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ABSTRACT OF THE DISSERTATION

Understanding chemical reactions through the theoretical lenses:
Markov State Model and Gaussian Process Regression for an identification of
reaction coordinates and computation of multidimensional free energy surfaces

by

Wasut Pornpatcharapong

Doctor of Philosophy in Chemistry

University of California, San Diego, 2018

Professor John Weare, Chair

Understanding a proper reaction coordinate and the free energy profile of a chemical reaction

provides valuable information in elucidating the kinetics and thermodynamics properties, as well as

the underlying reaction mechanisms. Nevertheless, identifying a proper reaction coordinate for a

specific chemical reaction or computing the free energy landscape are difficult. Hence, any methods

that could systematically provide insights into both issues would play important roles in studies of

any kind of chemical reactions.

xiv



On the reaction coordinates front, Markov State Model (MSM) is a tool that can be used to

identify the reaction coordinate of the slowest motion in a simulation. Instead of the deterministic

view of the MD simulations, MSM takes a probabilistic view that a configuration has a probability

to evolve to another configuration after time τ defined by a transfer operator, which allows us to

identify each motion in the system in terms of the information encapsulated in each of the operators

corresponding eigenfunctions and eigenvalues. The eigenfunctions of the transfer operator can then

be projected onto the collective variable space, and minimal representation of each eigenfunction

in the collective variable space could be obtained.

On the free energy front, efficient multidimensional free energy landscape can be recon-

structed smoothly from noisy free energy estimators through Gaussian Process Regression (GPR).

In this dissertation, we proposed a rigorous GPR workflow that also ensures the consistency through

projection of the multidimensional landscape into each individual one-dimensional surface with er-

rors bounded by Eigenvector Method for Umbrella Sampling (EMUS).

This dissertation employed both MSM and GPR to study the dynamics of cation—anion

association in aqueous solutions using LiCl and NaCl as a model. With MSM, we have completely

identified all significant motions in the association process and in the bulk, and we also identify

important contributions to the slowest process of the dynamics. With GPR, we have achieved a

smooth reconstruction of a free energy landscape of both systems using 2 collective variables and

large efficiency gain relative to traditional two-dimensional windowed simulations.

xv



CHAPTER 1

Historical Backgrounds of Ion Pairing Studies in Aqueous Solutions

1.1 Motivations

Despite being a simple chemical system, studying ion pairing in aqueous solutions could

be the key to understanding many other complex chemical reactions of current research interests,

for the prescence of the ions in aqueous solution is an integral part of human body, seawater,

catalytic environments, or energy-efficient materials. There are numerous evidences of the ions in

aqueous solutions that play crucial roles in complex biological processes, such as the effects on mac-

robiomolecules like proteins or DNA, salt bridge formations in proteins, protein-DNA interactions,

or assisting the creation of tertiary and quarternary structures of proteins. [1–5] Moreover, the

ions in an oceanic environment also regulates the chemistry of both the ocean and the atmosphere,

which could provide a better mechanistic understanding of global warming. [6–8] Recent advances

of batteries and energy materials also necessitate a good understanding in ion transport in aqueous

solution. [9–12]

With water molecules removed, the ion pairing interactions is easily characterized as mostly

electrostatic interactions between the cation and the anion, which does not have any associated

barriers due to the inverse dependence on the interionic separation, r+−. However, ions in aqueous

solutions behave differently, as polar water molecules could arrange around the ions by the means

of charge - dipole interactions, solvating the ions. Thus, the solvation structure around the ions

need to change in order for the cation and the anion to come close. The need to overcome the

solvation energy of the ions to put two ions closer together; hence, involves a free energy barrier.

For this reason, thermodynamics and kinetics information of ionic association in aqueous solutions
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can be obtained given that the free energy landscape of this chemical process can be extracted,

paving the ways to isolate the most likely solvation structures around the ions and elucidate the

mechanisms of the reaction in terms of the proper reaction coordinate for this system.

The biggest obstacle for thoroughly understanding not only this kind of process, but also

the thermodynamics and the kinetics of all kinds of chemical reactions, is the lack of knowledge of

such a reaction coordinate. Throughout the document, the reaction coordinate is defined as a linear

combination of functions ξi(x), where each ξi is called a collective variable. A collective variable is

a function of all the Cartesian coordinate in the phase space defining a collective group of atoms in

the regions of our interests, which includes, but not limited to r+−, the angle, the dihedral angle,

or even the coordination number around an atom.

Ψ =
∑
i

ciξi(x) (1.1)

The definition of a proper reaction coordinate Ψ for a chemical reaction is such coordinate

should capture the slowest motion across the division between two committor surfaces. However, in

most cases, we do not know a proper combination of the collective variables, nor that we know which

collective variables should we choose. Therefore, most of the attempts to study the mechanisms of

chemical reactions usually based on the intuitive guesses of a few collective variables. As a result,

we cannot know with certainty about the true underlying mechanism that actually represents the

slowest motion, for we only have a limited picture of all the influences.

2



1.2 Prior Investigations to this Problem

The accepted concept of ion pairing that is widely cited today came from the work of Fuoss

[13] and Winstein [14] during the 1950s. Before their work, the solvent was usually modeled as a

part of the continuum model, where the solvent’s electrostatic influence was treated as one single

entity, which gave rise to a two-state model. One of those two states being the associated states,

where the ions are held close together by their electrostatic interactions, and another state being

the dissociated state, where the ions are separated far enough to not attracting each other again.

However, Fuoss and Winstein showed in their work that there exists another state that lies in

between the dissociated and the associated states of the ions. Therefore, the state in between shall

not have the ions too separated that they do not see another’s attraction, but not too close that

the association is mainly the electrostatic interaction between the ions. For this reason, the state

in between could be thought of as another associated state with some influence from the solvent.

In this document, we will call this state the solvent separated ion pair (SSIP), and the associated

state the contacted ion pair (CIP) for convenience. We also provide a summary illustration of the

concept below,

M+ + X−
free ions

⇐⇒ M · · ·X
SSIP

⇐⇒ M ·X
CIP

(1.2)

The earliest simulation that attempted to study this type of reaction came from the work

of Belch et al. in 1986. [15] Although the work did not compute the free energy, it was among

the first attempts to analyze the behavior of the solvent through computer simulations. Belch et

al. proposed that for a solution of NaCl in water, the Na+ cation tries to maintain the octahedral

structure in the CIP state, the SSIP state, and the dissociated state. The work also pointed out
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that as the dissociation takes place, one water molecule would rotate to form a bridge between

the two ions and the hydrogen bond structure between water molecules in the first and the second

solvation shells become disrupted. It is evident from this result that the solvent plays a role in the

dissociation of CIP. However, how the solvent plays the role in this process still remained a mystery

at that point.

The thermodynamics and the kinetics model of this type of reaction would not complete

without the free energy landscape and the information of the free energy barrier between the SSIP

and the CIP states. For any simulations performed under the canonical ensemble (fixed numbers

of particles, volume, and temperature), the relative Helmholtz free energy can be computed by just

taking a natural logarithm of the probability of finding a particular configuration of the ensemble,

A(x) = −kBT ln p(x) (1.3)

where kB is the Boltzmann’s constant, and T is the temperature of the simulation. Since a collective

variable ξ(x) is also a function of the Cartesian coordinates in the phase space, the Helmholtz free

energy could also be computed in terms of the collective variable through the following relationship,

A (ξ(x)) = −kBT ln

∫
δ
(
ξ(x′)− ξ(x)

)
eV (x)/kBTdx′ (1.4)

Initial attempts on free energy landscape computation began from a very simple model

of 1 collective variable chosen from an intuitive guess. Since we hope to study the association /

dissociation of the ions, the most natural collective variable that would serve the purpose would be

r+−. Hence, the relative Helmholtz free energy based on this collective variable would allow us to
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quantitatively determine the free energy barrier that separates the SSIP state from the CIP state.

Numerous works have since published the one-dimensional free energy landscapes in r+−, most

of which allowed both qualitative and quantitative distinctions between the SSIP and CIP states

as two separate metastable states. [16–19] For group 1 cations, Fennell et al. published detailed

comparisons of the free energy trend down the same group. [18]. He found that the CIP structure

of LiF has a very steep well of about 8.0 kcal/mol, whereas the CIP free energy barrier of CsF is

very shallow, and for CsF, the CIP structure is even less thermodynamically stable than the SSIP

structure.

Although the free energy of ion pairing in aqueous solutions in terms of r+− can give us

a rough idea of the SSIP and the CIP behaviors of the system, it does not capture the dynamics

of the solvent as hinted by Belch et al. [15], which was confirmed by the later work of Geissler

et al. [20]. In the work of Geissler et al., they employed transition path sampling to characterize

the behavior at the transition state, and found that there are many probable transition pathways

where collective motion of solvent molecules play an important role. A subsequent work by Ballard

and Dellago also pointed out that using only r+− as a hypothetical reaction coordinate for this

process is inherently a bad choice. [21] They also found that the influence of the solvent for the

NaCl reaction extends up to the third shell, consistent with what was found by Belch et al. [15]

Subsequent works have contributed a lot of efforts in determining the solvent effects of ion

pairing, but a solid consensus on the solvent coordinate is yet to be made. The most popular

opinion among recent publications has been imagining the number of water molecules in the first

solvation shell of the cation (n+) as a driving force for the ionic association. This viewpoint

was clearly influenced from the ligand exchanging process commonly perceived by the inorganic

chemist community, where they have put mechanistic labels of such process as either associative
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(involving the expansion of the solvation shell as another ligand came close to the center cation

before ejecting one water molecule) or dissociative (involving the ejection of a water molecule from

the cation before the association with another ligand), originally proposed by Eigen and Wilkins

during the 1950s. [22–24] Therefore, later works involved characterizing n+ as a solvent coordinate

and later computations free energy landscapes of the ionic association in aqueous solution started

to include this collective variable as well. [25–28] The most common features in these works are

that the free energy minima mostly occurs around the integer values of n+ and these minima are

very narrow in the n+ dimension. Moreover, recent publications with two-dimensional free energy

landscapes in the r+− and n+ coordinates revealed the fact that for group 1 or group 2 cations, the

SSIP - CIP transition is usually characterized by an initial association of the cation and the anion

from the SSIP coordinated state to an intermediate structure where the cation and the anion both

have the CIP separation but the cation still have the same coordination number as the SSIP state,

then a water molecule is ejected from the first solvation shell in a much faster process to form a CIP

structure. The results indicate that for group 1 and group 2 cations, the preferred Eigen - Wilkins

mechanistic label for the cation - anion association process in aqueous solution is the associative

pathway.

Despite recent efforts in incorporating the n+ collective variable in free energy computations

for this type of process, the contribution from solvent molecules in the outer solvation shell still

remains unclear as the n+ coordinate does not include any water molecules in any outer solvation

shells, nor does it include the contributions from the solvation shell of the anion. In this regard, a

recent work by Mullen et al. found that by maximizing the likelihood of a linear combination of 3

collective variables out of their 73 candidates with respect to the crossing of the committor surfaces,

there are two solvent coordinates that play significant roles in the ionic association reaction of NaCl

in aqueous solution, which are the number of water molecules that are simultaneously coordinated
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with both the cation and the anion by forming bridges between them (nB), and the density of water

molecules around the midpoint between the cation and the anion (ρii). [29] The interpretation with

respect to nB collective variable is particularly interesting, as visualizing the nB coordinate in the

transition state is consistent with the earlier proposal from the work of Belch et al. [15] If we

also added the ρii coordinate into the mix, we would have another coordinate that takes the water

molecules in the outer solvation shells into an account as well. Hence, the linear combination of the

collective variables proposed by Mullen et. al. with maximum likelihood across the isocommittor

surfaces [CHECK] represents the most likely reaction coordinate across the slowest motion across

the actual free energy barrier between the CIP and the SSIP states, which indicates that having

either one or two collective variables are not sufficient in describing the dynamics of the ionic

association in aqueous solutions, and an optimum reaction coordinate across the barrier involves a

specific linear combination of the collective variables.

1.3 Areas of Improvement and Objectives

The work of Mullen et al. changed the perception of how we should approach this problem

in a hugely significant manner by introducing a number of possible candidates to describe the

dynamics of the solvent; however, there are still several obstacles for us to fully grasp the whole

picture. There are two possible questions that arose from Mullen et al. First, although the proper

reaction coordinate can be found by maximizing the likelihood of a linear combination of collective

variables that go across the dividing surface between two isocommittor surfaces, there is a possibility

that more than 3 collective variables are actually involved and a linear combination of 3 collective

variables may still be inadequate to properly representing the slowest motion. Second, the work of

Mullen et al. focused mainly in the SSIP - CIP transition, but did not discuss the dynamics of the
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bulk, so the mechanics of the ionic association from the bulk remain relatively little understood.

There are several ways that can be used to identify proper reaction coordinates for a chemical

reaction. The maximum likelihood method used in Mullen et al. is just one method among many

other proposals of methods that allow us to study the most important coordinate of a chemical

system, such as string method [30–32], markov state model (MSM) [33–37], principal component

analysis (PCA), diffusion map, and many other. [38–41] Among these methods, MSM is one of

the most widely used tools in biochemical simulations to identify different conformations of large

biomolecules such as proteins or DNA. [42–45] Besides being used to identify metastable states in

the system, the information from MSM eigenfunctions also directly relates to different motions in

a chemical system. Therefore, not only that MSM could give an insight for the slowest motion,

MSM can also be useful in a stituation where a system with motions in a very similar timescale and

the slowest motion cannot be fully distinguished from the next slowest motion in the system. This

would allow us to study any possible secondary or tertiary motions and their possible effects on the

primary motion across the free energy barrier. Besides, the information of each MSM eigenfunction

can also be projected onto the collective variables space and we could determine each unique linear

combination of the collective variables specific to each motion in the system. [46–48]

In accompanying a proper reaction coordinate which may have contributions from several

collective variables, a multidimensional free energy landscape is needed to represent those collective

variables to give a viable insight into the reaction mechanisms. However, the current capabilities

limited the free energy computation to a two-dimensional space due to the high computational cost

of multidimensional sampling. As relative free energy between two points in the collective variable

space relates to the natural logarithm of the probability of going from one state to another, any

free energy barriers are considered as rare event regions that are naturally less sampled for any
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unbiased molecular dynamics simulations. Hence, we have relatively little information to correctly

determine the free energy landscapes around the barriers, which may cause errors in rate calculation

and inaccurate description of the transition state - a crucial element for full understandings of the

entire mechanism. For this type of problem, Cuendet and Tuckerman has noted the difficulties in the

free energy computation of the ionic association reaction of NaCl in aqueous solution which presents

challenges for any novel free energy computation methods that usually validate their models with

the free energy landscape of alanine dipeptide with respect to their two dihedral angles. Compared

to the free energy of alanine dipeptide, the free energy of NaCl’s SSIP and CIP states differ only in

the order of a few kcal/mol, prompting the need to make sure that we need a free energy calculation

scheme that cannot produce a large error which would otherwise cause severe inaccuracies in the

result. Moreover, the CIP feature of NaCl’s one-dimensional free energy is relatively narrow, which

implies that the free energy gradient is relatively rapidly changing and giving rise to statistical

noise when averaging the free energy estimators. [49]

The preferred method of free energy computation among the community has always been

window-based simulations, where an average of a probability density or average force along a par-

ticular collective variable was computed in a restrained simulation environment to ensure adequate

amount of sampling, especially in the rare event regions. Despite providing accurate results, the

main disadvantage of this class of free energy simulation method has always been the cost, which

scales as O(nD) for a D-dimensional problem. Although it is also possible to perform a simulation

in each window in parallel given that we know a good initial configuration in each window, this

does not eliminate the scaling issue for a many-dimension problem. [50] Another main issue in free

energy simulation is the inherent statistical noises of the average probability density or an average

force along a collective variable, which also produce noisy free energy landscapes that may become

an issue for a chemical system with sensitive free energy profile.
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In order to circumvent the two issues of free energy computations presented in the above

paragraph, we need to first be able to quickly explore the free energy landscape to eliminate the

need to perform windowed simulation while also collecting the needed information to compute the

free energy landscapes, and then we need to find a reconstruction algorithm that ensures a smooth

reconstructed data. The first task could be done using well-tempered metadynamics (WT-MTD)

simulation, which has been shown in the work by Mones et al. to have fastest exploration of the

free energy landscape compared to many other algorithms. [51] During the WT-MTD simulation,

biased instantaneous forces (BIFs) along the collective variables are collected and then later are

unbiased using the known information of the deposited WT-MTD Gaussians to obtain unbiased

instantaneous forces (UIFs). The UIFs could be treated as a noisy, unaveraged version of the average

force along the collective variable commonly used in thermodynamic integration to compute the

free energy landscapes. Therefore, a machine learning-based approach such as Gaussian process

regression (GPR) could be used to infer the most likely free energy landscape based on our training

data of UIFs, providing a smooth reconstruction of the free energy landscape in any number of

dimensions. [51, 52]

1.4 Organization of Chapters

This dissertation presents our research which aim to address the problems highlighted in

1.3, and contains 6 chapters including this chapter. Chapter 2 is dedicated to discussing the theories

of MSM and the projection of MSM eigenfunctions onto the collective variable spaces using tICA

and subsequent dimensional reduction through matching pursuit (MP). Chapter 3 presents our

application of MSM to the classical MD simulations of LiCl and NaCl in aqueous solutions and

our discussions on the significance of the results in terms of the plausible SSIP - CIP transition
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mechanism based on the reaction coordinates found using MSM and the dynamics of the bulk.

Chapter 4 discusses the theories of free energy computation and the best way to overcome the

dimensionality problem using a combination of fast exploration through WT-MTD simulations and

a machine learning-based reconstruction of free energy with GPR to ensure a smooth reconstruction

of the free energy surfaces in any numbers of dimensions. Chapter 5 features the applications of

GPR to compute the two-dimensional free energy landscapes of LiCl and NaCl in the r+− and n+

coordinates, which is the first application of a two-dimensional GPR calculation beyond the peptide

rotation models, and chapter 6 highlights the present challenges and possible future directions of

this kind of research,
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CHAPTER 2

Identification of Reaction Coordinates and the Kinetic Model of Chemical

Reactions

2.1 Introduction

Although intuitions allow us to describe a reaction coordinate that suits the narratives of the

researchers’ perceptions, the main problem in determining the contributing collective variables for

a reaction coordinate from pure intuition is there are no systematic ways to confirm the researchers’

beliefs. The fact that n+ was used as a collective variable in the solvent coordinate demonstrates

the intuition-based choice that are relatively accepted in many recent literatures. For example, the

recent work of Raiteri et al. uses this fact to construct two-dimensional free energy landscapes with

interionic separation (r+−) and n+ as collective variables of the alkali earth ions pairing interactions

with carbonate ions in aqueous solution to validate their empirical potential model for these ions.

[26] Roy et al. also recently published a two-dimensional free energy calculation using the same

set of C.V.’s for alkali ions. [27, 28] However, the work of Mullen et al. challenged this belief by

claiming that n+ does not play a significant role in the process at all. On the other hand, the solvent

coordinate that plays an important role for this process are nB and ρii coordinates mentioned in

1.2. [29]

The significance of the work of Mullen et al. was that it was the first work that performed a

systematic analysis of multiple collective variables to determine the best contribution of the collec-

tive variables according to the reaction coordinate. However, we have mentioned in 1.3 that there

are some possible issues that arose from their results, mainly his crude restriction of the reaction

coordinate that should only consist of a linear combination of 3 collective variables, while there
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are possibly more collective variables than 3 that could actually involve in the process. Moreover,

their work mainly focused on the SSIP - CIP transition without thoroughly covering the behavior

of the bulk region. Therefore, the association pattern from the bulk still remained relatively little

understood. Also, the efficiency of the method outlined in Mullen et al. also rely a lot on the

fact that we could accurately find two isocommittor surfaces and the events that the simulation

trajectory crosses between these two, which could be cumbersome in the case where systems do

not have a well-defined barrier or the system with multiple metastable states that are close to one

another with relatively low barrier.

As mentioned in Rohrdanz et al., there are many possible methods that can be used to tackle

this problem. [41] Out of the methods highlighted in Rohrdanz et al., the Markov State Model

(MSM) is a viable candidate yet it is still not being applied to this type of problem. In our opinion,

the fact that any MD simulations that is ergodic are shown to exhibit Markovian properties [53]

implies that we could express the dynamics of any MD simulations in terms of their chatacteristic

eigenfunctions and eigenvalues corresponding to specific transitions between metastable states. [36,

37, 44, 48, 54] Therefore, MSM allows a characterization of any transition between any metastable

states besides the slowest motion across the highest free energy barrier. The MSM eigenfunctions

also entail important information on dynamical variables, and could be projected onto the collective

variable space to gain valuable insights on all possible variables corresponding to different processes

in a chemical system. All of these benefits could be achieved with a relatively short simulation time;

hence, MSM is an attractive tool among simulations in biochemical processes. [42, 44, 45, 55–57]

Nevertheless, there are no MSM interpretations for processes governing the solution dynamics at all.

Therefore, we hope to present the MSM interpretation of two model reactions for ionic association

process of LiCl and NaCl in aqueous solutions.
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2.2 Markovianity of MD Simulations

In 1983, Zwanzig proposed that the transition between two metastable configurations in the

phase space can be treated as a continuous time random walk problem. [53] In order to understand

the Markovianity of a MD trajectory, it is necessary to think about MD simulations in terms of

the probability density of possible configurations, where the evolution of configurations over time

is governed by a generalized classical master equation for the distribution of the waiting times

to change from one configuration to another. The short memory approximation of the transition

memory kernels from the master equation can then be approximated, and it ignores the possibility

of the later return to the same state. Hence, if the system’s dynamics is sufficiently complex

and metastable states are chosen sensibly, then this implies the memoryless characteristics of the

interstate jumps. [53]

As opposed to the typical view of the MD simulations as composed of distinct trajectories,

MSM takes an ensemble approach given that the dynamics is ergodic in the phase space Ω, that

is, there always exist a connected configuration to the current configuration in the phase space.

Therefore, the evolution of the ensembles of the trajectories take a probabilistic approach in MSM.

Since we assert that a transition from one configuration to another configuration after a lag time

τ is Markovian; therefore, starting from a configuration x at time t where x ∈ Ω, the probability

that a trajectory starting at x at time t will be in an infinitestimally small region dy around point

y ∈ Ω, p(x,y; τ) can be defined as, [36, 37]

p(x,y; τ)dy = P[x(t+ τ) ∈ y + dy|x(t) = x] (2.1)

Therefore, equation 2.1 implies that for a set of configurations A ⊂ Ω, the following also
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holds true for all configurations y ∈ A,

p(x, A; τ) =

∫
y∈A

p(x,y; τ)dy (2.2)

Since the phase space Ω is assumed to be ergodic, the state x will be visited infinitely often

as t → ∞. Hence, a unique stationary probability density µ(x) can be written to represent this

fact, and µ(x) represents the ensemble’s equilibrium density; for example, for a canonical ensemble

(NV T variables are held constant), µ(x) can be written as,

µ(x) =
e−βH(x)

Z
(2.3)

where Z =
∫

exp(−βH(x))dx is the canonical partition function, β = (kBT )−1, and H(x) is a

classical Hamiltonian of the system. In order to model reversible reactions, another assumption that

the configuration x(t) is reversible is needed. Therefore, the following detailed balance condition,

µ(x)p(x,y; τ) = µ(y)p(y,x; τ) (2.4)

as to be satisfied. Considering a probability density of a configuration pt(x), the transition proba-

bility p(x,x; τ) governs that after some times τ , the probability density of x at time t+τ is expressed

as pt+τ (x). Hence, one could define a propagator Q(τ)that satisfies the following properties,

pt+τ (y) = Q(τ)pt(y) =

∫
x∈Ω

p(x,y; τ)pt(x)dx (2.5)
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When weighted by the stationary density, another way to look at equation 2.5 is through

the transfer operator T (τ) which propagates the weighted probability density. Thus, it must follow

that,

ut+τ (y) = T (τ)ut(y) =
1

µ(y)

∫
x∈Ω

p(x,y; τ)µ(x)ut(x)dx (2.6)

In general, T (τ) is a preferred operator because of the fact that T (τ) operates on the

weighted probability density. Therefore, it can be said that T (τ) has to conform with the following

properties,

1. T (τ) fulfills the Chapman-Kolmogorov equation ut+kτ (x) = [T (τ)]k ut(x), where [T (τ)]k

represents the k-th power of the transfer operator matrix.

2. There exist eigenfunctions ψi that corresponds to the eigenvalue problem T (τ)ψi = λiψi,

where λi is the corresponding eigenvalue of an eigenfunction ψi

3. ψi relates to the i-th eigenfunction of the propagatorQ(τ) through the stationary distribution;

that is, µ(x)−1φi(x) = ψi(x). Both φi and ψi share the same eigenvalue λi.

4. The eigenvalues λi are real numbers and λi ∈ (−1, 1], and the first eigenvalue λ1 is always 1

and corresponds to the stationary density µ(x), and it must follow that 1 > λ2 ≥ λ3 ≥ . . . ≥

λn

Thus, the weighted probability density ut+τ (x) can be written as a sum of all the eigen-

functions of T (τ), which represent the spectral decomposition of the dynamics in our system. All

motions in the dynamics are thought of the superimposition of independent motions represent by

the i-th eigenfunction. Hence, ut+kτ (x) is now written as,
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ut+kτ (x) =
m∑
i=1

λki 〈ut, ψi〉µ ψi(x) +
∞∑

j=m+1

λkj 〈ut, ψj〉µ ψj(x) (2.7)

The first term of equation 2.7 represents m slowest motions which are deemed significant,

while the second term represents all the other fast motions that may be considered irrelevant to

the rate–determining process. 〈ut, ψi〉µ is simply the inner product between ut and ψi weighted by

the stationary density µx. Equation 2.7 also implies that in the limit where k →∞, only the first

eigenfunction would remain as all other eigenvalues are strictly less than one except the first one,

recovering the equilibrium distribution. The patterns of the eigenvalues thus would imply that for

any motions where λi is less than 1, all the terms where i > 1 would decay over time according to

the value of λi, which also determines the implied relaxation timescale of each motion through the

following relationship,

ti = − τ

lnλi
(2.8)

Equation 2.7 can thus be now written as,

ut+kτ (x) = 1 +
m∑
i=2

e
− kτ
ti 〈ut, ψi〉µ ψi(x) +

∞∑
j=m+1

λkj 〈ut, ψj〉µ ψj(x) (2.9)

The representation of ut+kτ (x) outlined in equation 2.7 is now separated into three parts; the

stationary distribution, the m−1 important process that have distinctly different eigenvalues, from

which the implied timescale of the process can now be extracted. However, important information

can also be found from the first m − 1 eigenfunctions as well through the projection onto the

collective variable space, which we will discuss in the following section.
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2.3 Approximating the Eigenfunctions of the Transfer Operator

2.3.1 Approximation of the Eigenfunctions through Variational Principle

The solution of an eigenvalue problem in equation 2.7 gives us m − 1 eigenvalues and

eigenfunctions that best approximates the probability of arriving at an MD configuration at time

τ after the current time. As mentioned in 2.2, the information provided by eigenvalues implies the

inherent timescale of their corresponding eigenfunctions. However, the eigenfunctions themselves

also contain several important dynamical information of the process of interest. We could see that

the inner product 〈ut, ψi〉 tells us about the projection of the probability density of the configuration

at current time; thus, the eigenfunction ψi with the highest eigenvalue contains the contributions

that give rise to the slowest motion for this process. In a situation where we have λ2 � λi ∀i > 2,

it readily implies that the slowest motion is a dominant motion and the other eigenfunctions decay

much faster at lag time τ , and ψ2 would be able to be taken to dominate the dynamics.

Equations 2.7 and 2.9 provided a spectral decomposition of all different motions in the

system, where the information of each motion can be obtained from the eigenvalue problem

T (τ)ψi = λiψi. The implied timescale of each process could also be obtained from the eigen-

values λi = e
− τ
ti . However, we still do not know how to extract the dynamical information from

the eigenfunctions. Nonetheless, equation 2.7 implies that for any function that relates to a con-

figuration x at time t, the time-autocorrelation function of an arbitrary function f as a function of

τ can be written as,

〈f(xt)f(xt+τ )〉t =
∞∑
i=1

e
− τ
ti 〈φi, f〉2 (2.10)
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Hence, the time-autocorrelation function of the i-th normalized eigenfunction ψi can be used

to recover the i-th eigenvalue due to the fact that for a normalized eigenfunction, 〈ψi(xt)ψi(xt+τ )〉2 =

1. Thus, given that the eigenfunctions can be computed, the eigenvalues and the implied timescales

can be approximated from the time-autocorrelation function as a function of τ , now called a lag

time.

λ̃i = 〈ψi(xtψi(xt+τ ))〉 (2.11)

Nevertheless, the main question here is how would we know the eigenfunction. It is very

likely that we will never know the true form of the eigenfunctions ψi. However, since the eigen-

values λi can be modeled from the time-autocorrelation of ψi, we always know that for any model

eigenfunction ψ̃i,

〈
ψ̃i(xt)ψ̃i(xt+τ )

〉
≤ e−

τ
ti (2.12)

Hence, the variational principle can be applied to find a good approximation of ψ̃i given that

we could find such a function that gives e
− τ
t̃i ≤ e−

τ
ti with a value of t̃i, the variational approximation

of ti, as close as possible to ti. Since the equality between the modeled and the actual implied

timescale only holds if ψ̃i = ψi, the modeled eigenfunction ψ̃i that best approximates the true

eigenfunction ψi needs to maximize the modeled implied timescale t̃i, or equivalently, maximize the

modeled eigenvalue λ̃i. In fact, the principles behind the application of the variational principle

to approximate the eigenfunctions of MSM is analogous to that of quantum mechanics, where the

wavefunctions are best approximated by minimizing the energy.
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2.3.2 Time-lagged Independent Component Analysis (TICA)

Suppose that a modeled eigenfunction ψ̃i can be modeled as a linear combination of an

orthonormal basis of the ansatz χk, the reconstruction of ψ̃i as a linear combination of basis

functions in the set χ =
{
χ1, χ2, . . . , χNχ

}
would take the following form,

ψ̃i =

Nχ∑
k=1

bikχk (2.13)

where the optimal set of coefficients bik can be determined from solving the following eigenvalue

problem,

Cχ(τ)bi = biλ̃i(τ) (2.14)

where Cχ(τ) is the autocorrelation matrix of the ansatz functions at time τ with the following

form,

cχij(τ) = 〈χi(xt)χj(xt+τ )〉t

cχij(0) = 〈χi(xt)χj(xt)〉t

(2.15)

under the condition of orthonomal ansatz functions 〈χi, χj〉µ = 〈χi(xt)χj(xt)〉 = δij , where δij

is the Kronecker’s delta. However, for a non-orthonomal basis of the set χ, the basis must be

orthonormalized first through generalizations of equation 2.14 by using the autocorrelation of the

ansatz function at time 0.
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Cχ(τ)bi = Cχ(0)biλ̃i(τ) (2.16)

Solving equation 2.16 yields an optimal set of the coefficients bi for any non-orthonormal

basis set χ. In our case, since we would like to determine the optimal set of collective variables

for a particular eigenfunction, we would then construct a basis set consisting of as many collective

variables as possible then solve equation 2.16 for optimal coefficients for each collective variable

in ψ̃i. In order to properly obtain the autocorrelation function in the basis set of the collective

variables, we need to subtract the mean of each collective variable to create the mean–free input

from our data such that,

ξMF
i (x) = ξi(x)− 〈ξi(x)〉t (2.17)

Therefore, we can now write an approximation of the eigenfunction ψ̃i as a linear combina-

tion of the mean–free collective variables ξMF
k ,

ψ̃i =

Nξ∑
k=1

bikξ
MF
k (2.18)

Consequently, we have demonstrated that ψ̃i can be approximated from the time–auto-corre-

lation of itself at a lag time τ , and ψ̃i can be projected onto the collective variable space. According

to equation 2.7, only m− 1 eigenfunctions are needed to sufficiently describe the dynamics. Since

λi and ti are functions of τ , it is appropriate to only select the eigenfunctions such that the implied

relaxation timescale is greater than τ in order to take all the slowest motions beyond the lag time

into an account. Nonetheless, one problem remains — since ψ̃i is a linear combination of all the
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collective variables in the provided basis set, it can be hard to interpret the physical meaning of

ψ̃i when it involves a lot of collective variables. Hence, a reduced representation of ψ̃i written in

terms of only relevant collective variables is desirable for the physical interpretation purposes. In

order to achieve this, we use an algorithm called Matching Pursuit (MP), which we will discuss in

the following section.

2.3.3 Matching Pursuit (MP): Reduced Representation for Eigenfunctions

If ψ̃i is expanded with a non–orthonormal basis, some of the collective variables may not

be entirely independent; hence, complicating the situation further by having coefficients in two or

more possible collective variables that are not independent, and does not help us in achieving our

goal to truly reducing the dimensionality expression of the chemical process of interest. Matching

Pursuit algorithm (MP), first proposed by Mallat and Zhang [58], can help us achieve our goal by

finding a sparse solution of ψ̃i and reassign the coefficients accordingly.

Let us begin by suppose that there are m − 1 modeled eigenfunctions ψ̃i such that 2 ≤

i < m. These ψ̃i are the most important components that we obtained from solving the TICA

problem from the previous section. If we initially build such eigenfunctions from our library of Nξ

collective variables, then each ψ̃i is simply a linear combination of those Nξ variables as expressed

in equation 2.18. However, as each ψ̃i is a function of Nξ variables, often times, it is very hard

to use these variables altogether to discern the physical meaning of each ψ̃i. Preferably, one

would prefer that each ψ̃i has a physically meaningful representation with only dominant collective

variables represented. The MP algorithm reduced the representation of ψ̃i by finding only the

productive coefficients that best summarize the behavior of the function based on our data. To
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better understand the MP algorithm, we would assume an arbitrary function f(t) that can be

written as a linear expansion on a basis χ = {χ1, χ2, . . . , χk} that could either be orthonormal or

not.

f(t) =

k∑
i=1

biχi(t) (2.19)

The inner product of f and a basis function χk(t), 〈f, χk(t)〉, can be computed from the

following equation,

〈f, χk〉 =
N∑
i=1

bi 〈χi, χk〉

=
N∑
i=1

bic
χ
ik(0)

=

N∑
i=1

cχki(0)bi

= (Cχ(0)b)k

(2.20)

And a residual norm of f ,
∥∥f2

res

∥∥, is computed as follow,

∥∥f2
res

∥∥ =

〈
N∑
i=1

biχi(t)
N∑
j=1

bjχj(t)

〉

=

N∑
i=1

N∑
j=1

bibj 〈χi(t)χj(t)〉

=

N∑
i=1

N∑
j=1

bic
χ
ij(0)bj = b>Cχ(0)b

(2.21)

The algorithm to compute the productive coefficients, b‡ of f uses 〈f, χk〉 and
∥∥f2

res

∥∥ com-

puted from equations 2.20 and 2.21. This presents an iterative method that converges to a set
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tolerance value of
∥∥f2

res

∥∥. The result of this algorithm is the reduced representation of f , f ‡, such

that,

f ‡(t) =

Nreduced∑
i=1

b‡iχi(t)

≈ f(t)

(2.22)

where Nreduced < N . As shown in 2.3.2, TICA computes ψ̃i according to the variational principle

to get a best approximation that is reasonably close to ψi. Since TICA computes ψ̃i as a linear

projection onto the basis of collective variables, the MP projection of ψ̃i, ψ
‡
i , can be computed in

the same fashion as equation 2.18,

ψ‡i =

Nreduced∑
k=1

b‡ikχ
MF
k

≈ ψ̃i

(2.23)

ψ‡i is now expressed as a linear combination of Nreduced < Nξ variables. Therefore, a

reduced representation of ψi would allow us to interpret the dynamics of each motion involving

only important collective variables that are dominant in each specific ψi. This way, one could gain

important mechanistic insights into the slowest dynamics in any kinds of systems.

2.4 Markov State Model (MSM)

The application of TICA to a mean–free input data in the collective variable space results

in a set of m − 1 slowest eigenfunctions ψ̃i with corresponding implied relaxation timescale t̃i

associated with its eigenvalue λ̃i that is slower than a lag time τ of interest. According to Noé et
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al., these ψ̃i contain enough information to cover the entire kinetic map with cumulative kinetic

variance very close to 1. [59, 60] However, these MD input data are often very large, containing

millions of data points. This presents a major challenge in the analysis of this data, because many

algorithms scale poorly for matrices with size in the order of millions by millions. In order to ease

the computational workload to build a kinetic model of an MD trajectory, discretization of a large

data set with respect to an appropriate subspace that is thought to completely describe the whole

data is a viable strategy that sparsifies a large matrix into a more managable problem.

Once we have proved that our set of ψ̃i has a cumulative kinetic variance very close to 1,

we can choose to make a discretization within the subspace of ψ̃i. Usually, the discretization is

done through k-means clustering [61, 62]. The discretization generates a Voronoi diagram with

a specific n clusters, each of which has a center weighted with respect to the distribution of the

original data in the space of ψ̃i. In order to construct a Markov State Model from these n clusters,

the population in each cell of the Voronoi diagram is counted using a step function θi(x) defined

as follow,

θi(x) =


1 x ∈ Si

0 x 6∈ Si
(2.24)

where Si is the i-th cluster of the Voronoi diagram. From this model, a transition probability

matrix of the discretization T(τ) ∈ Rn×n can be computed from θi from equation 2.24,

Tij(τ) =
〈θj , (T (τ)θi)〉µ
〈θi, θi〉µ

(2.25)

The matrix element transition matrix T(τ), Tij , approximates the transition probability
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between the states i and j, which represents a discretized version of the transfer operator T (τ).

Moreover, the eigenvalues and eigenvectors of T can also be computed, and according to the

variational principle, the eigenvalues obtained with MSM is better than those obtained from TICA,

representing a better relaxation timescale for each eigenfunction. [46, 63] However, if the size of n

is relatively large, the kinetic model of a chemical reaction can still be hard to interpret. Therefore,

T(τ) can be further coarse–grained into a very small set of states that we hope to describe the

key metastable states presented in the dynamics. The coarse–graining process is done using Perron

Cluster Cluster Analysis (PCCA) [64] to look at the structure of the eigenfunctions obtained from

MSM. The kinetic information, such as the average time spent to move from states i to j, can be

computed through the commute map which make use of the scaling of the TICA eigenfunction.

[60]

2.5 Summary

A molecular dynamics simulation can be interpreted in the probabilistic view, where the

Markovian properties hold in the phase space Ω. Taking an advantage of the Markovian proper-

ties, eigenfunctions and eigenvalues of the transfer operator T (τ) contain numerous information

pertaining the dynamics of any system of interest, where different motions in the system can be

viewed as a spectral decomposition of the weighted probability density for a particular configura-

tion ut+τ (x) after a lag time τ . Each of the motion has a corresponding eigenvalue, which relates

to the relaxation timescale, where each motion decays differently. As each eigenfunction strictly

corresponds to a specific motion in the system, the terms eigenfunction of the transfer operator

and reaction coordinate can be use synonymously.

Time-lagged Independent Component Analysis (TICA) allows us to approximate the eigen-
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functions of T (τ) under the condition of variational principle in a similar fashion to quantum

mechanics. The approximated eigenfunctions by TICA can be projected onto the collective vari-

able space, allowing us to interpret the physical meaning of different motions in a chemical system.

However, if a set of collective variable is large, the eigenfunctions obtained from TICA may be hard

to decipher. A reduced representation of TICA eigenfunctions through Matching Pursuit (MP) can

be computed, which reduced the number of variables needed to express the eigenfunctions, allowing

us to deduce the physical interpretations of each reaction coordinate better.

After the m− 1 slowest processes are determined from TICA, a discretization of the input

data can be performed in the subspace of those m−1 reaction coordinates to form a discrete Markov

State Model of the process, which predicts a better relaxation timescale than TICA. The coarse–

grained MSM allows us to interpret the transition probabilities between key metastable states in

the system. Therefore, the contents presented in this chapter encompass the entire workflow of

using the Markovian properties of MD simulations to gain the dynamical insights to a chemical

reaction, which is summarized in figure 2.1.

Chapter 2, in full, is a part of the material titled “Markov State Modeling for Ion Pairing

Dynamics in Aqueous Solutions” by Pornpatcharapong, Wasut, Noé, Frank, Clementi, Cecilia, and

Weare, John H. The material is currently being prepared for submission. The dissertation author

is the primary author of this material, and all co–authors have approved the use of the material

for this dissertation.
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CHAPTER 3

Ionic Association of NaCl in Aqueous Solution

3.1 Introduction

The Markovian interpretation of MD simulations opened a wide avenue for calculating many

interesting properties from a rigorous mathematical formalisms introduced in Chapter 2. Neverthe-

less, there are many components in this formalism, such as Time-lagged Independent Component

Analysis (TICA), Matching Pursuit (MP), Markov State Model (MSM), or the recently published

concepts of commute maps and commute distances. [36, 37, 58–60, 63, 65–67] Therefore, often

times, it is difficult for researchers to grasp the whole concept of the Markovianity of MD sim-

ulations, preventing them to fully utilize the potentials. Recently, there have been significant

breakthroughs in the applications of MSM and TICA in numerous simulations for biological sys-

tems, where the metastable states of the biomolecular configurations and the mechanisms and the

probability of transition between the metastable states can be computed. [35, 37, 48, 68–70] How-

ever, in our opinion, the entire package has rarely been used outside the biomolecuar simulation

community. Hence, we believe that the interpretations of the Markovianity of chemical reactions

can be applied to solve numerous problems in chemical dynamics, especially for problems that are

easier to solve and a large enough amount of data can be obtained to assure that a simulation was

performed to conform with an equilibrium under the canonical ensemble.

Therefore, we chose to apply the formulisms of Chapter 2 to study the ionic association

of NaCl in aqueous solution. Despite being a relatively simple problem, the mechanistic point

of view of ionic association in aqueous solution remains relatively little understood. The work of

Mullen et al. has opened new insights to this type of problem through the introduction of the nB
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collective variable describing the number of water molecules simultaneously associating with both

the cation and the anion. [29] This finding challenged the prevalent views of this process from

the ligand exchange perspective, where the association of the ions is driven by the loss of water

molecule from the cation’s first solvation shell in order to make room for the CIP configuration. The

identification of nB as an important collective variable; thus, is an important step towards better

understandings of this problem. Nevertheless, McGibbon et al. proposed that a true reaction

coordinate representing the slowest motion of the dynamics must rigorously follow the following

three conditions, [69]

1. It has to be at a reduced dimension from Ω→ R

2. It needs to be uniquely determined by the dynamics rather than being conditions enforced a

priori

3. It needs to be a maximally predictive projection

In order to satisfy the three conditions above without any preconditioning of the committor

surfaces a priori, we opted for the Markovian formulisms proposed in the previous chapter, where

the slowest motion of the dynamics can be readily determined from the eigenfunction of the transfer

operator with a corresponding highest eigenvalue that is not 1. From this formulism, the varia-

tional principle projection of the slowest eigenfunction can be done onto the basis set of collective

variables through TICA, where the linear combination of the collective variables constitute a TICA

eigenfunction, or a reaction coordinate. The TICA reaction coordinates can also be further reduced

with MP to form a more physically interpretable version of the reaction coordinates focusing only

on a few relevant collective variables. Having the information of m slowest reaction coordinates

from TICA that covers the majority of the cumulative kinetic variance, a good MSM for this system
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can then be built based on the coordinates that fully cover the extent of the simulation, from where

the transition matrix between the coarsed metastable states can be computed either through the

Hidden Markov Model (HMM), or Perron-Cluster Cluster Analysis (PCCA), allowing us to calcu-

late the transition rate between relevant metastable states and the commute map of this system.

Thus, here we present the Markovian interpretation of the ionic association of NaCl in an aqueous

solution.

3.2 Simulation Details

3.2.1 General Settings

The system, NaCl+495 H2O, contains one Na cation, one Cl anion, and 495 water molecules,

was prepared by placing the ions randomly in a box of 30.0 Å, and the water molecules were then

placed in the same box using PACKMOL. [71] In order to get an equilibrium box size at 1.0 atm,

the simulation in an isothermic-isobaric ensemble was performed for 960 ps using Nosé-Hoover

Langevin piston [72, 73] Once the equilibrium box size is obtained, the production simulation was

performed under the canonical ensemble using Langevin dynamics with a damping constant of 5.0

ps−1 with NAMD [74] with the simulation timestep of 2.0 fs. Water molecules in this simulation

are treated as rigid under a TIP3P model [75], and the force field parameters for all atoms are

derived from the work by Joung and Cheatam. [76] The electrostatic interactions were modeled

by Particle Mesh Ewald [77] algorithm. The temperature of the simulation was controlled at 300

K, and periodic boundary conditions were applied throughout the simulation. The trajectory was

saved every 10 steps. The total simulation time for this system is 220 ns.

The analysis part started from reading the entire trajectory with MDTraj [78] using a 10-
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frame stride; therefore, each of the snapshot input is 100 steps, or 0.2 picoseconds apart from one

another. The analysis started with finding the slowest variational eigenfunctions ψ̃i with TICA at

different lag times τ , from where we picked a value of τ such that all the m − 1 eigenfunctions

consist of different motions that cover largest extent of the kinetic map possible. In order to form

a Markov State Model (MSM) for this reaction, k-means clustering [61, 62] with k-means++ was

used to discretize the input data into the space of m−1 ψ̃i obtained earlier from TICA, from which

a coarse kinetic model, transition matrix, and commute maps can be obtained from Perron Cluster

Clustering Approach (PCCA) or Hidden Markov Model (HMM) [64]. All the analysis from TICA

to coarse-grained MSM was performed with a software package PyEMMA. [79]

3.2.2 Collective Variables

In order to get a best reaction coordinate, a good set of collective variables are needed so

that there are more basis functions available for TICA. For this work, we chose two different sets

of the collective variables for a comparison purpose. One set (CV Set 1) is a set of 13 collective

variables modeled after the work by Mullen et al., and another set (CV Set 2) is a set of 32 intuition-

based variables that are thought to describe both the ionic and the solvent coordinates. Table 3.1

shows brief descriptions of the chosen collective variables for this reaction for CV set 1, as well as

their corresponding index numbers. Based on our choice for the collective variables, they can be

further subdivided into the following classes,

The Interionic Separation Class - This class of the collective variable is based on the inte-

rionic separation between the cation and the anion, which is defined to be the Euclidean distance

between the two ions in the simulation,
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Table 3.1: A list of collective variables used in CV Set 1 inspired by the previous work in Mullen
et al.

Index Feature Feature Class Remarks

0 n
(1)
+ Ion Coordination

1 n
(1)
− Ion Coordination

2 nB Water Between Ions

3 n
(2)
+ Ion Coordination Including first shell

4 n
(2)
− Ion Coordination Including first shell

5 n
(2)
+ Ion Coordination Excluding first shell

6 n
(2)
− Ion Coordination Excluding first shell

7 r+− Interionic Separation
8 ρii Water Density σ = 3.57 Å
9 ρii Water Density σ = r+−/4
10 ρii Water Density σ = r+−/3
11 ρii Water Density σ = r+−/2
12 ρii Water Density σ = r+−

r+− = ‖rNa − rCl‖ (3.1)

The collective variables belonging to this class are r+− itself, as well as its derivatives, such

as 1
r+−

or 1
r2+−

, which are defined in the case that the derivatives can describe the dynamics better

than the original variable.

The Ionic Coordination Class - This class of the collective variables aim to describe the

behavior relating to the first and the second solvation shells of the cation and the anion to monitor

the possibility of the ligand exchange type of reactions involved in the ion pairing. For CV Set 1,

the definition of the ionic coordination class collective variables are taken straight from the work

of Mullen et al., with slight modification of parameters to suit our simulation better,
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n
(i)
+ =

Nwat∑
j=1

1− tanh
[
α
(∥∥rNa−Oj

∥∥− b(i)Na

)]
2

n
(i)
− =

Nwat∑
j=1

1− tanh
[
α
(∥∥rCl−Hj

∥∥− b(i)Cl

)]
2

(3.2)

where n(i) represents the i-th solvation shell of a corresponding ion, rNa−Oj is simply rNa − rO,

rCl−Hj = rCl − rH where rH is the vector that points to the nearest hydrogen atom of each water

molecule to Cl– , and b(i) is the i-th minimum of the radial distribution function between the ions

and the water molecules. For this simulation, b
(1)
Na = 3.18 Å, b

(2)
Na = 5.88 Å, b

(1)
Cl = 3.98 Å, and

b
(2)
Cl = 6.28 Å. The constant α also varies with the ions and the solvation shell, where α

(1)
Na = 3,

α
(2)
Na = 12, α

(1)
Cl = 7, and α

(2)
Cl = 15.

The Water Between Ions Class - This class of the collective variables was first conceived

in Mullen et al. [29], which aims to describe the simultaneous association of a water molecule

with respect to either of the ion. Therefore, for higher r+−, there should be no water molecules

associating with both of the ions. However, for small r+−, more water molecules can associate

with the ions, bridging the ions together. The definition of nB, the number of water molecules

associating with both of the ions, is defined as follow,

nB =

Nwat∑
j=1

max

1− tanh
[
α
(∥∥rNa−Oj

∥∥− b(1)
Na

)]
2

,
1− tanh

[
α
(∥∥rCl−Hj

∥∥− b(1)
Cl

)]
2

 (3.3)

where all the parameters, α, b
(1)
Na, b

(1)
Cl are the same as the ones defined for the ionic coordination

class. This variable, nB, is used in CV Set 1.
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The Water Density Class - This class of collective variables describes the density of water

molecules around the midpoint between the two ions. In Mullen et al., this variable is defined as

follow,

ρii =
1

(2πσ2)3/2

Nwat∑
j=1

exp

[
−
∥∥rOj − rmid

∥∥2

2σ2

]
(3.4)

where rmid is the vector that points to the midpoint between the two ions. This variable has a unit of

length−3, and there are 5 variables in CV Set 1 belonging to this class, each of which has a different

value of σ, which indicates how rapidly the density would vary around the midpoint between the

ions. The smaller the value of σ, the density varies more abruptly. Another way to look at this

variable is that it represents the number of water molecules inside the volume Vii =
(
2πσ2

)3/2
. In

this work, we used the values of σ at 3.54 Å, r+−/4, r+−/3, r+−/2, and r+−.

3.3 Results and Discussion

3.3.1 Reaction Coordinates of NaCl Ionic Association in Aqueous Solutions

from TICA

Although ψ̃i approximated by TICA will not equal to the actual eigenfunction ψi of the

transfer operator T (τ), the main advantage of TICA is that ψ̃i can be computed directly from the

correlation of the meanfree collective variables input transformed from any MD trajectory. As each

ψ̃i is written as a linear combination of the basis function in the collective variable space, ψ̃i, the

contribution from each collective variable to a particular ψ̃i can be determined. Figure 3.1 shows

the value of the implied relaxation timescale t̃i, which directly relates to its corresponding ψ̃i, where
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Figure 3.1: Different implied relaxation timescales (t̃i) corresponding to each specific ψ̃i at different
values of τ .

the slowest, nonstationary, relaxation timescale (t̃2) ends at around 60 ps at τ = 12 ps. In this

figure, the second slowest relaxation timescale (t̃3) has the same order of magnitude as t̃2. Here one

could readily see that the first two nonstationary eigenfunctions, ψ̃2 and ψ̃3 dominate the dynamics

of NaCl in aqueous solution, with a relaxation timescale generally one order of magnitude greater

than the next slower eigenfunctions. The shaded area of figure 3.1 represents the area where the

implied timescale is less than the lag time; therefore, any eigenfunctions falling within this shaded

area are treated as fast processes. Therefore, at τ = 4 ps, there are 6 slowest reaction coordinates

according to TICA, 2 of which are dominant and 4 others are auxiliary. Similarly, if one consider

a long limit of τ (e.g. at 12 ps), the number of slowest reaction coordinates reduces to 4. Since

we are interested in obtaining a better representation of the dynamics, picking the slowest reaction

coordinates at τ = 4 ps covers more processes than picking at τ = 12 ps, allowing us to encode the

information from these 6 coordinates during the discretization step for building MSM afterwards.
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Now that we obtained 6 slowest reaction coordinates from the dynamics with TICA, and

we have verified that these 6 reaction coordinates sufficiently describe the slowest dynamics by

looking at a cumulative kinetic variance of these 6 coordinates. For this set of ψ̃i, the cumulative

kinetic variance is found to be 0.997, which is reasonably close to 1. The next question would

be how do we describe these coordinates. In particular, we are interested in the first two slowest

reaction coordinates as they are very close in relaxation timescales; thus, understanding both of

these coordinates would be beneficial for understanding the reaction mechanism for this process.

In order to determine the best correlated collective variable with respect to a reaction coordinate, a

correlation matrix between the meanfree collective variable inputs and ψ̃i can be computed following

an equation below,

C(ξMF
i , ψ̃j) =

1

σξMF
i

Nξ∑
k=1

[
Cov(ξMF

i , ξMF
k )

]1/2
Uki (3.5)

Table 3.2 summarizes the correlation between the collective variables to ψ̃2 and ψ̃3 computed

according to equation 3.5. The result for ψ̃2 suggests that the 3 features that play important

role in this reaction coordinate are r+−, ρii with σ = r+−, and nB. The interpretation of this

reaction coordinate would have to involve these three collective variables, where the association of

the ions would drive the number of water molecules simultaneously associated with the two ions

up, changing the water density around the midpoint between the two ions, which is defined from

the largest volume possible when the two ions are far apart. However, ψ̃3, slightly faster in the

relaxation timescale than ψ̃2, mostly involve the changes in water density around the midpoint

between the ions significantly more than the association / de-association of the ions.

Figures 3.2 and 3.3 also show a graphical correlation between ψ̃2 and ψ̃3 with respect to
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Table 3.2: Collective variables’ correlation with ψ̃2 and ψ̃3

Feature Correlation with ψ̃2

r+− 8.22
ρii (σ = r+−) -7.70

nB -6.02
ρii (σ = r+−/4) 3.47
ρii (σ = 3.57 Å) 3.21
ρii (σ = r+−/2) 2.45

Feature Correlation with ψ̃3

ρii (σ = r+−/3) -3.30
ρii (σ = r+−/2) -3.19
ρii (σ = r+−/4) -2.82

nB 1.94
r+− 1.71

n
(1)
+ -1.65

their 3 dominant collective variables. The time series plots for both ψ̃2 and ψ̃3 are consistent with

the results we obtained in table 3.2. The slowest motion, ψ̃2, contains about 20 transitions to CIP

regions (where r+− is minimum) and several transitions to the SSIP regions (where r+− ≈ 5.0 Å),

and each of these transitions in the inter ionic distance has a pattern in the time series that matches

with the evolution of ψ̃2 over time. Moreover, the evolution of nB peaks around the same point

where r+− is at minimum, while remaining mostly zero throughout the course of the simulation.

This result indicates that the CIP configuration of NaCl has to occur in tandem with at least two

water molecules simultaneously coordinating with both ions, whereas the region where nB = 0

indicates the bulk region. The SSIP region is usually identified when r+− ≈ 5.0 Å, where numerous

previous literature has consistently found this value from the onedimensional free energy landscape

computation of NaCl in aqueous solutions [20, 21, 29, 80], occurs in sync with the region of nB ≈ 1,

indicating that there is only 1 water molecule bridging between the two ions in the SSIP structure.

According to figure 3.3, the key transition in this reaction coordinate is observed with

collective variables 10, 11, and 9 (water density around the midpoint between the ions), all of

which correlate strongly with this reaction coordinate. However, the minimum r+− from figure 3.2

does not correlate very well with the high jumps in ψ̃3, indicating that the association between

the ions does not play a key role in this reaction coordinate, which is dominated by the solvent

rearrangement around the midpoint of the ions. As this is a slightly faster process than the reaction
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Figure 3.2: Evolution of ψ̃2 over time as well as r+−, ρii (σ = r+−), and nB

39



0 50000 100000 150000 200000

0

10

20

30

40

50
ψ̃
3

0 50000 100000 150000 200000

0

10

20

30

40

ρ
ii
(F
ea
tu
re

10
,
n
m

−
3
)

0 50000 100000 150000 200000

5

10

15

20

25

30

35

ρ
ii
(F
ea
tu
re

11
,
n
m

−
3
)

0 50000 100000 150000 200000

Time (ps)

0

10

20

30

40

50

ρ
ii
(F
ea
tu
re

9,
n
m

−
3
)

Figure 3.3: Evolution of ψ̃3 over time as well as ρii (Features 10, 11, 9 according to table 3.2)
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coordinate ψ̃2, the rearrangement of the solvent molecules should occur before the association of

the ions. It is also interesting to note that in this reaction coordinate, the n
(1)
+ coordinate also has

a slight contribution to this reaction coordinate as well, although not as important as the solvent

arrangement between the ions. This finding is consistent with the work of Mullen et al., where they

also found that by optimizing a set of three collective variables, the set with maximum likelihood

of crossing the two dividing committor surfaces contains either the solvent variables from the water

in between or the water density classes, but not from the ion coordination class. The result also

indicates that ligand exchange-type reaction is less likely to play an assisted role in the association

between the two ions, contrary to the previous hypotheses.

3.3.2 MSM and Kinetic Model of NaCl Ionic Association in Aqueous Solution

The discretization of the MD trajectory under the ψ̃i subspace obtained from TICA allows

us to formulate the Markov State Model (MSM) for this system, where the transition probability

matrix can be computed for a discrete data set. In this settings, the number of k-means clusters

were 1,000, and the eigenvalues were calculated from the discretized data. Table 3.3 compares

the eigenvalues obtained from MSM (λ‡i ) to the eigenvalues obtained from TICA (λ̃i), which we

generally find that λ‡i > λ̃i, where, according to the variational principle, implies that λ‡i is a better

approximation to the actual eigenvalue of the transfer operator than λ̃i. Figure 3.4 also shows

the comparison between the implied relaxation timescales obtained from MSM (dashed line) with

respect to those obtained from TICA, where we also observed the same trend as the estimation of

the eigenvalues.

The better eigenvalues from MSM would also imply that the eigenfunctions from MSM
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Table 3.3: Comparison between the values of the eigenvalues obtained from MSM (λ‡i ) and from
TICA (λ̃i) from NaCl + 495 H2O system. Note that ψ1 represents the stationary distribution µ(x)
with no exponential decays.

Approximated Eigenfunction MSM Eigenvalues TICA Eigenvalues

ψ2 0.952 0.935
ψ3 0.907 0.857
ψ4 0.816 0.674
ψ5 0.784 0.602
ψ6 0.700 0.438

should approximate the real eigenfunctions of the transfer operator better than TICA as well.

However, there are crucial differences between the eigenfunctions obtained from MSM and from

TICA — the MSM eigenfunctions are computed in terms of the clusters of the Voronoi diagram

obtained once we had a discretized trajectory, while TICA eigenfunctions is a projection onto

the collective variable space based on the continuous trajectory. Thus, despite giving a worse

approximation, TICA eigenfunctions are better suited for interpretations of the physical behavior

of distinct reaction coordinates in the system. On the other hand, MSM eigenfunctions have some

uses as well, as the coarse-graining of the MSM transition probability matrix requires the MSM

eigenfunctions to estimate the key metastable states in the system.
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Figure 3.4: A comparison plot between the implied relaxation timescales for MSM (dashed lines)
and TICA (solid lines) for the NaCl + 495 H2O system

In reality, we would like to study the dynamics involving the number of metastable states

far less than this number. Hence, further coarse–graining with the PCCA is desirable to reduce

the number of metastable states to a number that would fit the narratives of the ionic association

process of NaCl. As mentioned before in chapter 1, the dynamics of ion pairing process can be

divided into three parts: CIP, SSIP, and bulk. Therefore, proposing a good mechanism involve

proper identification of the reaction coordinates, as well as identification of the metastable states in

this system. After the discretization was performed on the trajectory, we used the PCCA clustering

to make a kinetic model of NaCl ionic association with 6 metastable states to compute the coarse

transition probability matrix for this model, where the connectivity between each metastable states

is identified by forming a Hidden Markov Model (HMM) between these 6 states. The 6-state kinetic

model of this process is highlighted in figure 3.5, where the larger dot implies higher probability
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that the system would remains in that metastable state, and the numbers on or below the arrows

indicate the transition probability between metastable states.

Table 3.4: Average collective variable values for each metastable state predicted by 6-state Hidden
Markov Model in figure 3.5

HMM State Index r+− (Å) nB n
(1)
+ ρii (nm−3, σ = r+−/4)

0 2.85 1.89 4.61 4.86
1 6.24 0.52 5.83 29.59
2 15.80 0.00 5.83 29.68
3 13.31 0.00 5.83 31.10
4 9.42 0.00 5.84 30.35
5 12.29 0.00 5.83 29.92

The indication of the CIP, SSIP, and bulk states are often judged by looking at the features

of the one–dimensional free energy surface of the r+− variable [29], which we have computed in

chapter 5. According to the results in chapter 5, the leftmost free energy minima in figure 5.1

represents the CIP configuration, which occurs where r+− ≈ 2.7 Å, while the SSIP state occurs

at the second minima pass the main CIP – SSIP barrier (3.7 Å) at 5.2 Å. Anything beyond the

second minima could be taken to be the bulk region where the ions do not associate. Our results

from table 3.4 and figure 3.5 indicate that the dynamics spend far greater time in the bulk region,

which is represented by 4 out of 6 states in figure 3.5. Moreover, the transition probability is also

biased towards the bulk from the CIP and the SSIP state, indicating that the stationary density

is heavily biased towards the bulk. The SSIP state, represented by a circle number 1 in figure 3.5,

only connects to one bulk state and does not have any connections to three other bulk states at all,

indicating that the SSIP - bulk transition mostly occurs from the leftmost boundary of the bulk

state around 9 Å separation of Na+ and Cl– ions, and any other transitions between the SSIP state

to the bulk regions with higher r+− than 9 Å is not likely to happen. A small CIP state dot of

figure 3.5 implies that the dynamics spends far less time in the CIP region than other regions, with

the interstate transition probability biased towards the SSIP state from the CIP state.
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Figure 3.5: The kinetic map of NaCl + 495 H2O system using a 6-state Hidden Markov Model
highlighting the transition probability between each state. The average position of each index
point is listed in table 3.4
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The information from the 6-state HMM can also be interpreted in terms of the average value

of the important collective variables to elucidate important information on how each configuration

is arranged in the collective variable space. In terms of the coordination number of the cation,

it is interesting to note that the average cation coordination number for the CIP state is 4.61,

which indicates that the CIP structure of NaCl can either have the 4-fold coordination or the 5-

fold coordination, with a slight tendency toward a 5-fold coordination, while for both SSIP and

bulk states, the average cation coordination number remains stable at 5.8, suggesting that both

the SSIP and the bulk states prefer a 6-fold coordination number, with slight possibility of the

formation of a 5-fold coordinated complex. In terms of the water density around the midpoint

between the ions, ρii value of the CIP state is very low, because as the two ions are contacted,

there is simply not enough space for the water molecules to distribute around such a point in a

very small volume Vii = (2πσ2)3/2 except the water molecules of the first salvation shells of the

ions. As the ions become more separated, Vii becomes larger, allowing more water molecules to

be distributed around a point, and we could see that ρii values are about the same for both the

SSIP and the CIP states. Another feature that distinguishes the CIP, SSIP, and the bulk state is

nB, where the average value of nB is 1.89 for the CIP metastable states, indicating that there are

likely to be 2 water molecules simultaneously coordinating both the ions at the same time, which

is possible due to the close contact between the ions. For the SSIP, the number is likely to be 1

due to the further separation between the two ions, where a water molecule between the two ions

need to exist in a bridge formation spanning the entire length profile of the water molecules to

accommodate both ions at a distance around 5 to 6 Å. For the bulk states, the number of nB is

consistently zero due to the fact that the ions are now further apart, so no water molecules can be

simultaneously coordinating with both the ions at the same time.

Although the results from figure 3.5 and table 3.4 gave a good idea of the relative probability
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between each metastable states as well as how they are arranged in the collective variable space,

it does not give a good idea about the mechanistic point of view for this process. In order to do

this, we need free energy surfaces to assist the interpretation of the metastable states generated

with HMM. According to table 3.4, the metastable states in figure 3.5 still lacks the information

from the region where r+− ≈ 5.0 Å, which is a region where we expect the SSIP state for this

potential. Hence, we increased the metastable state approximation by HMM from 6 to 20 states

to observe a better metastable state assignment. With the new 20-state HMM metastable states,

we could project these points obtained from HMM onto any spaces we wish and superimpose them

with the free energy landscapes. Figure 3.6 represents the projection of those 20 metastable states

from HMM onto the space of ψ̃2 and ψ̃3.
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Figure 3.6: Two-dimensional free energy landscape projection onto the space of ψ̃2 and ψ̃3, with
the 20 metastable states from HMM superimposed as white dots

The projection in figure 3.6 was done with two of the slowest reaction coordinates obtained

earlier in section 3.3.1 using TICA, where the relative free energy is computed directly from the
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probability of a particular configuration with respect to all configurations in the space of ψ̃2 and

ψ̃3 according to the following equation,

Ai(ψ̃2, ψ̃3) = −β−1 ln pi(ψ̃2, ψ̃3) (3.6)

where pi(ψ̃2, ψ̃3) is calculated from the histogram of the bins in the ψ̃2 and ψ̃3 space, and β−1 = kBT .

The free energy projection in this space shows three distinct minima; one large minimum to the

right, one small purple minimum to the middle, and one narrow green minimum to the left. The

arrangement of these 3 main minima supports the view of the ionic association as being classified

into CIP, SSIP, and the bulk, where the large blue minimum corresponds to the bulk, the small

purple minimum corresponds to the SSIP structure, and the narrow green minimum to the left

corresponds to the CIP region. However, the mechanistic interpretation of this process would rely

on how well do we understand how each reaction coordinate changes from the bulk states to the

SSIP, and eventually, to the CIP state. In order to make such interpretations, two more free

energy projections are performed — the projection onto the r+− and the nB space to describe

the behavior of ψ̃2, and the projection onto the r+− and the ρii (feature 10, σ = r+−/3) space to

describe the behavior of ψ̃3, as nB and ρii are the collective variables that correlate well with ψ̃2

and ψ̃3, respectively. Both of these free energy projections are illustrated in figures 3.7 and 3.8.
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Figure 3.7: Two-dimensional free energy landscape projection onto the two collective variables
space: r+− and nB, with the 20 metastable states from HMM superimposed as white dots
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Figure 3.8: Two-dimensional free energy landscape projection onto the two collective variables
space: r+− and ρii (feature 10, σ = r+−/3), with the 20 metastable states from HMM superimposed
as white dots
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The free energy projection in the r+− and the nB space allows us to interpret the mechanistic

picture of ψ̃2, which is a coordinate that is influenced mostly by these two collective variables.

Figure 3.7 implies that the transition from bulk into the CIP state in the ψ̃2 coordinate involves

the association of the ion, with one water molecule associating both of the ion in the SSIP state.

The SSIP - CIP transition, according to figure 3.7, is likely driven by the water molecule in the first

salvation shell of either the cation and the anion associating with both the ions first to form the

second bridge, and then the ions come into a close contact. Nevertheless, this should not be the only

possible pathway for this process, as another possible pathway from the SSIP to the CIP state can

also undergo the association of the ions first before the water molecules forming a bridge. Thus,

the process that governs the reaction coordinate ψ̃2 is the driving force from the solvent bridge

formation between the ions. For the reaction coordinate ψ̃3; however, the SSIP - CIP transition is

mostly driven by the expulsion of water molecules from the region between the ions to reduce the

water density. As the two ions come into a close contact, the large size of the ions compared to

water molecules would prohibit water molecules to stay between these ions, and the nature of ψ̃3

affects far more solvent molecules than the coordinate ψ̃2, which exerts local effect.

Using the information from figures 3.7 and 3.8 allows us to elucidate the structures of the

CIP, SSIP, and all the relevant transition states. Figure 3.7 suggested that there are two possible

transition pathways between the SSIP and the CIP states, labeled in figure 3.9 as TS1 and TS2.

According to figure 3.9, there are two water molecules that are simultaneously coordinated with

both the ions, and the overall structure of the simultaneously coordinated water molecules form

a near T-shape structure together with Na+ (purple) and Cl– (green) ions. Through the first

pathway from CIP to SSIP, one water molecule lost contact with the Cl– ion as both ions separate

further until reaching the SSIP state. The second pathway, however, involves an intermediate

(labeled INT in figure 3.9) which is observed in figure 3.7. The mechanism of transition from
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CIP to SSIP through the second pathway involves the distortion of the T-shaped CIP structure

towards a prism-like structure of TS2 that is no longer planar. The prism distorts further in the

INT structure so that both water molecules can orient in a way that the hydrogen atoms can have

an interaction with the Cl– ion, and then one water molecules loses contact with both of the ion

afterwards, forming the SSIP structure. Both pathways have a very similar maximum free energy

barrier, so we do not know for certain which pathway is actually preferred. In order to resolve this

question, one would need a smooth two-dimensional free energy landscape in this dimension so that

a minimum free energy path algorithm such as the zero-temperature string method can be applied

and the free energy gradients can be reasonably calculated without the noises that arose from

inadequate sampling that is natural for any unbiased MD simulations. The SSIP - bulk transition

state; however, has only one probable pathway, and a HMM metastable state indicates that the

structure shown in figure 3.9 should indicate the transition state. In this case, the transition state

involves the long-range interaction between the Cl– ion and the hydrogen atom of a water molecule

that is slowly breaking apart as the ions separate further into the bulk.

3.4 Summary

This chapter presents the Markovian interpretation of the dynamics of the ionic association

of NaCl in aqueous solutions, where slowest reaction coordinates for this process is determined

using TICA. We found that there are 6 coordinates that sums up the cumulative variance for up

to 0.997, while the dynamics are mostly dominated by two slowest motions with similar relaxation

timescales. These 6 reaction coordinates are then subsequently used for building the MSM of this

process using k-means discretization. Further coarse-graining of the MSM transition probability

matrix was done through PCCA, and the kinetic profile of this reaction was then reconstructed
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with a Hidden Markov Model.

The interpretation of a 6-state HMM allows us to deduce the arrangement of the CIP,

SSIP, and the bulk states in the collective variable space, as well as the probability of the dynamics

staying in each specific state. We found that for NaCl, the dynamics greatly prefers the bulk, and

the contacted ion pair is very rarely formed. The 20-state HMM allows a better assignment of the

metastable states, and with the projected free energy landscapes in appropriate coordinates, more

information of the dynamics and the mechanistic point of view for this reaction can be determined.

The projection of the 20-state HMM onto the free energy landscape in two of the slowest reaction

coordinates found from TICA verifies the existence of the CIP, SSIP, and the bulk states, and

further projection onto the appropriate collective variables allow us to interpret the physical and

mechanistic meaning of the two slowest motions in this system, where the reaction coordinate ψ̃2

drives the ionic association through the local effect of bridge formation of water molecules that

simultaneously coordinate with both the ions, while the reaction coordinate ψ̃3 drives the ionic

association through a more global effect by the expulsion of solvent molecules away from the region

between the two ions as the two ions come into a closer contact.

Despite the rigor of the theory, the main drawback here is the computation of the free energy

from the histograms of the molecular dynamics trajectory. The areas around the barrier can never

be thoroughly sampled without a guided scheme, and the information around the transition state

can deviate, causing the incorrect inference of the mechanism and the rate. The next two chapters

will present a scheme that can be used to calculate multidimensional free energy landscape with less

computational resources, while producing quantitatively plausible results through the application

of Gaussian Process Regression (GPR).

Chapter 3, in full, is a part of the material titled “Markov State Modeling for Ion Pairing
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Dynamics in Aqueous Solutions” by Pornpatcharapong, Wasut, Noé, Frank, Clementi, Cecilia, and

Weare, John H. The material is currently being prepared for submission. The dissertation author

is the primary author of this material, and all co–authors have approved the use of the material

for this dissertation.
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CHAPTER 4

Multidimensional Free Energy Computation

4.1 Importance of Free Energy Computation

The free energy of a chemical system governs the macroscopic behavior along with its ther-

mal fluctuation including both the energetic and entropic influences, and the free energy landscape

may contain one or more local minima representing configurations at the metastable states, which

are the locations where the system spends a significant amount of time. The change in the system

from the reactant to the product states, therefore, is represented in the free energy landscape as

a transition from one metastable state to another. During the course of the reaction, the system

needs to pass through the free energy barrier, where the probability of barrier crossing with respect

to a metastable state labeled as state 1 is defined as,

p(1→ ∗) ∝ e−β∆A1→∗ (4.1)

Equation 4.1 can be further rearranged such that for any configuration x ∈ Ω, the rel-

ative free energy of the configuration x is related to the equilibrium probability of finding the

configuration x in the phase space,

A(x) = −β−1 ln p(x) (4.2)

Hypothetically, if a simulation is performed for an infinitely large amount of time, one could

easily compute p(x) for any configurations and then the configurational free energy landscape can
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be mapped. Nevertheless, as governed by equation 4.1, the higher the value ∆A1→∗ is, the longer

timescale it would take to go from state 1 across the barrier. With limited computational resources,

standard molecular dynamics (MD) simulation can only go up to the millisecond timescale, while

ab initio molecular dynamics (AIMD) fares far worse in timescale, only in the picosecond timescale

due to a much higher cost for expensive first principles calculations. Hence, rare barrier crossing

events typically are not well-sampled due to the issue of far less timescale affordable by current

computational capabilities, and an attempt to compute the free energy landscape from any unbiased

MD simulations would result in a noisy representation in the barrier region, hindering our insights

on the dynamics of the transition state.

Being able to compute relatively noise-free free energy landscapes, thus, opens up new in-

sights into several relevant chemical processes, as well as their underlying mechanisms, as these free

energy landscapes offer us insights into the relationship between all the metastable states and the

dynamics around the transition state of amy chemical reactions. Nevertheless, as a chemical system

may contain up to thousands of atoms, determining the free energy as a function of thousands of

phase space variables is highly complex and expensive. However, relative free energies can be com-

puted by constraining the absolute free energies into the collective variable space. Consequently,

the relative free energy A(ξ1, ξ2, . . . , ξD) can be written as a function of D collective variables,

where D is the dimensionality of the problem which relates to the number of collective variables

hypothesized to involve in the process where the reaction coordinate is a hypothetical linear com-

bination of these D variables that correlates with the slowest motion of the system across the free

energy barrier. [29, 41, 48] When written in terms of the collective variables, the free energy at

Ξ = (ξ∗1 , ξ
∗
2 , . . . , ξ

∗
D) is related to the natural logarithm marginal probability density,
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A(ξ∗1 , ξ
∗
2 , . . . , ξ

∗
D) = −β−1 ln

∫ D∏
i=1

δ (ξi(x)− ξ∗i ) exp (−βV (x)) dx (4.3)

where x is a configuration snapshot. Therefore, A(ξ∗1 , ξ
∗
2 , . . . , ξ

∗
D) is computed by integrating over

all the possible snapshots in the simulation. By taking the derivative of equation 4.3, the gradient

of A(ξ∗1 , ξ
∗
2 , . . . , ξ

∗
D) is found to be related to the statistical average of the gradient of the potential

V (x),

∇xA = 〈∇xV 〉 (4.4)

Equations 4.3 and 4.4 imply that there exists free energy estimator, that is, a monomer unit

that can be used to deduce the bigger picture of the free energy landscape. For equation 4.3, the

free energy estimator is a local probability density pi(x), whereas for equation 4.4, the free energy

estimator is a mean force fi = −〈∇xV (xi)〉. In order to get the free energy estimators for each

part of the phase space, extensive sampling of that part is required to ensure statistical viability of

the free energy estimators. Hence, the earliest approaches to compute free energy estimators came

from constraining the simulations into several windows, where the local probability density or the

mean force for each window can be computed using techniques such as Umbrella Sampling (US)

[81, 82] for biased local probability densities, Thermodynamic Integration (TI) [83] for the mean

forces to be integrated into the free energy either through fixing the atoms involving in the reaction

coordinates using SHAKE algorithm, or using a stiff harmonic restraint to limit sampling around

the center of the windowwindow, which is better known as Umbrella Integration (UI) technique.

[84] Another approach to sample the CV space is through the holonomic constraints, which is used

to confine the system to the collective variable hypersurface such as Blue Moon Sampling. [85, 86]
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However, the major disadvantage of the aforementioned techniques is the computational cost. To

minimize possible statistical uncertainties of the estimators, a long simulation in each window is

necessary for adequate sampling of any part of the collective variable space we desire to explore,

including the rare event regions. Therefore, these kinds of simulations are costly due to the need

to minimize sampling errors. There are two main kinds of error associating with the process. First

of which is the statistical error due to the number of samples, and second of which is the error

due to step size (i.e. the width of the window). In order to minimize these errors, one needs to

reduce the width of window to reduce the error from the large step sizes, as well as performing very

long simulation in each of the window to reduce the error from inaqequate sampling. While this

is doable in one dimension, the cost to obtain samples in a D-dimensional problem usually scales

as O(ND
window), where Nwindow is the number of windows usually required to obtain an acceptable

result in one dimension. Moreover, as the dimensionality of the problem increases, the sampling

area becomes larger, which necessitates even longer simulation per sampling area, further increasing

total computational cost. Therefore, with limited computational resources, windowed simulations

for multidimensional problems are inherently expensive and takes very long time even for classical

MD simulations.

In the previous decade, numbers of methods were introduced to selectively apply biases

along the collective variable spaces in order to force the exploration away from free energy minima.

Adaptive Biasing Force (ABF) [87, 88] makes use of sampling local free energy gradients and use

it as the biasing force that pushes the dynamics away from the minima. Temperature-Accelerated

Molecular Dynamics (TAMD) [89, 90] manipulates the dynamics in the collective variable space

to make it faster than the actual coordinate space, and let the faster dynamics of the collective

variable space pull the actual dynamics away from the minima, and Metadynamics (MTD) [91,

92] periodically adds repulsive bias potential along the visited regions in the collective variable
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space, thereby enhancing the rare event sampling frequency. These three methods can also be used

to directly approximate the free energy in the collective variable space at very long time limit.

While using these methods to compute the free energy sounds attractive, the main drawback is

that the free energy can only be recovered at very long time limit. The work of Raiteri et al. which

performed a similar simulation reported a total simulation time of 250 ns for their alkali earth

carbonate simulations to obtain acceptable two-dimensional free energy landscapes. [26] Moreover,

methods such as MTD or TAMD requires parameters adjustment, where a bad set of parameters

may never give a good answer to the problems. Nevertheless, these methods show potential uses as

tools to quickly explore the CV space, as shown in the work by Maragliano and Vanden-Eijnden,

[90] as well as Cuendet and Tuckerman. [49]

In order to efficiently compute free energy landscapes, the key challenges of the methods

mentioned in the above paragraphs, such as the need to compute local probability densities or

the mean forces in sampling cases or the need to let the dynamics asymtotically converge to the

free energy at very long time presented by the adaptive methods, need to be addressed. Recently,

machine learning has become a buzzword in a scientific and engineering community due to active

fundings by large enterprises with huge computational resources driven by the need to predict

underlying patterns in large amount of available data. In chemistry, it has been used in various

applications; for example, approximating ab initio energies, deriving newer force field models, [93,

94] or structural characterization of biomolecules or advanced materials. [95–97] In free energy

computation, Gaussian Process Regression (GPR) and Artificial Neural Networks (ANN) have

successfully been applied for various polypeptide computational models with up to 8 dimensions

using dihedral angles as the collective variables. [51, 52, 98] However, GPR has been around

for a significantly longer time, and it has recently been used in a one-dimensional free energy

computation from an expensive AIMD simulation as the first example beyond polypeptide [99]
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computational models. Nevertheless, its recent application in free energy computations implies

that there is no established simulation protocols to be based on, especially for multidimensional

problems in chemically reactive systems.

GPR addresses the key challenges mentioned earlier by entirely eliminating the need to

obtain statistical averages for free energy estimators by assuming statistical noises associated with

each estimator is part of the procedure, and the conditional expectation of the free energy based

on the available information of the estimators and the explored CV can be computed from the

instantaneous force free energy estimators without the need to perform simulations for very long

time, provided that the CV space of interest is adequately explored. Recent work by Mones et al.

[51] shows that the fastest exploration of the CV space can be achieved by using well-tempered

metadynamics (WT-MTD) [100–102] simulation with relatively long Gaussian deposition rate to

ensure the quasi-equilibrium condition and a high bias factor to quickly encourage the system to

quickly overcome the free energy barriers, which has an effect of giving a noisy reconstruction of the

free energy landscape. As a result, one can construct multidimensional free energy landscapes with

much less efforts due to the elimination of the need to sample ND
window areas in the collective variable

space and the entire simulation was transformed into a single biased simulation that seeks to explore

the collective variable space as quickly as possible, while a reconstruction of multidimensional free

energy surface was fitted according to the maximum likelihood of the non-averaged instantaneous

forces in the collective variable space as free energy estimators to obtain the best fit to the simulation

data. In the next section, the theoretical aspect of GPR will be discussed in detail, as well as

our proposed protocol for effective free energy reconstruction with GPR while ensuring a good

agreement with traditional free energy computation methods while keeping the computational cost

minimal. With our protocol, there are huge future implications for any kinds of computationally

expensive problems.
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4.2 Gaussian Process Regression (GPR)

4.2.1 Training Data as a Gaussian Process

Gaussian process regression (GPR) is a class of machine learning algorithms, where one aims

to make a prediction of the relationship between one set of input values to another set of output

values based on the provided training data D, which is a set of data obtained from observations

or experimental evidence. A set of the training data D with N training examples is written as

D = {(xi, yi)}Ni=1, where xi is a 1 × D row vector called a feature vector containing D features.

The main objective of any machine learning algorithm is to recover an underlying relationship

f : RD → R that maps X = [x1 x2 . . . xN ]> to y = [y1 y2 . . . yN ]>. The predicted form of f would

then be used to make a prediction in a test set with NT entries T = {(x∗i , y∗i )}NTi=1 with an assertion

that for any x∗i , y
∗
i ∈ T , each value of y∗i relates to f(x∗i ). Among the available machine learning

algorithms, GPR is a subset of a class of algorithms called Bayesian Concept Learning [62], where

the main concept is to compute a conditional expectation of f given a set of D based on Bayesian

inference. The key idea behind GPR lies in the model that is used to interpret D, where each yi is

not a perfect mapping of xi by f , and each mapping f(xi) differs from each yi by εi,

yi = f(xi) + εi (4.5)

Equation 4.5; therefore, represents the imperfection in the data collection procedures or

inherent uncertainties in any algorithms or experiments, because each εi can be thought of as a

statistical error of the i-th mapping of f . In GPR, the deviation εi is assumed to have a normal

distribution,
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εi ∼ N (0, σ2
εi) (4.6)

To determine the underlying f that maps X to y, let us define a vector f where each

element represents the evaluation of some arbitrary function f that we hope to represent the actual

relationship we are looking for each xi,

f = [f(x1) f(x2) . . . f(xN )]> (4.7)

If the elements of f in equation 4.7 have a joint Gaussian distribution, then the function f

that gives rise to the aforementioned property is said to be a Gaussian Process,

f ∼ GP (m(·), k(·, ·)) (4.8)

4.2.2 The Covariance Matrix

Equation 4.8 states that f is a Gaussian Process with mean m and covariance k. For the

purpose of approximating the conditional expectation of f , the mean of this Gaussian Process is

set to zero. The covariance of the Gaussian Process can be approximated by a kernel where the

key property of the covariance represents the correlation between two points in the feature space xi

and xj . If the two points are identical, then the correlation should be at its maximum. If the two

points are very far apart, then the correlation is expected to decay towards zero, or no correlations

at all. To satisfy this property, the most common choice of the covariance approximation kernel is

the squared exponential kernel KSE , which is a ND ×ND matrix whose elements are defined as
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follow,

kij = K(xi,xj) = χ2 exp

−1

2

D∑
a=1

(
x

(a)
i − x

(a)
j

)2

(λ(a))
2

 (4.9)

where χ represents the overall deviation of the function value in the region of interest, and λ(a)

is called the length scale in the a-th dimension. For a training data with D dimensions, there

are D values of the length scales, each of which controls how abrupt the correlation between the

two points in the feature space should be in a specific dimension. Thus, if a dimension has a

small value of λ(a), it means that the value of the function should vary more rapidly in that

dimension, and if a dimension has a large value of λ(a), it means that the value of the function

would vary slowly in that dimension. Equations 4.5 and 4.9 are, therefore, key ingredients to

the GPR modeling of the test set, and the success of such modeling would require a good set

of 2D + 1 parameters containing D values of σ2
εi , D values of λ(a), and one value for χ. These

parameters are called the hyperparameters in machine learning literatures, and an optimum set of

hyperparameters should result in a maximum likelihood p(D|y∗,X∗) that represents the best fit

to the training data. However, Stecher et al. suggested that hyperparameters optimization is a

computationally expensive task, but one could make a good choice of the hyperparameters from

the a priori knowledge of our training data. Moreover, in the application for free energy surface

reconstruction, the range of good hyperparameters can vary at a large range while does not result

in a significantly different reconstructed free energy landscape. [52]
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4.2.3 Inference of the Conditional Expectation

Due to the fact that f satisfies the conditions of the Gaussian Process and elements of f

from equation 4.7 have a joint Gaussian distribution, if we apply the same function f on the inputs

of the test set T , we would have a vector f∗ =
[
f(x∗1) f(x∗2) . . . f(x∗NT )

]>
whose elements also have

a joint Gaussian distribution. Therefore, [103]

 f

f∗


∣∣∣∣∣∣∣∣X,X

∗ ∼ N

0,

K(X,X) K(X,X∗)

K(X∗,X) K(X∗,X∗)


 (4.10)

Let ε = [ε1 ε2 . . . εN ]>, the vectorized form of equation 4.5 can be written as follow,

y = f + ε

y∗ = f∗ + ε∗
(4.11)

Since we have defined that each element of f and f∗ is a Gaussian random variable, and the

elements of ε and ε∗ is also a Gaussian random variable as well, each element of y and y∗ must also

be a Gaussian random variable. Hence, similar to equation 4.10, we could also express the joint

Gaussian distribution between y and y∗ as,

 y

y∗


∣∣∣∣∣∣∣∣X,X

∗ ∼ N

0,

K(X,X) + Σ2I K(X,X∗)

K(X,X) K(X∗,X∗) + (Σ∗)2I


 (4.12)

where Σ2I and (Σ∗)2I are the diagonal matrices of the individual variance of each point in the

training data and the test data, respectively. Since both y and y∗ have joint Gaussian distribution,
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we could compute the conditional expectation of y∗ in the test set using the rules of the joint

Gaussian distribution of two Gaussian random variables, [104]

E [y∗|y,X,X∗] = K(X∗,X)
[
K(X,X) + Σ2I

]−1
y (4.13)

4.2.4 Learning from Derivative Training Data

Besides being able to predict the expectation of the functions in the test set from the training

data from the function itself, GPR is also able to predict the expectation of the functions in the test

set from the training data of its partial derivatives with respect to each of the individual features

while also including the inherent statistical errors in all dimensions. As the derivative of Gaussian

Process is still a Gaussian Process, we could write a vector f ′ = [f ′(x1) f ′(x2) . . . f ′(xNT )]> such

that each element of f ′ is also a Gaussian random variable. Thus, it is possible to substitute f in

equation 4.10 with f ′,

f ′
f∗


∣∣∣∣∣∣∣∣X,X

∗ ∼ N

0,

Kf ′f ′(X,X) Kf ′f (X,X∗)

Kff ′(X
∗,X) Kff (X∗,X∗)


 (4.14)

where Kff (xi,xj) = K(xi,xj) from equation 4.9, and

Kf ′f ′(xi,xj) = ∇i∇jKff (xi,xj)

Kff ′(x
∗
i ,xj) = ∇jKff (x∗i ,xj)

(4.15)
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Therefore, for a noisy derivative training data y′ = [y′1 y
′
2 . . . y

′
N ]> and y′i =

[
y′i,1 y

′
i,2 . . . y

′
i,D

]
,

the conditional expectation of y∗ given the training data can be computed in a similar fashion to

equation 4.13,

E
[
y∗|y′,X,X∗

]
= Kff ′(X

∗,X)
[
Kf ′f ′(X,X) + (Σ′)2I

]−1
y′ (4.16)

where (Σ′)2 is the associated Gaussian variance of the derivative training data.

4.3 GPR and Free Energy Computation

4.3.1 Fast Exploration of the Collective Variable Space

Since the inherent statistical noises of the free energy estimators are already included in the

formulation of GPR, we do not need to perform expensive multidimensional windowed simulations

to minimize the statistical noise as in any regular US or TI variants. As mentioned earlier, the

free energy estimator can either be local probability density pi(ξ1, ξ2, . . . , ξD) or the mean force

fi(ξj) = −
〈
∇ξjV

〉
. However, GPR already took care of the noise in its algorithm; therefore, in

principle, the mean force does not need to be averaged despite an individual expression of the

force along a particular collective variable would imply a relatively large amount of noise, and the

unbiased instantaneous forces (UIFs), φ can thus be used as a noisy free energy estimator for GPR,

φ(ξj) = −∇ξjV (ξ1, ξ2, . . . , ξD) (4.17)

Removing the need to perform windowed simulations is the main source of the improved
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efficiency for using GPR to reconstruct free energy landscapes. Consequently, in order to get the

free energy landscape that covers a specific area in the collective variable space, it is logical to

devise a strategy that would allow us to achieve fastest sampling of the configuration space to save

the simulation efforts. Cuendet and Tuckerman [49] suggested that MTD, TAMD, or adiabatic free

energy dynamics can be used for guiding the exploration of the configuration space, and Mones et

al. [51] suggested that using well-tempered metadynamics (WT-MTD), a variant of metadynamics,

resulted in the fastest exploration of the regions of interest in their two and four-dimensional free

energy landscapes of alanine peptides.

4.3.2 Well-Tempered Metadynamics as an Exploration Tool

To understand why WT-MTD allows a speedy exploration of the configuration space, it

is important to first understand the underlying theoretical aspects behind regular metadynamics.

Originally proposed by Laio and Parrinello in 2002, regular metadynamics adds repulsive Gaussians

VMTD of the following form over a long period of simulation, [91]

VMTD(ξ1, ξ2, . . . , ξD, t) =
∑

t=0,∆t, 2∆t, ..., NG∆t

h exp

(
−1

2

D∑
i=1

(ξi − ξi(t))2

σ2
i

)
(4.18)

where h represents the height of each Gaussian, which is constant over time, NG is the number of

deposited Gaussians, and σ2
i is the width of the Gaussian in the i-th dimension. If more Gaussians

are deposited in a metadynamics simulation, the barrier would become more accessible due to less

difference in the potential energy. According to equation 4.1, this would mean that the probability

of accessing the barrier would exponentially increase, and if any metadynamics simulations are
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performed for a long period of time, the deposited Gaussians would converge to the negative value

of the free energy.

VMTD(ξ1, ξ2, . . . , ξD, t→∞) = −A(ξ1, ξ2, . . . , ξD) + C (4.19)

The rate of the convergence of metadynamics depend on our choice of the parameters h

and σ2
i . While σ2

i governs the rate of exploration by dictating how wide of the area in its collective

space domain that the Gaussians shall cover, h governs how high the Gaussians would be. If h

is not chosen carefully, then it is possible that the converged VMTD may become noisy and not

smooth. In order to ameliorate this issue, well-tempered metadynamics (WT-MTD) was introduced

by Barducci et al. to ensure that over time, h would steadily be decreasing until it asymtotically

converges to zero. The bias potential form of WT-MTD takes a similar form with equation 4.18,

with a slight difference.

VWT−MTD(ξ1, ξ2, . . . , ξD, t) =
∑

t=0,∆t, 2∆t, ..., NG∆t

h(t) exp

(
−1

2

D∑
i=1

(ξi − ξi(t))2

σ2
i

)
(4.20)

Instead of being a constant, the Gaussian height in WT-MTD simulations, h(t), decays over

time according to the following equation,

h(t) ∝ exp

(
−VWT−MTD(ξ1, ξ2, . . . , ξD, t)

kB∆T

)
(4.21)

The exponential term in equation 4.21 tells us that as the Gaussians are deposited, h(t)
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would be modified by the exponential factor of the negative value of all the deposited Gaussians

at that time. Hence, as t → ∞, h(t) would asymptotically converge to zero, which indicates the

point where the deposited Gaussians are appropriately smoothened, eliminating the noises that

may present from using the regular variant of metadynamics. The rate at which h(t) decays over

time is governed by an additional parameter, ∆T , which is called the well-tempered temperature.

In WT-MTD simulations, ∆T can be thought of as a high temperature value that adds up to the

regular, thermostatted simulation temperature that modifies the probability of finding a particular

configuration in equation 4.1 to the following,

p(1→ ∗) ∝ e−β∗∆At→∗ (4.22)

where β∗ = [kB(T + ∆T )]−1. This means when ∆T is high, the probability of sampling the rare

event is significantly greater, while when ∆T → 0, the WT-MTD simulation would converge to a

normal MD simulation in a canonical ensemble. A value that is commonly used in literature to

indicate the strength of the WT-MTD bias is called a bias factor, γ, which is defined as follow,

[105]

γ =
T + ∆T

T
(4.23)

However, the drawback of WT-MTD is that the Gaussians do not converge to the free

energy as in regular metadynamics. Rather, it converges to a factor of the free energy, and the

factor is determined by the choice of ∆T , or γ.
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VWT−MTD(ξ1, ξ2, . . . , ξD, t→∞) = − ∆T

T + ∆T
A(ξ1, ξ2, . . . , ξD) + C

= −γ − 1

γ
A(ξ1, ξ2, . . . , ξD) + C

(4.24)

Nevertheless, WT-MTD still retains the same advantage as regular metadynamics that

the Gaussian deposition is implicitly guided by the original probability of finding a configuration

(equation 4.1). Thus, the Gaussian deposition would still be aimed more toward any regions with

deep free energy minima, and will still leveling out those deep wells so that the simulation would

move across the free energy barriers more frequently. The exploration is further aided by our

choice of γ. For the purpose of the free energy computations, the accepted range of γ for WT-MTD

simulation is between 10 to 15. Using a significantly higher γ than this range would still result in

a noisy reconstruction of the free energy landscape, an issue that usually presents with the regular

variant of metadynamics. However, using a very high value of γ has a benefit for exploration of

the configuration space of any systems with deep minima and high free energy barriers, because

the exploration can be done far more quickly while the Gaussian heights would also be partially

decayed. Mones et al. reported their exploration of the free energy landscapes of alanine peptides

with a value of γ = 33.3 (T = 300 K and ∆T = 10, 000 K), which is unsuitable for recovering the

free energy, but hugely aids the exploration efforts. [51]

4.3.3 Computation of the Unbiased Instantaneous Forces (UIFs) from a Biased

WT-MTD Simulation

We have mentioned earlier in section 4.1 that a normal, unbiased MD simulation does

not sample the rare event regions of the free energy landscape very well due to low probability.
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Therefore, we would usually get a good information in the free energy basins, but the free energy

of the rare event regions obtained from unbiased MD simulations tend to be noisy due to poor

sampling. In order to obtain enough information in the rare event regions without performing

windowed simulations, guided sampling in the collective variable spaces can be done efficiently with

WT-MTD simulations, where an additive biasing potential VWT−MTD(ξ1, ξ2, . . . , ξD, t) is added to

the Hamiltonian over time.

For any variants of metadynamics, the forms of the potentials similar to equations 4.18 and

4.20 are added to the normal potential that is the part of the original Hamiltonian of the system.

Therefore, the simulation with these added potential are biased, and the biased total potential for

a WT-MTD simulation would have the following form,

Vbiased(ξ1, ξ2, . . . , ξD, t) = V (ξ1, ξ2, . . . , ξD) + VWT−MTD(ξ1, ξ2, . . . , ξD, t) (4.25)

where V (ξ1, ξ2, . . . , ξD) is the potential that is a part of the original Hamiltonian projected onto

the collective variable space, and is invariant over time. VWT−MTD is defined in equation 4.20.

Equation 4.17 outlines the expression of the UIF, which is the negative of the gradient of the

original potential V (ξ1, ξ2, . . . , ξD). By taking the gradients of equation 4.25, we can immediately

see that

−∇ξjVbiased = −∇ξjV −∇ξjVWT−MTD (4.26)

Let φbiased(ξj) = −∇ξjVbiased and φWT−MTD(ξj) = −∇ξjVWT−MTD, then equation 4.26

becomes,
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φbiased(ξj) = φ(ξj) + φWT−MTD(ξj)

φ(ξj) = φbiased(ξj)− φWT−MTD(ξj)

(4.27)

Since the computation of the free energy requires φ(ξj) as a free energy estimator for the ξj

dimension, we need to compute φbiased(ξj) and φWT−MTD(ξj) from a biased WT-MTD simulation.

φbiased(ξj) is computed from Vbiased by a transformation of Vbiased from a Cartesian coordinate

system usually common in frequently used MD software packages into the collective variable space

using the following equation, [106]

fbiased = −(G−1
W W) · ∇XV (X) + β−1∇X · (G−1

W W) (4.28)

where fbiased = [φbiased(ξ1)φbiased(ξ2) . . . φbiased(ξD)]> is a D×1 vector of the biased instantaneous

forces (BIFs), G−1
W = W∇Xξ is the generalized Gram matrix, ∇Xξ is the Jacobian of the collective

variables, which is a 3Natoms×D matrix, and W = ∇Xξ
>µ−1, where µ−1 = δijm

−1
i is a 3Natoms×

3Natoms matrix whose diagonal elements represent masses of each atom in the system. However, one

could immediately see that the second term of equation 4.28 requires a computation of a Hessian

matrix, which can be expensive in case a collective variable involves many atoms. Nevertheless,

Darve et al. has pointed out the relationship between equation 4.28 and the average of the potentials

gradient. [88] Therefore, equation 4.28 can be simplified as follow,

fbiased =
d

dt
(W∇Xξ)

−1dξ

dt
(4.29)

Equation 4.29 can be computed numerically provided that the biased trajectory is evenly
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spaced by a small enough timestep ∆t to minimize the numerical error. Therefore, a vector

f = [φ(ξ1)φ(ξ2) . . . φ(ξD)]> of the UIFs can be computed by subtracting fbiased with fWT−MTD =

[φWT−MTD(ξ1)φWT−MTD(ξ2) . . . φWT−MTD(ξD)]>, which could be easily computed by simply tak-

ing the gradient of VWT−MTD, already expressed in terms of the collective variables of interests.

fWT−MTD = −∇ξVWT−MTD (4.30)

With f determined, a training set of the collective variable points and the unbiased instan-

taneous forces can be built for GPR reconstruction of a D-dimensional free energy landscape.

4.4 Validation of GPR Free Energy Surfaces

The previous sections have listed all the theoretical requirements for free energy landscape

reconstruction for any D-dimensional problems using GPR. However, in order to ensure that the

GPR free energy landscapes are sound, the errors of the GPR free energy surfaces are needed to be

computed quantitatively. In fact, as part of the characteristic joint distribution between vectors f ′

and f in equation 4.16, it is also possible to compute the variance of all the points in the test data.

[104] However, since the computation of variance involves the (Σ′)2I matrix of the training data’s

variance, it is not a representative variance of the actual free energy landscape computed from a

more traditional method with minimum statistical noises of the free energy estimators like US or

TI.

In order to validate the GPR free energy landscape, GPR results can be compared with a

reference surface computed using methods that are more widely accepted among the community,
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which implies that the best choice of a reference surface must come from windowed simulations.

Although using a reference surface from windowed simulation is not usually a problem in a one-

dimensional case, it becomes more problematic for the two-dimensional space and beyond due to

the scaling issue, which defeats the main purpose of needing a method for free energy computation

that is fast and resource-efficient.

As Mones et al. have highlighted that the one-dimensional windowed simulations are compu-

tationally cheap enough to perform, one could easily get D one-dimensional free energy landscapes

for each individual dimension in our problem. A simple thought experiment would validate that

it is more beneficial to perform D one-dimensional windowed simulation than to perform one D-

dimensional windowed simulation if D > 1. Let N1D be the number of windows required for a

good one-dimensional free energy landscape from windowed simulations, for a D-dimensional prob-

lem, we would need to run a reference calculation that involve only DN1D windows, whereas one

D-dimensional reference free energy landscape computed using windowed simulation would require

O(ND
1D) windows. While this may not be a big problem for classical MD simulations, the scaling

issue can be a big consideration once expensive simulation protocols such as AIMD are involved.

4.4.1 Bounding 1D Umbrella Sampling Errors with EMUS

Although umbrella sampling (US) simulations have existed for a long time since the original

proposal by Torrie and Valleau, most of the work of free energy computations using US rarely

published the errors of their surfaces. [18, 50] In order to get the free energy out of the windowed

simulation, the most commonly used method among researchers is the Weighted-Histogram Analysis

Method (WHAM). [107] When the error of the US free energy landscape constructed from WHAM is

needed, a method called Monte Carlo bootstraping analysis is needed, which involves the resampling
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from generated fake data. [108] This causes a very long time to sample when the resampling size

is large.

There have also been recent developments in the US simulation as well, and the recent work

by Thiede et al. proposed a reformulation of the free energy computation from US data into an

eigenproblem, which they called the Eigenvector Method for Umbrella Sampling (EMUS). [109]

They also claimed that EMUS also allowed a computation of the asymptotic variance of the free

energy landscape without the need to resample any fake data.

Key to this theory is the expression of the i-th normalization constant, zi, as a vector. The

definition of zi is the following,

zi =

∫
V b
i (x)π(x)dx∑Nwindow

i=1

∫
V b
i (x)π(x)dx

(4.31)

where V b
i (x) is the i-th biased potential in each window, and π(x) is the biased probability density

of finding the configuration x. The free energy in each window is, thus, related to i as,

A = −β−1 ln zi (4.32)

It then can be show that zi can also be written as a left eigenvector z of the operator F,

where

zj =

Nwindow∑
i=1

ziFij

Fij =

〈
V b
j∑Nwindow

k=1 V b
j

〉
i

(4.33)
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Equation 4.33 indicates that z can be solved as an eigenvalue problem, and the average

free energy for each window can then be computed using the knowledge of z. Not only that, the

information of z and F can also be used to estimate the asymptotic variance of EMUS as well

according to the central limit theorem. Therefore, for any US simulations, one can computed the

free energy along with its associated asymptotic variance using EMUS, which perfectly serves as

good references for a D-dimensional free energy landscape computed using GPR.

4.4.2 Projection of a Two-dimensional Free Energy Landscape into One-dimen-

sional Free Energy Landscape

If our D-dimensional free energy landscape is quantitatively sound, then its projection into

each individual dimension needs to quantitatively agree with the results we obtained from one-

dimensional US simulations. In a two-dimensional scenario, the projection of the free energy into

each individual variable is relatively easy. Define a free energy as a function of two collective

variables A(ξ1, ξ2). Therefore, we can write A(ξ1, ξ2) in terms of the marginal probability density

p(ξ1, ξ2),

A(ξ1, ξ2) = −β−1 ln p(ξ1, ξ2)

= −β−1 ln [p(ξ1)p(ξ2|ξ1)]

= −β−1 ln
[
e(−βA(ξ1,ξ2))p(ξ2|ξ1)

]
(4.34)

The conditional probability p(ξ2|ξ1) in the canonical ensemble can be written as,
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p(ξ2|ξ1) =
e−βA(ξ1,ξ2)∫
e−βA(ξ1,ξ2)dξ2

(4.35)

By plugging the expression for p(ξ2|ξ1) from equation 4.35 into equation 4.34, we can now

express A(ξ1) by integrating out the elements in the ξ2 dimension according to the following equa-

tion,

A(ξ1) = −β−1 ln

∫
e−βA(ξ1,ξ2)dξ2 (4.36)

We could also repeat the similar procedures in equations 4.34 and 4.35 to get A(ξ2), which

is now written as,

A(ξ2) = −β−1 ln

∫
e−βA(ξ1,ξ2)dξ1 (4.37)

Hence, both A(ξ1) and A(ξ2) from equations 4.36 and 4.37 can be used to compared with

the US results to determine the quantitative agreement of GPR with respect to reference US free

energy surfaces.

4.5 Summary

Windowed simulation techniques for free energy computation such as Umbrella Sampling

(US) or Thermodynamic Integration (TI) suffered from the performance issue. While any one-

dimensional problem is relatively inexpensive, this class of free energy computation methods does

not scale very well when the problem has higher dimensionality, which is known as the curse of

77



the dimensionality. This issue discouraged many potential great simulations for chemical systems

that require more than one variable to describe the thermodynamics behaviors of the process due

to prohibitively expensive computational cost for larger systems such as biomolecules, or expensive

simulation schemes such as ab initio molecular dynamics (AIMD) simulations. The high cost of

this class of simulation arose from the fact that one needs to perform enough simulations in each

window to obtain good enough free energy estimators with least amount of statistical errors as

possible, especially around the rare event regions.

Recent advances has shown that the curse of the dimensionality can be mitigated by per-

forming a fast exploration of the configurational space for a computation of biased free energy

estimators, then one can unbias these estimators given that the bias information is in a math-

ematically convenient form, and then use a machine learning method to learn the free energy

landscape from the information of the unbiased free energy estimators. In this regard, we used

well-tempered metadynamics (WT-MTD) simulations to quickly sweep the configurational space

and then use Gaussian Process Regression (GPR) to reconstruct smooth multidimensional free

energy landscapes. The benefits of having a smooth multidimensional free energy landscape are

immense, as the thermodynamical properties of the systems of interested can be projected into

more than one configurational variable, allowing us to deduce the metastable states of the system

as well as the minimum free energy pathway that links two metastable states of interest. The

smoothness of the free energy landscape also assists algorithms such as nudged elastic band (NEB)

or zero temperature string method (ZTS) through better computations of the free energy gradients.

The success of using GPR to reconstruct multidimensional free energy landscapes depends

on an a priori information of the system. Thus, windowed simulations for each dimension are

needed as references for comparing each individual one-dimensional GPR reconstruction to obtain
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optimum hyperparameters in each dimension through the mean of minimizing the error between

the GPR-constructed free energy with respect to those obtained from windowed simulations. Per-

forming individual one-dimensional windowed simulations are also much cheaper than performing

one multidimensional windowed simulations, and the efficiency gains become much more evident

as the problem contains more dimensions. As WT-MTD and GPR simulations usually cost less

than windowed simulations even in one-dimension, this scheme offers a significant speedup that

we sought after. After optimum hyperparameters in each dimension are obtained, they are used

to construct the multidimensional free energy landscape with GPR from free energy estimators

obtained from a multidimensional WT-MTD simulation. The entire scheme for multidimensional

computation of free energy landscapes with WT-MTD and GPR are shown in figures 4.1 and 4.2.

One problem of using windowed simulations to compute the free energy landscape is also

its high cost of error computation; thus, error analysis of multidimensional free energy landscapes

from windowed simulations are rarely seen. In order to get around this issue, we proposed that

a multidimensional free energy landscape be projected into individual one-dimensional free energy

landscapes for each corresponding variable, where the Eigenvector Method for Umbrella Sampling

(EMUS) can compute the asymptotic variance of the free energy landscape. Therefore, the error

of a multidimensional free energy landscape obtained from GPR can be both qualitatively and

quantitatively bound with trusted results from windowed simulations with minimal efforts without

the need to perform expensive multidimensional reference calculations from windowed simulations.

Chapter 4, in full, is a part of the material titled “Efficient Two-dimensional Ion Pairing Free

Energy Landscape Calculation with Gaussian Process Regression” by Pornpatcharapong, Wasut,

and Weare, John H. The material is currently being prepared for submission. The dissertation

author is the primary author of this material
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CHAPTER 5

GPR Computation of Two-dimensional Free Energy Landscapes of NaCl in

Aqueous Solutions

5.1 Introduction

Chapters 2 and 3 took advantages of the Markovian properties of MD simulations to in-

terpret many aspects of the dynamical information of a chemical reaction; however, as shown in

chapter 3, in order to get a full mechanistic picture, a good free energy landscape greatly assists the

analysis of the metastable states and the kinetic models obtained from MSM. However, obtaining a

free energy landscape with a good quantitative result in the barrier region is no easy task, as that

implies adequate sampling of the rare event regions. However, the free energy computation method

used in chapter 3, where the histograms of the distribution in the variable space obtained directly

from unbiased simulations are often noisy and lack adequate resolution. Moreover, the relative free

energy in the barrier region computed using this method have very high statistical uncertainties,

since the MD trajectory would rarely visit this region. In some cases, the histogram registers zero

visit in some particular bin, causing a gap in the free energy data.

A good free energy landscape with acceptable statistical uncertainties would greatly enhance

the results from TICA and MSM by helping us calculating a good rate constant across the free

energy barrier, thereby giving a complete information of the mechanisms and the rate of any

chemical reactions. While during earlier attempts, the free energy landscapes were often computed

in the one–dimensional space due to relative simplicity, as we have demonstrated in chapter 3,

it is possible for a chemical reaction to contain more than one relevant reaction coordinates to

adequately describe the reaction. Moreover, each reaction coordinate may be described by more
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than one dominant collective variables. Consequently, an efficient and quantitively robust method

to compute multidimensional free energy surfaces is highly beneficial.

This chapter presents an application of Gaussian Process Regression (GPR) for a calcula-

tion of a two–dimensional free energy landscapes for the reaction in NaCl + 495 H2O system that

we studied in chapter 3. Here, we propose a protocol for multidimensional free energy surfaces

calculation by combining the efficiency of fast sampling with Well-Tempered Metadynamics (WT-

MTD) simulation with the GPR reconstruction of the free energy landscapes from noisy free energy

estimators to recreate smooth results. The quantitative agreement of the GPR–constructed free en-

ergy landscapes is then verified by the Eigenvector Method for Umbrella Sampling (EMUS), where

a statistical error of the free energy landscapes in each dimension can be easily computed using

one–dimensional umbrella sampling (US) simulations. The error of a two–dimensional free energy

landscape can thus be compared efficiently with reference free energy landscapes in each dimension

through the projection of the two–dimensional result into a one–dimensional result without the

need to perform an expensive US reference simulation in two dimensions.

5.2 Simulation Details

5.2.1 General Settings

The system of NaCl + 495 H2O was initialized in the same fashion as done in chapter 3,

where one Na+ ion, one Cl– ion, and 495 water molecules were initialized in a 30.0 Å cubic box. The

ions were placed in the box first, then water molecules are solvated in the box using PACKMOL.

[71] The equilibrium box size was determined using a 960 ps simulation in the isothermalisobaric

ensemble using Nosé–Hoover Langevin piston [72, 73] to control the pressure at 1.0 atm. The
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system was then equilibrated under the canonical ensemble for 30.0 ns using Langevin dynamics

with a damping constant of 5.0 ps−1 at 300 K. The simulations were performed with NAMD [74]

with a timestep of 0.75 fs in order to minimize the error of numerical time derivatives computation

in equation 4.29. Water molecules in this simulation are treated as rigid with TIP3P model [75],

and the force field which describes the interactions between the ions and water molecules is taken

from the parameters from Joung and Cheatam. [76] The electrostatic interactions in the simulation

were calculated using Particle Mesh Ewald [77], and periodic boundary conditions were enforced

for the entire simulation.

The biased simulations were then calculated using well-tempered metadynamics (WT-

MTD) simulations in one and two dimensions under the canonical ensemble with the same basic

simulation settings as above. The WT-MTD simulation employs γ = 24.33, corresponding to the

well-tempered temperature parameter ∆T of 7,000 K. The collective variables for the WT-MTD

simulation are r+− and n
(1)
+ , where our choice of both variables will be discussed in more details

in the section below. The widths of the WT-MTD Gaussians in each dimension are σr = 0.063 Å,

and σn = 0.063, respectively. The initial Gaussian height parameter, h, was set to 0.4 kcal/mol,

and the WT-MTD Gaussians are deposited at every 1,000 steps, with the deposition rate gradu-

ally adjusted in case the previous batch of the simulation became too unstable. A half-harmonic

potential is applied when the simulation goes out of the set collective variables boundaries, which

are set at 2.2 and 7.0 Å for the r+− coordinate, and at 2.5 and 6.5 for the n
(1)
+ coordinate. The

force constants for the half–harmonic potentials were 5.0 kcal/mol · Å2
in the r+− coordinate, and

5.0 kcal/mol in the n
(1)
+ coordinate to slightly encourage more sampling in the desired region in the

collective variable space.

The biased instantaneous forces (BIF) data collection were then collected from the WT-
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MTD simulations at every 100th steps of the WT-MTD simulation, from where equation 4.29 was

used to transform the raw information in the Cartesian coordinate system of the MD trajectories

into the BIFs in the desired collective variable space, where the Jacobian of transformation was

computed analytically from the definitions of the collective variables in 5.2.2. For each training

set, we aim to collect from 500,000 to 1,000,000 training data of UIFs, which were computed by

subtracting the BIFs with the biased forces in the collective variable space from the knowledge of

deposited Gaussians in the WT-MTD simulations. The GPR free energy reconstruction process

employs data clustering using k-means / k-means++ with 200 clusters for the one-dimensional

problem, and 1500 clusters for the two-dimensional problem. Trajectory processing was done using

MDTraj [78], while the GPR was performed using the code provided in the work of Mones et al.

[51] and the Jacobian matrices were computed using a code written by our group.

Quantitative analysis of the GPR results were compared against onedimensional free energy

landscapes in each individual dimension using Eigenvector Method for Umbrella Sampling (EMUS)

[109], where the US simulations were performed in windows with 0.1 Å width in the r+− dimensions,

and 0.1 in the n
(1)
+ dimension. The collective variable range for each onedimensional US simulation

was set at between 2.2 to 7.0 Å in the r+− dimension, and between 2.5 to 6.5 in the n
(1)
+ dimension.

For proper comparison between the GPR and the US results, any UIFs for GPR calculation beyond

the collective variable ranges used in US simulations are discarded in order to ensure that the

resulting free energy landscapes come from the same probability measure for both WT-MTD /

GPR set of results and for the US set of results. The US simulation settings were also similar with

the canonical ensemble equilibration, except that for each simulation window, the simulations were

performed for a total time of 3.0 ns with harmonic biased potential present in each window. The

force constant for the harmonic potential was 750.0 kcal/mol · Å2
in the r+− dimension, and 750.0

kcal/mol in the n
(1)
+ dimension. The EMUS code was taken from the work of Thiede et al., where
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the one-dimensional free energy landscapes as well as their associated asymptotic deviations were

obtained.

5.2.2 Collective Variables

As the purpose of this chapter intends to demonstrate the usage of GPR for multidimen-

sional free energy landscapes of an actual chemical process, we opt to use a simple set of collective

variables for simplicity in calculation in order to gain more expertise in the relatively unknown

area. Our choice is, therefore, set for the interionic separation (r+−) and the number of water

molecules in the first solvation shell of the cation (n
(1)
+ ). r+− was chosen to model the association

between the ions, while n
(1)
+ was chosen to model the Eigen–Wilkins type of a ligand exchange

problem. Although chapter 3 has proved that the n
(1)
+ collective variable does not play a key role

in this process, we made this choice here because the definition of n
(1)
+ does not involve picking a

maximum between two functions for each water molecule, making the computation of the Jacobian

matrix (∇Xξ) for GPR more streamlined for our purposes.

The definition of r+− was directly taken from equation 3.1. However, the definition of n
(1)
+

is different from that defined in chapter 3. Our definition of n
(1)
+ is the following,

n
(1)
+ =

Nwat∑
j=1

1−
(∥∥∥rNa−Oj

∥∥∥
r0

)n

1−
(∥∥∥rNa−Oj

∥∥∥
r0

)m (5.1)

where r0 = 3.20 Å, n and m are positive integers where n � m. In this work, we chose n = 8

and m = 36. Our choice of n and m; however, will not result in a good representation of the step
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function, but this choice is chosen because it avoids the cusp in the distribution of the n
(1)
+ variable.

Had our choice of n and m represents the step function that counts the coordination number exactly,

the distribution of n
(1)
+ would have a cusp at every integer value. According to equations 4.15 and

4.16 in chapter 4, GPR reconstructs the free energy landscape using a Gaussian basis where every

point in the space is infinitely smooth and differentiable, meaning that we can take the derivative

of this function to any order. However, with the existence of the cusp in the function, the points

around the cusp are no longer smooth, and the Gaussian basis functions would not be suitable in

this scenario. Nevertheless, the free energy landscape with modified n
(1)
+ in this work can easily

be mapped to another distribution of n
(1)
+ that better represents the step function, so that we can

deduce the information in the actual coordination number space from the free energy.

5.3 Results and Discussion

5.3.1 One–dimensional Free Energy Landscapes

Figures 5.1 and 5.2 show the one–dimensional free energy surfaces computed with EMUS.

For figure 5.1, the free energy was computed in the r+− dimension, where two distinct minima are

located at r+− = 2.7 Å and r+− = 5.2 Å. According to the mechanistic label proposed earlier by

Fuoss and Winstein [13, 14], we could readily imply that the minimum at r+− = 2.7 Å corresponds

to the CIP structure, while the minimum at r+− = 5.2 Å corresponds to the SSIP structure. At

r+− = 2.7 Å, it is impossible to have any water molecules between these ions, as this distance

typically lies between the first and the second solvation shells of the ions, leaving no available

space for a water molecule to insert between. Therefore, at this separation, the ion has to be in a

contacted position where the electrostatic interactions between the two ions contribute to the free
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energy minimum. However, at r+− = 5.2 Å, the interionic separation is large enough for a water

molecule to locate between the two ions, which justifies the assignment of the SSIP label to this

minimum. When looking at the free energy difference between the CIP minimum and the SSIP

minimum, the EMUS result computed the free energy difference to be 0.11 kcal/mol, with the CIP

state slightly lower in the relative free energy than the SSIP state. This amount of the free energy

difference, however, is very close to zero, meaning that at equilibrium, the CIP and the SSIP states

are almost equally likely to exist and either the CIP or the SSIP state is not significantly more stable

than the other state. The barrier between the CIP and the SSIP state locates at the free energy

maximum between the two local minima for both states, where the free energy barrier to cross

from one state to another is in the order of 2.7 to 2.8 kcal/mol. Another feature in this free energy

landscape is the free energy maximum that occurs at r+− = 6.0 Å, which is about 0.5 kcal/mol

higher than the SSIP barrier. According to our finding in figure 3.7, this barrier corresponds to

the transition from SSIP to the bulk state. The fact that the SSIP - bulk free energy barrier is far

less than the SSIP - CIP free energy barrier indicates that the transition from SSIP to bulk is far

more likely than the transition from SSIP to CIP. Therefore, this result agrees with our findings in

chapter 3 that the overall dynamics spent far longer time in the bulk than in the associated states.

The asymptotic deviation computed from EMUS indicate that on average, the standard deviation

for this free energy surface is 0.046 kcal/mol, where the highest deviation is 0.627 kcal/mol, which

occurs at r+− ≈ 2.2 Å to the left of the CIP minimum. However, on average, the CIP region has a

free energy error in the range of 0.04 kcal/mol, and the error becomes lower gradually towards the

SSIP region, where the free energy error is in the range of 0.02 kcal/mol. Comparing the order of

magnitude of our error to the free energy barriers, the free energy landscape in r+− dimension for

NaCl + 495 H2O system is remarkably accurate, and the prediction of the free energy barrier has a

very small error which is one to two orders of magnitude lower.
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Figure 5.1: A onedimensional free energy surface of NaCl + 495 H2O system computed using EMUS
in the r+− dimension
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Figure 5.2: A onedimensional free energy surface of NaCl + 495 H2O system computed using EMUS

in the n
(1)
+ dimension defined in section 5.2.2
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The one-dimensional free energy landscape in the n
(1)
+ space has 4 minima representing

the number of water molecules surrounding the Na+ ion in the first salvation shell. Although the

numbers shown in figure 5.2 are not perfect integer due to the definition of the n
(1)
+ in this chapter,

the lowest minimum corresponds to the 6-fold coordination of the Na+ ion, and each minimum

to the left e corresponds to one successively lower number of water molecules surrounding the

cation. As expected from the choice of parameters used to define this variable in section 5.2.2,

the free energy surface of the n
(1)
+ contains no cusp, where a GPR reconstruction using Gaussian

basis functions should have no issues approximating the shape of this result. According to our

results, the free energy differences between the successive minima for the 4-fold, 5-fold, and 6-fold

coordinated Na+ ion in this system is about 0.5 kcal/mol, while the free energy barrier to take out

one water molecule from the first solvation shell of the cation when it is at 4-fold, 5-fold, and 6-fold

coordination state is around 1.0 kcal/mol. By comparing the free energy of removing one water

molecule from the first solvation shell of the cation to the free energy of the CIP - SSIP transition

from figure 5.1, it is obvious that the the lost of a water molecule from the cations first solvation

shell occurs far more quickly than the association of the two ions, which is a point of view that is

reinforced by our results in chapter 3 which indicated that the cations first solvation shell does not

play a significant role in the slowest motion of the dynamics of NaCl + 495 H2O system. Towards

the right side of figure 5.2, we observed an inflection point occurring at n
(1)
+ ≈ 6.0, corresponding to

the 7-fold coordinated state of Na+, indicating that the 7-fold coordinated state cannot be isolated

as it will quickly lose a water molecule to come back to the 6-fold coordinated state. The 3-fold

coordinated state is also a metastable state in figure 5.2. However, the relative free energy of the

3-fold coordinated states minimum is much higher than those for the 4-fold, 5-fold, and 6-fold

states. Thus, we can put our interest in the dynamics of the SSIP - CIP transition when the cation

is at the 4-fold, 5-fold, or the 6-fold coordinated states as the cation is far more likely to have those
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Figure 5.3: RMS error, εRMS, between the GPR-constructed free energy landscape in r+− dimension
as a function of the length scale λ(r) from a training data of roughly 900,000 UIFs with fixed σ2

r

and χ

numbers of water molecules surrounding itself in its first solvation shell.

Free energy reconstruction from UIF data with GPR requires an optimum set of hyperpa-

rameters, which is a set of 2D + 1 for a D-dimensional problem that creates the best fit to the

EMUS results in each individual dimension. For this problem, the 2D+1 hyperparameters contains

D values of the length scale, λ, λ(r) and λ(n), D values of the variance of the UIFs, σ2
r and σ2

n,

and one value of the function deviation χ, where the subscripts / superscripts r and n denote the

r+− and the n
(1)
+ dimensions, respectively. According to Stecher et al. and Mones et al., although

it is possible to perform an optimization calculation to obtain the best hyperparameters for this

problem, in reality, optimization requires the GPR calculation, which has O(Nsp ·N2) complexity

for every step, where Nsp is the number of sparse points that represents the data, and N � Nsp
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Figure 5.4: RMS error, εRMS, between the GPR-constructed free energy landscape in n
(1)
+ dimension

as a function of the length scale λ(n) from a training data of roughly 900,000 UIFs with fixed σ2
n

and χ

is the number of training data. This would make the overall process computationally expensive.

However, given that we can know some information of the system a priori, it is possible that we

could put constraints on other hyperparameters to find the optimum length scales, which are the

most difficult hyperparameters to infer their optimum value. [51, 52] With this information, the op-

timum values for the hyperparameters σ2
r and σ2

n can be estimated from the statistical information

of the UIFs in the calculation themselves, which is shown in figures 5.5 and 5.6. Our results suggest

that σr can be in the order of 10.0 to 30.0 kcal/mol · Å in order to represent the variance of the

UIFs in the r+− dimension, and in the order between 10.0 to 20.0 kcal/mol in the n
(1)
+ dimension.

We picked two values for each dimension for testing purposes: σr = 25.2 and 14.5 kcal/mol · Å in

the r+− dimension, and σn = 19.8 and 14.0 kcal/mol in the n
(1)
+ dimension. In this work, we chose
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the value of the function deviation χ to be 2.0 kcal/mol, implying that the expected value of the

test set shall deviate in the range of χ. It is also possible to choose a higher value of χ; however, the

higher value for χ can introduce artifacts in our reconstructed result due to lack of regularization,

causing the reconstructed function to wildly fluctuate in values. With these three hyperparameters

known a priori, the optimum length scales in each dimension can be found by minimizing the RMS

error of the onedimensional GPR free energy landscapes with respect to EMUS results through the

following equation,

εξiRMS =

 1

Nref

Nref∑
j=1

[
AGPR(ξ

(j)
i )−AEMUS(xi

(j)
i )
]2


1/2

(5.2)

where Nref is the number of reference points used in the εRMS calculation. The optimum length

scales for both dimensions can be found in figures 5.3 and 5.4 where the εRMS in each dimension

is at the local minimum. We found that the optimum length scale in the r+− dimension, λ(r), is

0.97 Å with ε
(r)
RMS = 0.11 kcal/mol, and for the n

(1)
+ dimension, the optimum value of λ(n) is 0.56

with ε
(n)
RMS = 0.22 kcal/mol. Figure 5.4 also suggests that there is another minimum at a very small

value of λ(n). However, picking the smaller value of the length scale also causes the results to be less

regularized in the same fashion as taking too high value of χ. Hence, we chose the optimum value

for λ(n) from the minimum with as large value of λ(n) as possible to avoid the issues of overfitting.

In order to assess the performance and viability of GPR, comparisons between the relative

simulation efforts used for GPR and EMUS is also necessary besides a comparison of εRMS. Figures

5.7 and 5.8 shows εRMS of GPR-constructed free energy landscapes from different length and size

of the UIF training data in each dimension with respect to EMUS results. The results suggest

that the εRMS of the GPR-constructed free energy surfaces start to converge to the range of 0.10
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Figure 5.5: Local standard deviations of the UIFs from the onedimensional training data in the
r+− dimension

to 0.20 kcal/mol around the point where the size of the training data is about 100,000. As the size

of the training data also roughly scales with the simulation time, it is possible to say that we need

a WT-MTD simulation in the order of 10.0 ns worth of total simulation time to get a result that

is close enough to the EMUS result, while the trend of the εRMS also converge beyond that point.

Thus, running more simulations beyond that point does not greatly improve the GPR result. In

fact, we observed greater εRMS once the total simulation time went beyond the range of 10.0 ns

in the n
(1)
+ dimension. Looking closer to the results in figure 5.6 gave a clue that the pattern of

the local standard deviation of the UIFs in the n
(1)
+ dimension always peak corresponding to the

free energy minima positions in this dimension as well. Coupled with our findings from chapter 3

that the cations first solvation shell does not play crucial roles in the slowest reaction coordinates,

the changes in this variable shall occur far more rapidly than in the r+− dimension, causing high
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Figure 5.6: Local standard deviations of the UIFs from the onedimensional training data in the

n
(1)
+ dimension

variance of the UIFs in this dimension at the free energy minima. By introducing more UIF training

data in this dimension, it is also possible that the statistical uncertainties of the UIF in the n
(1)
+

dimension becomes larger, potentially causing worse GPR reconstruction with higher amount of

training data. Nevertheless, we still observe the same converging trend of ε
(n)
RMS as in the r+−

dimension.

Although figures 5.7 and 5.8 suggest that GPR can rarely be as accurate as EMUS, there

are a lot of benefits from using GPR as a free energy reconstruction tool. First, the total simulation

time for WT-MTD / GPR simulations to achieve similar result as EMUS is far less costly, enabling

us to save precious computational resources in the long run. As demonstrated above, it took only in

the order of 10.0 ns total simulation time for WT-MTD / GPR for the trend of εRMS to converge.
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To achieve this result with EMUS, we used 40 simulation windows, where the simulations were

performed for 3.0 ns in each window to conform with recent US simulation protocols. [27–29]

Therefore, the total simulation time for EMUS is at least one order of magnitude higher than those

achieved with GPR. While this EMUS can potentially be performed faster by taking advantage of

running each window in parallel [110], the total computational cost of EMUS can never be cheaper

than GPR, even in one-dimensional problems. Another important benefit from GPR is a smooth

reconstruction of the free energy landscape due to the usage of the squared exponential kernel in

this work. Since any US variants of simulation requires the knowledge of local probability densities

from the simulation data, the US results are often not smooth due to the fact that one could rarely

obtain a perfect distribution from such a short simulation time per window. Having a smooth free

energy landscape means that the minimum free energy paths can be more easily computed from

methods such as Nudged Elastic Band (NEB) [111], or Zero-Temperature String Method (ZTS)

[30, 32, 112], where the gradients of the free energy landscapes can even be computed analytically.

Despite the non-optimal performance in the fast coordinate like n
(1)
+ , our εRMS in the r+− dimension

is acceptable for describing the slowest transition between the CIP and SSIP states, as the average

error of 0.11 kcal/mol is far less than 3.0 kcal/mol, which is the barrier height between CIP and SSIP

states in this dimension, which actually also corresponds to the slowest motions of the dynamics of

this system as we have found in chapter 3.

5.3.2 Two–dimensional Free Energy Landscapes

Once optimum hyperparameters in all required dimensions are determined from onedimen-

sional simulations, it is possible for us to use these optimum hyperparameters to construct the
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Figure 5.7: The effect of the size of UIF training data and simulation time on ε
(r)
RMS with respect

to the EMUS result. The less amount of UIF training data also implies shorter simulation time,
where the 900,000-UIF training data came from a total simulation time of 75.0 ns.

multidimensional free energy landscapes, as the projection of the marginal probability density of

the multidimensional free energy landscape onto each individual dimension would correspond to the

one-dimensional marginal probability density computed from one-dimensional simulations. There-

fore, we carried the hyperparameters of λ(r) = 0.97 Å, λ(n) = 0.57, σr = 25.2 kcal/mol·Å, σn = 19.8

kcal/mol, and χ = 2.0 kcal/mol over for a twodimensional GPR reconstruction of the free energy

surface. The size of the training data contains roughly 650,000 pairs of UIFs in both dimensions

despite coming from the same 75.0 total simulation time as our one-dimensional simulations and

original 1,000,000 pairs of UIFs. 350,000 points of UIFs were discarded due to being out of the

simulation range of our US simulations to ensure that our two-dimensional free energy landscape

and its one-dimensional projections maintain the same probability measure as our US simulation to
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Figure 5.8: The effect of the size of UIF training data and simulation time on ε
(n)
RMS with respect
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where the 900,000-UIF training data came from a total simulation time of 75.0 ns.

enable direct comparison of results. Although the size of the training data for the twodimensional

reconstruction is less than the one used for one-dimensional reconstructions, the results from the

previous section suggests that the size of 650,000 is adequate. The two-dimensional free energy

surface is shown in figure 5.9.

The higher dimensionality of the problem presents numerous challenges for accurately com-

puting the free energy landscapes. The first major issue is the scaling problem. Although windowed

simulations are widely used for many onedimensional problems, using windowed simulations for

problems with more than one dimension unavoidably scale the computational cost. Although it

may be possible to attempt such simulations using classical potentials, for expensive simulations

such as AIMD, multidimensional windowed simulation is practically impossible due to a prohibitive
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Figure 5.9: A two-dimensional free energy landscape of NaCl + 495 H2O system in the r+− and

n
(1)
+ collective variables constructed from GPR

cost of the AIMD simulation. Hence, GPR presents an attractive alternative to tackle this issue

due to its robust efficiency even in onedimensional problems, as we have demonstrated in the pre-

vious section. However, there is also another important issue with using GPR to compute the

multidimensional free energy landscapes, which is the consistency of our results due to the fact

that it is very expensive to come up with a quantitatively accurate free energy landscape in many

dimensions to use as a reference. In order to circumvent this issue, we based our reference on the

onedimensional free energy landscapes in each individual dimension, which is far less expensive to

compute than one multidimensional free energy surface from a multidimensional windowed simu-

lation. For the surface in figure 5.9, we used equations 4.36 and 4.37 to project two-dimensional

marginal probability densities onto each individual collective variables own space. Comparison in

the r+− dimension shows that our projected εRMS from the twodimensional surface is 0.13 kcal/-

mol, which is in the same range as the number from one-dimensional GPR in this dimension. On
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the n
(1)
+ dimension; however, the projected εRMS in this dimension is 0.30 kcal/mol. This relatively

high εRMS in the n
(1)
+ is due to the fact that we also included the rarely appeared coordinated states

of the cation into the calculation as well, such as the 3-fold and the 7-fold states. Nevertheless, if

we are concentrated only in the regions from 4-fold to 6-fold states, the εRMS of the projection now

lowers to 0.11 kcal/mol, which is also an acceptable value of error comparable to εRMS from the

projection into the r+− space.

Although the n
(1)
+ does not involve in the slowest reaction coordinates for the NaCl+495 H2O

system, the two-dimensional free energy landscape from figure 5.9 allows us to most probable cations

coordination in the SSIP and the CIP states. Here we can clearly see that the SSIP state favors the

6-fold coordination of the cation. Moreover, the SSIP state is the global minimum in this surface

as well. The two minima at the region where r+− ≈ 2.7 Å indicates that there are two possible

coordinated states for the cations, which are the 4-fold and 5-fold coordination states. The 5-fold

CIP is lower in free energy than the 4-fold CIP state; however, both minima are very similar in

free energy, meaning that the cation in the CIP structure can both likely exist in the 4-fold and

the 5-fold coordinated states. The minimum free energy path from the minimum SSIP state to the

minimum CIP state involves the loss of one water molecule from Na+ ion’s first solvation shell before

the two ions associate, which classifies this process as the dissociative mechanism according to the

Eigen-Wilkins mechanistic label, which is illustrated by figure 5.10 where the minimum free energy

path was overlaid onto the free energy landscape with ZTS. The projection of the minimum free

energy path onto the reaction coordinate consisting of the collective variables r+− and n
(1)
+ shows

that instead of having one clear barrier between the SSIP and the CIP states as suggested by all the

previous results of one-dimensional free energy landscapes in r+− [18, 20, 29], the transformation

from SSIP to CIP in the Eigen–Wilkins formulation involves two barrier, where a smaller barrier

of about 1.3 kcal/mol corresponds to the faster process where Na+ ion loses one water molecule
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from its first solvation shell, forming an intermediate structure where the Na+ ion has a 5-fold

coordination while retaining the same SSIP interionic separation. The main barrier and the rate

determining step involves the association of both ions, with the barrier height of about 2.8 kcal/mol

from the minimum, as suggested in figure 5.11. Therefore, having a free energy description in more

than one dimension allows us to resolve features that may once be obscured from having only

one–dimensional descriptions of the process, which, in this case, is consistent with the suggestions

in the work of Ballard and Dellago that the ion association process should not involve only the

interionic separation and solvent molecules also play significant roles. [21]

Figure 5.10: Minimum free energy path obtained using Zero Temperature String Method overlaid
onto the two-dimensional free energy landscape of NaCl + 495 H2O system.

5.4 Summary

Being able to efficiently and accurately compute the free energy landscapes is crucial for

better understandings of the reaction mechanisms and the behaviors of chemical systems at the
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Figure 5.11: The projection of the minimum free energy path of the NaCl + 495 H2O system onto a
reaction coordinate involving two collective variables used in GPR free energy construction in this

chapter: r+− and n
(1)
+

transition states. Nevertheless, free energy computations is not an easy task. Although the free

energy surfaces can be computed directly from any regular MD simulations by taking the probability

density of a specific configuration, the information of the rare event regions is often not very well-

sampled. Therefore, in order to get a better information around the rare-event regions, one needs

to adequately sample the area. The most common approach for rare-event sampling employs

windowed simulations, where the sampling of the rare events are done within a confined region

in the configurational space. The main drawbacks of this class of approach; however, are high

computational costs that also scale as O(ND) for a D-dimensional problem. Therefore, a theoretical

assessment of using WT-MTD in conjunction with GPR to construct multidimensional free energy

landscapes provided an attractive choice for multidimensional free energy computations.

In this chapter, we have proved that using both WT-MTD / GPR is a robust scheme for free

102



energy computation, which offers at least one order of magnitude in reduction in total computational

cost even in one-dimensional problems. Although this combination cannot offer the same accuracy

at the same level as windowed simulations, a significant gain in efficiency makes WT-MTD / GPR

a viable candidate for free energy computations from expensive simulations such as AIMD. We also

provided a guide to infer the optimum hyperparameters for each dimension by directly comparing

our results with EMUS, which is an algorithm that provides asymptotic deviations for free energy

landscapes computed using US simulations. Although this is the first time that WT-MTD / GPR

is attempted for the real chemical process with more than one variables, our findings have been

consistent with the model problems performed earlier in the works of Mones et al.

Once optimum hyperparameters for each individual dimension are determined, it is easy

to use them to directly construct the desired multidimensional free energy landscapes with GPR

for a good quantitative agreement by the means of projection of the marginal probability density

onto each individual dimension. With the two-dimensional free energy surfaces, one can uncover

more information pertaining to a chemical process of interests by resolving more features that are

otherwise hidden in the one-dimensional landscapes. For this system of NaCl + 495 H2O, we are

able to classify this reaction as dissociative according to the Eigen-Wilkins mechanistic label for

inorganic ligand-exchange type of reaction.

Chapter 5, in full, is a part of the material titled “Efficient Two-dimensional Ion Pairing Free

Energy Landscape Calculation with Gaussian Process Regression” by Pornpatcharapong, Wasut,

and Weare, John H. The material is currently being prepared for submission. The dissertation

author is the primary author of this material
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(36) Prinz, J.-H.; Keller, B.; Noé, F. Phys. Chem. Chem. Phys. 2011, 13, 16912–16927.

(37) Prinz, J.-H.; Wu, H.; Sarich, M.; Keller, B.; Senne, M.; Held, M.; Chodera, J. D.; Schütte,
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(60) Noé, F.; Banisch, R.; Clementi, C. J. Chem. Theory Comput. 2016, 12, 5620–5630.

(61) Flach, P., Machine Learning ; Cambridge University Press: 2009.

(62) Murphy, K., Machine Learning: A Probabilistic Perspective; Adaptive computation and
machine learning; MIT Press: 2012.
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(82) Kästner, J. WIREs Comput. Mol. Sci. 2011, 1, 932–942.

(83) Kirkwood, J. G. J. Chem. Phys. 1935, 3, 300–313.
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