
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Sequential and Temporal Analysis of Human-generated Data

Permalink
https://escholarship.org/uc/item/59p9q2bs

Author
Park, Jihyun

Publication Date
2019

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at 
https://creativecommons.org/licenses/by-nc-nd/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/59p9q2bs
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Sequential and Temporal Analysis of Human-generated Data

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Jihyun Park

Dissertation Committee:
Chancellor’s Professor Padhraic Smyth, Chair

Assistant Professor Sameer Singh
Professor Mark Warschauer

2019



c© 2019 Jihyun Park



DEDICATION

To my family.

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES xi

ACKNOWLEDGMENTS xiii

CURRICULUM VITAE xv

ABSTRACT OF THE DISSERTATION xvii

1 Introduction 1
1.1 Unsupervised Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Supervised Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Detecting Changes in Student Behavior from Clickstream Data 8
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Bernoulli Models for Binary Data . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Estimation of Model Parameters . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 Poisson Models for Count Data . . . . . . . . . . . . . . . . . . . . . 16
2.2.5 Detecting Changes in Activity . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Results for Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Clickstream Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Example 1: 10-Week Face-to-Face Course . . . . . . . . . . . . . . . . 25
2.5.2 Example 2: Online 5-Week Course . . . . . . . . . . . . . . . . . . . 31

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Understanding Student Procrastination via Mixture Models 36
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Self-Regulation, Procrastination, and Academic Success . . . . . . . . 38
3.1.2 Measuring Procrastination . . . . . . . . . . . . . . . . . . . . . . . . 39

iii



3.1.3 Cluster Analysis and Mixture Modeling . . . . . . . . . . . . . . . . . 39
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Student Activity Counts . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Mixture Model with Gamma Priors . . . . . . . . . . . . . . . . . . . 42
3.2.3 Learning Parameters with the EM Algorithm . . . . . . . . . . . . . 44

3.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 Class in 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.2 Class in 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Procrastination as a Mixture Component . . . . . . . . . . . . . . . . . . . . 48
3.4.1 Characteristics of the Two Behavioral Groups . . . . . . . . . . . . . 49
3.4.2 Association between Behaviors and Grades . . . . . . . . . . . . . . . 50

3.5 Relationship with Student Background . . . . . . . . . . . . . . . . . . . . . 53
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Detecting Conversation Topics in Primary Care Office Visits from Tran-
scripts 56
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Text Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.2 Representing Talk-turns for Classification Models . . . . . . . . . . . 63
4.3.3 Independent Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.4 Window-based Models . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.5 Fully Sequential Models . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.1 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.2 Summary of Experimental Results . . . . . . . . . . . . . . . . . . . . 71

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Evaluating Cloud Speech Recognition Engines for Topical Analysis of Clin-
ical Conversations 83
5.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.1.2 Automatic Speech Recognition (ASR) engines . . . . . . . . . . . . . 87
5.1.3 Classification model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.1 Word Error Rate (WER) . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.2 Classification Performance metrics . . . . . . . . . . . . . . . . . . . 89

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

iv



6 Predicting Emotion Trajectories from Transcripts of Patient-Physician Di-
alog 96
6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1.1 Machine Learning Methods for Emotion Recognition . . . . . . . . . 97
6.1.2 Evaluation Methods for Emotion Recognition in Dialogs . . . . . . . 98
6.1.3 Text Analysis in the Medical Domain . . . . . . . . . . . . . . . . . . 99

6.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.1 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4.1 Comparison with the Human Labels . . . . . . . . . . . . . . . . . . 108
6.4.2 Pearson Correlation Coefficient . . . . . . . . . . . . . . . . . . . . . 109
6.4.3 R-Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.5.1 Correlation Coefficient Results . . . . . . . . . . . . . . . . . . . . . . 113
6.5.2 R-Precision Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.5.3 Top Retrieved Utterances . . . . . . . . . . . . . . . . . . . . . . . . 118
6.5.4 Predicting Mean Valence per Visit . . . . . . . . . . . . . . . . . . . 120

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Bibliography 123

Appendices 138
A List of Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
B Reading Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
C R-Precision Score for Each Subset . . . . . . . . . . . . . . . . . . . . . . . . 143
D Top 30 Retrieved Utterances . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

v



LIST OF FIGURES

Page

2.1 A plot of student clickstream activity in the 10-week face-to-face course over
time, where each row represents an individual student, and each column rep-
resents a day. A black marker in cell i, t indicates clickstream activity for
student i on day t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Proportion of students who click each day during a 10-week course. . . . . . 14
2.3 Average number of click events per student each day during a 10-week course. 17
2.4 Simulated activity data for two students. . . . . . . . . . . . . . . . . . . . . 21
2.5 Estimated activity probabilities π̂it for the two simulated students and for the

population. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Log-odds of π̂it, for M1 and M2 (top), and simulated data of a student (bot-

tom). The left plot (a) shows an example of a student with a changepoint
at t = 57, and the right plot (b) shows an example of a student without a
changepoint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Student preview and review activity data over time, for the students who
increased or decreased their behavior in the 10-week face-to-face course. The
gray marker at t-th column in each row means that there was click activity on
day t for that student, with darker colors reflecting larger counts (more clicks). 27

2.8 Percentage of 10-week face-to-face course students who increased or decreased
within each week. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.9 Log of λ̂it from M1 and M2 (top), and the raw data of a student from the
10-week face-to-face course (bottom). For (a), the model with changepoint
(M2) was selected by the BIC method, and for (b), the no-changepoint model
(M1) was selected by the BIC method. . . . . . . . . . . . . . . . . . . . . . 30

2.10 Student preview and review activity data over time, for the students who
increased or decreased their behavior in the 5-week online course. The gray
marker at t-th column in each row means that there was click activity on day
t for that student, with darker colors reflecting larger counts (more clicks). . 31

2.11 Percentage of students with detected increase or decrease in activity for each
week in the online 5-week course. . . . . . . . . . . . . . . . . . . . . . . . . 32

2.12 Log of λ̂it from M1 and M2 (top), and the raw data of a student from the
5-week online course (bottom). For (a), the BIC method selected the change-
point model (M2), and for (b), the BIC method selected the no-changepoint
model (M1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vi



3.1 Examples of student daily activity counts (specifically, the number of video
watching tasks per day) displayed as a matrix of week × day. SS indicates
Saturday and Sunday. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Aggregated daily task counts across weeks (xi) for the two students shown in
Figure 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Graphical representation of the Poisson mixture model with Gamma prior. xi
and λk are 6 dimensional vectors. N is the number of students, and K is the
number of mixture components. . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Grade distributions of students in 2016 class (left) and in 2017 class (right).
Two classes show very different grade distributions. Almost half of the stu-
dents received an A for the class in 2016, whereas more students got lower
grades in 2017. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Poisson mixture component means (λk’s) from modeling aggregated daily task
counts (xi) for the class in 2016 (upper) and 2017 (lower). . . . . . . . . . . 48

3.6 Aggregated daily task counts shown along with the membership weights. Each
row represents a student, and the students are sorted by the membership
weight for the procrastination group wi1. The left figure is for the class in
2016, and the right figure is for the class in 2017. . . . . . . . . . . . . . . . 49

3.7 Probability of receiving each grade given that the student is in the procras-
tination group or in the non-procrastination group in 2016 (left) and in 2017
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Distribution of procrastinating group membership weights wi1 in different
grade groups of class in 2016 (left) and in 2017 (right). H-statistic comes
from a Kruskal-Wallis test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.9 The number of task counts per day, for each of the 5 weeks, averaged over
the students in each grade group. Left: students who received A, middle:
students who received B, right: students who received C, D, or F. . . . . . . 52

4.1 A short excerpt from an annotated dialog transcript. Topic labels are assigned
to each talk-turn. MD and PT indicate the speaker for each talk-turn, where
MD stands for “Medical Doctor,” “Physician,” or “Medical Provider,” and
PT stands for “Patient.” . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 High-level diagram of the various models discussed in the chapter. i, j stands
for talk-turn j in visit i. Wi,j is the list of tokenized words in talk-turn j.
For each talk-turn j, I first generate the vectorized talk-turn representation
ei,j, and the talk-turn representation ei,j is used as an input to different clas-
sifiers to predict the topic label yi,j, which is the topic label for talk-turn
j. Windowed models use adjacent talk-turns to create the talk-turn level
representation, and the fully sequential models make use of the sequential
dependencies between the topic labels. . . . . . . . . . . . . . . . . . . . . . 65

vii



4.3 Simplified diagram of the Hierarchical GRU (Hier-GRU). Each word in talk-
turn j in visit i is fed into the word level encoder to get a talk-turn repre-
sentation ei,j, which becomes the input to the talk-turn level encoder. The
embedding layer is omitted for brevity and the embedding of the k-th word in
talk-turn j is shown as wk

i,j. The model has dependencies at the hidden state
of talk-turn level GRUs. Both encoders were bidirectional in the experiments. 66

4.4 Percentage of time that a particular speaker generates the first talk-turn in
a sequence of talk-turns for each topic. Physicians (MD, medical doctors)
tend to start a new topic more often than patients (PT) in general—49.9%
and 48.2% of the talk-turns were generated by physicians and patients, re-
spectively. In particular, more than 80% of the conversations about Alcohol
and Cigarette were started by the physicians, whereas the percentages of both
speakers starting casual conversations (SmallTalk) were almost equal. . . . . 69

4.5 Sequences of color-coded topic labels for one of the visits in the dataset. The
upper plot shows the predicted topic labels from an independent model, and
the center two plots show those from fully sequential models. The lower plot
corresponds to the human-generated labels. The segments for the MusSkePain
topic marked as (1) had lengths of 23 talk-turns for Hier-GRU, 27 for HMM-
GRU, and 26 for Human labeled. Similarly, the PreventiveCare segments (2)
had lengths 30, 28, and 27, and the TestDiagnostics segment (3) had lengths
10, 31, and 22 in talk-turns, respectively for Hier-GRU, HMM-GRU, and
Human labeled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 The beginning part of the visit shown in Figure 4.5. Each talk-turn is pre-
sented with predicted labels from three different models (Independent GRU,
Hier-GRU, and HMM-GRU) and the human-generated labels. For the short
talk-turns the BiomedHistory topic label is predicted quite often by the Inde-
pendent GRU, while the two other models produce label sequences that are
more similar to human-generated labels. . . . . . . . . . . . . . . . . . . . . 76

4.7 Another excerpt from the same visit in Figure 4.5. Topics that are seman-
tically similar are confusable (PhysicalExam and MusSkePain in talk-turns
233–242, and SmallTalk and WorkLeisure in talk-turns 249–254). . . . . . . 77

4.8 Boxplots of segment lengths from four different models for all 279 sessions. . 78
4.9 Confusion matrices generated by (a) Hier-GRU and (b) HMM-GRU, where

the intensity of each cell shows the conditional probabilities of p( predicted
label | human-generated label ) and each row sums to 1. A number of subsets
of topics have high confusion probabilities, including Diet/Weight/Exercise,
Depression/GeneralAnxieties, and Family/MDLife/WorkLeisure. . . . . . . 80

5.1 The results plotted as word error rate vs. difference in classification perfor-
mance for using ASR. The colors in the scatter plot represent different ASR
engines, and the shapes denote different recording devices. (a) Performance
difference in talk-turn level accuracy (b) Performance difference in visit-level
F1 score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

viii



5.2 The sequences of topic labels for an example test visit. Each topic label is
color-coded with the colors shown on the right side. (a) Topic sequences
labeled by human labelers. (b) Hier-GRU predicted topic sequences with the
human-generated transcript. (c) Hier-GRU predicted topic sequences with
the transcript generated by Google video ASR. (d) Hier-GRU predicted topic
sequences with the transcript generated by Google default ASR. WER for
this specific visit was 0.1959 and 0.3239, respectively for Google video and
Google default. The numbered circles are for the examples in Figure 5.3. . . . 93

5.3 Topic labels and texts generated by human, Google video, and Google default
for the same part of the audio. Approximate locations of the two examples
are shown as (1) and (2) in Figure 5.2. . . . . . . . . . . . . . . . . . . . . . 94

6.1 An example of a section of dialog from a particular visit. The six columns on
the right side show the emotional valence labels assigned by 6 labelers. The
averaged value is shown in the third column. . . . . . . . . . . . . . . . . . . 101

6.2 (a) Histogram of emotional valence labels from 10 different labelers. Multiple
labels may exist for each utterance. The proportion of each label in percentage
from left to right is 0.24, 1.63, 8.18, 79.21, 8.61, 1.93, and 0.19. (b) Histogram
of the per-utterance emotional valence, where multiple labels assigned to each
utterance are averaged to a single value. . . . . . . . . . . . . . . . . . . . . 102

6.3 Per-utterance mean emotional valence for a doctor (gray) and a patient (or-
ange) during the same visit as in Figure 6.1. The mean emotional scores for
each speaker are smoothed with triangular moving average of window size 7
to produce smoother lines. The colors at the bottom shows the parts of ut-
terances spoken by each speaker. For this visit, 63.7% of the utterances (330
out of 518 utterances) are from the medical doctor. . . . . . . . . . . . . . . 102

6.4 Mean emotional valence per visit, for each speaker. . . . . . . . . . . . . . . 103
6.5 Simplified model that illustrates the output probabilities from the softmax

function. The subscript i, j represents the jth utterance in visit i. GRUs
both at the utterance level and the word level are bi-directional. . . . . . . . 104

6.6 A diagram that shows the steps to make an utterance vector ei,j speaker-
dependent. A linear projection (FC stands for the fully connected layer) is
performed to create a speaker embedding si,j, and the speaker embedding is
added to the existing utterance vector after an activation function. The size
of the speaker embedding is the same as that of the utterance vector ei,j. . . 105

6.7 Examples of emotional valence trajectories of the patient in a visit (the same
visit shown in Figure 6.3) that are used for calculating correlation coefficients.
(a) Model predicted score li,j vs the average label value yi,j. (b) For human
one vs. rest evaluation. In both plots, the orange line is considered as the true
or the mean of the majority human label values, and the blue line is the label
values to test. The correlation coefficients between the two lines are 0.8168
for (a) and 0.7937 for (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.8 The boxplots of correlation coefficients for human and three different models. 114
6.9 R-precision scores for each subset (per-coder subset) from human OvR and

Hier-GRU-S. The size of the circles show the size of the subset. . . . . . . . . 116

ix



6.10 Mean emotion score per visit for doctors (left) and patients (right). . . . . . 120

x



LIST OF TABLES

Page

2.1 Number of students who showed increase, decrease, or no change in their
activities for each activity data type for the 10-week face-to-face course. . . . 26

2.2 Probability of a student getting a passing grade (A, B, C) depending on which
group the student is in for the review data. . . . . . . . . . . . . . . . . . . . 28

2.3 Number of students who showed increase, decrease, or no change in their
activities for each activity data type for the online course. . . . . . . . . . . 31

3.1 Statistical test results for understanding the relationship between demographic
variables and behavioral group assignment for two classes. . . . . . . . . . . 53

4.1 Name and brief description of each topic ordered by the percentage of each
topic in talk-turns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 List of additional stopwords used for generating bag-of-words features. . . . . 62
4.3 Accuracies for topic prediction at the level of talk-turns for different prediction

models. Micro-averaged precision and recall scores are the same as accuracy. 72
4.4 Micro-averaged accuracy, precision, recall, and F1 scores, at the visit level,

for different prediction models. . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5 Precision, recall, and F1 scores of each topic, calculated at the talk-turn level

using Hier-GRU and HMM-GRU prediction results. The rows are sorted by
the percentage of talk-turns of each topic. In general, the more frequently
discussed topics have higher F1 scores. The five highest F1 scores for each
model are highlighted in bold-faced text. . . . . . . . . . . . . . . . . . . . . 73

5.1 Microphone and recording equipment information. . . . . . . . . . . . . . . . 87
5.2 Automatic Speech Recognition engines used for the study. The version for

Amazon Transcribe is the version number of Boto3 (AWS SDK for Python). 88

6.1 The number of visits and utterances for each subset used for evaluation. Each
subset consists of utterances that have 3 or more labels including the test
labeler (shown in the second column of the table). The rows are sorted by the
number of utterances in each subset. . . . . . . . . . . . . . . . . . . . . . . 108

6.2 Results from two-sided T-tests using correlation coefficients from pairs of mod-
els, in order to test whether they have identical average values. For the tests
with the human scores, independent T-test was used, and all the other tests
used dependent T-test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xi



6.3 Weighted average of R-precision scores. . . . . . . . . . . . . . . . . . . . . . 115
6.4 R-precision scores for each subset from human OvR and Hier-GRU-S with

detailed information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.5 R-precision scores calculated with all the utterance predictions. . . . . . . . 117
6.6 The p-values from the dependent T-tests with paired samples with per-visit

R-precision scores. The asterisks represent the level of significance: 0.01 (**),
0.001 (***). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.7 Five example utterances with the highest output probabilities generated from
Hier-GRU-S. The second column shows the output probability from the model,
and the third column shows the averaged value of human-assigned labels for
that utterance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

C.1 R-precision score for each subset, for negative class. . . . . . . . . . . . . . . 143
C.2 R-precision score for each subset, for neutral class. . . . . . . . . . . . . . . . 143
C.3 R-precision score for each subset, for positive class. . . . . . . . . . . . . . . 144
D.4 Top 30 utterances for positive. . . . . . . . . . . . . . . . . . . . . . . . . . . 145
D.5 Top 30 utterances for neutral. . . . . . . . . . . . . . . . . . . . . . . . . . . 146
D.6 Top 30 utterances for negative. . . . . . . . . . . . . . . . . . . . . . . . . . 147

xii



ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Prof. Padhraic Smyth for providing
me with trust and guidance, and supporting me and my work in many ways throughout my
whole PhD years. He has helped me build confidence, have initiative, and showed me the way
to think critically. I deeply appreciate his time meeting with students every week despite his
busy schedule, and the effort to encourage and compliment each and every student. It meant
a lot to me and has really made me get back up again when I was struggling. I have learned
a lot from him; not only the insight and knowledge about research in machine learning, but
how to be well organized, how to be patient, how to talk and treat people. I am grateful to
be a student of his and deeply thank him for always being a sincere advisor and teacher.

I would also like to thank the rest of my committee members for spending time on my
dissertation and providing helpful feedback. The education projects, which take up about
half of my thesis, were only possible because of Prof. Mark Warschauer. Being part of the
IVLE project group was one of the greatest experiences during my PhD. It also made me
have more interest in education and socially-relevant problems. Prof. Sameer Singh gave
helpful advice on the second part of my thesis. I thank him for coming up with the idea
of our pretty color sequence plots that are highly complimented by many people. I also
appreciate him for always being friendly and willing to help.

I also thank all my teachers who inspired and guided me prior to UCI: Prof. Jungtae Kim,
Prof. Deog-Kyoon Jeong, Prof. Hyunggon Park, Dr. Homayoon Beigi, Dr. Dan Ellis,
and Prof. Truong-Thao Nguyen. Some of them may not remember me very well, but their
lectures, guidance, advice and assistance have led me to the place where I am right now. I
am glad that I had an opportunity to meet and learn from them.

My PhD was all about collaborating with people in other fields, and I was very fortunate
to meet such a nice group of people for all of my projects. All the IVLE or the school of
education people, including Prof. Mark Warschauer, Prof. Fernando Rodriguez, Renzhe
Yu, Prof. Rachel Baker; I thank them for always being friendly and helpful throughout the
collaboration. I believe the team has taken a huge step forward, and I am grateful that I
have contributed at least some part of it. PCORI folks, including Prof. Zac Imel, Prof.
Ming Tai-Seale, Abhishek Jindal, Patty Kuo, and Dr. Mike Tanana; all the work I have
done with the group, I truly enjoyed it, and I really appreciate their help, feedback, and
discussions. Special thanks to Robert Logan IV and Dimitrios Kotzias for taking over the
PCORI project during the summer and helping me with many related things. Finally, it has
been a real pleasure meeting and working with all the SAP team: Prof. Kai Zheng, Brian
Tran, Dr. Tobias Schimmer, Dr. Hans-Martin Will, and Lucy Li.

During my time at UC Irvine, I was extremely fortunate to make lasting friendships with
amazing people. First of all, Ellie Lee, who is the most energetic and funniest person that
I know of, has given me so much power to survive here in graduate school since 2014. Ellie
and her family provided help, care, and support whenever I needed, and made me feel like I
have a family here in Irvine. I will never forget their generosity and thoughtfulness. Dohyun

xiii



Lee would make crazy jokes which made me laugh, but at the same time he gave me sincere
advice as a person who had gone through the process. Hyungik Oh has been a colleague
that I needed so much who I can share the struggles of PhD life. I am going to miss our fun
chats and hope we can all meet at Java City again. I also thank Minhaeng Lee for answering
all my random questions and helping me with so many different things, and Eun Jeong Shin
for her caring and support.

And to our #4202 crew; it was very cool to have such awesome labmates who I can hang out
outside of the office. Dimitrios Kotzias always made me feel better and gave me confidence
whenever I was struggling or feeling sad. Disi Ji, a.k.a. DiSenior Disu, has been someone
who I can always talk to, about literally anything, and brought me out for so many good
things: food, boba, yoga, and movies, which presented me with lots of refreshing moments.
Irvine could have been a very boring place without the weekend brunch, movie, and baking
sessions with them. Also, Robby Logan and Casey Graff were always eager to help and would
give me good feedback and comments on my work. I appreciate their time and effort to do
that, and also thank for filling #4202 with bright energy. All the other past and current
#UCIDataLab and #4202 members: Moshe Lichman, Eric Nalisnick, Zach Butler, Chris
Galbraith, Lars Hertel, Homer Strong, Efi Karra Taniskidou, Abhishek Jindal, and Preston
Putzel. I am lucky that I had a smart and friendly group of people around me throughout
my PhD. I will always remember our board full of hashtags and memories. #ZotZotZot

I thank all other people who have helped and supported me during my PhD from Irvine and
all over the world: Sun Young Park, JungYeon Ku, Hyesin Cho, Soohee Park, Sooyeon Kim,
and Jiayang Chen.

Lastly, I would like to thank my parents Jong Jin Park and Sungjae Kim, my sister Soohyun
Park, and my husband Daniel Wonjoon Song for being my mentors, advisors, therapists,
and best friends for the entire time. Getting a PhD would not have been something that
I could imagine without them in my life. I thank for their endless love and trust, and for
always being there for me. I also thank my other family members: my in-laws including my
parents-in-law, Joo Seok Song and Yoonjung Choi, my grandparents, great uncle and aunt,
aunts and uncles, cousins, and even my nephews and nieces. I especially thank my cousin
Bitnarae Kim for listening to me when I was going through hard times and her daughter
Yeseo Woo for always making me smile. I am too fortunate to have such a huge but close
family with full of love and support. I dedicate my dissertation to all of them.

This dissertation was supported by National Science Foundation under Grant Number 1535300,
Patient-Centered Outcomes Research Institute R© (PCORI R©) Award (ME-1602-34167), and
by funding support from SAP.

xiv



CURRICULUM VITAE

Jihyun Park

EDUCATION

Doctor of Philosophy in Computer Science 2019
University of California, Irvine Irvine, California

Master of Science in Electrical Engineering 2013
Columbia University New York, New York

Bachelor of Science in Electronic Engineering 2011
Ewha Womans University Seoul, South Korea

RESEARCH EXPERIENCE

Graduate Research Assistant 2014–2019
DataLab Irvine, California
University of California, Irvine

REFEREED JOURNAL PUBLICATIONS

Jihyun Park, Dimitrios Kotzias, Patty Kuo, Robert L Logan IV, Kritzia Merced, Sameer
Singh, Michael Tanana, Efi Karra Taniskidou, Jennifer Elston Lafata, David C Atkins, Ming
Tai-Seale, Zac E Imel, and Padhraic Smyth. Detecting Conversation Topics in Primary
Care Office Visits from Transcripts of Patient-Provider Interactions. Journal of
the American Medical Informatics Association (JAMIA), 2019.

REFEREED CONFERENCE PUBLICATIONS

Jihyun Park, Kameryn Denaro, Fernando Rodriguez, Padhraic Smyth, and Mark Warschauer.
Detecting Changes in Student Behavior from Clickstream Data. In Proceedings
of the Seventh International Learning Analytics and Knowledge Conference (LAK17), Mar
2017. – Best Paper: Honorable Mention

Jihyun Park, Renzhe Yu, Fernando Rodriguez, Rachel Baker, Padhraic Smyth, and Mark
Warschauer. Understanding Student Procrastination via Mixture Models. In Pro-
ceedings of the Eleventh International Conference on Educational Data Mining (EDM 2018),
July 2018. – Best Paper Award

xv



Fernando Rodriguez, Renzhe Yu, Jihyun Park, Mariela Janet Rivas, Mark Warschauer,
and Brian K. Sato. Utilizing Learning Analytics to Map Students’ Self-Reported
Study Strategies to Click Behaviors in STEM Courses. In Proceedings of the Nineth
International Learning Analytics and Knowledge Conference (LAK19), Mar 2019.

TEACHING EXPERIENCE

Teaching Assistant - Project in Artificial Intelligence Winter 2016
University of California, Irvine Irvine, California

Teaching Assistant - Programming in C/C++ Fall 2015
University of California, Irvine Irvine, California

Grader - Advanced Digital Signal Processing Fall 2012
Columbia University New York, New York

PROFESSIONAL EXPERIENCE

Data Science Intern 2019
Obsidian Security, Inc. Newport Beach, California

Research Intern 2018
Baidu Silicon Valley A.I. Lab Sunnyvale, California

Research Staff 2013 – 2014
Recognition Technologies, Inc. White Plains, New York

ACADEMIC REVIEWING

Conference on Artificial Intelligence (AAAI) 2020
Women in Machine Learning (WiML) Workshop 2017

xvi



ABSTRACT OF THE DISSERTATION

Sequential and Temporal Analysis of Human-generated Data

By

Jihyun Park

Doctor of Philosophy in Computer Science

University of California, Irvine, 2019

Chancellor’s Professor Padhraic Smyth, Chair

Machine learning and data mining have the potential to provide meaningful solutions to

many real-world problems that could impact society. This dissertation explores machine

learning methods that utilize the sequential or temporal aspect of data to solve socially-

relevant problems in two domains: one in education, the other in medicine.

In the domain of education and learning analytics, I present two different methods that help

better understand students’ online learning behaviors based on their clickstream data. First,

statistical change detection is used to detect when and how students change their behavior

during a course relative to the student population as a whole. I group the students depending

on the type of changes and examine how the changes can be related to the course outcomes.

The second method I explore is the use of probabilistic clustering to allow different types of

temporal behavioral patterns to emerge from clickstream data. The resulting patterns are

analyzed in the context of procrastination and time-management, demonstrating that the

procrastinating behavior and course outcomes are highly correlated.

Secondly, in the medical domain, different materials and methods are discussed to test the

feasibility of using machine learning models to obtain structured information from patient-

physician conversations in primary care visits, as a means to potentially address the physi-

cian burnout problem. Several hundred dialog transcripts of doctor-patient conversations are
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used to predict topic labels for talk-turns. Different machine learning models are trained to

operate on single or multiple talk-turns (logistic classifiers, support vector machines, gated

recurrent units [GRUs]) as well as sequential models that integrate information across talk-

turn sequences (conditional random fields, hidden Markov models, and hierarchical GRUs).

From the results, I show that incorporating sequential information across talk-turns im-

proves the accuracy of topic prediction in dialogs. Moreover, I examine the degree to which

topic classification accuracy drops by adding an automatic speech recognition (ASR) system

for transcription to the pipeline. A systematic evaluation is carried out by measuring the

performance of ASR (with word error rate) and the downstream classification accuracy.

In the second part of my work in the medical domain, I investigate the use of machine learning

methods for predicting emotional valence of both doctors and patients at the utterance level,

based on transcripts of doctor-patient visits. This is one of the first large-scale investigations

of emotional valence prediction at the utterance level in long medical dialogs. Using a variety

of evaluation metrics, I show that current machine learning methods can achieve accuracies

for this task that are close to that of human performance.
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Chapter 1

Introduction

We live in a time where we have become highly dependent on science and technology. Ma-

chine learning and data mining, in particular, has been employed in many domains that are

intimately related to our everyday lives. It is becoming more important to communicate

with society and provide benefits to human beings, rather than developing technology just

for its own sake [54, 101].

Historically, machine learning research has not placed much emphasis on applications that

benefit society [130] with relatively little incentive to tackle social problems [1]. To raise

awareness of the importance of socially-relevant applications, there has been attempts to

introduce and involve such applications within the community [1, 9, 130]. The main ar-

eas of interest include education, health, environmental protection, cyber security, assistive

technology, etc.

For the data that are generated by humans, it is crucial to think ahead of the right purpose

of a study so that it can eventually be used for human well-being. Examples of human-

generated data are human speech and text data, online activity data, sensor data from

mobile and wearable devices, to name a few.
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One aspect of the human-generated data is that the data often involve information over

time. This is because time cannot be separated from human life, and the data are generated

as we live through time. For the examples mentioned above, speech is an analog time-series

data that is an inherently dynamic process [62], and text has to follow certain ordering to

deliver contextual information [89]. Also, with the advent of the internet and associated

technological advancements, activity data from the internet, internet-of-things, mobile and

wearable devices are a common type of sequential data that are easily accessible today.

This includes website clicking [109], post or comment threads in social network systems

[174], GPS or location data [30], human sensing data such as heart-rate signals [32], etc.

Therefore, utilizing sequential or temporal properties of human data could be helpful to

capture more meaningful information.

In this dissertation, I touch two domains in applications that can directly influence society

and improve human life, with the use of sequential or temporal characteristics in human-

generated data. First, I analyze problems in the domain of education, to provide valuable

insights about student activities in an online learning environment, which is a challenging

task without the help of machine learning. The second domain I focus on is in medicine,

to alleviate physician burnout in doctor visits by providing structured information of the

conversation, and to assist the doctors in having a more empathetic communication with

their patients. The methodologies used in the dissertation can be explained in many different

ways, but here I introduce them by categorizing them into unsupervised and supervised

approaches in a broader context.

1.1 Unsupervised Approaches

Unsupervised learning in machine learning refers to the learning methods using data without

labels. It is usually used to find out hidden patterns that are innate to the data. Since

2



there is no true label that can be compared with the output to calculate error metrics,

unsupervised learning is a less well-defined problem than supervised learning. However,

because the problem definition is flexible, there are a potentially broad range of applications

[113], and it has the merit of not involving an expensive labeling process. Also, regardless

of the cost of labeling, labels are not always enough to explain what we are looking for,

and important information can be obtained from the data itself. Especially for human data,

one of the major interests is detecting, analyzing, and understanding patterns in human

behavior, which is something that can be rather described given the data than defined a

priori.

Since human behavior can often be represented as a composition of recurrent patterns over

time, observing the temporal patterns of activities help understanding human behaviors [26].

By capturing the repeated patterns or routines and modeling them, various studies have

found ways to detect certain behaviors [99] and discover causal relationships in routines [8].

Clustering analysis and mixture modeling techniques are canonical methods for unsupervised

learning. In Chapter 3, I use a Poisson mixture model to find temporal behavioral patterns

of students in university classes, that could inform the instructors and students whether the

students are procrastinating or not. Clustering methods have also been applied to detect

outliers in behaviors to find anomalies, since it is a common challenge to solve problems

without labels in anomaly detection [61].

Another unsupervised method used in this dissertation is changepoint detection, which is

a method that identifies the times when change occurs in time series data. Changepoint

detection techniques can be used to detect cyber attacks [168] and to evaluate articulatory

disorders [34]. One of the simple approaches is finding the changepoints offline after retrieving

all the data, by fitting multiple piecewise regression models instead of a single model. Chapter

2 uses such a method for the student click activity data, to find whether students have

increased or decreased their online activity during the course.
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1.2 Supervised Approaches

When the output labels exist in the dataset, supervised learning approaches are used to learn

a mapping from the input data to the output. The output label can have either continuous or

categorical value. Supervised learning methods that are independent of time or do not have

a sequential structure could work well as a baseline, even when ignoring such information in

the data. However, using a model with a sequential structure can in principle add much more

information, particularly when predicting labels in sequences (e.g., part of speech tagging

and named entity recognition).

Here I briefly review some of the commonly used methods for sequential human-generated

data that are also mentioned in the later chapters of the dissertation. Hidden Markov model

(HMM) [11] and conditional random fields (CRF) [88] are the two well-known examples of

structured learning methods for sequential data. HMMs are good for integrating predictions

over time, with applications to problems such as automatic speech recognition [79], part of

speech tagging [87], activity recognition from videos [147], etc.1

A recurrent neural network (RNN) [45] is a type of neural network model that has feedback

connections between the nodes, allowing to have sequential inputs and learns the structured

properties of them. Two examples of RNNs with the gated architectures are long short-term

memory networks (LSTMs) [69] and gated recurrent units (GRUs) [31]. These are two of

the most powerful and popular models, especially in natural language processing.

Dialog transcripts are sequential human-generated data, with sequential structure not only

between the words, but also between the utterances or talk-turns. For a task that predicts a

label for each utterance, the information from the previous or the next (for offline analysis)

spoken utterances is very useful. In Chapters 4, 5, and 6, I apply GRUs with hierarchical

structure to doctor-patient dialog data to predict topical and emotional content of the con-

1The details of the models are well explained in chapters 17.3 and 19.6 of Murphy’s book [113].
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versation. For both topic and emotion predictions (Chapters 4 and 6), I demonstrate that

the models using sequential information perform better than independent models.

1.3 Notation

The following notation is used throughout the dissertation unless specified otherwise. Upper-

case and bold-faced letters (e.g., X) are used for matrices, lower-case and bold-faced letters

(e.g., x) for vectors, and lower-case letters without any bolding (e.g., x) are used to denote

scalars. The upper-case and unbolded letter (X) is used to describe the size of a vector, or

to represent a set or a collection.

For clickstream data in Chapters 2 and 3, the data is represented as a matrix, where each

row (xi) is a data vector for each student i. The student index i ranges from 1 to N (the

total number of students) and is often used as a subscript.

In Chapters from 4 to 6, subscript i, j indicates talk-turn or utterance j in visit i.

1.4 Outline of the Dissertation

This dissertation mainly consists of two socially-relevant applications using human data.

The first two chapters (Chapter 2 and Chapter 3) study applications in education using

students’ clickstream data. Both chapters utilize unsupervised methods to better explain

the behaviors of students at the individual level from the noisy click data.

In Chapter 2, statistical change detection technique is used to investigate students online

behaviors. Using clickstream data from two large university courses, one face-to-face and one

online, I illustrate how this methodology can be used to detect when students change their
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previewing and reviewing behavior, and how these changes can be related to other aspects

of students activity and performance.

Chapter 3 uses a probabilistic mixture model to unveil latent types of behavior from click-

stream data and analyzes the resulting temporal patterns in the context of procrastination.

Two sets of clickstream data from the same online course are used, where the course has

a weekly repeating structure. The mixture model discovers two distinctive behaviors—

procrastination and non-procrastination. Overall, the results show that the students identi-

fied as non-procrastinators tend to perform significantly better than procrastinators.

The other chapters (Chapters 4, 5, and 6) focus on developing methods to improve the quality

of patient-physician interactions. Using patient-provider dialog transcripts, I first investigate

the effectiveness of different supervised machine learning methods for automated annotation

of medical topics in Chapter 4. In this chapter, I show the importance of employing sequential

information in dialog texts for predicting labels at the talk-turn level.

As an extension to Chapter 4, Chapter 5 questions how much degradation in classification

performance can be observed when automatic speech recognition (ASR) is involved, com-

pared to the case of using the original human transcribed texts. Different ASR systems from

major cloud software companies are compared by measuring the performance of ASR (by

word error rate) and the final annotation (by the same metrics used in Chapter 4).

Chapter 6 also includes analyzing patient-physician dialog transcripts, but focuses on the

emotional valence of speaker utterances. To the best of my knowledge, this is the first

large-scale study of the effectiveness of machine learning for predicting emotional valence

in primary-care patient doctor visits. For model evaluation, I analyze the overall emotional

flow within a visit (or a session) of each speaker by calculating the Pearson correlation

coefficient, and the R-precision scores for each positive, neutral, and negative class. Rather

than focusing on classification accuracies, the evaluation using correlation and R-precision
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metrics provide a better sense of model performance in the context of medical dialog. I also

evaluate human inter-rater reliability, by evaluating a set of labels by one labeler and treating

the others as the ground truth, and find that model-human and human-human performance

is comparable on this task.
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Chapter 2

Detecting Changes in Student

Behavior from Clickstream Data

One of the major goals in educational data mining (EDM) is to use student clickstream data

to describe and understand students’ behavioral patterns. While past findings have advanced

our understanding of what we can learn from clickstream data, a significant challenge involves

devising statistical techniques that help us identify students who are changing behavior in the

middle of a term. There are a number of reasons motivating this problem; one is to identify

students who are in need of assistance during the course, another is to identify reasons

that students are changing their behavior so that a course could be improved overall. The

analysis of clickstream data within a course can also provide invaluable information to course

instructors and to education researchers, and there is a need to be able to both summarize

and visualize the results in a straightforward manner.

In this chapter, I will focus on clickstream data from two courses at a large university: one

The material in this chapter is based on the paper “Detecting Changes in Student Behavior from Click-
stream Data” by Park, J., Denaro, K., Rodriguez, F., Smyth, P., and Warschauer, M., published in the
Proceedings of the Seventh International Learning Analytics and Knowledge Conference (LAK17), 2017
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Figure 2.1: A plot of student clickstream activity in the 10-week face-to-face course over
time, where each row represents an individual student, and each column represents a day. A
black marker in cell i, t indicates clickstream activity for student i on day t.

face-to-face course and one online course, both from the 2015–2016 academic year. For each

course, clickstream data is obtained through a course management system in the form of

{student ID, time stamp, activity}. The types of activities recorded correspond to broad

categories of student behavior, such as previewing lecture notes, submitting assignments,

or posting and responding to discussion board questions. For instance, one of the courses

examined in this chapter had 377 registered students who generated approximately 380,000

click events over a 10-week period. Figure 2.1 displays each of the individual student click-

streams over the 85 days of the course, with each row corresponding to a student. While the

plot shows some general increases in click activities around quiz and exam dates, it is not

easy to see much else, nor to understand how individual student behaviors are related to the

overall population due to significant variability in students’ click patterns. Furthermore, it

is difficult to determine whether students change their click behaviors in any significant way,

or whether or not these behaviors are correlated with course performance.
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As discussed in more detail in the next section, student clickstream data has been the subject

of a number of prior studies, such as the investigation of potential predictive relationships

between online student activity and student outcomes (such as course grades). Here I focus

instead on detecting changes in individual student activity over time, relative to the activity

of the class of a whole. In particular, I investigate the use of statistical change detection

techniques (e.g., Kirch and Tajduidje Kamgaing [84]) to automatically detect changes in

activity over time for each student. I model the activity of each student relative to the

aggregate activity of all students in the class and compare two models on a per-student

basis; a model where there is no change in student activity versus a model where there

is a significant change in activity at some unknown point during the period of the course.

Likelihood-based techniques are used to fit both models on a per-student basis, and model

selection criteria are implemented in order to determine whether each student is best modeled

under the “change” or “no-change” model.

2.1 Related Work

Clickstream data analysis in an educational setting has focused on what the clickstream can

say about the students in terms of learning behavior through a variety of features derived

from the clickstream. Much of the prior work on clickstream data analysis for understanding

student behavior has occurred in the context of Massive Open Online Courses (MOOC)

setting. Many of these analyses have focused on using the clickstream data to predict

MOOC completion (for example in Crossley et al. [37]) and to predict learning outcomes

within a MOOC. For example, the relationship between the number of posts and the learning

gains of the students has been investigated [170], as well as how discussion forum views

are potentially related to learning outcomes [14]. There has also been research focused on

improving predictions of learning outcomes by incorporating clickstream events as well as
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summaries of the clickstream [20].

A secondary research topic has focused on describing students with similar clickstreams (e.g.,

Wang et al. [167]), the activities that the students are engaging in, and in understanding the

student’s typical online interaction within a class. As an example, clickstream data analysis

was used to better understand whether or not students were following a defined learning

path [39]. In other work, students’ clickstreams were grouped into similar plans of action

to better understand: learning pathways [116], how discussion forums and other activities

in the MOOC were related to country and culture [96], and examined whether engagement

on discussion forums increased based on the type of video a student watched [16]. All of

these clickstream analyses have an underlying goal of describing student behaviors through

the clickstream and to draw meaningful conclusions about those students.

MOOCs are typically used by people as a way to learn new skills or keep up to date with

current ones. Because most MOOCs do not offer formal degrees, there are no serious con-

sequences for doing poorly or dropping out. In contrast, college course grades determine

whether students succeed or fail (whether they advance to the next course, remain in their

intended major, or graduate). Thus, findings from MOOC clickstream studies cannot offer

broad explanations about student learning experiences in higher education settings. So while

MOOCs and college courses share some similarities, in terms of course management systems

and clickstream data, investigating college courses may require a different set of goals and

statistical techniques.

For instance, one important area of higher education research focuses on student engagement.

Studies find that students who are not engaged with the learning process—that is, students

who do not put in the time and energy into purposeful learning—are at greater risk for

failing courses and dropping out of college [86]. While this finding is not new, understanding

how to quickly identify these students, especially at the course-level, remains a significant

challenge.
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Clickstream data has the potential to address this since the data is obtained in real-time.

Researchers can provide instructors with immediate insights on how students are engaging

with the course management system. This is especially important in courses with large

enrollments, where problems with student engagement can often go unnoticed [111]. Some

recent work has found that student engagement with the course management system, as

indexed by the number of days students visited the site relative to their peers, was positively

related to course outcomes [91]. My work, as described in this chapter, adds to this area

of research by using statistical change detection techniques to further understand course

engagement.

More broadly, changepoint detection techniques for event time-series are a widely studied

topic, and a variety of statistical methodologies have been developed (e.g., [44, 84]), with

much of this work focused on single (univariate) time-series. Web user behavior has been

analyzed to detect changes in an individual’s behavior, to report “interesting” sessions, and

to detect changes in user activity [71]. There has not been any prior work (to my knowledge)

on change detection applied to multiple clickstreams of students in an educational setting.

Thus far, previous work in the analysis of clickstream data in an educational setting has

focused on grouping students into similar groups, understanding possible dropouts, predict-

ing student success in a course, and defining learning pathways. The goal of the work in

this chapter is to add to the current body of research in a meaningful way by using change-

point detection techniques as a proxy for understanding student engagement. By detecting

whether student behavior changes in a significant manner over the time period of a particular

term, I will demonstrate how to identify students who increase, decrease, or show no change

in their clickstream activities, and whether these changes relate to course performance.
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2.2 Methods

I discuss below the approach for modeling and change detection of student activity. I begin

by defining some general notation and then introduce two different models: a Bernoulli

model for binary data and a Poisson model for count data. The section concludes with a

description of changepoint detection for both of these models.

2.2.1 Notation

Let N be the number of individual students in a course and let i be an index that refers to

an individual student in the class, i = 1, . . . , N . I assume below that time is discrete1 with

T discrete time-points and t = 1, . . . , T being an index running from the first to the last

time-period of clickstream logging for the course. Below I refer to t on a daily time-scale for

convenience, but in general other time-periods–such as days or weeks–could be used.

Let X be the observed data for a course, represented as an N × T array whose entries are

counts xit ∈ {0, 1, 2, ....}. Note that xit represents the number of click events for student

i on day t, where 1 ≤ i ≤ N and 1 ≤ t ≤ T . A binarized version of the data x′it is also

considered, where x′it = I(xit > 0), and I() is an indicator function (as in Figure 2.1 for

example). The number of clicks xit (counts) by student i on a given day t in principle

contains more information than the binarized version x′it, but could also be quite noisy in

the sense that more clicks might not necessarily correlate well with relevant student activity.

I explore both options since the choice of looking at a count versus the binarized version in

practice will depend on the context of a particular analysis.

1A changepoint methodology using a continuous-time model could in principle also be developed in a
manner similar to the discrete-time methodology described in this chapter.
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Figure 2.2: Proportion of students who click each day during a 10-week course.

2.2.2 Bernoulli Models for Binary Data

For the binary data, x′it, let πit be the probability that each student i is active on day t (i.e.,

the probability that student i generates one or more clicks on day t). The log-odds of πit is

modeled as:

log
πit

1− πit
= µt + αi, (2.1)

where µt, t = 1, . . . , T can be viewed as a time-varying population mean for the log-odds

and αi, 1 ≤ i ≤ N is a student-dependent offset to account for individual-level variation in

student behavior.

The role of αi in this model is to modulate the time-varying population mean µt in a student-

specific manner. A positive value of αi for student i will increase the log-odds above the

population mean µt, which in turn means that student i tends to click more than the mean

student as represented by µt. A negative value of αi has the opposite effect; student i has

a lower probability of clicking compared to the average student. µt represents time-varying

population behavior on a log-odds scale.

The approach to change detection described in this chapter relies on modeling each student’s

activity relative to that of the overall student population in the class. The population
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(or background) rate µt typically varies significantly as a function of time t since student

behavior is strongly affected by temporal effects such as days of lectures, weekday versus

weekend effects, assignment deadlines, exams, and etc. As an example, Figure 2.2 shows the

proportion of students who clicked on a file each day, aggregating the data shown earlier in

Figure 2.1.

Modeling the log-odds as a linear function is a standard technique in generalized linear

modeling and ensures that the resulting probability πit above lies between 0 and 1, i.e.,

Equation 2.1 above can be rewritten as the following:2

πit =
1

1 + e−(µt+αi)
. (2.2)

2.2.3 Estimation of Model Parameters

The parameters µ = {µ1, . . . , µT} and α = {α1, . . . , αN} are estimated from the N × T data

array X ′ with entries x′it ∈ {0, 1}, 1 ≤ i ≤ N, 1 ≤ t ≤ T . Since the x′it’s are binary the

likelihood for each individual data point x′it can be written as:

L(µ, σ|x′it) = π
x′it
it (1− πit)(1−x

′
it), (2.3)

where πit is defined in Equation 2.2. The likelihood of the full dataset X ′ is then defined as:

L(µ, α|X ′) = P (X ′|µ, α)

=
N∏
i=1

T∏
t=1

π
x′it
it (1− πit)(1−x

′
it). (2.4)

2From an ML perspective, we could also think of this as a logistic model, although the parameterization
via µt and αi is somewhat different to how logistic models are used in classification problem.
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Here I make the assumption that the observed data for each student on each day is condition-

ally independent of all other observations (for students and for days) given the parameters µ

and α. This is a simplification since it ignores (for example) possible time-varying trends in

student behavior. Nonetheless, as seen later in the experimental results, it provides a useful

basis for change detection.

A two-stage procedure is used for parameter estimation.3 First, an estimate µ̂t for the

population mean is generated as follows:

µ̂t = log
q̂t

1− q̂t
, 1 ≤ t ≤ T, (2.5)

where q̂t = 1
N

∑N
i=1 x

′
it, which is the proportion of students (across all students) that gener-

ated a click on day t.

In the second step, a regression model is fitted for each student i in Equation 2.1 with the

population mean µ̂t set as an offset, by maximizing the likelihood. αi can be thought of as

a student-specific intercept term for each student i.

2.2.4 Poisson Models for Count Data

The counts xit can be modeled directly as well, where xit can have values {0, 1, 2, ...}. A

natural model in this context is the Poisson model.

I develop the count model in a manner similar to that of the binary case earlier. In particular,

the logarithm of the mean of the Poisson distribution, log λit, is modeled as a linear function

of a time-varying population rate µt and an individual student effect αi:

log λit = µt + αi. (2.6)

3The estimation could be done in a single step; I would expect similar results to what are obtained in the
two-step approach.
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Figure 2.3: Average number of click events per student each day during a 10-week course.

Note that although for convenience the same notation is used for the two sets of parameters,

µ and α, and they play an analogous role as their “namesake” parameters in the binary

model, these parameters are different from those in the binary model described earlier.

Figure 2.3 shows the average number of click events for each student per day, reflecting the

type of time-varying population behavior that µt is intended to capture. The red dashed

lines are the dates for the three midterms and the final, and we can see much more click

activity right before the exam dates.

The likelihood function for a single count xit can be written as

P (xit|µt, αi) =
λxitit e

−λit

xit!
, (2.7)

where λit is defined in Equation 2.6. As with the binary case, assuming that the observations

xit are conditionally independent given the parameters, the full likelihood can be written as:

L(µ, α|X) = P (X|µ, α)

=
N∏
i=1

T∏
t=1

λxitit e
−λit

xit!
. (2.8)
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A conditional independence assumption is made here again for the Poisson model. A two-

stage parameter estimation process is carried out as before. In the first step, µ̂t is estimated

as follows:

µ̂t = log m̂t, 1 ≤ t ≤ T, (2.9)

where m̂t = 1
N

∑N
i=1 xit, representing the average number of click events across the population

that were generated on day t. In the second step, I fit a Poisson regression model (by

maximizing the likelihood) for each student i as in Equation 2.6 with an offset µ̂t to get an

estimate for each αi.

2.2.5 Detecting Changes in Activity

To detect changes in activity, the method allows for the possibility that each student’s

activity rate changes at some unknown time point during the course. For simplicity, the

Bernoulli model is used to describe the method below, but note that the proposed approach

works in the same manner for both the Bernoulli binary model and the Poisson count model.

The only difference is in how the likelihood is defined and the parameters are estimated for

each (as described earlier), and the issue is whether to fit a model with a change or with no

change.

For each student i, two different models are considered. The first model is the one that

assumes the student’s rate of activity αi, defined relative to the background activity µt, does

not change over time. The second model, the changepoint model, assumes that a student’s

activity rate switches at some unknown changepoint. Both models are used to fit the data

for each student and use a data-driven model selection technique to select which model is

justified given the observed data.
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In the changepoint model, an assumption is made that there is one activity rate αi1 for

student i before changepoint τi and a different activity rate αi2 after the changepoint τi. The

changepoint model for binary data (for example) can be written as follows, where I() is an

indicator function:

log
πit

1− πit
= µt + αi1I(t < τi) + αi2I(t > τi), (2.10)

with a similar definition for the Poisson model. This model can be interpreted as fitting two

regression models with different means on either side of the changepoint.

The value of the changepoint τi for each student is unknown. Since time t is discrete the

values of τi can take one of T − 1 possible values, corresponding to the T − 1 boundaries

between the T observation times.

In effect, this changepoint model has 3 parameters (assuming µt is known): the two activity

rates and the changepoint. Maximum likelihood estimates of the parameters for the ith

student are generated by maximizing the log-likelihood defined as follows:

li(αi1, αi2, τi, µ)

=
∑
t<τi

logP (x′it|αi1, µt) +
∑
t>τi

logP (x′it|αi2, µt).
(2.11)

A similar equation is used for counts xit and the Poisson model.

To fit this model, a similar two-stage approach is used for the model with no-change described

earlier. In the first stage, I fit the background rate µt using the data across all students,

in the same manner as for the no-change model. In the second stage, I find the values

αi1, αi2, τi, for each student i, that maximize the log-likelihood defined above. Since τi is

discrete, the optimization problem can be reduced to finding the values of αi1 and αi2 for

a fixed τi and then iterate over the T − 1 possible values of τi. For each fixed value of τi,
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the log-likelihood splits into the two parts on the right-hand side of Equation 2.11 above, a

log-likelihood term containing αi1 and a second log-likelihood term containing αi2. Each can

be optimized independently using the same procedure described earlier for estimating αi for

the no-change model.

For each student i, once the parameters of both the no-change and the changepoint models

have been estimated, the best model from the two candidate models is selected. The like-

lihood (or log-likelihood), evaluated at the maximum likelihood values of the parameters,

is not useful for model selection since the changepoint model will always have a likelihood

value that is at least as high as the no-change model (this is because the changepoint model

contains the no-change model as a special case).

There are a variety of model selection techniques in the statistical literature to handle the

issue of how to fairly compare models (in the case where models have different numbers of

parameters), including techniques such as penalized likelihood, Bayesian criteria, and cross-

validation [33]. For the results in this chapter, I use the Bayesian Information Criterion

(BIC), which is a well-established and easily interpretable method for model selection. The

BIC score is defined for each student as:

BICiM = −2liM + pM log T, (2.12)

where M indicates a particular model (M = 1 corresponds to the no-change model, and

M = 2 corresponds to the changepoint model), liM is the log-likelihood for model M for

student i’s data evaluated at the maximum likelihood values of the parameters, pM is the

number of parameters in each model (p1 = 1, p2 = 3, for the no-change and changepoint

models respectively)4, and T is the number of observations per student. The second term in

Equation 2.12, pM log T , can be interpreted as a penalty for having additional parameters in

4Technically, the background model parameter µ should be counted as well, but since this is the same for
both models we can omit it.
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Figure 2.4: Simulated activity data for two students.
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Figure 2.5: Estimated activity probabilities π̂it for the two simulated students and for the
population.

a model.

The BIC method selects the model with the lowest BIC score for each student. In particular,

in the context of this changepoint application, BIC can be used to detect if there is evidence

that a student’s rate of activity changed, i.e., if BICi2 < BICi1 then the evidence supports

the changepoint model over the no-change model for student i.
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2.3 Results for Simulated Data

To illustrate how the change-detection methods work, I simulated daily binary time series of

student click activity for 400 students over 85 days (numbers that are roughly similar to the

larger of the two classes that are analyzed later in the chapter). The true population rate µt

switched back and forth between two different values over time, one with a high rate and one

with a low rate. The variability in the simulation roughly corresponds to what was observed

in the real student data. The offsets, αij, for each student were sampled independently from a

normal distribution; αij ∼ Normal(0, 1.5). Half of the students were simulated with one αi1,

i.e. no change in behavior over time. The other half of the students had two different offsets

sampled, αi1 and αi2, on either side of a changepoint τi which was sampled independently

from a uniform distribution; τi ∼ Uniform(15, 70).

Figure 2.4 is a plot of binary data for two simulated students who did not have changepoints.

Student 1 is much more active than Student 2, and therefore Student 1 is going to have a

larger estimated value for αi. The estimated πit’s for these students over the first 30 days

(time t = 1, ..., 30) is shown in Figure 2.5. The plot illustrates how the estimated activity

varies relative to the population probability µ̂t (the solid red curve). The more active student

(green dashed line) has higher probabilities of clicking over time, while the less active student

(blue dotted line) has lower probabilities, and both probabilities rise and fall relative to

the behavior of the population. For example, when student activity on average rises on a

particular day such as day 10 (e.g., due to an assignment), the click probability for both

students rises.

Next, I show the results of two different simulated students, one with a changepoint and the

other without a changepoint. Figure 2.6 (a) is a plot from a student with a changepoint,

with the raw data in the lower plot and the fitted model (plotted on a log-odds scale) in the

upper plot. There is a clear change in student behavior around day 59, and this is visible
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Figure 2.6: Log-odds of π̂it, for M1 and M2 (top), and simulated data of a student (bottom).
The left plot (a) shows an example of a student with a changepoint at t = 57, and the right
plot (b) shows an example of a student without a changepoint.

both in the raw data (lower plot) and the fitted changepoint model (top plot). The BIC

for the model with the changepoint (M = 2) is significantly smaller than that of a model

without the changepoint (M = 1) for this simulated student’s data, i.e., the BIC method was

able to successfully detect that a model with a changepoint is preferred over a model with

no changepoint for this data. In contrast, Figure 2.6 (b) displays the results for a simulated

student with no changepoint. Both plots show the results of fitting the changepoint model

M2. The changepoint model puts a change at day 63, but the BIC method selects the no-

changepoint model since the BIC for no change M = 1 is much smaller than that of the

changepoint model M = 2.

The BIC method for binary simulated data reliably detected changepoints when the magni-

tude of the change in αi1 and αi2 (before and after the changepoint τi) was relatively large,

but as the change became smaller it became more conservative. Out of the 400 simulated

cases, BIC detected a change in 100 cases, with a precision of 91% (91 out of the 100 de-

tected were true changes) and a recall of 46% (91 out of the 200 true changes were detected).

The remaining 54% of true changes had much lower magnitude changes (0.96 on average)
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compared to the detected cases (magnitude 2.61 change on average).

2.4 Clickstream Datasets

The clickstream data that used in this chapter was recorded via the Canvas learning man-

agement system (LMS). Canvas is an open-source LMS that serves as a supplemental in-

structional technology for students. It has been adopted as the campus-wide LMS system by

a number of US universities, including UC Irvine. Students use Canvas to download course

content, take online quizzes, watch videos, and submit assignments. The most common data

available are clickstream data; every time a student clicks on a URL within the Canvas LMS,

the click is recorded and logged with student ID, URL, and time-stamp.

Two types of student behavior are considered for the students described in this chapter. The

first is a student’s previewing behavior. An event is defined as a “Preview” event when a

student views or downloads a file prior to the event start date. This could indicate how well a

student is performing in terms of being prepared for the course. The second type of behavior

is related to the students’ reviewing activities. A “Review” event is defined as an event when

a student views or downloads a file after the event end date, e.g., a student downloading a

lecture file after the class in which the material was covered. Focusing on these two types of

events can help to screen out less relevant information in the clickstream data and extract

more meaningful information about students’ activities. While in this chapter I focus on

events related to my definitions of previewing and reviewing activity, the methodology for

change detection is applicable to arbitrary sets of clickstream events.

Extracting each of the previewing and reviewing events results in an activity matrix of size

N × T , where the cell i, t indicates that the number of previewing or reviewing events by

student i on day t. The data can be binarized to create a binary representation for the
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Bernoulli model described in Subsection 2.2.2.

I used datasets from two courses at UC Irvine in the study; both offered during the 2015–

2016 academic year. The first is a face-to-face 10-week course with 377 enrolled students.

Lectures were held three times a week, and there were three midterms and one final exam.

Figure 2.3 shows the average number of click events on each day per student. There is a

significant variation in students’ clicking activity over time. For example, students tended

to be much more active during days close to the exams (shown as red dashed lines).

The second dataset is somewhat different from the first in that it was an online course offered

for 5 weeks. There were 176 enrolled students in this course. This dataset is significantly

smaller than that for the first course both in terms of the number of students N and the

number of days T . There were 25 video lectures in total, and students were supposed to

watch one lecture per day from Monday through Friday. The final exam was held on campus

after the 5 lecture weeks.

2.5 Experimental Results

In this section, I discuss the application of the proposed change detection methodology to

the two clickstream datasets described in the previous section.

2.5.1 Example 1: 10-Week Face-to-Face Course

The clickstream data spanned 85 days, which included 10 weeks of instruction as well as

activity before and after the 10 weeks. The change-detection methodology was applied to

4 different versions of the N × T data matrices: for preview and review events, in binary

and count form. The changepoints were restricted to be in the range from day 10 to day
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Event Type NIncrease NDecrease NNoChange

Preview, binary 7 9 361
Preview, count 112 96 169
Review, binary 39 23 315
Review, count 121 159 97

Table 2.1: Number of students who showed increase, decrease, or no change in their activities
for each activity data type for the 10-week face-to-face course.

75, since changepoint detection at the beginning or end of the sequences (i.e., outside of this

range) tends to be unreliable due to small sample sizes and not so meaningful in terms of

interpreting actual student behavior.

The students that were considered to have changed by the BIC scores were categorized into

two groups: students who increased their click activity and students who decreased their

click activity. I refer to these groups as Increased and Decreased, respectively. Note that

these terms should be interpreted in a relative sense, since increase and decrease are from the

αi coefficient for each student relative to the background rate µt. Thus, a detected increase

for student i means in effect that the student is ranked higher in the class in terms of activity

relative to other students after the changepoint τi, compared to their rank before τi (and

conversely for a decrease). The students without detected change are referred to as the

NoChange group.

The numbers of students detected as belonging to each group, for each event type, are shown

in Table 2.1. The Poisson count model detects significantly more student changes than the

Bernoulli binary model, for both preview and review event types. This is to be expected

since the Poisson model has more information to work with (and thus has better sensitivity)

compared to the Bernoulli model, which only sees a binarized version of the daily counts

(and thus has less information per day about student activity). In the discussion below, I

focus primarily on the Poisson results with counts given its better sensitivity.

Figure 2.7 shows the click data for each of the students for which a change was detected,
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Figure 2.7: Student preview and review activity data over time, for the students who in-
creased or decreased their behavior in the 10-week face-to-face course. The gray marker at
t-th column in each row means that there was click activity on day t for that student, with
darker colors reflecting larger counts (more clicks).

with one student per row, and one plot per type of event (Preview and Review). The

students are split into two groups within each plot depending on whether their detected

changes were increases or decreases, and rows were then ordered within each group based

on the chronological location of the changepoint per student. The changepoint locations are

marked in red, and the plots show a clear distinction between the days with more activity

and the days with less activity.

Figure 2.8 provides a week-by-week summary of the information in Figure 2.7, showing the

number of detected student changes per week, for each type of event. The vertical lines that

are visible in the two count matrices are the exam dates. There are some obvious temporal

patterns in this data. For example, the upper plot (preview events) shows that more than a

quarter of the students increased their previewing activities in the third week, which is the

week before the first midterm. This agrees with the intuition that prior to the first major

exam in a class, we would expect to see some significant shifts in student activity. The lower
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Figure 2.8: Percentage of 10-week face-to-face course students who increased or decreased
within each week.

P (Pass|Inc) P (Pass|Dec) P (Pass)

Probability 0.93 0.76 0.83
∆Pass (%) 12.10 -7.44 0

p-value 0.0025 0.0458 -

Table 2.2: Probability of a student getting a passing grade (A, B, C) depending on which
group the student is in for the review data.

plot shows that most of the changes in reviewing activity happened towards the end of the

quarter, particularly during week 10 before the final exam. Again it makes sense that there

are significant changes across students in their relative rates of reviewing activity prior to

the final exam. We can also see in both plots that the number of detected changes per week,

for increases and for decreases, are strongly correlated. As mentioned earlier, this is to be

expected with this model since increase and decrease for this model are defined relative to

overall mean population behavior.

I also investigated how detected changes in preview and review activities were correlated
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with student outcomes in terms of the students’ final grades in the class. I calculated the

probability of a student getting a passing grade given that the student is in the Increased

group, P (Pass|Increase), or in the Decreased group, P (Pass|Decrease), and compared

these numbers with the marginal (unconditional) probability of a student passing P (Pass).

For both preview and review count events, I used a two-sided binomial test with P (Pass)

as the null hypothesis to compute p-values for P (Pass|Increase) and P (Pass|Decrease).

Table 2.2 shows the results for review count data. ∆Pass(%) in Table 2.2 is the percent

change of the probability of passing relative to the marginal probability P (Pass), depending

on what group the student is in. It is calculated by the following equation.

∆Pass =
(P (Pass|G)

P (Pass)
− 1
)
× 100, (2.13)

where G is the behavior group. At the 0.01 level of significance, P (Pass|Increase) is sig-

nificant and P (Pass|Decrease) is significant at the 0.05 level.5 Students in the Increased

group have a higher probability of passing the course, while the students in the Decreased

group have a higher probability of failing. This means that students who increased their

reviewing behavior (relative to all of the students in the course), at some point during the

quarter, ended up getting better grades on average than those that did not.

For preview counts, the probabilities were also in the direction of increases in previewing,

leading to better outcomes on average (and vice versa), but these changes were not sta-

tistically significant. This may suggest, for this particular course, that changes in review

activities are better predictors of student outcomes than preview activities.

Finally, for the 10-week course, I analyzed in more detail the results for two specific students

(using their Review data) to illustrate how the model can be used to interpret clickstream

activity at the individual student level. Figure 2.9 (a) illustrates the results for a student

5Students in NoChange group had a passing probability of 0.8, and it was not statistically significant in
terms of difference from the students as a whole, i.e., the marginal probability p(Pass).
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Figure 2.9: Log of λ̂it from M1 and M2 (top), and the raw data of a student from the 10-week
face-to-face course (bottom). For (a), the model with changepoint (M2) was selected by the
BIC method, and for (b), the no-changepoint model (M1) was selected by the BIC method.

where the lower plot shows the observed daily review clicks, and the upper plot shows the

Poisson models for the no-change model and the changepoint model (with a detected change

at day 70). For this student, the BIC method preferred the changepoint model over the

no-change model, with BIC2 < BIC1 by a large margin. This is reflected in the observed

data in the lower plot where the number of counts for this student increases significantly

after the changepoint.

Figure 2.9 (b) shows the same type of plot for a student where the BIC method selected

the model without the changepoint. From the raw counts (lower plot), it looks like the

student’s activity level could have changed (increased) after day 68. However, relative to

the background activity (particularly around days 76 to 78, leading up to the final exam)

this student’s activity level is not sufficiently different to the mean population behavior to

justify the additional parameters in the changepoint model, as reflected in the BIC scores

(BIC1 < BIC2).
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Data Type NIncrease NDecrease NNoChange

Preview, binary 6 8 162
Preview, counts 41 40 95
Review, binary 11 6 159
Review, counts 47 66 63

Table 2.3: Number of students who showed increase, decrease, or no change in their activities
for each activity data type for the online course.
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Figure 2.10: Student preview and review activity data over time, for the students who
increased or decreased their behavior in the 5-week online course. The gray marker at t-th
column in each row means that there was click activity on day t for that student, with darker
colors reflecting larger counts (more clicks).

2.5.2 Example 2: Online 5-Week Course

The second course was a 5-week summer online course. The event dataset used for this

course was smaller than the first in terms of both the number of students (N = 176) and the

number of days with clickstream activity (T = 50). The course was offered online and the

students were expected to watch a lecture video on every weekday over the 5 weeks, leading

to more uniformity and less variability in student clickstream activity over time. In addition,

the 10-week class had 3 midterm exams and a final exam, while the 5-week online class only

had a single final exam at the end of the course.

31



0 1 2 3 4 5 6
0

5

10

15

20

25

PE
RC

EN
TA

GE
 O

F 
ST

UD
EN

TS

PREVIEW COUNTS
INCREASED
DECREASED
EXAM

0 1 2 3 4 5 6
WEEKS

0

5

10

15

20

25

PE
RC

EN
TA

GE
 O

F 
ST

UD
EN

TS

REVIEW COUNTS
INCREASED
DECREASED
EXAM

Figure 2.11: Percentage of students with detected increase or decrease in activity for each
week in the online 5-week course.

The numbers of students detected for each of the Increased and Decreased groups, for both

preview and review events, are shown in Table 2.3. We see a similar overall pattern to that

for the 10-week class, namely that the Poisson model using counts detects considerably more

changes than the Bernoulli method using binary data. The overall proportions of changes

detected are roughly similar across both classes, with about 50% of students having increased

or decreased count activity relative to the population, for each of the two types of events.

One difference I found between the two courses was the proportion of students who exhibited

no change at all, for either preview or review events: 13% of students in the 10-week course

and 25% in the 5-week courses. This difference might be due to the intermediate exams (3

midterms) in the 10-week course, leading to more variability in student behavior compared

to the 5-week course, which only had a final exam.

The clickstreams for the students with detected changes are shown in Figure 2.10. There

are very high activities at the end of the course session for students in the Increased group,
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Figure 2.12: Log of λ̂it from M1 and M2 (top), and the raw data of a student from the 5-week
online course (bottom). For (a), the BIC method selected the changepoint model (M2), and
for (b), the BIC method selected the no-changepoint model (M1).

for both Preview and Review event types. Also, the majority of the changepoints occur just

before the darker area of the plot. Figure 2.11 shows that, among the students who had an

increased change, most of them had a changepoint in the fifth week, which is the last week

of the course before the final. The relationship of click activity and course outcomes for this

course is not analyzed since fewer than 5% of the students received grades of D or F in the

class, resulting in a sample size that is too small for reliable inferences.

As with the 10-week class, the results for review events for two specific students are examined

to illustrate the methodology at the level of individual students. Figure 2.12 (a) shows the

results for a student where the method detected a change in activity at day 35. Figure 2.12

(b) shows the results for a student where the no-change model was preferred by BIC. Both

students exhibited increases in their review activities after day 40. However, the magnitude

of change for the first student is significantly greater than that for the second student (as

can be seen in the lower panels of both plots)—relative to the student population as a whole,

the second student did not exhibit a significant change in activity.
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2.6 Conclusions

Student clickstream data is inherently difficult to work with given its complex and noisy

nature. This chapter described a statistical methodology for detecting changepoints in such

data and illustrated the potential of the approach by applying the methodology to two large

university courses. The proposed approach is relatively simple and allows for a number of

possible extensions; the development of more flexible changepoint models (such as systematic

drifts in student activity levels), allowing for more than a single changepoint, post hoc

adjustments for multiple testing, and using robust estimation techniques for parameters and

their respective standard errors. Bayesian methods could also be potentially useful in this

context for both parameter estimation and model selection to more fully reflect uncertainty

in inferences at the individual student level. A useful extension for educators would be to

develop an online detection variant of the offline approach proposed here, potentially allowing

for identification of at-risk students, instructor feedback, or interventions while a course is

in session.

While the results in this chapter are promising and there are interesting methodological av-

enues to pursue, the most important future direction from an education research perspective

will involve more in-depth investigation of the utility of these types of methods in terms of

providing actionable insights that are relevant to the practice of education.

The primary contributions of this chapter include the following:

• I developed regression models for binary and count clickstream data to fit each indi-

vidual student’s preview and review activity relative to the whole class.

• I utilized statistical change detection techniques to investigate the change in student

behaviors.

• I applied the method to two large university courses, one face-to-face and one online,

34



and validated the method.

• I analyzed the results by grouping the students into three behavioral groups (Increased,

Decreased, and NoChange), and found the relationship between the behavioral groups

and their course outcomes, with the conclusion for the face-to-face course that increased

activity led to positive change in course outcome (the probability of passing the class).
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Chapter 3

Understanding Student

Procrastination via Mixture Models

As colleges and universities continue to increase the number of online course offerings, these

classes are becoming a normal part of students’ learning experiences. While online courses

have made learning more accessible to students, prior work suggests that students enrolled

in online courses have worse learning outcomes when compared to students enrolled in face-

to-face courses [15]. One important reason for this is that the online learning environment

requires a higher degree of self-regulation than the face-to-face environment [21]. Students

must effectively plan and regulate their learning time, and monitor their own progress in order

to meet important deadlines [175], but students may lack these important skills. Moreover,

online courses have a high degree of anonymity. Students are not physically present in a

classroom, and their activity on Learning Management Systems (LMS) is not made public

The material in this chapter is based on the paper “Understanding Student Procrastination via Mixture
Models” by Park, J., Yu, R., Rodriguez, F., Baker, R., Smyth, P., and Warschauer, M., published in the
Proceedings of the Eleventh International Conference on Educational Data Mining (EDM 2018), 2018. The
paper received the best paper award.
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to the rest of the class. This absence of face-to-face accountability may cause students to

disengage with the course much more than they would in traditional classrooms. The lack of

structure and anonymity may lead students to procrastinate, putting off work until close to

important deadlines. Therefore, understanding students’ learning behaviors relating to time

management, especially procrastination, could be one important mechanism for improving

online learning.

Clickstream datasets have provided rich resources for analyzing students’ time management

behaviors. Procrastination has been measured using the specific time points at which stu-

dents take certain actions within an online course, such as accessing content pages, watching

lectures, and submitting quizzes. A common way to measure procrastination is to calculate

the amount of time a student is engaged with the LMS prior to an important course dead-

line. Studies that use these types of measures as indicators of procrastination find that the

indicators are negatively correlated with course outcomes [73, 81, 173].

Motivated by these previous studies, I utilize clickstream data to further understand pro-

crastination using two online classes offered at a large public university. These two classes

were designed so that the students are expected to space out their studies on a daily basis

and to set weekly deadlines. In this chapter, I investigate the use of probabilistic mixture

modeling to analyze time-stamped logs of student activity in the context of these two on-

line classes. The mixture model identifies different behavioral patterns in the data, where

the patterns can be clearly identified as reflecting procrastinating and non-procrastinating

behavior among the students. The developed methodology enables finer-grained analyses of

procrastination and its relationship with learning outcomes, which can inform more effective

instructional reforms in online learning.
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3.1 Related Work

3.1.1 Self-Regulation, Procrastination, and Academic Success

Self-regulated learning refers to the process of directing one’s own learning experience [175],

and these processes encompass several attitudes and behaviors. For instance, models of self-

regulated learning generally distinguish between motivational beliefs about learning, goal

setting and planning behaviors, specific learning strategies, and metacognitive monitoring

processes [125]. While each of these facets plays an important role in the learning process,

research on online learning finds that students’ planning and time management behaviors

are important indicators of course success [46, 173]. Procrastination behaviors, which refer

to delaying coursework until major deadlines, reflect poor planning and time management.

Several studies have focused on procrastinating as a major barrier that hinders students from

succeeding in online courses [46, 172]. Using online course analytic data, one recent study

found that students who did not begin working on assignments until hours before a deadline

received lower course grades when compared to students who began their work earlier [43].

Other studies have found similar results, where students who delay working on assignments

are more likely to perform poorly [172, 173]. These results confirm the undesirable nature

of procrastination as well as the importance of regular learning behaviors.

Another extensive body of work has shown that students from underrepresented back-

grounds, such as those who come from low-income households, or who are first to attend

college, are at greater risk for leaving STEM majors [28]. This problem may be additionally

exacerbated in online coursework. There are many important factors that explain issues

surrounding underrepresented student success, such as lack of mentoring, financial concerns,

and feelings of exclusion [146]. With regard to self-regulatory behaviors such as procras-

tination, prior work has also shown an increased tendency for underrepresented groups to
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engage in more procrastination than their counterparts [141]. However, this study was not

conducted in an educational context, and procrastination was measured subjectively us-

ing surveys. With this in mind, a side aim of my work in this chapter is to explore the

relationship between individual differences in procrastination (time management behavior,

in general) and students’ external background characteristics, specifically for the students

taking online courses.

3.1.2 Measuring Procrastination

Measures of procrastination are relatively straightforward and similar across various learning

environments. In the most common measures, researchers capture the time that students

finish a certain task and calculate the difference between this time and either the release time

[18] or the deadline [81, 73] of the task. This type of measure has the merit of being very

interpretable, but a limitation is that it only captures the average degree of procrastination

without depicting nuanced patterns in these behaviors.

3.1.3 Cluster Analysis and Mixture Modeling

Clustering in general is a widely used technique in data analysis for automated data-driven

discovery of groups or clusters in data. In the context of analyzing education data, clustering

algorithms have found broad application as a technique for grouping students based on their

behavioral patterns. For example, Toth et al. [158] cluster students based on their problem-

solving interaction patterns using the X-means algorithm (a variation of the well-known K-

means clustering algorithm) for a better understanding of complex problem-solving behaviors

and identifying levels of problem-solving proficiency. Ng, Liu, and Wang [115] use survey

scores of motivated strategies for learning questionnaires to cluster students into multiple

groups. The resulting groups obtained by hierarchical clustering with Ward’s method exhibit
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distinct learning profiles of motivational beliefs and self-regulatory strategies.

The clustering approach I follow in this chapter is probabilistic model-based clustering [52,

107]. In this framework, each cluster corresponds to a probability distribution (also known as

a “component”) in a mixture model and the entities being clustered are assumed to have been

generated by one of the component distributions. This probabilistic framework for clustering

has a number of advantages over non-probabilistic techniques such as K-means clustering

or hierarchical clustering. For example, as I describe later in the chapter, the framework

can model count data in a natural manner using Poisson distributions as components in the

mixture model, where each component (or cluster) represents a different Poisson distribution

over count outcomes. The Poisson mixture model has been applied to a number of different

fields including marketing [19], finance [78], biology and bioinformatics [23, 50], document

analysis [95], and so on. However, to my knowledge, there had not been any work prior to

this on the development of Poisson mixtures in an education context, particularly for the

problem of clustering students based on their observed activity in online classes.

3.2 Methods

3.2.1 Student Activity Counts

For courses where time-stamped student-generated events are tracked via logs of clickstream

data, we can count these events on a daily basis. Thus, we can get a set of daily activity

counts for each student throughout a course, where the activity can correspond to specific

types of tasks of interest (such as video-watching, quiz submission, and so on). Figure 3.1

shows the daily activity count data for two students from one of the course datasets used in

this chapter. The data for each student is displayed as a matrix, where the grayscale indicates
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Figure 3.1: Examples of student daily activity counts (specifically, the number of video
watching tasks per day) displayed as a matrix of week × day. SS indicates Saturday and
Sunday.
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Figure 3.2: Aggregated daily task counts across weeks (xi) for the two students shown in
Figure 3.1.

the number of tasks performed by each student on each day over the 5 week duration of the

course. This type of display is useful in terms of capturing the temporal aspect of when a

student is engaged in a particular activity, such as watching a lecture video or submitting a

quiz. It also indicates that one of the students (on the right) may be procrastinating each

week—I discuss these types of patterns in more detail later in the chapter.

It is also possible to compute the sum over weeks to get the “aggregated” daily counts

assuming that there is a structure in the course that repeats every week (which is the case

for the two classes studied in this chapter). Examples of the aggregated daily counts are

shown in Figure 3.2 as bar plots, computed by aggregating across the weekly rows of data

for each student in Figure 3.1.
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3.2.2 Mixture Model with Gamma Priors

In this section, I discuss the use of a Poisson mixture model to cluster students based on

their activity counts, focusing on the aggregated daily counts as in Figure 3.1. In terms of

notation, let xi be the vector of aggregated daily counts for student i, where i = 1, . . . , N .

The dimensionality D of each vector is the number of days (D = 6 in this case since Saturday

and Sunday are collapsed into one). Thus, the data consists of N students, each with a D-

dimensional vector of aggregated daily counts.

To model this data, I use a probabilistic mixture model with Poisson components. Let K be

the number of components (or clusters) with an index k = 1, 2, . . . , K. The unobserved latent

variable zi takes values from the set {1, . . . , K} and corresponds to the latent component or

cluster that student i is presumed to belong to. Each of the k components consists of a vector

of Poisson rate parameters, λk = [λk1, . . . , λkd, . . . , λk6], where d from {1, . . . , 6} represents a

specific day of the week. For example, one component could have very low values for all the

λkd’s, for students with low daily activity, and another component could have high values

for all the λkd’s, for students with high daily activity.

When fitting this mixture model to data, I take a Bayesian approach [57] and use Gamma

prior distributions for the rate parameters λkd. The primary reason for doing this is to

encourage the model to avoid degenerate solutions with a small component that has one

or more rate parameters λkd at or near a value of 0. This can produce a high-likelihood

solution but one that is not useful. In the experimental results later in the chapter I used

hyperparameters of α = 1.1 and β = 0.1 for the Gamma distribution. These hyperparameter

choices have the effect of making the Gamma prior behave like a step function, putting zero

probability mass at λkd = 0 (k = 1, . . . , K, d = 1, . . . , 6), and a relatively flat uninformative

prior distribution over positive rate parameter values. Figure 3.3 depicts a graphical model

representation of the Poisson mixture model with a Gamma prior on the λ parameters for
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Figure 3.3: Graphical representation of the Poisson mixture model with Gamma prior. xi
and λk are 6 dimensional vectors. N is the number of students, and K is the number of
mixture components.

each component.

The likelihood for the data xi for each student i under this mixture model can be written

as:

p(xi|λ) =
K∑
k=1

p(xi|zi = k,λk)p(zi = k), (3.1)

where p(zi = k) is the marginal mixing weight for each component, and each component

distribution can be written as:

p(xi|zi = k,λk) =
D∏
d=1

p(xkd|λkd, zi = k), (3.2)

assuming conditional independence of the daily counts xkd given component k. λkd is the rate

for day d for component k and each distribution p(xkd|λkd, zi = k) is a Poisson distribution.

The prior distribution is defined as a product over independent Gamma priors, one for each

λkd, each with parameters α = 1.1 and β = 0.1.
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3.2.3 Learning Parameters with the EM Algorithm

To estimate the parameters λk of the model, the Expectation-Maximization (EM) algorithm

is used. It is an iterative algorithm that is widely used in fitting mixture models to data

[41, 106]. More specifically, I use the EM algorithm to maximize the product of the data

likelihood times the prior (both defined above). This results in both (a) maximum a posteriori

(MAP) parameter estimates for the Poisson components in the model, and (b) membership

weights wik that reflect the probability (under the fitted model) that each student i belongs

to component (or cluster) k.

Each iteration of the EM algorithm consists of two steps, the E (expectation) step and

the M (maximization) step. In the E-step, conditioned on some fixed (current) values of the

parameters, the probability of membership wik is computed for each component k = 1, . . . , K,

for each student i = 1, . . . , N .

wik = p(zi = k|yi, λ, α, β)

∝ p(xi, zi = k,λk|α, β)

∝ p(xi|zi = k,λk)p(λk|α, β)p(zi = k). (3.3)

These membership weights are important in the later analyses, since they provide information

of how likely it is that each data point i (student i) was generated by component k. In the

M-step, conditioned on the set of membership probabilities wik, a point estimate of each

parameter is estimated via MAP estimation.

λ̂k =

∑
iwik(xi + α− 1)∑

iwik(1 + β)
(3.4)

p̂(zi = k) =

∑N
i wik
N

. (3.5)

These MAP parameter estimates provide the input for the next E-step, and thus, the cycle
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of E and M-steps continue iteratively.

The EM algorithm as a whole consists of randomly initializing the parameters of the model,

followed by repeated computation of pairs of E and M steps, until the log-likelihood is judged

to have converged (i.e., when the improvement in log-likelihood from one iteration to the

next is less than some small value ε, or when the average membership probability value is

not changing significantly from one iteration to the next).1

3.3 Datasets

Two datasets from the same undergraduate online course were used in this study: one from

summer 2016, and the other from summer 2017. The course was offered for 5 weeks in both

years. While each class was taught by two different instructors, the class content, such as

the lecture videos, resources, and assignments, were the same. In both classes, students were

assigned 5 video lectures every week, and each lecture video had a corresponding quiz. The

instructors encouraged students to watch one lecture video and complete the corresponding

quiz each day, from Monday through Friday.

Although students were encouraged to follow this schedule, the actual deadline for watching

the 5 lecture videos and completing the quizzes was on Fridays at midnight. While this

structure gave students freedom to watch the lecture videos when they wanted, this flexibility

also allowed them to procrastinate.

Most of the students’ activities were recorded through the Canvas Learning Management Sys-

tem (LMS). These activities included downloading course content, watching lecture videos,

taking online quizzes, submitting assignments, etc. Every time a student clicked on a URL

within the Canvas system, the click event was logged with the student ID, URL, and time-

1Python code for the EM algorithm on Poisson mixture model is available online at https://github.

com/ucidatalab/student_poisson_mixture.
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Figure 3.4: Grade distributions of students in 2016 class (left) and in 2017 class (right). Two
classes show very different grade distributions. Almost half of the students received an A for
the class in 2016, whereas more students got lower grades in 2017.

stamp. The clickstream data was processed so that it only focused on the activities of daily

tasks, resulting in daily activity counts, as mentioned in the previous section (Figure 3.1

and Figure 3.2). Only one event per task was counted, and thus the sum of the matrix for

each student was 25 or less (for 5 video lectures × 5 weeks). I chose to count only the first

attempt (first click event) for each task.

In addition to the clickstream data, student demographic data was available through the

university’s institutional research office. It included both demographic information (gender,

ethnicity, first generation status, low income status, and full-time status) and prior academic

achievement (total SAT score2). Some students did not agree to provide this demographic

data, although most did. For this reason, the later analyses based on demographic informa-

tion are based on the subset of students who agreed to share this information.

Although both classes used the same materials and implemented the same deadlines, there

were some notable differences in how the click events were recorded, as well as how each

instructor structured the course. These differences are described in the following sections.

2A standardized test widely used for college admissions in the United States.
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3.3.1 Class in 2016

Online lectures and daily quizzes were offered outside the Canvas LMS for this class. Each

lecture video was embedded on a separate web page on the server that was accessible, and

the links to the web pages were provided via the Canvas weekly module.

Logs for the daily quiz attempts were not accessible, so instead I used the first “video clicks,”

which are from the logs of HTTP GET requests of the video embedded web pages. For each

student, the IP addresses of the video logs (from the server) were matched with the IPs

recorded on the Canvas LMS.

After removing 4 students with very low activity (0 or 1 video clicks in total), there were 172

students with activity counts available for analysis. More than 90% of the students received

a passing grade, and half of the students received an A (Figure 3.4). Completing the daily

tasks (watching videos and solving quizzes) counted as 15% towards the overall grade for

each student.

3.3.2 Class in 2017

The video click logs for this class were not available since the videos were uploaded on a

third-party server. However, the daily quizzes that students took after watching the lecture

videos were recorded through the Canvas system, and it was possible to obtain students’ quiz

submission time-stamps via the corresponding clickstream data. Therefore, for this class I

focused on the first clicks for daily “quizzes.” Note that this is different from the 2016 class

data, which used the first clicks for each video-watching event.

There were 145 students in the class—I used data for 140 students after dropping 5 students

with very low activity (as with the 2016 class). As previously noted, a different instructor

taught the class in 2017 than in 2016. The instructor for the 2017 class changed the contri-
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(b) Class in 2017
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Figure 3.5: Poisson mixture component means (λk’s) from modeling aggregated daily task
counts (xi) for the class in 2016 (upper) and 2017 (lower).

bution to 8% of the total grade for watching and completing the lecture videos, significantly

less than in the 2016 class (15%). The grade distribution of the 2017 class in Figure 3.4

is also significantly different from that in 2016—there are significantly fewer students who

received A’s or B’s in 2017 compared to the 2016 class.

3.4 Procrastination as a Mixture Component

Below, I present and discuss the results of fitting a two-component (K = 2) Poisson mixture

model to the aggregated daily task counts for the two classes described in Section 3.3. I

also explored models with more components, K = 3, 4, . . ., but found that the K = 2

model broadly captured the primary modes of student behavior and that higher values of K

tended to split the two main modes into further subgroups without providing any significant
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Figure 3.6: Aggregated daily task counts shown along with the membership weights. Each
row represents a student, and the students are sorted by the membership weight for the
procrastination group wi1. The left figure is for the class in 2016, and the right figure is for
the class in 2017.

additional insight.

Figure 3.5 shows the expected number of counts on each weekday per group, i.e., the rate

parameters, λk’s. The two group-dependent rate patterns across the days of the week,

for both 2016 and 2017, show two very distinct behavioral patterns. One of the mixture

components has a very high rate on Friday and low rates on the other days of the week. The

other component has low and relatively flat rates from Monday to Friday. Considering the

fact that the deadline for daily tasks in these courses is on Fridays, these two patterns clearly

reflect two different types of student behaviors: procrastination and non-procrastination.

3.4.1 Characteristics of the Two Behavioral Groups

The membership weights can be thresholded at 0.5 to classify each student i = 1, . . . , N into

one of the two groups, i.e., if wi1 > 0.5 then student i is assigned to the procrastination group

(where k = 1 corresponds to the procrastination group). About 36–37% of the students were
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assigned to the procrastination group in each of the two years.

The two plots in Figure 3.6 illustrate the students’ week-aggregated activities along with the

students’ membership weights. Each row in each plot represents a student, and the wider

matrix plot shows the aggregated daily counts, sorted by their membership weight wi1. The

values in the matrix range from 0 to 25, and a darker color means that there are more task

activities on that day of the week. The two plots from different years look almost identical,

and they clearly show the two types of behavior. The students (rows) at the bottom of each

plot have more counts (darker colors) on Fridays and belong to the procrastination group.

There is also a small group of students at the top of both plots who tend to be more active

over the weekend. The size of this group of students is relatively small and their behavior

pattern is effectively that of non-procrastinators since they are the “early birds” who check

out the lecture videos or the quizzes early in the week.

The membership weights are shown on the narrower bar plot (left of each year’s plot), where

a darker color represents a higher membership weight of belonging to the procrastination

group (with a weight close to 1). We can observe that there is a relatively small amount of

grey area in the bar plot (for both years), which means that the majority of the students

have a very high probability of being assigned to one group or the other.

3.4.2 Association between Behaviors and Grades

I further analyzed the relationship between the two different behavioral groups and the

grades. The grade distribution in each group is shown in Figure 3.7. Results from the two

classes are shown side by side. It is obvious from the figure that the non-procrastinators tend

to get significantly more A grades than the procrastinators, whereas the procrastinators get

more C, D, and F’s. Even though the overall grade distributions were quite different in the

two classes (see Figure 3.4), a strong correlation between the behavioral groups and course
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Figure 3.7: Probability of receiving each grade given that the student is in the procrastination
group or in the non-procrastination group in 2016 (left) and in 2017 (right).
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Figure 3.8: Distribution of procrastinating group membership weights wi1 in different grade
groups of class in 2016 (left) and in 2017 (right). H-statistic comes from a Kruskal-Wallis
test.

outcomes can be found. In both classes, the non-procrastinating students are about three

times more likely to get an A grade than the procrastinating students. These probabilities

were significant at the 0.01 level using a chi-squared test.

Another analysis on finding the relationship between procrastination behavior and grade

outcomes can be done by grouping students by their grade (rather than by the behavioral

group) and looking at the patterns of behavior for each grade group.

As shown in Figure 3.4, a majority of the students got a passing grade in 2016. The number

of students who received A, B, and the others (C, D, or F) were 84, 66, and 22, respectively.

The left boxplot in Figure 3.8 informs that “A students” have very low membership weight
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(b) Class in 2017
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Figure 3.9: The number of task counts per day, for each of the 5 weeks, averaged over the
students in each grade group. Left: students who received A, middle: students who received
B, right: students who received C, D, or F.

(wi1) values, but the “C, D, F students” have very high membership weight values. This

can be interpreted as saying that the students who received lower grades (C, D, or F) have

higher probabilities of being procrastinators.

A similar result can be observed for the class in 2017 from the right side of the plot in Figure

3.8. There were 27, 37, 49 students in each of the grade groups (there were 27 students

whose grade information was unavailable). The broader distribution of weights in the C, D,

F group may be due to the fact that there were many more students with lower grades than

higher grades in this year of the course.

The association between behavior and grade outcome is also clearly visible in the raw data,

i.e., the task activity counts, for both years. Figure 3.9 clearly illustrates the behavior

patterns for students with different grades. Much darker colors are seen on Fridays on the
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(a) Class in 2016
Demographics N Test p-value
FirstGen 144

χ2-test
0.566

LowIncome 151 0.672
SAT 147 K-W test 0.238

(b) Class in 2017
Demographics N Test p-value
FirstGen 120

χ2-test
0.218

LowIncome 128 0.955
SAT 125 K-W test 0.802

Table 3.1: Statistical test results for understanding the relationship between demographic
variables and behavioral group assignment for two classes.

rightmost matrices (students who received C, D, or F grades), and more evenly distributed

colors on the left matrix plots, which shows the activities of students who received A grades.

3.5 Relationship with Student Background

Having explored the fine-grained differences in students’ procrastinating behaviors and their

relationship with outcomes, I further examined if these variations can be explained by stu-

dents’ background characteristics. The goal of this analysis is to understand whether there

exists a potential risk factor among underrepresented students, or if instead, the observed

behavioral differences are more at the individual level in nature. I also sought to explore

whether prior academic achievement could explain differences in procrastinating behaviors.

From a comprehensive list of demographic variables, I chose three that are of general interest

in education research: Low Income Status, First Generation and Total SAT Score. The first

two binary variables represent a student’s socioeconomic status, and the last continuous

variable is a proxy for prior academic achievement.

I separately tested the relationships between these three variables and the behavioral group

assignment (as in Section 3.4.1). The type of statistical tests and their results are reported
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in Table 3.1 (a) for the class in 2016, and Table 3.1 (b) for the class in 2017. Because there

are missing values in the demographic information, only the students who have relevant

information are included in each of the tests (the number of students, N , is reported in the

table).

The results show that for both classes none of these demographic variables have any signifi-

cant relationship with procrastination. This suggests that failures in time management may

arise more from students’ inherent factors than specific background characteristics, and that

effective instructional interventions are less likely to be hampered by students’ underrepre-

sented backgrounds. However, due to the limited class sizes, this inference still needs to be

further explored at scale.

3.6 Conclusions

In this chapter, I introduced a data-driven methodology for characterizing student procras-

tination in online courses. Based on Poisson mixture modeling, the proposed approach can

be applied to courses where tasks with clear deadlines are regularly assigned and students’

time-stamped activities related to those tasks are recorded. In the experiments with two un-

dergraduate online classes, this method identified two distinct patterns in students’ weekly

planning behavior, which can be further utilized to measure procrastination. This measure

was found to be strongly correlated with course outcomes for both classes. Interestingly,

while the procrastination behavior was a strong predictor of course outcomes, it was not

significantly related to students’ demographics or prior academic achievement. These re-

sults suggest that, as a whole, procrastination behaviors seem to be more of an inherent

characteristic.

These types of clickstream data and analyses allow for rich complements to other types
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of educational research. For example, the proposed behavioral grouping can be combined

with survey data to examine how accurate students’ perceptions of their skills are, and to

identify students who might be especially prone to benefit from support. From a practical

perspective, these data-driven approaches can be incorporated into learning management

systems and work in real time. This would potentially facilitate automated assessment and

intervention regarding time management skills.

There are also a number of potentially useful extensions to the methodological approach

proposed here. For example, the mixture components in the two classes that were analyzed

are straightforward to interpret with regard to procrastination, but this might not be the

case for different course designs and structures. In these broader scenarios, it may be useful

to incorporate informative Gamma prior distributions into the mixture model, with, for

instance, three prior components for procrastination behavior, non-procrastination behavior,

and mixed behavior, respectively.

The primary contributions of this chapter include the following:

• I developed a general data-driven method for identifying procrastination. The method

analyzed counts of student activity and can work with any online course with periodic

deadlines and that has corresponding time-stamped clickstream data.

• I validated the method using two online university classes, and identified two distinct

behavioral patterns which can be used to measure an individual student’s degree of

procrastination.

• For the two classes that were analyzed, I discovered that behavioral groups related to

procrastination and course outcomes were highly correlated, lending support to prior

theories of self-regulated learning and procrastination while also providing new insights.
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Chapter 4

Detecting Conversation Topics in

Primary Care Office Visits from

Transcripts

Patient-physician conversations are complex, multi-dimensional, and multifunctional [13,

63, 72, 108, 160]. Patients present multiple issues during an office visit requiring clinicians

to divide time and effort during a visit to address competing demands [51, 151] (e.g., a

patient could be concerned about blood pressure, knee pain, and blurry vision in a single

appointment). Moreover, visit content does not solely focus on biomedical issues, but also

on psychosocial matters, personal habits, mental health [150], patient-physician relationship

[49], and small talk [27, 150]. Health communications researchers analyze the content of

patient-physician communication by directly labeling the interaction using trained raters

The material in this chapter is based on the paper “Detecting conversation topics in primary care
office visits from transcripts of patient-provider interactions” by Park, J. et al., published in Journal of the
American Medical Informatics Association (JAMIA), 2019.
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to label the topical content of clinical interactions. For example, during periodic health

examinations with their primary care physicians, only one-third of patients with mental

health needs had a discussion about mental health [149, 150]. These findings suggest that

quality improvement efforts that evaluate the content of clinical interactions might help

address gaps in service delivery.

Labeling each talk-turn, which is the utterances in each speaker’s turn, using labeling systems

designed to capture the content of medical visits (e.g., the Multi-Dimensional Interaction

Analysis system [27, 151, 149]) is labor-intensive, and costly. It requires training a team

to label the text, and establish and maintain reliability. Depending on the extensiveness

of the labeling system, it can take several hours to label one patient-physician interaction

[24, 110]. This level of effort means that even in research settings with resources for detailed

evaluation, studies of patient-physician interaction are often limited in scale [151]. As a

result, the direct evaluation of clinical interactions is not feasible in routine care settings

for quality improvement purposes [70, 93]. Automated methods capable of extracting the

topical content of clinical encounters could support physicians who overlook asking patients

about critical issues (e.g., suicide, blood pressure medication) when it is clinically indicated.

The methods can help reduce the burden of documentation currently placed on physicians,

and facilitate large-scale research on the quality of patient-physician communication.

4.1 Related Work

The past decade has seen an explosion of interest in machine learning and natural language

processing (NLP) in medical contexts [114], targeting problems such as automated extraction

of information from clinical notes and electronic health records [40, 42, 129]. Of direct rele-

vance to the present chapter is a growing body of work dedicated to applying methods from

machine learning and NLP to the automatic annotation of conversations between physicians

57



and patients. The typical approach in such studies begins with labeling a corpus of transcript

data, e.g., providing human-generated labels for each utterance or talk-turn in each visit in

the corpus. Machine learning techniques are then used to learn a classification model from

a subset of the corpus, the training data, and the model’s predictions are evaluated by com-

paring its predictions with the known human labels on unseen test transcripts. For example,

Mayfield et al. [102] analyzed patient-physician transcripts from the Enhancing Communi-

cation and HIV Outcomes (ECHO) study [12] and employed a logistic regression model to

classify utterances into the categories “information-giving” or “information-requesting” [90].

More recently, Kotov et al. [85] analyzed transcripts from motivational interviewing related

to pediatric obesity and developed probabilistic machine learning models for classifying pa-

tient utterances into classes of behavioral responses. In later work on the same dataset,

Hasan et al. [65] compared probabilistic models with more recent recurrent neural network

approaches and found the latter to be generally more accurate on that dataset.

There has been less prior work on the problem of automated classification of topical content

in patient-physician dialog. Wallace et al. [166] developed machine learning models to

classify dialog utterances into one of six high-level discussion topics: Biomedical, Logistics,

Psychosocial, ARV, Missing/other, and Socializing. Using the same ECHO dataset as used

in the Mayfield et al. study [12], they evaluated the performance of conditional random fields

(CRFs) for this prediction task and concluded that the results showed promise for automated

classification of patient-physician interactions into clinically relevant topics. Gaut et al. [56]

proposed the use of labeled topic models for classifying psychotherapy sessions with 161

possible topic labels, using a dataset published by Alexander Street Press, and again found

that these models showed promise in terms of predictive ability.

These earlier studies demonstrate that machine learning systems can generate plausible

annotations of medical dialogs—my work in this chapter pursues this line of research further.

It differs from earlier work on topic classification in a number of aspects. For example, I
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Figure 4.1: A short excerpt from an annotated dialog transcript. Topic labels are assigned
to each talk-turn. MD and PT indicate the speaker for each talk-turn, where MD stands for
“Medical Doctor,” “Physician,” or “Medical Provider,” and PT stands for “Patient.”

compare both probabilistic and neural network classification methods for topic classification

of talk-turns, whereas Wallace et al. [166] and Gaut et al. [56] only focused on probabilistic

approaches. I also evaluate performance for a more detailed set of 27 topics compared to the

6 high-level topics used in the Wallace et al. study. The Gaut et al. study also differs from

this work in that it primarily focused on session-level labels and did not investigate the use

of sequential information across talk-turns for talk-turn level predictions as it is done here. I

believe that this is the first study that systematically compares sequential and non-sequential

classification methods, for both probabilistic and neural network models, on the problem of

talk-turn topic classification from transcripts of patient-physician dialog.
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Short Topic Name Brief Description
Percentage of
Talk-Turns
Assigned

BiomedHistory
Biomedical history, symptoms, and medical
condition

29.85

PreventiveCare Preventive medical measures 14.67

MusSkePain Musculoskeletal pain 8.30

VisitFlowMgmt
Agenda setting, opening of visit, closing of
visit

6.38

GynGenitoUrinary Gynecological and genitourinary problem 4.72

PhysicalExam Physical exam 3.41

Family Family and significant other 3.10

HealthCareSystem Health care system 2.89

WorkLeisure Work and leisure activities 2.73

Tests Tests and diagnostic procedures 2.59

Cigarette Cigarette 2.43

Weight Weight 2.38

DizzyDentHearVision Dizzyness, vision, hearing, dental issues 2.03

Other Other (various rare topics) 1.94

Exercise Exercise 1.89

Depression Depression 1.86

Medication Medications 1.84

SmallTalk Small talk 1.72

GeneralAnxieties General anxieties and worries 1.38

MDLife Physician personal life 1.04

Diet Diet, food (exclude supplements) 0.69

Alcohol Alcohol 0.57

Sleep Sleep 0.53

TherapeuticIntervention Therapeutic intervention 0.33

RiskyBehavior

Risky behaviors (e.g., international travel,
weapons at home) and risk avoidance preven-
tive practices (e.g., safe sex, wearing seatbelt
or bike helmet)

0.32

OtherAddictictions Caffeine, or other addictions 0.21

Age Age 0.17

Table 4.1: Name and brief description of each topic ordered by the percentage of each topic
in talk-turns.
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4.2 Dataset

The source data include transcripts of audio-recordings of primary care office visits from the

Mental Health Discussion (MHD) Study [149]. Each transcript corresponds to a visit between

a patient and a physician—a small fraction of the dialog corresponds to other participants in

the conversation (such as a nurse and family member). Data collection occurred from 2007

to 2009 in a health system in Michigan with 26 ambulatory care clinics. Patients were 50 to

80 years old, all had insurance, and were due for a colorectal cancer screening at the time of

appointment. All aspects of the research protocol were approved by relevant organizations’

institutional review boards (IRB).

Each visit is comprised of a series of talk-turns, with 122,083 talk-turns in total across 279

visits (median/mean of 408/438 talk-turns per visit, with lower/upper quartiles of 312/522)

from 59 physicians. Each talk-turn was manually assigned by a human labeler to one of

39 different topic labels [149] that were modified from the Multi-dimensional Interaction

Analysis (MDIA) coding system [27]. A topic is defined as an issue raised in a conversation

that required a response from the other member of the dyad and had at least two exchanges

between the dyad. A small number of talk-turns were split into two if the turn straddled two

topics. This resulted in a few of the original talk-turns being represented as two separate

talk-turns after coding. Figure 4.1 illustrates how different topics were assigned to talk-turns

during a short portion of a particular visit. Topic labels that occurred in less than 20 visits

were merged into a single topic denoted as Other, resulting in a total of 27 unique topics

in the corpus. Table 4.1 provides the names of the topic labels, a brief description of each,

as well as the percentage of talk-turns assigned to each by the labelers across the corpus.

The topic label distribution is skewed towards topics relevant to periodic health exams—the

three most frequent topics (BiomedHistory, PreventiveCare, and MusSkePain) account for

more than half of all talk-turns.
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a-ha hm-mm mm-hmm uh-hum
able hmm mmm uhhuh
ah huh mmm-hmm uhm
ahh huh-uh oh uhmm

alright hum ok uhuh
blah isn okay um
did kind ooh um-hmm
didn kinda really um-hum
does know right umhum

doesn let said ve
doing like say want
don little sort wasn
done ll thing way
eh lot things yea
feel m-hmm think yeah

going maybe u-hum yep
good mean uh yes
got mhm uh-hmm yknow

guess mm uh-huh yup
hm mm-hm

Table 4.2: List of additional stopwords used for generating bag-of-words features.

4.3 Methods

4.3.1 Text Preprocessing

A number of preprocessing steps are applied to convert the dialog text into a set of tokenized

words. I first replaced the patient names and numbers with -NAME- and -NUMBER- tokens

to remove potentially identifiable information. After removing symbols, other than a set of

punctuation symbols, such as “.”, “?”, “-”, the sentences in each talk-turn were tokenized

into a list of words using the standard Python NLTK tokenizer [17]. For the models that use

bag-of-words encoding, the vocabulary included all unigrams and bigram noun phrases that

occurred at least 5 times in the corpus, except for two sets of stopwords. In addition to the

standard stopwords list from the NLTK library, a customized list of stopwords shown in Table

4.2 is used. The list includes the words that are common in a dialog (such as ”uh”, ”umm”,

etc.) that was adapted from [56]. It also includes variants of standard stopwords that are
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due to typos and incorrect punctuation that exist in the data. For the data described in this

chapter, removing stopwords for models using bag-of-words encoding typically resulted in a

roughly 1% increase in performance on different metrics. The size of the final vocabulary

was V = 14800. For the neural network models, the vocabulary consisted of all unigrams,

with neither set of stopwords removed (as is customary in neural network models) with a

final vocabulary size of 5073 including an unknown token.

Different preprocessing pipelines were used for the neural-network models and non-neural

models because this is standard practice for both sets of the models in the literature. In

particular, for bag-of-words encoding with models such as logistic regression, feature engi-

neering (such as including bigrams and removing stopwords) is widely acknowledged in the

literature as useful for improving accuracy [5, 159]. On the other hand, recurrent neural

networks learn their own features sequentially in an end-to-end fashion, and the standard

approach in recurrent neural models for text is that all word tokens in the sequence are

retained (e.g., Collobert and Weston [35]).

4.3.2 Representing Talk-turns for Classification Models

The data for each visit i, 1 ≤ i ≤ 279, is represented as a sequence of labeled talk-turns j,

with Li talk-turns in the i-th visit, 1 ≤ j ≤ Li. Let Wi,j and yi,j represent the list of word

tokens and the topic label, respectively, for the j-th talk-turn in the i-th visit. As mentioned

earlier, yi,j can take values from 1 to 27, corresponding to each of the 27 unique topics. Each

word in Wi,j is encoded as a binary vector (“one-hot encoding”) of length V , where V is the

vocabulary size. For example, if a word occurs in a talk-turn and the ID in the vocabulary

for the word is 10, then the binary/one-hot-encoded vector becomes a vector of length V ,

where the 10th entry of the binary word vector is set to 1 and all other entries are set to

zero.
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For the majority of the classification models that are evaluated in this chapter, the binary

word vectors in each talk-turn were aggregated into a single talk-turn vector ei,j by adding the

individual binary word vectors (also known as a bag-of-words encoding) and re-weighting

using tf-idf weights,1 a common text preprocessing step which downweights common and

uninformative words. The vector ei,j represents each talk-turn and has dimensionality equal

to the size of the vocabulary V = 14800.

For the neural network models, a different representation is used. One vector ei,j is generated

per talk-turn using a network composed of an embedding layer and a bidirectional set of

gated recurrent units (GRUs). The embedding layer, initialized with pre-trained GloVe [122]

vectors, takes each binary word vector in the talk-turn and maps it to a dense embedded

vector representation. The GRU component takes the sequence of embedded vectors within a

talk-turn (one embedded vector per word) and produces a single fixed-dimensional vector ei,j

to represent the talk-turn. This approach has been shown to be useful in NLP applications

for encoding variable-length sequential information from words in a sentence (talk-turn) into

a fixed-dimensional vector that can be used as a feature vector for downstream classification

[60]. The GRU unit size was 128, and the output talk-turn vector ei,j had size 256 since the

GRU outputs in both directions are concatenated.

Given the talk-turn vectors ei,j, each talk-turn is classified either independently or by using

sequential information across talk-turns. Figure 4.2 provides a high-level overview of the

three primary different types of models are explored: (i) independent models that classify

each talk-turn j only using the words in talk-turn j, (ii) window-based models that also

use words from a window of talk-turns both before and after talk-turn j, and (iii) fully

sequential models that also consider the topic labels (or predictions) of talk-turns before and

after j when predicting a topic for talk-turn j. In addition, another type of sequential model

is considered, that uses the talk-turn level GRUs on top of word level GRU outputs. The

1“Tf” stands for term frequency, and “idf” stands for inverse document frequency. Chapter 6.5 in Jurafsky
and Martin [80] provide more detailed information.
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yi,N
<latexit sha1_base64="mHB/cRiBl1i3Hs0S049LMnGFXlA=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8CAlEUEPHgpePEkFawttKJvtpl262YTdiRBCf4QXD4p49fd489+4bXPQ1hcWHt6ZYWfeIJHCoOt+O6WV1bX1jfJmZWt7Z3evun/waOJUM95isYx1J6CGS6F4CwVK3kk0p1EgeTsY30zr7SeujYjVA2YJ9yM6VCIUjKK12lk/F2d3k3615tbdmcgyeAXUoFCzX/3qDWKWRlwhk9SYrucm6OdUo2CSTyq91PCEsjEd8q5FRSNu/Hy27oScWGdAwljbp5DM3N8TOY2MyaLAdkYUR2axNjX/q3VTDK/8XKgkRa7Y/KMwlQRjMr2dDITmDGVmgTIt7K6EjaimDG1CFRuCt3jyMjye1z3L9xe1xnURRxmO4BhOwYNLaMAtNKEFDMbwDK/w5iTOi/PufMxbS04xcwh/5Hz+ACwYj20=</latexit><latexit sha1_base64="mHB/cRiBl1i3Hs0S049LMnGFXlA=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8CAlEUEPHgpePEkFawttKJvtpl262YTdiRBCf4QXD4p49fd489+4bXPQ1hcWHt6ZYWfeIJHCoOt+O6WV1bX1jfJmZWt7Z3evun/waOJUM95isYx1J6CGS6F4CwVK3kk0p1EgeTsY30zr7SeujYjVA2YJ9yM6VCIUjKK12lk/F2d3k3615tbdmcgyeAXUoFCzX/3qDWKWRlwhk9SYrucm6OdUo2CSTyq91PCEsjEd8q5FRSNu/Hy27oScWGdAwljbp5DM3N8TOY2MyaLAdkYUR2axNjX/q3VTDK/8XKgkRa7Y/KMwlQRjMr2dDITmDGVmgTIt7K6EjaimDG1CFRuCt3jyMjye1z3L9xe1xnURRxmO4BhOwYNLaMAtNKEFDMbwDK/w5iTOi/PufMxbS04xcwh/5Hz+ACwYj20=</latexit><latexit sha1_base64="mHB/cRiBl1i3Hs0S049LMnGFXlA=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8CAlEUEPHgpePEkFawttKJvtpl262YTdiRBCf4QXD4p49fd489+4bXPQ1hcWHt6ZYWfeIJHCoOt+O6WV1bX1jfJmZWt7Z3evun/waOJUM95isYx1J6CGS6F4CwVK3kk0p1EgeTsY30zr7SeujYjVA2YJ9yM6VCIUjKK12lk/F2d3k3615tbdmcgyeAXUoFCzX/3qDWKWRlwhk9SYrucm6OdUo2CSTyq91PCEsjEd8q5FRSNu/Hy27oScWGdAwljbp5DM3N8TOY2MyaLAdkYUR2axNjX/q3VTDK/8XKgkRa7Y/KMwlQRjMr2dDITmDGVmgTIt7K6EjaimDG1CFRuCt3jyMjye1z3L9xe1xnURRxmO4BhOwYNLaMAtNKEFDMbwDK/w5iTOi/PufMxbS04xcwh/5Hz+ACwYj20=</latexit><latexit sha1_base64="mHB/cRiBl1i3Hs0S049LMnGFXlA=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8CAlEUEPHgpePEkFawttKJvtpl262YTdiRBCf4QXD4p49fd489+4bXPQ1hcWHt6ZYWfeIJHCoOt+O6WV1bX1jfJmZWt7Z3evun/waOJUM95isYx1J6CGS6F4CwVK3kk0p1EgeTsY30zr7SeujYjVA2YJ9yM6VCIUjKK12lk/F2d3k3615tbdmcgyeAXUoFCzX/3qDWKWRlwhk9SYrucm6OdUo2CSTyq91PCEsjEd8q5FRSNu/Hy27oScWGdAwljbp5DM3N8TOY2MyaLAdkYUR2axNjX/q3VTDK/8XKgkRa7Y/KMwlQRjMr2dDITmDGVmgTIt7K6EjaimDG1CFRuCt3jyMjye1z3L9xe1xnURRxmO4BhOwYNLaMAtNKEFDMbwDK/w5iTOi/PufMxbS04xcwh/5Hz+ACwYj20=</latexit>

yi,j
<latexit sha1_base64="hON1+6+F6E/XT9Np+iIZJ4cfEZM=">AAAB7nicbZBNS8NAEIYnftb6VfXoZbEIHqQkIujBQ8GLxwr2A9pQNttNu3azCbsTIYT+CC8eFPHq7/Hmv3Hb5qCtLyw8vDPDzrxBIoVB1/12VlbX1jc2S1vl7Z3dvf3KwWHLxKlmvMliGetOQA2XQvEmCpS8k2hOo0DydjC+ndbbT1wbEasHzBLuR3SoRCgYRWu1s34uzh8n/UrVrbkzkWXwCqhCoUa/8tUbxCyNuEImqTFdz03Qz6lGwSSflHup4QllYzrkXYuKRtz4+WzdCTm1zoCEsbZPIZm5vydyGhmTRYHtjCiOzGJtav5X66YYXvu5UEmKXLH5R2EqCcZkejsZCM0ZyswCZVrYXQkbUU0Z2oTKNgRv8eRlaF3UPMv3l9X6TRFHCY7hBM7Agyuowx00oAkMxvAMr/DmJM6L8+58zFtXnGLmCP7I+fwBVqSPiQ==</latexit><latexit sha1_base64="hON1+6+F6E/XT9Np+iIZJ4cfEZM=">AAAB7nicbZBNS8NAEIYnftb6VfXoZbEIHqQkIujBQ8GLxwr2A9pQNttNu3azCbsTIYT+CC8eFPHq7/Hmv3Hb5qCtLyw8vDPDzrxBIoVB1/12VlbX1jc2S1vl7Z3dvf3KwWHLxKlmvMliGetOQA2XQvEmCpS8k2hOo0DydjC+ndbbT1wbEasHzBLuR3SoRCgYRWu1s34uzh8n/UrVrbkzkWXwCqhCoUa/8tUbxCyNuEImqTFdz03Qz6lGwSSflHup4QllYzrkXYuKRtz4+WzdCTm1zoCEsbZPIZm5vydyGhmTRYHtjCiOzGJtav5X66YYXvu5UEmKXLH5R2EqCcZkejsZCM0ZyswCZVrYXQkbUU0Z2oTKNgRv8eRlaF3UPMv3l9X6TRFHCY7hBM7Agyuowx00oAkMxvAMr/DmJM6L8+58zFtXnGLmCP7I+fwBVqSPiQ==</latexit><latexit sha1_base64="hON1+6+F6E/XT9Np+iIZJ4cfEZM=">AAAB7nicbZBNS8NAEIYnftb6VfXoZbEIHqQkIujBQ8GLxwr2A9pQNttNu3azCbsTIYT+CC8eFPHq7/Hmv3Hb5qCtLyw8vDPDzrxBIoVB1/12VlbX1jc2S1vl7Z3dvf3KwWHLxKlmvMliGetOQA2XQvEmCpS8k2hOo0DydjC+ndbbT1wbEasHzBLuR3SoRCgYRWu1s34uzh8n/UrVrbkzkWXwCqhCoUa/8tUbxCyNuEImqTFdz03Qz6lGwSSflHup4QllYzrkXYuKRtz4+WzdCTm1zoCEsbZPIZm5vydyGhmTRYHtjCiOzGJtav5X66YYXvu5UEmKXLH5R2EqCcZkejsZCM0ZyswCZVrYXQkbUU0Z2oTKNgRv8eRlaF3UPMv3l9X6TRFHCY7hBM7Agyuowx00oAkMxvAMr/DmJM6L8+58zFtXnGLmCP7I+fwBVqSPiQ==</latexit><latexit sha1_base64="hON1+6+F6E/XT9Np+iIZJ4cfEZM=">AAAB7nicbZBNS8NAEIYnftb6VfXoZbEIHqQkIujBQ8GLxwr2A9pQNttNu3azCbsTIYT+CC8eFPHq7/Hmv3Hb5qCtLyw8vDPDzrxBIoVB1/12VlbX1jc2S1vl7Z3dvf3KwWHLxKlmvMliGetOQA2XQvEmCpS8k2hOo0DydjC+ndbbT1wbEasHzBLuR3SoRCgYRWu1s34uzh8n/UrVrbkzkWXwCqhCoUa/8tUbxCyNuEImqTFdz03Qz6lGwSSflHup4QllYzrkXYuKRtz4+WzdCTm1zoCEsbZPIZm5vydyGhmTRYHtjCiOzGJtav5X66YYXvu5UEmKXLH5R2EqCcZkejsZCM0ZyswCZVrYXQkbUU0Z2oTKNgRv8eRlaF3UPMv3l9X6TRFHCY7hBM7Agyuowx00oAkMxvAMr/DmJM6L8+58zFtXnGLmCP7I+fwBVqSPiQ==</latexit>

ei,j
<latexit sha1_base64="n8AA35XvCJNryo2Qd/o9ldlo9g4=">AAAB/XicbVDNS8MwHE3n15xf9ePmJTgEDzJaERRPAy8eJ7gP2EpJ03SLS5OSpMIsxX/FiwdFvPp/ePO/Md160M0HIY/3fj/y8oKEUaUd59uqLC2vrK5V12sbm1vbO/buXkeJVGLSxoIJ2QuQIoxy0tZUM9JLJEFxwEg3GF8XfveBSEUFv9OThHgxGnIaUYy0kXz7YBAIFqpJbK6M5H5GT+9z3647DWcKuEjcktRBiZZvfw1CgdOYcI0ZUqrvOon2MiQ1xYzktUGqSILwGA1J31COYqK8bJo+h8dGCWEkpDlcw6n6eyNDsSoCmskY6ZGa9wrxP6+f6ujSyyhPUk04nj0UpQxqAYsqYEglwZpNDEFYUpMV4hGSCGtTWM2U4M5/eZF0zhqu4bfn9eZVWUcVHIIjcAJccAGa4Aa0QBtg8AiewSt4s56sF+vd+piNVqxyZx/8gfX5Az5wlbE=</latexit><latexit sha1_base64="n8AA35XvCJNryo2Qd/o9ldlo9g4=">AAAB/XicbVDNS8MwHE3n15xf9ePmJTgEDzJaERRPAy8eJ7gP2EpJ03SLS5OSpMIsxX/FiwdFvPp/ePO/Md160M0HIY/3fj/y8oKEUaUd59uqLC2vrK5V12sbm1vbO/buXkeJVGLSxoIJ2QuQIoxy0tZUM9JLJEFxwEg3GF8XfveBSEUFv9OThHgxGnIaUYy0kXz7YBAIFqpJbK6M5H5GT+9z3647DWcKuEjcktRBiZZvfw1CgdOYcI0ZUqrvOon2MiQ1xYzktUGqSILwGA1J31COYqK8bJo+h8dGCWEkpDlcw6n6eyNDsSoCmskY6ZGa9wrxP6+f6ujSyyhPUk04nj0UpQxqAYsqYEglwZpNDEFYUpMV4hGSCGtTWM2U4M5/eZF0zhqu4bfn9eZVWUcVHIIjcAJccAGa4Aa0QBtg8AiewSt4s56sF+vd+piNVqxyZx/8gfX5Az5wlbE=</latexit><latexit sha1_base64="n8AA35XvCJNryo2Qd/o9ldlo9g4=">AAAB/XicbVDNS8MwHE3n15xf9ePmJTgEDzJaERRPAy8eJ7gP2EpJ03SLS5OSpMIsxX/FiwdFvPp/ePO/Md160M0HIY/3fj/y8oKEUaUd59uqLC2vrK5V12sbm1vbO/buXkeJVGLSxoIJ2QuQIoxy0tZUM9JLJEFxwEg3GF8XfveBSEUFv9OThHgxGnIaUYy0kXz7YBAIFqpJbK6M5H5GT+9z3647DWcKuEjcktRBiZZvfw1CgdOYcI0ZUqrvOon2MiQ1xYzktUGqSILwGA1J31COYqK8bJo+h8dGCWEkpDlcw6n6eyNDsSoCmskY6ZGa9wrxP6+f6ujSyyhPUk04nj0UpQxqAYsqYEglwZpNDEFYUpMV4hGSCGtTWM2U4M5/eZF0zhqu4bfn9eZVWUcVHIIjcAJccAGa4Aa0QBtg8AiewSt4s56sF+vd+piNVqxyZx/8gfX5Az5wlbE=</latexit><latexit sha1_base64="n8AA35XvCJNryo2Qd/o9ldlo9g4=">AAAB/XicbVDNS8MwHE3n15xf9ePmJTgEDzJaERRPAy8eJ7gP2EpJ03SLS5OSpMIsxX/FiwdFvPp/ePO/Md160M0HIY/3fj/y8oKEUaUd59uqLC2vrK5V12sbm1vbO/buXkeJVGLSxoIJ2QuQIoxy0tZUM9JLJEFxwEg3GF8XfveBSEUFv9OThHgxGnIaUYy0kXz7YBAIFqpJbK6M5H5GT+9z3647DWcKuEjcktRBiZZvfw1CgdOYcI0ZUqrvOon2MiQ1xYzktUGqSILwGA1J31COYqK8bJo+h8dGCWEkpDlcw6n6eyNDsSoCmskY6ZGa9wrxP6+f6ujSyyhPUk04nj0UpQxqAYsqYEglwZpNDEFYUpMV4hGSCGtTWM2U4M5/eZF0zhqu4bfn9eZVWUcVHIIjcAJccAGa4Aa0QBtg8AiewSt4s56sF+vd+piNVqxyZx/8gfX5Az5wlbE=</latexit>

Talk-turn Representation 
- Bag-of-Words (+ tf-idf) 
- GRU Encoding

Classifier 
- Logistic Regression 
- Support Vector Machine 
- Multilayer Perceptron

Wi,j
<latexit sha1_base64="4wus2Nh9i5v6nJ0jx41wmTDVekM=">AAAB73icbZBNS8NAEIYn9avWr6pHL4tF8CAlEUHxVPDisYL9gDaUzXbTrt1s4u5EKKF/wosHRbz6d7z5b9y2OWjrCwsP78ywM2+QSGHQdb+dwsrq2vpGcbO0tb2zu1feP2iaONWMN1gsY90OqOFSKN5AgZK3E81pFEjeCkY303rriWsjYnWP44T7ER0oEQpG0VrtVi8TZ+Rh0itX3Ko7E1kGL4cK5Kr3yl/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rGoaMSNn832nZAT6/RJGGv7FJKZ+3sio5Ex4yiwnRHFoVmsTc3/ap0Uwys/EypJkSs2/yhMJcGYTI8nfaE5Qzm2QJkWdlfChlRThjaikg3BWzx5GZrnVc/y3UWldp3HUYQjOIZT8OASanALdWgAAwnP8ApvzqPz4rw7H/PWgpPPHMIfOZ8/eSyPjw==</latexit><latexit sha1_base64="4wus2Nh9i5v6nJ0jx41wmTDVekM=">AAAB73icbZBNS8NAEIYn9avWr6pHL4tF8CAlEUHxVPDisYL9gDaUzXbTrt1s4u5EKKF/wosHRbz6d7z5b9y2OWjrCwsP78ywM2+QSGHQdb+dwsrq2vpGcbO0tb2zu1feP2iaONWMN1gsY90OqOFSKN5AgZK3E81pFEjeCkY303rriWsjYnWP44T7ER0oEQpG0VrtVi8TZ+Rh0itX3Ko7E1kGL4cK5Kr3yl/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rGoaMSNn832nZAT6/RJGGv7FJKZ+3sio5Ex4yiwnRHFoVmsTc3/ap0Uwys/EypJkSs2/yhMJcGYTI8nfaE5Qzm2QJkWdlfChlRThjaikg3BWzx5GZrnVc/y3UWldp3HUYQjOIZT8OASanALdWgAAwnP8ApvzqPz4rw7H/PWgpPPHMIfOZ8/eSyPjw==</latexit><latexit sha1_base64="4wus2Nh9i5v6nJ0jx41wmTDVekM=">AAAB73icbZBNS8NAEIYn9avWr6pHL4tF8CAlEUHxVPDisYL9gDaUzXbTrt1s4u5EKKF/wosHRbz6d7z5b9y2OWjrCwsP78ywM2+QSGHQdb+dwsrq2vpGcbO0tb2zu1feP2iaONWMN1gsY90OqOFSKN5AgZK3E81pFEjeCkY303rriWsjYnWP44T7ER0oEQpG0VrtVi8TZ+Rh0itX3Ko7E1kGL4cK5Kr3yl/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rGoaMSNn832nZAT6/RJGGv7FJKZ+3sio5Ex4yiwnRHFoVmsTc3/ap0Uwys/EypJkSs2/yhMJcGYTI8nfaE5Qzm2QJkWdlfChlRThjaikg3BWzx5GZrnVc/y3UWldp3HUYQjOIZT8OASanALdWgAAwnP8ApvzqPz4rw7H/PWgpPPHMIfOZ8/eSyPjw==</latexit><latexit sha1_base64="4wus2Nh9i5v6nJ0jx41wmTDVekM=">AAAB73icbZBNS8NAEIYn9avWr6pHL4tF8CAlEUHxVPDisYL9gDaUzXbTrt1s4u5EKKF/wosHRbz6d7z5b9y2OWjrCwsP78ywM2+QSGHQdb+dwsrq2vpGcbO0tb2zu1feP2iaONWMN1gsY90OqOFSKN5AgZK3E81pFEjeCkY303rriWsjYnWP44T7ER0oEQpG0VrtVi8TZ+Rh0itX3Ko7E1kGL4cK5Kr3yl/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rGoaMSNn832nZAT6/RJGGv7FJKZ+3sio5Ex4yiwnRHFoVmsTc3/ap0Uwys/EypJkSs2/yhMJcGYTI8nfaE5Qzm2QJkWdlfChlRThjaikg3BWzx5GZrnVc/y3UWldp3HUYQjOIZT8OASanALdWgAAwnP8ApvzqPz4rw7H/PWgpPPHMIfOZ8/eSyPjw==</latexit>

Wi,j+1
<latexit sha1_base64="NKmdPvRSER364uL8EEmslYNMrPE=">AAAB8XicbZBNS8NAEIYn9avWr6pHL4tFEJSSiKB4KnjxWMF+YBvKZrtpVzebsDsRSui/8OJBEa/+G2/+G7dtDtr6wsLDOzPszBskUhh03W+nsLS8srpWXC9tbG5t75R395omTjXjDRbLWLcDargUijdQoOTtRHMaBZK3gsfrSb31xLURsbrDUcL9iA6UCAWjaK37Vi8Tp+ThxBv3yhW36k5FFsHLoQK56r3yV7cfszTiCpmkxnQ8N0E/oxoFk3xc6qaGJ5Q90gHvWFQ04sbPphuPyZF1+iSMtX0KydT9PZHRyJhRFNjOiOLQzNcm5n+1TorhpZ8JlaTIFZt9FKaSYEwm55O+0JyhHFmgTAu7K2FDqilDG1LJhuDNn7wIzbOqZ/n2vFK7yuMowgEcwjF4cAE1uIE6NICBgmd4hTfHOC/Ou/Mxay04+cw+/JHz+QNTuI//</latexit><latexit sha1_base64="NKmdPvRSER364uL8EEmslYNMrPE=">AAAB8XicbZBNS8NAEIYn9avWr6pHL4tFEJSSiKB4KnjxWMF+YBvKZrtpVzebsDsRSui/8OJBEa/+G2/+G7dtDtr6wsLDOzPszBskUhh03W+nsLS8srpWXC9tbG5t75R395omTjXjDRbLWLcDargUijdQoOTtRHMaBZK3gsfrSb31xLURsbrDUcL9iA6UCAWjaK37Vi8Tp+ThxBv3yhW36k5FFsHLoQK56r3yV7cfszTiCpmkxnQ8N0E/oxoFk3xc6qaGJ5Q90gHvWFQ04sbPphuPyZF1+iSMtX0KydT9PZHRyJhRFNjOiOLQzNcm5n+1TorhpZ8JlaTIFZt9FKaSYEwm55O+0JyhHFmgTAu7K2FDqilDG1LJhuDNn7wIzbOqZ/n2vFK7yuMowgEcwjF4cAE1uIE6NICBgmd4hTfHOC/Ou/Mxay04+cw+/JHz+QNTuI//</latexit><latexit sha1_base64="NKmdPvRSER364uL8EEmslYNMrPE=">AAAB8XicbZBNS8NAEIYn9avWr6pHL4tFEJSSiKB4KnjxWMF+YBvKZrtpVzebsDsRSui/8OJBEa/+G2/+G7dtDtr6wsLDOzPszBskUhh03W+nsLS8srpWXC9tbG5t75R395omTjXjDRbLWLcDargUijdQoOTtRHMaBZK3gsfrSb31xLURsbrDUcL9iA6UCAWjaK37Vi8Tp+ThxBv3yhW36k5FFsHLoQK56r3yV7cfszTiCpmkxnQ8N0E/oxoFk3xc6qaGJ5Q90gHvWFQ04sbPphuPyZF1+iSMtX0KydT9PZHRyJhRFNjOiOLQzNcm5n+1TorhpZ8JlaTIFZt9FKaSYEwm55O+0JyhHFmgTAu7K2FDqilDG1LJhuDNn7wIzbOqZ/n2vFK7yuMowgEcwjF4cAE1uIE6NICBgmd4hTfHOC/Ou/Mxay04+cw+/JHz+QNTuI//</latexit><latexit sha1_base64="NKmdPvRSER364uL8EEmslYNMrPE=">AAAB8XicbZBNS8NAEIYn9avWr6pHL4tFEJSSiKB4KnjxWMF+YBvKZrtpVzebsDsRSui/8OJBEa/+G2/+G7dtDtr6wsLDOzPszBskUhh03W+nsLS8srpWXC9tbG5t75R395omTjXjDRbLWLcDargUijdQoOTtRHMaBZK3gsfrSb31xLURsbrDUcL9iA6UCAWjaK37Vi8Tp+ThxBv3yhW36k5FFsHLoQK56r3yV7cfszTiCpmkxnQ8N0E/oxoFk3xc6qaGJ5Q90gHvWFQ04sbPphuPyZF1+iSMtX0KydT9PZHRyJhRFNjOiOLQzNcm5n+1TorhpZ8JlaTIFZt9FKaSYEwm55O+0JyhHFmgTAu7K2FDqilDG1LJhuDNn7wIzbOqZ/n2vFK7yuMowgEcwjF4cAE1uIE6NICBgmd4hTfHOC/Ou/Mxay04+cw+/JHz+QNTuI//</latexit>

Wi,j�1
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Figure 4.2: High-level diagram of the various models discussed in the chapter. i, j stands for
talk-turn j in visit i. Wi,j is the list of tokenized words in talk-turn j. For each talk-turn j,
I first generate the vectorized talk-turn representation ei,j, and the talk-turn representation
ei,j is used as an input to different classifiers to predict the topic label yi,j, which is the
topic label for talk-turn j. Windowed models use adjacent talk-turns to create the talk-turn
level representation, and the fully sequential models make use of the sequential dependencies
between the topic labels.

model is depicted in Figure 4.3. I describe each of the three approaches in more detail below.

4.3.3 Independent Models

Independent models classify each talk-turn j by using only the words in that talk-turn, Wi,j,

independently of the other talk-turns. The independent models used in my study were the

logistic regression (LR) classifiers, support vector machines (SVM), and feedforward neural

networks with a single hidden layer. The LR and SVM classifiers used the bag-of-words

vectors with tf-idf weights as input to predict the topic label yi,j. For the feedforward

neural network, the output talk-turn vectors ei,j of the bidirectional GRU units were used as

inputs, and the softmax function was used for the activation function in the perceptron. The

parameters (weights) of the embedding layer, the GRU, and the feedforward neural network
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<latexit sha1_base64="aE0/nCJvhzRrZk4T5xFtNQoc0Lc=">AAAB/XicbVDLSsNAFL2pr1pf9bFzM1gEF1ISERRXBTcuK9haaEOYTCbt0EkmzEyEGoK/4saFIm79D3f+jZM2C209MMzhnHuZM8dPOFPatr+tytLyyupadb22sbm1vVPf3esqkUpCO0RwIXs+VpSzmHY005z2Eklx5HN674+vC//+gUrFRHynJwl1IzyMWcgI1kby6gcDX/BATSJzZTT3Mnbq5F69YTftKdAicUrSgBJtr/41CARJIxprwrFSfcdOtJthqRnhNK8NUkUTTMZ4SPuGxjiiys2m6XN0bJQAhUKaE2s0VX9vZDhSRUAzGWE9UvNeIf7n9VMdXroZi5NU05jMHgpTjrRARRUoYJISzSeGYCKZyYrICEtMtCmsZkpw5r+8SLpnTcfw2/NG66qsowqHcAQn4MAFtOAG2tABAo/wDK/wZj1ZL9a79TEbrVjlzj78gfX5A+fElXg=</latexit><latexit sha1_base64="aE0/nCJvhzRrZk4T5xFtNQoc0Lc=">AAAB/XicbVDLSsNAFL2pr1pf9bFzM1gEF1ISERRXBTcuK9haaEOYTCbt0EkmzEyEGoK/4saFIm79D3f+jZM2C209MMzhnHuZM8dPOFPatr+tytLyyupadb22sbm1vVPf3esqkUpCO0RwIXs+VpSzmHY005z2Eklx5HN674+vC//+gUrFRHynJwl1IzyMWcgI1kby6gcDX/BATSJzZTT3Mnbq5F69YTftKdAicUrSgBJtr/41CARJIxprwrFSfcdOtJthqRnhNK8NUkUTTMZ4SPuGxjiiys2m6XN0bJQAhUKaE2s0VX9vZDhSRUAzGWE9UvNeIf7n9VMdXroZi5NU05jMHgpTjrRARRUoYJISzSeGYCKZyYrICEtMtCmsZkpw5r+8SLpnTcfw2/NG66qsowqHcAQn4MAFtOAG2tABAo/wDK/wZj1ZL9a79TEbrVjlzj78gfX5A+fElXg=</latexit><latexit sha1_base64="aE0/nCJvhzRrZk4T5xFtNQoc0Lc=">AAAB/XicbVDLSsNAFL2pr1pf9bFzM1gEF1ISERRXBTcuK9haaEOYTCbt0EkmzEyEGoK/4saFIm79D3f+jZM2C209MMzhnHuZM8dPOFPatr+tytLyyupadb22sbm1vVPf3esqkUpCO0RwIXs+VpSzmHY005z2Eklx5HN674+vC//+gUrFRHynJwl1IzyMWcgI1kby6gcDX/BATSJzZTT3Mnbq5F69YTftKdAicUrSgBJtr/41CARJIxprwrFSfcdOtJthqRnhNK8NUkUTTMZ4SPuGxjiiys2m6XN0bJQAhUKaE2s0VX9vZDhSRUAzGWE9UvNeIf7n9VMdXroZi5NU05jMHgpTjrRARRUoYJISzSeGYCKZyYrICEtMtCmsZkpw5r+8SLpnTcfw2/NG66qsowqHcAQn4MAFtOAG2tABAo/wDK/wZj1ZL9a79TEbrVjlzj78gfX5A+fElXg=</latexit><latexit sha1_base64="aE0/nCJvhzRrZk4T5xFtNQoc0Lc=">AAAB/XicbVDLSsNAFL2pr1pf9bFzM1gEF1ISERRXBTcuK9haaEOYTCbt0EkmzEyEGoK/4saFIm79D3f+jZM2C209MMzhnHuZM8dPOFPatr+tytLyyupadb22sbm1vVPf3esqkUpCO0RwIXs+VpSzmHY005z2Eklx5HN674+vC//+gUrFRHynJwl1IzyMWcgI1kby6gcDX/BATSJzZTT3Mnbq5F69YTftKdAicUrSgBJtr/41CARJIxprwrFSfcdOtJthqRnhNK8NUkUTTMZ4SPuGxjiiys2m6XN0bJQAhUKaE2s0VX9vZDhSRUAzGWE9UvNeIf7n9VMdXroZi5NU05jMHgpTjrRARRUoYJISzSeGYCKZyYrICEtMtCmsZkpw5r+8SLpnTcfw2/NG66qsowqHcAQn4MAFtOAG2tABAo/wDK/wZj1ZL9a79TEbrVjlzj78gfX5A+fElXg=</latexit>

ei,N
<latexit sha1_base64="6Ge+6vnRJ1XhTMNe7Y55p34UuqE=">AAAB/XicbVDNS8MwHE3n15xf9ePmJTgEDzJaERRPAy+eZIL7gK2UNE23sDQpSSrMUvxXvHhQxKv/hzf/G9OtB918EPJ47/cjLy9IGFXacb6tytLyyupadb22sbm1vWPv7nWUSCUmbSyYkL0AKcIoJ21NNSO9RBIUB4x0g/F14XcfiFRU8Hs9SYgXoyGnEcVIG8m3DwaBYKGaxObKSO5n9PQ29+2603CmgIvELUkdlGj59tcgFDiNCdeYIaX6rpNoL0NSU8xIXhukiiQIj9GQ9A3lKCbKy6bpc3hslBBGQprDNZyqvzcyFKsioJmMkR6pea8Q//P6qY4uvYzyJNWE49lDUcqgFrCoAoZUEqzZxBCEJTVZIR4hibA2hdVMCe78lxdJ56zhGn53Xm9elXVUwSE4AifABRegCW5AC7QBBo/gGbyCN+vJerHerY/ZaMUqd/bBH1ifPxPklZU=</latexit><latexit sha1_base64="6Ge+6vnRJ1XhTMNe7Y55p34UuqE=">AAAB/XicbVDNS8MwHE3n15xf9ePmJTgEDzJaERRPAy+eZIL7gK2UNE23sDQpSSrMUvxXvHhQxKv/hzf/G9OtB918EPJ47/cjLy9IGFXacb6tytLyyupadb22sbm1vWPv7nWUSCUmbSyYkL0AKcIoJ21NNSO9RBIUB4x0g/F14XcfiFRU8Hs9SYgXoyGnEcVIG8m3DwaBYKGaxObKSO5n9PQ29+2603CmgIvELUkdlGj59tcgFDiNCdeYIaX6rpNoL0NSU8xIXhukiiQIj9GQ9A3lKCbKy6bpc3hslBBGQprDNZyqvzcyFKsioJmMkR6pea8Q//P6qY4uvYzyJNWE49lDUcqgFrCoAoZUEqzZxBCEJTVZIR4hibA2hdVMCe78lxdJ56zhGn53Xm9elXVUwSE4AifABRegCW5AC7QBBo/gGbyCN+vJerHerY/ZaMUqd/bBH1ifPxPklZU=</latexit><latexit sha1_base64="6Ge+6vnRJ1XhTMNe7Y55p34UuqE=">AAAB/XicbVDNS8MwHE3n15xf9ePmJTgEDzJaERRPAy+eZIL7gK2UNE23sDQpSSrMUvxXvHhQxKv/hzf/G9OtB918EPJ47/cjLy9IGFXacb6tytLyyupadb22sbm1vWPv7nWUSCUmbSyYkL0AKcIoJ21NNSO9RBIUB4x0g/F14XcfiFRU8Hs9SYgXoyGnEcVIG8m3DwaBYKGaxObKSO5n9PQ29+2603CmgIvELUkdlGj59tcgFDiNCdeYIaX6rpNoL0NSU8xIXhukiiQIj9GQ9A3lKCbKy6bpc3hslBBGQprDNZyqvzcyFKsioJmMkR6pea8Q//P6qY4uvYzyJNWE49lDUcqgFrCoAoZUEqzZxBCEJTVZIR4hibA2hdVMCe78lxdJ56zhGn53Xm9elXVUwSE4AifABRegCW5AC7QBBo/gGbyCN+vJerHerY/ZaMUqd/bBH1ifPxPklZU=</latexit><latexit sha1_base64="6Ge+6vnRJ1XhTMNe7Y55p34UuqE=">AAAB/XicbVDNS8MwHE3n15xf9ePmJTgEDzJaERRPAy+eZIL7gK2UNE23sDQpSSrMUvxXvHhQxKv/hzf/G9OtB918EPJ47/cjLy9IGFXacb6tytLyyupadb22sbm1vWPv7nWUSCUmbSyYkL0AKcIoJ21NNSO9RBIUB4x0g/F14XcfiFRU8Hs9SYgXoyGnEcVIG8m3DwaBYKGaxObKSO5n9PQ29+2603CmgIvELUkdlGj59tcgFDiNCdeYIaX6rpNoL0NSU8xIXhukiiQIj9GQ9A3lKCbKy6bpc3hslBBGQprDNZyqvzcyFKsioJmMkR6pea8Q//P6qY4uvYzyJNWE49lDUcqgFrCoAoZUEqzZxBCEJTVZIR4hibA2hdVMCe78lxdJ56zhGn53Xm9elXVUwSE4AifABRegCW5AC7QBBo/gGbyCN+vJerHerY/ZaMUqd/bBH1ifPxPklZU=</latexit>

w1
i,N

<latexit sha1_base64="C7op2aSB+xpeYsSIdd1H5gypBe4=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQPMhoRVA8Dbx4kgnuA7Za0jTdwtKkJKkyag/+K148KOLVf8Ob/43Z1oNuPgh5vPf7kZcXJIwq7TjfVmlhcWl5pbxaWVvf2Nyyt3daSqQSkyYWTMhOgBRhlJOmppqRTiIJigNG2sHwcuy374lUVPBbPUqIF6M+pxHFSBvJt/d6gWChGsXmyh7yO9fP6PF17ttVp+ZMAOeJW5AqKNDw7a9eKHAaE64xQ0p1XSfRXoakppiRvNJLFUkQHqI+6RrKUUyUl03y5/DQKCGMhDSHazhRf29kKFbjiGYyRnqgZr2x+J/XTXV07mWUJ6kmHE8filIGtYDjMmBIJcGajQxBWFKTFeIBkghrU1nFlODOfnmetE5qruE3p9X6RVFHGeyDA3AEXHAG6uAKNEATYPAInsEreLOerBfr3fqYjpasYmcX/IH1+QNihZZK</latexit><latexit sha1_base64="C7op2aSB+xpeYsSIdd1H5gypBe4=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQPMhoRVA8Dbx4kgnuA7Za0jTdwtKkJKkyag/+K148KOLVf8Ob/43Z1oNuPgh5vPf7kZcXJIwq7TjfVmlhcWl5pbxaWVvf2Nyyt3daSqQSkyYWTMhOgBRhlJOmppqRTiIJigNG2sHwcuy374lUVPBbPUqIF6M+pxHFSBvJt/d6gWChGsXmyh7yO9fP6PF17ttVp+ZMAOeJW5AqKNDw7a9eKHAaE64xQ0p1XSfRXoakppiRvNJLFUkQHqI+6RrKUUyUl03y5/DQKCGMhDSHazhRf29kKFbjiGYyRnqgZr2x+J/XTXV07mWUJ6kmHE8filIGtYDjMmBIJcGajQxBWFKTFeIBkghrU1nFlODOfnmetE5qruE3p9X6RVFHGeyDA3AEXHAG6uAKNEATYPAInsEreLOerBfr3fqYjpasYmcX/IH1+QNihZZK</latexit><latexit sha1_base64="C7op2aSB+xpeYsSIdd1H5gypBe4=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQPMhoRVA8Dbx4kgnuA7Za0jTdwtKkJKkyag/+K148KOLVf8Ob/43Z1oNuPgh5vPf7kZcXJIwq7TjfVmlhcWl5pbxaWVvf2Nyyt3daSqQSkyYWTMhOgBRhlJOmppqRTiIJigNG2sHwcuy374lUVPBbPUqIF6M+pxHFSBvJt/d6gWChGsXmyh7yO9fP6PF17ttVp+ZMAOeJW5AqKNDw7a9eKHAaE64xQ0p1XSfRXoakppiRvNJLFUkQHqI+6RrKUUyUl03y5/DQKCGMhDSHazhRf29kKFbjiGYyRnqgZr2x+J/XTXV07mWUJ6kmHE8filIGtYDjMmBIJcGajQxBWFKTFeIBkghrU1nFlODOfnmetE5qruE3p9X6RVFHGeyDA3AEXHAG6uAKNEATYPAInsEreLOerBfr3fqYjpasYmcX/IH1+QNihZZK</latexit><latexit sha1_base64="C7op2aSB+xpeYsSIdd1H5gypBe4=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQPMhoRVA8Dbx4kgnuA7Za0jTdwtKkJKkyag/+K148KOLVf8Ob/43Z1oNuPgh5vPf7kZcXJIwq7TjfVmlhcWl5pbxaWVvf2Nyyt3daSqQSkyYWTMhOgBRhlJOmppqRTiIJigNG2sHwcuy374lUVPBbPUqIF6M+pxHFSBvJt/d6gWChGsXmyh7yO9fP6PF17ttVp+ZMAOeJW5AqKNDw7a9eKHAaE64xQ0p1XSfRXoakppiRvNJLFUkQHqI+6RrKUUyUl03y5/DQKCGMhDSHazhRf29kKFbjiGYyRnqgZr2x+J/XTXV07mWUJ6kmHE8filIGtYDjMmBIJcGajQxBWFKTFeIBkghrU1nFlODOfnmetE5qruE3p9X6RVFHGeyDA3AEXHAG6uAKNEATYPAInsEreLOerBfr3fqYjpasYmcX/IH1+QNihZZK</latexit>

wM
i,N

<latexit sha1_base64="Yd6RFug6xU5oiw6Y5spC4D+RLq8=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhyCBxmtCIqngRcvygT3AVstaZptYWlSklQZtQf/FS8eFPHqv+HN/8Z060E3H4Q83vv9yMsLYkaVdpxva25+YXFpubRSXl1b39i0t7abSiQSkwYWTMh2gBRhlJOGppqRdiwJigJGWsHwIvdb90QqKvitHsXEi1Cf0x7FSBvJt3e7gWChGkXmSh+yuys/pUfXmW9XnKozBpwlbkEqoEDdt7+6ocBJRLjGDCnVcZ1YeymSmmJGsnI3USRGeIj6pGMoRxFRXjrOn8EDo4SwJ6Q5XMOx+nsjRZHKI5rJCOmBmvZy8T+vk+jemZdSHieacDx5qJcwqAXMy4AhlQRrNjIEYUlNVogHSCKsTWVlU4I7/eVZ0jyuuobfnFRq50UdJbAH9sEhcMEpqIFLUAcNgMEjeAav4M16sl6sd+tjMjpnFTs74A+szx+NnZZm</latexit><latexit sha1_base64="Yd6RFug6xU5oiw6Y5spC4D+RLq8=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhyCBxmtCIqngRcvygT3AVstaZptYWlSklQZtQf/FS8eFPHqv+HN/8Z060E3H4Q83vv9yMsLYkaVdpxva25+YXFpubRSXl1b39i0t7abSiQSkwYWTMh2gBRhlJOGppqRdiwJigJGWsHwIvdb90QqKvitHsXEi1Cf0x7FSBvJt3e7gWChGkXmSh+yuys/pUfXmW9XnKozBpwlbkEqoEDdt7+6ocBJRLjGDCnVcZ1YeymSmmJGsnI3USRGeIj6pGMoRxFRXjrOn8EDo4SwJ6Q5XMOx+nsjRZHKI5rJCOmBmvZy8T+vk+jemZdSHieacDx5qJcwqAXMy4AhlQRrNjIEYUlNVogHSCKsTWVlU4I7/eVZ0jyuuobfnFRq50UdJbAH9sEhcMEpqIFLUAcNgMEjeAav4M16sl6sd+tjMjpnFTs74A+szx+NnZZm</latexit><latexit sha1_base64="Yd6RFug6xU5oiw6Y5spC4D+RLq8=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhyCBxmtCIqngRcvygT3AVstaZptYWlSklQZtQf/FS8eFPHqv+HN/8Z060E3H4Q83vv9yMsLYkaVdpxva25+YXFpubRSXl1b39i0t7abSiQSkwYWTMh2gBRhlJOGppqRdiwJigJGWsHwIvdb90QqKvitHsXEi1Cf0x7FSBvJt3e7gWChGkXmSh+yuys/pUfXmW9XnKozBpwlbkEqoEDdt7+6ocBJRLjGDCnVcZ1YeymSmmJGsnI3USRGeIj6pGMoRxFRXjrOn8EDo4SwJ6Q5XMOx+nsjRZHKI5rJCOmBmvZy8T+vk+jemZdSHieacDx5qJcwqAXMy4AhlQRrNjIEYUlNVogHSCKsTWVlU4I7/eVZ0jyuuobfnFRq50UdJbAH9sEhcMEpqIFLUAcNgMEjeAav4M16sl6sd+tjMjpnFTs74A+szx+NnZZm</latexit><latexit sha1_base64="Yd6RFug6xU5oiw6Y5spC4D+RLq8=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhyCBxmtCIqngRcvygT3AVstaZptYWlSklQZtQf/FS8eFPHqv+HN/8Z060E3H4Q83vv9yMsLYkaVdpxva25+YXFpubRSXl1b39i0t7abSiQSkwYWTMh2gBRhlJOGppqRdiwJigJGWsHwIvdb90QqKvitHsXEi1Cf0x7FSBvJt3e7gWChGkXmSh+yuys/pUfXmW9XnKozBpwlbkEqoEDdt7+6ocBJRLjGDCnVcZ1YeymSmmJGsnI3USRGeIj6pGMoRxFRXjrOn8EDo4SwJ6Q5XMOx+nsjRZHKI5rJCOmBmvZy8T+vk+jemZdSHieacDx5qJcwqAXMy4AhlQRrNjIEYUlNVogHSCKsTWVlU4I7/eVZ0jyuuobfnFRq50UdJbAH9sEhcMEpqIFLUAcNgMEjeAav4M16sl6sd+tjMjpnFTs74A+szx+NnZZm</latexit>

yi,1
<latexit sha1_base64="cxmMXxDhSI0WWwBI5mBY/SkIK4w=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8CAlEUEPHgpePFawH9CGstlu2qWbTdidCCH0R3jxoIhXf483/43bNgdtfWHh4Z0ZduYNEikMuu63U1pb39jcKm9Xdnb39g+qh0dtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8HkblbvPHFtRKweMUu4H9GREqFgFK3VyQa5uPCmg2rNrbtzkVXwCqhBoeag+tUfxiyNuEImqTE9z03Qz6lGwSSfVvqp4QllEzriPYuKRtz4+XzdKTmzzpCEsbZPIZm7vydyGhmTRYHtjCiOzXJtZv5X66UY3vi5UEmKXLHFR2EqCcZkdjsZCs0ZyswCZVrYXQkbU00Z2oQqNgRv+eRVaF/WPcsPV7XGbRFHGU7gFM7Bg2towD00oQUMJvAMr/DmJM6L8+58LFpLTjFzDH/kfP4AAAePUA==</latexit><latexit sha1_base64="cxmMXxDhSI0WWwBI5mBY/SkIK4w=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8CAlEUEPHgpePFawH9CGstlu2qWbTdidCCH0R3jxoIhXf483/43bNgdtfWHh4Z0ZduYNEikMuu63U1pb39jcKm9Xdnb39g+qh0dtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8HkblbvPHFtRKweMUu4H9GREqFgFK3VyQa5uPCmg2rNrbtzkVXwCqhBoeag+tUfxiyNuEImqTE9z03Qz6lGwSSfVvqp4QllEzriPYuKRtz4+XzdKTmzzpCEsbZPIZm7vydyGhmTRYHtjCiOzXJtZv5X66UY3vi5UEmKXLHFR2EqCcZkdjsZCs0ZyswCZVrYXQkbU00Z2oQqNgRv+eRVaF/WPcsPV7XGbRFHGU7gFM7Bg2towD00oQUMJvAMr/DmJM6L8+58LFpLTjFzDH/kfP4AAAePUA==</latexit><latexit sha1_base64="cxmMXxDhSI0WWwBI5mBY/SkIK4w=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8CAlEUEPHgpePFawH9CGstlu2qWbTdidCCH0R3jxoIhXf483/43bNgdtfWHh4Z0ZduYNEikMuu63U1pb39jcKm9Xdnb39g+qh0dtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8HkblbvPHFtRKweMUu4H9GREqFgFK3VyQa5uPCmg2rNrbtzkVXwCqhBoeag+tUfxiyNuEImqTE9z03Qz6lGwSSfVvqp4QllEzriPYuKRtz4+XzdKTmzzpCEsbZPIZm7vydyGhmTRYHtjCiOzXJtZv5X66UY3vi5UEmKXLHFR2EqCcZkdjsZCs0ZyswCZVrYXQkbU00Z2oQqNgRv+eRVaF/WPcsPV7XGbRFHGU7gFM7Bg2towD00oQUMJvAMr/DmJM6L8+58LFpLTjFzDH/kfP4AAAePUA==</latexit><latexit sha1_base64="cxmMXxDhSI0WWwBI5mBY/SkIK4w=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8CAlEUEPHgpePFawH9CGstlu2qWbTdidCCH0R3jxoIhXf483/43bNgdtfWHh4Z0ZduYNEikMuu63U1pb39jcKm9Xdnb39g+qh0dtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8HkblbvPHFtRKweMUu4H9GREqFgFK3VyQa5uPCmg2rNrbtzkVXwCqhBoeag+tUfxiyNuEImqTE9z03Qz6lGwSSfVvqp4QllEzriPYuKRtz4+XzdKTmzzpCEsbZPIZm7vydyGhmTRYHtjCiOzXJtZv5X66UY3vi5UEmKXLHFR2EqCcZkdjsZCs0ZyswCZVrYXQkbU00Z2oQqNgRv+eRVaF/WPcsPV7XGbRFHGU7gFM7Bg2towD00oQUMJvAMr/DmJM6L8+58LFpLTjFzDH/kfP4AAAePUA==</latexit>

yi,N
<latexit sha1_base64="mHB/cRiBl1i3Hs0S049LMnGFXlA=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8CAlEUEPHgpePEkFawttKJvtpl262YTdiRBCf4QXD4p49fd489+4bXPQ1hcWHt6ZYWfeIJHCoOt+O6WV1bX1jfJmZWt7Z3evun/waOJUM95isYx1J6CGS6F4CwVK3kk0p1EgeTsY30zr7SeujYjVA2YJ9yM6VCIUjKK12lk/F2d3k3615tbdmcgyeAXUoFCzX/3qDWKWRlwhk9SYrucm6OdUo2CSTyq91PCEsjEd8q5FRSNu/Hy27oScWGdAwljbp5DM3N8TOY2MyaLAdkYUR2axNjX/q3VTDK/8XKgkRa7Y/KMwlQRjMr2dDITmDGVmgTIt7K6EjaimDG1CFRuCt3jyMjye1z3L9xe1xnURRxmO4BhOwYNLaMAtNKEFDMbwDK/w5iTOi/PufMxbS04xcwh/5Hz+ACwYj20=</latexit><latexit sha1_base64="mHB/cRiBl1i3Hs0S049LMnGFXlA=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8CAlEUEPHgpePEkFawttKJvtpl262YTdiRBCf4QXD4p49fd489+4bXPQ1hcWHt6ZYWfeIJHCoOt+O6WV1bX1jfJmZWt7Z3evun/waOJUM95isYx1J6CGS6F4CwVK3kk0p1EgeTsY30zr7SeujYjVA2YJ9yM6VCIUjKK12lk/F2d3k3615tbdmcgyeAXUoFCzX/3qDWKWRlwhk9SYrucm6OdUo2CSTyq91PCEsjEd8q5FRSNu/Hy27oScWGdAwljbp5DM3N8TOY2MyaLAdkYUR2axNjX/q3VTDK/8XKgkRa7Y/KMwlQRjMr2dDITmDGVmgTIt7K6EjaimDG1CFRuCt3jyMjye1z3L9xe1xnURRxmO4BhOwYNLaMAtNKEFDMbwDK/w5iTOi/PufMxbS04xcwh/5Hz+ACwYj20=</latexit><latexit sha1_base64="mHB/cRiBl1i3Hs0S049LMnGFXlA=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8CAlEUEPHgpePEkFawttKJvtpl262YTdiRBCf4QXD4p49fd489+4bXPQ1hcWHt6ZYWfeIJHCoOt+O6WV1bX1jfJmZWt7Z3evun/waOJUM95isYx1J6CGS6F4CwVK3kk0p1EgeTsY30zr7SeujYjVA2YJ9yM6VCIUjKK12lk/F2d3k3615tbdmcgyeAXUoFCzX/3qDWKWRlwhk9SYrucm6OdUo2CSTyq91PCEsjEd8q5FRSNu/Hy27oScWGdAwljbp5DM3N8TOY2MyaLAdkYUR2axNjX/q3VTDK/8XKgkRa7Y/KMwlQRjMr2dDITmDGVmgTIt7K6EjaimDG1CFRuCt3jyMjye1z3L9xe1xnURRxmO4BhOwYNLaMAtNKEFDMbwDK/w5iTOi/PufMxbS04xcwh/5Hz+ACwYj20=</latexit><latexit sha1_base64="mHB/cRiBl1i3Hs0S049LMnGFXlA=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8CAlEUEPHgpePEkFawttKJvtpl262YTdiRBCf4QXD4p49fd489+4bXPQ1hcWHt6ZYWfeIJHCoOt+O6WV1bX1jfJmZWt7Z3evun/waOJUM95isYx1J6CGS6F4CwVK3kk0p1EgeTsY30zr7SeujYjVA2YJ9yM6VCIUjKK12lk/F2d3k3615tbdmcgyeAXUoFCzX/3qDWKWRlwhk9SYrucm6OdUo2CSTyq91PCEsjEd8q5FRSNu/Hy27oScWGdAwljbp5DM3N8TOY2MyaLAdkYUR2axNjX/q3VTDK/8XKgkRa7Y/KMwlQRjMr2dDITmDGVmgTIt7K6EjaimDG1CFRuCt3jyMjye1z3L9xe1xnURRxmO4BhOwYNLaMAtNKEFDMbwDK/w5iTOi/PufMxbS04xcwh/5Hz+ACwYj20=</latexit>

Thesis version

Figure 4.3: Simplified diagram of the Hierarchical GRU (Hier-GRU). Each word in talk-
turn j in visit i is fed into the word level encoder to get a talk-turn representation ei,j,
which becomes the input to the talk-turn level encoder. The embedding layer is omitted for
brevity and the embedding of the k-th word in talk-turn j is shown as wk

i,j. The model has
dependencies at the hidden state of talk-turn level GRUs. Both encoders were bidirectional
in the experiments.

were all trained together as a single network, and I refer to this model as “Independent

GRU.”

4.3.4 Window-based Models

Instead of using a single talk-turn vector ei,j as an input (as in the independent models),

for the window-based models, the adjacent M vectors before and after each talk-turn are

concatenated. The input vector was defined as [ei,j−M , . . . , ei,j, . . . , ei,j+M ], with dimension

V × (2M + 1), where V is the size of the vocabulary for bag-of-words representations. These

windowed input vectors were then used as input to either the LR or SVM classifier. In Figure

4.2, the window-based approach is indicated with dashed lines at the input level.

The window-based representation captures potentially useful sequential information across

talk-turns in a manner not available to the independent models—but at the cost of having

on the order of 2M times as many parameters. The approach is particularly useful when
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making topic predictions for short talk-turns with very little information—information from

neighboring talk-turns can be used to help to make predictions in such cases.

4.3.5 Fully Sequential Models

To model the sequential dependencies between the topic labels yi,j, I used linear chain con-

ditional random fields (CRFs) and hidden Markov models (HMMs). The linear chain CRF

is widely used for sequence labeling tasks such as named-entity recognition or part-of-speech

tagging [166, 88]—here I applied it to the problem of predicting the topic label of a talk-turn,

given a sequence of talk-turns. The HMMs are constructed by using the output class label

probabilities from each of the independent models discussed above. I converted the class

probabilities from the classifiers, p(yi,j = k|Wi,j), to emission probabilities, p(Wi,j|yi,j = k)

(needed by the HMM), by using the fact that p(Wi,j|yi,j = k) ∝ p(yi,j = k|Wi,j)/p(yi,j = k),

given that the talk-turn probabilities p(Wi,j) do not depend on a particular topic k. The

emission probabilities are combined with the Markov transition probabilities (which can be

directly estimated from label sequences in the training data) via the Viterbi algorithm to

compute the sequence of topic labels that has the highest joint probability across talk-turns,

conditioned on the observed talk-turn words.

I also found that using speaker-specific transition matrices improved the accuracy of the

sequential models. Not surprisingly, physicians tend to start new topics during a conversation

more than the patients do. Figure 4.4 shows the percentage of time that a particular speaker

(physician, patient, or other) starts each topic. To incorporate speaker information in the

HMM approach, I augmented the standard HMM to use two topic transition matrices, one for

the physician and one for the patient or other speakers. Each transition matrix corresponds

to the speaker of the state that the HMM is transitioning to (e.g., one transition matrix

for transitioning to physician, and the other for transitioning to all others). The decoding
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process in the Viterbi algorithm is modified so that it uses the appropriate matrix depending

on the speaker.

Another type of sequential model that is entirely neural-network-based does not have direct

dependencies between the topic labels, but has bidirectional connections between the hidden

states of the talk-turn level GRUs. The model, which is referred to as “Hier-GRU,” has a

hierarchical structure having two different GRUs, one at the word level to generate talk-turn

level representation, and the other which takes the talk-turn vectors as inputs to predict

the output label yi,j for each talk-turn j.2 Similar to Independent GRU, the talk-turn level

GRU output is connected to a fully-connected layer and then a softmax to make prediction.

Cross-entropy loss is used for end-to-end training.

4.4 Experiments and Results

4.4.1 Experimental Details

All models are evaluated using 10-fold cross-validation, and the evaluation metrics are com-

puted both at the talk-turn level and at the visit level. At the talk-turn level, I computed

the classification accuracy by comparing (a) the predicted topic from a model with (b) the

human-generated topic for the talk-turn. To obtain results at the visit level, I aggregated the

predictions from the individual talk-turns within each visit to generate a visit-level binary-

valued prediction vector of dimension 27 (the number of topic labels) with 1 for topic label k

if the model predicted topic k for one or more talk-turns in the visit, and 0 otherwise. Using

such a vector for each visit, I calculated the accuracy, precision, recall, and F1 scores. The

metrics were micro-averaged by globally counting the true positives, false positives, etc. for

2This type of structure has been used for dialog generation (e.g., Serban et al. [132]) as well as query
suggestion (e.g., Sordoni et al. [140]).
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Figure 4.4: Percentage of time that a particular speaker generates the first talk-turn in a
sequence of talk-turns for each topic. Physicians (MD, medical doctors) tend to start a
new topic more often than patients (PT) in general—49.9% and 48.2% of the talk-turns
were generated by physicians and patients, respectively. In particular, more than 80% of
the conversations about Alcohol and Cigarette were started by the physicians, whereas the
percentages of both speakers starting casual conversations (SmallTalk) were almost equal.
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all the topic labels.

To evaluate the performance of the classifiers, I compared the results with those of simple

baseline models that predict the most common topics. The baseline at the talk-turn level

just predicts the most common topic in the corpus, BiomedHistory (as shown in Table 4.1).

At the visit level, the baseline always predicts the set of topic labels that occur in 50% or

more of all visits, irrespective of the words within each visit.

Implementation Details

• LR and SVM

For the logistic regression, the Python Scikit-learn library [121] is used with the one-

versus-rest option for multi-class classification. The inverse of the L2 regularization

strength (C) was set to 1.6, which was the best performing value selected for a single fold

in the 10-fold cross-validation data. Scikit-learn library is again used for the support

vector machine (SVM), with RBF kernel and the one-versus-one decision function. The

inverse regularization was selected to have the number 100, also optimized using the

same fold.

• Windowed-based Models

The M parameter for the windowed model was set to M = 2 in the experiments based

on the knowledge that the transcripts were labeled with the convention that each topic

label must span at least two exchanges (four talk-turns).

• CRF

The java-based package MALLET [104] with default parameter settings was used.

The parameters used in Wallace et al. [166] produced less accurate predictions for this

dataset.

• HMM
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Python code3 is implemented for both parameter estimation (transition probabilities,

marginal probabilities, and etc.) using the training data and for generating talk-turn

topic predictions using Viterbi decoding with the test data.

• GRU (Independent model)

The neural network models are implemented using AllenNLP library [55], which is

based on PyTorch. The word embedding layer had size 100, which was initialized

using 100-dimensional GloVe[122] vectors that were pre-trained with Wikipedia and

Gigaword. I selected the size of the bidirectional GRU, the learning rate, and the

dropout rate for each layer by conducting a grid-search over those parameters using

one of the 10 folds used for cross-validation. The value I used for GRU size was 128,

word embedding dropout rate was 0.3, GRU dropout rate was 0.5 and the final softmax

layer dropout was 0.3. I used Adam [83] to optimize the network with an initial learning

rate of 0.001.

• Hier-GRU

Similar to the independent GRU model, both the word level and the talk-turn level

GRU encoders used size 128 with dropout 0.5, and were both bidirectional. All other

dropout rates including the dropout at word embedding layer were 0.2, and the model

was also trained with Adam optimizer starting with a learning rate of 0.001.

4.4.2 Summary of Experimental Results

Table 4.3 shows the classification accuracies at the talk-turn level for independent models,

windowed models, and sequential models. The most accurate independent model is the GRU

and the most accurate windowed model is the Windowed LR. The models with sequential

information clearly outperform independent models with the Hier-GRU yielding the highest

3Available at https://github.com/UCIDataLab/PP_dialog_models.
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Model
Talk-turn Level
Accuracy (%)

Baseline 29.85

Independent Models
LR 37.00

SVM 36.64
GRU 38.85

Window-based Models
Windowed LR 51.12

Windowed SVM 50.46

Fully Sequential Models

CRF 48.37
HMM-LR 56.89

HMM-SVM 51.52
HMM-GRU 57.60
Hier-GRU 61.77

Table 4.3: Accuracies for topic prediction at the level of talk-turns for different prediction
models. Micro-averaged precision and recall scores are the same as accuracy.

Model
Visit Level (%)

Accuracy Precision Recall F1

Baseline 72.29 73.79 62.22 67.42

Independent Models
LR 75.19 67.91 84.25 75.15

SVM 72.45 63.40 90.40 74.50
GRU 72.47 64.19 86.59 73.68

Window-based Models
Windowed LR 77.28 69.82 86.47 77.21

Windowed SVM 79.81 75.06 82.13 78.37

Fully Sequential Models

CRF 74.19 80.43 58.42 67.64
HMM-LR 80.00 80.16 73.31 76.55

HMM-SVM 75.21 78.70 60.90 68.63
HMM-GRU 9.00 74.98 79.35 77.06
Hier-GRU 78.96 73.69 82.43 77.78

Table 4.4: Micro-averaged accuracy, precision, recall, and F1 scores, at the visit level, for
different prediction models.
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Label
Hier-GRU HMM-GRU Assigned

Topic (%)Precision Recall F1 Precision Recall F1

BiomedHistory 65.80 76.61 70.79 74.24 56.26 64.01 29.85

PreventiveCare 73.34 83.41 78.05 77.98 72.49 75.13 14.67

MusSkePain 67.48 69.14 68.30 67.68 64.27 65.93 8.30

VisitFlowMgmt 63.64 63.58 63.61 64.97 64.54 64.76 6.38

GynGenitoUrinary 67.62 54.76 60.51 72.15 57.66 64.09 4.72

PhysicalExam 48.91 52.33 50.56 50.21 63.20 55.96 3.41

Family 49.31 47.56 48.42 42.79 54.21 47.83 3.10

HealthCareSystem 37.81 28.85 32.73 46.10 39.49 42.54 2.89

WorkLeisureActivity 47.26 46.20 46.72 52.90 53.14 53.02 2.73

TestDiagnostics 49.67 32.43 39.24 37.24 52.88 43.70 2.59

Cigarette 71.38 85.84 77.94 81.38 72.73 76.81 2.43

Weight 49.54 52.60 51.02 47.20 46.77 46.98 2.38

Other 21.42 9.59 13.25 14.45 15.20 14.81 2.03

Depression 50.82 64.27 56.76 45.71 44.24 44.96 1.94

DizzyDentHearVision 23.08 14.01 17.44 46.96 50.83 48.82 1.89

Medication 38.97 27.09 31.96 22.46 64.29 33.29 1.86

Exercise 56.94 59.23 58.06 45.42 67.01 54.14 1.84

SmallTalk 20.61 18.70 19.61 32.79 31.09 31.92 1.72

GeneralAnxieties 32.51 18.63 23.68 16.36 32.86 21.84 1.38

MDLife 33.81 14.19 19.99 12.79 11.69 12.22 1.04

Diet 27.15 19.62 22.78 27.52 57.10 37.14 0.69

Alcohol 56.08 36.12 43.94 52.19 64.91 57.86 0.57

Sleep 13.40 2.33 3.97 29.80 40.32 34.27 0.53

TherapeuticIntervention 0.00 0.00 0.00 2.04 5.30 2.95 0.33

RiskyBehavior 33.90 5.87 10.00 44.87 41.06 42.88 0.32

OtherAddictions 0.00 0.00 0.00 23.55 41.40 30.02 0.21

Age 0.00 0.00 0.00 13.23 20.00 15.93 0.17

Table 4.5: Precision, recall, and F1 scores of each topic, calculated at the talk-turn level
using Hier-GRU and HMM-GRU prediction results. The rows are sorted by the percentage
of talk-turns of each topic. In general, the more frequently discussed topics have higher F1
scores. The five highest F1 scores for each model are highlighted in bold-faced text.
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accuracy of 61.77% over all the models. The improvement in accuracy of Hier-GRU and

HMM-GRU are both statistically significant, with p < 0.01, relative to each of the Inde-

pendent GRU and Windowed LR models (using dependent t-tests for paired samples across

the 10 folds of cross-validation). The visit-level evaluation scores are shown in Table 4.4.

Interestingly, the gap in performance (as measured by the micro-averaged F1 score) between

independent, windowed, and sequential models is much smaller in the visit-level scores. The

primary reason for this is that the independent models tend to have relatively high re-

call scores, whereas sequential models have relatively high precision scores. The prediction

models also can be evaluated at the level of individual topics to understand variability in

prediction accuracy across topics. Precision, recall, and F1 scores were calculated by treat-

ing each topic label separately at the talk-turn level. Scores from the two best performing

models (Hier-GRU and HMM-GRU) are shown in Table 4.5, sorted by the percentage of each

topic. The more common topics (that occur for example in at least 5% of the talk-turns)

generally have higher F1 scores. However, there are some less common but highly-specific

topics, such as the Cigarette topic (in 2.43% of talk-turns), that also have relatively high F1

scores.

4.5 Discussion

Using sequential information across talk-turns in predictive models systematically leads to

more accurate predictions, particularly when predicting topic labels for talk-turns. To illus-

trate this point in more detail, Figure 4.5 shows sequences of predicted and human-assigned

topic labels, for one particular visit, where different colors represent different topic labels.

The top plot is from the Independent GRU model. The lack of sequential information in the

model leads to predictions that are noisy and lack the sequential smoothness of the human-

assigned labels (bottom plot). The second plot is from the Hier-GRU model, and the third
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Figure 4.5: Sequences of color-coded topic labels for one of the visits in the dataset. The
upper plot shows the predicted topic labels from an independent model, and the center two
plots show those from fully sequential models. The lower plot corresponds to the human-
generated labels. The segments for the MusSkePain topic marked as (1) had lengths of
23 talk-turns for Hier-GRU, 27 for HMM-GRU, and 26 for Human labeled. Similarly, the
PreventiveCare segments (2) had lengths 30, 28, and 27, and the TestDiagnostics segment
(3) had lengths 10, 31, and 22 in talk-turns, respectively for Hier-GRU, HMM-GRU, and
Human labeled.
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Figure 4.6: The beginning part of the visit shown in Figure 4.5. Each talk-turn is presented
with predicted labels from three different models (Independent GRU, Hier-GRU, and HMM-
GRU) and the human-generated labels. For the short talk-turns the BiomedHistory topic
label is predicted quite often by the Independent GRU, while the two other models produce
label sequences that are more similar to human-generated labels.
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Figure 4.7: Another excerpt from the same visit in Figure 4.5. Topics that are semantically
similar are confusable (PhysicalExam and MusSkePain in talk-turns 233–242, and SmallTalk
and WorkLeisure in talk-turns 249–254).
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Figure 4.8: Boxplots of segment lengths from four different models for all 279 sessions.

plot shows the predicted sequence of topics from the Viterbi parse of the HMM-GRU model,

i.e., the probabilistic predictions from the same GRU model in the top plot but which are

now sequentially smoothed by the HMM transition matrices. It is visually apparent (not

only for this visit but for all visits) that the sequential models (second and third) are much

more similar to the human labeling (bottom) than the independent model (top).

Figures 4.6 and 4.7 provide a more detailed look at portions of the transcript corresponding

to Figure 4.5. For example, there are quite a few short talk-turns that have no words with

topic-relevant information, such as “Yeah” (talk-turns 5 and 7 in Figure 4.6 and 222 in Figure

4.7) and “Okay” (talk-turn 224 in Figure 4.7). The sequential models are able to use the

context information to assign these talk-turns to the same topic as the human labeler. The

GRU independent model, however, does not have any context and assigns these talk-turns

by default to the topic with the highest marginal probability (BiomedHistory).

While the smoothing in sequential models helps to improve prediction accuracy, it can also

produce errors due to over-smoothing. In particular, I found that HMM-GRU model tends

to predict longer topic segments relative to the human-labeled results, as can be seen in

talk-turns 100 to 200 of the visit in Figure 4.5. The human labels contain short bursts
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of topics GynGenitoUrinary and BiomedHistory that are not detected by the HMM-GRU

model. Figure 4.8 shows the boxplots of the topic segment lengths for the four sequences

of labels presented in Figure 4.5. Overall, the independent GRU tends to generate the

shortest segment lengths, and the HMM-GRU tends to generate the longest segment lengths.

The median segment length of the human-labeled topic sequences lies between those from

Hierarchical GRU (Hier-GRU) and HMM-GRU. The overall distribution of the topic segment

lengths of HMM-GRU predictions is better matched, than other mtehods, to the length

distribution of human-generated topic labels. This is further quantified by the visit-level

results in Table 4.4, where the recall scores of the fully sequential models are systematically

lower than the independent models, and the reverse for the precision scores.

I also observed that some topics are semantically similar and easily confusable. For exam-

ple, in Figure 4.7, from talk-turn 233 to 242, the two sequential models predict the topic

PhysicalExam, while the human labeled MusSkePain—from the corresponding transcript

text either prediction seems reasonable. Similarly, from talk-turn 249 to 254 the HMM-GRU

predicts SmallTalk, while the human labeled WorkLeisure—from the text the corresponding

talk-turns appear to be a mixture of both. Other examples were found across the corpus

where the model frequently gets confused among small groups of related topics (e.g., Gen-

eralAnxieties and Depression; Weight and Diet). The full confusion matrices are shown in

Figure 6. There is inevitably a subjective aspect to the human labeling, suggesting that

there is likely to be a performance ceiling in terms of the accuracy of any algorithm relative

to human labels on this data.

From the topic-specific results in Table 4.5, we can see that while the predictions are relatively

accurate for some topics, for others (e.g., Age, TherapeuticIntervention, OtherAddictions,

Other, MDLife, etc.), the scores are quite low. The broad nature of these topics is a likely

contributor to the low accuracies, but the relative lack of training data per topic may also be

another contributing factor. These topics account for roughly 1% (or less) of talk-turns in the
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PREDICTED LABELS (HMM-GRU)

(b)

PREDICTED LABELS (Hier-GRU)

(a)

Figure 4.9: Confusion matrices generated by (a) Hier-GRU and (b) HMM-GRU, where
the intensity of each cell shows the conditional probabilities of p( predicted label | human-
generated label ) and each row sums to 1. A number of subsets of topics have high confu-
sion probabilities, including Diet/Weight/Exercise, Depression/GeneralAnxieties, and Fam-
ily/MDLife/WorkLeisure.
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corpus and many of these talk-turns are relatively short with little topical content, leading to

relatively less signal, particularly for training neural network models. One possible approach

to improve accuracy would be to incorporate additional external information relevant to

these topics, such as incorporating lists of relevant words from ontological sources such as

UMLS (Unified Medical Language System) into the training of prediction models, and/or

adding relevant information from sources such as physician or specialist notes.

4.6 Conclusions

Patient-physician communication is an essential component of healthcare. In this context,

prediction models that annotate patient-physician transcripts can in principle provide both

useful information about the nature of topics discussed in specific conversations as well as

contribute to a broader understanding of patient-physician communication. The results

demonstrate that machine learning methods show promise for building models that can au-

tomatically predict discussion topics in dialog at the talk-turn and visit level. In particular,

using a large real-world patient-physician dialog corpus, I investigated the performance of a

variety of classification models including logistic regression, support vector machines, feed-

forward neural network model with GRU, hierarchical GRU, conditional random fields, and

hidden Markov models. I found that sequential models (such as Hier-GRU and HMM-GRU)

are more accurate compared to non-sequential models for predicting topic labels for talk-

turns. In addition, I found that semantic similarity of discussion topics can be a significant

contributor to prediction error.

While additional research and model improvement is needed, my results show promise for a

number of medical topics that are critical quality indicators in primary care (e.g., cigarette

smoking, pain). Potential applications might include exploring systems that incorporate

prior information from a list of problem areas or prior diagnoses found in the medical record.
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For example, the presence or absence of smoking cessation counseling during primary care

encounters may inform population health management programs aimed at helping patients

quit smoking. Deployment of systems like this in real-world primary care may also be useful

for obtaining the scale of data needed to improve model performance.

The primary contributions of this chapter include the following:

• I trained different types of machine learning models for automated annotation of med-

ical topics in patient-provider dialog transcripts by categorizing the models into inde-

pendent, window-based, and fully sequential models.

• I evaluated and compared the models’ predicted results both at the visit-level and at

the talk-turn level with the baseline scores.

• I provided evidence that the sequential or contextual information is crucial in talk-turn

level topic classification in conversation data.

• I suggested challenges and possible future directions in detecting topical content in

medical dialogs.
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Chapter 5

Evaluating Cloud Speech Recognition

Engines for Topical Analysis of

Clinical Conversations

Appropriate documentation of the clinical visit is critical for communication among medical

professionals [67, 137], enabling quality assurance [38], and accurate billing and reimburse-

ment [75]. The traditional way of documenting a clinical visit in the Electronic Health

Record (EHR), namely physicians’ notes, provide a source of valuable information on what

occurred during the interaction and what physicians consider to be important. EHRs have

improved the accessibility of medical information [171], but patients are demanding access

to information at a greater scale [138]. Pressure to quickly document the medical visit may

lead physicians to type into the record during the medical visit, which can negatively impact

patient-physician communication [133, 162, 139]. Primary care physicians spend about half

of their time working on computers [6, 152], which may be partly responsible for growing

concerns of physician burnout across a wide range of physician specialties [53, 135, 148].

In addition, physician-generated notes do not always provide an accurate representation of
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what occurred during the visits [64, 157].

Working with medical scribes could alleviate the problem. Medical scribes are individuals

who primarily enter notes during the patient encounter on behalf of the physician, allowing

physicians to sidestep much interaction with their EHRs [136]. However, employing medical

scribes are associated with costs, often limiting their use to high-volume specialty clinics

[7, 165].

Technologies that could reduce the burden of documentation on physicians, and provide more

accurate documentation of clinical interactions are greatly needed. Natural language pro-

cessing (NLP) technologies combined with advances in automatic speech recognition (ASR)

[29, 128] offer potentially promising solutions [10, 47]. Information extraction and summa-

rization technologies built on top of resulting transcripts will be needed to take the next step

in reducing the burden of documentation on physicians and in providing clinical decision

support to both patients and physicians [128]. If successful, ASR with machine-learning-

enabled charting system could free up valuable time for physicians to talk to their patients

rather than typing extensively during clinical encounters [68, 163].

The work discussed in this chapter takes a step forward in the automation of documenting

the patient-physician conversations, by evaluating the topic classification models with two

types of input—the human-transcribed and the ASR-transcribed—and examine the drop in

performance at the output of the ASR and the output of the model. Moreover, I compare

the results with different modalities of the recording devices and readily available speech

recognition systems to understand the variability in performance.
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5.1 Materials and Methods

5.1.1 Dataset

The same data used in Chapter 4 is used in this chapter. The dataset consists of 279

transcripts from the Mental Health Discussion (MHD) study [149], where one of 27 topic

labels is assigned to each talk-turn. Detailed information can be found in Section 4.2. Out

of 279 transcripts of visits, 36 visits are randomly selected as a test set.

Since the actual audio or video files from the original study are not available, additional steps

for obtaining the audio files are necessary to create ASR-generated transcripts. Therefore,

two readers, who are affiliated with the University of California, Irvine, read the transcripts

from the test set with a set of rules and settings. I describe the details below.

Pre-processing and De-identification

To ensure Protected Health Information (PHI) is not transferred to the selected cloud-based

ASR engines, additional pre-processing steps were completed in accordance with the HIPAA

(Health Insurance Portability and Accountability Act) privacy rules. The transcripts were

pre-processed in two stages: 1) automatic processing for all the transcripts and 2) additional

manual replacements for the test set (36 visits).

First, I replaced a list of names, locations, and patient related information that are identifi-

able in the dataset with generic tokens (e.g. -NAME-, -LOCATION-, -PATIENT-ID-). Some of

the names and numbers were already de-identified in the original transcripts, however, many

parts of the transcripts still included sensitive information. Including the names of the 50

states, about 500 cities in the United States, and the 400 most popular baby names in 1950s1

1https://www.ssa.gov/oact/babynames/decades/names1950s.html
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are searched and replaced with non-PHI tokens. Also, there existed some other information

in the original transcripts that can be helpful for the readers, such as door closing sound,

laughing, and etc. These are detected using regular expressions and also converted to tokens

enclosed with hyphens, such as -DOOR-SOUND- and -LAUGH-. The list of all the tokens are

presented in Appendix A. Note that the non-verbal tokens are only to help the readers, and

are removed for training and testing.

Secondly, the readers of the transcripts replaced the tokens with the words that are contex-

tually appropriate. For example, -NAME- to “John Doe” and -LOCATION- to “downtown.”

Since not all the information was captured by the first automated pre-processing step, the

readers manually examined the processed transcripts, overwriting any identifiers not pre-

viously replaced with generic tokens, based on the Safe Harbor Method [117]. Note that

the “human-generated transcripts” in the later sections refer to the transcripts after de-

identification.

Recording Setup

After removing PHI from the transcripts of the selected test visits, the readers read the

transcripts for audio recording. To recreate audios that are faithful to the actual test visits,

the readers sought to match disfluencies, generic words, and non-grammatical utterances

present in the human-generated transcript. Additional information on the reading protocol

is in Appendix B.

Multiple recording systems were chosen by considering the accessibility to the average physi-

cian (or medical providers in general) in terms of complexity and cost. Five different mi-

crophones were selected and placed approximately one foot away from the readers. Selected

sources of microphones were 1) external high-end microphone, 2) omni-directional lavalier

microphone, 3) cell phones, 4) voice recorder, and 5) laptop. The list of recording devices
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Type Model Settings
Number of
Recorded

Visits

External High-end
Microphone

Blue Yeti
Omni-directional pickup, 50% Gain,
WAV format, 24-bit, 44100Hz

36

Omni-Directional
Lavalier

Aputure A.lav

Gain increased to match high-end
microphone in software, clipped on
the reader playing the ‘physician’
role, WAV format, 24-bit, 44100Hz

36

Cell Phone
Samsung Galaxy S7

“Smart Recorder - High-quality
voice recorder” app; WAV format,
24-bit, 44100Hz

32

iPhone X
“Voice Memo” app, M4A format,
lossless recording quality

4

Voice Recorder Sony ICD-UX533
WAV- LPCM format, 16-bi,
44100Hz

36

Laptop Macbook Pro 2016
“Audacity” app, WAV format, 24-
bit, 44100Hz

36

Table 5.1: Microphone and recording equipment information.

and the number of visits recorded by each device is in Table 5.1. Two different cell phones

were used for different visits but are treated as the same source for simplicity. Audios were

all recorded with a sampling rate of 44.1 kHz.

5.1.2 Automatic Speech Recognition (ASR) engines

Table 5.2 shows different types of speech recognition engines that were used for comparison.

All ASR engines are cloud-based APIs that are easily accessible to the general public.

Amazon Transcribe from AWS (Amazon web services), Google Cloud Speech-to-text, and

Microsoft Azure Speech-to-text were selected for the experiment. For Google Cloud Speech-

to-text, there are multiple models available. Three models were chosen, where one of them

(Video) is a premium model with an extra cost. Each service had additional functionalities

available, such as speaker diarization, however, those options are ignored in the experiment

since not all systems provide the same type of information.
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Short Name ASR Engine Model Version

Amazon Amazon Transcribe Default 1.9.86
Google Default Google Cloud Speech-to-text Default v1p1beta1
Google Phonecall Google Cloud Speech-to-text Phone call v1p1beta1
Google Video Google Cloud Speech-to-text Video (premium) v1p1beta1
Microsoft Microsoft Azure Speech-to-text Default 1.5.1

Table 5.2: Automatic Speech Recognition engines used for the study. The version for Amazon
Transcribe is the version number of Boto3 (AWS SDK for Python).

Our team also tried AutoTranscribe dictation service from Nuance Dragon Medical Practice

Edition, but the results are not included since the service is not optimized for multiple

speakers’ dialog and did not yield results comparable to the other ASR systems.

Alignment of ASR-generated Transcripts

Aligning the ASR-generated text to the human-generated transcript is a required step to

measure the performance. It also helps standardize the ASR outputs since every ASR engine

output has a different structure and information. Alignment is done in the standard manner

using the backtrace path information while obtaining the edit distance [164] at the word

level between the ASR-generated and the human-generated text, with the boundary token

inserted at the end of each talk-turn in the human-generated transcript. After locating

the talk-turn boundaries in the ASR output, additional talk-turn level information, such as

speaker information and the topic label, can be utilized.

5.1.3 Classification model

Gated recurrent units with hierarchical structure (Hier-GRU) from Chapter 4 were used to

extract the topic information from the transcripts of talk-turns. The Hier-GRU was selected

since it is the best performing model for the same dataset from the experiments in Chapter

4. The Hier-GRU model has two levels of bi-directional gated recurrent units (GRUs), one
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at the word level to get a talk-turn representation, and the other at the talk-turn level

for incorporating the interactions between the talk-turns and to predict the topic label. A

talk-turn is composed of a sequence of words, and 100-dimensional pre-trained GloVE [122]

vectors are used to initialize the word embeddings. See Figure 4.3 for illustration. I used

the same hyperparameter settings as in Chapter 4.

5.2 Evaluation Methods

5.2.1 Word Error Rate (WER)

For each recorder and ASR type, the average word error rate is calculated between the

transcript after removing PHI and the output from the ASR. Word error rate (WER) is

a commonly used metric for measuring the performance of a speech recognition system,

and is equivalent to the edit distance for words. It is defined as Sub+Del+Ins
Sub+Del+Cor

, where Sub,

Del, Ins, and Cor are the number of substitutions, deletions, insertions, and correct words,

respectively. The denominator is the number of words in the original transcript read by the

readers. WER is computed for each ASR-generated transcript, and then averaged over the

cases that share the same recording modality and the ASR type. Punctuation symbols (e.g.,

a period or a comma) and non-verbal tokens are removed, but none of the stopwords are

removed when calculating WER.

5.2.2 Classification Performance metrics

In order to measure the quality of current speech-to-text systems for extracting topic infor-

mation, I calculate the accuracy of the predicted topic labels at the talk-turn level and the

F1 score at the session level. Specifically, I measure the talk-turn level accuracy and the
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session level F1 score for both the human-annotated transcript and the ASR-generated tran-

script, and compute the difference between the two scores. This helps quantify the amount

of reduction in performance by using ASR for transcription.

5.3 Results

For the 36 test visits of the human-generated transcripts, the talk-turn level accuracy was

56.2%, and the visit level F1 score was 74.53%, both micro-averaged. The numbers are

different from those in Chapter 4 since the pre-processing pipeline is slightly different, such

as removing PHI, and it is the result based on only 36 test visits, rather than full cross-

validation.

The scatter plot in Figure 5.1 shows the overall results. The x-axis is the averaged WER

calculated between the ASR outputs and the human-transcribed transcripts (after removing

PHI), and the y-axis is the classification performance drop by using ASR for transcription, by

subtracting the scores from those when using the human-generated transcripts. The scores

are based on 36 visits, except for the case where audios were recorded with Cell Phone and

transcribed using Microsoft Azure ASR (purple star in the plot). Four for these audio files,

the ASR system did not return any output and the result is based on 32 visits.

The values of WER range approximately from 0.18 to 0.34, and the differences in the per-

formance measures range from 0.00 to 0.05 in both talk-turn and visit level. Also, more

performance degradation is observed with higher WER.

In general, the results from the same ASR are more similar than the results from the same

recording device, as the data points with the same colors in Figure 5.1 are more grouped

together than those with the same shapes. The Google video ASR engine, which is a pre-

mium model offered by Google Cloud, had the lowest WER overall, as well as the smallest
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(a)

(b)

Figure 5.1: The results plotted as word error rate vs. difference in classification performance
for using ASR. The colors in the scatter plot represent different ASR engines, and the shapes
denote different recording devices. (a) Performance difference in talk-turn level accuracy (b)
Performance difference in visit-level F1 score.
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performance drop in downstream classification accuracy at the talk-turn level.

5.4 Discussion

The overall pattern in Figure 5.1 is linear to some extent. The data points with lower

WER tend to have less performance drop, and it is the opposite for the points with higher

WER. Also, we can observe that the variance of performance scores becomes higher as WER

increases. However, although there is a linear trend between WER and the difference in per-

formance, the amount of difference in WER does not necessarily transfer to the difference in

the classification performance. The reduction in talk-turn level topic classification accuracy

is only 5–15% of the difference in WER. Thus, while the drop in topic classification accuracy

is correlated with WER, it is also much lower than WER.

There is a considerable amount of variation in classification performance across ASR engines.

In terms of WER, Google video (red) typically had about 0.2 WER, whereas Google default

(blue) and Google phonecall (green) showed much higher WER. On the other hand, it is

hard to find trends when using certain recording devices. This suggests that choosing the

right ASR system is more important than selecting a better recording device, and that cell

phone recordings may be able to produce a transcript with a similar quality as more expensive

equipment would give. It is possible for doctors to make use of their easily accessible recording

devices, such as a laptop or a cell phone.

Figure 5.2 provides an overview of the predicted results of a selected test visit. The con-

versation in the visit flows from left to right, and the colors represent the talk-turns that

are predicted or labeled as different topics. The top plot in Figure 5.2 is the original topic

sequence labeled by a human labeler, and the bottom three plots are the predicted sequences

by Hier-GRU using different types of transcripts. It is easy to observe that the bottom three
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Figure 5.2: The sequences of topic labels for an example test visit. Each topic label is color-
coded with the colors shown on the right side. (a) Topic sequences labeled by human labelers.
(b) Hier-GRU predicted topic sequences with the human-generated transcript. (c) Hier-GRU
predicted topic sequences with the transcript generated by Google video ASR. (d) Hier-GRU
predicted topic sequences with the transcript generated by Google default ASR. WER for
this specific visit was 0.1959 and 0.3239, respectively for Google video and Google default.
The numbered circles are for the examples in Figure 5.3.

plots are similar to each other. The sequence of predicted topic labels generated from the

Google video transcript (Figure 5.2 (c)) is very similar to that from human-transcripts (Fig-

ure 5.2 (b)). Figure 5.2 (d), which is the predicted topic sequence with Google default ASR

output, has a few more areas that are different from (b). For example, talk-turns between

140 and 145, 210 and 260, and the talk-turns after 300.

Two excerpts from the same visit are presented with accompanying text from the transcript

in Figure 5.3 for more detail. The two areas discussed in Figure 5.3 are marked as numbered

white circles (1) and (2) in Figure 5.2. In talk-turns from 140 to 145, the doctor and

the patient talked about eating habits and working out, as seen in the “Human Generated”
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Figure 5.3: Topic labels and texts generated by human, Google video, and Google default for
the same part of the audio. Approximate locations of the two examples are shown as (1)
and (2) in Figure 5.2.

column. However, Google default ASR, from the text shown in the rightmost column, missed

a lot of keywords such as “diet” in talk-turn 140, and “weights,” and “gym” in talk-turns

144–145. In fact, no text was recognized for the talk-turns 144–145. Not being able to

transcribe the important words resulted in predicting the whole segment as BiomedHistory,

which is the most common topic in the dataset (see Table 4.1). Similar results happened in

the second excerpt in talk-turns 246–249, due to missing “sit up” in talk-turn 248.

Google video was able to detect most of the important words, but the misunderstanding of

the term “weight” in talk-turns 144–145 produced errors. These errors are due to the mis-

classification of the classfier, and not necesarily caused by the ASR, as a similar sequence of

predicted labels is observed in Figure 5.2 (b) in the same area. Also, Exercise and Weight

are shown to be confused with each other, as discussed in Figure 4.9.
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Overall, ASR-generated transcripts create word errors, and the errors affect the topic clas-

sification results. However, the difference in classification performance is minimal compared

to the WER difference.

5.5 Conclusions

In this chapter, I showed that the current ASR systems provided by major software companies

could potentially be used to detect topics that are discussed during primary care visits.

An actual deployment of such system could alleviate physician burnout problem and allow

physicians to spend more time on direct patient care. Advanced technology for better speaker

diarization and resolving concerns in patients’ privacy, such as automatic deidentification,

are major remaining obstacles that need more attention and effort.

The primary contributions of this chapter include the following:

• I demonstrated a feasibility test for obtaining the structured topic information by

adding ASR to doctor-patient conversations, as an extension to Chapter 4.

• I tested with audio files from different recording devices and with different ASRs to

capture variability in performance depending on the recording environment or the ASR

engine.

• I evaluated the results systematically by measuring the model performance with accu-

racy and F1 score, and measuring the ASR performance with WER.

• I showed that the drop in topic classification accuracy tends to be much lower than

the performance drop in transcribing the audio (measured by WER).
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Chapter 6

Predicting Emotion Trajectories from

Transcripts of Patient-Physician

Dialog

In 2016, there were an estimated 883.7 million medical office visits where patients and medical

doctors discussed symptoms and engaged in treatment planning [2]. The quality of the

interactions and responsiveness to patient needs and concerns is foundational to patient-

centered care [48, 92, 93]. Patient-physician interactions involve more than just discussions

of symptoms and biomedical facts. Patients can be in intense emotional states when visiting

their doctors. How doctors respond to patient emotions [94, 145] is related to important

patient outcomes [143, 144]. Consequently, an important aspect of patient-centered care is

the effective navigation of emotions during medical appointments.

Patients may desire that physicians devote more time in medical appointments to their

emotional concerns [97]. At present, patient experiences in care are primarily evaluated

using surveys [161], which place a burden on the patient, are subject to social desirability,
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and are limited in scope. Direct observation and feedback is the gold standard for supporting

providers, but it is time-consuming, expensive, and generally not feasible in most clinical

settings [77].

Recent advances in machine learning and natural language processing (NLP) have shown

enough capability for predicting emotional content in conversations [127, 154], which could

be applied to the clinical conversation. However, the majority of prior work has focused on

human-to-machine interactions than human conversations. Also, the studies focus more on

the performance of the models than the evaluation methods and its applications.

In this chapter, I propose a neural-network-based model for large-scale medical conversation

transcripts to predict emotional valence, and I describe the details of the two evaluation

methods that are suitable for such data. The evaluation methods are also applied to the

human labels to measure the agreement between the human raters, which provides an ap-

proximate upper bound on what is achievable by machine learning methods.

6.1 Related Work

6.1.1 Machine Learning Methods for Emotion Recognition

Sentiment analysis has long been one of the major interests in machine learning and natural

language processing community [5, 118]. Most of the studies in sentiment analysis and

opinion mining have focused on mining online reviews (e.g., Amazon reviews [103]) and

social network posts (e.g., Twitter [4]). Various approaches have been adopted ranging from

lexicon-based [134, 76] to modern deep neural network models [36, 82]. However, for such

data, each document or sentence is treated independent to each other, and thus the methods

do not have sequential or contextual structure between sentences.
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Recognizing emotion in conversation is a relatively new research area that has gained atten-

tion due to the abundance of conversational data and to build more human-like, emphatic

agents in conversational AI [127]. Utilizing contextual or sequential information in con-

versational data is crucial in predicting the emotional valence attached to short utterances

that may contain very little information. In the past few years, models based on neural

networks (mostly recurrent neural networks investigated in this context) have been actively

investigated [100, 59, 66].

However, the sizes of the datasets used in the studies of predicting emotions in conversations

are relatively small compared to other text datasets used for sentiment analysis, ranging from

6k to 14k utterances. Also, the average length of conversations is around 10 to 60 utter-

ances depending on the dataset, such as the IEMOCAP [22], AVEC [131], and MELD [126]

dataset.1 Applying the models mentioned above to much longer dialogs, such as conversa-

tions in doctor visits, requires more efficient ways of memory management, or modifications

in the model structure to only see the surrounding utterances.

In addition, the datasets used in prior work on emotion classification in conversations are

either not from human to human dialogs, or do not have any medical context in the vocabu-

lary, and thus, these models may not generalize well to detecting emotions for doctor-patient

conversations in primary care visits.

6.1.2 Evaluation Methods for Emotion Recognition in Dialogs

For dialog emotion classification datasets with categorical labels, such as IEMOCAP [22] and

MELD [126], the main evaluation metrics used are accuracy, F1, or recall scores [100, 59, 66].

For datasets that have scores on an ordered scale for emotional valence, particularly for the

AVEC [131] dataset (or SEMAINE [105]), evaluation methods have relied on correlation

1A summary of different datasets is well described in [127].
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coefficient and mean absolute error. As an example, Majumder et al. [100] measured the

correlation coefficient and the mean absolute error as two performance metrics for the modi-

fied AVEC dataset. However, there is no thorough analysis for correlation coefficient results,

and the whole sequence of a dialog session is used to calculate correlation coefficient, rather

than separately calculating it for each speaker. Also, the dataset is based on human-agent

interactions, and the annotation process was carried out in a manner that is significantly

different to the dataset used in this chapter.

6.1.3 Text Analysis in the Medical Domain

There has been growing attention to quantitative text analysis in the field of medicine.

Electronic health records (EHRs) have been used for various information extraction tasks

[25, 98], such as identifying post-operative complications [112] as well as patients that may

need further treatment or care [169, 155].

Determining the emotional state of an individual based on their speech or writings is an-

other primary interest in medicine [142, 161]. For example, Pestian et al. [123] developed

automated systems for classifying emotions in suicide notes. Similarly, Georgiou et al. [58]

classified emotions using lexical features in married couples’ discussions. Other work has

focused on classifying emotional valence in online text-based psychotherapy for depression

[74].

For medical dialogs, recurrent neural networks have been used to chart symptoms [128] and

classify the topic of the conversation at each talk-turn [119]. However, although empathetic

patient-physician communication is fundamental to the practice of medicine, there has not

been any attempt to evaluate the quality of the interactions in primary care visits by auto-

matically capturing the emotional content of the visit.
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6.2 Dataset

The dialog transcript dataset used in this chapter is a combination of transcripts from two

different studies. The first one is the Mental Health Discussion study by Ming et al. [149]

and the other is the Assessment of Doctor-Elderly Patient Transactions (ADEPT) by Teresi

et al. [156]. Both datasets are transcripts of doctor-patient visits, where each talk-turn (the

utterances spoken by a speaker at each turn), is labeled (or “coded”) to one of the topic

labels based on the Multi-Dimensional Interaction Analysis coding system (MDIA) coding

system [27].

The utterances in this dataset have also been labeled according to their emotional valence

labels. Fourteen labelers2 were asked to assign an emotional valence label to each utterance.

In total, there are 353 visits with 210k utterances. An utterance is defined as a discrete

sentence unit within a talk-turn, that is separated by periods, exclamation marks, and

question marks. The emotional valence takes integer values that range from -3 (very negative)

to +3 (very positive), with neutral at 0. For cases where labelers used different boundaries

for splitting a talk-turn into multiple utterances, the most fine-grained boundaries are used

and the labels are assigned to each of them. Not all labelers labeled all the sequences for each

visit—some of them skipped labeling the utterances that they are not confident of. Figure

6.1 shows an example of the labeled data. In this example, some of the talk-turns are split

into multiple utterances, and each utterance has multiple emotion valence labels assigned by

6 labelers.

Out of 14 labelers, I removed the labels from the four labelers whose distribution of assigned

labels are significantly different from the rest.

Figure 6.2 (a) shows the emotion label distributions from all 10 labelers used for my analysis.

79.21 percent of all the labels were labeled as neutral (0). Figure 6.2 (b) shows the results

2All of the labelers were affiliated with the University of Utah.
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Figure 6.1: An example of a section of dialog from a particular visit. The six columns on
the right side show the emotional valence labels assigned by 6 labelers. The averaged value
is shown in the third column.
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Figure 6.2: (a) Histogram of emotional valence labels from 10 different labelers. Multiple
labels may exist for each utterance. The proportion of each label in percentage from left
to right is 0.24, 1.63, 8.18, 79.21, 8.61, 1.93, and 0.19. (b) Histogram of the per-utterance
emotional valence, where multiple labels assigned to each utterance are averaged to a single
value.

0 100 200 300 400 500
UTTERANCE

NEG
(-2)

NEU
(0)

POS
(2)

EM
OT

IO
NA

L 
VA

LE
NC

E

EMOTION OVER TIME DURING VISIT
BASED ON HUMAN-ASSIGNED LABELS

DOCTOR
PATIENT

Figure 6.3: Per-utterance mean emotional valence for a doctor (gray) and a patient (orange)
during the same visit as in Figure 6.1. The mean emotional scores for each speaker are
smoothed with triangular moving average of window size 7 to produce smoother lines. The
colors at the bottom shows the parts of utterances spoken by each speaker. For this visit,
63.7% of the utterances (330 out of 518 utterances) are from the medical doctor.
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Figure 6.4: Mean emotional valence per visit, for each speaker.

after taking the average of the average of the labeler’s valence scores for each utterance. I

will use these average scores extensively in this chapter.

The same visit shown in Figure 6.1 can be presented without the text, by showing the

trajectory of the mean emotional valence per speaker as in Figure 6.3. The x-axis of the

plot is the utterance index, which is the same value as the first column in Figure 6.1. Since

the dialog transcripts assume only one speaker speaks at a time, the color bar is plotted

at the bottom to show the active parts for each speaker in a visit. To reduce the noise,

each sequences of labels are smoothed using moving average with triangular window of size

7 (three utterances before and after each center utterance). The smoothing is done for

visualization purposes only. We see that the patient and doctor each transitions through

different emotional states during the visit with the patient having more pronounced negative

emotion than the doctor.

The utterance indices 7, 52, and 57 in Figure 6.1 are interesting examples to look at. Those

are marked as solid circles in Figure 6.3. When the patient talks about his/her recent

bereavement (utterance 7), the emotion valence drops to a low (negative value). The doctor

listens and tries to empathize with the patient. After that, the doctor tries to brighten the
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�
<latexit sha1_base64="opbl81t9FGGFoZ+lNT+5IxSn0Yc=">AAAB7nicbZBNSwMxEIZn/az1q+rRS7AInsquCHosevFYwX5Au5RsOm1Dk+ySZIWy9Ed48aCIV3+PN/+N2XYP2vpC4OGdGTLzRongxvr+t7e2vrG5tV3aKe/u7R8cVo6OWyZONcMmi0WsOxE1KLjCpuVWYCfRSGUksB1N7vJ6+wm14bF6tNMEQ0lHig85o9ZZ7Z7hI0nL/UrVr/lzkVUICqhCoUa/8tUbxCyVqCwT1Jhu4Cc2zKi2nAmclXupwYSyCR1h16GiEk2YzdedkXPnDMgw1u4pS+bu74mMSmOmMnKdktqxWa7l5n+1bmqHN2HGVZJaVGzx0TAVxMYkv50MuEZmxdQBZZq7XQkbU02ZdQnlIQTLJ69C67IWOH64qtZvizhKcApncAEBXEMd7qEBTWAwgWd4hTcv8V68d+9j0brmFTMn8Efe5w/S5I83</latexit><latexit sha1_base64="opbl81t9FGGFoZ+lNT+5IxSn0Yc=">AAAB7nicbZBNSwMxEIZn/az1q+rRS7AInsquCHosevFYwX5Au5RsOm1Dk+ySZIWy9Ed48aCIV3+PN/+N2XYP2vpC4OGdGTLzRongxvr+t7e2vrG5tV3aKe/u7R8cVo6OWyZONcMmi0WsOxE1KLjCpuVWYCfRSGUksB1N7vJ6+wm14bF6tNMEQ0lHig85o9ZZ7Z7hI0nL/UrVr/lzkVUICqhCoUa/8tUbxCyVqCwT1Jhu4Cc2zKi2nAmclXupwYSyCR1h16GiEk2YzdedkXPnDMgw1u4pS+bu74mMSmOmMnKdktqxWa7l5n+1bmqHN2HGVZJaVGzx0TAVxMYkv50MuEZmxdQBZZq7XQkbU02ZdQnlIQTLJ69C67IWOH64qtZvizhKcApncAEBXEMd7qEBTWAwgWd4hTcv8V68d+9j0brmFTMn8Efe5w/S5I83</latexit><latexit sha1_base64="opbl81t9FGGFoZ+lNT+5IxSn0Yc=">AAAB7nicbZBNSwMxEIZn/az1q+rRS7AInsquCHosevFYwX5Au5RsOm1Dk+ySZIWy9Ed48aCIV3+PN/+N2XYP2vpC4OGdGTLzRongxvr+t7e2vrG5tV3aKe/u7R8cVo6OWyZONcMmi0WsOxE1KLjCpuVWYCfRSGUksB1N7vJ6+wm14bF6tNMEQ0lHig85o9ZZ7Z7hI0nL/UrVr/lzkVUICqhCoUa/8tUbxCyVqCwT1Jhu4Cc2zKi2nAmclXupwYSyCR1h16GiEk2YzdedkXPnDMgw1u4pS+bu74mMSmOmMnKdktqxWa7l5n+1bmqHN2HGVZJaVGzx0TAVxMYkv50MuEZmxdQBZZq7XQkbU02ZdQnlIQTLJ69C67IWOH64qtZvizhKcApncAEBXEMd7qEBTWAwgWd4hTcv8V68d+9j0brmFTMn8Efe5w/S5I83</latexit><latexit sha1_base64="opbl81t9FGGFoZ+lNT+5IxSn0Yc=">AAAB7nicbZBNSwMxEIZn/az1q+rRS7AInsquCHosevFYwX5Au5RsOm1Dk+ySZIWy9Ed48aCIV3+PN/+N2XYP2vpC4OGdGTLzRongxvr+t7e2vrG5tV3aKe/u7R8cVo6OWyZONcMmi0WsOxE1KLjCpuVWYCfRSGUksB1N7vJ6+wm14bF6tNMEQ0lHig85o9ZZ7Z7hI0nL/UrVr/lzkVUICqhCoUa/8tUbxCyVqCwT1Jhu4Cc2zKi2nAmclXupwYSyCR1h16GiEk2YzdedkXPnDMgw1u4pS+bu74mMSmOmMnKdktqxWa7l5n+1bmqHN2HGVZJaVGzx0TAVxMYkv50MuEZmxdQBZZq7XQkbU02ZdQnlIQTLJ69C67IWOH64qtZvizhKcApncAEBXEMd7qEBTWAwgWd4hTcv8V68d+9j0brmFTMn8Efe5w/S5I83</latexit>

w1
i,1

<latexit sha1_base64="E34sRfFccLuoZpUjrkdGthZMGSc=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhyCBxmtCIqngRePE9wHbLWkabqFpUlJUmXUHvxXvHhQxKv/hjf/G9OtB918EPJ47/cjLy9IGFXacb6thcWl5ZXVylp1fWNza9ve2W0rkUpMWlgwIbsBUoRRTlqaaka6iSQoDhjpBKOrwu/cE6mo4Ld6nBAvRgNOI4qRNpJv7/cDwUI1js2VPeR3rp/REzf37ZpTdyaA88QtSQ2UaPr2Vz8UOI0J15ghpXquk2gvQ1JTzEhe7aeKJAiP0ID0DOUoJsrLJvlzeGSUEEZCmsM1nKi/NzIUqyKimYyRHqpZrxD/83qpji68jPIk1YTj6UNRyqAWsCgDhlQSrNnYEIQlNVkhHiKJsDaVVU0J7uyX50n7tO4afnNWa1yWdVTAATgEx8AF56ABrkETtAAGj+AZvII368l6sd6tj+noglXu7IE/sD5/ADZ0li0=</latexit><latexit sha1_base64="E34sRfFccLuoZpUjrkdGthZMGSc=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhyCBxmtCIqngRePE9wHbLWkabqFpUlJUmXUHvxXvHhQxKv/hjf/G9OtB918EPJ47/cjLy9IGFXacb6thcWl5ZXVylp1fWNza9ve2W0rkUpMWlgwIbsBUoRRTlqaaka6iSQoDhjpBKOrwu/cE6mo4Ld6nBAvRgNOI4qRNpJv7/cDwUI1js2VPeR3rp/REzf37ZpTdyaA88QtSQ2UaPr2Vz8UOI0J15ghpXquk2gvQ1JTzEhe7aeKJAiP0ID0DOUoJsrLJvlzeGSUEEZCmsM1nKi/NzIUqyKimYyRHqpZrxD/83qpji68jPIk1YTj6UNRyqAWsCgDhlQSrNnYEIQlNVkhHiKJsDaVVU0J7uyX50n7tO4afnNWa1yWdVTAATgEx8AF56ABrkETtAAGj+AZvII368l6sd6tj+noglXu7IE/sD5/ADZ0li0=</latexit><latexit sha1_base64="E34sRfFccLuoZpUjrkdGthZMGSc=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhyCBxmtCIqngRePE9wHbLWkabqFpUlJUmXUHvxXvHhQxKv/hjf/G9OtB918EPJ47/cjLy9IGFXacb6thcWl5ZXVylp1fWNza9ve2W0rkUpMWlgwIbsBUoRRTlqaaka6iSQoDhjpBKOrwu/cE6mo4Ld6nBAvRgNOI4qRNpJv7/cDwUI1js2VPeR3rp/REzf37ZpTdyaA88QtSQ2UaPr2Vz8UOI0J15ghpXquk2gvQ1JTzEhe7aeKJAiP0ID0DOUoJsrLJvlzeGSUEEZCmsM1nKi/NzIUqyKimYyRHqpZrxD/83qpji68jPIk1YTj6UNRyqAWsCgDhlQSrNnYEIQlNVkhHiKJsDaVVU0J7uyX50n7tO4afnNWa1yWdVTAATgEx8AF56ABrkETtAAGj+AZvII368l6sd6tj+noglXu7IE/sD5/ADZ0li0=</latexit><latexit sha1_base64="E34sRfFccLuoZpUjrkdGthZMGSc=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhyCBxmtCIqngRePE9wHbLWkabqFpUlJUmXUHvxXvHhQxKv/hjf/G9OtB918EPJ47/cjLy9IGFXacb6thcWl5ZXVylp1fWNza9ve2W0rkUpMWlgwIbsBUoRRTlqaaka6iSQoDhjpBKOrwu/cE6mo4Ld6nBAvRgNOI4qRNpJv7/cDwUI1js2VPeR3rp/REzf37ZpTdyaA88QtSQ2UaPr2Vz8UOI0J15ghpXquk2gvQ1JTzEhe7aeKJAiP0ID0DOUoJsrLJvlzeGSUEEZCmsM1nKi/NzIUqyKimYyRHqpZrxD/83qpji68jPIk1YTj6UNRyqAWsCgDhlQSrNnYEIQlNVkhHiKJsDaVVU0J7uyX50n7tO4afnNWa1yWdVTAATgEx8AF56ABrkETtAAGj+AZvII368l6sd6tj+noglXu7IE/sD5/ADZ0li0=</latexit>

wM
i,1

<latexit sha1_base64="Stw87wNj9TYI5ln6IkmJMx7IeZc=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQPMhoRVA8Dbx4ESa4D9hqSdN0C0uTkqTKqD34r3jxoIhX/w1v/jdmWw+6+SDk8d7vR15ekDCqtON8W6WFxaXllfJqZW19Y3PL3t5pKZFKTJpYMCE7AVKEUU6ammpGOokkKA4YaQfDy7HfvidSUcFv9SghXoz6nEYUI20k397rBYKFahSbK3vI7679jB67uW9XnZozAZwnbkGqoEDDt796ocBpTLjGDCnVdZ1EexmSmmJG8kovVSRBeIj6pGsoRzFRXjbJn8NDo4QwEtIcruFE/b2RoViNI5rJGOmBmvXG4n9eN9XRuZdRnqSacDx9KEoZ1AKOy4AhlQRrNjIEYUlNVogHSCKsTWUVU4I7++V50jqpuYbfnFbrF0UdZbAPDsARcMEZqIMr0ABNgMEjeAav4M16sl6sd+tjOlqyip1d8AfW5w9hjJZJ</latexit><latexit sha1_base64="Stw87wNj9TYI5ln6IkmJMx7IeZc=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQPMhoRVA8Dbx4ESa4D9hqSdN0C0uTkqTKqD34r3jxoIhX/w1v/jdmWw+6+SDk8d7vR15ekDCqtON8W6WFxaXllfJqZW19Y3PL3t5pKZFKTJpYMCE7AVKEUU6ammpGOokkKA4YaQfDy7HfvidSUcFv9SghXoz6nEYUI20k397rBYKFahSbK3vI7679jB67uW9XnZozAZwnbkGqoEDDt796ocBpTLjGDCnVdZ1EexmSmmJG8kovVSRBeIj6pGsoRzFRXjbJn8NDo4QwEtIcruFE/b2RoViNI5rJGOmBmvXG4n9eN9XRuZdRnqSacDx9KEoZ1AKOy4AhlQRrNjIEYUlNVogHSCKsTWUVU4I7++V50jqpuYbfnFbrF0UdZbAPDsARcMEZqIMr0ABNgMEjeAav4M16sl6sd+tjOlqyip1d8AfW5w9hjJZJ</latexit><latexit sha1_base64="Stw87wNj9TYI5ln6IkmJMx7IeZc=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQPMhoRVA8Dbx4ESa4D9hqSdN0C0uTkqTKqD34r3jxoIhX/w1v/jdmWw+6+SDk8d7vR15ekDCqtON8W6WFxaXllfJqZW19Y3PL3t5pKZFKTJpYMCE7AVKEUU6ammpGOokkKA4YaQfDy7HfvidSUcFv9SghXoz6nEYUI20k397rBYKFahSbK3vI7679jB67uW9XnZozAZwnbkGqoEDDt796ocBpTLjGDCnVdZ1EexmSmmJG8kovVSRBeIj6pGsoRzFRXjbJn8NDo4QwEtIcruFE/b2RoViNI5rJGOmBmvXG4n9eN9XRuZdRnqSacDx9KEoZ1AKOy4AhlQRrNjIEYUlNVogHSCKsTWUVU4I7++V50jqpuYbfnFbrF0UdZbAPDsARcMEZqIMr0ABNgMEjeAav4M16sl6sd+tjOlqyip1d8AfW5w9hjJZJ</latexit><latexit sha1_base64="Stw87wNj9TYI5ln6IkmJMx7IeZc=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQPMhoRVA8Dbx4ESa4D9hqSdN0C0uTkqTKqD34r3jxoIhX/w1v/jdmWw+6+SDk8d7vR15ekDCqtON8W6WFxaXllfJqZW19Y3PL3t5pKZFKTJpYMCE7AVKEUU6ammpGOokkKA4YaQfDy7HfvidSUcFv9SghXoz6nEYUI20k397rBYKFahSbK3vI7679jB67uW9XnZozAZwnbkGqoEDDt796ocBpTLjGDCnVdZ1EexmSmmJG8kovVSRBeIj6pGsoRzFRXjbJn8NDo4QwEtIcruFE/b2RoViNI5rJGOmBmvXG4n9eN9XRuZdRnqSacDx9KEoZ1AKOy4AhlQRrNjIEYUlNVogHSCKsTWUVU4I7++V50jqpuYbfnFbrF0UdZbAPDsARcMEZqIMr0ABNgMEjeAav4M16sl6sd+tjOlqyip1d8AfW5w9hjJZJ</latexit>

ei,1
<latexit sha1_base64="aE0/nCJvhzRrZk4T5xFtNQoc0Lc=">AAAB/XicbVDLSsNAFL2pr1pf9bFzM1gEF1ISERRXBTcuK9haaEOYTCbt0EkmzEyEGoK/4saFIm79D3f+jZM2C209MMzhnHuZM8dPOFPatr+tytLyyupadb22sbm1vVPf3esqkUpCO0RwIXs+VpSzmHY005z2Eklx5HN674+vC//+gUrFRHynJwl1IzyMWcgI1kby6gcDX/BATSJzZTT3Mnbq5F69YTftKdAicUrSgBJtr/41CARJIxprwrFSfcdOtJthqRnhNK8NUkUTTMZ4SPuGxjiiys2m6XN0bJQAhUKaE2s0VX9vZDhSRUAzGWE9UvNeIf7n9VMdXroZi5NU05jMHgpTjrRARRUoYJISzSeGYCKZyYrICEtMtCmsZkpw5r+8SLpnTcfw2/NG66qsowqHcAQn4MAFtOAG2tABAo/wDK/wZj1ZL9a79TEbrVjlzj78gfX5A+fElXg=</latexit><latexit sha1_base64="aE0/nCJvhzRrZk4T5xFtNQoc0Lc=">AAAB/XicbVDLSsNAFL2pr1pf9bFzM1gEF1ISERRXBTcuK9haaEOYTCbt0EkmzEyEGoK/4saFIm79D3f+jZM2C209MMzhnHuZM8dPOFPatr+tytLyyupadb22sbm1vVPf3esqkUpCO0RwIXs+VpSzmHY005z2Eklx5HN674+vC//+gUrFRHynJwl1IzyMWcgI1kby6gcDX/BATSJzZTT3Mnbq5F69YTftKdAicUrSgBJtr/41CARJIxprwrFSfcdOtJthqRnhNK8NUkUTTMZ4SPuGxjiiys2m6XN0bJQAhUKaE2s0VX9vZDhSRUAzGWE9UvNeIf7n9VMdXroZi5NU05jMHgpTjrRARRUoYJISzSeGYCKZyYrICEtMtCmsZkpw5r+8SLpnTcfw2/NG66qsowqHcAQn4MAFtOAG2tABAo/wDK/wZj1ZL9a79TEbrVjlzj78gfX5A+fElXg=</latexit><latexit sha1_base64="aE0/nCJvhzRrZk4T5xFtNQoc0Lc=">AAAB/XicbVDLSsNAFL2pr1pf9bFzM1gEF1ISERRXBTcuK9haaEOYTCbt0EkmzEyEGoK/4saFIm79D3f+jZM2C209MMzhnHuZM8dPOFPatr+tytLyyupadb22sbm1vVPf3esqkUpCO0RwIXs+VpSzmHY005z2Eklx5HN674+vC//+gUrFRHynJwl1IzyMWcgI1kby6gcDX/BATSJzZTT3Mnbq5F69YTftKdAicUrSgBJtr/41CARJIxprwrFSfcdOtJthqRnhNK8NUkUTTMZ4SPuGxjiiys2m6XN0bJQAhUKaE2s0VX9vZDhSRUAzGWE9UvNeIf7n9VMdXroZi5NU05jMHgpTjrRARRUoYJISzSeGYCKZyYrICEtMtCmsZkpw5r+8SLpnTcfw2/NG66qsowqHcAQn4MAFtOAG2tABAo/wDK/wZj1ZL9a79TEbrVjlzj78gfX5A+fElXg=</latexit><latexit sha1_base64="aE0/nCJvhzRrZk4T5xFtNQoc0Lc=">AAAB/XicbVDLSsNAFL2pr1pf9bFzM1gEF1ISERRXBTcuK9haaEOYTCbt0EkmzEyEGoK/4saFIm79D3f+jZM2C209MMzhnHuZM8dPOFPatr+tytLyyupadb22sbm1vVPf3esqkUpCO0RwIXs+VpSzmHY005z2Eklx5HN674+vC//+gUrFRHynJwl1IzyMWcgI1kby6gcDX/BATSJzZTT3Mnbq5F69YTftKdAicUrSgBJtr/41CARJIxprwrFSfcdOtJthqRnhNK8NUkUTTMZ4SPuGxjiiys2m6XN0bJQAhUKaE2s0VX9vZDhSRUAzGWE9UvNeIf7n9VMdXroZi5NU05jMHgpTjrRARRUoYJISzSeGYCKZyYrICEtMtCmsZkpw5r+8SLpnTcfw2/NG66qsowqHcAQn4MAFtOAG2tABAo/wDK/wZj1ZL9a79TEbrVjlzj78gfX5A+fElXg=</latexit>

ei,N
<latexit sha1_base64="6Ge+6vnRJ1XhTMNe7Y55p34UuqE=">AAAB/XicbVDNS8MwHE3n15xf9ePmJTgEDzJaERRPAy+eZIL7gK2UNE23sDQpSSrMUvxXvHhQxKv/hzf/G9OtB918EPJ47/cjLy9IGFXacb6tytLyyupadb22sbm1vWPv7nWUSCUmbSyYkL0AKcIoJ21NNSO9RBIUB4x0g/F14XcfiFRU8Hs9SYgXoyGnEcVIG8m3DwaBYKGaxObKSO5n9PQ29+2603CmgIvELUkdlGj59tcgFDiNCdeYIaX6rpNoL0NSU8xIXhukiiQIj9GQ9A3lKCbKy6bpc3hslBBGQprDNZyqvzcyFKsioJmMkR6pea8Q//P6qY4uvYzyJNWE49lDUcqgFrCoAoZUEqzZxBCEJTVZIR4hibA2hdVMCe78lxdJ56zhGn53Xm9elXVUwSE4AifABRegCW5AC7QBBo/gGbyCN+vJerHerY/ZaMUqd/bBH1ifPxPklZU=</latexit><latexit sha1_base64="6Ge+6vnRJ1XhTMNe7Y55p34UuqE=">AAAB/XicbVDNS8MwHE3n15xf9ePmJTgEDzJaERRPAy+eZIL7gK2UNE23sDQpSSrMUvxXvHhQxKv/hzf/G9OtB918EPJ47/cjLy9IGFXacb6tytLyyupadb22sbm1vWPv7nWUSCUmbSyYkL0AKcIoJ21NNSO9RBIUB4x0g/F14XcfiFRU8Hs9SYgXoyGnEcVIG8m3DwaBYKGaxObKSO5n9PQ29+2603CmgIvELUkdlGj59tcgFDiNCdeYIaX6rpNoL0NSU8xIXhukiiQIj9GQ9A3lKCbKy6bpc3hslBBGQprDNZyqvzcyFKsioJmMkR6pea8Q//P6qY4uvYzyJNWE49lDUcqgFrCoAoZUEqzZxBCEJTVZIR4hibA2hdVMCe78lxdJ56zhGn53Xm9elXVUwSE4AifABRegCW5AC7QBBo/gGbyCN+vJerHerY/ZaMUqd/bBH1ifPxPklZU=</latexit><latexit sha1_base64="6Ge+6vnRJ1XhTMNe7Y55p34UuqE=">AAAB/XicbVDNS8MwHE3n15xf9ePmJTgEDzJaERRPAy+eZIL7gK2UNE23sDQpSSrMUvxXvHhQxKv/hzf/G9OtB918EPJ47/cjLy9IGFXacb6tytLyyupadb22sbm1vWPv7nWUSCUmbSyYkL0AKcIoJ21NNSO9RBIUB4x0g/F14XcfiFRU8Hs9SYgXoyGnEcVIG8m3DwaBYKGaxObKSO5n9PQ29+2603CmgIvELUkdlGj59tcgFDiNCdeYIaX6rpNoL0NSU8xIXhukiiQIj9GQ9A3lKCbKy6bpc3hslBBGQprDNZyqvzcyFKsioJmMkR6pea8Q//P6qY4uvYzyJNWE49lDUcqgFrCoAoZUEqzZxBCEJTVZIR4hibA2hdVMCe78lxdJ56zhGn53Xm9elXVUwSE4AifABRegCW5AC7QBBo/gGbyCN+vJerHerY/ZaMUqd/bBH1ifPxPklZU=</latexit><latexit sha1_base64="6Ge+6vnRJ1XhTMNe7Y55p34UuqE=">AAAB/XicbVDNS8MwHE3n15xf9ePmJTgEDzJaERRPAy+eZIL7gK2UNE23sDQpSSrMUvxXvHhQxKv/hzf/G9OtB918EPJ47/cjLy9IGFXacb6tytLyyupadb22sbm1vWPv7nWUSCUmbSyYkL0AKcIoJ21NNSO9RBIUB4x0g/F14XcfiFRU8Hs9SYgXoyGnEcVIG8m3DwaBYKGaxObKSO5n9PQ29+2603CmgIvELUkdlGj59tcgFDiNCdeYIaX6rpNoL0NSU8xIXhukiiQIj9GQ9A3lKCbKy6bpc3hslBBGQprDNZyqvzcyFKsioJmMkR6pea8Q//P6qY4uvYzyJNWE49lDUcqgFrCoAoZUEqzZxBCEJTVZIR4hibA2hdVMCe78lxdJ56zhGn53Xm9elXVUwSE4AifABRegCW5AC7QBBo/gGbyCN+vJerHerY/ZaMUqd/bBH1ifPxPklZU=</latexit>

w1
i,N

<latexit sha1_base64="C7op2aSB+xpeYsSIdd1H5gypBe4=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQPMhoRVA8Dbx4kgnuA7Za0jTdwtKkJKkyag/+K148KOLVf8Ob/43Z1oNuPgh5vPf7kZcXJIwq7TjfVmlhcWl5pbxaWVvf2Nyyt3daSqQSkyYWTMhOgBRhlJOmppqRTiIJigNG2sHwcuy374lUVPBbPUqIF6M+pxHFSBvJt/d6gWChGsXmyh7yO9fP6PF17ttVp+ZMAOeJW5AqKNDw7a9eKHAaE64xQ0p1XSfRXoakppiRvNJLFUkQHqI+6RrKUUyUl03y5/DQKCGMhDSHazhRf29kKFbjiGYyRnqgZr2x+J/XTXV07mWUJ6kmHE8filIGtYDjMmBIJcGajQxBWFKTFeIBkghrU1nFlODOfnmetE5qruE3p9X6RVFHGeyDA3AEXHAG6uAKNEATYPAInsEreLOerBfr3fqYjpasYmcX/IH1+QNihZZK</latexit><latexit sha1_base64="C7op2aSB+xpeYsSIdd1H5gypBe4=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQPMhoRVA8Dbx4kgnuA7Za0jTdwtKkJKkyag/+K148KOLVf8Ob/43Z1oNuPgh5vPf7kZcXJIwq7TjfVmlhcWl5pbxaWVvf2Nyyt3daSqQSkyYWTMhOgBRhlJOmppqRTiIJigNG2sHwcuy374lUVPBbPUqIF6M+pxHFSBvJt/d6gWChGsXmyh7yO9fP6PF17ttVp+ZMAOeJW5AqKNDw7a9eKHAaE64xQ0p1XSfRXoakppiRvNJLFUkQHqI+6RrKUUyUl03y5/DQKCGMhDSHazhRf29kKFbjiGYyRnqgZr2x+J/XTXV07mWUJ6kmHE8filIGtYDjMmBIJcGajQxBWFKTFeIBkghrU1nFlODOfnmetE5qruE3p9X6RVFHGeyDA3AEXHAG6uAKNEATYPAInsEreLOerBfr3fqYjpasYmcX/IH1+QNihZZK</latexit><latexit sha1_base64="C7op2aSB+xpeYsSIdd1H5gypBe4=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQPMhoRVA8Dbx4kgnuA7Za0jTdwtKkJKkyag/+K148KOLVf8Ob/43Z1oNuPgh5vPf7kZcXJIwq7TjfVmlhcWl5pbxaWVvf2Nyyt3daSqQSkyYWTMhOgBRhlJOmppqRTiIJigNG2sHwcuy374lUVPBbPUqIF6M+pxHFSBvJt/d6gWChGsXmyh7yO9fP6PF17ttVp+ZMAOeJW5AqKNDw7a9eKHAaE64xQ0p1XSfRXoakppiRvNJLFUkQHqI+6RrKUUyUl03y5/DQKCGMhDSHazhRf29kKFbjiGYyRnqgZr2x+J/XTXV07mWUJ6kmHE8filIGtYDjMmBIJcGajQxBWFKTFeIBkghrU1nFlODOfnmetE5qruE3p9X6RVFHGeyDA3AEXHAG6uAKNEATYPAInsEreLOerBfr3fqYjpasYmcX/IH1+QNihZZK</latexit><latexit sha1_base64="C7op2aSB+xpeYsSIdd1H5gypBe4=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQPMhoRVA8Dbx4kgnuA7Za0jTdwtKkJKkyag/+K148KOLVf8Ob/43Z1oNuPgh5vPf7kZcXJIwq7TjfVmlhcWl5pbxaWVvf2Nyyt3daSqQSkyYWTMhOgBRhlJOmppqRTiIJigNG2sHwcuy374lUVPBbPUqIF6M+pxHFSBvJt/d6gWChGsXmyh7yO9fP6PF17ttVp+ZMAOeJW5AqKNDw7a9eKHAaE64xQ0p1XSfRXoakppiRvNJLFUkQHqI+6RrKUUyUl03y5/DQKCGMhDSHazhRf29kKFbjiGYyRnqgZr2x+J/XTXV07mWUJ6kmHE8filIGtYDjMmBIJcGajQxBWFKTFeIBkghrU1nFlODOfnmetE5qruE3p9X6RVFHGeyDA3AEXHAG6uAKNEATYPAInsEreLOerBfr3fqYjpasYmcX/IH1+QNihZZK</latexit>

wM
i,N

<latexit sha1_base64="Yd6RFug6xU5oiw6Y5spC4D+RLq8=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhyCBxmtCIqngRcvygT3AVstaZptYWlSklQZtQf/FS8eFPHqv+HN/8Z060E3H4Q83vv9yMsLYkaVdpxva25+YXFpubRSXl1b39i0t7abSiQSkwYWTMh2gBRhlJOGppqRdiwJigJGWsHwIvdb90QqKvitHsXEi1Cf0x7FSBvJt3e7gWChGkXmSh+yuys/pUfXmW9XnKozBpwlbkEqoEDdt7+6ocBJRLjGDCnVcZ1YeymSmmJGsnI3USRGeIj6pGMoRxFRXjrOn8EDo4SwJ6Q5XMOx+nsjRZHKI5rJCOmBmvZy8T+vk+jemZdSHieacDx5qJcwqAXMy4AhlQRrNjIEYUlNVogHSCKsTWVlU4I7/eVZ0jyuuobfnFRq50UdJbAH9sEhcMEpqIFLUAcNgMEjeAav4M16sl6sd+tjMjpnFTs74A+szx+NnZZm</latexit><latexit sha1_base64="Yd6RFug6xU5oiw6Y5spC4D+RLq8=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhyCBxmtCIqngRcvygT3AVstaZptYWlSklQZtQf/FS8eFPHqv+HN/8Z060E3H4Q83vv9yMsLYkaVdpxva25+YXFpubRSXl1b39i0t7abSiQSkwYWTMh2gBRhlJOGppqRdiwJigJGWsHwIvdb90QqKvitHsXEi1Cf0x7FSBvJt3e7gWChGkXmSh+yuys/pUfXmW9XnKozBpwlbkEqoEDdt7+6ocBJRLjGDCnVcZ1YeymSmmJGsnI3USRGeIj6pGMoRxFRXjrOn8EDo4SwJ6Q5XMOx+nsjRZHKI5rJCOmBmvZy8T+vk+jemZdSHieacDx5qJcwqAXMy4AhlQRrNjIEYUlNVogHSCKsTWVlU4I7/eVZ0jyuuobfnFRq50UdJbAH9sEhcMEpqIFLUAcNgMEjeAav4M16sl6sd+tjMjpnFTs74A+szx+NnZZm</latexit><latexit sha1_base64="Yd6RFug6xU5oiw6Y5spC4D+RLq8=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhyCBxmtCIqngRcvygT3AVstaZptYWlSklQZtQf/FS8eFPHqv+HN/8Z060E3H4Q83vv9yMsLYkaVdpxva25+YXFpubRSXl1b39i0t7abSiQSkwYWTMh2gBRhlJOGppqRdiwJigJGWsHwIvdb90QqKvitHsXEi1Cf0x7FSBvJt3e7gWChGkXmSh+yuys/pUfXmW9XnKozBpwlbkEqoEDdt7+6ocBJRLjGDCnVcZ1YeymSmmJGsnI3USRGeIj6pGMoRxFRXjrOn8EDo4SwJ6Q5XMOx+nsjRZHKI5rJCOmBmvZy8T+vk+jemZdSHieacDx5qJcwqAXMy4AhlQRrNjIEYUlNVogHSCKsTWVlU4I7/eVZ0jyuuobfnFRq50UdJbAH9sEhcMEpqIFLUAcNgMEjeAav4M16sl6sd+tjMjpnFTs74A+szx+NnZZm</latexit><latexit sha1_base64="Yd6RFug6xU5oiw6Y5spC4D+RLq8=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhyCBxmtCIqngRcvygT3AVstaZptYWlSklQZtQf/FS8eFPHqv+HN/8Z060E3H4Q83vv9yMsLYkaVdpxva25+YXFpubRSXl1b39i0t7abSiQSkwYWTMh2gBRhlJOGppqRdiwJigJGWsHwIvdb90QqKvitHsXEi1Cf0x7FSBvJt3e7gWChGkXmSh+yuys/pUfXmW9XnKozBpwlbkEqoEDdt7+6ocBJRLjGDCnVcZ1YeymSmmJGsnI3USRGeIj6pGMoRxFRXjrOn8EDo4SwJ6Q5XMOx+nsjRZHKI5rJCOmBmvZy8T+vk+jemZdSHieacDx5qJcwqAXMy4AhlQRrNjIEYUlNVogHSCKsTWVlU4I7/eVZ0jyuuobfnFRq50UdJbAH9sEhcMEpqIFLUAcNgMEjeAav4M16sl6sd+tjMjpnFTs74A+szx+NnZZm</latexit>

Thesis version

p(yi,1 = neg)
<latexit sha1_base64="Oc/W6uJmCS8M6botVx1cPcB66Sg=">AAAB9XicbZBNS8NAEIYnftb6VfXoJViEClISERRBKHjxWMF+QBvLZjtpl242YXejhND/4cWDIl79L978N27bHLT1hYWHd2aY2dePOVPacb6tpeWV1bX1wkZxc2t7Z7e0t99UUSIpNmjEI9n2iULOBDY00xzbsUQS+hxb/uhmUm89olQsEvc6jdELyUCwgFGijfUQV9Jexk7d8bXAwUmvVHaqzlT2Irg5lCFXvVf66vYjmoQoNOVEqY7rxNrLiNSMchwXu4nCmNARGWDHoCAhKi+bXj22j43Tt4NImie0PXV/T2QkVCoNfdMZEj1U87WJ+V+tk+jg0suYiBONgs4WBQm3dWRPIrD7TCLVPDVAqGTmVpsOiSRUm6CKJgR3/suL0Dyruobvzsu1qzyOAhzCEVTAhQuowS3UoQEUJDzDK7xZT9aL9W59zFqXrHzmAP7I+vwBdzCRzA==</latexit><latexit sha1_base64="Oc/W6uJmCS8M6botVx1cPcB66Sg=">AAAB9XicbZBNS8NAEIYnftb6VfXoJViEClISERRBKHjxWMF+QBvLZjtpl242YXejhND/4cWDIl79L978N27bHLT1hYWHd2aY2dePOVPacb6tpeWV1bX1wkZxc2t7Z7e0t99UUSIpNmjEI9n2iULOBDY00xzbsUQS+hxb/uhmUm89olQsEvc6jdELyUCwgFGijfUQV9Jexk7d8bXAwUmvVHaqzlT2Irg5lCFXvVf66vYjmoQoNOVEqY7rxNrLiNSMchwXu4nCmNARGWDHoCAhKi+bXj22j43Tt4NImie0PXV/T2QkVCoNfdMZEj1U87WJ+V+tk+jg0suYiBONgs4WBQm3dWRPIrD7TCLVPDVAqGTmVpsOiSRUm6CKJgR3/suL0Dyruobvzsu1qzyOAhzCEVTAhQuowS3UoQEUJDzDK7xZT9aL9W59zFqXrHzmAP7I+vwBdzCRzA==</latexit><latexit sha1_base64="Oc/W6uJmCS8M6botVx1cPcB66Sg=">AAAB9XicbZBNS8NAEIYnftb6VfXoJViEClISERRBKHjxWMF+QBvLZjtpl242YXejhND/4cWDIl79L978N27bHLT1hYWHd2aY2dePOVPacb6tpeWV1bX1wkZxc2t7Z7e0t99UUSIpNmjEI9n2iULOBDY00xzbsUQS+hxb/uhmUm89olQsEvc6jdELyUCwgFGijfUQV9Jexk7d8bXAwUmvVHaqzlT2Irg5lCFXvVf66vYjmoQoNOVEqY7rxNrLiNSMchwXu4nCmNARGWDHoCAhKi+bXj22j43Tt4NImie0PXV/T2QkVCoNfdMZEj1U87WJ+V+tk+jg0suYiBONgs4WBQm3dWRPIrD7TCLVPDVAqGTmVpsOiSRUm6CKJgR3/suL0Dyruobvzsu1qzyOAhzCEVTAhQuowS3UoQEUJDzDK7xZT9aL9W59zFqXrHzmAP7I+vwBdzCRzA==</latexit><latexit sha1_base64="Oc/W6uJmCS8M6botVx1cPcB66Sg=">AAAB9XicbZBNS8NAEIYnftb6VfXoJViEClISERRBKHjxWMF+QBvLZjtpl242YXejhND/4cWDIl79L978N27bHLT1hYWHd2aY2dePOVPacb6tpeWV1bX1wkZxc2t7Z7e0t99UUSIpNmjEI9n2iULOBDY00xzbsUQS+hxb/uhmUm89olQsEvc6jdELyUCwgFGijfUQV9Jexk7d8bXAwUmvVHaqzlT2Irg5lCFXvVf66vYjmoQoNOVEqY7rxNrLiNSMchwXu4nCmNARGWDHoCAhKi+bXj22j43Tt4NImie0PXV/T2QkVCoNfdMZEj1U87WJ+V+tk+jg0suYiBONgs4WBQm3dWRPIrD7TCLVPDVAqGTmVpsOiSRUm6CKJgR3/suL0Dyruobvzsu1qzyOAhzCEVTAhQuowS3UoQEUJDzDK7xZT9aL9W59zFqXrHzmAP7I+vwBdzCRzA==</latexit>

p(yi,1 = neu)
<latexit sha1_base64="GE7usXt1luV7tc4SicC871aVqu8=">AAAB9XicbZBNS8NAEIYnftb6VfXoJViEClISERRBKHjxWMF+QBvLZjtpl242YXejhND/4cWDIl79L978N27bHLT1hYWHd2aY2dePOVPacb6tpeWV1bX1wkZxc2t7Z7e0t99UUSIpNmjEI9n2iULOBDY00xzbsUQS+hxb/uhmUm89olQsEvc6jdELyUCwgFGijfUQV9Jexk7d8bXA5KRXKjtVZyp7EdwcypCr3it9dfsRTUIUmnKiVMd1Yu1lRGpGOY6L3URhTOiIDLBjUJAQlZdNrx7bx8bp20EkzRPanrq/JzISKpWGvukMiR6q+drE/K/WSXRw6WVMxIlGQWeLgoTbOrInEdh9JpFqnhogVDJzq02HRBKqTVBFE4I7/+VFaJ5VXcN35+XaVR5HAQ7hCCrgwgXU4Bbq0AAKEp7hFd6sJ+vFerc+Zq1LVj5zAH9kff4AjHaR2g==</latexit><latexit sha1_base64="GE7usXt1luV7tc4SicC871aVqu8=">AAAB9XicbZBNS8NAEIYnftb6VfXoJViEClISERRBKHjxWMF+QBvLZjtpl242YXejhND/4cWDIl79L978N27bHLT1hYWHd2aY2dePOVPacb6tpeWV1bX1wkZxc2t7Z7e0t99UUSIpNmjEI9n2iULOBDY00xzbsUQS+hxb/uhmUm89olQsEvc6jdELyUCwgFGijfUQV9Jexk7d8bXA5KRXKjtVZyp7EdwcypCr3it9dfsRTUIUmnKiVMd1Yu1lRGpGOY6L3URhTOiIDLBjUJAQlZdNrx7bx8bp20EkzRPanrq/JzISKpWGvukMiR6q+drE/K/WSXRw6WVMxIlGQWeLgoTbOrInEdh9JpFqnhogVDJzq02HRBKqTVBFE4I7/+VFaJ5VXcN35+XaVR5HAQ7hCCrgwgXU4Bbq0AAKEp7hFd6sJ+vFerc+Zq1LVj5zAH9kff4AjHaR2g==</latexit><latexit sha1_base64="GE7usXt1luV7tc4SicC871aVqu8=">AAAB9XicbZBNS8NAEIYnftb6VfXoJViEClISERRBKHjxWMF+QBvLZjtpl242YXejhND/4cWDIl79L978N27bHLT1hYWHd2aY2dePOVPacb6tpeWV1bX1wkZxc2t7Z7e0t99UUSIpNmjEI9n2iULOBDY00xzbsUQS+hxb/uhmUm89olQsEvc6jdELyUCwgFGijfUQV9Jexk7d8bXA5KRXKjtVZyp7EdwcypCr3it9dfsRTUIUmnKiVMd1Yu1lRGpGOY6L3URhTOiIDLBjUJAQlZdNrx7bx8bp20EkzRPanrq/JzISKpWGvukMiR6q+drE/K/WSXRw6WVMxIlGQWeLgoTbOrInEdh9JpFqnhogVDJzq02HRBKqTVBFE4I7/+VFaJ5VXcN35+XaVR5HAQ7hCCrgwgXU4Bbq0AAKEp7hFd6sJ+vFerc+Zq1LVj5zAH9kff4AjHaR2g==</latexit><latexit sha1_base64="GE7usXt1luV7tc4SicC871aVqu8=">AAAB9XicbZBNS8NAEIYnftb6VfXoJViEClISERRBKHjxWMF+QBvLZjtpl242YXejhND/4cWDIl79L978N27bHLT1hYWHd2aY2dePOVPacb6tpeWV1bX1wkZxc2t7Z7e0t99UUSIpNmjEI9n2iULOBDY00xzbsUQS+hxb/uhmUm89olQsEvc6jdELyUCwgFGijfUQV9Jexk7d8bXA5KRXKjtVZyp7EdwcypCr3it9dfsRTUIUmnKiVMd1Yu1lRGpGOY6L3URhTOiIDLBjUJAQlZdNrx7bx8bp20EkzRPanrq/JzISKpWGvukMiR6q+drE/K/WSXRw6WVMxIlGQWeLgoTbOrInEdh9JpFqnhogVDJzq02HRBKqTVBFE4I7/+VFaJ5VXcN35+XaVR5HAQ7hCCrgwgXU4Bbq0AAKEp7hFd6sJ+vFerc+Zq1LVj5zAH9kff4AjHaR2g==</latexit>

p(yi,1 = pos)
<latexit sha1_base64="ZYnhvepPivM6U0R9jse6kCOh0J0=">AAAB9XicbZDLSgMxFIbPeK31VnXpJliEClJmRFAEoeDGZQV7gXYsmTTThmYmIckow9D3cONCEbe+izvfxrSdhbb+EPj4zzmckz+QnGnjut/O0vLK6tp6YaO4ubW9s1va229qkShCG0RwodoB1pSzmDYMM5y2paI4CjhtBaObSb31SJVmIr43qaR+hAcxCxnBxloPspL2Mnbqja+l0Ce9UtmtulOhRfByKEOueq/01e0LkkQ0NoRjrTueK42fYWUY4XRc7CaaSkxGeEA7FmMcUe1n06vH6Ng6fRQKZV9s0NT9PZHhSOs0CmxnhM1Qz9cm5n+1TmLCSz9jsUwMjclsUZhwZASaRID6TFFieGoBE8XsrYgMscLE2KCKNgRv/suL0Dyrepbvzsu1qzyOAhzCEVTAgwuowS3UoQEEFDzDK7w5T86L8+58zFqXnHzmAP7I+fwBm7aR5A==</latexit><latexit sha1_base64="ZYnhvepPivM6U0R9jse6kCOh0J0=">AAAB9XicbZDLSgMxFIbPeK31VnXpJliEClJmRFAEoeDGZQV7gXYsmTTThmYmIckow9D3cONCEbe+izvfxrSdhbb+EPj4zzmckz+QnGnjut/O0vLK6tp6YaO4ubW9s1va229qkShCG0RwodoB1pSzmDYMM5y2paI4CjhtBaObSb31SJVmIr43qaR+hAcxCxnBxloPspL2Mnbqja+l0Ce9UtmtulOhRfByKEOueq/01e0LkkQ0NoRjrTueK42fYWUY4XRc7CaaSkxGeEA7FmMcUe1n06vH6Ng6fRQKZV9s0NT9PZHhSOs0CmxnhM1Qz9cm5n+1TmLCSz9jsUwMjclsUZhwZASaRID6TFFieGoBE8XsrYgMscLE2KCKNgRv/suL0Dyrepbvzsu1qzyOAhzCEVTAgwuowS3UoQEEFDzDK7w5T86L8+58zFqXnHzmAP7I+fwBm7aR5A==</latexit><latexit sha1_base64="ZYnhvepPivM6U0R9jse6kCOh0J0=">AAAB9XicbZDLSgMxFIbPeK31VnXpJliEClJmRFAEoeDGZQV7gXYsmTTThmYmIckow9D3cONCEbe+izvfxrSdhbb+EPj4zzmckz+QnGnjut/O0vLK6tp6YaO4ubW9s1va229qkShCG0RwodoB1pSzmDYMM5y2paI4CjhtBaObSb31SJVmIr43qaR+hAcxCxnBxloPspL2Mnbqja+l0Ce9UtmtulOhRfByKEOueq/01e0LkkQ0NoRjrTueK42fYWUY4XRc7CaaSkxGeEA7FmMcUe1n06vH6Ng6fRQKZV9s0NT9PZHhSOs0CmxnhM1Qz9cm5n+1TmLCSz9jsUwMjclsUZhwZASaRID6TFFieGoBE8XsrYgMscLE2KCKNgRv/suL0Dyrepbvzsu1qzyOAhzCEVTAgwuowS3UoQEEFDzDK7w5T86L8+58zFqXnHzmAP7I+fwBm7aR5A==</latexit><latexit sha1_base64="ZYnhvepPivM6U0R9jse6kCOh0J0=">AAAB9XicbZDLSgMxFIbPeK31VnXpJliEClJmRFAEoeDGZQV7gXYsmTTThmYmIckow9D3cONCEbe+izvfxrSdhbb+EPj4zzmckz+QnGnjut/O0vLK6tp6YaO4ubW9s1va229qkShCG0RwodoB1pSzmDYMM5y2paI4CjhtBaObSb31SJVmIr43qaR+hAcxCxnBxloPspL2Mnbqja+l0Ce9UtmtulOhRfByKEOueq/01e0LkkQ0NoRjrTueK42fYWUY4XRc7CaaSkxGeEA7FmMcUe1n06vH6Ng6fRQKZV9s0NT9PZHhSOs0CmxnhM1Qz9cm5n+1TmLCSz9jsUwMjclsUZhwZASaRID6TFFieGoBE8XsrYgMscLE2KCKNgRv/suL0Dyrepbvzsu1qzyOAhzCEVTAgwuowS3UoQEEFDzDK7w5T86L8+58zFqXnHzmAP7I+fwBm7aR5A==</latexit>

si,1
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Utterance 1 Utterance N

Figure 6.5: Simplified model that illustrates the output probabilities from the softmax func-
tion. The subscript i, j represents the jth utterance in visit i. GRUs both at the utterance
level and the word level are bi-directional.

mood by talking about the blood pressure (utterance 52), and compliments the patient for

being active and exercising often (utterances 54–57). A similar pattern exists later in this

visit (around utterance 250–300 in Figure 6.3) as well in other visits, where the patient talks

in a negative fashion and the doctor refreshes the conversation by saying positive things.

A similar trend can be seen in Figure 6.4, which shows boxplots of emotional valence per

visit, where doctors tend to have more positive emotion than patients overall. For each visit,

the emotional valences of the utterances spoken by each speaker are averaged. Each boxplot

represents 353 values, one data point for each of the 353 visits.

6.3 Model

The primary type of model I investigate for prediction of emotional valence is similar to the

recurrent neural network model (Hier-GRU) used in Chapters 4 and 5.The main difference

between the model shown in Figure 4.3 and the model used in this chapter (Figure 6.5) is the
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Figure 6.6: A diagram that shows the steps to make an utterance vector ei,j speaker-
dependent. A linear projection (FC stands for the fully connected layer) is performed to
create a speaker embedding si,j, and the speaker embedding is added to the existing utter-
ance vector after an activation function. The size of the speaker embedding is the same as
that of the utterance vector ei,j.

speaker embedding. Therefore, the model is referred to as “Hier-GRU-S,” with an “S” that

stands for “speaker.” Unlike the topic labels, even though emotional valence between doctor

and patient is often correlated over time (e.g., see Figure 6.3), speakers can have different

emotions even when they are communicating at the same time. Also, since the doctors

show slightly more positive emotions overall (Figure 6.4), it is reasonable to incorporate the

speaker information with each utterance.

One of the simplest ways to incorporate speaker information is to make the utterance vector

ei,j speaker-dependent by adding a projection of the speaker embedding, where the pro-

jection is followed by an activation function (see Figure 6.6 for an illustration). This type

of addition method for having multi-speaker representations has been used successfully in

speech recognition [3] and in speech generation [120, 124, 153]. Since the model used here is

more of a text classification model where the model size is significantly smaller than those

for speech data, the speaker embedding is added to just one part of the model, to the ut-

terance vector ei,j. Also, since it is used only once, there is no need to keep a separate

low-dimensional embedding, and the size of the embedding is set to the size of the ei,j.
3

Figure 6.5 illustrates the high-level idea of the model. The figure focuses on a single utterance

j in visit i. A speaker index for the utterance si,j (either 0 or 1 to indicate doctor or patient)

is embedded and added to the utterance vector (details are simplified in the figure). Although

unique speaker IDs were not used, having the information on whether the speaker is a doctor

3In prior work, a low dimensional speaker embedding was learned for each speaker and shared across the
model by adding a projected version of the embedding to different parts of the neural network model.
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or a patient showed an improvement in both of the evaluation methods discussed in the later

sections.

The probabilities for each of positive, neutral, and negative are shown at the output after

the softmax in Figure 6.5. These probabilities themselves are used for evaluation in addition

to the classification decision yij ∈ {pos, neu, neg}, which corresponds to the argmax of the

output probabilities.

6.3.1 Model Training

For training, the labels are averaged to a single emotional valence score yi,j for each utterance

j in visit i. Also, due to the highly skewed label distribution shown in Figure 6.2, labels with

extreme values are all treated as just “positive” or “negative,” resulting in three categorical

labels: negative (-1), neutral (0), and positive(1). The score yi,j’s that are −0.5 or lower are

quantized to negative, and the values that are 0.5 or higher are rounded to positive. All the

other values are considered as neutral.

To validate the performance of Hier-GRU-S, an independent logistic regression (LR) classifier

is used as a baseline model. The results from the Hier-GRU without speaker information

are also reported for comparison.

Text cleaning and preprocessing steps are very similar to the steps described in Section

4.3.1 in Chapter 4. However, stopwords are included for the bag-of-words representation

used in the LR classifier since removing stopwords decreased the performance for emotion

classification. All unigrams and bigrams are included except for the ones that appeared in

2 or fewer utterances (document frequency of 10−5). The size of the bag-of-words vector for

LR was V = 52278. For Hier-GRU-S and Hier-GRU, only the unigrams are included without

any stopwords removed, with the final vocabulary size of 5489.
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Implementation details and hyperparameters settings are described below for each model.

All hyperparameters are selected via grid search on a single fold.

Hier-GRU-S

The model was implemented using the AllenNLP toolkit [55], based on PyTorch. The

dropout rates for the word embedding layer and the speaker embedding layer were both set

to 0.4. The word embedding size was 100, and the hidden size of the GRUs was 128 for

both the utterance level and the word level. Both GRUs were bi-directional, and thus the

utterance vector ei,j had size 256. The speaker embedding size was set to 256 to match the

dimension with the utterance vector. Both GRUs had a dropout rate of 0.5, and had a single

layer. I used ReLU for the activation function at the speaker embedding. Other references

used softsign or hyperbolic tangent for activation to limit the output scale. However, it was

less important in my experiment since there are only two different speakers, and using ReLU

gave slight improvement over softsign. The model was trained with cross-entropy loss and

was optimized via Adam [83], with 0.001 as a starting rate.

Hier-GRU

This model has the same structure as Hier-GRU-S, except that it does not have the speaker

embeddings. The dropout rate at the word embedding layer was set to 0.2, and all other

hyperparameters were the same as Hier-GRU-S.

Logistic Regression

The Scikit-learn library [121] implementation of LR was used with the one-vs-rest training

option. The inverse regularization strength was set to 3, and the L2 penalty was used.
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Subset
Test

Labeler
Number of

Visits
Number of
Utterances

1 9 93 49849
2 13 84 44088
3 10 79 43025
4 4 50 26403
5 14 50 23577
6 5 27 8644
7 8 5 1392
8 2 2 1387
9 7 2 630
10 3 2 630

Table 6.1: The number of visits and utterances for each subset used for evaluation. Each
subset consists of utterances that have 3 or more labels including the test labeler (shown in
the second column of the table). The rows are sorted by the number of utterances in each
subset.

6.4 Evaluation Methods

6.4.1 Comparison with the Human Labels

To provide a baseline for model performance, I evaluate human labeling reliability in the

following manner. Since multiple labels may exist for a single utterance, a one vs. rest

(OvR) approach is used for each labeler for the human labels to measure their performance.

In this approach, the labels from one labeler are treated as values to be tested against the

mean of the labels from the other labelers. This way of evaluating quantifies the proportion

of labeling errors that humans make relative to each other, or how much humans can agree

on each other for rating the emotion labels. Only the visits with three or more labelers

(108 visits out of 353) are included in this human OvR evaluation. Also, since each labeler

labeled different sets of utterances, different subsets of utterances are selected to calculate

the evaluation metric for each labeler. Table 6.1 has the summary information on each

subset.
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6.4.2 Pearson Correlation Coefficient

The first metric of performance is the Pearson correlation coefficient, which uses the contin-

uous scores from the predicted probabilities. Rather than treating the labels as completely

categorical, utilizing the output probabilities can capture more information.

The Pearson correlation coefficient is a statistical measure that quantifies the linear asso-

ciation between two variables. The value ranges from -1 to 1, where 0 corresponds to no

correlation. The strongest linear relationship is indicated by -1 or 1 for a negative or a

positive relationship, respectively. For evaluating how similar the two emotional valence

trajectories are, a higher correlation coefficient value (thus stronger positive relationship) is

more desirable. The formula below is used for computing a Pearson correlation coefficient

for speaker k (either a doctor or a patient) in visit i.

ρki =

∑
j∈{si,j=k}

(ai,j − aki )(bi,j − b
k

i )

σaki σbki
, (6.1)

where ai,j and bi,j are two different emotional valence scores for utterance j in visit i, and

si,j is the speaker index of the same utterance to indicate whether it was spoken by a doctor

or a patient. The numerator term is the covariance between the two, and the overlined

symbol stands for the emotional valence mean of the speaker utterances in a visit (e.g.,

aki = 1
Nk

∑
j∈{si,j=k} a

k
i,j, where Nk is the number of utterances spoken by speaker k in visit

i). σkai and σkbi are standard deviations for each of the two sets of scores.

For evaluating the human labels, the correlation coefficients are calculated for each speaker,

each visit, and each available labeler in that visit. As described earlier, each labeler is

regarded as a “test” labeler, and the correlation coefficient is calculated between the labels

from the test labeler and the mean label values from the rest of the labelers who also labeled
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that visit. A total of 788 correlation coefficients are calculated for this case.4

To calculate the correlation coefficients for the model output, the following score is used as

the basis for the model’s predictions, for each utterance i in visit j.

li,j = p(yi,j = pos)− p(yi,j = neg). (6.2)

This score can capture more fine-grained variations and nuances than the integer labels,

particularly because the model is trained with three labels.5 Then the correlation between

the average human valence score yi,j and the score li,j is calculated, for each speaker and

for each visit. Only the visits with 3 or more labelers (108 visits) are included to allow a

direct comparison with the human OvR evaluation. Therefore, there exist 216 correlation

coefficient scores (108 visits × 2 speakers).

Figure 6.7 shows examples of emotional valence scores during a visit, used for calculating

correlation coefficients. In this particular visit, 6 labelers gave scores to each utterance, and

the average value per utterance, yi,j, from all available labelers is shown as the orange line in

Figure 6.7 (a). The model predicted score, li,j, is in blue line, and the correlation coefficient

is calculated between these two sequences.6 One labeler (labeler 4) is selected as a test

labeler for human evaluation (blue line in Figure 6.7 (b)), and the labels from that labeler

are used to compute the correlation coefficient with the labels from the rest of the labelers

(orange line in Figure 6.7 (b)). In this figure, we see that both the model’s predictions and

the single labeler track well with the trajectory of the scores they are being compared to.

For a better visualization, smoothing with triangular window of size 7 is applied to all the

sequences in Figure 6.7 (but not used in computing the correlation scores). Also, the scores

4Two times (since there are two speaker types) of the sum of the second row in Table 6.1.
2
∑

iNumLabelersi = 2
∑

cNumV isitsc = 2 × 394 = 788, where i and c are the indices for the visit
and the labeler, respectively.

5This score from the suggested classification model was able to capture positive and negative signals
better than using a regression model for the highly skewed dataset used in this chapter.

6Although I use the term “sequence,” correlation coefficient does not consider the order.
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Figure 6.7: Examples of emotional valence trajectories of the patient in a visit (the same
visit shown in Figure 6.3) that are used for calculating correlation coefficients. (a) Model
predicted score li,j vs the average label value yi,j. (b) For human one vs. rest evaluation. In
both plots, the orange line is considered as the true or the mean of the majority human label
values, and the blue line is the label values to test. The correlation coefficients between the
two lines are 0.8168 for (a) and 0.7937 for (b).
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of the blue line in Figure 6.7 (a), which is the model predicted score li,j, is scaled to match

the variance of the orange line (yi,j) in the same plot.

6.4.3 R-Precision

R-precision is the second metric that I use as a performance metric. Due to the highly

imbalanced data, the base rate for the classification accuracy already reaches around 80%

when predicting all the utterances to “neutral.” Therefore, it is more important to focus on

how many of the positive and negative utterances are correctly classified and how confident

the model is for those utterances. R-precision achieves both by calculating the precision at

the top R utterances, separately for positive, negative, and neutral.

In information retrieval, R-precision is defined as the precision at the Rth position, where R

is the total number of relevant documents for a query that could be retrieved. If there are r

relevant documents among the top-R retrieved documents, then the R-precision is calculated

as r
R

.

For this application, an “utterance” is regarded as a “document,” and the scores are sepa-

rately calculated for each categorical or integer label: negative (-1), neutral (0), and positive

(1). The utterances are ranked by the predicted probabilities for each emotional valence

category to compute the R-precision.

Since the emotional valence label 1 is considered as slightly positive, and -1 is considered

as slightly negative, I set the threshold as 0.5 and -0.5 for deciding the number of relevant

utterances for positive and negative, respectively. For positive, R is computed by counting

all the utterances that have human label values 0.5 or higher. For negative, R is the number

of utterances with label values 0.5 or lower. The R for the neutral class is the number of all

the other utterances.
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In order to make a reasonable comparison between the human and the model, the subsets

in Table 6.1 are used to calculate the R-precision for both the human OvR and the model

evaluation. For each method (e.g., human OvR or Hier-GRU-S), R-precision scores are

calculated for each subset, and the scores are averaged with weights to get a single score.

The weights are proportional to the number of utterances in each set and sum to 1.

Additionally, R-precision scores are also compared just between the models. Since the model

outputs have labels from all visits, there is no need to evaluate on different subsets. The

most straightforward way is calculating R-precision using all the utterance to give a single

number. Also, it can be computed for each visit to obtain 353 R-precision scores.

6.5 Results

Similar to Chapter 4, 10-fold cross validation is used to obtain the model prediction results

for all 353 visits.

6.5.1 Correlation Coefficient Results

Correlation coefficients are calculated for (a) the human one vs. rest and (b) the three models

(Hier-GRU-S, Hier-GRU, and LR). Their distributions are shown as boxplots in Figure 6.8.

The highest variance is observed in the human one vs. rest case, however, it also has the

highest mean and median values. The distribution of the logistic regression (the rightmost

boxplot), which is the non-neural baseline model, is slightly shifted down compared to the

other three boxplots, showing the lowest performance in terms of correlation coefficient. The

two neural network models, Hier-GRU-S and Hier-GRU both gave similar and comparable

results to the human results.
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Figure 6.8: The boxplots of correlation coefficients for human and three different models.

Two Sources of Correlation Coefficients p-value

Human vs. Hier-GRU-S 0.2935
Human vs. Hier-GRU 0.1157
Human vs. LR 0.0000 ***

Hier-GRU-S vs. Hier-GRU 0.0034 **
Hier-GRU-S vs. LR 0.0000 ***

Hier-GRU vs. LR 0.0000 ***

Table 6.2: Results from two-sided T-tests using correlation coefficients from pairs of models,
in order to test whether they have identical average values. For the tests with the human
scores, independent T-test was used, and all the other tests used dependent T-test.

The results are further quantified in Table 6.2 by conducting statistical T-tests with each of

the two sets of correlation coefficients. Since the one vs. rest human evaluation generates

more coefficient scores than the models, independent T-tests were used when testing with

the human OvR correlation coefficient scores. For all the other tests between three models,

dependent T-tests for paired samples were used for testing significance.

From the results, the human-labeled emotional valence correlations are not significantly

different from the correlations from each of the two neural network models, Hier-GRU-S and

Hier-GRU. However, the p-value for the T-test between the human and the logistic regression
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is very small, indicating that the null hypothesis of having equal means can be rejected with

confidence.

The correlation coefficients from LR are significantly different at the 0.001 level from both

Hier-GRU-S and Hier-GRU. Also, although it is not obvious from Figure 6.8, the mean of

Hier-GRU-S is different (and higher, from Figure 6.8) from Hier-GRU, and is significant at

the 0.01 level.

6.5.2 R-Precision Results

Table 6.3 shows (a) the human OvR precision scores and (b) the model’s precision scores

relative to all the human labelers.

The scores consist of weighted averages of R-precision scores across 10 different subsets (in

Table 6.1). Surprisingly, the human agreement on rating negative and positive utterances

was lower than the agreement between the human and the two neural network models’

predictions, quantified by the R-precision score.

Since Hier-GRU-S gave the highest weighted mean of R-precisions among the models, I focus

next on Hier-GRU-S results by investigating the R-precision scores for each subset. Table

6.4 shows those numbers. The rows in the table are sorted by the number of utterances in

each subset, therefore the R-precision scores with larger subsets (subset 1 to 5) have more

reliable scores and are weighted with higher weights.

Model
R-Precision (Weighted Avg)
Negative Neutral Positive

Human OvR 0.437 0.900 0.471

Hier-GRU-S 0.448 0.897 0.576
Hier-GRU (No Speaker) 0.426 0.893 0.573
LR 0.414 0.887 0.528

Table 6.3: Weighted average of R-precision scores.
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Negative Neutral Positive

Subset
Test

Labeler
Num

Utters
Human
OvR

Hier-
GRU-S

Human
OvR

Hier-
GRU-S

Human
OvR

Hier-
GRU-S

1 9 49849 0.387 0.456 0.881 0.905 0.468 0.579

2 13 44088 0.421 0.446 0.918 0.901 0.477 0.570

3 10 43025 0.471 0.444 0.901 0.899 0.416 0.566

4 4 26403 0.466 0.464 0.916 0.880 0.507 0.570

5 14 23577 0.443 0.435 0.877 0.878 0.481 0.603

6 5 8644 0.641 0.451 0.892 0.896 0.544 0.596

7 8 1392 0.118 0.397 0.929 0.944 0.314 0.570

8 2 1387 0.413 0.385 0.950 0.925 0.526 0.599

9 7 630 0.286 0.333 0.990 0.977 1.000 0.500

10 3 630 0.000 0.333 0.987 0.977 1.000 0.500

Weighted Avg 0.437 0.448 0.900 0.897 0.471 0.576

Table 6.4: R-precision scores for each subset from human OvR and Hier-GRU-S with detailed
information.

NEGATIVE NEUTRAL POSITIVE
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Figure 6.9: R-precision scores for each subset (per-coder subset) from human OvR and
Hier-GRU-S. The size of the circles show the size of the subset.
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Model
R-Precision

Negative
(R = 26036)

Neutral
(R = 157323)

Positive
(R = 27378)

Hier-GRU-S 0.4557 0.8548 0.5388

Hier-GRU 0.4365 0.8511 0.5379

LR 0.4259 0.8458 0.4930

Table 6.5: R-precision scores calculated with all the utterance predictions.

Interestingly, there exist some trends for each subset (or the test labeler). For example, for

subset 1, in which the test labeler is 9, human OvR scores are lower than the Hier-GRU-

S scores in all three categories. This implies that this labeler tends to disagree with the

majority of the other labelers. A more detailed version of the table with precision numbers

are in Appendix C for completeness.

The scores are visualized in Figure 6.9, where the solid circles are the R-precision scores from

human OvR for each subset, and the empty circles are those from Hier-GRU-S. The size of

the circles represents the size of the subset. The larger circles are the ones that are more of

interest. The filled triangles (pointing right) are located at the weighted means for human

OvR, and the empty triangles (pointing left) show the weighted means for Hier-GRU-S.

From the figure, it is easy to see that the negative and positive R-precision scores for human

OvR have larger variances than those in Hier-GRU-S. However, the scores that are far away

from the weighted mean are from much smaller subsets (since the size of the circles are very

small), such as subsets 7, 9, and 10.

Next, I compare the R-precision scores between the three models using the labels from all

210k utterances, which are shown in Table 6.5. Previously, in section 6.5.1, Hier-GRU-S

performed significantly better than the other two models when evaluated using the Pearson

correlation coefficient. A similar result is observed in Table 6.5, where the Hier-GRU-S has

the highest scores for all three categories, and the logistic regression classifier has the lowest

scores.
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Two sources of R-Precisions
p-value

Negative Neutral Positive

Hier-GRU-S vs. Hier-GRU 0.0000 *** 0.0000 *** 0.0016 **
Hier-GRU-S vs. LR 0.0002 *** 0.0000 *** 0.0000 ***
Hier-GRU vs. LR 0.0034 ** 0.9085 0.0000 ***

Table 6.6: The p-values from the dependent T-tests with paired samples with per-visit R-
precision scores. The asterisks represent the level of significance: 0.01 (**), 0.001 (***).

For a more rigorous analysis, dependent T-tests are conducted using per visit R-precision

scores. The first column in Table 6.6 shows the two models whose samples are compared.

The p-values in Table 6.6 show that most of the pairwise tests were significant at the 0.001

level, except for the two cases that were significant at the 0.01 level. The test results show

that the Hier-GRU-S has higher per-visit R-precision scores than the other two models, and

the difference is significant. Also, the Hier-GRU model has significantly higher per-visit

R-precisions than the logistic regression classifier.

6.5.3 Top Retrieved Utterances

As a qualitative analysis, the top 5 utterances for each label category are presented in

Table 6.7. Those utterances are the ones that gave the highest output probabilities in

each label category from the model Hier-GRU-S. The Hier-GRU-S model is used for these

illustrations since it is the model that gave the best performance. All the retrieved utterances

are clear enough to understand that the model has learned emotional valence information.

The negative examples in Table 6.7 (a) have very negative expressions and words such as

“terrible,” “horrible,” or “hate.” On the other hand, the positive examples shown in Table

6.7 (c) include favorable words and expressions such as “wonderful” or “very good.” The

utterances that returned the highest neutral probabilities are usually related to physical

examinations or prescription. The extended version with top 30 utterances can be found in

Appendix D.
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(a) Negative
Rank p(yi,j = neg) Human Text

1 0.987 -1.5 To wake up to that woman screaming , terrible , terrible .

2 0.978 -2.5
And a lot of times when I ’m cleaning houses myIll have
such horrible hot flashes .

3 0.978 -2.5 And they ’ve been getting worse and worse and worse .

4 0.975 -2.0 The , oh I felt horrible .

5 0.975 -3.0 And I hate that , I just hate that .

(b) Neutral
Rank p(yi,j = neu) Human Text

1 0.998 0.0 Push , push , push , push , push , push .

2 0.998 0.0
Cardiac examination finds a regular rhythm with no murmur
, gallop , or noted , period .

3 0.998 0.0 Push , push , push , push .

4 0.998 0.0 Okay , Zocor , -num- milligram .

5 0.998 0.0 Push , push , push , push , push , push .

(c) Positive
Rank p(yi,j = pos) Human Text

1 0.994 2.0 He ’s wonderful .

2 0.994 2.0 Very good , very good .

3 0.993 2.0 That sounds wonderful .

4 0.992 2.2 Were very happy .

5 0.992 2.0 Excellent , excellent .

Table 6.7: Five example utterances with the highest output probabilities generated from
Hier-GRU-S. The second column shows the output probability from the model, and the
third column shows the averaged value of human-assigned labels for that utterance.
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Figure 6.10: Mean emotion score per visit for doctors (left) and patients (right).

6.5.4 Predicting Mean Valence per Visit

Two scatter plots in Figure 6.10 show per-visit emotional valence scores from the human

labelers and the Hier-GRU-S model. For each point in a scatter plot, the x value is the mean

of all the labels in a visit, and the y value is the mean of the scores li,j in each visit i. The

left plot shows the scores for the utterances spoken by medical doctors, and the right plot

shows the same for the utterances by patients.

Both of the plots present that there is a linear relationship between the predicted and the

human-rated emotional valence at the visit level, for each speaker. The correlation coefficient

between the two mean emotion scores (predicted and human-labeled) for doctor and patient

was 0.63 and 0.69, respectively, showing that the model can predict the mean valence per

visit. Two plots are shown in the same scale, and it is easy to notice the different areas

that the points are located. Overall, patients emotion is more towards negative than that of

physicians as it was observed in Figure 6.4.
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6.6 Conclusions

Like any other clinical skill, learning to use empathy effectively requires practice and feed-

back, both of which require an investment of time and effort. However, learning to recognize

patient emotions, and consequently identifying and understanding patient experiences and

emotions, are necessary first steps.

In this chapter, I established important baselines for automatically predicting the emotions

of doctors and patients during primary care visits. Moreover, this work is the first large-

scale evaluation of emotional valence recognition in human conversations. Using more than

200k labeled utterances, I trained and evaluated the models by exploiting the two different

types of outputs: emotional valence scores from the continuous output probabilities and the

predicted categorical labels.

Good performance was observed when comparing the model to a simple baseline (LR) and

to human OvR. However, using more recently developed models could possibly yield better

results.

In summary, the primary contributions of this chapter include the following:

• I raised the importance of identifying and recognizing emotions in patient-physician

conversations.

• I introduced a speaker-dependent neural network model that could be applied to longer

dialogs than those in other existing conversation datasets.

• I suggested evaluating the results with Pearson correlation coefficient utilizing the

output probability of the models, by treating each speaker’s emotional trajectory sep-

arately.

• I calculated R-precision scores for each category as an additional evaluation metric.
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• I compared the results (from both of the metrics) with the human one vs. rest results

using statistical tests.
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Appendices

A List of Tokens

-NAME-

-PATIENT-ID-

-PHONE-NUMBER-

-LOCATION-

-AGE-

-DATE-

-NUM-

Below are the non-verbal tokens that are removed for training and testing.

-POSITIVE-TONE-

-NEGATIVE-TONE-

-GASP-

-GROAN-

-HUMMING-

-SIGH-

-LAUGH-

-CRY-
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-BREATH-

-COUGH-

-MUMBLE-

-PAUSE-

-CLAP-

-KNOCK-

-BEEP-

-PHONE-RING-

-NOISE-

-DOOR-SOUND-
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B Reading Protocols

1. Before reading, clap once. This will generate a unique signature on the audio wave-

forms, and allow for syncing of audio in post.

2. Complete the reading as naturally in character as able. Refer to reference information

below regarding pacing, reading transcribed punctuation, proper nouns, numbers, and

typos.

General Pacing

• If a talk-turn ends with a period, pause for 1 second.

• If a talk turn does not end with punctuation [Interrupt] on next talk-turn.

• If a talk-turn includes repeated punctuation, repeat the effect.

Punctuation

• Period: Pause briefly as if ending a statement.

• Comma: Pause briefly.

• Question mark

– End statement with slight upward inflection, as if asking a question.

– If occurring in isolation, pause briefly.

• Exclamation mark: Emphasize sentence.

• Semicolon, colon: not used.

• Hyphen / Dash
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– Hyphen: Read as a compound adjective

– Em dash: Pause briefly, as if introducing a list

– En dash: Read as a compound adjective (e.g. nobel-prize-winning) or time span

(e.g. 100-400).

Numbers

• Numbers are replaced with the token, -NUM-.

• Replace these with any number you believe would most naturally fit into the talk turn.

– e.g. -NUM- is read as any cardinal number (e.g. one, two, three, four, forty-four)

in I took -NUM- pills yesterday.

– e.g. -NUM- is read as any ordinal number (1st, fourth) in the talk turn, Yeah, Id

like my prescription sent to the pharmacy on -NUM- street

• For the dates, use the date of recording.

Names

• Replace these with any name that you deem is appropriate.

• Replace name of feature with generic term (e.g. valley, island, downtown, city, etc.).

Disfluencies

• Include all in reading as naturally as able (e.g. uh, um, uh-huh, mm-hmm, huh).

Sounds

• -DOORSOUND-, -CLAP-: Ignore and pause
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Stopping

• One reader claps and pause.
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C R-Precision Score for Each Subset

Detailed tables with R-precision scores for each model. Each row in tables correspond to the

subset shown in Table 6.1.

Test
Labeler

Num
Visits

Num
Utters

Human Models
OvR R Hier-GRU-S Hier-GRU LR R

9 93 49849 0.3865 4354 0.4558 0.4291 0.4162 4318
13 84 44088 0.4210 2100 0.4458 0.4213 0.4131 3905
10 79 43025 0.4709 3113 0.4438 0.4247 0.4017 3565
4 50 26403 0.4661 1682 0.4643 0.4432 0.4320 2692
14 50 23577 0.4426 1787 0.4345 0.4164 0.4121 2327
5 27 8644 0.6414 1001 0.4505 0.4182 0.4332 868
8 5 1392 0.1176 34 0.3968 0.3651 0.3651 63
2 2 1387 0.4130 46 0.3846 0.4231 0.4103 78
7 2 630 0.2857 7 0.3333 0.3889 0.3333 18
3 2 630 0.0000 7 0.3333 0.3889 0.3333 18

Weighed Average 0.2739 0.3829 0.3981 0.3792

Table C.1: R-precision score for each subset, for negative class.

Test
Labeler

Num
Visits

Num
Utters

Human Models
OvR R Hier-GRU-S Hier-GRU LR R

9 93 49849 0.8813 40812 0.9050 0.9017 0.8956 40773
13 84 44088 0.9182 38795 0.9011 0.8976 0.8922 35875
10 79 43025 0.9009 36417 0.8988 0.8955 0.8876 34905
4 50 26403 0.9155 22599 0.8796 0.8759 0.8699 20489
14 50 23577 0.8767 19306 0.8783 0.8751 0.8701 18154
5 27 8644 0.8916 6737 0.8964 0.8902 0.8887 6902
8 5 1392 0.9285 1272 0.9437 0.9405 0.9324 1243
2 2 1387 0.9501 1263 0.9254 0.9237 0.9220 1167
7 2 630 0.9904 622 0.9770 0.9803 0.9753 608
3 2 630 0.9871 622 0.9770 0.9803 0.9753 608

Weighed Average 0.9487 0.9414 0.9407 0.9352

Table C.2: R-precision score for each subset, for neutral class.
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Test
Labeler

Num
Visits

Num
Utters

Human Models
OvR R Hier-GRU-S Hier-GRU LR R

9 93 49849 0.4679 4683 0.5786 0.5738 0.5324 4758
13 84 44088 0.4767 3193 0.5701 0.5692 0.5304 4308
10 79 43025 0.4160 3495 0.5662 0.5622 0.5067 4555
4 50 26403 0.5071 2122 0.5701 0.5686 0.5087 3222
14 50 23577 0.4807 2484 0.6027 0.6005 0.5646 3096
5 27 8644 0.5442 906 0.5961 0.5973 0.5538 874
8 5 1392 0.3140 86 0.5698 0.5581 0.4767 86
2 2 1387 0.5256 78 0.5986 0.5845 0.6268 142
7 2 630 1.0000 1 0.5000 0.5000 0.5000 4
3 2 630 1.0000 1 0.5000 0.5000 0.5000 4

Weighed Average 0.6177 0.5522 0.5457 0.5237

Table C.3: R-precision score for each subset, for positive class.

.
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D Top 30 Retrieved Utterances

Rank p(yi,j = pos) Human Text

1 0.994 2.0 He ’s wonderful .

2 0.994 2.0 Very good , very good .

3 0.993 2.0 That sounds wonderful .

4 0.992 2.2 Were very happy .

5 0.992 2.0 Excellent , excellent .

6 0.992 1.5 Thank you !

7 0.991 1.5 Good , good .

8 0.991 2.0 Good , good , good .

9 0.991 1.5 Thanks .

10 0.991 2.0 Great , great .

11 0.990 2.0 Thank you .

12 0.990 0.7 Thank you .

13 0.990 1.5 Thank you , yes , thank you .

14 0.990 2.0 Good , thanks .

15 0.990 1.8 Happy anniversary .

16 0.990 1.3 Wonderful , wonderful .

17 0.990 2.0 Wonderful .

18 0.990 2.0 Wonderful .

19 0.990 0.5 That is wonderful .

20 0.990 1.0 I ’m doing pretty good .

21 0.990 1.3 I ’m good thanks .

22 0.990 2.0 Wonderful .

23 0.989 0.0 Wonderful , good .

24 0.989 2.5 That is great .

25 0.989 1.3 Good , great .

26 0.989 2.5 I am wonderful .

27 0.989 2.0 Excellent , I ’m glad to hear that , very glad to hear that .

28 0.989 2.2 Thank you .

29 0.989 1.3 Good , good .

30 0.989 1.5 Here are your wonderful labs .

Table D.4: Top 30 utterances for positive.
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Rank p(yi,j = neu) Human Text

1 0.998 0.0 Push , push , push , push , push , push .

2 0.998 0.0
Cardiac examination finds a regular rhythm with no murmur ,
gallop , or noted , period .

3 0.998 0.0 Push , push , push , push .

4 0.998 0.0 Okay , Zocor , -NUM- milligram .

5 0.998 0.0 Push , push , push , push , push , push .

6 0.998 0.0 Flu vaccine and pneumonia shot

7 0.998 0.0 Okay , take one pill at bedtime only as needed .

8 0.998 0.0 Any surgeries , N ?

9 0.997 0.0 Okay , breathe normally .

10 0.997 0.0 Celebrex , -NUM- milligrams daily or as needed .

11 0.997 0.0
Okay , so I ’ll send the , do it get it , um , through mail order
?

12 0.997 0.0 No pap smear necessary .

13 0.997 0.0 Any black or tarry looking stools ?

14 0.997 0.0 Okay , any sexual transmitted diseases ever ?

15 0.997 0.0 Any vitamins or supplements ?

16 0.997 0.0 Okay , deep breath .

17 0.997 0.0
Okay , now , what about , um , flu shot and pneumonia vaccine
?

18 0.997 0.0 refill , yeah , refill .

19 0.997 0.0
Rectal examination finds a normal prostate in a symmetric
fashion with no nodule , period .

20 0.997 0.0 vitamins or supplements ?

21 0.997 0.0 Okay , open your eyes .

22 0.997 0.0
Cardiac examination finds a regular rhythm without murmur ,
gallop or .

23 0.997 0.0 Breathe normally .

24 0.997 0.0 Mammogram , ultrasound and bone density .

25 0.997 0.0 Uh , prescription refill will be given .

26 0.997 0.0 Okay , switch hands .

27 0.997 0.0 CBC , chemistry profile .

28 0.997 0.0
Nasal examination finds some mild left septal deviations with
the right side nasal polyp .

29 0.997 0.0 Lasix -NUM- milligrams once a day .

30 0.997 0.0 Does the Zantac relieve these symptoms when

Table D.5: Top 30 utterances for neutral.
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Rank p(yi,j = neg) Human Text

1 0.987 -1.5 To wake up to that woman screaming , terrible , terrible .

2 0.978 -2.5
And a lot of times when I ’m cleaning houses myIll have such
horrible hot flashes .

3 0.978 -2.5 And they ’ve been getting worse and worse and worse .

4 0.975 -2.0 The , oh I felt horrible .

5 0.975 -3.0 And I hate that , I just hate that .

6 0.975 -0.7 the sheets were wet but I go , Oh my God , this is terrible .

7 0.974 0.0
My mom passed and I know that I ’ve been feeling really tired
.

8 0.965 -1.3
And then all of a sudden I felt like I was going to get sick , so
I ran back in the bathroom , I felt clammy .

9 0.961 -0.8 It ’s just really weird .

10 0.961 -1.0 I mean my back is sore , my neck is sore .

11 0.958 -2.0 She went snip , snip , snip , snip , snip .

12 0.958 -2.5
I ’m , I ’m buried alive in paperwork and , and just more shit
gets thrown at me , sorry .

13 0.957 -0.8 That was terrible .

14 0.956 -0.8 Weird things happen .

15 0.955 -2.5 It just it hurts .

16 0.955 -2.5
And all of a sudden now for the last six , eight months it ’s just
been horrible .

17 0.954 -2.0 And I ’m tired of telling people I ’m sorry for crying .

18 0.953 -0.7 Cause then you ’re real nervous and shaky .

19 0.953 -1.0 It was terrible .

20 0.952 -2.5 I almost passed out .

21 0.952 -2.5 It ’s terrible .

22 0.951 -2.0 I ’m so stressed at work

23 0.950 -2.5 It ’s getting worse now .

24 0.949 -1.5 It hurts for days .

25 0.948 -1.0 Well like right now my , my neck is sore .

26 0.947 -0.7 And sometimes when you get afraid , it makes it even worse .

27 0.947 -1.0 It hurts .

28 0.947 -1.0 my arthritis is driving me crazy .

29 0.947 -0.5 It ’s like , my breasts are tender .

30 0.946 -2.0 I do n’t know why my back hurts so much .

Table D.6: Top 30 utterances for negative.
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