first pre-computing all power sums P (1n
′
) as well as factorials

n′! for n′ ∈ [n], which takes time O(kmin{n, 2m} log n). the computation of each

term for a multi-profile can be done in time O(D) = O(logm). Thus the overall

complexity is

O (kmin{n, 2m} log n+ |Φ| logm) ,

where |Φ| is the number of all distinct multi-profiles from ψ̄, which can be bounded

as follows. Let ϕ̄ = (ϕ1, ϕ2, . . . , ϕµmax) be the profile of the pattern ψ̄. Then a

multi-profile ϕ ∈ Φ can regarded as an unordered partition of ϕ̄ into vectors with

nonnegative integer values.

We mentioned that the partition number satisfies p(n) ∼ 1
4
√

3n
eπ
√

2n
3 . Simi-

lar to the proof using generating functions in [vLW92], we show a general counting

argument for the number of vector partitions.

Lemma 5.6. Given a vector n̄ = (n1, n2, . . . , nd) of positive integers such that

n =
∑d

i=1 ni ≥ 4, the number of partitions p(n̄) of n̄ into vectors of nonnegative

integers can be bounded as

p(n̄) ≤ exp
(

2n
d
d+1 + n ln

(
1 + 2d n−

1
d+1

))
.
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Note: It was shown in [DO06] that, for sufficiently large n and d = o(ln(n)),

ln p(n̄) ≤ d+ 1

d

(
π2d2

6

) 1
d+1

n
d
d+1 +O(n

d−1
d+1 ) ≤ 3n

d
d+1 +O(n

d−1
d+1 ).

As a comparison, the bound in Lemma 5.6 holds for all n ≥ 4 and d ≥ 1.

The bound in Lemma 5.6 can be simplified as follows:

p(n̄) ≤ e2n
d
d+1 ·

(
1 +

2d

n
1
d+1

)n
≤ e2n

d
d+1 · e2dn

d
d+1

= e2(d+1)n
d
d+1

.

Thus we can calculate P (ψ̄) using Corollary 5.5 in time

O
(
kmin{n, 2m} log n+ e2(d+1)m

d
d+1

logm
)
.

5.2.1 Theorem 5.3: Expansion over Graphs

It is easy to see P (ψ̄) is a symmetric polynomials in the discrete probabilities

p1, p2, . . . , pk. For t ∈ [n], the polynomials

et(p1, p2, . . . , pk)
def
=

∑
I∈([n]

t )

∏
i∈I

pi

are the elementary symmetric polynomials. Clearly for discrete distributions

P (12 · · ·n) =
en
n!
.

The well-known Fundamental Theorem of Symmetric Polynomials states that any

symmetric polynomial can be represented as a polynomial of the elementary sym-

metrical polynomials. Furthermore, for t ∈ [2..n], the power sums P (1t) =
∑k

i=1 p
t
i

are also symmetric polynomials. Newton-Girard Formulae give a way to write an

elementary symmetrical polynomial in terms of the power sums. Thus the pat-

tern probability can be written as polynomial in the power sums. Recursion can

be used to obtain the power-sum representation. However, we show that such

representation can be obtained in a closed form.

Proof of Theorem 5.3. Let A be the underlying alphabet of P . Let

U
def
= {xµ1

1 x
µ2

2 · · · xµmm : xi ∈ A∀i ∈ [m]},
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the set of sequences consisting of runs of lengths µ1, µ2, . . . , µm. Here xi’s are not

necessarily distinct. For any pair {i, j} ∈
(

[m]
2

)
= {(i, j) | i, j ∈ [m], i 6= j}, let

Si,j
def
= {xµ1

1 x
µ2

2 · · · xµmm ∈ U : xi = xj}.

Then

ψ̄ =
⋂

{i,j}∈([m]
2 )

U \ Si,j = U \
⋃

{i,j}∈([m]
2 )

Si,j.

Thus

P (ψ̄) = P (U)− P
( ⋃
{i,j}∈([m]

2 )

Si,j

)
.

Using the inclusion-exclusion principle, we get

P (ψ̄) = P (U) +
∑

I⊆([m]
2 ): I 6=∅

(−1)|E|P

(
∩

{i,j}∈E
Si,j

)
. (5.3)

Observe that any subset E ⊆
(

[m]
2

)
uniquely determines a graph GE over M(ψ̄)

with edge set E. For E 6= ∅,

P
( ⋂
{i,j}∈E

Si,j

)
= Pr(GE),

and P (U) = Pr(G∅). It follows from Equation (5.3) that P (ψ̄) can be written as∑
G∈Gψ̄

sign (G)Pr(G).

Example: Consider pattern 1µ12µ23µ3 . As shown in Figure 5.2, there are

8 graphs over the multiset M(ψ̄) = {µ1, µ2, µ3}∗: the empty graph, three graphs

with one edge, three graphs with two edges, and the complete graph. Then

P (1µ12µ23µ3) = P (1µ1)P (1µ2)P (1µ3)− P (1µ2+µ3)P (1µ1)

− P (1µ1+µ3)P (1µ2)− P (1µ1+µ2)P (1µ3)

+ 3P (1µ1+µ2+µ3)− P (1µ1+µ2+µ3).

5.2.2 Theorem 5.4: Expansion over Partitions

Given a set of graphs G, let even(G) and odd(G) be the number of even and

odd graphs in G respectively. Let

diff(G)
def
=
∑
G∈G

sign (G) = even(G)− odd(G).
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µ1

µ2

µ3

µ1

µ2

µ3

µ1

µ2

µ3

µ1

µ2

µ3

P (1µ1)P (1µ2)P (1µ3) P (1µ1)P (1µ2+µ3) P (1µ2)P (1µ1+µ3) P (1µ3)P (1µ1+µ2)

µ1

µ2

µ3

µ1

µ2

µ3

µ1

µ2

µ3

µ1

µ2

µ3

P (1µ1+µ2+µ3) P (1µ1+µ2+µ3) P (1µ1+µ2+µ3) P (1µ1+µ2+µ3)

Figure 5.2: Example for Calculating P (1µ12µ23µ3)

It is straightforward to verify the following proprieties for any two disjoint sets G1

and G2 of graphs:

(1) If G1 ∩ G2 = ∅, then

diff(G1 ∪ G2) = diff(G1) + diff(G2).

(2) If E(G1) ∩ E(G2) = ∅ for any G1 ∈ G1 and G2 ∈ G2,

diff(G1 ⊗ G2) = diff(G1) · diff(G2),

where G1 ⊗ G2
def
= {G1 ∪G2 | G1 ∈ G1, G2 ∈ G2}.

To prove Theorem 5.4, we need the following general counting argument. For any

positive integer n, let Cn be the set of all connected graphs over vertex set [n].

Then

Lemma 5.7. For any n ≥ 1,

diff(Cn) = (−1)n−1(n− 1)!.
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We will give several proofs of Lemma 5.7 later in Sectionsec:evenodd. For any

partition P ∈ Pψ̄, let

GP
def
= {G ∈ Gψ̄ | PG = P},

the set of all graphs that induce the same partition P.

Proof of Theorem 5.4. We have shown in Theorem 5.3 that

P (ψ̄) =
∑
G∈Gψ̄

sign (G)Pr(G).

By grouping graphs with the same induced partition of M(ψ̄), we can rewrite

P (ψ̄) as

P (ψ̄) =
∑
P∈Pψ̄

[∑
G∈GP

sign (G)

]
Pr(P) =

∑
P∈Pψ̄

diff(GP) Pr(P).

Given partition P = {V1, V2, . . . , V|P|}, where |P| is the number of subsets in P, let

Ci be the set of connected graphs over Vi. Then

GP = C1 ⊗ C2 ⊗ · · · ⊗ C|P|.

It follows from the property of diff that diff(P) =
∏|P|

i=1 diff(Ci). Note that

Pr(P) =
∏|P|

i=1 P (1ni), where ni = |Vi|. Then by Lemma 5.7

P (ψ̄) =
∑
P∈Pψ̄

|P|∏
i=1

diff(Ci) ·
|P|∏
i=1

P (1ni) =
∑
P∈Pψ̄

|P|∏
i=1

(−1)ni−1(ni − 1)!P (1ni).

5.2.3 Lemma 5.7: Expansion over Multi-profiles

Proof of Lemma 5.6. Let n̄ =
∑

v̄≥0 ϕv̄v̄ be a partition of n̄, where the summa-

tion is over distinct vectors v̄, and ϕv̄ is the number of v̄’s. Then for variables

x1, x2, . . . , xd,
d∏
i=1

xnii =
∏
v̄≥0

(
d∏
i=1

xvii

)ϕv̄

,

where we use v̄ ≥ 0 to denote that vi ≥ 0 for all i ∈ [d]. Hence

p(n̄) =

[
d∏
i=1

xnii

]∏
v̄≥0

∑
ϕ≥0

(
d∏
i=1

xvii

)ϕ

=

[
d∏
i=1

xnii

]∏
v̄0

1

1−
∏d

i=1 x
vi
i

,



80

where v̄  0 denotes that vi ≥ 0 for all i ∈ [d] but vi′ > 0 for some i′ ∈ [d]. It

follows that the generating function for p(n̄) is

f(x̄)
def
=
∑
n̄≥0

p(n̄)
d∏
i=1

xnii =
∏
n̄0

1

1−
∏d

i=1 x
ni
i

.

For x̄ such that 0 < xi < 1 for all i ∈ [d], we get

ln f(x̄) =
∑
n̄0

− ln

(
1−

d∏
i=1

xnii

)

=
∑
n̄0

∑
t≥1

1

t

(
d∏
i=1

xnii

)t

=
∑
t≥1

1

t

∑
n̄0

d∏
i=1

xniti

=
∑
t≥1

1

t

(
d∏
i=1

∑
ni≥0

xniti − 1

)

For t = 1,
d∏
i=1

1

(1− xti)
− 1 <

1∏d
i=1(1− xi)

.

For t ≥ 2,

d∏
i=1

1

(1− xti)
− 1 =

1−
∏d

i=1(1− xti)∏d
i=1(1− xi)

∏d
i=1

∑t−1
j=0 x

j
i

≤ 1∏d
i=1(1− xi)

·
∑d

i=1 x
t
i∑d

i=1

∑t−1
j=1 x

j
i

≤ 1∏d
i=1(1− xi)

·
∑d

i=1 x
t
i∑d

i=1(t− 1)xti

=
1∏d

i=1(1− xi)
· 1

t− 1
.

It follows that

ln f(x̄) ≤
1 +

∑
t≥2

1
t(t−1)∏d

i=1(1− xi)
=

2∏d
i=1(1− xi)

. (5.4)
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Note that p(n̄) is monotonically increasing. For a given n̄,

f(x̄) ≥
∑
v̄≥n̄

p(v̄)
d∏
i=1

xvii ≥ p(n̄)
∑
ū≥0

d∏
i=1

xni+uii = p(n̄)
d∏
i=1

xnii
1− xi

.

Hence

ln p(n̄) ≤ ln f(x̄) +
d∑
i=1

(ln(1− xi)− ni lnxi) ≤ ln f(x̄)−
d∑
i=1

ni lnxi.

Combining with Equation (5.4), we get

ln p(n̄) ≤ 2∏d
i=1(1− xi)

−
d∑
i=1

ni lnxi.

let ui = 1
1−xi . Then

ln p(n̄) ≤ g(ū)
def
= 2

d∏
i=1

ui +
d∑
i=1

ni ln
ui

ui − 1
.

Taking partial derivatives, we have

∂g(ū)

∂ui
= 2

∏
j 6=i

uj −
ni

ui(ui − 1)
,

Equating the partial derivatives to 0, we get

ui = 1 +
ni
2π

,

where π =
∏d

i=1 ui can be found by solving equation

π =
d∏
i=1

(
1 +

ni
2π

)
.

Then

ln p(n̄) ≤ 2π +
d∑
i=1

ni log

(
1 +

2π

ni

)
.

We show that, for n ≥ 4,

π ≤ n
d
d+1 .

Let n =
∑d

i=1 ni. By the concavity of the function x ln
(
1 + 2π

x

)
, we have

ln p(n̄) ≤ 2π + n ln

(
1 +

2πd

n

)
.
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Suppose π > n
d
d+1 . Then

n
d
d+1 < π ≤

(
1 +

n

2πd

)d
≤
(

1 +
1

2d
n

1
d+1

)d
.

Solving for n, we get

n <

(
1 +

1

2d− 1

)d+1

≤ 4,

a contradiction. Thus for n ≥ 4 we must have π ≤ n
d
d+1 . Hence

ln p(n̄) ≤ 2n
d
d+1 + n ln

(
1 + 2d n−

1
d+1

)
.

This complete the proof.

5.3 Even and Odd Graphs

Recall that, given a set of graphs G, diff(G) is the difference between the

number of even and odd graphs. We prove Lemma 5.7, which states that

diff(Cn) = (−1)n−1(n− 1)!,

where Cn is the set of connected graphs over the set [n]. We provide two recur-

sive proofs and a third proof that reveals a relation between diff(Cn) and the

enumeration of inversion-free trees.

5.3.1 Proof by Removing an Edge

We prove the following recursion and Lemma 5.7 follows as a corollary.

Proposition 5.8.

diff(Cn) = −
∑

n1>0,n2>0
n1+n2=n

(
n

n1

)
diff(Cn1)diff(Cn2).

Proof. Let e0 = {1, 2}. Then Cn can be partitioned into the following three sets:

• C−n
def
= {G ∈ Cn | e0 /∈ G}.



83

• C0
n

def
= {G ∈ Cn | e0 ∈ G,G− e0 is disconnected}.

• C+
n

def
= {G ∈ Cn | e0 ∈ G,G− e0 is connected}.

Define a mapping f : C−n → C+
n such that f(G) = G + e0 for any G ∈ C−n . it

is easy to see that f is well-defined, and it’s 1-1 and onto, where the inverse is

f−1(G) = G − e0 for any G ∈ C+
n . Clearly f(G) and G have different parities. It

follows that f pairs up even graphs in C−n with odd graphs in C+
n , as well as odd

graphs in C−n with even graphs in C+
n . Thus

diff(C−n ) + diff(C+
n ) = even(C−n )− odd(C−n ) + even(C+

n )− odd(C+
n ) = 0,

and hence

diff(Cn) = diff(C−n ) + diff(C0
n) + diff(C+

n ) = diff(C0
n).

For any positive integers n1 and n2 such that n = n1 + n2, let

Cn1,n2

def
= C[n1] ⊗ C[n1+1..n],

the set of graphs over [n] with exactly two connected components whose vertex

sets are [n1] and [n1 + 1 .. n] respectively. Then

diff(C0
n) = −

∑
n1>0,n2>0
n1+n2=n

(
n

n1

)
diff(Cn1,n2),

where the negative sign comes from e0, and
(
n
n1

)
is the number of partitions of [n]

into two ordered subsets of sizes n1 and n2. The conclusion follows from that

diff(Cn1,n2) = diff(Cn1) · diff(Cn2).

Proof 1 of Lemma 5.7. By Proposition 5.8, it suffices to show that

(−1)n−1(n− 1)! =
∑

n1>0,n2>0
n1+n2=n

(
n

n1

)
(−1)n1−1(n1 − 1)! · (−1)n2−1(n2 − 1)!,

which can be verified by straightforward calculations.
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5.3.2 Proof by Removing a Vertex

Let Φn be the set of partitions of number n into positive integers; two

partitions that differ only in the order of numbers are considered identical. For

any partition ϕ ∈ Φn, let ϕµ be the number of µ’s in ϕ.

We prove the following recursion and Lemma 5.7 follows as a corollary.

Proposition 5.9.

∑
G∈Cn+1

signG =
∑
ϕ∈Φn

n!∏
µ(µ!)ϕµϕµ!

·
∏
µ

−∑
G∈Cµ

signG

ϕµ

.

Proof. Let G ∈ Cn+1. Note that removing vertex n + 1 from G results in a graph

with one or more connected components. Thus G can be constructed as follows:

(1) Partition the set [n] into non-empty subsets V1, V2, . . . , Vm.

(2) Construct a connected graph Gi over each subset Vi.

(3) For each Vi, construct a claw-like tree Ti over Vi ∪ {n+ 1} with at least one

edge such that all edges are incident to n+ 1.

It is easy to see that

signG =
m∏
i=1

signGi

m∏
i=1

signTi.

Given partition = {V1, V2, . . . , Vm} of [n + 1], let C(Vi) be the set of connected

graphs on Vi and let T (Vi) be the set of trees over Vi ∪ {n + 1} with at least one

edge and all edges are incident to n+ 1. The steps of construction imply that the

sum of signG for all graphs constructed from the given partition is

m∏
i=1

 ∑
G∈C(Vi)

signG
∑

T∈T (Vi)

signT

 =
m∏
i=1

 ∑
G∈C(Vi)

signG ·
|Vi|∑
e=1

(
|Vi|
e

)
(−1)e


=

m∏
i=1

− ∑
G∈C|Vi|

signG

 .
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Note that the right-hand side depends only on the sizes of Vi’s. Let µi = |Vi|.
Then ϕ = {µ1, µ2, . . . , µm} is a partition of the number n, and we can rewrite the

right-hand side as ∏
µ

−∑
G∈Cµ

signG

ϕµ

.

This quantity is for graphs constructed from a given partition of [n]. To complete

the proof, note that the number of partitions of the set [n] in which the sizes of

the subsets form the same partition ϕ = {µ1, µ2, . . . , µm} is(
n

µ1,µ2,...,µm

)∏
µ ϕµ!

=
n!∏

µ(µ!)ϕµϕµ!
,

and hence the conclusion follows.

Proof 2 of Lemma 5.7. By Proposition 5.9, it suffices to show that∑
ϕ∈Φn

n!∏
µ(µ!)ϕµϕµ!

·
∏
µ

(−1)ϕµ [(µ− 1)!]ϕµ = (−1)n+1n!,

or equivalently, ∑
ϕ∈Φn

n!∏
µ(µ!)ϕµϕµ!

·
∏
µ

[(µ− 1)!]ϕµ = n!. (5.5)

Note that the right-hand side n! is the number of permutations of [n]. Since a

permutation can be decomposed into cycles [Com74], it can be constructed by first

partition [n] into subsets then form a cycle from each subset. As mentioned in

the proof of Proposition 5.9, there are n!∏
µ(µ!)ϕµϕµ!

partitions of the set [n] in which

the sizes of the subsets form the same partition ϕ of the number n. Furthermore,

there are (µ− 1)! ways to form a cycle from a subset of size µ. Thus the left-hand

side of Equation (5.5) also counts the number of permutations.

5.3.3 Proof by Inversion-free Trees

In a rooted tree over [n], two adjacent vertices are called parent and child,

where the parent has shorter distance to the root. Similarly, a pair of vertices are

called ancestor and descendant if one of them is on the path from the root to the

other vertex, where the ancestor is closer to the root.
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1

4 3 2

8 6 5 9 7

Figure 5.3: An Inversion-free Tree

Given a rooted tree over [n], an inversion is a pair of ancestor and descen-

dant vertices where the ancestor is larger. A rooted tree is inversion-free if every

child is greater than its parent, as shown in Figure 5.3. Note that in inversion-frees

every vertex is larger than all of its ancestors, and the root is always 1.

Let fn(i) be the number of rooted trees over [n] with i inversions. Mallows

and Riordan [MR68] determined the generating function of fn(i), showing in par-

ticular that

Proposition 5.10. For all n ≥ 1,

fn(0) = (n− 1)!.

Here we provide a different, combinatorial, proof of this lemma.

Proof of Proposition 5.10. We define a 1-to-1 correspondence between inversion-

free trees and permutations of the vertices whose first element is always the root.

Note that all the subtrees of an inversion-free tree are also inversion-free.

Recursively define the mapping seq(Ti) of the subtree Ti with root i and children

a1 > a2 > · · · > a` to be

seq(Ti)
def
= i · seq(Ta1) · seq(Ta2) · · · · · seq(Ta`)

For example, for the inversion-free tree T in Figure 5.3,

seq(T ) = 1 · seq(T4) · seq(T3) · seq(T2) = 1 4865 3 297.

Note that seq is essentially a depth-first search (DFS) traversal [KET06] on T ,

where children are visited in decreasing order.

It is easy to see that seq is 1-1. To show that it is onto, for any permutation

s̄ = s0s1 · · · sn′ of a subset V ⊆ [n] where the first number s0 is the smallest, we
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construct an inversion-free tree tree(s̄) as follows. Let s[i..j] be the substring

sisi+1 · · · sj. First decompose s̄[1..n′] (excluding s0) into substrings:

s[n1 .. n2 − 1], s[n2 .. n3 − 1], . . . , s[nt .. n
′],

where n1 = 1, and n2, n3, . . . , nt are recursively defined such that sni is the first

number in s[ni−1 + 1 .. n′] that is smaller than s[ni−1]. Clearly sn1 > sn2 >

· · · > snt . The tree tree(s̄) is recursively constructed to have s0 as its root with

tree(s[n1 .. n2 − 1]), tree(s[n2 .. n3 − 1]), . . . , tree(s[nt .. n
′]) attached to s0.

For example, for the sequence s̄ = 148653297 where s0 = 1 is the smallest

number, s̄[1 .. 8] = 48653297 can be decomposed in the following steps: first we

have n1 = 1. The first number in s[2 .. 8] = 8653297 less than s1 = 4 is s5 = 3.

Therefore n2 = 5 and our first substring is s[1 .. 4] = 4865. Similarly, n3 = 6.

Thus we have the decomposition s[1 .. 8] = 4865 · 3 · 297. Then tree(s̄) can be

constructed to have 1 as its root with tree(4865), tree(3) and tree(297) attached

to 1, as shown in Figure 5.3.

It’s easy to see that the two mappings we constructed are inverse of each

other. Thus there is a one-to-one correspondence between the inversion-free trees

and permutations of [n] with 1 fixed. It follows that there are (n−1)! inversion-free

trees over [n].

Using Proposition 5.10, we show that |Ce
n|− |Co

n| differs from the number of

inversion-free trees by at most a sign, which leads to another proof of Lemma 5.7.

Proof 3 of Lemma 5.7. Given a connected graph G over [n], construct a rooted

spanning tree span(G) using the DFS starting from vertex 1, where neighbors are

visited in decreasing order. Given a tree T over [n], let GT be the set of graphs G

such that span(G) = T .

Given a tree T that is not inversion-free, define an automorphism on GT
as follows. First pick one inversion {u, v} in T where u is an ancestor of v hence

u > v. Note that by definition the root of TG is always 1. Since u > v, u 6= 1.
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Thus u is not the root and it has a parent, denoted as pu. For any G ∈ GT , let

f(G)
def
=

G− {pu, v}, if {pu, v} ∈ G,

G+ {pu, v}, if {pu, v} /∈ G.

By definition it’s easy to see that span(f(G)) = span(G) = T , and that f is both

1-1 and onto. Clearly the numbers of edges in f(G) and G have different parities.

Thus even(GT ) = odd(Gt), and hence diff(GT ) = 0.

On the other hand, if T is inversion-free, we show that GT = {T}, i.e., the

only graph whose spanning tree is T is itself. Suppose there exists G ∈ GT such

that G 6= T . Let e = {u, v} ∈ G but e /∈ T , where u < v. From the definition

of DFS it is easy to see that there is no edge between two vertices that are not

ancestor and descendant in span(G). Thus u must be an ancestor of v in T . Let

w be the child of u that is on the path to v. Then u < w < v. However, by of

definition of our DFS v must be visited before w, namely v should also be a child

of u, a contradiction. Therefore we have have GT = {T}. In conclusion,

diff(Cn) = diff(T free
n ) = (−1)n−1

∣∣T free
n

∣∣ = (−1)n−1(n− 1)!,

where T free
n is the set of inversion-free trees over [n], and we used Proposition 5.10

and the fact that any tree over n vertices has n− 1 edges.
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Chapter 6

Algorithms and Experiments

In Chapter 4 we showed how to calculate the PML distribution for pattern

of special forms. For general pattern finding the exact PML distribution may be

difficulty.

In Section 6.1 we describe the procedure of an EM algorithm in [OSS+04,

Zha05], and show that it is equivalent to a Generalized Gradient Ascend

method.

In Section 6.2 We will use the algorithm to evaluate the performance of PML

on various distributions, and apply it to estimating the number of unseen

symbols.

6.1 The Algorithms

It has been show [OSS+04, Zha05] that, given an initial support size k, the

PML distribution can be approximated using the EM algorithm.

6.1.1 EM algorithm

Let µi(x̄) be the number of times the i-th symbol appears in the sequence

x̄. Starting with a arbitrary distribution P = P (0) = (p1, p2, . . . , pk), recursively

update P as follows:

pi ←
1

n
Ex̄|ψ̄,P old [µi(x̄)] . (6.1)

89
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For example, consider maximizing the probability of pattern 112 over all binary

distributions P = {p1, p2}. Since P (112) = p2
1p2 + p2

2p1 = p1p2, we have

Ex̄|112,P [µ1(x̄)] =
p2

1p2

P (112)
· 2 +

p2
2p1

P (112)
=
p2

1p2

p1p2

+
p2

2p1

p1p2

= 1 + p1,

and similarly Ex̄|112,P [µ2(x̄)] = 1 + p2. Hence in the M-step P is updated as

p1 =
1 + pold

1

3
, and p2 =

1 + pold
2

3
.

When the EM converges, we have

p1 =
1 + p1

3
, and p2 =

1 + p2

3
,

i.e., p1 = p2 = 1
2
.

6.1.2 EM v.s. Generalized Gradient Ascent

We show that the updating formula (6.1) can also be obtained by the

generalized gradient ascent method. To maximize lnP (ψ̄) under the constraint∑k
i=1 pi = 1, consider maximizing the Lagrangian function

f(P, λ)
def
= lnP (ψ̄) + λ

(
1−

k∑
i=1

pi

)
.

The gradient of f is

∇f =

(
∂f

∂pi
,
∂f

∂pi
, . . . ,

∂f

∂pi
, 1−

k∑
i=1

pi

)
,

where
∂f

∂pi
=

1

P (ψ̄)

∂P (ψ̄)

∂pi
− λ,

which can be written as

∂f

∂pi
=

1

P (ψ̄)
· ∂P (ψ̄)

∂pi
− λ =

1

P (ψ̄)

m∑
t=1

µtp
µt−1
i P (ψ̄t)− λ =

1

pi
Ex̄|ψ̄,P [µi(x̄)]− λ,

One form of the generalized gradient ascent updates P and λ iteratively as follows:

pi = pold
i + γi

(
1

pi
Ex̄|ψ̄,P [µi(x̄)]− λ

)
,∀i ∈ [k],

λ = λold + γλ

(
1−

k∑
i=1

pold
i

)
,
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where γi ≥ 0 and γλ ≥ 0. If we initially choose pi’s such that
∑

i=1 pi = 1,

λ = n, and at each iteration γi = pi
n

, then it is straightforward to verify that at

the completion of any iteration
∑

i=1 pi remains 1 and λ remains n. Thus pi is

updated to

pi ← pold
i +

pold
i

n

(
1

pold
i

Ex̄|ψ̄,P old [µi(x̄)]−n
)

=
Ex̄|ψ̄,P old [µi(x̄)]

n
,

which is the same as the updating formula in Equation (6.1).

6.1.3 Metropolis Algorithm

The updating formula in Equation (6.1) can be written as

pi ←
Ex̄|ψ̄,P old [µi(x̄)]

n
=

1

n

∑
x̄∈ψ̄

P old(x̄)

P old(ψ̄)
µi(x̄).

A direct calculation of the summation is not a practical approach since in general

there are exponentially many sequences x̄ with the same pattern ψ̄, and calculating

P old(ψ̄) adds further difficulty [ADM+10].

Given canonical pattern ψ̄ and probability multiset P = {p1, p2, . . . , pk},
We use the Markov chain Monte Carlo (MCMC) sampling method to estimate

Ex̄|ψ̄,P [µi(x̄)] =
∑
x̄∈ψ̄

P (x̄)

P (ψ̄)
µi(x̄).

The idea is to create a Markov chain process such that the stationary distribution

is P (x̄ | ψ̄). The Metropolis algorithm constructs such random walks on graphs

over sequences of the pattern ψ̄.

More precisely, Define graph Gψ̄ as follows. The vertex set is the set of

sequences having pattern ψ̄. Two sequences xµ1

1 x
µ2

2 · · · xµmm and yµ1

1 yµ2

2 · · · yµmm are

adjacent if and only if

(a) they differ in exactly one symbol, i.e.xi1 6= yi1 for some i1 ∈ [m], and x` 6= y`

for all ` 6= i1,

(b) they have a pair of symbols swapped, i.e.xi1 = yi2 , xi2 = yi1 for some i1 6=
i2 ∈ [m] and x` = y` for all ` 6= i1, i2, or
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(c) they are the same sequence (self-loops).

Define a random walk on Gψ̄ as described in Algorithm 1 [OSS+04, Zha05], where

at each step a neighbor ȳ 6= x̄ of the current sequence x̄ is chosen. The random

walk proceeds to ȳ if P (ȳ) ≥ P (x̄) or otherwise with probability P (ȳ)
P (x̄)

. It stays at

x̄ with the remaining probability.

Algorithm 1 Metropolis algorithm on Gψ̄

1. Start with a random sequence x̄0 ∈ ψ̄.

2. loop

3. Let the current state be x̄ = xµ1

1 x
µ2

2 · · · xµmm , and let xm+1, . . . , xk be the

symbols not in x̄.

4. Uniformly generate i1 ∈ [m].

Uniformly generate i2 ∈ [k] \ {i1}.
5. if i2 > m then

6. Let ȳ be x̄ with xi1 replaced by xi2 .

7. else

8. Let ȳ be x̄ with xi1 and xi2 swapped.

9. end if

10. if P (ȳ)/P (x̄) ≥ 1 then

11. Transit to ȳ.

12. else

13. Transit to ȳ with probability P (ȳ)/P (x̄); otherwise stay at x̄.

14. end if

15. end loop

Remarks:

(1) The weight associated with each sequence x̄ is w x̄ = P (x̄).

(2) The selection probabilities are defined implicitly as follows. In Step 4, the

random indices i1 and i2 are used to define the neighbor ȳ. If i2 ∈ [k] but

i2 /∈ [m], x̄ and ȳ differ in exactly one symbol. Then ȳ is selected with
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probability

λ{x̄,ȳ} =
1

m
· 1

k − 1
.

If j ∈ [m], x̄ and ȳ have two symbols swapped. Then ȳ is selected with

probability

λ{x̄,ȳ} =
1

m
· 1

k − 1
· 2.

(3) In Steps 10 and 13 of Algorithm 1, the ratio P (ȳ)
P (x̄)

can be calculated as follows.

If ȳ is obtained from Step 6, i.e., by replacing all occurrences of xi1 with xi2 ,

then
P (ȳ)

P (x̄)
=
p
µi1
i2

p
µi1
i1

=

(
pi2
pi1

)µi1
.

If ȳ is obtained from Step 8, i.e., by swapping all occurrences of xi1 and xi2 ,

then
P (ȳ)

P (x̄)
=
p
µi1
i2
p
µi2
i1

p
µi1
i1
p
µi2
i2

=

(
pi2
pi1

)µi1−µi2
.

Using Algorithm 1 to generate T sequences x̄(1), x̄(2), . . . , x̄(T ), we can esti-

mate Ex̄|ψ̄,P [µi(x̄)], Then

Ex̄|ψ̄,P [µi(x̄)] ≈ 1

T

T∑
t=1

µi
(
x̄(t)
)
.

6.2 Experiments

We conduct the following experiments to demonstrate the performance of

PML and show how it can be used to predict unseen symbols.

6.2.1 Probability Estimation

As we have seen in the introduction section, for a uniform distribution

over 500 symbols, with only 1000 samples PML can approximate the probability

multiset very closely. We show two more examples on different distributions.

Figure 6.1 shows a Zipf distribution, where the probabilities are C/i for

i = 50, 51, . . . , 500 and C =
(∑500

i=50
1
i

)−1
. We sample 500 times with replacement.

Note that compared to the support size the sample size is very small. As we
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Figure 6.1: SML and PML Reconstructions for Zipf Distribution

Remark: The dashed lines are the Zipf probabilities off by one per-symbol standard

deviation, i.e., pi ±
√
pi(1− pi)/n.

can see, SML overestimates large probabilities and it misses more than 2/5 of the

symbols. On the other hand, PML approximates the probabilities fairly well and

its estimate of the support size is very close to that of the underlying distribution.

Figure 6.2 shows the distribution over k = 18, 839 last names from U.S.

name census in 1999 consisting of 6,290,251 records. We sample n = 35, 000 times

from the distribution with replacement. The plot is in logarithm scale to show the

subtle difference in small probabilities. Although SML performs well in estimating

large probabilities, it misses nearly half of the names, while PML approximates

more accurately not only the probabilities but also the support size.

6.2.2 Predicting New Symbols

In many applications the association between the probabilities and the un-

derlying symbols is irrelevant. For example, the quantities such as support size,

entropy, expected number of symbols of the same given frequency, etc., depend on

only the probability multiset. PML can be potentially useful in such applications.

In 1985 a new poem, the Taylor poem, attributed to Shakespeare was dis-

covered. To authenticate the authorship, Efron and Thisted [TE87] used a non-
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Figure 6.2: SML and PML Reconstructions for Name Distribution

parametric empirical Bayes model to examine the consistency of the word usage.

For each µ ≥ 0, they estimate the expected number of distinct words in a new

poem that appeared µ in Shakespeare’s previous work.

More precisely, let x̄n1 and ȳN1 be two i.i.d. samples of sizes n and N respec-

tively. Let mµ be the number of distinct symbols in yN1 that appear µ times in xn1 .

In the Taylor poem problem the two samples are Shakespeare’s previous work and

the new poem. Thisted and Efron estimated E[mµ], for µ ≥ 0, as follows

m̃µ
def
=

∞∑
i=1

(−1)i+1

(
µ+ i

i

)
λiϕµ+i,

where λ
def
= N/n and ϕµ+i is the number of words that appear µ + i times in xn1 .

Then they compared m̃µ to the actual value of mµ.

Note that E[mµ] depends on only the probability multiset. If the probability

multiset P = {p1, p2, . . . , pk} of the underlying distribution is known, then E[mµ]

can be calculated as

EP [mµ] =
k∑
i=1

(
n

µ

)
pµi (1− pi)n−µ

(
1− (1− pi)N

)
.

Thus we can first use PML to obtain an estimate of the probabilities P̂ =

{p̂1, p̂2, . . . , p̂k}, then estimate E[mµ] as

m̂µ
def
= EP̂ [µµ].
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Figure 6.3: Estimates of E[m0] for Zipf Distribution

m̂µ on Zipf and Name Distributions

Since the true distribution of Shakespeare’s vocabulary is unknown, to val-

uate the estimator m̂µ, we first conduct experiments for m̂0 on the Zipf and name

distributions from the previous subsection, and compare PML to the methods from

Good-Toulmin [GT56] and Efron-Thisted [ET76, TE87].

For µ = 0, Thisted and Efron’s estimate becomes

m̃0 = λϕ1 − λ2ϕ2 + λ3ϕ3 − λ4ϕ4 + · · · ,

which is the same as Good-Toulmin [GT56].

Note that m̃0 converges only if λ < 1. For λ ≥ 1, Efron and Thisted [ET76]

used linear programming to estimate a lower bound and an upper bound.

In each experiment, we take the sample x̄n1 with replacement from the un-

derlying distribution, and for various values of λ = N/n we compare E[m0], m̃0,

m̂0, and the lower and upper bounds from Efron and Thisted.

The results for the Zipf distribution are plotted in Figures 6.3(a) and 6.3(b).

As we can see, for λ < 1, PML performs slightly better tahn the Good-Toulmin

estimator m̃0. For λ ≥ 1 Good-Toulmin estimate diverges, while PML continues

to perform well, and its prediction falls between the lower and upper bounds.

Similarly, for the name distribution PML outperforms m̂0 for both λ < 1

and λ ≥ 1, as shown in Figures 6.4(a) and 6.4(b).
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Figure 6.4: Estimates of E[m0] for Name Distribution
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Figure 6.5: Estimates of E[mµ] for Shakespeare’s Vocabulary

Back to Shakespeare

Shakespeare’s previous work consists of m = 31, 534 distinct words, and

n = 884, 647 in total, and the Taylor poem contains 258 distinct words and N =

429 in total [TE87].

We calculate the values of m̃µ and m̂µ for µ up to 10, where λ = N/n =

4.849× 10−4 is used in the calculation of m̃µ, and compare them to mµ, the actual

number of distinct words discovered in the Taylor poem that Shakespeare used µ

times before. We we can see from the figure, PML is consistent with Efron and

Thisted’s method .
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Chapter 7

Set-Patterns

Recall that PML estimates the probability multiset of a single distribution.

In this chapter we propose Set-pattern Maximum Likelihood (SPML) to estimate

the probability multiset of concurrent random processes. we consider the scenario

where we are given the samples of independent concurrent Bernoulli random pro-

cesses.

In Section 7.1 we define set-pattern and related notations.

In Section 7.2 we show some basic properties of SPML.

In Section 7.3 we show how to find the SPML for certain set-patterns.

In Section 7.4 we develop an EM algorithm for general set-patterns.

In Section 7.5 we consider a Poisson-version of set-pattern.

7.1 Notation and Definitions

Let B1, B2, . . . , Bk be independent Bernoulli distributions over alphabet

{1, 0}, and the probabilities of 1 are p1, p2, . . . , pk. For each i ∈ [k], independently

sample T times from Bi. Denote all samples by a matrix X of size T × k, where

xti is the t-th sample from distribution Bi. The i-th multiplicity is

µi(X)
def
=

T∑
t=1

xti,

99
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the number of times 1 is observed from distribution Bi. Denote the total number

of ones in X by n. Then n =
∑k

i=1 µi(X).

It is easy to see that the probability of the sample matrix depends only on

the multiplicities µi(X)’s:

P (X) =
k∏
i=1

T∏
t=1

pxtii (1− pi)1−xti =
k∏
i=1

p
µi(X)
i (1− pi)µi(X).

For example, if k = 3, T = 2, and the samples are 11 from B1, 11 from B2, 01

from B3 and 00 from B4, then the sample matrix is

X =

[
1 1 0 0

1 1 0 1

]
,

and its probability is

P (X) = p2
1 · p2

2 · (1− p3)2 · p4(1− p4).

Note that µi(X) could be 0. The set-pattern ψ̄(X) of X is the multiset of positive

multiplicities, i.e.,

ψ̄(X)
def
= {µi(X) > 0 | i ∈ [k]}∗ .

Denote ψ̄(X) as

ψ̄(X)
def
= 1µ12µ2 · · ·mµm ,

where µ1 ≥ µ2 ≥ · · · ≥ µm > 0. For example, the set-pattern of X = [ 1 1 0 0
1 1 0 1 ] , is

ψ̄(X) = 12223.

On the other hand, a set-pattern ψ̄ = 1µ12µ2 · · ·mµm can regarded as a set

of all sample matrices whose set-pattern is ψ̄. Slighting abusing the notations, we

refer multiplicities of ψ̄ to µ1, µ2, . . . , µm. For each µ ≥ 0, the prevalence ϕµ of µ

is the number of instances µ in ψ̄.

Given Bernoulli distributions with one’s probabilities p1, p2, . . . , pk and an

integer T > 0, the probability of a set pattern ψ̄ is the total probability of all

sample matrices of size T × k that have set-pattern ψ̄, i.e.,

P (ψ̄, T ) =
∑

XT×K : ψ̄(X)=ψ̄

P (X),
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which can be rewritten as

P (ψ̄, T ) =
1∏

µ>0 ϕµ!

∑
(i1,i2,...,im)∈[k]m

m∏
t=1

(
T

µt

)
pµtit (1− pit)T−µt ·

∏
j /∈{i1,i2,...,im}

(1− pj)T ,

where the division of
∏

µ>0 ϕµ! is to discount the overlap of mapping Bernoulli

processes to multiplicities of the same value.

For example, given Bernoulli distributions with one’s probabilities p1 =

p2 = p3 = p4 = p, set-pattern ψ̄ = 12223, and T = 2, the set-pattern probability is

P (12223, 2) · (1!2!) =

(
2

2

)
p2

1

(
2

2

)
p2

2

(
2

1

)
p3(1− p3) · (1− p4)2

+

(
2

2

)
p2

1

(
2

2

)
p2

2

(
2

1

)
p4(1− p4) · (1− p3)2

+ · · ·

+

(
2

2

)
p2

4

(
2

2

)
p2

3

(
2

1

)
p2(1− p2) · (1− p1)2,

i.e.,

P (12223, 2) =
1

2
· 4 3 ·

(
2

2

)2(
2

1

)
p5(1− p)3.

It’s easy to see that for any set-pattern ψ̄ and sampling time T , P (ψ̄) is symmetric

in pi’s, thus its value depends only on the multiset of multiplicitiesM(ψ̄) and the

multiset of probabilities P
def
= {p1, p2, . . . , pk}∗. Let

P sorted
d

def
= {(p1, p2, . . .) | p1 ≥ p2 ≥ · · · ≥ 0} .

Note P sorted
d ⊆P sorted

d , where the latter does not require that
∑∞

i=1 pi = 1. Thus

without loss of generality we may treat P as a vector in P sorted
d . Similar to PML,

we define the Set-pattern Maximum Likelihood (SPML) of ψ̄ and the correponding

SPML multiset as

P̂ (ψ̄, T )
def
= max

P∈P sorted
d

P (ψ̄, T ), and P̂ψ̄,T
def
= arg max

P∈P sorted
d

P (ψ̄, T ).

Again, we may run into the trouble that P̂ψ̄,T does not exist. Instead of

introducing a continuous part like we did for PML. In this dissertation we consider

only discrete multisets. Namely we only study set-patterns for which the SPML

multiset exists.
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7.2 Properties

We first show how to rewrite the probability of a set-pattern in a simpler

form, which will be used to prove the properties of SPML distributions, as well as

the other results.

7.2.1 Reformulation

For any set-pattern ψ̄ and P = (p1, p2, . . . , pk) ∈P sorted
d ,

P (ψ̄, T ) =
1∏

µ∈ψ̄ ϕµ!

∑
ī∈[k]m

m∏
t=1

(
T

µt

)
pµtit (1− pit)T−µt ·

∏
i∈[k]\{i1,i2,...,im}

(1− pi)T

=
1∏

µ∈ψ̄ ϕµ!

m∏
t=1

(
T

µt

) ∑
ī∈[k]m

m∏
t=1

pµtit (1− pit)T−µt ·
∏

i∈[k]\{i1,i2,...,im}

(1− pi)T ,

If 0 < pi < 1 for all i, let

ri
def
=

pi
1− pi

, and R
def
= (r1, r2, . . . , rk) .

The

P (ψ̄, T ) =
1∏

µ∈ψ̄ ϕµ!

m∏
t=1

(
T

µt

) k∏
i=1

(1− pi)T
∑
ī∈[k]m

m∏
t=1

(
pit

1− pit

)µt
.

Note that 1− pi = 1
1+ri

. Then

P (ψ̄, T ) =
1∏

µ∈ψ̄ ϕµ!

m∏
t=1

(
T

µt

) ∑
ī∈[k]m r

µt
it∏k

i=1(1 + ri)T
=

m∏
t=1

(
T

µt

)
R(ψ̄)∏k

i=1(1 + ri)T
, (7.1)

where

R(ψ̄)
def
=
∑
ī∈[k]m

m∏
t=1

rµtit .

Let

f(R, T )
def
= ln

R(ψ̄)∏k
i=1(1 + ri)T

= lnR(ψ̄)− T
k∑
i=1

ln(1 + ri).

It follows that, for P̂ψ̄,T in which all probabilities are strictly less than 1,

P̂ψ̄,T = arg max
P∈P sorted∗

d

f(R, T ).
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The reformulation of set-pattern probability P (ψ̄) in Equation (7.1) requires that

all probabilities in P are strictly less than 1. For a Bernoulli distribution with

one’s probability equal to 1, it is clear that an i.i.d. sample of size T has positive

probability if and only if all observations are one. Thus in a set-pattern ψ̄ with L

multiplicities equal to T , its probability P (ψ̄) is positive if and only P has at most

L 1’s.

Let ` ≤ L be the number of 1’s in P , i.e.,

p1 = p2 = · · · = p` = 1 > p`+1 ≥ · · · ≥ pk > 0.

Let

P ∗
def
= (p`, p`+1, . . . , pk).

Then

P (ψ̄) = ϕ `
T P

∗(ψ̄[`+1..m]). (7.2)

Let

P sorted∗
d

def
= {(p1, p2, . . .) | 1 > p1 ≥ p2 ≥ · · · ≥ 0} ⊆P sorted

d .

Thus the SPML distribution of a set-pattern with L multiplicities equal to T can

be found by considering all distributions with up to L probabilities equal to one:

P̂ψ̄,T
def
= arg max

P=1`∪P ∗:P ∗∈P sorted∗
d

P ∗(ψ̄[`+1..m], T ),

where 1` is a multiset of ` ones. Then for each ` the corresponding set-pattern

probability P ∗(ψ̄[`+1..m], T ) can be reformulated using Equation (7.1).

7.2.2 Expansions

Similar to the expansion in Equation (2.4), we can write R(ψ̄) as Recall

that R(ψ̄) =
∑

ī∈[k]m

∏m
t=1 r

µt
it

. Similar to the expansion in Equation (2.6), we can

expand R(ψ̄) as follows:

R(ψ̄) =
∑
S⊆[m]

RI(ψ̄S)RĪ(ψ̄S̄). (7.3)

Particularly, for I = {i},

R(ψ̄) = Ri(ψ̄) +
m∑
t=1

rµti Ri(ψ̄t). (7.4)
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7.2.3 Majorization

Given pattern ψ̄, let

PSML
def
=
(µ1

T
,
µ2

T
, . . . ,

µm
T

)
be the empirical distribution. Similar to the majorization property in Fact 2.3,

we show that P̂ψ̄,T is majorized by PSML. Furthermore, we show that the total

probability in P̂ψ̄,T must be n
T

.

Theorem 7.1. For any set-pattern ψ̄ such that P̂ψ̄,T is discrete,

(1)
∑i

j=1 p̂j ≤
1
T

∑i
j=1 µj,∀i ≤ m;

(2)
∑k

j=1 p̂i = n
T

.

Proof. For simplicity let P = P̂ψ̄,T = (p1, p2, . . . , pk). We first consider the case

where P ∈P sorted∗
d , i.e., 0 < pi < 1 for all i ∈ [k]. Recall that

ri =
pi

1− pi
, R(ψ̄) =

∑
ī∈[k]m

m∏
t=1

rµtit , and P (ψ̄) =
1∏

µ∈ψ̄ ϕµ!

m∏
t=1

(
T

µt

)
R(ψ̄)∏k

i=1(1 + ri)T
.

Recall that

P̂ψ̄,T = arg max
P∈P sorted∗

d

f(R, T ),

where

f(R, T ) = lnR(ψ̄)− T
k∑
i=1

ln(1 + ri).

Then For any I ⊆ [k], let

RI
def
= {ri : i ∈ I}.

By Expansion (7.3),

R(ψ̄) =
∑
S⊆[m]

RI(ψ̄S)RĪ(ψ̄S̄).

Note that R is not an actual distribution since ri’s don’t have to sum up to 1.

Let Rα be obtained from R by scaling the ri by α for all i ∈ I. Then

f(Rα, T ) = ln
∑
S⊆[m]

αµSRI(ψ̄S)Rī(ψ̄S̄)− T
∑
i∈I

ln(1 + αri)− T
∑
i∈Ī

ln(1 + ri),
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where µS =
∑

t∈S µt. Taking the derivative with respect to α we obtain

∂f(Rα, T )

∂α
=

1

Rα(ψ̄)

∑
S⊆[m],S 6=∅

µSα
µS−1RI(ψ̄S)RĪ(ψ̄S̄)− T

∑
i∈I

ri
1 + αri

.

For P = P̂ψ̄,T , we must have ∂f(Rα),T
∂α

∣∣∣
α=1

= 0, i.e.,

1

R(ψ̄)

∑
S⊆[m],S 6=∅

µSRI(ψ̄S)RĪ(ψ̄S̄)− T
∑
i∈I

pi = 0. (7.5)

Note that RI(ψ̄S) = 0 for any S ⊆ [m] such that |S| > |I|. Thus in the

expansion (7.3) we only need to consider S ⊆ [m] such that |S| ≤ |I|. Then∑
i∈I

pi =
1

T
· 1

R(ψ̄)

∑
S⊆[m]: 0<|S|≤|I|

µSRI(ψ̄S)RĪ(ψ̄S̄)

≤ 1

T
·
∑

S⊆[m]: 0<|S|≤|I| µSRI(ψ̄S)RĪ(ψ̄S̄)∑
S⊆[m]: 0<|S|≤|I|RI(ψ̄S)RĪ(ψ̄S̄)

≤ 1

T
max

S⊆[m]: 0<|S|≤|I|
µS

≤ 1

T

|I|∑
i=1

µi.

This proves the first part (under the assumption that all probabilities in P̂ψ̄,T are

less than 1). To show the second part, Let I = [k]. Then Ī = ∅ and hence RĪ(ψ̄S̄)

for any S 6= [m]. It follows that Equation (7.5) becomes

1

R(ψ̄)
· µ[m]R(ψ̄[m])− T

k∑
i=1

pi = 0,

i.e.,
∑k

i=1 pi = n
T

.

To finalize the proof, we show that the same results hold even if P =

P̂ψ̄,T has probabilities equal to 1. Let ` be the number of 1’s in P and P ∗ =

(p`+1, p`+2, . . . , pk). Then we must have

µ1 = µ2 = · · · = µ` = T.

Furthermore,

P (ψ̄) = ϕ `
TP
∗(ψ̄[`+1..m]),



106

and P ∗ must maximize the probability of the set-pattern ψ̄[`+1..m]. Thus our pre-

vious results apply to P ∗:

i∑
j=`+1

pj ≤
1

T

i∑
j=`+1

µj,∀i ∈ [`+ 1,m],

k∑
j=`+1

=
1

T

m∑
j=`+1

µj.

The conclusion follows by adding ` instances of 1 and T
T

to the left-hand and

right-hand sides respectively.

7.3 Set-patterns with Uniform SPML

We consider set-patterns with multiplicities sufficiently close so that the

SPML distribution is uniform.

Similar to patterns, in a uniform set-pattern all multiplicities are the same.

In a quasi-uniform set-pattern either µ1 = · · · = µm = T , or

T

T − µ1

(µt − µt′)2 ≤ µt + µt′ − 2,∀{t, t′} ∈
(

[m]

2

)
.

It’s easy to see that a uniform set-pattern is also quasi-uniform. We show that

the SPML distribution of quasi-uniform set-patterns, hence uniform set-patterns

is uniform.

Theorem 7.2. For any quasi-uniform set-pattern ψ̄ and sample time T ,

P̂ψ̄,T =

(
n

k̂T
, . . . ,

n

k̂T

)
for some k̂ ≤ ∞, where n =

∑m
t=1 µt.

Proof. For simplicity let P = P̂ψ̄,T = (p1, p2, . . . , pk). If there are more than one

optimal P , choose one with smallest support size k.

If µ1 = µ2 = · · · = µm = T , it’s easy to see that P (ψ̄, T ) is maximized only

if k = m and p1 = p2 = · · · = pm = 1. Thus we may assume that µ1 < T , and for



107

all {t, t′} ∈
(

[m]
2

)
T

T − µ1

(µt − µt′)2 ≤ µt + µt′ − 2.

It’s easy to see that if pi = 1 for some i ∈ [k] then P (ψ̄, T ) = 0. Then we must

have P ∈P sorted∗
d , and thus we must have

P = P̂ψ̄,T = arg max
P∈P sorted∗

d

f(R, T ),

where

f(R, T ) = lnR(ψ̄)− T
k∑
i=1

ln(1 + ri).

Since R maximizes f(R, T ), we must have, for all i ∈ [k],

∂f

∂ri
=

1

R(ψ̄)
· ∂R(ψ̄)

∂ri
− T

1 + ri
= 0,

i.e.,

(1 + ri) ·
∂R(ψ̄)

∂ri
= TR(ψ̄). (7.6)

By Expansion (7.4), we can write R(ψ̄) as

R(ψ̄) = Ri(ψ̄) +
m∑
t=1

rµti Ri(ψ̄t).

Then
∂R(ψ̄)

∂ri
=

m∑
t=1

µtr
µt−1
i Ri(ψ̄t).

Thus Equation (7.6) becomes

m∑
t=1

µt(1 + ri)r
µt−1
i Ri(ψ̄t) = TR(ψ̄). (7.7)

Similarly, for any j ∈ [k] \ {i}, we can write Ri(ψ̄t) as

Ri(ψ̄t) = Ri,j(ψ̄t) +
∑

t′∈[m]\{t}

r
µt′
j Ri,j(ψ̄t,t′).

thus∑
(t,t′): t6=t′

µt(1 + ri)r
µt−1
i r

µt′
j Ri,j(ψ̄t,t′) +

m∑
t=1

µt
(
rµti + rµt−1

i

)
Ri,j(ψ̄t) = TR(ψ̄). (7.8)
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Similarly,

∑
(t,t′): t6=t′

µt(1 + rj)r
µt−1
j r

µt′
i Rij(ψ̄t,t′) +

m∑
t=1

µt
(
rµtj + rµt−1

j

)
Rij(ψ̄t) = TR(ψ̄). (7.9)

Suppose P is not uniform. Choose i, j such that pi > pj. Then ri > rj. Using

(7.8)− (7.9), we get

∑
(t,t′): t6=t′

µt ·
(1 + ri)r

µt−1
i r

µt′
j − (1 + rj)r

µt−1
j r

µt′
i

ri − rj
Ri,j(ψ̄t,t′)

+
m∑
t=1

µt

(
rµti − r

µt
j

ri − rj
+
rµt−1
i − rµt−1

j

ri − rj

)
Ri,j(ψ̄t) = 0. (7.10)

On the other hand, Let I = {i, j}. Then by Expansion (7.3),

R(ψ̄) =
∑

(t,t′): t6=t′
rµti r

µt′
j Ri,j(ψ̄t,t′) +

m∑
t=1

(rµti + rµtj )Ri,j(ψ̄t) +Ri,j(ψ̄). (7.11)

Let P̃ be obtained from P with the following replacement:

p̃i ← pi + pj − pipj, and p̃j ← 0.

Then ri and rj are replaced by

r̃i ← rirj + ri + rj, and r̃j = 0.

It follows from Equation (7.11) that

R̃(ψ̄) =
m∑
t=1

(rirj + ri + rj)
µtRi,j(ψ̄t) +Ri,j(ψ̄). (7.12)

Note that (1 + r̃i)(1 + r̃j) = (1 + ri)(1 + rj). Then

f(R, T )− f(R̃, T ) = lnR(ψ̄)− ln R̃(ψ̄) > 0.

i.e.,

m∑
t=1

[
(rirj + ri + rj)

µt − (rµti + rµtj )
]
Rij(ψ̄t) <

∑
(t,t′)

rµti r
µt′
j Rij(ψ̄t,t′). (7.13)

It can be shown that
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Claim 7.1. For any ri > rj > 0 and µt ≥ 1,

(rirj + ri + rj)
µt − (rµti + rµtj ) ≥ µt(rirj)

(
rµti − r

µt
j

ri − rj
+
rµt−1
i − rµt−1

j

ri − rj

)
.

See Appendix A.2 for the proof of Claim 7.1. Combining Equations (7.10), (7.13)

and Claim 7.1, we get

∑
{t,t′}∈([m]

2 )

[
(µt − 1)

rµt−1
i r

µt′
j − r

µt′
i rµt−1

j

ri − rj
+ (µt′ − 1)

r
µt′−1
i rµtj − r

µt
i r

µt′−1
j

ri − rj

+(µt − µt′)
rµti r

µt′
j − r

µt′
i rµtj

ri − rj

]
Rij(ψ̄t,t′) > 0, (7.14)

We can show that

Claim 7.2. For any ri > rj > 0 and T > µ1 ≥ µt ≥ µt′ ≥ 0,

(µt − 1)
rµt−1
i r

µt′
j − r

µt′
i rµt−1

j

ri − rj

+ (µt′ − 1)
r
µt′−1
i rµtj − r

µt
i r

µt′−1
j

ri − rj
+ (µt − µt′)

rµti r
µt′
j − r

µt′
i rµtj

ri − rj

≤
[

T

T − µ1

(µt − µt′)2 − (µt + µt′ − 2)

]
(rµti r

µt′
j + r

µt′
i rµtj )(rirj)

−1. (7.15)

See Appendix A.2 for the proof of Claim 7.2. Thus Inequality (7.14) implies that

∑
{t,t′}∈([m]

2 )

[
T

T − µ1

(µt − µt′)2 − (µt + µt′ − 2)

]

· (rµti r
µt′
j + r

µt′
i rµtj )(rirj)

−1Rij(ψ̄t,t′) > 0. (7.16)

However, by the definition of quasi-uniform patterns, the left-hand side is nonneg-

ative, a contradiction.

Similar to almost-uniform patterns, Theorem 7.2 can be further generalized.

Given set-pattern ψ̄ such that µ1 < T and {t, t′} ∈
(

[m]
2

)
, let

Dt,t′
def
= (µt − µt′)2 T

T − µ1

− (µt + µt′ − 2).



110

An almost-uniform set-pattern is either a quasi-uniform set-pattern, or µ1 < T

and∑
Dt,t′<0

|Dt,t′ | · (µm − 1)µ1−µm ≥
∑

Dt,t′>0

Dt,t′ ·
[
(µ1 − 1) +

µ1

T − µ1

(µ1 − µm)

]µ1−µm
.

Theorem 7.3. Given sample time T , the SPML distribution of an almost-uniform

set-pattern ψ̄ is

P̂ψ̄,T =

(
n

k̂T
, . . . ,

n

k̂T

)
for some k̂ ≤ ∞, where n =

∑m
t=1 µt.

See Appendix A.3 for the complete proof of Theorem 7.3.

7.3.1 Set-patterns with µ1 = T

As mentioned before, it is easy to see that, If the SPML distribution P =

P̂ψ̄,T of a set-pattern has ` probabilities, then ψ̄ has at least ` multiplicities T equal

to T . However, we give an example where the converse is not true.

Recall that, given P ∈ P sorted∗
d with ` ones and set-pattern ψ̄ with L

multiplicities equal to T , where ` ≤ T , we have

P (ψ̄) = ϕ `
T P

∗(ψ̄[`+1..m]),

where P ∗ = (p`+1, p`+2, . . . , pk). Consider the following set-pattern

ψ̄ = 152333 · · · 163.

Let T = 5 and P = P̂ψ̄,5 = (p1, p2, . . . , pk), if If p1 = 1, then

P (ψ̄, 5) = P ∗(ψ̄∗, 5).

Notice that ψ̄∗ is uniform. Thus it follows from Theorem 7.2 that P ∗ is uniform,

i.e.,

p2 = p3 = · · · = pk = p.

By Theorem 7.1,
k∑
i=2

pi = (k − 1)p =
n

T
= 9,
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i.e., p = 9
k−1

. Then

P (ψ̄, 5) =

(
k − 1

15

)[
p3(1− p)2

]15
=

(
k − 1

15

)(
9

k − 1

)45(
1− 9

k − 1

)30

,

which is maximized to 1.1984× 10−22 at k = 16.

On the other hand, consider the uniform distribution P with p1 = p2 =

· · · = p16 = 50
5×16

= 5
8
:

P (ψ̄, 5) = 16

(
50

16

)5(
15

15

)[(
50

16

)3(
1− 50

16

)2
]15

= 1.6560× 10−22,

which is greater than 1.1984×10−22, a contradiction. Thus the SPML distribution

of ψ̄ = 152333 · · · 163 does not have probability 1.

7.4 Algorithm

Similar to patterns, we develop an EM algorithm to approximate the SPML

multiset of set-patterns.

7.4.1 EM Algorithm

Given a canonical set-pattern ψ̄ = 1µ12µ2 · · ·mµm and a sampling time T , we

are interested in the multiset of one’s probabilities P = (p1, p2, . . . , pk) ∈P sorted∗
d

that maximizes the set-pattern probability P (ψ̄, T ).

In general, given observation o, the EM algorithm estimates the underlying

parameter θ that by maximizes the log-likelihood lnL(o, h | θ), where h is the

hidden variable. Starting with an initial guess of θ, the EM algorithm iteratively

updates θ to increase lnL(o, h | θ). Each iteration consists of two steps. The first

step is to calculate

Eh|o,θold [lnL(o, h | θ)] ,

the expected value of the log-likelihood of the complete data, given the current

parameter, with respect to the hidden variable conditional on the observation o

and the previous parameter. The second step is to find the current parameter
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θ maximizing the above expectation. In the case that o is a function of h, i.e.,

Pr(o | h; θ) = 1, the log-likelihood becomes lnL(h | θ) and hence the expectation

can be simplified as

Eh|o,θold [lnL(h | θ)] .

To apply the EM algorithm to set-patterns, the parameters are P = (p1, p2, . . . , pk),

the observation is the set-pattern ψ̄, and the hidden variable is a sample matrix

X with the given set-pattern. Note that P (ψ̄ |X) = 1 and the log-likelihood is

lnL(X | P ) = lnP (X).

Let P old be the multiset from the previous iteration of the EM algorithm. To

update P old, we first calculate

EX|ψ̄,P old [lnL(X | P )] = EX|ψ̄,P old [lnP (X)] .

Without loss of generality, assume that 0 < pi < 1 for all i ∈ [k]. Recall that

ri = pi
1−pi . Then

P (X) =
k∏
i=1

p
µi(X)
i (1− pi)T−µi(X) =

k∏
i=1

r
µi(X)
i

(1 + ri)T
.

The expectation of the log-likelihood can then be written as

EX|ψ̄,P old [lnP (X)] =
∑

XT×k∈ψ̄

P old(X | ψ̄)

[
k∑
i=1

µi(X) ln ri

]
− T

k∑
i=1

ln(1 + ri)

=
k∑
i=1

ln ri
∑
X∈ψ̄

µi(X)P old(X | ψ̄)− T
k∑
i=1

ln(1 + ri).

To maximize the expectation, let all partial derivatives with rep sect to ri’s be to

0, i.e.,
1

ri
EX|ψ̄,P old [µi(X)]− T

1 + ri
= 0.

Then

pi =
ri

1 + ri
=

1

T
EX|ψ̄,P old [µi(X)] . (7.17)

Note that, when the EM algorithm converges, we must have

pi =
1

T
EX|ψ̄,P [µi(X)] .
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Then
k∑
i=1

pi =
1

T

k∑
i=1

EX|ψ̄,P [µi(X)] =
n

T
,

which is the same as the second part in Theorem 7.1.

7.4.2 Metropolis Algorithm

As show in the previous subsection, the SPML multiset can be approxi-

mated using the EM algorithm using updating formula (7.17). A direct calcula-

tion of the expectation as a summation is not a practical approach since in general

there are exponentially many sample matrics X with the same set-pattern ψ̄.

For any sample matrix X, let the sequence of multiplicities

x̄ = µ̄(X)
def
= (µ1(X), µ2(X), . . . , µk(X)) .

Note that a sequence does not have the information of T . The probability of a

sequence x̄ with sample time T is

P (x̄, T ) =
∑

XT×k: µ̄(X)=x̄

P (X) =
k∏
i=1

(
T

µi(x̄)

)
p
µi(x̄)
i (1− pi)T−µi(x̄),

where µi(x̄) for the i-th component of x̄. Then given canonical set-pattern ψ̄

and probability multiset P = (p1, p2, . . . , pk) ∈ P sorted∗
d , the expectation in the

updating formula can be written as

EX|ψ̄,P [µi(X)] =
∑
X∈ψ̄

P (X)

P (ψ̄)
µi(X) =

∑
x̄∈ψ̄

P (x̄, T )

P (ψ̄, T )
µi(x̄),

where

We use the Markov chain Monte Carlo (MCMC) sampling method to es-

timate this summation. The idea is to use the Metropolis algorithm to create a

random walk on the graph over the sequences x̄, such that the stationary distri-

bution is P (x̄|ψ̄).

Random Walks on Graphs

A walk on an undirected graph is a sequence of vertices, each adjacent to

the next. A random walk on a graph G is defined by a transition probability
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P (v → v′) from every vertex v to each of its neighbors v′. Namely, P (v → v′) ≥ 0,

and ∑
v′∈N(v)

P (v → v′) = 1,

where N(v) is the set of neighbors of v in G.

A graph is connected if there is walk from any vertex to any other. A

graph is aperiodic if the greatest common divisor of all cycle lengths is 1. It is

easy to see that every graph containing even one self-loop is aperiodic. The well-

known Fundamental Theorem of Markov Chains says that every random walk on

a connected aperiodic graph converges to a unique stationary distribution p, which

satisfies, for all v ∈ V , ∑
v′∈N(v)

p(v′)P (v′ → v) = p(v).

Let G = (V,E) be a connected undirected graph with a self-loop at each

vertex, where every vertex v is associated with a weight wv ≥ 0. The Metropolis

algorithm creates a random walk over G by associating with every edge {v, v′} a

selection probability λ{v,v′} such that, for every vertex v,∑
v′∈N(v)\{v}

λ{v,v′} ≤ 1, and λ{v,v}
def
= 1−

∑
v′∈N(v)

λ{v,v′}.

The random walk then proceeds from each vertex v as follows:

• Select a random neighbor v′ ∈ N(v) according to its selection probability

λ{v,v′}.

• If wv′ ≥ wv, move to v′, while if wv′ < wv, move to v′ with probability
wv′
wv

and with the remaining probability stay at v.

It is easy to see that the transition probability from any vertex v to a neighbor v′

is then

P (v → v′) = λ{v,v′}min

{
1,
wv′

wv

}
,

and

P (v → v)
def
= 1−

∑
v′∈N(v)

P (v → v′).
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Note that G is connected, and since it contains self loops, it is also aperiodic.

Hence the Fundamental Theorem of Markov Chains implies that our random walk

convergences to a unique stationary distribution π. We show that

π(v) =
wv∑
u∈V wu

as follows. Since π exists and is unique, it suffices to verify that∑
v′∈N(v)

wv′∑
u∈V wu

P (v′ → v) =
wv∑
u∈V wu

,

or equivalently, ∑
v′∈N(v)

wv′P (v′ → v) = wv,

which is true since∑
v′∈N(v)

wv′P (v′ → v)

=
∑

v′∈N(v)\{v}

wv′P (v′ → v) + wvP (v → v)

=
∑

v′∈N(v)\{v}

wv′λ{v′,v}min

{
1,
wv
wv′

}
+ wv

1−
∑

v′∈N(v)\{v}

λ{v,v′}min

{
1,
wv′

wv

}
=

∑
v′∈N(v)\{v}

λ{v,′v}min{wv′ , wv}+ wv −
∑

v′∈N(v)\{v}

λ{v,v′}min{wv, wv′}

= wv.

Note that the algorithm does not require the calculation of
∑

v wv, a prohibitive

calculation when the graph is large. Furthermore, when every node of G has the

same degree d, a natural selection probability is λ{v,v′} = 1/d for v′ ∈ N(v) \ {v}.
It is easily determined and ensures that a new node is always selected.

Estimating Eµ̄|ψ̄,P [µ̄i]

Define graph Gψ̄ as follows. The vertex set is the set of sequences having

pattern ψ̄. Two sequences xµ1

1 x
µ2

2 · · · xµmm and yµ1

1 yµ2

2 · · · yµmm are adjacent if and

only if
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(a) they differ in exactly one symbol, i.e.xi1 6= yi1 for some i1 ∈ [m], and x` 6= y`

for all ` 6= i1,

(b) they have a pair of symbols swapped, i.e.xi1 = yi2 , xi2 = yi1 for some i1 6=
i2 ∈ [m] and x` = y` for all ` 6= i1, i2, or

(c) they are the same sequence (self-loops).

Define a random walk on Gψ̄ as described in Algorithm 2, where at each step a

neighbor ȳ 6= x̄ of the current sequence x̄ is chosen. The random walk proceeds to

ȳ if P (ȳ, T ) ≥ P (x̄, T ) or otherwise with probability P (ȳ)
P (x̄,T )

. It stays at x̄ with the

remaining probability.

Algorithm 2 Metropolis algorithm on Gψ̄

1. Start with a random sequence x̄0 ∈ ψ̄.

2. loop

3. Let the current state be x̄ = xµ1

1 x
µ2

2 · · · xµmm , and let xm+1, . . . , xk be the

symbols not in x̄.

4. Uniformly generate i1 ∈ [m].

Uniformly generate i2 ∈ [k] \ {i1}.
5. if i2 > m then

6. Let ȳ be x̄ with xi1 replaced by xi2 .

7. else

8. Let ȳ be x̄ with xi1 and xi2 swapped.

9. end if

10. if P (ȳ, T )/P (x̄, T ) ≥ 1 then

11. Transit to ȳ.

12. else

13. Transit to ȳ with probability P (ȳ, T )/P (x̄, T ); otherwise stay at x̄.

14. end if

15. end loop
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To estimate EX|ψ̄,P [µi(X)], we use Algorithm 2 to generate N sequences

x̄(1), x̄(2), . . . , x̄(T ). Then

EX|ψ̄,P [µi(X)] =
∑
x̄∈ψ̄

P (x̄, T )

P (ψ̄)
µi(x̄) ≈ 1

T

T∑
t=1

µi
(
x̄(t)
)
.

Remark: In Steps 10 and 13 of Algorithm 2, the ratio P (ȳ,T )
P (x̄,T )

can be calculated as

follows:

P (ȳ, T )

P (x̄, T )
=

∏k
i=1

(
T

µi(ȳ)

)
p
µi(ȳ)
i (1− pi)T−µi(ȳ)∏k

i=1

(
T

µi(x̄)

)
p
µi(x̄)
i (1− pi)T−µi(x̄)

.

Note that since both x̄ and ȳ satisfies the set-pattern ψ̄, we have

k∏
i=1

(
T

µi(x̄)

)
=

k∏
i=1

(
T

µi(ȳ)

)
=

m∏
t=1

(
T

µt

)
.

Then
P (ȳ, T )

P (x̄, T )
=

∏k
i=1 p

µi(ȳ)
i (1− pi)T−µi(ȳ)∏k

i=1 p
µi(x̄)
i (1− pi)T−µi(x̄)

=

∏k
i=1 r

µi(ȳ)
i∏k

i=1 r
µi(x̄)
i

.

• If ȳ is obtained from Step 6, i.e., by replacing all occurrences of xi1 with xi2 ,

then
P (ȳ)

P (x̄)
=

(
ri2
ri1

)µi1
.

• If ȳ is obtained from Step 8, i.e., by swapping all occurrences of xi1 and xi2 ,

then
P (ȳ)

P (x̄)
=
r
µi1
i2
r
µi2
i1

r
µi1
i1
r
µi2
i2

=

(
ri2
ri1

)µi1−µi2
.

7.4.3 Experiments

In the first experiment we take k = 500 identical distributions each with

p = 0.05. We sample the set for T = 25 times.

From Figure 7.1(a) note that the SPML multiset is not only able to predict

almost identical underlying multisets but also the values of p as well as the number

of them. In comparison the empirical estimate is not only unable to predict the

collection of Bernoulli distributions but it also misses 154 elements as it observes

only 346 elements.



118

100 200 300 400 500 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
3x5, 10x4, 49x3, 109x2, 175x1, 154x0

 

 

Underlying

          SML

        SPML

(a) pi = 0.05 for i = 1, 2, . . . , 500, T = 25

1000 2000 3000 4000 5000

10
−4

10
−3

10
−2

1x39, 1x34, 1x33,  ..., 716x2, 1087x1, 883x0

 

 

Underlying

          SML

        SPML

(b) pi = 1
100+i for i = 1, 2, . . . , 4000, T = 3000

Figure 7.1: Comparison between SML and SPML

The next experiment we run is when pi = 1
C+i

, for i = 1 to k. This collection

of values when normalized correspond to a zipf distribution. In the current set-up

we take C = 100 and k = 4000. We sample from this collection of distributions

T = 3000 times and from this sample we estimate the collection of underlying

distributions.

From Figure 7.1(b) we note that the shape of set pml is much closer to the

underlying distribution than the empirical distribution. One criterion we looked

in order to compare is the `1 difference between the predicted and underlying

distributions. In the case of empirical distribution the `1 distance is 0.6036 and

for the SPML multiset it is 0.35.

7.5 Set-pattern with Poisson Processes

In the previous sections the concurrent processes are Bernoulli. If we con-

sider Poisson processes with unit-time means λ1, λ2, . . . , λk, since the time is contin-

uous, we don’t have a sample matrix. Instead, let the observation be the numbers

of ones at time T :

µ = (µ1, µ2, . . . , µk).
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The Poisson-version of the set-pattern can be defined similarly:

ψ̄(µ)
def
= {µ | µ > 0}∗ .

Then

P (ψ̄, T ) =
1∏

µ>0 ϕµ!

∑
(i1,i2,...,im)∈[k]m

m∏
t=1

e−λitT
(λitT )µt

µt!
·

∏
j /∈{i1,i2,...,im}

e−λjT

=
e−

∑
i λiTT n

n!
·
(

n
µ1,µ2,...,µm

)∏
µ>0 ϕµ!

∑
(i1,i2,...,im)∈[k]m

m∏
i=1

λµtit

=
T n

n!
·
(

n
µ1,µ2,...,µm

)∏
µ>0 ϕµ!

· (
∑

i λi)
n

e
∑
i λiT

P (ψ̄),

where

P (ψ̄) =
∑

(i1,i2,...,im)∈[k]m

m∏
t=1

(
λit∑
i λi

)µt
is the pattern probability under the distribution P =

(
λ1∑
i λi
, λ2∑

i λi
, . . . , λk∑

i λi

)
. Note

that
(
∑
i λi)

n

e
∑
i λiT

is maximized at
∑

i λi = n
T

. It follows that maximizing the set-pattern

probability with Poisson processes reduces to exactly PML.
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Appendix A

Additional Proofs

This Chapter gathers technical proofs for completeness.

Section A.1 lists the proofs of claims used for skewed patterns.

Section A.2 lists the proofs of claims used for quasi-uniform set patterns.

Section A.3 lists the proof for almost-uniform set-patterns.

A.1 Claims for Skewed Patterns

Claim 4.3 For all r > 3, P̂1r2(1r2) ≤ 2
5r

.

Proof of Claim 4.3. As stated in Fact 2.12, the PML distribution of any binary

pattern has support size 2. Let P̂1r2 = (1− p, p), where 0 < p ≤ 1
2
. Then

P̂P1r2(1r2) = pr(1− p) + (1− p)rp.

(1) For r = 4, if p ≤ 0.32, then

P̂11112(11112) ≤ 0.324 · (1− 0.32) + (1− 0.2)4 · 0.2 < 2

5 · 4
.

If 0.32 < p ≤ 1
2
, then

P̂11112(11112) ≤ 0.54 · 0.5 + (1− 0.32)4 · 0.32 <
2

5 · 4
.
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In either case, the claim holds.

(2) For r ≥ 5, if p ≤ 1
3
,

P̂1r2(1r2) = pr(1− p) + (1− p)rp

≤ 1

3r
· 2

3
+

(
r

r + 1

)r
· 1

r + 1

≤ 1

r

(
2r

3r+1
+

1

e

)
≤ 1

r

(
2 · 5
35+1

+
1

e

)
<

2

5r
.

If 1
3
< p ≤ 1

2
,

P̂1r2(1r2) = pr(1− p) + (1− p)rp

≤ 0.5r · 0.5 +

(
2

3

)r
· 1

3

=
1

r

(
r

2r+1
+

r2r

3r+1

)
≤ 1

r

(
5

25+1
+

5 · 25

35+1

)
<

2

5r
.

Again, the claim holds in either case.

Claim 4.4 Given any r ≥ 3 and u ≥ 2, Fr,u(p) > Ar,u for all p ∈ (Ur,u, Lr,u).

Proof. Recall that

Fr,u(p) =
r − (r + u)p− r(1− p)r+u

(r − 1)u p(1− p)r+u−1
.

Let

f(p)
def
= Ar,u(r − 1)u p(1− p)r+u−1 + (r + u)p+ r(1− p)r+u − r.

Then it’s equivalent to show that f(p) < 0 for all p ∈ (Ur,u, Lr,u).

We first show that f(Ur,u) < 0 and f(Lr,u) < 0. Then we show that all

p ∈ (0, 1) such that f(p) < 0 lies in a single interval and hence the conclusion

follows.
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(1) To show that f(Ur,u) < 0, we consider the following cases.

(a) For r = 3 and u ∈ {2, 3} we can directly verify that f(Ur,u) < 0.

(b) If r ≥ 4 and u = 2, then Ur,u = r−1
r+2

and Ar,u =
(
r+u
r

)r ( r+u
u

)u · 2
5r

. Hence

f(Hr,u) = f

(
r − 1

r + 2

)
=

(
r + 2

r

)r (
r + 2

2

)2

· 2

5r
· 2(r − 1) · r − 1

r + 2

(
3

r + 2

)r+1

+ (r + 2) · r − 1

r + 2
+ r

(
3

r + 2

)r+2

− r

=
1

5
(r − 1)2

(
3

r

)r+1

+ r

(
3

r + 2

)r+2

− 1

≤ 9

5

(
3

r

)r−1

+ 3

(
3

r + 2

)r+1

− 1

≤ 9

5

(
3

4

)4−1

+ 3

(
3

4 + 2

)4+1

− 1

< 0.

(c) If r = 3 and u ≥ 4, or r ≥ 4 and u ≥ 3, then Ur,u = r−1
r+u

and Ar,u =(
r+u
r

)r ( r+u
u

)u ( r
r+u−1

)r ( u
r+u−1

)u−1
. Hence

f(Ur,u) = f

(
r − 1

r + u

)
=

(
r + u

r

)r (
r + u

u

)u
·
(

r

r + u− 1

)r (
u− 1

r + u− 1

)u−1

· (r − 1)2u

r + u

(
u+ 1

r + u

)r+u−1

+ r

(
1− r − 1

r + u

)r+u
+ (r − 1)− r

= (r − 1)2

(
u+ 1

r + u− 1

)r+u−1(
u− 1

u

)u−1

+ r

(
u+ 1

r + u

)r+u
− 1.

Let

g1(r)
def
= ln

[
(r − 1)2

(
u+ 1

r + u− 1

)r+u−1
]
,

g2(r)
def
= ln

[
r

(
u+ 1

r + u

)r+u]
.
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It is easy to see that

g′1(r) = ln

(
u+ 1

r + u− 1

)
+

2

r − 1
− 1 < 0,

g′2(r) = ln

(
u+ 1

r + u

)
+

1

r
− 1 < 0.

Then both g1(r) and g2(r) decrease in r ≥ 3. It follows that

f(Ur,u) ≤ 4

(
u+ 1

u+ 2

)u+2(
u− 1

u

)u−1

+ 3

(
u+ 1

u+ 3

)u+3

− 1.

For 3 ≤ u ≤ 11, we can directly verify that the right-hand side is

negative. For u ≥ 12,

f(Ur,u) ≤ 4 · 1

e
· u

e(u− 1)
+

3

e2
− 1 ≤ 4

e2
· 12

11
+

3

e2
− 1 < 0.

(2) To show that f(Lr,u) < 0, we consider the following cases.

(a) If r = 3 and u ∈ {2, 3} we can directly verify that f(Lr,u) < 0.

(b) If r ≥ 4 and u = 2, then Lr,u = 1
r

and Ar,u =
(
r+u
r

)r ( r+u
u

)u · 2
5r

. Hence

f(Lr,u) =

(
r + 2

r

)r (
r + 2

2

)2

· 2

5r
· 2(r − 1) · 1

r

(
r − 1

r

)r+1

+
r + 2

r
+ r

(
r − 1

r

)r+2

− r.

For 4 ≤ r ≤ 33, we can directly verify that the right-hand side is

negative. for r ≥ 34,

f(Lr,u) ≤ e2

(
r + 2

2

)2

· 2

5r
·
(
r − 1

r

)r+2

+
r + 2

r
+ (r − 1)

(
r − 1

r

)r+1

− r

=

[
e2(r + 2)2

5r
+ r − 1

](
r − 1

r

)r+1

+
r + 2

r
− r

≤
[
e2(r + 2)2

5r
+ r − 1

]
e−1 +

r + 2

r
− r

=
1

5er

[
−(5e− e2 − 5)r2 + (4e2 + 5e− 5)r + (4e2 + 10e)

]
< 0.
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(c) If r = 3 and u ≥ 4, then Lr,u = 1
4u

and

Ar,u =

(
r + u

r

)r (
r + u

u

)u(
r

r + u− 1

)r (
u

r + u− 1

)u−1

.

Hence

f(Lr,u) =

(
u+ 3

u+ 2

)u+2(
u− 1

u

)u−1

· 2(3 + u)

4u

(
1− 1

4u

)u+2

+ 3

(
1− 1

4u

)u+3

+
u+ 3

4u
− 3.

For 3 ≤ u ≤ 96, we can directly verify that the right-hand side is

negative. For u ≥ 97,

f

(
1

4u

)
≤ e

(
u

u− 1

)
e−1 · 3 + u

2u

(
1− 1

4u

)u+2

+ 3

(
1− 1

4u

)u+2

+
3

4u
− 11

4

=
7u− 3

2(u− 1)

(
1− 1

4u

)u+2

+
3

4u
− 11

4

≤
(

7

2
+

2

u− 1

)
· e−

u+2
4u +

3

4u
− 11

4

≤
(

7

2
+

2

97− 1

)
· e−

1
4 +

3

4 · 97
− 11

4
< 0.

(d) If r ≥ 4 and u ≥ 3, then Lr,u = 1
r+u

and

Ar,u =

(
r + u

r

)r (
r + u

u

)u(
r

r + u− 1

)r (
u

r + u− 1

)u−1

.

Hence

f(Lr,u) =

(
r + u

r

)r (
r + u

u

)u
·
(

r

r + u− 1

)r (
u− 1

r + u− 1

)u−1

· (r − 1)u

r + u

(
r + u− 1

r + u

)r+u−1

+ r

(
1− 1

r + u

)r+u
+ 1− r

= (r − 1)

(
u− 1

u

)u−1

+ r

(
1− 1

r + u

)r+u
+ 1− r

≤ (r − 1)

(
3− 1

3

)3−1

+
r

e
+ 1− r

=
5e− (5e− 9)r

9
< 0.
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We have shown that f(Ur,u) < 0 and f(Lr,u) < 0. To complete the proof, we show

that the value of p ∈ (0, 1) that satisfies f(p) < 0 lies in a single interval. Consider

the derivatives of f(p):

f ′(p) = (r + u) + (1− p)r+u

· [(r + u)(r − (r − 1)uAr,u)p+ (r − 1)uAr,u] ,

f ′′(p) = (r + u− 1)(1− p)r+u−3

· [(r + u)((r − 1)uAr,u − r)p+ r(r + u)− 2(r − 1)uAr,u] .

Note that, for any 0 < p < 1, f ′′(p) ≥ 0 if and only if

(r + u)((r − 1)uAr,u − r)p+ r(r + u)− 2(r − 1)uAr,u ≥ 0.

Furthermore, we can show that (r − 1)uAr,u − r > 0 as follows. Proposition 4.7

implies that

Ar,u ≥
P̂1r23···u(1

r23 · · ·u)

P̂1r23···u+1(1r23 · · ·u+ 1)
≥ P̂1r23···u+1(1r23 · · ·u)

P̂1r23···u+1(1r23 · · ·u+ 1)
≥ 1.

Thus

(r − 1)uAr,u − r ≥ (r − 1)u− r > 0.

Let

p∗
def
=

2(r − 1)Ar,u − r(r + u)

(r + u)[(r − 1)uAr,u − r]
.

Then, for 0 < p < 1, f ′′(p) ≥ 0 if and only if p ≥ p∗. Note that

p∗ =
2

(r + u)u
+

2r/u− (r + u)

(r + u) [(r − 1)uAr,u − r]
<

2

(r + u)u
< 1.

Suppose p∗ ≤ 0. Then f ′(p) is increasing for all p ∈ (0, 1). However, since

f ′(0) = (r + u) + (r − 1)uAr,u > r + u = f ′(1),

f ′(p) can’t be monotonically increasing in (0, 1); we must have 0 < p∗ < 1. It

follows that f ′(p) decreases in (0, p∗), then increases in (p∗, 1). There are two

possibilities. Let

(1) If f ′(p∗) ≥ 0, then f ′(p) ≥ 0 for all p ∈ (0, 1), and hence f(p) in monotonically

increasing in p ∈ (0, 1).
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(2) If f ′(p∗) < 0, then there exist α ∈ (0, p∗) and β ∈ (p∗, 1) such that f ′(p) > 0

for p ∈ (0, α) ∪ (β, 1) and f ′(p) < 0 for p ∈ (α, β). Then f(p) first increases

in p ∈ (0, α), then decreases in p ∈ (α, β), and increases again in p ∈ (β, 1).

Note that f(0) = 0 and f(1) = u > 0. It follows that in either case {p ∈ (0, 1) |
f(p) < 0} is a single interval. We have previously shown that f(Ur,u) < 0 and

f(Lr,u) < 0. Thus f(p) < 0 for any p ∈ (Ur,u, Lr,u).

Claim 4.5 For all m ≥ 2, P̂1123···m(1123 · · ·m) ≤ 2/e
m(m−1)

.

Proof. As stated in Chapter 2, P̂1123···m is uniform. Let k = k̂ be the support size.

Then

P̂1123···m(1123 · · ·m) = km
(

1

k

)m+1

=
1

k
·
m−1∏
i=1

(
1− i

k

)
.

For any real number x ∈ (0, 1), 1− x < e−x. Thus

P̂1123···m(1123 · · ·m) ≤ 1

k
· exp

(
−m(m− 1)

2k

)
= f

(
1

k

)
,

where f(x)
def
= x exp

(
−m(m−1)

2
x
)
. it is easy to see that f(x) is maximized at

x = 2
m(m−1)

. Thus

P̂1123···m(1123 · · ·m) ≤ f

(
2

m(m− 1)

)
=

2/e

m(m− 1)
.

Claim 4.6 If r ≥ 3 and u ≥ 2, but r 6= 3 or u 6= 2, then(
r

r + u

)r (
u

r + u

)u
· u(u+ 1)

2
> Lr−2

r,u .

Proof. It’s equivalent to prove that

f(r, u)
def
=

1

L r−2
r,u

(
r

r + u

)r (
u

r + u

)u
u(u+ 1)

2
> 1.
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(1) If r = 3 and u = 3,

f(r, u) =
1

0.07869

(
3

6

)3(
3

6

)3
3 · 4

2
> 1.

(2) If r ≥ 4 and u = 2,

f(r, u) = rr−2 · 3
(

r

r + 2

)(
2

r + 2

)2

.

For r = 4, we can directly verify that the right-hand side is greater than 1.

For r ≥ 5,

f(r, u) ≥ rr−4 · 3

e2

(
2r

r + 2

)2

≥ 55−1 · 3

e2

(
2 · 5
5 + 2

)2

> 1.

(3) If r = 3 and u ≥ 4, Lr,u = 1
4u

. For 3 ≤ u ≤ 6, we can directly verify that

f(3, u) > 1. For u ≥ 7,

f(3, u) =
54

e3

(
u

u+ 3

)2
u+ 1

u+ 3
>

54 · 49 · (7 + 1)

e3(7 + 3)3
> 1.

(4) If r ≥ 4 and u ≥ 3, Lr,u = 1
r+u

. Then

f(r, u) = (r + u)r−2

(
r

r + u

)r (
u

r + u

)u(
u(u+ 1)

2

)
=
uu+1(u+ 1)

2
· rr

(r + u)u+2
.

Let g(r)
def
= ln

[
rr

(r+u)u+2

]
. Since g′(r) = r−2

r+u
+ ln r > 0, g(r) increases. Hence

f(r, u) ≥ uu+1(u+ 1) · 128

(u+ 4)u+2

=

(
u

u+ 4

)u
· 128u(u+ 1)

(u+ 4)2
.

For 3 ≤ u ≤ 6, we can directly verify that the right-hand side is greater than

1. For u ≥ 7,

f(r, u) ≥ 1

e4
· 128 · 7 · 8

(7 + 4)2
> 1.
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Claim 4.7 If r ≥ 3 and u ≥ 2, but r 6= 3 or u 6= 2, then

fr,u(p)
def
= pr−2

[
(r + 1)u

r + u
− p
]

(1− Ur,u − p)

increases for p ∈ (0, Lr,u].

Proof. We rewrite fr,u(p) as the product two parts:

fr,u(p) = gr,u(p) · hr,u(p),

where

gr,u(p) = p
1
2

[
(r + 1)u

r + u
− p
]
, and hr,u(p) = pr−

5
2 (1− Ur,u − p).

It’s easy to show that gr,u(p) increases for p ≤ 1
3

(r+1)u
r+u

, and hr,u(p) increases for

p ≤ 2r−5
2r−3

(1− Ur,u). Thus it’s sufficient to show that

Lr,u ≤
1

3

(r + 1)u

r + u
, and Lr,u ≤

2r − 5

2r − 3
(1− Ur,u).

(1) If r = 3 and u = 3, then Lr,u = 0.07869 and Ur,u = 0.4199. Hence

1
3

(r+1)u
r+u

Lr,u
=

2/3

0.07869
> 1,

2r−5
2r−3

(1− Ur,u)
Lr,u

=
0.5801/3

0.07869
> 1.

(2) If r ≥ 4 and u = 2, then Lr,u = 1
r

and Ur,u = r−1
r+u

. Hence

1
3

(r+1)u
r+u

Lr,u
=

2(r + 1)r

3(r + 2)
≥ 2 · (4 + 1) · 4

3 · (4 + 2)
> 1,

2r−5
2r−3

(1− Ur,u)
Lr,u

=
3(2r − 5)r

(r + 2)(2r − 3)
≥ 3 · (2 · 4− 5) · 4

(4 + 2)(2 · 4− 3)
> 1.

(3) If r = 3 and u ≥ 4, then Lr,u = 1
4u

and Ur,u = r−1
r+u

. Hence

1
3

(r+1)u
r+u

Lr,u
=

16u2

3(u+ 3)
≥ 16 · 42

3 · (4 + 3)
> 1,

2r−5
2r−3

(1− Ur,u)
Lr,u

=
4u(u+ 1)

3(u+ 3)
≥ 4 · 4 · (4 + 1)

3 · (4 + 3)
> 1.
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(4) If r ≥ 4 and u ≥ 3, then Lr,u = 1
r+u

and Ur,u = r−1
r+u

. Hence

1
3

(r+1)u
r+u

Lr,u
=

1

3
(r + 1)u ≥ (4 + 1) · 3

3
> 1,

2r−5
2r−3

(1− Ur,u)
Lr,u

=
2r − 5

2r − 3
(u+ 1) ≥ 2 · 4− 5

2 · 4− 3
· (3 + 1) > 1.

Claim 4.8 If r ≥ 3 and u ≥ 2, but r 6= 3 or u 6= 2, then

u(u− 1)U r
r,u > rLr−2

r,u

[
(r + 1)u

r + u
− Lr,u

]
(1− Ur,u − Lr,u).

Proof. Let

f(r, u)
def
=

r

u(u− 1)
Lrr,u

[
(r + 1)u

r + u
− Lr,u

]
(1−Hr,u − Lr,u)U−rr,u .

We want to show that f(r, u) < 1.

(1) If r = 3 and u = 3, f(r, u) < 3 · 10−3 < 1.

(2) If r ≥ 4 and u = 2,

f(r, u) ≤
[
r + 2

r(r − 1)

]3

· 2r2 + r − 2

r + 2

=

(
1 +

3

r − 1

)2

·
(

2 +
1

r
− 2

r2

)
· 1

r(r − 1)
< 1.

(3) If r = 3 and u ≥ 4,

f(r, u) =
3(u+ 3)(4u2 + 3u− 3)(16u2 − u− 3)

512(u− 1)u4

=
3

512

(
1 +

4

u− 1

)[
4 + 3 · 1

u

(
1− 1

u

)]
·
(

16− 1

u
− 3

u2

)
< 1.
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(4) If r ≥ 4 and u ≥ 3,

f(r, u) =
r

(r − 1)r

(
r + 1 +

r

u− 1

)
≤ r

(r − 1)4

(
r + 1 +

r

2

)
=

1

2(r − 1)2

(
1 +

1

r − 1

)(
3 +

5

r − 1

)
< 1.

A.2 Claims for Quasi-uniform Set-patterns

We will use the following equalities and inequalities in the proof of both

Claims 7.1 and 7.2. For any integers a ≥ b ≥ 0 and real numbers x > y > 0,

xayb − xbya

x− y
=

∑
i+j=a+b−1

i,j≥b

xiyj = xa−1yb + xa−2yb+1 + · · ·+ xbya−1 (A.1)

≤ a− b
2

(xa−1yb + xbya−1). (A.2)

Particularly, for b = 0,

xa − ya

x− y
=

∑
i+j=a−1
i≥0,j≥0

xiyj = xa−1 + xa−2y + · · ·+ ya−1. (A.3)

Claim 7.1 For any ri > rj > 0 and µt ≥ 1,

(rirj + ri + rj)
µt − (rµti + rµtj ) ≥ µt(rirj)

(
rµti − r

µt
j

ri − rj
+
rµt−1
i − rµt−1

j

ri − rj

)

Proof. Note that

(rirj + ri + rj)
µt ≥ µtrirj(ri + rj)

µt−1 + (ri + rj)
µt

≥ µtrirj
∑

a+b=µt−1
a,b≥0

rai r
b
j +

∑
a+b=µt
a,b≥0

µtr
a
i r
b
j

= µtrirj
rµti − r

µt
j

ri − rj
+ µtrirj

rµt−1
i − rµt−1

j

ri − rj
+ (rµti + rµtj ),
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where the last equality comes from Equality (A.3). The conclusion follows by

subtracting both sides by rµti + rµtj .

Claim 7.2 For any ri > rj > 0 and T > µ1 ≥ µt ≥ µt′ ≥ 0,

(µt − 1)
rµt−1
i r

µt′
j − r

µt′
i rµt−1

j

ri − rj

+ (µt′ − 1)
r
µt′−1
i rµtj − r

µt
i r

µt′−1
j

ri − rj
+ (µt − µt′)

rµti r
µt′
j − r

µt′
i rµtj

ri − rj

≤
[

T

T − µ1

(µt − µt′)2 − (µt + µt′ − 2)

]
(rµti r

µt′
j + r

µt′
i rµtj )(rirj)

−1.

Proof. It is easy to verify that the equality holds if µt = µt′ . Without loss of

generality assume µt > µt′ . Then

rµt−1
i r

µt′
j − r

µt′
i rµt−1

j

ri − rj
≤ 1

2
(µt − µt′ − 1)(rµt−2

i r
µt′
j + r

µt′
i rµt−2

j )

≤ 1

2
(µt − µt′ − 1)(rµt−1

i r
µt′−1
j + r

µt′−1
i rµt−1

j ),

and
r
µt′−1
i rµtj − r

µt
i r

µt′−1
j

ri − rj
≤ 1

2
(µt − µt′ + 1)(rµt−1

i r
µt′−1
j + r

µt′−1
i rµt−1

j ).

Then

(µt − 1)
rµt−1
i r

µt′
j − r

µt′
i rµt−1

j

ri − rj
+ (µt′ − 1)

r
µt′−1
i rµtj − r

µt
i r

µt′−1
j

ri − rj

≤ 1

2

[
(µt − µt′)2 − (µt + µt′ − 2)

]
(rµt−1
i r

µt′−1
j + r

µt′−1
i rµt−1

j ). (A.4)

On the other hand, Inequality (A.2) implies that

(µt − µt′)
rµti r

µt′
j − r

µt′
i rµtj

ri − rj
≤ 1

2
(µt − µt′)2(rµt−1

i r
µt′
j + r

µt′
i rµt−1

j )

≤ µ1

2(T − µ1)
(µt − µt′)2(rµt−1

i r
µt′−1
j + r

µt′−1
i rµt−1

j ), (A.5)

where we used the majorization property that p1 ≤ µ1

T
and hence

rj < ri ≤
µ1/T

1− µ1/T
=

µ1

T − µ1

.

The conclusion follows by combining Inequalities (A.4) and (A.5).
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A.3 Proof for Almost-uniform Set-patterns

Theorem 7.3 Given sample time T , the SPML distribution of an almost-uniform

set-pattern ψ̄ is

P̂ψ̄,T =

(
n

k̂T
, . . . ,

n

k̂T

)
for some k̂ ≤ ∞, where n =

∑m
t=1 µt.

Proof. For simplicity let P = P̂ψ̄,T = (p1, p2, . . . , pk). If there are more than one

optimal P , choose one with smallest k.

We have shown in 7.2 that for quasi-uniform set-patterns the SPML is

uniform. If ψ̄ is not quasi-uniform, i.e., Dt,t′ > 0 for some {t, t′} ∈
(

[m]
2

)
, then the

condition in the Theorem implies that µm > 1. Thus we may assume that

T > µ1 > µm > 1.

Suppose P is not uniform, i.e., for pi > pj > 0 for some i, j ∈ [k]. Similar

to Inequalities (7.14) and (7.16) in the proof of Theorem 7.2, letting i = 1 and

j = k, we have, for all {t, t′} ∈
(

[m]
2

)
,

(µt − 1)
(
rµt−1

1 r
µt′
k − r

µt′
1 rµt−1

k

)
+ (µt′ − 1)

(
r
µt′−1
1 rµtk − r

µt
1 r

µt′−1
k

)
+ (µt − µt′)

(
rµt1 r

µt′
k − r

µt′
1 rµtk

)
≥ 0, (A.6)

and ∑
{t,t′}∈([m]

2 )

Dt,t′(r
µt
1 r

µt′
k + r

µt′
1 rµtk )R1,k(ψ̄t,t′) ≥ 0. (A.7)

Let x = r1
rk

. Then, for any µt ≥ µt′ , Inequality (A.6) can be written as

(µt − 1)(xµt−1 − xµt′ ) + (µt′ − 1)(xµt′−1 − xµt) + r1(µt − µt′)(xµt−1 − xµt′ ) ≥ 0.

It follows that

(µt′ − 1)xµt ≤ [(µt − 1) + r1(µt − µt′)]xµt−1 + (µt′ − 1)xµt′−1

− [(µt − 1) + r1(µt − µt′)]xµt′

≤ [(µt − 1) + r1(µt − µt′)]xµt−1.
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Thus

x =
r1

rk
≤ (µt − 1) + r1(µt − µt′)

µt′ − 1
≤

(µ1 − 1) + µ1

T−µ1
(µ1 − µm)

µm − 1
. (A.8)

On the other hand, note that in Inequality (A.7), for any µt ≥ µt′ , R1,k(ψ̄t,t′)

is a polynomial in r2, r3, . . . , rk−1. Then

(rµt1 r
µt′
k + r

µt′
1 rµtk )R1,k(ψ̄t,t′)

(rµ1

1 r
µm
k + rµm1 rµ1

k )R1,k(ψ̄1,m)
≥ min

i1,i2

(rµt1 r
µt′
k + r

µt′
1 rµtk )rµ1

i1
rµmi2

(rµ1

1 r
µm
k + rµm1 rµ1

k )rµti1 r
µt′
i2

≥ 2r
µt′
1 rµtk · r

µ1

k r
µm
1

2rµ1

1 r
µm
k · r

µt
k r

µt′
1

=

(
rk
r1

)µ1−µm
.

Similarly

(rµt1 r
µt′
k + r

µt′
1 rµtk )R1,k(ψ̄t,t′)

(rµ1

1 r
µm
k + rµm1 rµ1

k )R1,k(ψ̄1,m)
≤ max

i1,i2

(rµt1 r
µt′
k + r

µt′
1 rµtk )rµ1

i1
rµmi2

(rµ1

1 r
µm
k + rµm1 rµ1

k )rµti1 r
µt′
i2

≤
1 +

(
rk
r1

)µt−µt′
1 +

(
rk
r1

)µ1−µm ·
rµt1 r

µt′
k · r

µ1

1 r
µm
k

rµ1

1 r
µm
k · r

µt
1 r

µt′
k

≤ 1,

Then Inequality (A.6) implies that

∑
Dt,t′>0

Dt,t′ ≥
∑

Dt,t′<0

|Dt,t′|
(
rk
r1

)µ1−µm
. (A.9)

Combining Inequalities (A.8) and (A.9) we get

∑
Dt,t′>0

Dt,t′

[
(µ1 − 1) + µ1

T−µ1
(µ1 − µm)

µm − 1

]µ1−µm

>
∑

Dt,t′<0

|Dt,t′ |,

which contradicts the condition given in the theorem.
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