
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
On the Time-optimal Trajectory Planning along Predetermined Geometric Paths and Optimal
Control Synthesis for Trajectory Tracking of Robot Manipulators

Permalink
https://escholarship.org/uc/item/58r3063m

Author
Reynoso Mora, Pedro

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/58r3063m
https://escholarship.org
http://www.cdlib.org/

On the Time-optimal Trajectory Planning along Predetermined Geometric

Paths and Optimal Control Synthesis for Trajectory Tracking of Robot

Manipulators

by

Pedro Reynoso Mora

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Masayoshi Tomizuka, Chair
Professor Roberto Horowitz
Professor Pieter Abbeel

Fall 2013

On the Time-optimal Trajectory Planning along Predetermined Geometric

Paths and Optimal Control Synthesis for Trajectory Tracking of Robot

Manipulators

Copyright 2013
by

Pedro Reynoso Mora

1

Abstract

On the Time-optimal Trajectory Planning along Predetermined Geometric Paths and
Optimal Control Synthesis for Trajectory Tracking of Robot Manipulators

by

Pedro Reynoso Mora

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

In this dissertation, we study two important subjects in robotics: (i) time-optimal trajectory
planning, and (ii) optimal control synthesis methodologies for trajectory tracking. In the
first subject, we concentrate on a rather specific sub-class of problems, the time-optimal
trajectory planning along predetermined geometric paths. In this kind of problem, a purely
geometric path is already known, and the task is to find out how to move along this path
in the shortest time physically possible. In order to generate the true fastest solutions
achievable by the actual robot manipulator, the complete nonlinear dynamic model should
be incorporated into the problem formulation as a constraint that must be satisfied by the
generated trajectories and feedforward torques. This important problem was studied in the
1980s, with many related methods for addressing it based on the so-called velocity limit
curve and variational methods. Modern formulations directly discretize the problem and
obtain a large-scale mathematical optimization problem, which is a prominent approach to
tackle optimal control problems that has gained popularity over variational methods, mainly
because it allows to obtain numerical solutions for harder problems.

We contribute to the referred problem of time-optimal trajectory planning, by extending
and improving the existing mathematical optimization formulations. We successfully incor-
porate the complete nonlinear dynamic model, including viscous friction because for the
fastest motions it becomes even more significant than Coulomb friction; of course, Coulomb
friction is likewise accommodated for in our formulation. We develop a framework that guar-
antees exact dynamic feasibility of the generated time-optimal trajectories and feedforward
torques. Our initial formulation is carefully crafted in a rather specific manner, so that
it allows to naturally propose a convex relaxation that solves exactly the original problem
formulation, which is non-convex and therefore hard to solve. In order to numerically solve
the proposed formulation, a discretization scheme is also developed. Unlike traditional and
modern formulations, we motivate the incorporation of additional criteria to our original
formulation, with simulation and experimental studies of three crucial variables for a 6-axis
industrial manipulator. Namely, the resulting applied torques, the readings of a 3-axis ac-

2

celerometer mounted at the manipulator end-effector, and the detrimental effects on the
tracking errors induced by pure time-optimal solutions. We therefore emphasize the signifi-
cance of penalizing a measure of total jerk and of imposing acceleration constraints. These
two criteria are incorporated without destroying convexity. The final formulation generates
near time-optimal trajectories and feedforward torques with traveling times that are slightly
larger than those of pure time-optimal solutions. Nevertheless, the detrimental effects in-
duced by pure time-optimality are eliminated. Experimental results on a 6-axis industrial
manipulator confirm that our formulation generates the fastest solutions that can actually
be implemented in the real robot manipulator.

Following the work done on near time-optimal trajectories, we explore two controller syn-
thesis methodologies for trajectory tracking, which are more suitable to achieve trajectory-
tracking under such fast trajectories. In the first approach, we approximate the discrete-time
nonlinear dynamics of robot manipulators, moving along the state-reference trajectory, as
an affine time-varying (ATV) dynamical system in discrete-time. Therefore, the problem
of trajectory tracking for robot manipulators is posed as a linear quadratic (LQ) optimal
control problem for a class of discrete-time ATV dynamical systems. Then, an ATV control
law to achieve trajectory tracking on the ATV system is developed, which uses LQ meth-
ods for linear time-varying (LTV) systems. Since the ATV dynamical system approximates
the nonlinear robot dynamics along the state-reference trajectory, the resulting time-varying
control law is suitable to achieve trajectory tracking on the robot manipulator. The ATV
control law is implemented in experiments for the 6-axis industrial manipulator, tracking the
near time-optimal trajectory. Experimental results verify the better performance achieved
with the ATV control law, but also expose its shortcomings.

The second approach to address trajectory tracking is related in spirit, but different
in crucial aspects, which ultimately endow this approach with its superior features. In
this novel approach, the highly nonlinear dynamic model of robot manipulators, moving
along a state-reference trajectory, is approximated as a class of piecewise affine (PWA)
dynamical systems. We propose a framework to construct the referred PWA system, which
consists in: (i) choosing strategic operating points on the state-reference trajectory with their
respective (local) linearized system dynamics, (ii) constructing ellipsoidal regions centered at
the operating points, whose purpose is to facilitate the scheduling strategy of controller gains
designed for each local dynamics. Likewise, in order to switch controller gains as the robot
state traverses in the direction of the state-reference trajectory, a simple scheduling strategy
is proposed. The controller synthesis near each operating point is an LQR-type that takes
into account the local coupled dynamics. The referred PWA control law is implemented
in experiments for the 6-axis manipulator tracking the near time-optimal trajectory. The
experimental results show the feasibility and superiority of the PWA control law over the
typical PID controller and the ATV control law.

i

Dedicated to my ever growing family...

ii

Contents

Contents ii

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Time-optimal Trajectory Planning . 1
1.1.1 Literature Review . 2
1.1.2 Contributions . 4

1.2 Optimal Control Synthesis Methodologies for Trajectory Tracking 5
1.2.1 Contributions . 7

1.3 Dissertation Outline . 8

2 Time-optimal Trajectory Planning along Predetermined Paths 10

2.1 Dynamic Model of Robotic Manipulators . 10
2.1.1 Background on Lagrangian Dynamics 10
2.1.2 Robot Dynamics in Vector Form . 11

2.2 Problem Formulation . 12
2.2.1 Mathematical Formulation . 12
2.2.2 Formulation as a Mathematical Optimization Problem 13

2.3 Convex Relaxation . 15
2.3.1 Infinite-dimensional Second Order Cone Program Formulation 16

2.4 Problem Discretization . 18
2.4.1 Cubic Collocation at Lobatto Points 18

2.5 Application to a 6-axis Industrial Manipulator 22
2.5.1 Algorithm Results . 23
2.5.2 Dynamic Feasibility . 24

2.6 Simulation of Time-optimal Solution . 26
2.7 Summary . 28

iii

3 Near Time-optimal Trajectory Planning with Acceleration Constraints

and Jerk Penalization 29

3.1 Imposing Acceleration Constraints . 30
3.1.1 Problem Formulation . 30
3.1.2 Algorithm Results . 32
3.1.3 Simulation Results . 32

3.2 Penalizing a Measure of Total Jerk . 34
3.2.1 Jerk Penalization versus Torque Derivative Penalization 35
3.2.2 Problem Formulation . 35
3.2.3 Algorithm Results . 38

3.3 Simulation and Experimental Results . 40
3.3.1 Experimental Results . 41

3.4 Summary . 45

4 LQ-based Control Synthesis for Trajectory Tracking of Robot Manipu-

lators 47

4.1 Nonlinear Dynamic Model . 48
4.2 LQ-based Trajectory Tracking . 49

4.2.1 The LQ Optimal Control Problem for LTV Systems 49
4.2.2 Trajectory Tracking of Robotic Manipulators as LQ for Affine Time-

varying Systems . 50
4.2.3 Reformulation as Standard LQ for LTV Systems 52
4.2.4 Time-varying Affine Control Law . 53

4.3 Controller Synthesis for 6-axis Manipulator 54
4.3.1 Linearization along the Reference Trajectory 55

4.4 Experimental Evaluations . 60
4.5 Summary . 63

5 Piecewise Affine Modeling and Control Synthesis for Trajectory Tracking 64

5.1 Continuous-time Nonlinear Dynamic Model 64
5.1.1 Linearization along the Reference Trajectory 66

5.2 Piecewise Affine Modeling . 66
5.2.1 Constructing (Ai, bi,Bi) and Ri . 67

Procedure to Choose the Operating Points 68
Obtaining Ri to Parameterize Ei . 69

5.3 Case Studies on the Simplest Manipulators 70
5.3.1 1-DOF Manipulator . 70
5.3.2 2-DOF Planar Manipulator . 71

5.4 Controller Synthesis . 74
5.4.1 Closed-loop Dynamics . 74
5.4.2 Synthesizing State-feedback Gains Ki 75
5.4.3 Controller Switching Strategy . 76

iv

5.4.4 Case Study, 1-DOF Manipulator . 77
5.5 Application to 6-axis Industrial Manipulator 78

5.5.1 Near Time-optimal Trajectory . 78
5.5.2 Piecewise Affine Modeling Synthesis 80
5.5.3 Synthesis of State-feedback Controller Gains 81
5.5.4 Experimental Evaluations . 84

5.6 Summary . 86

6 Conclusions 88

Bibliography 93

A Experimental Setup for the 6-axis Industrial Manipulator 97

A.1 Hardware Configuration . 97
A.2 Real-time System . 99
A.3 Robot Kinematic Parameters . 100

A.3.1 DH Notations and Parameters . 100
A.3.2 Kinematic Modeling of FANUC M-16iB Robot 101

v

List of Figures

1.1 Illustration of purely geometric path. 2

2.1 Non-trivial path used to test the time-optimal trajectory planning algorithm. . . 22
2.2 Time-optimal solutions generated when solving problem (2.23). 23
2.3 Time-optimal trajectory (q⋆

d(t), q̇
⋆
d(t), q̈

⋆
d(t)). 25

2.4 Dynamic feasibility verification of the time-optimal 4-tuple solution (q⋆
d(t), q̇

⋆
d(t),

q̈⋆
d(t), τ

⋆
d (t)). 26

2.5 Simulation results for the time-optimal trajectory. 27

3.1 Profile of joint-space acceleration constraints. 30
3.2 Optimal solutions generated when solving problem (2.23), which enforces accel-

eration constraints with the profile of Fig. 3.1. 33
3.3 Simulation results for the near time-optimal solution, which enforces acceleration

constraints with the profile of Fig. 3.1. 34
3.4 Near time-optimal solutions generated when solving problem (3.13) for λ = 0.02,

which enforces acceleration constraints and penalizes a measure of total jerk. . . 39
3.5 Optimal traversal time tf for a range of values of the weighting parameter λ. . . 40
3.6 Simulation results for the near time-optimal solutions with acceleration con-

straints and penalization of a measure of total jerk. 42
3.7 Experimental results for the near time-optimal solutions with acceleration con-

straints and penalization of a measure of total jerk, using λ = 0.02. 43
3.8 Optimal solutions generated by solving optimization problem (3.13) for λ = 0.2. 44
3.9 Experimental results for the medium-speed optimal solutions which uses λ = 0.2. 45

4.1 Near time-optimal trajectory positions, velocities, and torques, generated with
optimization problem (3.13) for λ = 0.02. 54

4.2 Disturbance terms vk ∈ R
6 and wk ∈ R

6, which respectively represent position
“disturbance” and velocity “disturbance” due to non-exact dynamic feasibility. . 56

4.3 Resulting compensation torque αk in control law (4.22). This term could be zero
only when the disturbance terms vk and wk are zero. 58

4.4 Maximum singular values of K1(k) and K2(k) for all k = 0, 1, . . . , 4237. 59

vi

4.5 Controller synthesis results when choosing η = 5 to approximate the sign(·)
function with satur(·). 60

4.6 Experimental results when implementing the ATV control law (4.22) on the near
time-optimal trajectory. 61

5.1 Illustration of reference trajectory xd(t), operating points {x
(1)
c , . . . ,x

(L)
c }, and

ellipsoidal regions E1, . . . , EL. 68
5.2 First toy example, a 1-DOF planar manipulator and its reference trajectory. . . 71
5.3 Reference trajectory, resulting operating points (marked with ‘·’), and resulting

ellipsoids for the 1-DOF manipulator. 72
5.4 A 2-DOF planar manipulator used as a toy example. 72
5.5 Reference trajectory (qd(t), q̇d(t), q̈d(t), τd(t)) for the 2-DOF planar manipulator. 73

5.6 Reference trajectory and corresponding operating points x
(1)
c , . . . ,x

(L)
c , marked

with ‘·’, for the 2-DOF planar manipulator, in which case L = 96. 73
5.7 Simulation results of the PWA control law for the 1-DOF manipulator. 78
5.8 Motor-side near time-optimal trajectory positions θd(t), velocities θ̇d(t), and

torques ud(t). 79

5.9 Projections of the state-reference trajectory xd(t) and operating points x
(i)
c , i =

1, . . . , 224, onto the planes (θj , θ̇j), j = 1, . . . , 6. 81
5.10 Maximum singular values of Kpos

i and Kvel
i for all i = 1, . . . , 224. 83

5.11 Experimental results when implementing the PWA control law (5.26) on the near
time-optimal trajectory. 85

5.12 Evolution of ellipsoidal region number as a function of time. 86

A.1 FANUC M-16iB industrial robot and its connection diagram of hardware. 98
A.2 Illustration of the Denavit-Hartenberg notation and parameters. 100
A.3 Designated home position for FANUC M-16iB robot. 101
A.4 Crucial lengths, positive angle conventions, and attached coordinate frames for

obtaining the DH parameters of FANUC M-16iB robot. 102

vii

List of Tables

3.1 Some numerical values of λ and resulting optimal traversal times tf 40

4.1 Comparison of RMS values of the tracking errors achieved by the PID control
law and the proposed ATV controller. 62

5.1 RMS values comparison for the tracking errors of PID control law (3.14), ATV
control law (4.22), and PWA control law (5.26). 86

A.1 DH Parameters for FANUC M-16iB robot . 103

viii

Acknowledgments

I want to thank all the people who made it possible for me to conclude my Ph.D. studies
at Berkeley. First of all, my sincerest thanks to Professor Masayoshi Tomizuka, for allowing
me to join his research group and for being so patient with me in regards to concluding this
dissertation. Likewise, Professor Tomizuka encouraged me to continue pursuing my goals in
the Ph.D. program during the most difficult times I experienced in Berkeley. At this stage
of my life, there are no words to express my gratitude.

I would also like to thank Professors Roberto Horowitz and Pieter Abbeel for their will-
ingness to read this dissertation and for their critical but constructive comments to improve
the final version. The course and lecture notes on Advanced Control Systems II, which I
took under Professor Roberto Horowitz, heavily influenced my view on the subject of control
systems. Professor Pieter Abbeel’s course CS287 Advanced Robotics, which I took in the
Fall 2011, has noticeably influenced the content of this dissertation. Using terms such as
“dynamically feasible trajectory”, is an instance of this influence.

Special acknowledgments to my sponsors, the National Council for Science and Technol-
ogy of Mexico (CONACYT), and the University of California Institute for Mexico and the
United States (UC MEXUS). These two institutions provided me with a five-year Ph.D. fel-
lowship, in a joint effort to provide support to Mexican students who wish to pursue a Ph.D.
in the University of California system. Likewise, the financial and technical supports from
FANUC Corporation are acknowledged. The developments presented in this dissertation
would be of little value without the experimental evaluations on the real robot manipulator,
which was kindly donated by FANUC Corporation.

I greatly benefited from several courses offered at Berkeley. The most influential on my
carrier are: Advanced Control Systems I/II taught respectively by Professor M. Tomizuka
and Professor R. Horowitz, Intermediate/Advanced Dynamics by Professor Oliver O’Reilly,
Control of Nonlinear Dynamic Systems by Professor Karl Hedrick, Convex Optimization
by Professor Laurent El Ghaoui, Advanced Robotics by Professor Pieter Abbeel, and the
final course I took at Berkeley, Hybrid Systems: computation and control, taught jointly
by Professors Claire Tomlin and Shankar Sastry. I am very honored for having had the
opportunity to be exposed to those topics from such respected and bright people.

It goes without saying that I have also benefited enormously from being a member of
the Mechanical Systems Control Laboratory, MSC Lab for short. I want to thank all the
members of the MSC Lab who were there before and after I joined. Special thanks to Wenjie
Chen, Sanggyum Kim, Evan Chang-Siu, Mike Chan, and Takashi Nagata. I had many
fruitful discussions on my research with Wenjie Chen and Sanggyum Kim. Wenjie’s critical
comments definitely influenced my thinking to improve the final results.

Last and foremost, I want to thank my ever-growing family. In Mexico, my sisters
Patricia and Angélica, my brothers Arturo and Enrique, my grandfather Pedro, and my
parents Alejandra and Eduardo. Thank you Mom for all your sacrifices so that I could reach
my dreams. In the USA, my fiancée Britta, for your love and encouragement, and for giving
me the greatest gift I could ever receive, our wonderful daughter Camila.

1

Chapter 1

Introduction

The field of robotics is an active research field that deals with the study of machines that
can replace human beings in the execution of tasks. The term robot, which derives from the
term robota that means executive labor, was coined by the Czech play-writer Karel Čapek,
who wrote the play Rossum’s Universal Robots in 1920 [1]. The concept of a robot has
changed substantially over time, from the fictitious idea of a superhuman machine, to the
reality of automated machines that perform a large variety tasks in industrial sectors. An
important class of these automated machines are robot manipulators, which are the main
subject of this dissertation. Robot manipulators are widely seen in many industrial sectors,
such as the automotive industry [1, 2].

In this dissertation, two important topics for robot manipulators are addressed: (i) time-
optimal trajectory planning, and (ii) optimal control synthesis methodologies for trajectory
tracking. Essentially, these two topics together study how to generate the motion profiles,
and how to make the robot manipulator perform those motion profiles to achieve specific
tasks autonomously. The focus of this dissertation regarding trajectory planning is on a
rather specific sub-problem, namely, the time-optimal trajectory planning along predeter-
mined geometric paths. In this problem, it is assumed that a purely geometric path is already
known, and essentially the task is to find out how to move optimally along that path so as
to minimize the traveling time. On the other hand, the type of trajectory tracking algo-
rithms we develop in this dissertation are based on optimal control synthesis techniques for
special classes of linear systems. These control algorithms are targeted to achieve trajectory
tracking for the near time-optimal trajectories, which are generated with our algorithms for
time-optimal trajectory planning.

1.1 Time-optimal Trajectory Planning

In industrial applications, time-optimality of robot manipulators is crucial for maximizing
robot productivity. In most applications of robot manipulators, such as palletizing and pick-
and-place, an operator specifies a collision-free geometric path that the robot must follow

CHAPTER 1. INTRODUCTION 2

X

X

h(s)

h0

hf

Figure 1.1: Illustration of purely geometric path.

in order to accomplish a particular task. This path specification is usually done through
a so-called teach-pendant or through a path planning algorithm [3]. Once the geometric
path has been specified, it is important to find out how to move the robot optimally along
that path in the shortest time physically possible. Figure 1.1 illustrates the idea abstractly,
where the robot manipulator is required to move from A to B. In order to move from A

to B, it is assumed that a purely geometric path h(s) has been already obtained, where
h0 and hf represent respectively the geometric initial and final configurations. Therefore,
the task is essentially to figure out the velocities, accelerations, and feedforward torques
that guarantee motion along h(s) in minimum time. The feedforward torques are required
to remain within physical bounds, i.e., actuator’s torque limits. Additionally, these optimal
motions are required to be feasible with respect to the nonlinear and coupled robot dynamics,
which in this dissertation we shall refer to as dynamic feasibility.

1.1.1 Literature Review

First successful approaches to address this problem date back to the 1980s. Pioneering work
is presented in the classic papers [4, 5, 6], where the minimum-time trajectory planning
problem is developed for rigid manipulators that are fully actuated, governed by the following
equations of motion:

M(q)q̈ + n(q, q̇) = τ , (1.1)

where q ∈ R
n represents the joint positions for an n-degree-of-freedom manipulator, τ ∈ R

n

is the vector of input torques, M(q) ∈ R
n×n is the positive-definite inertia matrix, and

CHAPTER 1. INTRODUCTION 3

n(q, q̇) ∈ R
n represents the combined effects of Coriolis/centrifugal forces and gravity forces.

It is assumed that the actuators are subject to the following torque constraints:

τmin(q, q̇) ≤ τ ≤ τmax(q, q̇). (1.2)

The geometric path is assumed to be parameterized by a path parameter s ∈ [s0, sf], and it
is crucial that the joint positions, velocities, and accelerations can be expressed as functions
of s, ṡ, and s̈:

q = h(s), q̇ = ḣ(s, ṡ), q̈ = ḧ(s, ṡ, s̈). (1.3)

It is shown in these papers [4, 5, 6] that by combining (1.1)-(1.3), torque constraints can be
expressed as constraints in the acceleration along the path s̈ as function of s and ṡ:

s̈min(s, ṡ) ≤ s̈ ≤ s̈max(s, ṡ). (1.4)

In [4] it is proposed that the time-optimal solution is to choose the acceleration to make
the velocity as large as possible at every point without violating the constraints. It is
then suggested that to minimize time, the acceleration always takes either its largest or
its smallest possible value. Therefore, search algorithms were proposed that find switching
points in the so-called velocity limit curve. At these switching points, instant changes from
maximum acceleration to maximum deceleration and vice versa must occur. Another classic
work on this problem is presented in [5] where additional properties of the velocity limit
curve are rigourously analyzed, which allowed for simplification in the computation of the
switching points. The development in [5] was apparently conceived in parallel to the work
in [4]. Rather similar remarks are obtained in both papers, with subtle differences in the
motivation, presentation, and proposed algorithms.

It is clear from (1.4) that no feasible acceleration along the path is possible when
s̈min(s, ṡ) > s̈max(s, ṡ). The algorithms proposed in the classic papers [4, 5] both are based
on the idea of avoiding the so-called inadmissible regions in the s-ṡ plane, i.e., {(s, ṡ) ∈ R

2
+ :

s̈min(s, ṡ) > s̈max(s, ṡ)}. The disadvantage is that searching for inadmissible regions over the
entire plane s-ṡ can become computationally rather expensive. Besides, pure time-optimal
solutions produce torques that require sudden changes, which are impossible to handle by
real servo-amplifiers whose bandwidth is limited. These techniques do not easily allow to
incorporate additional criteria to generate solutions that are feasible for implementation.

Optimal control theory has also been used to tackle the referred problem of time-optimal
trajectory planning, which in principle allows to incorporate additional criteria to produce
solutions that are more feasible for implementation. In [6], additional criteria are added
to trade off time-optimality against squared velocity and joint torques. To solve the opti-
mization problem the authors apply a dynamic programming approach, where the plane s-ṡ
is discretized to obtain a two-dimensional grid. The benefit of the dynamic programming
approach is clear, it naturally allows to include other performance criteria to generate solu-
tions that are more feasible for implementations. The disadvantage of dynamic programming
solution methods is the high computational burden associated with them.

CHAPTER 1. INTRODUCTION 4

Variational approaches in optimal control theory have also been applied to address the
referred problem of time-optimal trajectory. In [7], time-optimality is traded off against a
term that represents control energy. The method to solve the referred problem is based on
variational methods, namely, the minimum principle of Pontryagin that requires solving a
two-point boundary value problem using tedious shooting methods. Since this approach relies
on shooting methods to solve the two-point boundary value problem, finding the optimal
solution requires heavy computational burden.

Over the past decades, a prominent approach to address numerical optimal control prob-
lems has gained popularity over variational methods, mainly because it allows to obtain
numerical solutions for harder problems, for which variational methods would simply be pro-
hibitive [8]. In this approach, the optimal control problem is directly discretized to obtain a
large-scale nonlinear optimization problem, allowing to impose not only equality constraints,
but also more realistic and complicated inequality constraints, for which variational methods
would fall short when attempting to obtain a numerical solution.

In the specific context of the problem of time-optimal trajectory planning along predefined
paths, in [9] the problem is formulated as a large-scale nonlinear optimization problem. In
that paper, a great deal of attention is paid to the adverse effects on the tracking errors
induced by pure time-optimal solutions, and the authors incorporate inequality constrains
on the torques time derivatives to produce smoother solutions. The formulation is a general
nonlinear optimization, for which there are no guarantees for finding the global minimum.

More recently, motivated by the widespread reputation of convex optimization to effi-
ciently solve engineering and science problems, a modern formulation of the time-optimal
trajectory planning problem was proposed in [10], where theory and tools from convex op-
timization are utilized. The advantage of formulating a problem as a convex optimization
problem is twofold: (i) theoretical and conceptual advantages, e.g., once an optimal solution
is found, it represents the global optimal solution, (ii) the problem can be solved reliably
and efficiently using mature interior-point methods or other special methods for convex op-
timization [11].

A main drawback of the approach presented in [10] is that viscous friction is neglected
in order to have a convex and therefore tractable problem. This shortcoming has already
been pointed out in [12]. It is clear that time-optimal trajectories represent the fastest
trajectories, which implies that the manipulator will move at really high speeds. This means
that the effects of viscous friction, which are velocity dependent, will be very significant
(even more significant than Coulomb friction). Therefore, in order to really obtain the true
fastest solutions that are dynamically feasible for the real robotic system, viscous friction
should not be neglected. Nevertheless, none of the existing formulations take into account
the complete dynamic model that includes both viscous and Coulomb friction.

1.1.2 Contributions

In this dissertation, we contribute to the referred problem of time-optimal trajectory plan-
ning, by extending and improving the existing mathematical optimization formulations.

CHAPTER 1. INTRODUCTION 5

More specifically:

1. We successfully incorporate the complete nonlinear dynamic model, including the ef-
fects of viscous friction. Clearly this is an important incorporation, since for the fastest
motions, required by time-optimal solutions, viscous friction becomes even more sig-
nificant than Coulomb friction. Notice nonetheless that Coulomb friction is likewise
incorporated into our formulation.

2. Motivated by modern convex formulations with nice theoretical properties and efficient
algorithms to solve them, we express explicit interest in pursuing a convex formula-
tion. The convex formulation that we derive, guarantees exact dynamic feasibility of
the time-optimal trajectories and feedforward torques, with respect to the full nonlin-
ear dynamic model. We carefully construct the initial formulation in a rather specific
manner, which turns out to be non-convex. This formulation allows to readily propose
a convex relaxation that solves exactly the original non-convex problem. A discretiza-
tion scheme is developed in order to numerically solve the proposed formulation using
methods from numerical optimal control.

3. Traditional approaches seldom point out the detrimental effects on the system perfor-
mance when implementing pure time-optimal solutions. We emphasize the importance
of generating the fastest possible solutions, with crucial additions to the original time-
optimal problem that will slightly increase the traveling time. Nevertheless, the final
formulation generates near time-optimal solutions that can be implemented in the real
manipulator, without seriously degrading the system performance.

4. We demonstrate that the nonzero accelerations at the beginning/end of the trajectory,
required by pure time-optimal solutions, seriously degrade the system performance at
those instants. We therefore develop a framework to incorporate acceleration con-
straints which guarantees smooth transitions from/to zero at the beginning/end of
the trajectory. Likewise, we show how penalizing a measure of total jerk to trade off
time-optimality will render the optimal solutions feasible for implementation, at the
expense of a very modest increase in traveling time.

1.2 Optimal Control Synthesis Methodologies for

Trajectory Tracking

We explore the use of optimal control synthesis methodologies to attain trajectory tracking
for robot manipulators. The motivation is to develop control algorithms that are more
suitable to achieve trajectory tracking under the near time-optimal trajectories developed
in this dissertation. Initially, the kind of controller utilized to servo the manipulator under
such fast trajectories is a general purpose PID plus feedforward controller. The PID portion
of the controller is designed in a decentralized manner, where each robot joint is modeled as

CHAPTER 1. INTRODUCTION 6

a single-input single-output (SISO) linear time-invariant (LTI) system [13, 14]. However, it
is well-known that the dynamic model of robot manipulators is highly coupled and nonlinear
[1, 2]. Therefore, we are interested in developing control algorithms that use, or at least
approximate reasonably well, the referred nonlinear dynamic model. This nonlinear dynamic
model corresponds to the model we adopted for the development on time-optimal trajectory
planning.

The problem of trajectory tracking that we deal with, considers a robot manipulator with
n degrees of freedom (DOF) that has rigid links and revolute joints. The adopted dynamic
model is the following highly nonlinear and coupled vector differential equation:

M(q)q̈ +C(q, q̇)q̇ + g(q) +Dvq̇ + FC sign(q̇) = τ , (1.5)

where q ∈ R
n is the vector of joint angles, τ ∈ R

n represents the vector of input torques,
M(q) ∈ R

n×n is the inertia matrix, C(q, q̇) ∈ R
n×n is the Coriolis/centrifugal matrix,

g(q) ∈ R
n represents the gravity torques, and the diagonal elements of Dv ∈ R

n×n and
FC ∈ R

n×n represent the coefficients of viscous and Coulomb friction, respectively.
In the type of actuators that we utilize, the motors are mechanically connected to the

corresponding robot links through gear boxes. We then make the distinction between link-
side and motor-side variables. The link-side and motor-side positions are denoted by q and
θ, respectively. In addition, the link-side and motor-side actuator torques are denoted by
τ and u, respectively. We assume that these motor-side and link-side variables are simply
related by τ = Gu and q = G−1θ, where G is a diagonal matrix with the gear ratios. The
variables in dynamic model (1.5) are link-side variables. Since the controller implementation
and sensing are done in the motor-side, it is convenient to write the nonlinear dynamic model
(1.5) in the motor-side variables. For the purposes of controller synthesis in this dissertation,
the following nonlinear dynamic model in motor-side is used:

[

G−1M(G−1θ)G−1
]

θ̈ +
[

G−1C(G−1θ,G−1θ̇)G−1
]

θ̇ +G−1g(G−1θ)+
[

G−1DvG
−1
]

θ̇ +G−1FC sign(θ̇) = u.
(1.6)

Notice that in practice, we always add the corresponding motor-side inertia Jmot to the
inertia matrix G−1M(G−1θ)G−1, where Jmot is diagonal and contains each motor’s ar-
mature inertia. In other words, the actual inertia matrix that we use in (1.6) is: Jmot +
G−1M(G−1θ)G−1. Similarly for the coefficients of viscous and Coulomb damping, the ac-
tual ones used for computing the friction torques are: Dv,mot + G−1DvG

−1 and FC,mot +
G−1FC, respectively. However, for simplicity of exposition, in this dissertation we have
decided to present the more compact dynamics (1.6).

The problem of trajectory tracking is simply stated as follows: the robot is required to
follow a desired joint-space reference trajectory in motor-side θd(t) for all t ∈ [0, tf]. The
problem of trajectory tracking therefore amounts to finding the manipulator joint torques
in motor-side u(t) ∈ R

n so that θ(t) ≈ θd(t) for all t ∈ [0, tf]. This problem has been
studied for several decades, and therefore many sophisticated algorithms have been proposed

CHAPTER 1. INTRODUCTION 7

[15, 16]. However, the reality is that only the simplest algorithms are utilized in the real
robot manipulators operating in industry. Essentially, all the nonlinear controllers that have
been proposed, such as state feedback linearization also known as computed-torque control,
require the real-time computation of the inverse dynamic model. These computations are
too expensive to achieve in real-time for realistic robots with six or more degrees of freedom,
even with the most efficient algorithms for inverse robot dynamics [17].

As a matter of fact, most industrial robots are controlled in practice by pre-computing a
feedforward torque ud(t) from (1.6), which is entirely based on the reference trajectory θd(t),
θ̇d(t), and θ̈d(t). This feedforward torque is used to attempt to cancel out the nonlinearities.
After the assumption of canceling out the nonlinearities through ud(t), decoupled linear
time-invariant models are assumed for each joint [1, 2]. Then, a decoupled linear controller
(typically a PID) is designed for the simplified LTI models. Notice that in this manner, there
is no need for expensive real-time computations of the inverse dynamic model.

In this dissertation, we follow a similar philosophy. However, we do not assume a simple
LTI model to describe the robot dynamics along the entire reference trajectory. Rather, we
adopt a particular approach, in which it is strived to find models that approximate reasonably
well the nonlinear robot dynamics. From nonlinear systems theory, a nonlinear dynamical
system can be well approximated in the vicinity of an equilibrium point by a certain LTI
system. This LTI system is obtained by linearizing the nonlinear dynamics at the specific
equilibrium point [18, 19]. It is also well-known that linearization of the nonlinear dynamics
can only be performed at the system’s equilibria. The exception being a dynamically feasible
trajectory, along which the linearization process leads to approximate the nonlinear dynamics
by a linear time-varying (LTV) dynamical system [20].

The near time-optimal trajectory (θd(t), θ̇d(t), θ̈d(t),ud(t)), developed in the first part of
this dissertation, is dynamically feasible with respect to the nonlinear robot dynamics (1.6).
This motivates to approximate the nonlinear robot dynamics along the near time-optimal
reference trajectory as an LTV dynamical system. We can therefore synthesize controllers
to achieve trajectory tracking on the LTV system, for which there are numerous efficient
techniques from optimal control [21, 22]. Since the robot dynamics is well approximated
along the reference trajectory by the LTV system, the resulting control law can be utilized
to attain trajectory tracking in the actual robot manipulator. We explore these ideas and
develop modifications that allow to implement the resulting controllers in experiments for
the 6-axis industrial manipulator.

1.2.1 Contributions

We develop two related approaches to address the problem of trajectory tracking, where the
reference trajectory corresponds to the fastest trajectory achievable by the real manipulator,
i.e., the near time-optimal trajectory developed in the first part of this dissertation.

1. In the first approach, the continuous-time nonlinear robot dynamics (1.6) is discretized
to obtain a discrete-time nonlinear dynamics. We show that due to discretizing the

CHAPTER 1. INTRODUCTION 8

continuous-time nonlinear model, the reference trajectory and feedforward torques
are no longer exactly dynamically feasible with respect to the discrete-time nonlin-
ear model. This leads us to introduce a time-varying “disturbance” term in position
and velocity, and therefore approximate the discrete-time nonlinear robot dynamics
along the reference trajectory as an affine time-varying (ATV) dynamical system.

2. Using results from optimal control for LTV systems, we synthesize a control law for
trajectory tracking that considers the referred ATV dynamics, which implies that the
effects of the “disturbance” are implicitly taken into account. The resulting control
law is affine time-varying, which achieves trajectory tracking and compensates for the
effects of the referred “disturbance”, attributed to the non-exact dynamic feasibility of
the reference trajectory. We develop the necessary tools and implement the resulting
control law in experiments, for the 6-axis industrial manipulator.

3. In the second approach, we develop a gain scheduling strategy along the state-reference
trajectory.1 In this formulation, the continuous-time nonlinear robot dynamics (1.6) is
not discretized, which implies that the reference trajectory is still exactly dynamically
feasible with respect to the nonlinear model used for controller synthesis. The de-
velopment is done entirely in continuous-time, although the implementation is clearly
carried out in discrete-time. The continuous-time nonlinear dynamic model (1.6) is
approximated along the state-reference trajectory by a special class of piecewise affine
(PWA) dynamical system.

4. To construct the referred PWA system, we propose an algorithm that selects only
strategic points on the state-reference trajectory. These points are chosen to guarantee
that the linearized system dynamics for consecutive operating points exhibit a 1%
dynamics “variation”, with respect to a proposed simple metric. Once the operating
points are selected, with their respective (local) linearized system dynamics, a novel
approach is proposed to construct ellipsoidal regions around these operating points.
The purpose of the ellipsoidal regions is to facilitate the scheduling strategy of feedback
controller gains, designed for each local system dynamics, as the robot state traverses
in the direction of the state-reference trajectory. We develop the necessary tools, so
that the final PWA control law can be implemented and evaluated in experiments on
the 6-axis industrial robot.

1.3 Dissertation Outline

The main contributions of this dissertation are presented from Chapter 2 to Chapter 5. In
Chapter 2, we give a comprehensive development on the problem of time-optimal trajectory
planning along predetermined geometric paths. Our main results in that chapter start with

1Related but different ideas on gain scheduling for nonlinear systems moving along a state-reference
trajectory have been proposed in [23].

CHAPTER 1. INTRODUCTION 9

incorporating the complete nonlinear dynamic model of robot manipulators, and to show
that it can be solved as a convex optimization problem. Theoretical and simulation results
are presented on pure time-optimal trajectories, which leads us to conclude that pure time-
optimal solutions need slight modifications before being implemented in experiments.

Then, in Chapter 3, we present the development of the necessary additions that ought to
be incorporated into the pure time-optimal formulation. First, acceleration constraints are
incorporated, and then, a term that penalizes a measure of total jerk is included to trade off
time-optimality. The final formulation that we present in that chapter is also convex, and is
used to efficiently compute the near time-optimal trajectories. The experimental results are
also presented in that chapter, which verify the benefits of our contributions.

In Chapter 4, we present the development of the control law for trajectory tracking
using LQ optimal control methods for LTV systems. Experimental results of the proposed
algorithms in that chapter are also presented, which verify the feasibility and also expose
certain shortcomings that motivate the development of the approach in Chapter 5. The
second approach to achieve better trajectory tracking under the near time-optimal trajectory
is presented in Chapter 5. The final control law proposed in that chapter is PWA, which is
efficiently implemented in the experimental setup for the 6-axis industrial manipulator. We
present the experimental results that confirm the superior features of our approach, which
justifies its development.

Finally, concluding remarks and future recommendations are presented in Chapter 6. A
brief description of the experimental setup for the 6-axis industrial robot FANUC M-16iB is
presented in Appendix A.

10

Chapter 2

Time-optimal Trajectory Planning

along Predetermined Paths

In this chapter, the problem of time-optimal trajectory planning along predetermined ge-
ometric paths is addressed. Since the approach in this dissertation relies heavily on the
non-linear dynamic model of robot manipulators, a few of its properties will be reviewed,
which will prove useful later in the chapter. Unlike existing methods, we incorporate the com-
plete dynamic model, including the term representing viscous friction since for fast motions
this term is not negligible at all. Then the problem formulation as an infinite-dimensional
mathematical optimization is presented, followed by an analysis of the properties for the
referred formulation. This analysis leads to proposing a formulation that we properly call
convex relaxation, as it represents a convex and therefore tractable relaxation of the orig-
inal problem which is non-convex. A discretization scheme is then developed that allows
to obtain a numerical solution. Finally, an application to a 6-axis industrial manipulator
is presented. From simulations on a realistic simulator, it is argued that pure time-optimal
solutions need to be slightly modified before being implemented on the real manipulator.

2.1 Dynamic Model of Robotic Manipulators

The dynamic model of a manipulator provides a description of the relationship between the
joint actuator torques and the motion of the manipulator. With Lagrange formulation, the
equations of motion can be derived in a systematic manner independent of the reference
coordinate frame.

2.1.1 Background on Lagrangian Dynamics

For a manipulator with n links, a set of coordinates qi, i = 1, . . . , n, known as the generalized
coordinates, is chosen to effectively describe the link positions of the n degrees-of-freedom
(DOF) manipulator [1]. The Lagrangian of the system is defined in terms of the generalized

CHAPTER 2. TIME-OPTIMAL TRAJECTORY PLANNING ALONG

PREDETERMINED PATHS 11

coordinates:
L = T − U , (2.1)

where U and T denote respectively the total kinetic and potential energy of the system.
Lagrange’s equations of motion are usually written in the following form:

d

dt

(

∂L

∂q̇i

)

−
∂L

∂qi
= Qi, i = 1, . . . , n, (2.2)

where Qi is the generalized force associated with the generalized coordinate qi. For a serial-
chain industrial manipulator, qi represents the relative angle of i-th link with respect to
link i − 1. The generalized forces Qi, on the other hand, are given by the nonconservative
forces, i.e., the joint actuator torques and the joint friction torques. Assuming viscous and
Coulomb friction, Qi = τi − dviq̇i − fci sign(q̇i), where dvi, fci are the coefficients of viscous
and Coulomb friction, and τi is the actuator torque for the i-th joint.

A well-known fact from robot dynamics is that for an n−DOF manipulator, the total
kinetic energy is written as the following quadratic form:

T =
1

2
q̇⊤M(q)q̇ =

1

2

n
∑

i=1

n
∑

j=1

mij(q)q̇iq̇j , (2.3)

where M(q) ∈ R
n×n is the positive-definite inertia matrix, and mij(q) is the ij-th element

of M(q). It is a standard exercise in dynamics to show that the equations of motion (2.2)
take the following form [1, 24]:

n
∑

j=1

mij(q)q̈j +
n
∑

j=1

n
∑

k=1

cijk(q)q̇kq̇j + gi(q) = τi − dviq̇i − fci sign(q̇i), i = 1, . . . , n, (2.4)

where cijk(q) are known as the Christoffel symbols of the first kind,1 and gi(q), i = 1, . . . , n,
represent the torques due to gravity.2

2.1.2 Robot Dynamics in Vector Form

Equations of motion (2.4) will prove useful later in this chapter, when formulating the time-
optimal trajectory planning problem. These equations can be written in vector form, which
is in fact the standard form given in most robotics textbooks [1, 2, 15]. Throughout this
dissertation, the following vector differential equation will be used as the dynamic model for
an n-DOF manipulator:

M(q)q̈ +C(q, q̇)q̇ + g(q) +Dvq̇ + FC sign(q̇) = τ , (2.5)

1Defined in terms of the elements of the inertia matrix as cijk := 1

2

(

∂mij

∂qk
+ ∂mik

∂qj
−

∂mjk

∂qi

)

.
2Defined in terms of the potential energy as gi(q) :=

∂U
∂qi

.

CHAPTER 2. TIME-OPTIMAL TRAJECTORY PLANNING ALONG

PREDETERMINED PATHS 12

where q, q̇, q̈ ∈ R
n are the joint-space positions, velocities, and accelerations, respectively;

matricesM(q) ∈ R
n×n andC(q, q̇) ∈ R

n×n are known as the inertia and Coriolis/centrifugal
matrices, respectively; g(q) ∈ R

n represents the vector of gravitational torques; diagonal ma-
trices Dv,FC ∈ R

n×n represent the coefficients of viscous and Coulomb friction, respectively.

2.2 Problem Formulation

As mentioned in Chapter 1, in most industrial applications of robot manipulators, a collision-
free geometric path is specified through a teach-pendant or a path planning algorithm. Then,
it is important to study how to move the manipulator along that path in the shortest time
possible. The approach taken in this dissertation, is to design time-optimal trajectories and
controls that are consistent with the complete dynamic model. In this manner, the generated
solutions represent the true fastest motions that the manipulator can achieve, unlike methods
based on kinematic models [25]. In order to generate trajectories and open-loop controls that
are dynamically feasible, the dynamic model should take into account the most significant
effects present in the physical system. Therefore, the equations of motion considered in this
dissertation are given by the complete model (2.5) or equivalently (2.4).

2.2.1 Mathematical Formulation

Assume that the geometric path, along which the robot is required to move, has been already
determined in joint space. In this dissertation, the geometric path is represented by h(s) ∈
R

n, where s is a monotonically increasing parameter s(t) ∈ [0, 1], i.e., ṡ > 0. Parameter s
can be thought of as the normalized distance traveled by the manipulator’s end-effector. We
are going to require that h(s) be twice continuously differentiable in s.

The goal is to determine how to move along the joint-space path h(s), in the shortest
time dynamically possible without exceeding the maximum and minimum actuator torques,
denoted here as τ ∈ R

n and τ ∈ R
n, respectively. If the reference trajectory is denoted by

qd ∈ R
n, it is then desired to obtain a 4-tuple (qd(t), q̇d(t), q̈d(t), τd(t)) that is dynamically

feasible with respect to model (2.5) and that guaranties motion in the shortest time possible,
while satisfying the torque limit constraints: τ ≤ τd(t) ≤ τ .

From the equality constraint qd = h(s), it is readily shown that [26]:

q̇d = h′(s)ṡ

q̈d = h′′(s)ṡ2 + h′(s)s̈,
(2.6)

where h′(s) := dh/ds, h′′(s) := d2h/ds2, whereas ṡ = ds/dt and s̈ = d2s/dt2 represent
the pseudo-speed and pseudo-acceleration along the path, respectively. Since the 4-tuple
(qd, q̇d, q̈d, τd) is required to be dynamically feasible with respect to (2.5), the expressions
for qd, q̇d and q̈d are plugged into (2.5) to obtain:

τd =M(h(s))
[

h′′(s)ṡ2 + h′(s)s̈
]

+C (h(s),h′(s)ṡ)h′(s)ṡ+ g(h(s))

+Dvh
′(s)ṡ+ FC sign(h′(s)ṡ),

(2.7)

CHAPTER 2. TIME-OPTIMAL TRAJECTORY PLANNING ALONG

PREDETERMINED PATHS 13

Since (2.4) and (2.5) are equivalent, the i-th element of vector C (h(s),h′(s)ṡ)h′(s)ṡ ∈
R

n, is written as:

[C (h(s),h′(s)ṡ)h′(s)ṡ]i =

n
∑

j=1

n
∑

k=1

cijk(h)h
′
kṡh

′
j ṡ

=

(

n
∑

j=1

n
∑

k=1

cijk(h)h
′
kh

′
j

)

ṡ2, i = 1, . . . , n.

It is then clear that the second term in (2.7) can be written as C (h(s),h′(s))h′(s)ṡ2. Like-
wise, since ṡ > 0 will be enforced, then FC sign(h′(s)ṡ) = FC sign(h′(s)).

With all the above provisos in mind, equation (2.7) is written as:

τd = a1(s)s̈+ a2(s)ṡ
2 + a3(s)ṡ+ a4(s), (2.8)

where ai(s) ∈ R
n, i = 1, . . . , 4, are defined as:

a1(s) := M (h(s))h′(s)

a2(s) := M (h(s))h′′(s) +C (h(s),h′(s))h′(s)

a3(s) := Dvh
′(s)

a4(s) := FC sign (h′(s)) + g (h(s)) .

(2.9)

Note that ai(s), i = 1, . . . , 4, can be entirely pre-computed since h(s), h′(s), and h′′(s) are
already known. The unknowns in parametrization (2.8) are s̈, ṡ2, ṡ, and τd, which means we
can optimize over these variables (pseudo-acceleration, pseudo-speed, and open-loop torques
τd), so as to minimize the total traversal time along h(s).

2.2.2 Formulation as a Mathematical Optimization Problem

Consider defining a(s) := s̈, b(s) := ṡ2, c(s) := ṡ, and τd(s), which are to be determined as
functions of s. Since a one-to-one relationship between s and t will be enforced (i.e., ṡ > 0),
finding the unknowns as functions of s implies that they can be unambiguously recovered as
functions of t. In this manner, τd(s) has a simple affine parametrization in a(s), b(s), and
c(s), namely:

τd(s) = a1(s)a(s) + a2(s)b(s) + a3(s)c(s) + a4(s) (2.10)

Likewise, with the definitions of a(s), b(s), and c(s), two additional constraints must be
incorporated: (i) ḃ(s) = b′(s)ṡ = 2ṡs̈ ⇔ b′(s) = 2a(s) if ṡ > 0, (ii) c(s) =

√

b(s).
On the other hand, the total traversal time, which is to be minimized, is denoted by tf ,

and it can be rewritten in a different manner. Using the fact that ṡ > 0:

tf =

∫ tf

0

dt =

∫ 1

0

(

ds

dt

)−1

ds =

∫ 1

0

1

c(s)
ds. (2.11)

CHAPTER 2. TIME-OPTIMAL TRAJECTORY PLANNING ALONG

PREDETERMINED PATHS 14

Interpretation of (2.11) follows, i.e., in order to minimize the total traversal time tf , the
pseudo-speed along the path c(s) = ṡ must be as large as possible. It is therefore clear at
this point that the torque limit constraints, τ ≤ τd(s) ≤ τ , are necessary to incorporate in
order to have finite solutions that guarantee tf > 0.

It is important to consider the case when the initial and final pseudo-speeds are zero,
i.e., ṡ0 = ṡf = 0. In that case, it is clear that the objective functional (2.11) is unbounded
above. In order to overcome this limitation, the integral in (2.11) is defined instead in the
interval [0+, 1−], where 0+ and 1− will be formally defined in Section 2.4.

With all the above considerations, we are in a position to formulate the time-optimal
trajectory planning problem stated previously in this chapter, as the following mathematical
optimization problem:

minimize
a(s),b(s),c(s),τd(s)

∫ 1−

0+

1

c(s)
ds

subject to b(0) = ṡ20, b(1) = ṡ2f

c(0) = ṡ0, c(1) = ṡf

τd(s) = a1(s)a(s) + a2(s)b(s) + a3(s)c(s) + a4(s)

τ ≤ τd(s) ≤ τ

∀s ∈ [0, 1]

b′(s) = 2a(s), c(s) =
√

b(s)

b(s), c(s) > 0 (2.12)

∀s ∈ [0+, 1−]

which essentially aims to obtaining the optimal pseudo-acceleration, pseudo-speed, and op-
timal torques along the path h(s). Therefore, if solved, problem (2.12) will yield optimal
solutions that attain motion in the shortest time dynamically possible.

Problem (2.12) is an infinite dimensional optimization problem [27], but it can also be
viewed as an optimal control problem: with control input a(s), linear differential constraint
b′(s) = 2a(s), and algebraic state equalities and inequality constraints [21]. We turn our
attention to analyzing some of the properties of problem (2.12), which will motivate the
forthcoming development. The following properties are true about formulation (2.12):

1. The objective functional is convex in c(s). To argue why, consider the function f(c) =
1/c, c > 0, which is trivially a convex function. Since the non-negative weighted sum of
convex functions is convex [11], then it follows that the objective functional of problem
(2.12) is convex.

2. All inequality constraints are affine.

3. The differential equality constraint is linear and the constrained robot dynamics is an
affine equality constraint.

CHAPTER 2. TIME-OPTIMAL TRAJECTORY PLANNING ALONG

PREDETERMINED PATHS 15

4. The only nonlinear equality constraint is c(s) =
√

b(s) ∀s ∈ (0, 1).

It is then easy to argue that formulation (2.12) is a non-convex optimization problem [27, 8,
11]. The non-convexity of (2.12) is due to the non-linear equality constraint c(s) =

√

b(s)
∀s ∈ [0, 1], which shows up because viscous friction has been considered in the design.
For fast motions of robot manipulators, we will see that viscous friction becomes rather
significant, even more significant than Coulomb friction. Therefore, instead of ignoring this
term, a convex relaxation that solves exactly the non-convex formulation (2.12) is proposed.

2.3 Convex Relaxation

In principle, even though formulation (2.12) is non-convex, we could directly discretize it
and attempt to obtain a numerical solution using general nonlinear optimization algorithms,
such as sequential convex optimization [11, 28]. However, there are several important reasons
for obtaining a convex formulation. One such reason is that the optimal solution is a global
minimum which is obtained rather fast since only one optimization is needed, as opposed
to sequentially solve several optimizations. That being said, we develop a formulation that
derives from (2.12) but that turns out to be convex, thereby the name convex relaxation.
Essentially, each non-convex constraint is replaced with a looser, but convex constraint. Re-
laxing a problem to make it convex is a common mathematical optimization technique when
dealing with non-convex hard problems. For instance, the two-way partitioning problem,
which is considered very difficult to solve [11], is approximated by a convex relaxation that
can therefore be solved efficiently. In general, the convex relaxation does not have to solve
exactly the original non-convex problem, i.e., it all depends on the problem at hand.

Since b(s), c(s) > 0 for all s ∈ [0+, 1−], the following chain of equivalences is true:3

√

b(s) = c(s) ⇔
1

√

b(s)
=

1

c(s)

⇔
1

√

b(s)
≤

1

c(s)
and

1

c(s)
≤

1
√

b(s)

⇔ c(s)2 − b(s) ≤ 0 and − c(s)2 + b(s) ≤ 0,

where the inequality constraint c(s)2 − b(s) ≤ 0 is convex for all s ∈ [0+, 1−].
4 On the other

hand, −c(s)2 + b(s) ≤ 0 is a concave inequality constraint.5

Having concave inequality constraints in an optimization problem implies that the overall
problem is non-convex, even if the other constraints and the objective function are convex.

3We have used the simple fact that, satisfying any equality constraint, say f1(x) = f2(x) is equivalent to
satisfying two inequality constraints, namely: f1(x) ≤ f2(x) and f1(x) ≥ f2(x) ⇔ f1(x) = f2(x).

4This can be simply shown by considering f(b, c) = c2 − b, whose Hessian matrix ∂2f/∂(b, c)2 is positive
semidefinite, whereby we conclude f(b, c) is a convex function of b, c [11].

5In an optimization problem, an inequality constraint of the form g(x) ≤ 0 is convex if the function g(x)
is convex. If on the other hand the function g(x) is concave, then the inequality constraint is concave.

CHAPTER 2. TIME-OPTIMAL TRAJECTORY PLANNING ALONG

PREDETERMINED PATHS 16

The convex relaxation of (2.12) that we propose in this dissertation, consists in dropping
the concave constraint. In other words, replace the equality constraint c(s) =

√

b(s), ∀s ∈

(0, 1) in (2.12) with the convex inequality constraint 1/
√

b(s) ≤ 1/c(s), ∀s ∈ [0+, 1−]. The
following is therefore a convex optimization problem:

minimize
a(s),b(s),c(s),τd(s)

∫ 1−

0+

1

c(s)
ds

subject to b(0) = ṡ20, b(1) = ṡ2f

c(0) = ṡ0, c(1) = ṡf

τd(s) = a1(s)a(s) + a2(s)b(s) + a3(s)c(s) + a4(s)

τ ≤ τd(s) ≤ τ

∀s ∈ [0, 1]

b′(s) = 2a(s), 1/
√

b(s) ≤ 1/c(s)

b(s), c(s) > 0 (2.13)

∀s ∈ [0+, 1−]

which is the convex relaxation of problem (2.12).
We argue that an optimal solution a⋆(s), b⋆(s), c⋆(s), τ ⋆

d (s), to the convex relaxation
(2.13), will also solve exactly the original non-convex problem (2.12). Because the functional
in problem (2.13) is minimized and since c(s) > 0, at optimum the inequality 1/

√

b(s) ≤

1/c(s) must be active, i.e., 1/
√

b⋆(s) = 1/c⋆(s) ∀s ∈ [0+, 1−]. This entails that for all
s ∈ [0, 1] the solution a⋆(s), b⋆(s), c⋆(s), τ ⋆

d (s) to the convex relaxation (2.13) solves exactly
the non-convex problem (2.12). This is the reason that motivated us to propose the original
formulation in (2.12) precisely as it is.

2.3.1 Infinite-dimensional Second Order Cone Program

Formulation

Here we obtain a convenient re-formulation of problem (2.13) that will allow to use available
software for convex optimization problems. Before doing so, it is worthwhile explaining how
come problem (2.13) is infinite dimensional. The reason for the term infinite dimensional is
that the parameter s varies continuously in the open interval (0, 1), which implies that, say,
the constraint 1/

√

b(s) ≤ 1/c(s), ∀s ∈ (0, 1) represents an infinite number of constraints.
The same can be said about all the other constraints in problem (2.13).

However, if we grid the parameter s, into a finite set of points s1, s2, . . . , sN , then a finite
number of constraints 1/

√

b(sk) ≤ 1/c(sk), k = 1, . . . , N , are obtained, which is essentially
the method to discretize optimal control problems [8]. This is what will be done in the
discretization section of this dissertation. However, instead of going straight to discretize
optimization problem (2.13), a more convenient infinite dimensional formulation, which will
make our discretization procedure straightforward and clear, will be developed first.

CHAPTER 2. TIME-OPTIMAL TRAJECTORY PLANNING ALONG

PREDETERMINED PATHS 17

A second-order cone program (SOCP) is a special class of convex optimization problems
of the form:

minimize f⊤x

subject to ‖Aix+ bi‖2 ≤ c⊤i x+ di, i = 1, . . . , m

Fx = g,

(2.14)

where x ∈ R
n is the optimization variable, Ai ∈ R

ni×n, and F ∈ R
p×n. The constraint of the

form ‖Ax+ b‖2 ≤ c⊤x+ d, is called a second-order cone constraint.
We would like to express problem (2.13) as an infinite dimensional SOCP. To do so, it

is realized first that the convex constraint 1/
√

b(s) ≤ 1/c(s), ∀s ∈ (0, 1) can be expressed
as an infinite dimensional second-order cone constraint.6 Therefore, the following chain of
equivalences is true, ∀s ∈ [0+, 1−]:

1
√

b(s)
≤

1

c(s)
⇔ c(s)2 ≤ b(s) · 1

⇔

∥

∥

∥

∥

[

2c(s)
b(s)− 1

]∥

∥

∥

∥

2

≤ b(s) + 1, ∀s ∈ [0+, 1−], (2.15)

which is an infinite-dimensional SOC constraint. Likewise, in order to have a linear objective
functional, assume there exists a “slack” function d(s) > 0 satisfying d(s) ≥ 1/c(s), ∀s ∈
[0+, 1−], then note that:

d(s) ≥
1

c(s)
⇔ 1 ≤ c(s)d(s)

⇔

∥

∥

∥

∥

[

2
c(s)− d(s)

]∥

∥

∥

∥

2

≤ c(s) + d(s), ∀s ∈ [0+, 1−], (2.16)

which is also second-order cone constraint. Therefore, problem (2.13) is transformed into
the following equivalent problem:

minimize
a(s),b(s),c(s),τd(s),d(s)

∫ 1−

0+

d(s) ds

subject to b(0) = ṡ20, b(1) = ṡ2f

c(0) = ṡ0, c(1) = ṡf

τd(s) = a1(s)a(s) + a2(s)b(s) + a3(s)c(s) + a4(s)

τ ≤ τd(s) ≤ τ

∀s ∈ [0, 1]

b′(s) = 2a(s)
∥

∥

∥

∥

[

2c(s)
b(s)− 1

]∥

∥

∥

∥

2

≤ b(s) + 1

6Essentially the following simple fact is used [29]: w2 ≤ xy, x > 0, y > 0 ⇔

∥

∥

∥

∥

[

2w
x− y

]∥

∥

∥

∥

2

≤ x+ y.

CHAPTER 2. TIME-OPTIMAL TRAJECTORY PLANNING ALONG

PREDETERMINED PATHS 18
∥

∥

∥

∥

[

2
c(s)− d(s)

]∥

∥

∥

∥

2

≤ c(s) + d(s)

b(s), c(s) > 0 (2.17)

∀s ∈ [0+, 1−],

which is in fact an infinite-dimensional version of an SOCP. Notice that formulation (2.17)
has a linear objective functional, affine equality and inequality constraints, second-order cone
constraints, and linear differential constraint. It is therefore expected that when discretized,
the discretization will produce an SOCP of the form (2.14), which will then be readily coded
using available software for second-order cone programs, such as CVX [30].

2.4 Problem Discretization

From a theoretical point of view, optimization problem (2.17) represents modest but im-
portant progress, since it solves the problem of time-optimal trajectory planning with the
complete dynamic model (2.5). Likewise, it has many desirable properties that come with
a convex optimization problem. However, from a practical perspective, it still represents
a challenge to obtain analytic expressions for the optimal functions a⋆(s), b⋆(s), c⋆(s) and
τ ∗(s) for s ∈ [0, 1]. We therefore have to resort to numerical methods. One method for
numerically solving problem (2.17), requires the use of calculus of variations making use of
the Maximum Principle [31, 27].

The method adopted in this dissertation consists in casting (2.17) as a large-scale convex
optimization. This approach from numerical optimal control is termed direct collocation,
which is a discretization scheme aimed to obtain a numerical solution [8]. As discussed in
Chapter 3, it will be important to impose acceleration constraints to guarantee exact zero
acceleration at the beginning and end of the trajectory. Unlike the approach in [10], where
a(s) was assumed piecewise constant and b(s) piece-wise linear, we follow the approach
to solve optimal control problems presented in [32]. This approach, also known as cubic
collocation at Lobatto points, allows to enforce that a(s) be piece-wise linear and that b(s)
be piece-wise quadratic. This makes the discretization procedure transparent and facilitates
the incorporation of the required acceleration constraints in a straightforward manner.

2.4.1 Cubic Collocation at Lobatto Points

First, the independent parameter of (2.17), which in this case is s, must be discretized.
This discretization is done by creating a grid of the path parameter s with N points, s1 =
0 < s2 < · · · < sN = 1. Then, the optimization variables are defined in the following
manner: a1 = a(s1), . . . , aN = a(sN), b1 = b(s1), . . . , bN = b(sN), c1 = c(s1), . . . , cN = c(sN),
d1 = d(s1), . . . , dN = d(sN), τ

1 = τd(s1), . . . , τ
N = τd(sN), which represent the functions

a(s), b(s), c(s), d(s), and τd(s) evaluated at the grid points s1 < s2 < · · · < sN . It is assumed
that b(s) and a(s) are piecewise cubic and piecewise linear, respectively.

CHAPTER 2. TIME-OPTIMAL TRAJECTORY PLANNING ALONG

PREDETERMINED PATHS 19

The pseudo-acceleration a(s) in (2.17) being piecewise linear means:

a(s) = aj + (aj+1 − aj)

(

s− sj
sj+1 − sj

)

, s ∈ [sj , sj+1], (2.18)

j = 1, 2, . . . , N − 1, from which it is noticed that indeed a(sj) = aj and a(sj+1) = aj+1. The
squared pseudo-speed b(s) is chosen as piecewise cubic, i.e.,

b(s) =

3
∑

k=0

βj,k

(

s− sj
sj+1 − sj

)k

, s ∈ [sj , sj+1] (2.19)

j = 1, 2, . . . , N − 1, where the polynomial coefficients βj,0, βj,1, βj,2, and βj,3 need to be
determined explicitly. According to the method presented in [32], the above representation
for b(s) must satisfy b(sj) = bj , b(sj+1) = bj+1, b

′(sj) = 2a(sj), and b′(sj+1) = 2a(sj+1),
which gives 4 equations for the four unknowns βj,0, βj,1, βj,2, and βj,3. After solving, this
simple system of equations, it is obtained:

βj,0 = bj ,

βj,1 = 2∆sjaj

βj,2 = 3(bj+1 − bj)− 2∆sj(aj+1 + 2aj)

βj,3 = 2∆sj(aj+1 + aj)− 2(bj+1 − bj),

(2.20)

where ∆sj := sj+1 − sj , j = 1, 2, . . . , N − 1.
A requirement on the approximating functions of a(s) and b(s) in (2.18)-(2.19) is that

they satisfy b′(s) = 2a(s) at the grid points sj, j = 1, . . . , N , and at the mid grid points. In
this dissertation, we define the mid grid points as s̄j := (sj + sj+1)/2, j = 1, . . . , N − 1. The
coefficients βj,0, βj,1, βj,2, and βj,3 given above already guarantee fulfillment of the constraints
at grid points sj. Therefore, the only constraints that need to be incorporated result from
requiring b′(s̄j) = 2a(s̄j), j = 1, . . . , N−1. After standard algebraic simplifications, we show
that b′(s̄j) = 2a(s̄j) is equivalent to:

bj+1 − bj = ∆sj(aj+1 + aj), j = 1, . . . , N − 1. (2.21)

Interestingly enough, these constraints imply that the coefficient βj,3 in (2.20) shall be zero,
which means b(s) will turn out to actually be piecewise quadratic. This result could have
been anticipated since we are discretizing b′(s) = 2a(s). Likewise, since c(s)2 = b(s), it is
then reasonable to assume c(s) is piecewise linear.

At this point, the only differential constraint in (2.17) has been discretized using the
above procedure. Before moving on to discretizing the objective functional, we define 0+ :=
(1−α)s1+αs2 and 1− := (1−α)sN +αsN−1, with α > 0 being a small adjustable parameter.
The objective functional in (2.17) is therefore discretized simply as follows:

∫ 1−

0+

d(s) ds =

∫ s2

0+

d(s) ds

+

N−2
∑

k=2

∫ sk+1

sk

d(s) ds+

∫ 1−

sN−1

d(s) ds

CHAPTER 2. TIME-OPTIMAL TRAJECTORY PLANNING ALONG

PREDETERMINED PATHS 20

≈
1

2
[(1− α)∆s1(d(0+) + d2)

+

N−2
∑

k=2

∆sk(dk + dk+1) (2.22)

+ (1− α)∆sN−1(dN−1 + d(1−))] ,

where d(0+) = (1−α)d1+αd2 and d(1−) = αdN−1+(1−α)dN . The rest of the constraints in
problem (2.17) are discretized by simply being evaluated at the grid points sj , j = 1, . . . , N .
For those constraints that are not defined at s1 = 0 and sN = 1, they are evaluated at 0+
and 1− instead. Therefore, the following convex optimization problem is obtained:

minimize
ak,bk,ck,τk ,dk

1

2
[(1− α)∆s1(d(0+) + d2)

+

N−2
∑

k=2

∆sk(dk + dk+1)

+ (1− α)∆sN−1(dN−1 + d(1−))]

subject to b1 = ṡ20, bN = ṡ2f

c1 = ṡ0, cN = ṡf

τ k = a1(sk)ak + a2(sk)bk + a3(sk)ck + a4(sk)

τ ≤ τ k ≤ τ
∥

∥

∥

∥

[

2ck
bk − 1

]∥

∥

∥

∥

2

≤ bk + 1

for k = 1, . . . , N

bj+1 − bj = ∆sj(aj+1 + aj)

for j = 1, . . . , N − 1

bl > 0, cl > 0
∥

∥

∥

∥

[

2
cl − dl

]∥

∥

∥

∥

2

≤ cl + dl (2.23)

for l = 2, . . . , N − 1
∥

∥

∥

∥

[

2
c(0+)− d(0+)

]∥

∥

∥

∥

2

≤ c(0+) + d(0+)

∥

∥

∥

∥

[

2
c(1−)− d(1−)

]∥

∥

∥

∥

2

≤ c(1−) + d(1−),

where c(0+) = (1 − α)c1 + αc2 and c(1−) = αcN−1 + (1 − α)cN . The discretized problem
(2.23) is a second order cone program (SOCP), which is a special class of convex optimization
problems [10, 11, 29].

CHAPTER 2. TIME-OPTIMAL TRAJECTORY PLANNING ALONG

PREDETERMINED PATHS 21

When solved, problem (2.23) produces a “batch” solution to the original infinite dimen-
sional problem (2.17). Therefore, by appropriately selecting the grid size ∆sj (small enough),
the discrete solution represents an accurate approximation to the infinite-dimensional one.
Clearly, there is a trade-off in selecting ∆sj, i.e., the smaller, the better the approximation.
However, as ∆sj becomes smaller, the number of optimization variables and constraints in
(2.23) increases, which in turn make the computation time for finding a solution larger.
To better explain this fact, it is important to emphasize that problem (2.23) is simply a
meaningful manner to express the standardly used model in convex optimization [11]:

minimize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , m

gj(x) = 0, j = 1, . . . , p

where the optimization variable x in (2.23) is the following large-scale vector:

x :=
[

a1, . . . , aN , b1, . . . , bN , c1, . . . , cN , τ
1, . . . , τN , d1, . . . , dN

]⊤
∈ R

(4+n)N .

Optimization problem (2.23) is readily coded and solved using CVX, which is a MATLABr

software for discipline convex optimization [30]. Notice that by solving problem (2.23), the
optimal functions a⋆(s), b⋆(s), c⋆(s), d⋆(s), and τ ⋆

d (s), evaluated at the grid s1 = 0 < s2 <
· · · < sN = 1, are obtained. Recall however, that the original problem statement was to
obtain the time-optimal 4-tuple (q⋆

d(t), q̇
⋆
d(t), q̈

⋆
d(t), τ

⋆
d (t)). Since a one-to-one correspon-

dence between s and t is enforced in problem (2.23) (i.e., ṡ > 0), there is no ambigu-
ity in recovering the time-optimal 4-tuple from (2.6). In other words, q̇⋆

d = h′(s)c⋆(s),
q̈⋆
d = h′′(s)b⋆(s) + h′(s)a⋆(s).
To complete our algorithm, we must obtain the time t as a function of s. To do so,

consider the following:

ds

dt
= ṡ ⇔

dt

ds
=

1

c(s)
, c(s) > 0

⇔ t(s) = t(0+) +

∫ s

0+

1

c(u)
du.

Then,

t(s2) = t(0+) +

∫ s2

0+

1

c(u)
du

t(s3) = t(s2) +

∫ s3

s2

1

c(u)
du

...

t(sk) = t(sk−1) +

∫ sk

sk−1

1

c(u)
du, k = 2, . . . , N.

CHAPTER 2. TIME-OPTIMAL TRAJECTORY PLANNING ALONG

PREDETERMINED PATHS 22

0.8
0.9

1
1.1

1.2
1.3

−1

−0.5

0

0.5

1
0.5

1

1.5

x (m)
y (m)

z
(m

)

(a) Cartesian-space path with control points

0 0.2 0.4 0.6 0.8 1
−1

0
1
2
3

0 0.2 0.4 0.6 0.8 1
−20

0

20

0 0.2 0.4 0.6 0.8 1
−1000

0

1000

s (-)

h
(s
)
(r
a
d
)

h
′
(s
)

h
′
′
(s
)

h1 h2 h3 h4 h5 h6

(b) Joint-space path h(s), h′(s) and h′′(s)

Figure 2.1: Non-trivial path used to test the time-optimal trajectory planning algorithm. A
total of 33 control points are interpolated using cubic splines. This interpolation is done for
both the Cartesian path as well as the Euler angle parametrization of end-effector orientation.

Likewise, at optimum, 1/c(s) = d(s), then:

t(sk) = t(sk−1) +

∫ sk

sk−1

d(u) du

= t(sk−1) +
1

2
∆sk−1(dk−1 + dk). (2.24)

Therefore, time t is recovered with the following steps: (i) initialize t(s1) = 0, (ii) for
k = 2, . . . , N , compute t(sk) using the recursive formula (2.24).

2.5 Application to a 6-axis Industrial Manipulator

The time-optimal 4-tuple (q⋆
d(t), q̇

⋆
d(t), q̈

⋆
d(t), τ

⋆
d (t)) is generated for a 6-axis industrial ma-

nipulator, namely, FANUC M-16iB. A non-trivial path with non-constant orientation of the
end-effector is designed. The Cartesian-space path is shown in Fig. 2.1(a), where both the
initial and final path points correspond to the home configuration, which is marked with
an asterisk ‘*’. This path is designed by choosing 33 control points, marked with ‘·’ in
Fig. 2.1(a), which are then interpolated using cubic splines to satisfy the differentiability
requirement on h(s) [33, 34]. Likewise, Euler angles are used to parameterize orientation of
the end-effector, which are also interpolated using cubic splines from a set of control points
that represent intermediate orientations.

A total of N = 1200 points are used to discretize the parameter s. In other words, from
the 33 control points shown in Fig. 2.1(a), cubic splines are used to interpolate and therefore

CHAPTER 2. TIME-OPTIMAL TRAJECTORY PLANNING ALONG

PREDETERMINED PATHS 23

0 0.5 1 1.5 2 2.5 3
−10

−5

0

5

10

0 0.5 1 1.5 2 2.5 3

−2

0

2

u⋆
1 u⋆

2 u⋆
3

u⋆
4 u⋆

5 u⋆
6

G
−
1
τ

⋆ d
(t
)
(N

m
)

G
−
1
τ

⋆ d
(t
)
(N

m
)

t (sec)

(a) Motor-side time-optimal torques, u⋆
d
= G−1τ ⋆

d
(t)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

0 0.2 0.4 0.6 0.8 1

−5

0

5

c⋆(s)
√

b⋆(s)

s (-)

s (-)

s
(-
)

t (sec)

ṡ
(1
/
se
c)

s̈
(1
/
se
c2
)

(b) Pseudo-speed and pseudo-acceleration

Figure 2.2: Time-optimal solutions generated when solving problem (2.23). The time-
optimal torques are presented in motor-side scale. Notice that the parameter s increases
monotonically as t increases, i.e., ṡ > 0 ∀t ∈ (0, tf).

obtain the path at 1200 points. Once these 1200 points are obtained in both Cartesian
coordinates and Euler angles, the Robotics Toolbox for MATLABr is used to carry out
computations of inverse kinematics [35, 1]. In Fig. 2.1(b), the resulting joint-space path,
which includes h(s), h′(s), h′′(s), are presented for all six joints of the manipulator. Having
h(s), h′(s), h′′(s), implies that a1(sk), a2(sk), a3(sk), and a4(sk), k = 1, . . . , 1200, defined
in (2.9), can be computed from inverse dynamics computations using the Newton-Euler
algorithm [35]. The average time to carry out these computations for the 6-axis manipulator
is 0.7 seconds.

In general the initial and final pseudo-speeds ṡ0 and ṡf do not have to be zero, however,
it is our interest in this dissertation to enforce them to be zero, i.e., ṡ0 = ṡf = 0. The torque
constraints are symmetric, i.e., τ = −τ , where τ are computed as follows: for the j-th motor,
τ j = (1/4)rjkji

max
j , where rj is the gear ratio, kj is the torque-current constant, and imax

j the
maximum current. The resulting vector is τ = (1782.4 1789.7 1647.2 97.2 108.5 79.1)⊤ Nm,
which represents the maximum torques at the link-side, (i.e., at the reducers output which
couple directly to the robot links). The corresponding maximum torques at the motor-side,
i.e., at the reducers input, are u = G−1τ = (10.21 10.21 8.60 4.30 1.58 1.58)⊤ Nm, where G
is the matrix of gear ratios, G = diag(r1, . . . , r6).

2.5.1 Algorithm Results

The time-optimal solutions, generated when solving problem (2.23), are presented in Fig. 2.2.
The total traversal time is tf = 3.447 seconds, which represents the fastest solution with the

CHAPTER 2. TIME-OPTIMAL TRAJECTORY PLANNING ALONG

PREDETERMINED PATHS 24

assumed parameters and subject to dynamic model (2.5). Notice that all computations
in problem (2.23) are carried out in the link-side, i.e., using τ and τ . Therefore, τ ⋆

d is
generated when solving (2.23), however, we present the results in the motor-side, namely,
u⋆

d = G−1τ ⋆
d (t). The reason is that we want consistency when presenting simulation and

experimental results later in this and subsequent chapters, all of which shall be presented in
motor-side.

The motor-side time-optimal torques are shown in Fig. 2.2(a). Notice how these torques
feature bang-bang behavior, i.e., there is always one actuator that saturates. For this specific
scenario, either u⋆

1 or u⋆
2 saturates. In other words, ∀t ∈ [0, tf], u

⋆
1 saturates when u⋆

2 does
not, and vice versa. Also notice that even though the other actuators do not saturate, they
are required to change suddenly exactly at those instants when u⋆

1 and u⋆
2 exchange being

saturated. The corresponding s(t), pseudo-speed, and pseudo-acceleration are all presented
in Fig. 2.2(b). Both c⋆(s) and

√

b⋆(s) are plotted together, so that they can be compared.

It is observed that c⋆(s) =
√

b⋆(s) ∀s ∈ [0, 1], as predicted by our earlier argument. This
confirms that indeed, the proposed convex relaxation (2.17), or equivalently its discretized
version (2.23), solves exactly the original non-convex problem (2.12).

The time-optimal trajectory (q⋆
d(t), q̇

⋆
d(t), q̈

⋆
d(t)) is presented in Fig. 2.3. From the time-

optimal acceleration in Fig. 2.3(c), we realize how time-optimal solutions require very large
accelerations at the beginning/end of the trajectory, which is unrealistic since in actuality
no actuators can produce such large accelerations instantly. Likewise, sudden acceleration
changes are required at intermediate points. These two aspects will motivate our develop-
ment in Chapter 3, but for now we continue analyzing the results and implications of purely
time-optimal solutions.

2.5.2 Dynamic Feasibility

Recall the original problem statement, in which it was desired to obtain a 4-tuple (q⋆
d(t), q̇

⋆
d(t),

q̈⋆
d(t), τ

⋆
d (t)) that achieves motion in the shortest time possible along a path h(s), and

that guaranties dynamic feasibility with respect to the complete dynamic model (2.5).
At this point, it is clear that we have developed a methodology that obtains a 4-tuple
(q⋆

d(t), q̇
⋆
d(t), q̈

⋆
d(t), τ

⋆
d (t)). However, this 4-tuple was obtained rather indirectly:

1. The problem was conveniently formulated as an infinite-dimensional optimal control
problem (2.12), where the parameter s played the role of the independent variable.

2. An infinite-dimensional convex relaxation was proposed (2.17), that aimed at solving
the original non-convex formulation.

3. A discretization scheme was proposed (2.23), to obtain a numerical solution of (2.17).

4. The trajectory (q⋆
d(t), q̇

⋆
d(t), q̈

⋆
d(t)) was recovered using (2.6), i.e., q̇⋆

d = h′(s)c⋆(s),
q̈⋆
d = h′′(s)b⋆(s) + h′(s)a⋆(s).

5. Time t was recovered from (2.24).

CHAPTER 2. TIME-OPTIMAL TRAJECTORY PLANNING ALONG

PREDETERMINED PATHS 25

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

t (sec)

q
⋆ d
(t
)
(r
a
d
)

q⋆1 q⋆2 q⋆3 q⋆4 q⋆5 q⋆6

(a) Time-optimal position reference q⋆
d
(t)

0 0.5 1 1.5 2 2.5 3

−2

0

2

0 0.5 1 1.5 2 2.5 3

−2

−1

0

1

2

t (sec)

q̇
⋆ d
(t
)
(r
a
d
/
se
c)

q̇
⋆ d
(t
)
(r
a
d
/
se
c)

q̇⋆1 q̇⋆2 q̇⋆3

q̇⋆4 q̇⋆5 q̇⋆6

(b) Time-optimal velocity reference q̇⋆
d
(t)

0 0.5 1 1.5 2 2.5 3

−20

−10

0

10

20

0 0.5 1 1.5 2 2.5 3
−40

−20

0

20

t (sec)

q̈
⋆ d
(t
)
(r
a
d
/
se
c2
)

q̈
⋆ d
(t
)
(r
a
d
/
se
c2
) q̈⋆1 q̈⋆2 q̈⋆3

q̈⋆4 q̈⋆5 q̈⋆6

(c) Time-optimal acceleration reference q̈⋆
d
(t)

Figure 2.3: Time-optimal trajectory (q⋆
d(t), q̇

⋆
d(t), q̈

⋆
d(t)).

It is then important to verify that the 4-tuple (q⋆
d(t), q̇

⋆
d(t), q̈

⋆
d(t), τ

⋆
d (t)) is indeed dynamically

feasible with respect to dynamics model (2.5). A substantial amount of effort was spent to
ensure that dynamic feasibility is always achieved.

The dynamic feasibility of the 4-tuple (q⋆
d(t), q̇

⋆
d(t), q̈

⋆
d(t), τ

⋆
d (t)) is verified by utilizing

(q⋆
d(t), q̇

⋆
d(t), q̈

⋆
d(t)) to compute the torques τ (t)feas using the dynamic model (2.5); the re-

sulting τ (t)feas are then compared against τ ⋆
d (t). It turns out, in all cases for this and next

chapter, τ ⋆
d (t) − τ (t)feas = 0 ∀t ∈ [0, tf], which means that our algorithm indeed generates

optimal 4-tuples that are exactly dynamically feasible with respect to the dynamic model
(2.5). Figure 2.4 shows τ (t)feas and τ ⋆

d (t) plotted together for all six joints of the manipulator.

CHAPTER 2. TIME-OPTIMAL TRAJECTORY PLANNING ALONG

PREDETERMINED PATHS 26

0 0.5 1 1.5 2 2.5 3

−1000

0

1000

0 0.5 1 1.5 2 2.5 3

−1000

0

1000

0 0.5 1 1.5 2 2.5 3
−400
−200

0
200
400
600
800

t (sec)

τ (t)feas τ ⋆
d (t)

τ
1
(N

m
)

τ
2
(N

m
)

τ
3
(N

m
)

0 0.5 1 1.5 2 2.5 3

−50

0

50

0 0.5 1 1.5 2 2.5 3

−50

0

50

0 0.5 1 1.5 2 2.5 3
−50

0

50

t (sec)

τ (t)feas τ ⋆
d (t)

τ
4
(N

m
)

τ
5
(N

m
)

τ
6
(N

m
)

Figure 2.4: Dynamic feasibility verification of the time-optimal 4-tuple solution (q⋆
d(t), q̇

⋆
d(t),

q̈⋆
d(t), τ

⋆
d (t)). Exact dynamic feasibility is achieved for all six joints, i.e., τ ⋆

d (t)− τ (t)feas = 0

∀t ∈ [0, tf]

2.6 Simulation of Time-optimal Solution

In order to study the effects of implementing the time-optimal 4-tuple (q⋆
d(t), q̇

⋆
d(t), q̈

⋆
d(t),

τ ⋆
d (t)), simulations are carried out. A Robot Simulator in MATLABr that uses Simulinkr

and SimMechanicsTM has been developed in our research group. This Simulator incorporates
real robot dynamic effects that are not considered in the dynamic model (2.5), for instance,
joint flexibility due to indirect drives. Throughout this dissertation, the link-side and motor-
side positions shall be denoted by q and θ, respectively. On the other hand, the link-side and
motor-side actuator torques will be denoted by τ and u, respectively, which we have used
already. The control law implemented in the motor-side is given by a feedforward torque
plus a feedback:

u = u⋆
d(t) +KPθ̃ +KV

˙̃
θ +KI

∫ t

0

θ̃(v) dv, (2.25)

where the feedforward torques u⋆
d(t) represent the motor-side optimal torques, i.e., u⋆

d(t) =
G−1τ ⋆

d (t). The motor-side tracking error is defined as θ̃(t) := θd(t)−θ(t), where the motor-
side reference is simply θd(t) = Gq⋆

d(t). The feedback gains KP, KV, and KI are constant
for both simulations and experiments.

The motor-side applied torques, computed from control law (2.25) and denoted by u(t)ap,
are presented in Fig. 2.5(a). Comparing to the feedforward torques u⋆

d(t) in Fig. 2.2(a), no-
tice that the applied torques u(t)ap feature large peaks at those instants when u⋆

d(t) change
suddenly. This implies that the actuators limits, u, u, are exceeded, which in turn violates
one of the original objectives, namely, u ≤ u(t)ap ≤ u. Likewise, the readings of a 3-axis ac-
celerometer mounted at the end-effector are shown in Fig. 2.5(a). A similar effect is induced,
i.e., at those instants when u⋆

d(t) change suddenly, the end-effector acceleration changes sud-

CHAPTER 2. TIME-OPTIMAL TRAJECTORY PLANNING ALONG

PREDETERMINED PATHS 27

0 0.5 1 1.5 2 2.5 3

−10

0

10

20

0 0.5 1 1.5 2 2.5 3

−2

0

2

0 0.5 1 1.5 2 2.5 3
−40

−20

0

20

40

u
ap
1 u

ap
2 u

ap
3

u
ap
4 u

ap
5 u

ap
6

ẍ ÿ z̈

u
(t
)a

p
(N

m
)

u
(t
)a

p
(N

m
)

ẍ
(t
)
(m

/
se
c2
)

t (sec)

(a) Applied torques and accelerometer readings

0 0.5 1 1.5 2 2.5 3

−10

−5

0

5
x 10

−3

0 0.5 1 1.5 2 2.5 3

−0.05

0

0.05

0 0.5 1 1.5 2 2.5 3

−0.04

−0.02

0

θ̃1 θ̃2 θ̃3

θ̃4 θ̃5 θ̃6

x̃ ỹ z̃
θ̃
(t
)
(r
a
d
)

θ̃
(t
)
(r
a
d
)

x̃
(t
)
(m

)

t (sec)

(b) Motor-side and Cartesian-space tracking errors

0 0.5 1 1.5 2 2.5 3
−10

−5

0

5

0 0.5 1 1.5 2 2.5 3

−2

−1

0

1

ufb
1 ufb

2 ufb
3 ufb

4 ufb
5 ufb

6

u
(t
)f
b
(N

m
)

u
(t
)f
b
(N

m
)

t (sec)t (sec)

(c) PID feedback torques, u(t)fb

Figure 2.5: Simulation results for the time-optimal trajectory.

denly and large peaks (overshoots) show up. These sudden changes in acceleration will most
likely excite oscillation modes due to indirect drive trains for the real system.

Both the joint-space motor-side tracking error θ̃(t) and the Cartesian-space tracking error
x̃(t), are presented in Fig. 2.5(b). Due to the non-zero initial and final accelerations required
by time-optimal solutions in Fig. 2.3(c), the initial and final tracking errors are comparatively
large as evidenced in Fig. 2.5(b). These effects are seldom pointed out in any of the listed
references that deal with time-optimal trajectories and controls. Instead, much attention is
given to generating solutions that cope with sudden changes at intermediate points, but the
effect on the tracking error due to initial/final large accelerations is not recognized. We shall
deal with both these issues in Chapter 3.

CHAPTER 2. TIME-OPTIMAL TRAJECTORY PLANNING ALONG

PREDETERMINED PATHS 28

In Fig. 2.5(c) the feedback PID torques are presented. It is these torques that contribute
to such high peaks in the applied torques u(t)ap. Since the trajectory changes in accelerations
are too fast to follow closely, large tracking errors are produced. This entails that the PID
feedback controller, in trying to keep up with such fast-changing trajectory, produces the
peaks exhibited in Fig. 2.5(c).

2.7 Summary

In this chapter we presented the problem of time-optimal trajectory planning of robot manip-
ulators along predetermined geometric paths. In the formulation presented in this chapter,
we aimed at improving existing algorithms, by requiring that the time-optimal trajectories
and torques be dynamically feasible with respect to the complete nonlinear dynamic model
(2.5). We presented the formulation as a mathematical optimization problem, which was
deliberately different from existing formulations, so that it would allow to readily propose
a convex relaxation that solved exactly the original problem which was non-convex. We
also developed our own discretization scheme to actually obtain a numerical solution. It
was then shown and verified that our proposed convex relaxation solved exactly the referred
problem of time-optimal trajectory planning with full dynamic model. Throughout the
chapter, we motivated any development by analyzing simulation results on a realistic robot
simulator. The effects on three crucial variables were monitored: the tracking errors, applied
torques, and a 3-axis accelerometer mounted at the robot’s end-effector. Even though the
presented formulation represents progress from a theoretical and numerical standpoint, it
was concluded that additional criteria were necessary to incorporate before implementing
these optimal solutions on the real robot manipulator.

29

Chapter 3

Near Time-optimal Trajectory

Planning with Acceleration

Constraints and Jerk Penalization

The theory presented in Chapter 2 represents important progress from a numerical stand-
point, since it guarantees to obtain a numerical solution to the time-optimal trajectory
planning problem introduced in that chapter, which considers the complete nonlinear dy-
namic model (2.5). However, as already discussed in Chapter 2, pure time-optimal solutions
produce large nonzero accelerations at the beginning/end of the trajectory, and require
sudden acceleration changes at several intermediate points of the trajectory. As suggested
from our simulation results, when implemented on the robot manipulator, the referred pure
time-optimal solutions will lead to undesired degradation of the system performance.1 It is
therefore necessary to incorporate additional criteria into the formulation before being im-
plemented on the real system. Notice however that time-optimality is still very important in
this chapter. In other words, we aim to achieve traveling times that are as close as possible to
the traveling times attained by the purely time-optimal solutions presented in Chapter 2. In
the present chapter, the time-optimal trajectory planning problem is extended to incorporate
necessary criteria that will eliminate the drawbacks of pure time-optimal solutions. First,
acceleration constraints will allow to impose exact zero accelerations with smooth transitions
at the beginning/end of the trajectory. Then, we introduce a term that penalizes a mea-
sure of total jerk, which is thus used to slightly trade off time optimality yielding optimal
solutions that are near time-optimal, but with no sudden acceleration changes. Extensive
simulations and experimental studies will be presented to justify our development.

1Due to limited bandwidth, there are no actuators/servo-amplifiers that can produce such fast changes
in accelerations, which clearly impacts the servo performance. Besides, the required sudden changes in
acceleration are likely to excite high-frequency vibration modes.

CHAPTER 3. NEAR TIME-OPTIMAL TRAJECTORY PLANNING WITH

ACCELERATION CONSTRAINTS AND JERK PENALIZATION 30

q̈i(s)

q̈Max
i

0 1s s
s

Figure 3.1: Profile of joint-space acceleration constraints.

3.1 Imposing Acceleration Constraints

Several criteria could be incorporated into the problem formulation [7, 10], however, we
decide to incorporate only two that will keep the traversal time near time-optimal while
eliminating the drawbacks of pure time-optimal solutions. It is evident from the analysis
presented in Chapter 2 that non-zero initial/final accelerations lead to large tracking errors
at the beginning/end of the trajectory. Therefore, it is necessary to incorporate constraints
that guarantee exact zero acceleration at the initial/final point of the trajectory, with smooth
growth/decay from/to zero.

3.1.1 Problem Formulation

Acceleration constraints were already pointed out in [10], however never really implemented.
In this section we present our own version, which is necessary since it builds on top of
our formulation presented in Chapter 2. One of the main advantages of the discretization
scheme presented in Chapter 2 shall become evident, namely, it will allow us to impose zero
accelerations at exactly the beginning/end of the trajectory, since we did not have to define
a mid grid to discretize a(s).

Consider incorporating the following joint-space acceleration constraint:

q̈(s) ≤ q̈d(s) ≤ q̈(s), (3.1)

where the inequalities are understood componentwise. For the purposes of this dissertation,
we propose symmetric bounds, i.e.,

−q̈(s) ≤ q̈d(s) ≤ q̈(s). (3.2)

For each q̈i(s), i = 1, . . . , n, we propose the profile shown in Fig. 3.1, where q̈Max
i represents

the maximum acceleration allowed for the i-th joint at intermediate points of the trajectory.
On the other hand, s and s are adjustable parameters chosen preferably small.

CHAPTER 3. NEAR TIME-OPTIMAL TRAJECTORY PLANNING WITH

ACCELERATION CONSTRAINTS AND JERK PENALIZATION 31

Using the expression for q̈d(s) in (2.6), inequality (3.2) is written as:

−q̈(s) ≤ h′′(s)b(s) + h′(s)a(s) ≤ q̈(s), (3.3)

which is then discretized rather straightforwardly with the discretization scheme presented
in Chapter 2. We simply evaluate (3.3) at the grid points, s1 = 0 < s2 < · · · < sN = 1, to
obtain:

−q̈(sk) ≤ h′′(sk)bk + h′(sk)ak ≤ q̈(sk), k = 1, 2, . . . , N. (3.4)

Since ak and bk are defined at exactly the same points in the grid (i.e., sk), inequalities
(3.4) allow to enforce exactly zero acceleration at the initial/final points of the trajectory by
simply enforcing symmetrically the profile of Fig. 3.1. This subtle fact is only possible thanks
to our proposed discretization scheme presented in Chapter 2. Since the inequalities (3.4)
are affine in ak, bk, they are incorporated into problem (2.23) without destroying convexity,
i.e., still and SOCP:

minimize
ak,bk,ck,τk ,dk

1

2
[(1− α)∆s1(d(0+) + d2)

+

N−2
∑

k=2

∆sk(dk + dk+1)

+ (1− α)∆sN−1(dN−1 + d(1−))]

subject to b1 = ṡ20, bN = ṡ2f

c1 = ṡ0, cN = ṡf

τ k = a1(sk)ak + a2(sk)bk + a3(sk)ck + a4(sk)

τ ≤ τ k ≤ τ
∥

∥

∥

∥

[

2ck
bk − 1

]∥

∥

∥

∥

2

≤ bk + 1

−q̈(sk) ≤ h′′(sk)bk + h′(sk)ak ≤ q̈(sk)

for k = 1, . . . , N

bj+1 − bj = ∆sj(aj+1 + aj)

for j = 1, . . . , N − 1

bl > 0, cl > 0
∥

∥

∥

∥

[

2
cl − dl

]∥

∥

∥

∥

2

≤ cl + dl (3.5)

for l = 2, . . . , N − 1
∥

∥

∥

∥

[

2
c(0+)− d(0+)

]∥

∥

∥

∥

2

≤ c(0+) + d(0+)

∥

∥

∥

∥

[

2
c(1−)− d(1−)

]∥

∥

∥

∥

2

≤ c(1−) + d(1−),

CHAPTER 3. NEAR TIME-OPTIMAL TRAJECTORY PLANNING WITH

ACCELERATION CONSTRAINTS AND JERK PENALIZATION 32

which is also readily coded in CVX.

3.1.2 Algorithm Results

The optimal 4-tuple (q⋆
d(t), q̇

⋆
d(t), q̈

⋆
d(t), τ

⋆
d (t)) is generated for the 6-axis industrial manip-

ulator FANUC M-16iB. The same parameters described in Section 2.5 are utilized, but
optimization problem (3.5) is used instead to generate the optimal solutions. The param-
eters for acceleration constraints in Fig. 3.1 are chosen as follows: s = 0.02, s = 0.98, and
q̈Max = (60 60 60 30 30 30)⊤ rad/sec2. Optimization problem (3.5) generates the optimal
solutions presented in Fig. 3.2. The optimal traversal time tf = 3.987 seconds, which means
that this optimal solution is slower than the pure time-optimal by only 0.54 seconds. Notice
from Fig. 3.2(d) that exact zero acceleration is indeed enforced at the beginning/end of the
trajectory, with a smooth growth/decay. Note that only q̈⋆4 saturates at some instants. But
in general, at the intermediate points, the optimal accelerations in Fig. 3.2(d) are identical
to the pure time-optimal accelerations discussed before in Fig. 2.3(c).

The effects on the optimal torques are shown in Fig. 3.2(b). Notice how the optimal
torques do not saturate at the beginning/end of the trajectory. Instead, they grow/decay
smoothly from/to the required gravity compensation at home position. At the intermediate
points, nonetheless, they behave exactly as pure time-optimal, i.e., u⋆

1 saturates most of the
time, and when it does not, u⋆

2 does. It is likewise realized from Fig. 3.2(a) that c⋆(s) =
√

b⋆(s), ∀s ∈ [0, 1], which is important to always hold, since it entails full dynamic feasibility
with respect to (2.5) is not affected.

3.1.3 Simulation Results

Recall that the control law is implemented in the motor-side, given by a feedforward torque
plus a feedback PID controller:

u = u⋆
d(t) +KPθ̃ +KV

˙̃
θ +KI

∫ t

0

θ̃(v) dv, (3.6)

where the feedforward torques u⋆
d(t) represent the near time-optimal torques from Fig. 3.2(b).

The simulation results are shown in Fig. 3.3. Observe from Fig. 3.3(a) how the applied
torques u(t)ap closely resemble the near time-optimal torques of Fig. 3.2(b) at the initial/final
transitions, thanks to the smooth acceleration growth/decay at the beginning/end of the
trajectory as seen from the accelerometer readings. This implies that the PID feedback
torques u(t)fb will not exhibit the large initial/final peaks, which featured in the pure time-
optimal case; the PID feedback torques are shown in Fig. 3.3(c). It is also clear that tracking
errors shall be benefited, i.e., excessively large initial/final tracking errors are not induced,
as shown in Fig. 3.3(b).

The presented solutions are not yet ready to be implemented on the actual robot manip-
ulator. It is clear from Fig. 3.3 that at the intermediate points, sudden acceleration changes

CHAPTER 3. NEAR TIME-OPTIMAL TRAJECTORY PLANNING WITH

ACCELERATION CONSTRAINTS AND JERK PENALIZATION 33

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

0 0.2 0.4 0.6 0.8 1

−5

0

5

c⋆(s)
√

b⋆(s)

s (-)

s (-)

s
(-
)

t (sec)

ṡ
(1
/
se
c)

s̈
(1
/
se
c2
)

(a) s, ṡ, and s̈

0 0.5 1 1.5 2 2.5 3 3.5
−10

−5

0

5

10

0 0.5 1 1.5 2 2.5 3 3.5

−2

0

2

u⋆
1 u⋆

2 u⋆
3

u⋆
4 u⋆

5 u⋆
6

G
−
1
τ

⋆ d
(t
)
(N

m
)

G
−
1
τ

⋆ d
(t
)
(N

m
)

t (sec)

(b) Motor-side optimal torques, u⋆
d
= G−1τ ⋆

d
(t)

0 0.5 1 1.5 2 2.5 3 3.5

−2

0

2

0 0.5 1 1.5 2 2.5 3 3.5

−2

−1

0

1

2

t (sec)

q̇
⋆ d
(t
)
(r
a
d
/
se
c)

q̇
⋆ d
(t
)
(r
a
d
/
se
c)

q̇⋆1 q̇⋆2 q̇⋆3

q̇⋆4 q̇⋆5 q̇⋆6

(c) Optimal velocity reference q̇⋆
d
(t)

0 0.5 1 1.5 2 2.5 3 3.5

−20

−10

0

10

20

0 0.5 1 1.5 2 2.5 3 3.5

−20

0

20

t (sec)

q̈
⋆ d
(t
)
(r
a
d
/
se
c2
)

q̈
⋆ d
(t
)
(r
a
d
/
se
c2
) q̈⋆1 q̈⋆2 q̈⋆3

q̈⋆4 q̈⋆5 q̈⋆6

(d) Optimal acceleration reference q̈⋆
d
(t)

Figure 3.2: Optimal solutions generated when solving problem (2.23), which enforces ac-
celeration constraints with the profile of Fig. 3.1. The optimal torques are presented in
motor-side scale. Notice that the only differences, between this near time-optimal solution
and the pure time-optimal solution in Chapter 2, are at the beginning/end transitions. At
intermediate points of the trajectory, this solution is identical to the pure time optimal. Also
notice that c⋆(s) =

√

b⋆(s), ∀s ∈ [0, 1].

still occur, which have undesirable effects on the system performance. The accelerometer
readings suggest that a term that slightly penalizes jerk (i.e., change in acceleration) would
help towards completing the algorithm.

CHAPTER 3. NEAR TIME-OPTIMAL TRAJECTORY PLANNING WITH

ACCELERATION CONSTRAINTS AND JERK PENALIZATION 34

0 0.5 1 1.5 2 2.5 3 3.5

−10

0

10

0 0.5 1 1.5 2 2.5 3 3.5

−2

0

2

0 0.5 1 1.5 2 2.5 3 3.5
−40

−20

0

20

40

u
ap
1 u

ap
2 u

ap
3

u
ap
4 u

ap
5 u

ap
6

ẍ ÿ z̈

u
(t
)a

p
(N

m
)

u
(t
)a

p
(N

m
)

ẍ
(t
)
(m

/
se
c2
)

t (sec)

(a) Applied torques and accelerometer readings

0 0.5 1 1.5 2 2.5 3 3.5

−4

−2

0

2

4

x 10
−3

0 0.5 1 1.5 2 2.5 3 3.5

−0.01

0

0.01

0 0.5 1 1.5 2 2.5 3 3.5
−5

0

5

x 10
−3

θ̃1 θ̃2 θ̃3

θ̃4 θ̃5 θ̃6

x̃ ỹ z̃
θ̃
(t
)
(r
a
d
)

θ̃
(t
)
(r
a
d
)

x̃
(t
)
(m

)

t (sec)

(b) Motor-side and Cartesian-space tracking errors

0 0.5 1 1.5 2 2.5 3 3.5

−5

0

5

0 0.5 1 1.5 2 2.5 3 3.5

−0.5

0

0.5

1

ufb
1 ufb

2 ufb
3

ufb
4 ufb

5 ufb
6

u
(t
)f
b
(N

m
)

u
(t
)f
b
(N

m
)

t (sec)t (sec)

(c) PID feedback torques, u(t)fb

Figure 3.3: Simulation results for the near time-optimal solution, which enforces zero
acceleration constraints at the beginning/end transitions of the trajectory, with smooth
growth/decay. The benefits are clear, i.e., the drawbacks at the initial/final transitions of
pure time-optimal solutions are eliminated.

3.2 Penalizing a Measure of Total Jerk

It is clear that time optimality alone leads to degradation of the system performance,
nonetheless, time-optimal trajectories are important for increase of robot productivity. There-
fore, we have discussed that it is still desirable to consider problem (2.23), and incorporate
acceleration constraints that guarantee smooth acceleration growth/decay at the the initial
and final points of the trajectory. Additionally, in this section, we shall add a term that

CHAPTER 3. NEAR TIME-OPTIMAL TRAJECTORY PLANNING WITH

ACCELERATION CONSTRAINTS AND JERK PENALIZATION 35

penalizes a measure of total jerk to slightly trade off time-optimality, which will prove useful
to eliminate the sudden acceleration changes at intermediate points of the trajectory.

3.2.1 Jerk Penalization versus Torque Derivative Penalization

There is usually a question regarding which criterion would give a better trajectory solution,
namely: (i) the derivative of acceleration or (ii) the derivative of the torques. For example,
in an attempt to study how human-arm motions are actually generated, it is suggested in
[36] that trajectories for human planar reaching motions are chosen so that they minimize
the integral of the square norm of jerk:

J =
1

2

∫ t1

t0

(
...
x 2 +

...
y 2) dt, (3.7)

where (x, y) is the Cartesian hand position. Following these ideas, it was then suggested
in [37] that the motions minimize the integral of the squared norm of the vector of torque
derivatives, i.e., the cost function for the planar two-joint arm is of the form:

J =
1

2

∫ t1

t0

(τ̇ 21 + τ̇ 22) dt. (3.8)

It is mentioned in [25] that it remains an open question which paradigm best describes
human-arm motions.

In this dissertation, we are interested in using an equivalent measure of either (3.7) or
(3.8) to trade off time-optimality. We choose a measure of total jerk mainly because it has not
been reported elsewhere to trade off time optimality. We must also mention that the effects
obtained using total jerk will certainly be different from the ones it would be obtained with
torque derivatives. That being said, we are interested in

...
q , but the forthcoming derivation

follows similar lines for τ̇ (see [10]).

3.2.2 Problem Formulation

We use a measure of total jerk that involves the 1-norm ‖
...
q ‖1, as opposed to the more

commonly used 2-norm ‖
...
q ‖2. Mainly because the resulting objective function will not

destroy convexity when incorporated to problem (3.5).2 Consider therefore trading off the

2Even though the 2-norm ‖
...
q‖2 is convex in

...
q , it is important to realize that

...
q is not the optimization

variable, but can be written as a function of the optimization variables as:

...
q = h′′′(s)b(s)c(s) + h′′(s)b′(s)c(s) + h′′(s)a(s)c(s) + h′(s)a′(s)c(s),

which is not an affine transformation in a(s), b(s), and c(s). Therefore using ‖
...
q ‖2 in (3.9) will lead to a

non-convex objective function in a(s), b(s), and c(s). It turns out, we are able to overcome this limitation
only with the 1-norm ‖

...
q ‖1, as shown in the forthcoming derivation.

CHAPTER 3. NEAR TIME-OPTIMAL TRAJECTORY PLANNING WITH

ACCELERATION CONSTRAINTS AND JERK PENALIZATION 36

traversal time tf against the following measure of total jerk:

Jjerk = λ

∫ tf

0

‖
...
q ‖1 dt, (3.9)

where λ is a weighting parameter that will allow us to produce different results. The jerk
is simply the time derivative of acceleration, i.e., for the i-th joint of the manipulator

...
q i =

dq̈i/dt. The 1-norm of the jerk vector
...
q is simply ‖

...
q ‖1 =

∑n
i=1 |

...
q i|. Therefore Jjerk is

written as follows:

Jjerk = λ

∫ tf

0

‖
...
q ‖1 dt = λ

n
∑

i=1

∫ tf

0

|
...
q i| dt

= λ
n
∑

i=1

∫ tf

0

∣

∣

∣

∣

dq̈i
dt

∣

∣

∣

∣

dt

= λ

n
∑

i=1

∫ 1

0

∣

∣

∣

∣

dq̈i
ds

∣

∣

∣

∣

ds

≈ λ
n
∑

i=1

N−1
∑

j=1

|q̈i(sj+1)− q̈i(sj)|

∝ λ

n
∑

i=1

N−1
∑

j=1

|q̈i(sj+1)− q̈i(sj)|

q̈Max
i

, (3.10)

where the last step, i.e., dividing by q̈Max
i is necessary in order to nondimensionalize the

objective function. Nondimensionalizing the objective function was noticed to really make
a difference when trying out a wide range of values for λ, from very small to very large. In
all cases no numerical stability problems arise, unlike the case of not dividing by q̈Max

i .
The objective function (3.10) is nonlinear since the absolute value function | · | is non-

linear (actually piecewise linear). In order to have a linear objective function, consider
introducing the following slack variables: eij, i = 1, . . . , n, j = 1, . . . , N − 1, such that ∀i, j
|q̈i(sj+1)− q̈i(sj)| ≤ q̈Max

i eij . Thus (3.10) can be replaced with the linear objective function
and inequality constraints:

JjerkLin = λ
n
∑

i=1

N−1
∑

j=1

eij

subject to |q̈i(sj+1)− q̈i(sj)| ≤ q̈Max
i eij

i = 1, . . . , n, j = 1, . . . , N − 1.

(3.11)

Therefore (3.11) is incorporated into problem (3.5) to trade off the traversal time tf . The con-
straints |q̈i(sj+1)− q̈i(sj)| ≤ q̈Max

i eij , i = 1, . . . , n, j = 1, . . . , N − 1, are expressed compactly

CHAPTER 3. NEAR TIME-OPTIMAL TRAJECTORY PLANNING WITH

ACCELERATION CONSTRAINTS AND JERK PENALIZATION 37

by defining ej := (e1j e2j · · · enj)
⊤ ∈ R

n, j = 1, . . . , N − 1. Therefore, these constraints can
be written in vector form:

−ej ∗ q̈
Max ≤ q̈d(sj+1)− q̈d(sj) ≤ ej ∗ q̈

Max, j = 1, . . . , N − 1,

where we have defined ej ∗ q̈
Max to mean vector element-wise multiplication. By explicitly

substituting q̈d(s) = h′′(s)b(s) + h′(s)a(s), it is obtained:

−ej ∗ q̈
Max ≤ h′′(sj+1)bj+1 + h′(sj+1)aj+1

− h′′(sj)bj − h′(sj)aj ≤ ej ∗ q̈
Max, j = 1, . . . , N − 1.

(3.12)

It is then clear that the objective function (3.10), which represents a measure of total jerk,
can be replaced with the linear objective function (3.11) and the affine inequality constraints
(3.12). With all the above provisos in mind, the following final formulation is obtained, which
allows to impose acceleration constraints with the profile of Fig. 3.1, and which trades off
time optimality against a measure of total jerk through the weighting parameter λ:

minimize
ak,bk,ck,τk,dk,ej

1

2
[(1− α)∆s1(d(0α) + d2)

+

N−2
∑

k=2

∆sk(dk + dk+1)

+ (1− α)∆sN−1(dN−1 + d(1α))]

+ λ

n
∑

i=1

N−1
∑

j=1

eij

subject to b1 = ṡ20, bN = ṡ2f

c1 = ṡ0, cN = ṡf

τ k = a1(sk)ak + a2(sk)bk + a3(sk)ck + a4(sk)

τ ≤ τ k ≤ τ
∥

∥

∥

∥

[

2ck
bk − 1

]∥

∥

∥

∥

2

≤ bk + 1

−q̈(sk) ≤ h′′(sk)bk + h′(sk)ak ≤ q̈(sk)

for k = 1, . . . , N

bj+1 − bj = ∆sj(aj+1 + aj)

−ej ∗ q̈
Max ≤ h′′(sj+1)bj+1 + h′(sj+1)aj+1

− h′′(sj)bj − h′(sj)aj ≤ ej ∗ q̈
Max (3.13)

for j = 1, . . . , N − 1

CHAPTER 3. NEAR TIME-OPTIMAL TRAJECTORY PLANNING WITH

ACCELERATION CONSTRAINTS AND JERK PENALIZATION 38

bl > 0, cl > 0
∥

∥

∥

∥

[

2
cl − dl

]∥

∥

∥

∥

2

≤ cl + dl

for l = 2, . . . , N − 1
∥

∥

∥

∥

[

2
c(0α)− d(0α)

]∥

∥

∥

∥

2

≤ c(0α) + d(0α)

∥

∥

∥

∥

[

2
c(1α)− d(1α)

]∥

∥

∥

∥

2

≤ c(1α) + d(1α)

Formulation (3.13) still represents an SOCP, which is therefore readily coded in CVX. It
is the final version for near time-optimal trajectory presented in this dissertation. In other
words, no additional criteria shall be added to optimization problem (3.13).

Although we could certainly incorporate more criteria as long as they do not destroy
convexity, it would however contribute to increasing the total traversal time tf . We really
are interested in pushing the limits of near time-optimality as much as possible, which means
we want to attain the fastest near time-optimal motions. We have pointed out that two
factors contributed to degradation of system performance when testing pure time-optimal
solutions: (i) the large nonzero initial/final accelerations and (ii) the sudden acceleration
changes at intermediate points of the trajectory. As we shall discover soon, these two issues
are resolved with formulation (3.13). We will also see that formulation (3.13) can be used
to generate medium and low speed optimal trajectories, by appropriately choosing λ.

3.2.3 Algorithm Results

We generate near time-optimal 4-tuples (q⋆
d(t), q̇

⋆
d(t), q̈

⋆
d(t), τ

⋆
d (t)) for the 6-axis manipulator

FANUC M-16iB, using formulation (3.13). The same baseline parameters are used as previ-
ously, i.e., the number of grid points N = 1200, τ = (1782.4 1789.7 1647.2 97.2 108.5 79.1)⊤

Nm, which implies u = G−1τ = (10.21 10.21 8.60 4.30 1.58 1.58)⊤ Nm. The acceleration
constraint parameters s = 0.02, s = 0.98, and q̈Max = (60 60 60 30 30 30)⊤ rad/sec2.

We present the generated results for λ = 0.02 in Fig. 3.4. The first feature to realize
is that even though an additional term was added to the objective function, it is still the
case that c⋆(s) =

√

b⋆(s), ∀s ∈ [0, 1], which means that optimization problem (3.13) inherits
the property from (3.5) of generating solutions that are indeed dynamically feasible with
respect to the full dynamic model (2.5). Notice also how the pseudo-acceleration s̈ has been
rendered smaller and smoother, as compared to the one previously presented in Fig. 3.2(a).
This shall have a direct effect in q̈⋆

d as shown in Fig. 3.4(d), of effectively eliminating the
sudden acceleration changes.

Regarding the optimal torques in Fig. 3.4(b), notice that at some time instants, τ ⋆1 is still
required to saturate since the solutions are near time-optimal. Nevertheless, the transitions
between saturation levels are required to occur in a finite amount of time. These benefits
come at the cost of a modest increase in the traversal time, i.e., tf = 4.238 seconds, which

CHAPTER 3. NEAR TIME-OPTIMAL TRAJECTORY PLANNING WITH

ACCELERATION CONSTRAINTS AND JERK PENALIZATION 39

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

−2

0

2

c⋆(s)
√

b⋆(s)

s (-)

s (-)

s
(-
)

t (sec)

ṡ
(1
/
se
c)

s̈
(1
/
se
c2
)

(a) s, ṡ, and s̈

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

−5

0

5

10

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

u⋆
1 u⋆

2 u⋆
3

u⋆
4 u⋆

5 u⋆
6

G
−
1
τ

⋆ d
(t
)
(N

m
)

G
−
1
τ

⋆ d
(t
)
(N

m
)

t (sec)

(b) Motor-side optimal torques, u⋆
d
= G−1τ ⋆

d
(t)

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

0

2

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

−1

0

1

2

t (sec)

q̇
⋆ d
(t
)
(r
a
d
/
se
c)

q̇
⋆ d
(t
)
(r
a
d
/
se
c)

q̇⋆1 q̇⋆2 q̇⋆3

q̇⋆4 q̇⋆5 q̇⋆6

(c) Optimal velocity reference q̇⋆
d
(t)

0 0.5 1 1.5 2 2.5 3 3.5 4

−10

0

10

0 0.5 1 1.5 2 2.5 3 3.5 4

−10

0

10

t (sec)

q̈
⋆ d
(t
)
(r
a
d
/
se
c2
)

q̈
⋆ d
(t
)
(r
a
d
/
se
c2
) q̈⋆1 q̈⋆2 q̈⋆3

q̈⋆4 q̈⋆5 q̈⋆6

(d) Optimal acceleration reference q̈⋆
d
(t)

Figure 3.4: Near-time optimal solutions generated when solving problem (3.13) for λ =
0.02, which in addition to enforcing acceleration constraints with the profile of Fig. 3.1, it
penalizes a measure of total jerk (change in acceleration) through the weighting parameter
λ. Compared to the optimal solutions generated by (3.5), notice that the generated optimal
accelerations/torques feature no sudden changes. Mercifully, it is again the case that c⋆(s) =
√

b⋆(s), ∀s ∈ [0, 1].

means that this solution is slower than the purely time-optimal by only 0.791 seconds.
Nonetheless, the benefits in terms of non-degradation of the performance become a crucial
factor to justify our development.

A nice property to point out is that when λ = 0, optimization problem (3.13) generates
exactly the same optimal solutions as (3.5), even though they are actually two different

CHAPTER 3. NEAR TIME-OPTIMAL TRAJECTORY PLANNING WITH

ACCELERATION CONSTRAINTS AND JERK PENALIZATION 40

0 0.2 0.4 0.6 0.8 1
2

4

6

8

10

12

λ

t f
(s
ec
)

10
−3

10
−2

10
−1

10
0

4

6

8

10

12

λ

t f
(s
ec
)

Figure 3.5: Optimal traversal time tf for a range of values of the weighting parameter λ.
Normal scale (on the left) and semi-logarithmic scale (on the right).

problems. In other words, both are large-scale optimization problems but with different
number of optimization variables and constraints. Recall that problem (3.5) is a large-scale
optimization problem with optimization vector:

[

a1, . . . , aN , b1, . . . , bN , c1, . . . , cN , τ
1, . . . , τN , d1, . . . , dN

]⊤
∈ R

(4+n)N ,

which gives a total number of optimization variables (4+n)N = 12, 000. On the other hand,
problem (3.13) is a large-scale optimization problem with optimization vector:
[

a1, . . . , aN , b1, . . . , bN , c1, . . . , cN , τ
1, . . . , τN , d1, . . . , dN , e1, . . . , eN−1

]⊤
∈ R

(4+2n)N−n,

giving a total number of optimization variables (4 + 2n)N − n = 19, 194. Note that the
number of constraints is also different for the two optimization problems.

Before continuing onto presenting the simulation and experimental results for λ = 0.02,
it is interesting to plot the traversal time tf as λ is increased from zero. The referred plot
is presented in Fig. 3.5. For a more quantitative presentation of the relationship between λ
and tf , Table 3.1 displays some of the values shown in Fig. 3.5.

λ 0 .004 .008 .01 .02 .06 .1 .4 .8 1
tf (sec) 3.987 4.034 4.085 4.110 4.238 4.887 5.633 8.478 10.545 11.331

Table 3.1: Some numerical values of λ and resulting optimal traversal times tf .

For very small values of λ, i.e., λ ≤ 0.008, the traversal time tf increases but not so
significantly. For larger values of λ, the increase in tf becomes more significant. It is
therefore meaningful to present this relation in a semi-logarithmic fashion as shown in the
right sub-plot of Fig. 3.5.

3.3 Simulation and Experimental Results

We implement again control law (3.6) with the same parameters as before, but for the optimal
solutions generated with problem (3.13) using λ = 0.02. The simulation results are shown

CHAPTER 3. NEAR TIME-OPTIMAL TRAJECTORY PLANNING WITH

ACCELERATION CONSTRAINTS AND JERK PENALIZATION 41

in Fig. 3.6 from which it is seen that the applied torques u(t)ap are rather consistent with
the feedforward optimal torques u⋆

d(t) in Fig. 3.4(b). Therefore, the applied torques u(t)ap

do not exceed the torque limits, which was one of the original requirements for optimal
trajectory planning presented in Chapter 2. Even though this requirement had been fulfilled
in open-loop, e.g., Figs. 2.2(a) and 3.2(b), when closing the loop the corresponding u(t)ap

always exceeded the torque limits due to large peaks. In contrast, problem (3.13) generates
optimal solutions that are near time-optimal (i.e., near fastest) and which result in applied
torques u(t)ap that do not exceed the torque limits.

The corresponding motor-side and Cartesian-space tracking errors are presented in Fig.
3.6(b), all of which are slightly better than the ones presented before in Fig. 3.3(b), and
significantly better than the ones in Fig. 2.5(b). Even though the tracking errors in Fig. 3.6(b)
are just slightly better than in Fig. 3.3(b), the real advantages of the optimal solutions in
Fig. 3.4 come from the accelerometer readings in Fig. 3.6(a) and from the PID feedback
torques in Fig. 3.6(c). In other words, when carrying out simulations with control law (3.6),
the accelerometer readings exhibit high accelerations with no overshooting. Likewise, the
PID feedback torques u(t)fb in Fig. 3.6(c) should be compared against Fig. 3.3(c), it is clear
that the feedback controller is not required to generate large torque peaks in order to track
this fast trajectory. It is therefore at this point that we turn from simulations to carry out
experiments on the actual robot manipulator.

3.3.1 Experimental Results

Motivated by the above observations, we proceed to carry out experiments on the actual
6-axis industrial manipulator FANUC M16iB. The optimal solution presented in Fig. 3.4 is
implemented on the real system which runs at a 1-millisecond sampling period. The control
law is repeated here for convenience:

u = u⋆
d(t) +KPθ̃ +KV

˙̃
θ +KI

∫ t

0

θ̃(v) dv, (3.14)

where the feedback gains KP, KV, and KI are exactly the same as for simulations. Details
on the experimental setup are presented in Appendix A.

The experimental results are presented in Fig. 3.7 whereby several similarities and differ-
ences, with the simulation results, should be pointed out. The experimental applied torques
u(t)ap from Fig. 3.7(a) are rather consistent with the applied torques from simulation in
Fig. 3.6(a). Even though the optimal torques and trajectories represent the fastest motions
achievable by the actual manipulator, the experimental applied torques do not exceed the
maximum and minimum torque limits.

The joint-space motor-side tracking errors θ̃(t) are presented in Fig. 3.7(b). It is observed
that for the first three joints, the experimental tracking errors θ̃1, θ̃2, and θ̃3, are rather con-
sistent with the corresponding tracking errors obtained from simulations in Fig. 3.6(b). The
Cartesian-space tracking errors x̃(t) in Fig. 3.7(b), measured with CompuGauge 3D mea-
surement system, are also rather consistent with the tracking errors obtained in simulation.

CHAPTER 3. NEAR TIME-OPTIMAL TRAJECTORY PLANNING WITH

ACCELERATION CONSTRAINTS AND JERK PENALIZATION 42

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

−5

0

5

10

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

−1

0

1

2

0 0.5 1 1.5 2 2.5 3 3.5 4

−20

−10

0

10

20

u
ap
1 u

ap
2 u

ap
3

u
ap
4 u

ap
5 u

ap
6

ẍ ÿ z̈

u
(t
)a

p
(N

m
)

u
(t
)a

p
(N

m
)

ẍ
(t
)
(m

/
se
c2
)

t (sec)

(a) Applied torques and accelerometer readings

0 0.5 1 1.5 2 2.5 3 3.5 4
−4

−2

0

2

4

x 10
−3

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.01

0

0.01

0 0.5 1 1.5 2 2.5 3 3.5 4

−5

0

5

x 10
−3

θ̃1 θ̃2 θ̃3

θ̃4 θ̃5 θ̃6

x̃ ỹ z̃

θ̃
(t
)
(r
a
d
)

θ̃
(t
)
(r
a
d
)

x̃
(t
)
(m

)

t (sec)

(b) Motor-side and Cartesian-space tracking errors

0 0.5 1 1.5 2 2.5 3 3.5 4

−4

−2

0

2

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.4

−0.2

0

0.2

0.4

ufb
1 ufb

2 ufb
3 ufb

4 ufb
5 ufb

6

u
(t
)f
b
(N

m
)

u
(t
)f
b
(N

m
)

t (sec)t (sec)

(c) PID feedback torques, u(t)fb

Figure 3.6: Simulation results for the near time-optimal solutions with acceleration con-
straints and penalization of a measure of total jerk. The optimal solutions are generated
using problem (3.13) with λ = 0.02. Clearly, the drawbacks of pure time-optimality are
eliminated, at the cost of a modest increase in traversal time.

For the last three joints though (especially the 5th joint), the joint-space motor-side tracking
errors θ̃4, θ̃5, and θ̃6, are larger for experiments than they are for simulations. This is likely
due to modeling errors and parameter uncertainty.

Finally, the experimental PID feedback torques u(t)fb are presented in Fig. 3.7(c). Since
the role of the feedback part of the control law is to compensate for uncertainty, clearly, these
torques shall be different in experiments and simulations, as uncertainty and unexpected
disturbances are different for real experiments.

CHAPTER 3. NEAR TIME-OPTIMAL TRAJECTORY PLANNING WITH

ACCELERATION CONSTRAINTS AND JERK PENALIZATION 43

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

−5

0

5

10

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

0

2

0 0.5 1 1.5 2 2.5 3 3.5 4

−20

0

20

u
ap
1 u

ap
2 u

ap
3

u
ap
4 u

ap
5 u

ap
6

ẍ ÿ z̈

u
(t
)a

p
(N

m
)

u
(t
)a

p
(N

m
)

ẍ
(t
)
(m

/
se
c2
)

t (sec)

(a) Applied torques and accelerometer readings

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

0

5

x 10
−3

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.02

0

0.02

0.04

0 0.5 1 1.5 2 2.5 3 3.5 4

−10

−5

0

5

x 10
−3

θ̃1 θ̃2 θ̃3

θ̃4 θ̃5 θ̃6

x̃ ỹ z̃

θ̃
(t
)
(r
a
d
)

θ̃
(t
)
(r
a
d
)

x̃
(t
)
(m

)

t (sec)

(b) Motor-side and Cartesian-space tracking errors

0 0.5 1 1.5 2 2.5 3 3.5 4

−6

−4

−2

0

2

4

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.5

0

0.5

1

ufb
1 ufb

2 ufb
3 ufb

4 ufb
5 ufb

6

u
(t
)f
b
(N

m
)

u
(t
)f
b
(N

m
)

t (sec)t (sec)

(c) PID feedback torques, u(t)fb

Figure 3.7: Experimental results for the near time-optimal solutions with acceleration con-
straints and penalization of a measure of total jerk, using λ = 0.02.

The magnitude of the feedback torque due to parametric uncertainty depends on how
much parametric uncertainty and to some extent on how fast the trajectory is. For instance,
if we solve again the optimization problem (3.13) but this time with λ = 0.2, the generated
optimal solution is presented in Fig. 3.8, with an optimal traversal time tf = 6.863 seconds.
The experimental results for this medium-speed optimal solution are presented in Fig. 3.9.
Observe how the applied torques u(t)ap are again rather consistent with the optimal feedfor-
ward torques u⋆

d(t). Regarding the experimental PID feedback torques u(t)fb in Fig. 3.9(c),
we notice that the magnitude is substantially reduced as compared to Fig. 3.7(c).

The tracking errors are clearly benefited from implementing a slower trajectory. This sug-

CHAPTER 3. NEAR TIME-OPTIMAL TRAJECTORY PLANNING WITH

ACCELERATION CONSTRAINTS AND JERK PENALIZATION 44

0 1 2 3 4 5 6
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

−1

0

1

c⋆(s)
√

b⋆(s)

s (-)

s (-)

s
(-
)

t (sec)

ṡ
(1
/
se
c)

s̈
(1
/
se
c2
)

(a) s, ṡ, and s̈

0 1 2 3 4 5 6
−5

0

5

10

0 1 2 3 4 5 6

−0.5

0

0.5

1

u⋆
1 u⋆

2 u⋆
3

u⋆
4 u⋆

5 u⋆
6

G
−
1
τ

⋆ d
(t
)
(N

m
)

G
−
1
τ

⋆ d
(t
)
(N

m
)

t (sec)

(b) Motor-side optimal torques, u⋆
d
= G−1τ ⋆

d
(t)

0 1 2 3 4 5 6

−1

0

1

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

t (sec)

q̇
⋆ d
(t
)
(r
a
d
/
se
c)

q̇
⋆ d
(t
)
(r
a
d
/
se
c)

q̇⋆1 q̇⋆2 q̇⋆3

q̇⋆4 q̇⋆5 q̇⋆6

(c) Optimal velocity reference q̇⋆
d
(t)

0 1 2 3 4 5 6
−10

−5

0

5

10

0 1 2 3 4 5 6

−5

0

5

t (sec)

q̈
⋆ d
(t
)
(r
a
d
/
se
c2
)

q̈
⋆ d
(t
)
(r
a
d
/
se
c2
) q̈⋆1 q̈⋆2 q̈⋆3

q̈⋆4 q̈⋆5 q̈⋆6

(d) Optimal acceleration reference q̈⋆
d
(t)

Figure 3.8: Optimal solutions generated by solving optimization problem (3.13) for λ = 0.2.
Notice that it is still the case that c⋆(s) =

√

b⋆(s), ∀s ∈ [0, 1].

gests us that in order to achieve smaller tracking errors for the near time-optimal (fastest)
trajectory, more sophisticated control algorithms should be explored. In other words, opti-
mization problem (3.13) can generate the fastest optimal trajectory solutions that the actual
robot manipulator can achieve, without degrading its performance. It is thus our next task
to explore more advanced feedback control algorithms, in order to improve the performance
for the near time-optimal solutions. We explore two related ideas in the next two chapters
of this dissertation.

CHAPTER 3. NEAR TIME-OPTIMAL TRAJECTORY PLANNING WITH

ACCELERATION CONSTRAINTS AND JERK PENALIZATION 45

0 1 2 3 4 5 6
−5

0

5

10

0 1 2 3 4 5 6

−0.5

0

0.5

1

0 1 2 3 4 5 6

−10

0

10

u
ap
1 u

ap
2 u

ap
3

u
ap
4 u

ap
5 u

ap
6

ẍ ÿ z̈

u
(t
)a

p
(N

m
)

u
(t
)a

p
(N

m
)

ẍ
(t
)
(m

/
se
c2
)

t (sec)

(a) Applied torques and accelerometer readings

0 1 2 3 4 5 6

−2

0

2

4

6
x 10

−3

0 1 2 3 4 5 6

−0.01

0

0.01

0 1 2 3 4 5 6

−5

0

5

x 10
−3

θ̃1 θ̃2 θ̃3

θ̃4 θ̃5 θ̃6

x̃ ỹ z̃

θ̃
(t
)
(r
a
d
)

θ̃
(t
)
(r
a
d
)

x̃
(t
)
(m

)

t (sec)

(b) Motor-side and Cartesian-space tracking errors

0 1 2 3 4 5 6
−2

−1

0

1

0 1 2 3 4 5 6

−0.2

0

0.2

ufb
1 ufb

2 ufb
3 ufb

4 ufb
5 ufb

6

u
(t
)f
b
(N

m
)

u
(t
)f
b
(N

m
)

t (sec)t (sec)

(c) PID feedback torques, u(t)fb

Figure 3.9: Experimental results for the medium-speed optimal solutions which uses λ = 0.2.

3.4 Summary

In this chapter we presented an extension to the work done in Chapter 2. We developed a
problem formulation that incorporates acceleration constraints and trades off time-optimality
against a measure of total jerk. The resulting formulation generates optimal trajectories and
torques that are near time-optimal. These near time-optimal solutions represent the fastest
optimal solutions achievable by the real robot manipulator. Initially, from the formulation
in Chapter 2, pure time-optimality was considered. Then, acceleration constraints and pe-
nalization of a measure of total jerk were incorporated, both of which proved necessary from
real experiments on the 6-axis industrial manipulator. In all cases, the resulting optimal

CHAPTER 3. NEAR TIME-OPTIMAL TRAJECTORY PLANNING WITH

ACCELERATION CONSTRAINTS AND JERK PENALIZATION 46

trajectories and torques turned out to always be dynamically feasible with respect to the full
nonlinear dynamic model (2.5). This brings not only a modest theoretical contribution, but
also an important practical extension to existing algorithms. As discussed in the chapter,
our methodology generates the actual fastest solutions that can be implemented in the real
system, without significantly degrading the system performance. It was also explained how
optimization problem (3.13) can be used to generate medium-speed optimal solutions.

47

Chapter 4

LQ-based Control Synthesis for

Trajectory Tracking of Robot

Manipulators

In Chapter 3, we have developed a formulation to generate near time-optimal trajectories and
feedforward torques, which are dynamically feasible with respect to the complete nonlinear
dynamic model (2.5). We studied how the generated optimal solutions do not seriously
degrade the performance of the robot manipulator, even though they represent the fastest
achievable solutions. Thus, an immediate question to ask in this dissertation follows: is it
possible to improve the performance for the near time-optimal trajectories, by implementing
feedback controllers that are more suited for trajectory tracking? In other words, we are still
interested in the fastest achievable solutions generated by optimization problem (3.13), but
attempt to replace the PID feedback portion of control law (3.14), with a more adequate
algorithm for trajectory tracking. The main insight will be to linearize the nonlinear robot
dynamics, and use the linearized model for controller synthesis. In the controller synthesis,
we attempt to keep the tracking error as small as possible, while keeping the applied controls
as close as possible to the open-loop optimal torques. In this regard, the Linear Quadratic
(LQ) optimal control setting is appealing, since it will allow for the possibility of trading
off tracking error and control effort [31, 38, 22]. In the present and the next chapter of
this dissertation, we explore the trajectory tracking control problem for robot manipulators
using LQ methods. Two different but related schemes will be developed, leading to a affine
time-varying (ATV) controller in the first case, and to a piecewise affine (PWA) controller in
the second case. The ATV results are presented in this chapter, whereas the PWA results are
presented in Chapter 5. In both approaches, we study how under suitable assumptions, the
LQ results for linear systems can be tailored to address the problem of trajectory tracking
of robot manipulators, with dynamic model (2.5) which is inherently nonlinear.

CHAPTER 4. LQ-BASED CONTROL SYNTHESIS FOR TRAJECTORY TRACKING

OF ROBOT MANIPULATORS 48

4.1 Nonlinear Dynamic Model

Consider again the nonlinear dynamic model (2.5), repeated here for convenience:

M(q)q̈ +C(q, q̇)q̇ + g(q) +Dvq̇ + FC sign(q̇) = τ , (4.1)

which is commonly used for nonlinear controller synthesis such as computed torque control
[15, 19]. Let us write dynamic model (4.1) in the motor-side since all controller syntheses
will be developed in the motor side. Recall that the link-side and motor-side positions are
denoted by q and θ, respectively. In addition, the link-side and motor-side actuator torques
are denoted by τ and u, respectively. These motor-side and link-side variables are related
by τ = Gu and q = G−1θ, where G is a diagonal matrix with the gear ratios. Therefore,
the following nonlinear dynamic model is used as the governing model in motor side:

[

G−1M(G−1θ)G−1
]

θ̈ +
[

G−1C(G−1θ,G−1θ̇)G−1
]

θ̇ +G−1g(G−1θ)+
[

G−1DvG
−1
]

θ̇ +G−1FC sign(θ̇) = u.
(4.2)

Since the inertia matrix M(G−1θ) is in general positive definite, we can write (4.2) in
terms of the state vector [θ⊤ θ̇⊤]⊤ ∈ R

2n as:

d

dt

[

θ

θ̇

]

= f (θ, θ̇,u), (4.3)

where the map f : Rn × R
n × R

n 7→ R
2n is defined as:

f (θ, θ̇,u) =

θ̇

GM(G−1θ)−1G

{

u−G−1C(G−1θ,G−1θ̇)G−1θ̇ −G−1g(G−1θ) + · · ·

−G−1DvG
−1θ̇ −G−1FC sign(θ̇)

}

(4.4)
Since the forthcoming development will require a nonlinear discrete-time model, the

continuous time model (4.3) must be discretized [39]. There are several ways to obtain
discrete-time nonlinear dynamic models from continuous-time nonlinear dynamic models
[40]. In this dissertation, we use the first-order Euler’s approximation, which produces a
simple nonlinear discrete-time model that can be used for controller synthesis:

[

θk+1

θ̇k+1

]

= fd(θk, θ̇k,uk), (4.5)

where fd : R
n × R

n × R
n 7→ R

2n is defined as:

fd(θk, θ̇k,uk) ≈

[

θk

θ̇k

]

+ Tsf (θk, θ̇k,uk), (4.6)

with Ts being the servo sampling period.

CHAPTER 4. LQ-BASED CONTROL SYNTHESIS FOR TRAJECTORY TRACKING

OF ROBOT MANIPULATORS 49

4.2 LQ-based Trajectory Tracking

Even though the Linear Quadratic (LQ) optimal control setting is by definition a control
synthesis technique for linear systems [38], we can tailor its results to solve the problem
of trajectory tracking for robot manipulators with nonlinear dynamic model (4.5). The
basic idea is that if the desired trajectory is known a-priori (which is actually the case for
manipulators operating in industrial applications), we can linearize the nonlinear dynamics
(4.5) along the desired trajectory [18, 20, 19]. This procedure will lead to approximate (4.5)
by a linear time-varying (LTV) system, allowing thus the possibility of using LQ results for
LTV systems.

4.2.1 The LQ Optimal Control Problem for LTV Systems

The discrete-time linear quadratic (LQ) optimal control problem for linear time-varying
(LTV) systems, with finite horizon H , considers the discrete-time LTV dynamics:

xk+1 = Akxk +Bkuk, x0 = xinit, (4.7)

and aims to choosing the control sequence u0,u1, . . . ,uH−1, that minimize the following
quadratic cost function:

J(U) =
H−1
∑

k=0

(

x⊤
k Qxk + u⊤

k Ruk

)

+ x⊤
HQfxH , (4.8)

where U = (u0, . . . ,uH−1) and Q = Q⊤ � 0, Qf = Q⊤
f � 0, R = R⊤ ≻ 0. The first term

measures state deviation from zero, the second measures input size or actuator authority, and
the last term measures final state deviation. The LQ problem aims to finding u⋆

0, . . . ,u
⋆
H−1,

x⋆
0, . . . ,x

⋆
H, that minimize J(U) subject to the LTV dynamics (4.7). In other words, it can

be seen as the following convex optimization problem:

minimize
uk,xk

H−1
∑

k=0

(

x⊤
k Qxk + u⊤

k Ruk

)

+ x⊤
HQfxH

subject to xk+1 = Akxk +Bkuk, x0 = xinit

k = 0, 1, . . . , H − 1.

(4.9)

An efficient way to solve the LQ problem (4.9) is through dynamic programming, which
makes use of the principle of optimality [41, 42]. It is a standard exercise in optimal control,
to show that the LQ solution via dynamic programming can be computed backwards in time:

1. set PH = Qf

2. for k = H − 1, . . . , 0,

Pk = Q+A⊤
k Pk+1Ak −A⊤

k Pk+1Bk(R+B⊤
k Pk+1Bk)

−1B⊤
k Pk+1Ak

CHAPTER 4. LQ-BASED CONTROL SYNTHESIS FOR TRAJECTORY TRACKING

OF ROBOT MANIPULATORS 50

3. for k = 0, . . . , H − 1, define the time-varying state-feedback gain matrix Kk = (R +
B⊤

k Pk+1Bk)
−1B⊤

k Pk+1Ak

4. for k = 0, . . . , H − 1, the optimal control law is given in feedback form u⋆
k = −Kkxk.

4.2.2 Trajectory Tracking of Robotic Manipulators as LQ for

Affine Time-varying Systems

Suppose we want an n-DOF robot manipulator with discrete-time nonlinear dynamics (4.5),
follow an optimal trajectory solution (θ⋆

k, θ̇
⋆
k,u

⋆
k) for all k = 0, 1, . . . , H , where H is the finite

time horizon. The optimal trajectory solution (θ⋆
k, θ̇

⋆
k,u

⋆
k) is generated through formulation

(3.13) presented in Chapter 3, i.e., θ⋆
k = θ⋆(Tsk), θ̇

⋆
k = θ̇⋆(Tsk), θ̈

⋆
k = θ̈⋆(Tsk), u

⋆
k = u⋆(Tsk),

k = 0, 1, . . . , H .
Assume that the robot dynamics is governed by the discrete-time nonlinear dynamics

(4.5). Likewise assume that the robot state (θk, θ̇k) and control input uk will remain close
to the nominal optimal state (θ⋆

k, θ̇
⋆
k) and control input u⋆

k, respectively. Therefore, it is
possible to linearize the nonlinear map fd(θk, θ̇k,uk) along the nominal optimal solution
(θ⋆

k, θ̇
⋆
k,u

⋆
k). The first-order Taylor series expansion of fd(θk, θ̇k,uk) along (θ⋆

k, θ̇
⋆
k,u

⋆
k) gives:

fd(θk, θ̇k,uk) ≈ fd(θ
⋆
k, θ̇

⋆
k,u

⋆
k) +

∂fd

∂θk

(θ⋆
k, θ̇

⋆
k,u

⋆
k)(θk − θ⋆

k)

+
∂fd

∂θ̇k

(θ⋆
k, θ̇

⋆
k,u

⋆
k)(θ̇k − θ̇⋆

k) +
∂fd

∂uk
(θ⋆

k, θ̇
⋆
k,u

⋆
k)(uk − u⋆

k), (4.10)

therefore the nonlinear discrete-time robot dynamics (4.5) can be approximated as:

[

θk+1

θ̇k+1

]

= fd(θ
⋆
k, θ̇

⋆
k,u

⋆
k) +

∂fd

∂θk
(θ⋆

k, θ̇
⋆
k,u

⋆
k)(θk − θ⋆

k)

+
∂fd

∂θ̇k

(θ⋆
k, θ̇

⋆
k,u

⋆
k)(θ̇k − θ̇⋆

k) +
∂fd

∂uk
(θ⋆

k, θ̇
⋆
k,u

⋆
k)(uk − u⋆

k). (4.11)

Consider subtracting [θ⋆⊤
k+1 θ̇⋆⊤

k+1]
⊤ from both sides of (4.11), defining θ̃k := θk − θ⋆

k,
ũk := uk − u⋆

k, and defining the following time-varying matrices for k = 0, 1, . . . , H − 1:

Aθk
:=

∂fd

∂θk
(θ⋆

k, θ̇
⋆
k,u

⋆
k) ∈ R

2n×n, A
θ̇k

:=
∂fd

∂θ̇k

(θ⋆
k, θ̇

⋆
k,u

⋆
k) ∈ R

2n×n

Bk :=
∂fd

∂uk
(θ⋆

k, θ̇
⋆
k,u

⋆
k) ∈ R

2n×n,

[

vk

wk

]

:= fd(θ
⋆
k, θ̇

⋆
k,u

⋆
k)−

[

θ⋆
k+1

θ̇⋆
k+1

]

.

(4.12)

Therefore,
[

θ̃k+1

˙̃
θk+1

]

= Aθk
θ̃k +A

θ̇k

˙̃
θk +Bkũk +

[

vk

wk

]

, (4.13)

CHAPTER 4. LQ-BASED CONTROL SYNTHESIS FOR TRAJECTORY TRACKING

OF ROBOT MANIPULATORS 51

It is then clear that by defining Ak := [Aθk
A

θ̇k
] ∈ R

2n×2n, the discrete-time nonlinear robot
dynamics (4.5) is approximated by the following affine time-varying (ATV) dynamics:

[

θ̃k+1

˙̃
θk+1

]

= Ak

[

θ̃k

˙̃
θk

]

+Bkũk +

[

vk

wk

]

. (4.14)

Ideally, by the definition in (4.12), ∀k the vector [v⊤
k w⊤

k]
⊤ in (4.14) should be 02n if

(θ⋆
k, θ̇

⋆
k,u

⋆
k) is dynamically feasible with respect to the non-linear discrete-time dynamics

(4.5). However, it will not be the case. To see the reason, recall that the 4-tuple optimal
solution (θ⋆(Tsk), θ̇

⋆(Tsk), θ̈
⋆(Tsk),u

⋆(Tsk)) is indeed dynamically feasible with respect to
the complete continuous-time dynamic model (4.2)-(4.3). However, due to the discretization
approximation process to obtain (4.5), the trajectory solution (θ⋆

k, θ̇
⋆
k,u

⋆
k), k = 1, . . . , H ,

will not be exactly dynamically feasible with respect to the discrete-time nonlinear dynamic
model (4.5). To prove it, we simply use the definition of [v⊤

k w⊤
k]

⊤ in (4.14), and also use
the definition of fd(θk, θ̇k,uk) in (4.6):

[

vk

wk

]

= fd(θ
⋆
k, θ̇

⋆
k,u

⋆
k)−

[

θ⋆
k+1

θ̇⋆
k+1

]

=

[

θ⋆
k

θ̇⋆
k

]

+ Tsf (θ
⋆
k, θ̇

⋆
k,u

⋆
k)−

[

θ⋆
k+1

θ̇⋆
k+1

]

=

[

θ⋆
k

θ̇⋆
k

]

+

[

Tsθ̇
⋆
k

Tsθ̈
⋆
k

]

−

[

θ⋆
k+1

θ̇⋆
k+1

]

=

[

θ⋆
k + Tsθ̇

⋆
k − θ⋆

k+1

θ̇⋆
k + Tsθ̈

⋆
k − θ̇⋆

k+1

]

6=

[

0n

0n

]

We are therefore interested in solving the LQ optimal control problem with affine time-
varying dynamics (4.14), namely:

minimize
ũk,θ̃k,

˙̃
θk

H−1
∑

k=0

[

θ̃k

˙̃
θk

]⊤
[

Q1 O

O Q2

]

[

θ̃k

˙̃
θk

]

+ ũ⊤
k Rũk

+

[

θ̃H

˙̃
θH

]⊤
[

Qf1 O

O Qf2

]

[

θ̃H

˙̃
θH

]

subject to

[

θ̃k+1

˙̃
θk+1

]

= Ak

[

θ̃k

˙̃
θk

]

+Bkũk +

[

vk

wk

]

, k = 0, 1, . . . , H − 1,

(4.15)

where Q1 � 0 penalizes position tracking error θ̃k deviation from zero, Q2 � 0 penalizes

velocity tracking error ˙̃
θk deviation from zero, and R ≻ 0 penalizes ũk which represents

deviation from the nominal optimal control input u⋆
k. Therefore, the optimal control problem

(4.15), if solved, allows the possibility to design feedback controllers that guarantee a position
tracking error θ̃k as small as possible, while keeping the applied controls uk as close as possible
to the open-loop optimal torques u⋆

k.

CHAPTER 4. LQ-BASED CONTROL SYNTHESIS FOR TRAJECTORY TRACKING

OF ROBOT MANIPULATORS 52

4.2.3 Reformulation as Standard LQ for LTV Systems

We could derive the solution to the optimal control problem (4.15). However, in this dis-
sertation, we are interested in a method for solving problem (4.15) using the standard LQ
solution to problem (4.9). The key insight resides in noticing that the affine time-varying
dynamics in (4.15) is equivalent to

θ̃k+1

˙̃
θk+1

1

=

Ak

[

vk

wk

]

0⊤
2n 1

θ̃k

˙̃
θk

1

+

[

Bk

0⊤
n

]

ũk.

Therefore we can define the following time-varying matrices and state vector x̄k:

Āk :=

Ak

[

vk

wk

]

0⊤
2n 1

 ∈ R
(2n+1)×(2n+1), B̄k :=

[

Bk

0⊤
n

]

∈ R
(2n+1)×n

x̄k :=

θ̃k

˙̃
θk

1

∈ R

2n+1, k = 0, 1, . . . , H.

(4.16)

With this definition, the affine time-varying dynamics in problem (4.15) is equivalent to the
linear time-varying dynamics:

x̄k+1 = Ākx̄k + B̄kũk, k = 0, 1, . . . , H − 1. (4.17)

On the other hand, the objective function in problem (4.15) can be expressed in terms
of the enlarged state vector x̄k by defining:

Q̄ =

Q1 O 0

O Q2 0

0⊤ 0⊤ 0

 , Q̄f =

Qf1 O 0

O Qf2 0

0⊤ 0⊤ 0

 ,

which allows to finally re-formulate problem (4.15) as a standard LQ optimal control problem
for linear time-varying systems:

minimize
ũk,x̄k

H−1
∑

k=0

(

x̄⊤
k Q̄x̄k + ũ⊤

k Rũk

)

+ x̄⊤
HQ̄f x̄H

subject to x̄k+1 = Ākx̄k + B̄kũk

k = 0, 1, . . . , H − 1.

(4.18)

There is no qualitative difference between the general LQ formulation (4.9) for LTV
systems, and the formulation of the tracking problem for robot manipulators in (4.18).
Therefore, problem (4.18) can be solved exactly. Alluding to the backward solution presented

CHAPTER 4. LQ-BASED CONTROL SYNTHESIS FOR TRAJECTORY TRACKING

OF ROBOT MANIPULATORS 53

beforehand for the general LQ for LTV systems, the optimal solution ũ⋆
k takes a feedback

form of the enlarged state vector x̄k, i.e.,

ũ⋆
k = −K̄kx̄k, k = 0, 1, . . . , H − 1, (4.19)

where the time-varying feedback gain matrices K̄k ∈ R
n×(2n+1), k = 0, 1, . . . , H − 1, are

pre-computed backwards in time, i.e., set PH = Q̄f and then for k = H−1, . . . , 1, 0, iterate:

K̄k = (R + B̄⊤
k Pk+1B̄k)

−1B̄⊤
k Pk+1Āk

Pk = Q̄+ K̄⊤
k RK̄k + (Āk + B̄kK̄k)

⊤Pk+1(Āk + B̄kK̄k).
(4.20)

4.2.4 Time-varying Affine Control Law

To actually carry out trajectory tracking for the discrete-time nonlinear robot model (4.5),
we need to spell out what the actual control law uk, k = 0, 1, . . . , H − 1, should be. To do
that, let us conveniently partition the time-varying feedback gain matrix K̄k ∈ R

n×(2n+1) as:

K̄k = [K1(k) K2(k) αk] , k = 0, 1, . . . , H − 1, (4.21)

where K1(k) ∈ R
n×n, K2(k) ∈ R

n×n, and αk ∈ R
n, are time varying. From the definition of

the enlarged vector x̄k in (4.16), the control law in (4.19) takes the following form:

ũ⋆
k = −K1(k)θ̃k −K2(k)

˙̃
θk −αk

= −K1(k)(θk − θ⋆
k)−K2(k)(θ̇k − θ̇⋆

k)−αk

= K1(k)(θ
⋆
k − θk) +K2(k)(θ̇

⋆
k − θ̇k)−αk.

Recalling that ũ⋆
k = uk − u⋆

k, the final control law is given by:

uk = u⋆
k −αk +K1(k)(θ

⋆
k − θk) +K2(k)(θ̇

⋆
k − θ̇k). (4.22)

The term u⋆
k represents the nonlinear optimal feedforward torque, generated from op-

timization problem (3.13). Note that since [v⊤
k w⊤

k]
⊤ 6= 02n, an additional term in the

optimal feedforward torque u⋆
k is subtracted, i.e., αk. The term [v⊤

k w⊤
k]

⊤ can actually be
thought of as a known disturbance, for when trying to model the robot dynamics with the
affine time-varying dynamics (4.14). The term −αk in control law (4.22), therefore aims at
compensating for the effect of the “disturbance” term [v⊤

k w⊤
k]

⊤.
On the other hand, notice that the feedback part of the control law (4.22) can be thought

of as a PD controller with time-varying matrices K1(k), K2(k), k = 0, 1, . . . , H − 1. These
time-varying matrices, however, are not diagonal, unlike those constant feedback gains KP,
KV in control law (2.25) from Chapter 2. The off-diagonal terms in time-varying matrices
K1(k), K2(k), k = 0, 1, . . . , H − 1, are nonzero due to the Multiple-input Multiple-output
(MIMO) property of optimal control problem (4.15).

CHAPTER 4. LQ-BASED CONTROL SYNTHESIS FOR TRAJECTORY TRACKING

OF ROBOT MANIPULATORS 54

0 0.5 1 1.5 2 2.5 3 3.5 4

−50

0

50

100

150

0 0.5 1 1.5 2 2.5 3 3.5 4

−100

0

100

θ⋆1 θ⋆2 θ⋆3

θ⋆4 θ⋆5 θ⋆6

θ
⋆ k
(r
a
d
)

θ
⋆ k
(r
a
d
)

t (sec)

(a) Optimal trajectory position θ⋆
k

0 0.5 1 1.5 2 2.5 3 3.5 4

−200

0

200

400

0 0.5 1 1.5 2 2.5 3 3.5 4
−100

−50

0

50

100

θ̇⋆1 θ̇⋆2 θ̇⋆3

θ̇⋆4 θ̇⋆5 θ̇⋆6

θ̇
⋆ k
(r
a
d
/
se
c)

θ̇
⋆ k
(r
a
d
/
se
c)

t (sec)

(b) Optimal trajectory velocity θ̇⋆
k

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

−5

0

5

10

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

u⋆
1 u⋆

2 u⋆
3 u⋆

4 u⋆
5 u⋆

6

u
⋆ k
(N

m
)

u
⋆ k
(N

m
)

t (sec)t (sec)
(c) Optimal feedforward torques u⋆

k

Figure 4.1: Near time-optimal trajectory positions, velocities, and torques, generated with
optimization problem (3.13) for λ = 0.02. Along this optimal trajectory, the discrete-time
nonlinear dynamics (4.5) is approximated as affine time-varying dynamics (4.14).

4.3 Controller Synthesis for 6-axis Manipulator

In this section, we present the necessary tools to implement control law (4.22) for the 6-DOF
industrial manipulator FANUC M-16iB. In this case, the degrees of freedom n = 6, which
means that the state vector [θ⊤ θ̇⊤]⊤ ∈ R

12. Since both the simulator and experimental setup
run at a 1-millisecond sampling period (i.e., Ts = 1 millisecond), the number of linearization
points will be relatively large. For instance, in Fig. 4.1 the optimal reference positions
and velocities θ⋆

k, θ̇
⋆
k and optimal torques u⋆

k are presented. Along this optimal trajectory,
the linearization of the nonlinear dynamics (4.14) is performed. This near time-optimal
trajectory solution is generated by solving optimization problem (3.13) for λ = 0.02 and then
performing the appropriate conversions to motor-side. The total traversal time is tf = 4.238
seconds, which means that the linearization is performed and stored for 4,238 points. I.e., a
total of 4,238 matrices Aθk

∈ R
12×6, A

θ̇k
∈ R

12×6, Bk ∈ R
12×6, [v⊤

k w⊤
k]

⊤ ∈ R
12, defined in

(4.12), need to be numerically computed and stored for subsequent controller synthesis.

CHAPTER 4. LQ-BASED CONTROL SYNTHESIS FOR TRAJECTORY TRACKING

OF ROBOT MANIPULATORS 55

4.3.1 Linearization along the Reference Trajectory

Since n = 6, the map f : R6 × R
6 × R

6 7→ R
12 defined in (4.4), needs to be computed

efficiently to carry out linearization at a large number of points. These computations are
done very fast using the recursive Newton-Euler algorithm [17], which has been coded in C
and therefore a MEX file can be executed within MATLABr to substantially speed up the
computations [35]. Likewise, since the sign(·) function is discontinuous at zero, i.e.,

sign(x) :=

1, if x > 0
0, if x = 0

−1, if x < 0
, (4.23)

we approximate it by a smooth continuous function, satur(·), defined as follows:

satur(x) :=
tan−1(ηx)− tan−1(−ηx)

π
, (4.24)

where η > 0 is a control parameter that can be used to refine the approximation to the sign(·)
function, namely, the larger η, the more accurate the approximation. In this dissertation, we
use η = 25 since we need the function satur(·) to be differentiable at θ̇i = 0, i = 1, 2, . . . , 6.
The reason is that the velocity reference θ̇⋆

k, from Fig. 4.1(b), crosses zero at different instants
of time. Therefore, for linearization purposes along this optimal reference trajectory, the
following nonlinear map is used:

f (θ, θ̇,u) =

θ̇

GM(G−1θ)−1G

{

u−G−1C(G−1θ,G−1θ̇)G−1θ̇ −G−1g(G−1θ) + · · ·

−G−1DvG
−1θ̇ −G−1FC satur(θ̇)

}

 .

(4.25)
For a given point (θ, θ̇,u), the recursive Newton-Euler algorithm needs to be invoked eight
times to do one computation of f (θ, θ̇,u). Namely, one call to compute g(G−1θ) ∈ R

6,
one call for C(G−1θ,G−1θ̇)G−1θ̇ ∈ R

6, and six calls to calculate M(G−1θ) ∈ R
6×6. From

the definition of the discrete-time nonlinear map fd(θk, θ̇k,uk) in (4.6), the same number of
calls are needed for one evaluation of fd(θk, θ̇k,uk).

The computation of Aθk
∈ R

12×6, A
θ̇k

∈ R
12×6, Bk ∈ R

12×6, defined in (4.12), is done
numerically column-by-column as follows: for i = 1, . . . , 6, the i-th columns of Aθk

, A
θ̇k
,

Bk, are approximated by the following directional derivatives:

Aθk
(:, i) ≈

fd(θ
⋆
k + εei, θ̇

⋆
k,u

⋆
k)− fd(θ

⋆
k − εei, θ̇

⋆
k,u

⋆
k)

2ε

A
θ̇k
(:, i) ≈

fd(θ
⋆
k, θ̇

⋆
k + εei,u

⋆
k)− fd(θ

⋆
k, θ̇

⋆
k − εei,u

⋆
k)

2ε

Bk(:, i) ≈
fd(θ

⋆
k, θ̇

⋆
k,u

⋆
k + εei)− fd(θ

⋆
k, θ̇

⋆
k,u

⋆
k − εei)

2ε
,

(4.26)

CHAPTER 4. LQ-BASED CONTROL SYNTHESIS FOR TRAJECTORY TRACKING

OF ROBOT MANIPULATORS 56

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.01

0

0.01

0.02

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

0

2

4

6
x 10

−3

v1 v2 v3

v4 v5 v6

v
k
(r
a
d
)

v
k
(r
a
d
)

t (sec)

(a) Position “disturbance” vk

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.4

−0.2

0

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.5

0

0.5

w1 w2 w3

w4 w5 w6

w
k
(r
a
d
/
se
c)

w
k
(r
a
d
/
se
c)

t (sec)

(b) Velocity “disturbance” wk

Figure 4.2: Disturbance terms vk ∈ R
6 and wk ∈ R

6, which respectively represent position
“disturbance” and velocity “disturbance” due to non-exact dynamic feasibility. These terms
actually show up because of: (i) the approximation performed to obtain a nonlinear discrete-
time dynamic model from a nonlinear continuous-time dynamic model and (ii) from high-
order terms in the nonlinear discrete-time dynamics that are ignored when linearizing along
the nominal trajectory.

where ε = 10−4, and {e1, . . . , e6} is the canonical basis for R6 [43]. These computations are
carried out along the entire optimal trajectory (θ⋆

k, θ̇
⋆
k,u

⋆
k), k = 0, 1, 2, . . . , H .

The near time-optimal trajectory presented in Fig. 4.1 requires a time horizonH = 4, 238.
It means that 4238 matrices Aθk

∈ R
12×6, A

θ̇k
∈ R

12×6, and Bk ∈ R
12×6, must be computed

from (4.26), and then stored for controller synthesis. In addition, the “disturbance” term
[v⊤

k w⊤
k]

⊤ is computed from its definition in (4.12). The total computation time to obtain
the referred matrices using MATLABr is around 55 seconds, on an Intel(R) Core(TM)2 Duo
CPU @ 2.5 Ghz.

The resulting disturbance terms vk ∈ R
6, wk ∈ R

6 are shown in Fig. 4.2. From their
definition in (4.12), and from the manner in which they appear in the time-varying affine
dynamics (4.14), vk can be interpreted as a “disturbance” in position whereas wk as a
“disturbance” in velocity. Clearly from Fig. 4.2, these disturbances are small (but not zero)
compared to the optimal trajectory positions and velocities θ⋆

k, θ̇
⋆
k presented in Fig. 4.1.

With all the above provisos in mind, matrices Āk, B̄k, k = 0, 1, . . . , H−1, are constructed
from their definition in (4.16). To complete the parameters needed to solve optimal control
problem (4.18), it remains to choose the weighting matrices Q1, Q2, Qf1, Qf2 , and R. A
first choice for the matrices Q1, Q2, and R is given by the Bryson’s rule [44]: select Q1, Q2,

CHAPTER 4. LQ-BASED CONTROL SYNTHESIS FOR TRAJECTORY TRACKING

OF ROBOT MANIPULATORS 57

and R diagonal with the following entries:

[Q1]ii =
1

maximum acceptable value of
[

θ̃k

]2

i

, i = 1, 2, . . . , 6

[Q2]ii =
1

maximum acceptable value of
[

˙̃
θk

]2

i

, i = 1, 2, . . . , 6

Rii =
1

maximum acceptable value of [ũk]
2
i

, i = 1, 2, . . . , 6.

Essentially this rule scales each variable in the objective function (4.15) so that the maximum
acceptable value for each term is one. Although Bryson’s rule gives sometimes good results,
it is just the starting point to a trial-and-error procedure until desirable properties of the
closed-loop system are attained.

In this dissertation, we use Bryson’s rule in a way so as to produce time-varying feedback
matrices K1(k), K2(k), in (4.22), that are “comparable” to the constant feedback gains KP,
KV, in control law (2.25) from Chapter 2. The constant feedback gain matrices KP, KV, in
control law (2.25) are:

KP = diag(4.4717, 4.0786, 0.8297, 1.4449, 0.0399, 0.1415)

KV = diag(0.4255, 0.3910, 0.0810, 0.0622, 0.0025, 0.0069),

which are diagonal since these gains are designed in a decentralized manner. On the other
hand, the optimal control formulation (4.15) is intrinsically MIMO, and therefore will pro-
duce time-varying gains K1(k), K2(k), with nonzero off-diagonal elements to account for the
coupled dynamics. We thus use Bryson’s rule but tune the weighting matrices so that the
diagonal elements of K1(0), K2(0) (i.e., at k = 0) are approximate to those of KP, KV. Of
course, the off-diagonal terms of K1(0), K2(0) will not be zero due to the coupled dynamics.
Besides, K1(k), K2(k) are time-varying, therefore the referred design requirement will not
be necessarily true for k = 1, 2, . . . , H − 1.

With these considerations, weighting matrices Q1 and Q2, which respectively penalize

deviation from zero of θ̃k and
˙̃
θk, are conveniently set as:

Q1 = diag

(

1

12
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12

)

= I

Q2 = diag

(

1

102
,

1

102
,

1

102
,

1

102
,

1

102
,

1

102

)

= 0.01I,

where I is the 6 × 6 identity matrix. In this way, the weighting matrix R, which penalizes
ũk deviation from zero (i.e., uk deviation from the nominal optimal torque u⋆

k), is tuned as:

R = diag

(

1

5.062
,

1

4.632
,

1

0.932
,

1

1.552
,

1

0.062
,

1

0.212

)

.

CHAPTER 4. LQ-BASED CONTROL SYNTHESIS FOR TRAJECTORY TRACKING

OF ROBOT MANIPULATORS 58

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

0

2

4

6

0 1 2 3 4
−0.2

−0.1

0

0.1

0.2

α1 α2 α3 α4 α5 α6

α
k
(N

m
)

α
k
(N

m
)

t (sec)t (sec)

Figure 4.3: Resulting compensation torque αk in control law (4.22). This term could be zero
only when the disturbance terms vk and wk are zero.

For simplicity, Qf1 = Q1, and Qf2 = Q2, however, for convenience these weighting matrices
are tuned as Qf1 = 100 · Q1, and Qf2 = 6 · Q2, which completes the parameters needed
in the optimal control problem. Solving the referred optimal control problem (4.18), yields
K1(k), K2(k), and the torques αk, k = 0, 1, . . . , H − 1. The resulting torques αk, which
result due to the terms vk, wk, are shown in Fig. 4.3. Note that these torques are nonzero
because vk,wk 6= 0. The resulting feedback gain matrices at time k = 0, i.e., K1(0), K2(0),
are:

K1(0) =

4.4724 0.0026 0.0032 0.1320 −0.0079 0.3676
0.0120 4.0712 −1.0495 −0.0016 0.1784 0.0026

−0.0014 0.2924 0.8258 0.0050 −0.0548 −0.0002
−0.0057 −0.0009 −0.0032 1.4448 −0.0070 −0.1121
−0.0001 −0.0040 0.0042 −0.0002 0.0415 0.0001
−0.0371 0.0001 −0.0003 0.0172 0.0002 0.1491

,

K2(0) =

0.4254 0.0007 0.0001 −0.0014 −0.0003 0.0757
0.0017 0.4044 −0.1043 0.0001 0.0576 0.0002

−0.0002 0.0355 0.0769 0.0007 −0.0077 0.0000
−0.0062 0.0001 −0.0003 0.0838 0.0000 −0.0140
0.0000 −0.0005 0.0008 −0.0000 0.0016 0.0000

−0.0046 0.0000 −0.0000 0.0041 0.0000 0.0064

.

The diagonal elements of K1(0) and K2(0) are numerically approximate to the constant
feedback gainsKP andKV. Note however that the off-diagonal elements ofK1(0) andK2(0)
are nonzero since our controller synthesis considers the robot coupled dynamics. Besides,
K1(k), K2(k), are time-varying, which means that for certain time instants, say j, the
feedback gain matrices K1(j) and K2(j), might not be feasible for implementation on the
experiments.1 For this trajectory, a total of 4237 matrices K1(k) and K2(k) are generated.
We wish to present all these matrices ∀k. A compact, yet informative way, is through their
maximum and minimum singular values, i.e., σmax(K1(k)), σmin(K1(k)), σmax(K2(k)) and
σmin(K2(k)), k = 0, 1, . . . , 4237. The resulting singular values are shown in Fig. 4.4, which
for reference purposes also includes σmax(KP), σmin(KP), σmax(KV) and σmin(KV).

This manner of presenting the controller synthesis allows to visualize graphically the max-
imum gain amplifications ofK1(k) andK2(k) (i.e., σmax(K1(k)) and σmax(K2(k))). A couple

1It was indeed the case, when first carrying out experiments using the referred time-varying feedback
gains, that large commanded torques caused our first experiments to fail. It was then necessary to plot the
maximum singular values of the feedback gain matrices to determine the cause of these undesired effects.

CHAPTER 4. LQ-BASED CONTROL SYNTHESIS FOR TRAJECTORY TRACKING

OF ROBOT MANIPULATORS 59

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

0 1 2 3 4
0

0.2

0.4

0.6

0.8

K1(k), σmax & σmin

KP, σmax & σmin

K2(k), σmax & σmin

KV, σmax & σmin

σ
m

a
x
&

σ
m

in

σ
m

a
x
&

σ
m

in

t (sec)t (sec)

Figure 4.4: Maximum singular values of K1(k) and K2(k) for all k = 0, 1, . . . , 4237. For
comparison purposes, the maximum singular values of the constant feedback matrices KP

and KV are also included.

of inconveniences can be anticipated from Fig. 4.4, namely, σmax(K1(k)) and σmax(K2(k))
exhibit sudden changes to large values at several time instants. The reason for this unde-
sirable effect in the controller synthesis is related to linearization. Concretely, in trying to
approximate the sign(·) function, with the smooth function satur(·) defined in (4.24), the
parameter η should be chosen smaller. The reason for this is to make the approximation
not as accurate since linearization requires the derivative of satur(q̇) at several points where
q̇ = 0. Changing the value of the parameter to η = 5, resolves this issue yielding results that
are feasible for implementation on the actual robot.

Using η = 5 in approximation (4.24), yields the controller synthesis results shown in
Fig. 4.5. In this case, the maximum gain amplifications σmax(K1(k)) and σmax(K2(k)) are
more feasible for controller implementation on the actual robot. Note that σmax(K1(k))
and σmax(K2(k))) slightly vary around σmax(KP) and σmax(KV), respectively. However, for
all time k, the matrices K1(k) and K2(k) should clearly be different from KP and KV,
respectively. For instance, the feedback matrices corresponding to controller synthesis of
Fig. 4.5 at time k = 0 are:

K1(0) =

4.2582 0.0031 0.0018 0.4185 −0.0002 1.3887
0.0106 3.9774 −1.1555 −0.0030 0.8215 0.0024

−0.0017 0.3436 0.7884 0.0020 −0.1721 0.0011
0.0030 0.0015 −0.0007 1.3923 −0.0059 −0.3530

−0.0001 −0.0099 0.0142 −0.0005 0.0506 0.0003
−0.0768 −0.0000 −0.0007 0.0378 0.0002 0.1758

,

K2(0) =

0.4008 0.0007 0.0001 0.0260 0.0000 0.1268
0.0014 0.3851 −0.1045 −0.0001 0.0780 0.0004

−0.0002 0.0379 0.0765 0.0005 −0.0142 0.0001
−0.0065 0.0005 −0.0003 0.1293 −0.0003 −0.0272
0.0000 −0.0011 0.0023 −0.0000 0.0040 0.0000

−0.0087 −0.0000 −0.0001 0.0067 0.0000 0.0118

.

Before presenting the experimental results, a couple of comments are made on the synthe-
sis results from Fig. 4.5. The maximum gain amplification σmax(K1(k)) drops to a small value
for the final transition of the trajectory. This is always the case, even when we substantially
increase the weighting matrix Qf1. Apparently, the optimal control problem formulation
(4.15) of the trajectory tracking problem, implies that at time k = H the control input

CHAPTER 4. LQ-BASED CONTROL SYNTHESIS FOR TRAJECTORY TRACKING

OF ROBOT MANIPULATORS 60

ũH should drop. This makes sense, since the objective function in (4.15) penalizes on the
tracking error x̃k up to k = H , which means that ũH−1 is the last control input that can be
utilized to affect x̃H .

4.4 Experimental Evaluations

We implement control law (4.22) to carry out experiments on the FANUC M16iB industrial
robot. The compensation torque α1(k) from Fig. 4.5 is too large for implementation on
the actual robot. Therefore, only torques α2(k), α3(k), . . . , α6(k), are implemented on the
experiments. In our experimental setup, additional 0.5 seconds are required after the end
of the trajectory to allow for activation of mechanical breaks. Therefore, we switch to the
feedback gains KP, KV, for k = H +1, H+2, In any of the forthcoming plots regarding
experiments, we always include what happens for k = H + 1, H + 2, . . . , H + 10, so that
we can monitor the effect of switching to the feedback gains KP, KV, at the end of the
trajectory.

The referred experimental results are all shown in Fig. 4.6. In Fig. 4.6(a) we present the
applied torques u(t)ap and the accelerometer readings ẍ(t). Note that the applied torques
u(t)ap represent the total torques, computed with control law (4.22), composed of feedforward
and feedback portions. Of interest to us in this Chapter are the resulting tracking errors,
shown in Fig. 4.6(b). The joint-space motor-side tracking errors θ̃(t) are compared against
the corresponding tracking errors θ̃(t) in Fig. 3.7(b) presented in Chapter 3. This is a fair
comparison since from Fig. 4.5 the maximum singular values σmax(K1(k)) and σmax(K2(k)),
k = 0, 1, . . . , H , are of comparable magnitude to σmax(KP) and σmax(KV). The difference

0 1 2 3 4

−2

0

2

4

0 1 2 3 4

−0.2

0

0.2

 α1 α2 α3 α4 α5 α6

α
k
(N

m
)

α
k
(N

m
)

t (sec)t (sec)

0 1 2 3 4
0

2

4

6

0 1 2 3 4
0

0.2

0.4

0.6

0.8

K1(k), σmax & σmin

KP, σmax & σmin

K2(k), σmax & σmin

KV, σmax & σmin

σ
m

a
x
&

σ
m

in

σ
m

a
x
&

σ
m

in

t (sec)t (sec)

Figure 4.5: Controller synthesis results when choosing η = 5, so that the approximation
to the sign(·) function is not as accurate, since for linearization purposes the derivative of
satur(q̇) is required at several points where q̇ = 0.

CHAPTER 4. LQ-BASED CONTROL SYNTHESIS FOR TRAJECTORY TRACKING

OF ROBOT MANIPULATORS 61

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

−5

0

5

10

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

−1

0

1

2

0 0.5 1 1.5 2 2.5 3 3.5 4

−20

−10

0

10

20

u
ap
1 u

ap
2 u

ap
3

u
ap
4 u

ap
5 u

ap
6

ẍ ÿ z̈

u
(t
)a

p
(N

m
)

u
(t
)a

p
(N

m
)

ẍ
(t
)
(m

/
se
c2
)

t (sec)

(a) Applied torques and accelerometer readings

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

0

2

4

6
x 10

−3

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.01

0

0.01

0 0.5 1 1.5 2 2.5 3 3.5 4

−2
0
2
4
6
8

x 10
−3

θ̃1 θ̃2 θ̃3

θ̃4 θ̃5 θ̃6

x̃ ỹ z̃

θ̃
(t
)
(r
a
d
)

θ̃
(t
)
(r
a
d
)

x̃
(t
)
(m

)

t (sec)

(b) Motor-side and Cartesian-space tracking errors

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

0

2

ufb
1 ufb

2 ufb
3

u
(t
)f
b
(N

m
)

t (sec)
0 0.5 1 1.5 2 2.5 3 3.5 4

−0.5

0

0.5

ufb
4 ufb

5 ufb
6

u
(t
)f
b
(N

m
)

t (sec)
(c) Feedback torques, u(t)fb

Figure 4.6: Experimental results when implementing the ATV control law (4.22). The
reference trajectory corresponds to the near time-optimal trajectory presented in Chapter 3,
(i.e., for λ = 0.02).

is that K1(k) and K2(k) are time-varying, and have non-zero off-diagonal terms to account
for the inherent coupled dynamics of robotic arms.

The root mean square (RMS) value for each of the joint tracking errors θ̃1(k), . . . , θ̃6(k),
are presented in Table 4.1 for both the PID control law and the ATV control law (4.22). Also
in Table 4.1 are presented the RMS values for the Cartesian-space tracking errors x̃(k), ỹ(k),
z̃(k). For all axes, the RMS values associated to the ATV control law (4.22) are better than
the corresponding values for PID control law (3.6). Finally, it is important to look at the
feedback torques u(t)fb shown in Fig. 4.6(c). Note that the ATV control law (4.22) is able to

CHAPTER 4. LQ-BASED CONTROL SYNTHESIS FOR TRAJECTORY TRACKING

OF ROBOT MANIPULATORS 62

θ̃1(k) θ̃2(k) θ̃3(k) θ̃4(k) θ̃5(k) θ̃6(k) x̃(k) ỹ(k) z̃(k)

PID .0024 .0008 .0012 .0054 .0089 .0050 .0022 .0038 .0019
ATV .0020 .0008 .0007 .0036 .0042 .0036 .0014 .0027 .0013

Table 4.1: Comparison of RMS values of the tracking errors achieved by the PID control law
and the proposed ATV controller.

achieve better performance than control law (3.6) with smaller feedback torques (compare
Figs. 4.6(c) and 3.7(c)). This might be attributed to the time-varying and multi-variable
nature of control law (4.22). Likewise, the compensation torques αk, which are feedforward,
might be alleviating some burden on the feedback control portion.

Even though the ATV control law (4.22) features superior properties, the following com-
ments should be pointed out:

• The methodology requires the storage of a large number of feedback matrices K1(k),
K2(k) ∈ R

6×6, k = 0, . . . , H − 1. For instance, in the specific case of the trajectory
from Fig. 4.1, for which the traversal time is 4.238 seconds with a sampling time Ts = 1
milliseconds, a total of 4237× 2 matrices, K1(k) and K2(k), are needed. Even though
we were able to successfully implement the referred methodology in our experimental
setup, for trajectories with longer traversal times (e.g., 12 seconds would require 24,000
matrices), the memory usage may become prohibitive.

• The LTV feedback gains are essentially time-varying because it is assumed that the
system dynamics matrices Ak and Bk, vary with time, as a result of linearizing along
the reference trajectory and torques. In other words, because of the time-varying
feedback matrices K1(k) and K2(k), the ATV control law (4.22) can be regarded as a
specific instance of gain scheduling controller for nonlinear systems, with time index k
representing the scheduling variable [45, 23].

• The sudden drop of σmax(K1(k)) to almost zero at the end of the trajectory (see
Fig. 4.5) is undesired, since we then need to switch to the feedback gains, KP and KV,
for k = H+1, H+2, . . ., in order to be able to control the robot state at that constant
position. Switching from the almost zero σmax(K1(H)) to the nonzero σmax(KP(H+1))
can result in sudden changes of the feedback torques u(k)fb (see 4.6(c)).

It seems intuitive that we might be able to attain similar performance with a gain schedul-
ing scheme that requires the storage of significantly less feedback gain matrices. For example,
if we let the actual state vector [θ⊤ θ̇⊤]⊤ be the scheduling variable, we could then choose a
few strategic points on the trajectory where local controllers can be synthesized based on the
local linear dynamics. To choose which controller to utilize, we would constantly monitor
the actual robot state [θ⊤ θ̇⊤]⊤ and identify which controller to apply. In this manner, we
do not rely on the robot state to have a specific value at an exact instant of time. In the

CHAPTER 4. LQ-BASED CONTROL SYNTHESIS FOR TRAJECTORY TRACKING

OF ROBOT MANIPULATORS 63

next chapter, we explore this idea, which builds on the afore discussed development that led
to the ATV control law (4.22). As we shall see in Chapter 5, however, the resulting control
law in that case will be piecewise affine (PWA) as opposed to affine and time-varying.

4.5 Summary

In this chapter we explored a controller synthesis methodology to achieve trajectory tracking
on robotic arms. We developed a framework for trajectory tracking, based on the LQ optimal
control problem for a class of affine time-varying (ATV) dynamical systems. Even though the
dynamic model of robot manipulators is inherently nonlinear, we showed how the nonlinear
dynamics can be approximated along the reference trajectory as an ATV dynamical system.
Therefore a control law to achieve trajectory tracking was developed using LQ methods
for linear time-varying (LTV) systems. When discretizing the continuous-time nonlinear
model to obtain a discrete-time nonlinear model, the reference trajectory and torques are no
longer exactly dynamically feasible, which motivated us to introduce a “disturbance” term in
position and velocity. Even though the “disturbance” terms are rather small compared to the
actual desired positions and velocities, our controller synthesis scheme takes these terms into
account. The outcome is a time-varying trajectory tracking controller that “compensates” for
the referred “disturbance” terms. The final control law was implemented in our experimental
setup for the 6-axis industrial manipulator, which verified the feasibility (and also exposed
the shortcomings) of the proposed method.

64

Chapter 5

Piecewise Affine Modeling and

Control Synthesis for Trajectory

Tracking

In this chapter we study the control synthesis for a class of piecewise affine systems to
address the problem of trajectory tracking of robots, whose dynamic model is inherently
nonlinear. Although the dynamic model of robot manipulators is highly nonlinear, we study
that when the reference trajectory is known, it is possible to linearize the nonlinear dynamics
along several operating points on the reference trajectory. Unlike the proposed method in
Chapter 4, which led to the ATV controller and required linearization at every point on
the reference trajectory, in the forthcoming development the linearization is only performed
at specific points on the reference trajectory. The approximation will lead to a piecewise
affine (PWA) dynamical system. If we assume that each affine dynamics is valid within an
ellipsoidal region centered at a corresponding operating point, we can synthesize controllers
for each ellipsoidal region based on the local dynamics. Each controller then guarantees that
the corresponding equilibrium is asymptotically stable. Unlike our previous development on
ATV controller in discrete-time, the controller synthesis for each ellipsoidal region will be
done using the local continuous-time model. In fact, the forthcoming development is done
entirely in continuous-time, but of course the implementation is carried out in discrete-time.
Prior to implementing the proposed controller in experiments for the 6-axis industrial robot,
throughout the chapter we illustrate our ideas on simulation studies for a 1-DOF and 2-DOF
manipulators. Then, experimental results on the 6-axis industrial manipulator are presented
to evaluate the effectiveness of the proposed control law.

5.1 Continuous-time Nonlinear Dynamic Model

Consider again the general nonlinear dynamic model for a robot manipulator with n degrees
of freedom. Let the vector θ ∈ R

n represent the motor-side joint positions, and let u ∈

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 65

R
n represent the motor-side actuator torques. For the sake of clarity in the forthcoming

development, the dynamic model (4.2) is restated here:

[

G−1M(G−1θ)G−1
]

θ̈ +
[

G−1C(G−1θ,G−1θ̇)G−1
]

θ̇ +G−1g(G−1θ)+
[

G−1DvG
−1
]

θ̇ +G−1FC sign(θ̇) = u,
(5.1)

where G is a diagonal matrix containing the reducer’s gear ratios, M(·) is the positive-
definite inertia matrix, C(·, ·) is the Coriolis/centrifugal matrix, g(·) is the vector of gravi-
tational torques, and Dv,FC ∈ R

n×n representing respectively the coefficients of viscous and
Coulomb damping. As already mentioned in Chapter 1, we always add the corresponding
motor-side inertia Jmot to the inertia matrix G−1M(G−1θ)G−1, where Jmot is diagonal and
contains each motor’s armature inertia. In other words, the total inertia matrix in (5.1) is:
Jmot +G−1M(G−1θ)G−1. Similarly for the coefficients of viscous and Coulomb damping,
the actual ones used in (5.1) are: Dv,mot + G−1DvG

−1 and FC,mot + G−1FC, respectively.
However, for simplicity of exposition, in this dissertation we have always presented the more
compact dynamics in (5.1).

Assume that the manipulator is required to follow a motor-side joint-space reference
trajectory θd(t) for all t ∈ [0, tf]. A common technique used in industrial manipulators is to
pre-compute a feedforward torque ud(t) from dynamic model (5.1), which is entirely based
on the reference trajectory θd(t) [1]. This feedforward torque is then used to attempt to
cancel out the nonlinearities in dynamic model (5.1). After the assumption of canceling out
the nonlinearities through ud(t), a linear controller (e.g., a PI plus lead compensator) is
designed under the assumption that a linear plant results due to the feedforward torque. In
this chapter, we follow a similar philosophy, but we do not assume a simple linear model for
the entire trajectory. Rather, we propose that the problem can be formulated in the context
of controller synthesis for a class of piecewise affine systems, by selecting strategic points
along the reference trajectory and approximating the nonlinear dynamics near those points
as affine dynamical systems.

Given the reference trajectory, first and second time derivatives (θd(t), θ̇d(t), θ̈d(t)), the
referred feedforward torque ud(t) is simply:

ud(t) =
[

G−1M(G−1θd)G
−1
]

θ̈d +
[

G−1C(G−1θd,G
−1θ̇d)G

−1
]

θ̇d +G−1g(G−1θd)

+
[

G−1DvG
−1
]

θ̇d +G−1FC satur(θ̇d).
(5.2)

We refer to the trajectory 4-tuple (θd(t), θ̇d(t), θ̈d(t),ud(t)) as a dynamically feasible trajec-
tory with respect to (5.1). Notice that the near time-optimal 4-tuple trajectory (θ⋆(t), θ̇⋆(t),
θ̈⋆(t),u⋆(t)) generated from algorithm (3.13) in Chapter 3, is indeed dynamically feasi-
ble with respect to dynamics (5.1). It should also be emphasized that in this chapter, the
continuous-time model (5.1) will not be discretized to obtain a nonlinear discrete-time model.
In this manner, any near time-optimal trajectory (θ⋆(t), θ̇⋆(t), θ̈⋆(t),u⋆(t)) generated from
algorithm (3.13) will remain dynamically feasible.

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 66

The nonlinear dynamic model (5.1) should be expressed in state-space form. Let us define
the state vector x = (x⊤

1 x⊤
2)

⊤ := (θ⊤ θ̇⊤)⊤ ∈ R
2n, then the nonlinear dynamic model (5.1)

is compactly written:
ẋ = f (x,u), (5.3)

where the map f : R2n × R
n 7→ R

n is defined as

f (x,u) =

x2

GM(G−1x1)
−1G

{

u−G−1C(G−1x1,G
−1x2)G

−1x2 −G−1g(G−1x1)+
−G−1DvG

−1x2 −G−1FC sign(x2)

}

 .

(5.4)
In this context, a dynamically feasible pair (xd(t),ud(t)) with respect to (5.3)-(5.4) means

ẋd = f (xd,ud) for all t ∈ [0, tf]. Clearly dynamic feasibility with respect to (5.1) implies
dynamic feasibility with respect to (5.3)-(5.4).

5.1.1 Linearization along the Reference Trajectory

To linearize (5.3)-(5.4) along the continuous-time trajectory pair (xd(t),ud(t)), we obtain
the first-order Taylor expansion of f (x,u) along (xd(t),ud(t)) for all t ∈ [0, tf], giving:

f (x(t),u(t)) ≈ f (xd(t),ud(t))

+
∂f

∂x

∣

∣

∣

∣ x = xd(t)
u = ud(t)

(x(t)− xd(t)) +
∂f

∂u

∣

∣

∣

∣ x = xd(t)
u = ud(t)

(u(t)− ud(t)) .

Therefore, by defining the following time-varying matrices and vector:

A(t) :=
∂f

∂x

∣

∣

∣

∣ x = xd(t)
u = ud(t)

∈ R
2n×2n, B(t) :=

∂f

∂u

∣

∣

∣

∣ x = xd(t)
u = ud(t)

∈ R
2n×n,

b(t) := f (xd(t),ud(t))−A(t)xd(t)−B(t)ud(t),

(5.5)

leads to approximate (5.3)-(5.4) along (xd(t),ud(t)), as the following affine time-varying
dynamical system:

ẋ = A(t)x+ b(t) +B(t)u, ∀t ∈ [0, tf]. (5.6)

5.2 Piecewise Affine Modeling

As a result of assuming that the actual state of the robot x(t) will pass through xd(t) exactly
at time t, approximation (5.6) contains time-varying matrices A(t), B(t), and b(t). This
approximation is closely related to the one presented in (4.11)-(4.12) from Chapter 4, which
eventually led to the ATV control law (4.22). However, an important difference is that the

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 67

non-linear map used in this chapter to define A(t), B(t), b(t), is the continuous-time vector
field f (x,u), as opposed to the discrete-time nonlinear map defined in (4.6).

One reason not to discretize the continuous-time nonlinear dynamics in this chapter, is
to preserve the exact dynamic feasibility of any optimal trajectory (θd(t), θ̇d(t), θ̈d(t),ud(t)),
generated through algorithm (3.13). As already seen, when discretizing the continuous-time
nonlinear dynamics, the optimal trajectory is no longer exactly dynamically feasible with
respect to the discrete-time dynamics. This observation led us to introduce the concept of a
“disturbance” term due to the non-exact dynamic feasibility of the trajectory, namely, vk, wk

defined in (4.12). In the present chapter, there will be no need to introduce this “disturbance”
term, since the developments are carried out using the continuous-time dynamics.

We argued in Chapter 4 that having a control law whose feedback gains depend on
the actual state of the robot x(t) (i.e., state-dependent gain scheduling), might be more
convenient than a time-varying control law (i.e., time-dependent gain scheduling). To this
end, instead of approximating the nonlinear dynamics (5.3)-(5.4) by the affine time-varying
dynamics (5.6), we propose a piecewise affine (PWA) dynamics, which means that the system
matrices depend actually on the state x(t) [46]. This allows to define operating regions in
the spate space whereby the corresponding approximation is valid.

Consider
(

Aα(x), bα(x),Bα(x)

)

, with the state-dependent index α : R
2n 7→ {1, . . . , L},

where L represents the number of operating regions (or discrete modes) carefully selected
along the reference trajectory. Each operating region Ri ⊂ R

2n satisfies Ri = {x ∈ R
2n :

α(x) = i}. We therefore propose to approximate the nonlinear dynamics (5.3)-(5.4) along
the reference trajectory, by the following piecewise affine (PWA) dynamical system:

ẋ = Aix+ bi +Biu, if x ∈ Ri, i ∈ {1, 2, . . . , L}. (5.7)

The question on how to choose L, how to construct the system matrices (Ai, bi,Bi), and
the corresponding operating regions Ri, i = 1, . . . , L, is addressed next.

5.2.1 Constructing (Ai, bi,Bi) and Ri

As already pointed out, instead of considering all points in the entire reference trajectory
(xd(t),ud(t)) ∀t ∈ [0, tf], we only choose L operating points {x

(1)
c , . . . ,x

(L)
c } along the ref-

erence pair (xd(t),ud(t)). On the other hand, the operating regions are denoted Ei and are

constructed as ellipsoids centered at the corresponding operating point x
(i)
c , i = 1, . . . , L. An

abstract idea of the kind of construction that we want to attain is illustrated in Fig. 5.1, where
the state-space reference trajectory xd(t), operating points {x

(1)
c , . . . ,x

(L)
c }, and ellipsoidal

regions E1, . . . , EL are included.
Essentially, to achieve such a construction, we need to first devise a method to choose the

operating points {x
(1)
c , . . . ,x

(L)
c }. Once these operating points are known, constructing the

corresponding ellipsoids E1, . . . , EL should be straightforward, since we know already their
center, namely, {x

(1)
c , . . . ,x

(L)
c }. In this dissertation, we use three equivalent parametriza-

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 68

x
(1)
c

x (i+1)c

x
(k)
c

x
(L)
c

x (i)c

E1

Ei+1

Ek
EL

Ei

· · ·

· ·
·

· · ·

Figure 5.1: Illustration of reference trajectory xd(t), operating points {x
(1)
c , . . . ,x

(L)
c }, and

ellipsoidal regions E1, . . . , EL.

tions of an ellipsoid Ei ⊂ R
2n [46, 47]:

Ei =
{

x ∈ R
2n : (x− x(i)

c)⊤R−1
i (x− x(i)

c) ≤ 1
}

Ei = {x(i)
c +Liz : ‖z‖2 ≤ 1}

Ei =
{

x ∈ R
2n : ‖Six+ si‖2 ≤ 1

}

(5.8)

where Ri ∈ R
2n×2n, Ri = R⊤

i ≻ 0; Li ∈ R
2n×2n is a nonsingular matrix; Si ∈ R

2n×2n,
Si = S⊤

i ≻ 0, si ∈ R
2n. It is easy to show that these three parametrizations are equivalent,

i.e., given one parametrization it is possible to recover the other two. For instance, given Ri

and x
(i)
c in the first parametrization, the other two parametrizations of Ei are simply given

by Li = R
1/2
i , and Si = R

−1/2
i , si = −R

−1/2
i x

(i)
c .

To parameterize the ellipsoids Ei with known center x
(i)
c of Fig. 5.1, the first parametriza-

tion is more convenient:

Ei =
{

x ∈ R
2n : (x− x(i)

c)⊤R−1
i (x− x(i)

c) ≤ 1
}

, (5.9)

from which it is clear that constructing the ellipsoid Ei with known center x
(i)
c is equivalent

to finding the parameterizing positive-definite matrix Ri. We shall explain how to obtain
Ri shortly, but for now we concentrate on explaining the selection of the operating points
{x

(1)
c , . . . ,x

(L)
c }.

Procedure to Choose the Operating Points

The following simple algorithm is proposed and implemented to generate the set of operating
points {x

(1)
c , . . . ,x

(L)
c }:

1. Starting from the first point of the reference trajectory (xd(0),ud(0)), linearize the
nonlinear dynamics (5.3)-(5.4) at (xd(0),ud(0)). This results in system matrices A(0)
and B(0). Define the current operating point as xcurrent = xd(0).

2. Define system matrix Ācurrent := [A(0) B(0)].

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 69

3. Move forward along the reference trajectory to the next point, say (xd(tj),ud(tj)), and
linearize the nonlinear dynamics (5.3)-(5.4). Resulting in system matrices A(tj) and
B(tj).

4. Define system matrix Ācandidate := [A(tj) B(tj)].

5. Compare the systems Ācurrent and Ācandidate.

6. If Ācurrent and Ācandidate are not sufficiently different, keep moving forward along
(xd(t),ud(t)) and keep redefining Ācandidate until it is sufficiently different from Ācurrent.
We use the following criterion of 1% relative error:

‖Ācurrent − Ācandidate‖2
‖Ācurrent‖2

≥ 0.01, (5.10)

where ‖ · ‖2 is the maximum-singular-value matrix norm.

7. When this criterion is satisfied, choose the new operating point xcurrent := xd(tj) as
the starting operating point, define Ācurrent := Ācandidate, and go back to step 3.

8. Continue iterating until reaching the end of the trajectory.

When the end of the reference trajectory is reached, this algorithm outputs the set of operat-
ing points {x

(1)
c , . . . ,x

(L)
c } with their corresponding system matrices (Ai, bi,Bi), i = 1, . . . , L.

Obtaining Ri to Parameterize Ei

As already mentioned, for the construction of Ei, we use the first parametrization in (5.8)

since the center x
(i)
c is already known. Therefore, the task here is simply: obtain the matrices

Ri ∈ R
2n×2n, that parameterize Ei, i = 1, . . . , L. Essentially, we propose a simple method

to achieve this task, based on the eigenvalue decomposition (EVD) theorem of symmetric
matrices [48].1 To generate ellipsoids with the shape and orientations depicted in Fig. 5.1,
it is intuitive to require that the first semi-axis of Ei be in the direction of 2n-dimensional
vector x

(i+1)
c −x

(i)
c . The remaining 2n−1 semi-axes should then be in orthogonal directions.

Let us denote the eigenvalues of Ri as λ
(i)
1 , . . . , λ

(i)
2n, with corresponding eigenvectors

v
(i)
1 , . . . , v

(i)
2n ∈ R

2n. The above requirement, on the semi-axes of Ei, is equivalent to require

that eigenvector v
(i)
1 be in the direction of x

(i+1)
c − x

(i)
c . The corresponding eigenvalue λ

(i)
1

should be chosen so that
√

λ
(i)
1 = β‖x(i+1)

c − x(i)
c ‖2, (5.11)

1We can decompose any symmetric matrix A ∈ R
2n×2n with the symmetric eigenvalue decomposition

A =
2n
∑

i=1

λiuiu
⊤

i = UΛU⊤, Λ = diag(λ1, . . . , λ2n),

where the matrix U = [u1 · · · u2n] is orthogonal (that is, U
⊤U = UU⊤ = I2n).

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 70

with β ∈ (0.5, 1] an adjustable parameter; generally we choose β = 1. The remaining 2n− 1
eigenvalues are set so that

√

λ
(i)
2 =

√

λ
(i)
3 = · · · =

√

λ
(i)
2n =

1

γ
max

i∈{1,...,L}

√

λ
(i)
1 , (5.12)

i.e., a fraction of the maximum first semi-axis among all the ellipsoids Ei, i = 1, . . . , L;
generally γ ∈ {5, . . . , 10}. Having defined the eigenvalues of Ri, it is convenient to define

Λi := diag(λ
(i)
1 , λ

(i)
2 , . . . , λ

(i)
2n).

Since the first eigenvector v
(i)
1 is required to be in the direction of x

(i+1)
c − x

(i)
c , and the

remaining 2n−1 eigenvectors v
(i)
2 , . . . , v

(i)
2n being in orthogonal directions, we simply perform

a modified Gram-Schmidt procedure to the following set of 2n+ 1 vectors [49]:

{

x(i+1)
c − x(i)

c , e1, . . . , e2n

}

,

where the set of vectors {e1, e2, . . . , e2n} is the canonical basis for R2n. Therefore, the output

of this procedure is the orthonormal set of 2n vectors {v
(i)
1 , v

(i)
2 , . . . , v

(i)
2n}, with v

(i)
1 in the

direction of x
(i+1)
c −x

(i)
c . It is then convenient to construct the following orthogonal matrices

Ui := [v
(i)
1 · · · v

(i)
2n] ∈ R

2n×2n, i = 1, 2, . . . , L.
From the eigenvalue decomposition theorem of symmetric matrices, we thus propose to

build matrices Ri simply as:

Ri :=

2n
∑

j=1

λ
(i)
j v

(i)
j v

(i)⊤
j = UiΛiU

⊤
i , i = 1, 2, . . . , L, (5.13)

with Ui = [v
(i)
1 · · · v

(i)
2n], Λi = diag(λ

(i)
1 , . . . , λ

(i)
2n), i = 1, 2, . . . , L, constructed with the above

development.

5.3 Case Studies on the Simplest Manipulators

In order to illustrate the ideas developed in Section 5.2, two case studies are presented: a
1-DOF and 2-DOF planar manipulators, which are meant to study the feasibility of the
aforementioned ideas before applying them to the 6-DOF industrial manipulator. In these
two toy examples, it is assumed for simplicity that the gear ratios are equal to one, i.e.,
G = I, and therefore θ = q, u = τ . It is also assumed that Coulomb friction is zero.

5.3.1 1-DOF Manipulator

We start off with the simplest robot manipulator, a 1-DOF manipulator shown in Fig. 5.2(a).
The nonlinear dynamic model for this system is simply given by:

Jq̈ +mgl sin(q) + dq̇ = τ(t), (5.14)

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 71

(a) A 1-DOF simple manipulator

0 0.5 1 1.5 2 2.5 3
0

0.5

1

q d
(r

a
d
)

0 0.5 1 1.5 2 2.5 3
−2

0

2

q̇ d

0 0.5 1 1.5 2 2.5 3
−10

0

10

q̈ d

0 0.5 1 1.5 2 2.5 3
0

5

τ d
(N

m
)

t (sec)

(b) Reference trajectory (qd(t), q̇d(t), q̈d(t), τd(t))

Figure 5.2: First toy example, a 1-DOF planar manipulator and its reference trajectory.

where the parameters J = 0.1843 kg · m2, m = 6.5225 kg, l = 0.2600 m, d = 0.05 Nm · s.
The reference trajectory qd(t) is created at a 1-millisecond sampling rate using the following
primitive:

qd(t) = b1(1− exp(−2t3)) + c1(1− exp(−2t3)) sin(ω1t),

with parameters b1 = π/4, c1 = π/9, ω1 = 2 rad/s, for t ∈ [0, 3] seconds. The complete
trajectory including q̇d(t), q̈d(t), and the corresponding feedforward torques τd(t) are shown
in Fig. 5.2(b).

We apply the algorithms presented in Section 5.2 to generate the operating points
{x

(1)
c , . . . ,x

(L)
c }, corresponding system matrices (Ai, bi,Bi), and ellipsoids-parameterizing

matrices Ri, i = 1, . . . , L. The parameter γ in (5.12) is set to γ = 8. The number of operat-
ing points L that the algorithm generates is L = 121. The reference trajectory (qd(t), q̇d(t))

on the phase-plane (q, q̇), together with the operating points {x
(1)
c , . . . ,x

(L)
c } and the corre-

sponding ellipses Ei, are shown in Fig. 5.3.

5.3.2 2-DOF Planar Manipulator

We move on to a more complicated manipulator, the 2-DOF robotic arm shown in Fig. 5.4.
The nonlinear dynamic model has the general form (5.1), with no Coulomb friction, G = I

entailing θ = q and u = τ . Matrices M(q),C(q, q̇) ∈ R
2×2 and vector g(q) ∈ R

2 are
readily available from standard robotics textbooks [15, 1].

The parameters used here are realistic, which have been taken from [15]: for the first
link, I1 = 0.1213 kg · m2, m1 = 6.5225 kg, l1 = 0.26 m, lc1 = 0.0983 m, d1 = 0.05 Nm · s;
for the second link, I2 = 0.0116 kg · m2, m2 = 2.0458 kg, l2 = 0.26 m, lc2 = 0.0229 m,

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 72

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

q (rad)

q̇
(r

a
d
/
s)

Figure 5.3: Reference trajectory, resulting operating points (marked with ‘·’), and resulting
ellipsoids for the 1-DOF manipulator.

d2 = 0.01 Nm · s. The reference trajectory qd(t) ∈ R
2 is generated at a 1-millisecond

sampling rate for t ∈ [0, 3] seconds. The following primitives are used:

qd1(t) = b1(1− exp(−2t3)) + c1(1− exp(−2t3)) sin(ω1t)

qd2(t) = b2(1− exp(−2t3)) + c2(1− exp(−2t3)) sin(ω2t),

Figure 5.4: A 2-DOF planar manipulator used as a toy example.

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 73

0 0.5 1 1.5 2 2.5 3
0

0.5

1

q d
1

(r
a
d
)

0 0.5 1 1.5 2 2.5 3
−2

0

2

q̇ d
1

0 0.5 1 1.5 2 2.5 3
−10

0

10

q̈ d
1

0 0.5 1 1.5 2 2.5 3
0

5

10

τ d
1

(N
m

)

t (sec)

0 0.5 1 1.5 2 2.5 3
0

1

2

q d
2

(r
a
d
)

0 0.5 1 1.5 2 2.5 3
−5

0

5

q̇ d
2

0 0.5 1 1.5 2 2.5 3
−10

0

10

q̈ d
2

0 0.5 1 1.5 2 2.5 3
0

0.5

τ d
2

(N
m

)

t (sec)

Figure 5.5: Reference trajectory (qd(t), q̇d(t), q̈d(t), τd(t)) for the 2-DOF planar manipulator.

with parameters b1 = π/4, c1 = π/9, ω1 = 2 rad/s, b2 = π/3, c2 = π/6, ω2 = 1 rad/s. The
reference trajectory including the feedforward torques τd(t) are shown in Fig. 5.5.

In this case, the number of operating points L turns out L = 96. Since the state vector
x = (q⊤ q̇⊤)⊤ ∈ R

4, we cannot draw the 96 ellipsoids in this case. We simply draw the
reference state-trajectory in the (q1, q̇1) and (q2, q̇2) planes, with the resulting operating

points x
(1)
c , . . . ,x

(96)
c (marked with ‘·’), as shown in Fig. 5.6.

The two toy examples presented in this section, represent positive indication that our

0 0.5 1

−0.5

0

0.5

1

1.5

q1

q̇1

0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

q2

q̇2

Figure 5.6: Reference trajectory and corresponding operating points x
(1)
c , . . . ,x

(L)
c , marked

with ‘·’, for the 2-DOF planar manipulator, in which case L = 96.

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 74

algorithms to generate the operating points x
(1)
c , . . . ,x

(L)
c and ellipsoidal regions E1, . . . , EL,

are feasible to apply on the 6-DOF industrial manipulator. In the 6-DOF case, the state
vector x ∈ R

12, and therefore the ellipsoids Ei ⊂ R
12. We defer the exposition of results

for the 6-DOF case, and present them later in this chapter, after the controller synthesis
strategy for each ellipsoidal region has been discussed.

5.4 Controller Synthesis

In Section 5.2, we have proposed a modeling framework, in which the problem of trajectory
tracking for robot manipulators is approached by casting robot modeling into the context
of a class of piecewise affine (PWA) dynamical systems. Specifically, assuming that the
actual state of the robot x = (θ⊤ θ̇⊤)⊤ ∈ R

2n remains “near” the state-reference trajectory
xd(t) ∈ R

2n, the nonlinear robot dynamics (5.3)-(5.4) can be reasonably well approximated
by the following piecewise affine dynamical system:

ẋ = Aix+ bi +Biu, if x ∈ Ei, i ∈ {1, 2, . . . , L}, (5.15)

where Ei is an ellipsoidal region centered at an operating point x
(i)
c , i = 1, . . . , L. The

operating points {x
(1)
c , . . . ,x

(L)
c } are selected points on the state-reference trajectory xd(t).

The assumption that the actual state x = (θ⊤ θ̇⊤)⊤ remains “near” the state-reference
trajectory xd(t) ∀t ∈ [0, tf], is achieved by pre-computing the feedforward torque ud(t) from
(5.2).

Therefore, the next question to ask is how to design a piecewise affine state-feedback
control law of the form:

u(x) = −Kix+ ki, if x ∈ Ei, i ∈ {1, 2, . . . , L}, (5.16)

that guarantees asymptotic stability under switching between operating regions Ei, when
closing the loop on the PWA system (5.15).

5.4.1 Closed-loop Dynamics

The closed-loop dynamics of PWA system (5.15) under the PWA control law (5.16) features

L different equilibria. These equilibria can be conveniently placed at x
(i)
c and made asymp-

totically stable, by properly synthesizing Ki, ki, i = 1, . . . , L. To find out how, consider the
PWA closed-loop dynamics:

ẋ = Aix+ bi +Bi(−Kix+ ki), if x ∈ Ei, i ∈ {1, 2, . . . , L}. (5.17)

From the definition of b(t) ∈ R
2n in (5.5), bi is clearly:

bi = f (x(i)
c ,u(i)

c)−Aix
(i)
c −Biu

(i)
c , i = 1, 2, . . . , L, (5.18)

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 75

where each u
(i)
c , i = 1, 2, . . . , L, satisfies ẋ

(i)
c = f (x

(i)
c ,u

(i)
c). Therefore,

ẋ = Aix+ f (x(i)
c ,u(i)

c)−Aix
(i)
c −Biu

(i)
c −BiKix+Biki,

if x ∈ Ei, i ∈ {1, 2, . . . , L}.
(5.19)

It is then clear that by choosing ki = Kix
(i)
c + u

(i)
c , i = 1, . . . , L, the closed-loop PWA

dynamics (5.19) becomes:

ẋ = (Ai −BiKi)x− (Ai −BiKi)x
(i)
c + f (x(i)

c ,u(i)
c),

if x ∈ Ei, i ∈ {1, 2, . . . , L}.
(5.20)

Notice that each operating point (x
(i)
c ,u

(i)
c) is a specific point on the (exactly dynami-

cally feasible) reference trajectory (xd(t),ud(t), then each (x
(i)
c ,u

(i)
c) exactly satisfies ẋ

(i)
c =

f (x
(i)
c ,u

(i)
c), i = 1, . . . , L. Thus, the PWA closed-loop dynamics is reduced to:

ẋ− ẋ(i)
c = (Ai −BiKi)(x− x(i)

c), if x ∈ Ei, i ∈ {1, 2, . . . , L}. (5.21)

It is then clear that each Ki, i = 1, 2, . . . , L, must be synthesized so that (Ai −BiKi) are

Hurwitz [50], which will imply that for each i = 1, 2, . . . , L, x(t) → x
(i)
c asymptotically if

x(t) ∈ Ei. The referred control law for the PWA system is therefore simply:

u = −Kix+
(

Kix
(i)
c + u(i)

c

)

if x ∈ Ei, i ∈ {1, 2, . . . , L}. (5.22)

It is important to point out that control law (5.22) guarantees asymptotic regulation of
each equilibrium point for the PWA system (5.15). Clearly, if we were to implement the
PWA control law (5.22) on the actual manipulator and x(t) ∈ Ei, the state x(t) would reach

asymptotically x
(i)
c and stay there. However, for the actual manipulator with nonlinear dy-

namics (5.3)-(5.4), the objective is to track each point in the reference trajectory. Therefore,
control law (5.22) must be tailored to achieve tracking on the actual robot manipulator. The
referred PWA control law proposed in this dissertation to achieve trajectory tracking, which
is a tailored version of (5.22), takes the following final form:

u(x) = −Kix+ (Kixd(t) + ud(t)) if x ∈ Ei, i ∈ {1, 2, . . . , L}. (5.23)

The difference between (5.22) and (5.23) is that (for all time) the center points x
(i)
c are

replaced with the state-reference trajectory xd(t), and that the points u
(i)
c are replaced with

the feedforward torques ud(t). Note however that (5.23) uses the state-feedback gains Ki

designed for control law (5.22).

5.4.2 Synthesizing State-feedback Gains Ki

There are several options to synthesize the state-feedback controller gains Ki ∈ R
n×2n,

i = 1, 2, . . . , L, so that (Ai − BiKi) are Hurwitz [50]. We choose the linear quadratic

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 76

regulator (LQR) approach [38], because it will allow us to trade off between: (i) deviation

of x(t) from x
(i)
c , defined x̃i(t) := x(t) − x

(i)
c and (ii) deviation of u(t) from u

(i)
c , defined

ũi(t) := u(t) − u
(i)
c . Besides, it will give a fair comparison against the LQ formulation

of the trajectory tracking problem presented in Chapter 4. After all, the development in
the present chapter is motivated to overcoming the drawbacks of the approach discussed in
Chapter 4.

The continuous-time infinite-horizon LQ optimal control problem, better known as the
linear quadratic regulator (LQR), is used here to independently synthesize the state-feedback
gains Ki, for each pair (Ai,Bi), i = 1, 2, . . . , L. In other words, independently for each
i = 1, 2, . . . , L, the problem is to minimize the continuous-time infinite-horizon quadratic
cost functional:

Ji =
1

2

∫ ∞

0

(

x̃i(t)
⊤Qix̃i(t) + ũi(t)

⊤Viũi(t)
)

dt, (5.24)

subject to linear time-invariant dynamics:

˙̃xi(t) = Aix̃i(t) +Biũi(t), x̃i(0) = x̃init
i ,

where the (constant) weighting matrices Qi = Q⊤
i � 0 and Vi = V ⊤

i ≻ 0. In this infinite-
horizon formulation, in order to guarantee that the cost functional (5.24) remains bounded,
each (constant) system matrix pair (Ai,Bi) must be controllable.

In classical optimal control theory, it is a standard exercise to show that the optimal
state-feedback gains can be computed by Ki = V −1

i B⊤
i Pi, where each Pi, i = 1, 2, . . . , L,

satisfies the algebraic Riccati equation (ARE) [38, 22]:

O = A⊤
i Pi + PiAi +Qi − PiBiV

−1
i B⊤

i Pi.

Even though the above methodology allows to use different weighting matrices (Qi,Vi) for
each ellipsoidal region Ei, in this dissertation we use the same weighting matrices (Q,V)
for all Ei, i = 1, 2, . . . , L. Of course, since the local system dynamics matrices Ai, Bi, are
different for each ellipsoidal region Ei, then each state-feedback gain Ki will be different for
each Ei, i = 1, 2, . . . , L.

5.4.3 Controller Switching Strategy

A total of L different state-feedback controller gainsKi are obtained, and are to be scheduled
by the PWA control law (5.23). Therefore a switching strategy is needed to switch controller
gains, as the actual state x(t) = (θ(t)⊤ θ̇(t)⊤)⊤ transitions from one ellipsoidal region to
another. The main idea is simple and intuitive, and is summarized as follows:

1. There are a total of L different feedback-controller gains, Ki, corresponding to each
operating ellipsoid Ei, i = 1, . . . , L. In other words, there are L discrete modes of
operation.

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 77

2. At every time instant t, we measure the actual state x(t) = (θ(t), θ̇(t)) and identify
the ellipsoidal region it belongs to.

3. Say, x(t) ∈ Ej, then the j-th feedback-controller gain Kj is used, until the measured
state x(t) = (θ(t), θ̇(t)) transitions into any other ellipsoidal region.

4. Say that at some instant, the measured state x(t) = (θ(t), θ̇(t)) crosses the boundary
of Ek, then the feedback-controller gain is switched from Kj to Kk.

5. In situations when the measured state x(t) belongs to several ellipsoids, say, Ei, Ej, Ek, El,
choose the controller gain Km, where the controller index m = max{i, j, k, l}.

6. For the unlikely event in which the measured state x(t) = (θ(t), θ̇(t)) does not belong
to any ellipsoidal region, the PD feedback gain matrices KP and KV are utilized.

In the actual experimental setup, the above tasks must be executed within one sampling
period, Ts = 1 millisecond. Namely, measuring the actual state x(t) = (θ(t), θ̇(t)), identify-
ing the ellipsoidal region it belongs to, looking up the respective feedback-controller gain ma-
trix, and then from (5.23) compute the required control torque. In order to achieve these com-
putations in real time, the task of searching for the ellipsoidal region that x(t) = (θ(t), θ̇(t))
belongs to, should be done only within a reduced “window” of ellipsoids. In other words,
suppose that at time t = kTs, x(t) ∈ Ej, then for the next sampling period t = (k + 1)Ts,
the search is performed only within {Ej−10, . . . , Ej, . . . , Ej+10}. Querying whether x(t) ∈ Ej
is a very simple computation aided by using the third parametrization in (5.8). Namely,

if ‖Sjx+ sj‖2 ≤ 1, then x ∈ Ej, else x 6∈ Ej.

5.4.4 Case Study, 1-DOF Manipulator

We apply the synthesis methodology to the 1-DOF manipulator of Fig. 5.2, introduced in
Section 5.3. In that case Coulomb friction was assumed zero, and the gear ratios are equal
to one, implying θ = q, u = τ . We presented the results of generating the operating points
{x

(1)
c , . . . ,x

(L)
c }, corresponding system matrices (Ai, bi,Bi), and ellipsoids-parameterizing

matrices Ri, i = 1, . . . , L. If we recall, for that case L turned out 121, which means that a
total of 121 state-feedback gains Ki ∈ R

1×2 are generated.
The weighting matrices in this case Q ∈ R

2×2, V ∈ R, are chosen the same for all
Ei, i = 1, 2, . . . , L. Clearly, since Ai, Bi, are different for each ellipsoidal region Ei, the
state-feedback gains Ki will be different for each Ei, i = 1, 2, . . . , L. We set Q = 500 · I2,
V = 1, and carry out simulations, for which PWA control law (5.23) is implemented with
the controller switching strategy described in sub-section 5.4.3.

A 5% parameter uncertainty is introduced in all parameters of the nonlinear dynamic
model (5.14). Both the state-reference trajectory xd(t) and the actual state x(t) are shown
in Fig. 5.7(a). As seen from the figure, the actual state x(t) follows closely the state-reference
trajectory xd(t), and never leaves the ellipsoidal regions as time marches forward.

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 78

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

q (rad)

q̇
(r

a
d
/
s)

xd(t)

x(t)

(a) State-reference xd(t) and robot state x(t)

0 0.5 1 1.5 2 2.5 3

20
40
60
80

100
120

E
ll
ip

so
id

E
i

0 0.5 1 1.5 2 2.5 3
0

2

4

6

t (sec)

(N
m

)

τd(t) τ (t)

(b) Ellipsoid # Ei, feedforward and applied torques

Figure 5.7: Simulation results of the PWA control law for the 1-DOF manipulator.

In Fig. 5.7(b), we show graphically the evolution of ellipsoidal region number (or discrete
state) as a function of time. Plotting this discrete state gives us information on which
ellipsoid and controller gain were utilized at a particular time, which ultimately certifies that
each single scheduled controller was utilized. Notice the non-decreasing fashion in which
the ellipsoid number (or discrete state) evolves, which means that each of the scheduled
controllers were utilized as planned.

The corresponding feedforward and applied torques are shown in Fig. 5.7(b). It is ob-
served that due to the parameter uncertainty introduced in the nonlinear dynamic model,
the applied torque τ(t) deviate from the feedforward torque τd(t). Notice that switching
between controller gains (as the state transitions ellipsoids) does not introduce discontinuity
in the control signal.

5.5 Application to 6-axis Industrial Manipulator

In this section, we present the application of PWA modeling and controller synthesis to
achieve trajectory tracking on the 6-DOF industrial manipulator, FANUC M-16iB. First we
give a detailed exposition through the design process and synthesis results. Then, experi-
ments are conducted to evaluate the feasibility and effectiveness of the methodology proposed
in this chapter.

5.5.1 Near Time-optimal Trajectory

We apply the proposed PWA modeling and controller synthesis to the 6-axis manipulator
under the near time-optimal trajectory. This optimal trajectory solution was presented in

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 79

0 0.5 1 1.5 2 2.5 3 3.5 4

−50

0

50

100

150

0 0.5 1 1.5 2 2.5 3 3.5 4

−100

0

100

θ1 θ2 θ3

θ4 θ5 θ6

θ
d
(t
)
(r
a
d
)

θ
d
(t
)
(r
a
d
)

t (sec)

(a) Reference trajectory position θd(t)

0 0.5 1 1.5 2 2.5 3 3.5 4

−200

0

200

400

0 0.5 1 1.5 2 2.5 3 3.5 4
−100

−50

0

50

100

θ̇1 θ̇2 θ̇3

θ̇4 θ̇5 θ̇6

θ̇
d
(t
)
(r
a
d
/
se
c)

θ̇
d
(t
)
(r
a
d
/
se
c)

t (sec)

(b) Reference trajectory velocity θ̇d(t)

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

−5

0

5

10

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

u1 u2 u3 u4 u5 u6

u
d
(t
)
(N

m
)

u
d
(t
)
(N

m
)

t (sec)t (sec)
(c) Optimal feedforward torques ud(t)

Figure 5.8: Motor-side near time-optimal trajectory positions θd(t), velocities θ̇d(t), and
torques ud(t).

Chapter 3, and then utilized in Chapter 4 to evaluate the feasibility and effectiveness of
the LQ-based trajectory tracking scheme, developed in that chapter. For the sake of a self-
contained chapter, we present again the optimal trajectory and some of its key parameters,
which at times will seem to overlap with comments already made in Chapter 4. That being
said, in this section we are interested in synthesizing and experimentally implementing the
PWA control law (5.23) for the 6-axis manipulator.

For this manipulator the degrees of freedom n is 6, which means that the state vector in
nonlinear dynamic model (5.3)-(5.4) is 12-dimensional, x = (x⊤

1 x⊤
2)

⊤ = (θ⊤ θ̇⊤)⊤ ∈ R
12.

The near time-optimal trajectory is generated by first using algorithm (3.13) with λ = 0.02,
and then performing the appropriate conversions to motor-side. The motor-side optimal-
reference trajectory pair (xd(t),ud(t)) is presented in Fig. 5.8, where xd = (θ⊤

d θ̇⊤
d)

⊤ and
the feedforward torque ud(t) satisfy (5.2).

The optimal trajectory in Fig. 5.8 represents the fastest dynamically feasible trajectory
achievable by the real manipulator, with a total traversal time tf = 4.238 seconds. In order
to linearize the nonlinear dynamics (5.3)-(5.4) at several points of the reference trajectory,

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 80

the recursive Newton-Euler algorithm efficiently coded in C as a toolbox for MATLABr [35],
is utilized. Since the sign(·) function is discontinuous at zero, for the purposes of linearization
it is approximated by the smooth function satur(·), defined as:

satur(x) :=
tan−1(ηx)− tan−1(−ηx)

π
, (5.25)

with η = 5, which ensures differentiability near zero velocities.

5.5.2 Piecewise Affine Modeling Synthesis

The first part of our synthesis methodology is to choose the operating points x
(i)
c ∈ R

12,
i = 1, . . . , L, and corresponding system matrices Ai ∈ R

12×12, bi ∈ R
12, Bi ∈ R

12×6. Then,
constructing the positive-definite matrices Ri ∈ R

12×12, i = 1, . . . , L, that parameterize the
ellipsoidal regions Ei ⊂ R

12. We apply the procedures presented in Section 5.2: Algorithm

to Choose the Operating Points and Obtaining Ri to Parameterize Ei.
The resulting number of operating points is L = 224, which means that 224 system

matrices (Ai, bi,Bi) are also generated. These local system dynamics are guaranteed to
exhibit a 1% dynamics “variation” with respect to the simple metric in (5.10). The resulting

operating points, {x
(1)
c ,x

(2)
c , . . . ,x

(224)
c }, are presented as projections onto the planes (θj , θ̇j),

j = 1, . . . , 6. The referred projections together with the state-reference trajectory are pre-
sented in Fig. 5.9, which is split into two parts in consecutive pages. The reason we present
projections of the state-reference trajectory xd(t) ∈ R

12 and the corresponding operating

points x
(i)
c ∈ R

12, i = 1, . . . , 224, is so that we can visualize how spread the operating points
have been chosen by our algorithm. The initial and final points of the state-reference trajec-
tory in Fig. 5.9 are marked with an asterisk ‘*’. Both the initial and final points correspond
to the home position of the industrial robot.

Once we have obtained the operating points x
(i)
c , i = 1, . . . , 224, constructing the ellip-

soidal regions Ei is done by obtaining the parameterizing matrices Ri, i = 1, . . . , 224. These

−50 0 50

−300

−200

−100

0

100

200

300

400

θ1

θ̇1

0 50 100 150

−150

−100

−50

0

50

100

150

200

θ2

θ̇2

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 81

−20 −10 0 10 20 30
−300

−200

−100

0

100

200

θ3

θ̇3

5 10 15 20 25 30

−40

−20

0

20

40

θ4

θ̇4

60 70 80 90 100
−100

−50

0

50

100

θ5

θ̇5

−180 −170 −160 −150 −140

−50

0

50

100

θ6

θ̇6

Figure 5.9: Projections of the state-reference trajectory xd(t) and operating points x
(i)
c ,

i = 1, . . . , 224, onto the planes (θj , θ̇j), j = 1, . . . , 6.

matrices are readily built with the procedure presented in Section 5.2: Obtaining Ri to

Parameterize Ei.

5.5.3 Synthesis of State-feedback Controller Gains

In order to implement the PWA control law (5.23), we need to synthesize the state-feedback
controller gains Ki ∈ R

6×12, i = 1, . . . , 224. These gains are efficiently computed with the
procedure presented in Section 5.4. The same weighting matrices Qi = Q and Vi = V are
used for all i = 1, . . . , 224. Clearly, since the system dynamics pairs (Ai,Bi) are guaranteed
to be different, then the resulting controllers Ki, i = 1, . . . , 224, are different even though
Qi = Q and Vi = V .

We tune the weighting matrices Q and V using the Bryson’s rule [44], in a similar manner
as it was done for Chapter 4. First, it should be realized that PWA control law (5.23) can be

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 82

conveniently re-written, by partitioning Ki := [Kpos
i Kvel

i], i = 1, . . . , L, where Kpos
i ∈ R

6×6,
Kvel

i ∈ R
6×6. Thus, the actual way in which control law (5.23) is implemented:

u(θ, θ̇) = K
pos
i (θd(t)− θ(t)) +Kvel

i (θ̇d(t)− θ̇(t)) + ud(t)

if x = (θ, θ̇) ∈ Ei, i ∈ {1, 2, . . . , L}.
(5.26)

We break down Q into a term that penalizes position deviation Qpos ∈ R
6×6, and a term

that penalizes velocity deviation Qvel ∈ R
6×6, i.e., Q = diag(Qpos,Qvel). Then, we choose

Qpos, Qvel, and V diagonal with:

[Qpos]jj =
1

maximum acceptable value of [θd(t)− θ(t)]2j
, j = 1, 2, . . . , 6

[Qvel]jj =
1

maximum acceptable value of
[

θ̇d(t)− θ̇(t)
]2

j

, j = 1, 2, . . . , 6

Vjj =
1

maximum acceptable value of [ud(t)− u(t)]2j
, j = 1, 2, . . . , 6.

In this dissertation, we use Bryson’s rule in a way so as to generate state-feedback gains,
K

pos
i , Kvel

i , i = 1, . . . , L, that are “comparable” to the constant feedback gains KP, KV.
The specific values of KP, KV are given as:

KP = diag(4.4717, 4.0786, 0.8297, 1.4449, 0.0399, 0.1415)

KV = diag(0.4255, 0.3910, 0.0810, 0.0622, 0.0025, 0.0069),

which are clearly diagonal, since these gains are designed in a decentralized manner for each
robot joint. On the other hand, our PWA controller synthesis approach takes into account
the (local) coupled dynamics. Therefore, it will produce local feedback gains K

pos
i , Kvel

i ,
i = 1, . . . , L, with nonzero off-diagonal elements to account for the (local) coupled dynamics.
We thus use Bryson’s rule but tune the weighting matrices Qpos, Qvel, and V such that:

∀i = 1, 2 . . . , L, σmax(K
pos
i) ≈ σmax(KP), σmax(K

vel
i) ≈ σmax(KV), (5.27)

where σmax(·) is the maximum-singular-value matrix norm. In this manner, we will generate
controllers that are “comparable” (in the above sense) to the constant feedback gains KP,
KV. Of course, since K

pos
i , Kvel

i , i = 1, . . . , L, are synthesized taking into account not only
the coupling, but most importantly the local dynamics (Ai,Bi) at strategic points of the
reference trajectory, it is expected achieve better results.

With the above provisos in mind, weighting matrices Qpos and Qvel, which respectively
penalize position and velocity deviation from the reference trajectory, are conveniently tuned
as:

Qpos = diag

(

1

12
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12

)

= I

Qvel = diag

(

1

11.182
,

1

11.182
,

1

11.182
,

1

11.182
,

1

11.182
,

1

11.182

)

= 0.008I,

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 83

50 100 150 200
0

2

4

6

K
pos
i , σmax & σmin

KP, σmax & σmin

σ
m

a
x
&

σ
m

in

index i
50 100 150 200

0

0.2

0.4

Kvel
i , σmax & σmin

KV, σmax & σmin

σ
m

a
x
&

σ
m

in

index i

Figure 5.10: Maximum singular values of Kpos
i and Kvel

i for all i = 1, . . . , 224. For reference
purposes, the singular values of the feedback gain matrices KP and KV are also included.

where I is the 6 × 6 identity matrix. The weighting matrix V , which penalizes torque
command deviation from the nominal feedforward torque, is tuned as:

V = diag

(

1

4.512
,

1

4.222
,

1

0.862
,

1

1.512
,

1

0.052
,

1

0.152

)

.

Since for this case L = 224, a total of 224 state-feedback matrices, K
pos
i and Kvel

i ,
are synthesized. A convenient way to present all these matrices is by plotting their maxi-
mum and minimum singular values, i.e., σmax(K

pos
i), σmin(K

pos
i), σmax(K

vel
i) and σmin(K

vel
i),

i = 1, 2, . . . , 224. In this manner, we can visualize the minimum and maximum gain ampli-
fications. As discussed in Chapter 4, this visualization is important to ensure the feasibility
of implementing these state-feedback gains in experiments. The referred plot of singular
values is presented in Fig. 5.10, where we have also included the maximum and minimum
singular values of KP and KV. We can conclude from Fig. 5.10, that for all i = 1, . . . , 224,
the state-feedback matrices, Kpos

i and Kvel
i , are feasible to carry out experiments on the real

manipulator.
It is interesting to present the actual matrices Kpos

i and Kvel
i for some i, say for i = 1,

K
pos
1 =

4.4864 −0.0038 0.0065 0.0841 −0.0014 0.4528
0.0051 4.0832 −1.1545 −0.0013 0.1286 −0.0001

−0.0011 0.2394 0.8253 0.0034 −0.0698 −0.0000
−0.0091 −0.0012 −0.0058 1.4467 0.0008 −0.2011
0.0000 −0.0027 0.0021 −0.0000 0.0436 0.0000

−0.0153 0.0000 −0.0001 0.0028 0.0000 0.1481

,

Kvel
1 =

0.3780 0.0001 0.0006 −0.0060 −0.0003 0.0728
0.0009 0.3654 −0.1022 0.0002 0.0502 −0.0001

−0.0001 0.0280 0.0688 0.0006 −0.0069 0.0000
−0.0056 0.0001 −0.0004 0.0733 0.0001 −0.0150
0.0000 −0.0003 0.0006 −0.0000 0.0012 0.0000

−0.0022 −0.0000 −0.0000 0.0023 0.0000 0.0038

.

Note that the diagonal elements are approximate to those of KP and KV. Likewise, the
off-diagonal entries are nonzero to account for the (local) coupled dynamics. Of course,
for different i, these state-feedback matrices are different since the local dynamics (Ai,Bi)
change from one operating point to another.

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 84

Likewise, it should be pointed out from Fig. 5.10, that for all i = 1, . . . , 224, the maximum
gain amplifications σmax(K

pos
i), σmax(K

vel
i), do not change suddenly to large or small values,

but remain consistent as i increases.

5.5.4 Experimental Evaluations

We are in a position to implement the PWA control law (5.26), since all the associated con-
troller parameters have been synthesized. Similar to the experiments presented in Chapter
4, additional 0.5 seconds are required after the end of the trajectory. Therefore, we switch
to the feedback gains KP, KV, for all t > tf . In all of the forthcoming plots regarding
experiments, we always include what happens right after the end of the trajectory for 10 ·Ts

seconds, where Ts is the sampling period in our experimental setup. In this manner, we can
monitor the effect of switching to the feedback gains, KP and KV.

The referred experimental results are shown in Fig. 5.11, where the applied torques u(t)ap

are the commanded torques computed with PWA control law (5.26). The accelerometer
readings are simply to make sure that no sudden changes in acceleration occur, since the
trajectory is near time-optimal. The feedback torques u(t)fb correspond to the feedback
portion of PWA control law (5.26).

The corresponding evolution of ellipsoidal region number as a function of time is shown
in Fig. 5.12. This plot gives us information on the ellipsoid and controller gain that were
utilized at a particular time, which certifies that each single scheduled controller was utilized.
The non-decreasing fashion in which the ellipsoid number evolves means that each of the
scheduled controllers were utilized as planned.

The results in Fig. 5.11 should be compared against the corresponding results in Fig. 3.7
and Fig. 4.6, which correspond respectively to implementing control laws (3.14) and (4.22)
on the same near time-optimal trajectory solution. The experimental results in Fig. 5.11
exhibit several superior features that are pointed out as follows:

• The PWA control law requires the storage of significantly less feedback matrices than
the ATV control law presented in Chapter 4.

• When switching to KP and KV at the end of the trajectory, no sudden changes in the
feedback torques occur.

• Regarding the tracking errors, there is improvement compared to the ATV controller.
This improvement is particularly noticeable for the last three joints, i.e., θ̃4, θ̃5, θ̃6.

• The RMS values for each joint tracking errors and Cartesian-space tracking errors are
presented in Table 5.1. In this table, the results for the three major controllers used
in this dissertation are presented, i.e., PID control law (3.14), ATV control law (4.22),
and PWA control law (5.26).

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 85

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

−5

0

5

10

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

−1

0

1

2

0 0.5 1 1.5 2 2.5 3 3.5 4

−20

−10

0

10

20

u
ap
1 u

ap
2 u

ap
3

u
ap
4 u

ap
5 u

ap
6

ẍ ÿ z̈

u
(t
)a

p
(N

m
)

u
(t
)a

p
(N

m
)

ẍ
(t
)
(m

/
se
c2
)

t (sec)

(a) Applied torques and accelerometer readings

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

0

2

4

6
x 10

−3

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

0

5
x 10

−3

0 0.5 1 1.5 2 2.5 3 3.5 4

−2
0
2
4
6

x 10
−3

θ̃1 θ̃2 θ̃3

θ̃4 θ̃5 θ̃6

x̃ ỹ z̃

θ̃
(t
)
(r
a
d
)

θ̃
(t
)
(r
a
d
)

x̃
(t
)
(m

)

t (sec)

(b) Motor-side and Cartesian-space tracking errors

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

0

2

ufb
1 ufb

2 ufb
3

u
(t
)f
b
(N

m
)

t (sec)
0 0.5 1 1.5 2 2.5 3 3.5 4

−0.5

0

0.5

ufb
4 ufb

5 ufb
6

u
(t
)f
b
(N

m
)

t (sec)
(c) Feedback torques, u(t)fb

Figure 5.11: Experimental results when implementing the PWA control law (5.26). The
reference trajectory corresponds to the dynamically feasible near time-optimal trajectory
presented in Chapter 3 and utilized in Chapter 4.

• In all cases, PWA control law (5.26) exhibits the best performance. The controller
comparisons are fair, since it was ensured that the maximum gain amplifications are
of similar magnitudes for the three controllers, as seen from Fig. 4.5 and Fig. 5.10.

• Without doubt, the reason for the superior results is related to having taken into
account the local and coupled dynamics for the synthesis of PWA control law (5.26).

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 86

0 0.5 1 1.5 2 2.5 3 3.5 4

50

100

150

200

t (sec)

E
ll
ip
so
id

E
i

Figure 5.12: Evolution of ellipsoidal region number as a function of time. This plot shows
that the state x(t) = (θ(t), θ̇(t)) always belonged to at least one of the synthesized ellipsoidal
regions. This means in turn that as the state x(t) evolved, the scheduled controller gains
Ki were indeed utilized from beginning to end of the trajectory.

θ̃1(k) θ̃2(k) θ̃3(k) θ̃4(k) θ̃5(k) θ̃6(k) x̃(k) ỹ(k) z̃(k)

PID .0024 .0008 .0012 .0054 .0089 .0050 .0022 .0038 .0019
ATV .0020 .0008 .0007 .0036 .0042 .0036 .0014 .0027 .0013
PWA .0020 .0006 .0009 .0016 .0016 .0016 .0007 .0021 .0011

Table 5.1: RMS values comparison for the tracking errors of PID control law (3.14), ATV
control law (4.22), and PWA control law (5.26).

5.6 Summary

In this chapter we presented a novel control synthesis methodology to achieve trajectory
tracking of robot manipulators. In this approach, the highly nonlinear dynamic model of
robot manipulators, which move along a state-reference trajectory, was approximated as a
class of piecewise affine (PWA) dynamical systems. We proposed a framework to construct
the referred PWA dynamical system, which consists of the steps: (i) choose strategic oper-
ating points on the state-reference trajectory with their respective (local) linearized system
dynamics, (ii) construct ellipsoidal regions centered at the operating points, whose purpose
is to facilitate the scheduling strategy of controller gains designed for each local dynamics.
Likewise, in order to switch controller gains as the robot state traverses in the direction of the
state-reference trajectory, a simple scheduling strategy was proposed. The controller syn-
thesis for each operating point takes into account the local coupled dynamics, and collocates
the local closed-loop equilibrium at the operating point. The resulting PWA control law was
designed for the PWA dynamical system. Nonetheless, a tailored version of the PWA control
law was proposed to attain trajectory tracking on the robot manipulator. Throughout the
chapter, the developed ideas were illustrated with two toy examples, a 1-DOF and 2-DOF

CHAPTER 5. PIECEWISE AFFINE MODELING AND CONTROL SYNTHESIS FOR

TRAJECTORY TRACKING 87

manipulators. These toy examples were rather crucial in gaining insight before moving on
to the more complicated 6-DOF industrial manipulator. Finally, the referred PWA control
law was implemented in our experimental setup, which showed its feasibility and superiority
over the typical PID controller and the ATV controller developed in Chapter 4.

88

Chapter 6

Conclusions

In this dissertation we have explored two important topics in robotics: (i) optimal trajectory
planning was studied in Chapters 2 and 3, (ii) optimal control synthesis methodologies for
trajectory tracking of robot manipulators was explored in Chapters 4 and 5.

Time-optimal Trajectory Planning

Regarding the optimal trajectory planning, we concentrated on a very specific problem,
namely, the time-optimal trajectory planning of robot manipulators along predetermined
geometric paths. In this kind of problem, a purely geometric path is already known, and
the task is to find out how to move along this predefined path in the shortest time possible.
The resulting optimal solutions are required to be dynamically feasible with respect to the
full nonlinear dynamic model (2.5). Likewise, this optimal solution must satisfy physical
constraints in the form of minimum and maximum toques. In Chapter 2, we presented a
comprehensive treatment on this problem. A formulation was developed that guarantees
time-optimal solutions that are dynamically feasible with respect to the complete dynamic
model (2.5), which brings a modest but important contribution to existing algorithms.

The referred formulation was presented as a mathematical optimization problem. Unlike
the existing mathematical optimization formulations, ours was carefully expressed in a rather
specific form, so that it would allow to naturally propose a convex relaxation, which solves
exactly the original non-convex problem. It was then shown and verified to be indeed the
case, i.e., our proposed convex relaxation solves exactly the referred problem of time-optimal
trajectory planning with full dynamic model. We also developed our own discretization
scheme to solve optimal control problems, so that an actual numerical solution could be
generated and utilized in both simulations and experiments.

We then went further and discussed simulation results on a realistic robot simulator.
We studied the effects of implementing time-optimal trajectories and torques on three cru-
cial variables: (i) the tracking errors, (ii) applied torques, and (iii) a 3-axis accelerometer
mounted at the robot’s end-effector. The findings were that even though the formulation

CHAPTER 6. CONCLUSIONS 89

represents important progress from theoretical and numerical standpoints, it was not ready
to be implemented on the experimental setup. Additional criteria were emphasized necessary
to incorporate into our formulation. Simulation results aided to argue that implementing the
pure time-optimal solutions on the robot manipulator would degrade system performance,
or even damaging the hardware setup.

Subsequently, in Chapter 3, we introduced a problem formulation incorporating criteria
to overcome the limitations of pure time-optimality. The resulting formulation generates
optimal trajectories and torques that are near time-optimal. It was argued that these near
time-optimal solutions represent the fastest motions achievable by the real robot manipu-
lator. Starting from the formulation of pure time-optimality, acceleration constraints and
penalization of a measure of total jerk were incorporated, both of which proved necessary
from real experiments on a 6-axis industrial manipulator. In all cases, the resulting optimal
torques and trajectories were always dynamically feasible with respect to the full nonlinear
dynamic model (2.5). It was also evidenced from experiments, that the final formulation
(3.13) generates the fastest optimal solutions without seriously degrading the system per-
formance. This brings not only a modest theoretical extension to existing algorithms, but
also practical insight that is usually disregarded in most previous works. In addition, we
showed the versatility of optimization problem (3.13), by utilizing this formulation to gen-
erate medium-speed optimal solutions.

Recommendations for future research, i.e., extending the work done in this dissertation
regarding optimal trajectory planning along predetermined geometric paths, include:

• Incorporating flexible-joint model in the nonlinear dynamics of robot manipulators. In
this dissertation, we have assumed rigid joints. However, it would be interesting and
useful to generate the optimal trajectories and torques in the motor-side considering
joint compliance. We did some preliminary analysis and development, which leads to
a non-convex optimization formulation that seems fairly difficult to convexify. In that
attempt, we aimed at obtaining both motor-side and load-side trajectories and torques
as the optimization variables (all of them in one optimization formulation).

• However, from the author’s current viewpoint, if we break down the problem into two
separate sub-problems we would obtain a tractable formulation. Namely, (i) utilize the
formulation presented in this dissertation to generate near time-optimal trajectories
and torques in the load-side, (ii) use the load-side optimal solutions and formulate
the problem of finding the motor-side trajectories and torques as another optimization
problem. In step (ii), only the joint dynamics should be considered. Since the joint
dynamics is linear, it is very plausible to obtain a convex formulation. In this formu-
lation, the motor-side trajectories and torques can be generated in such a fashion, so
as to minimize the torsional deflection of the springs collocated at each joint to model
compliance. One could for instance, minimize the potential energy that these springs
are known to store when subjected to deflection.

CHAPTER 6. CONCLUSIONS 90

Optimal Control Synthesis Methodologies for

Trajectory Tracking

Following the work done on near time-optimal trajectories and torques, our immediate goal
was to develop control algorithms suitable for trajectory tracking under such fast trajectories.
In Chapter 4, we explored an approach based on the LQ optimal control for LTV dynamical
systems. Even though the dynamic model of robot manipulators is inherently nonlinear,
in order to address the problem of trajectory tracking, we developed a control synthesis
methodology for a class of affine time-varying (ATV) dynamical systems. We showed how
the nonlinear dynamics can be approximated along the reference trajectory as an affine time-
varying dynamical system. Then, a time-varying control law to achieve trajectory tracking
on the ATV system was developed, which used LQ methods for LTV systems. Since the ATV
dynamical system approximates the nonlinear robot dynamics along the reference trajectory,
the resulting time-varying control law is suitable to achieve trajectory tracking on the robot
manipulator.

The LQ approach for LTV systems, undertaken in Chapter 4, was based on the discrete-
time nonlinear dynamic model. Therefore, it was necessary to first discretize the continuous-
time nonlinear dynamic model. The optimal trajectory and torques, generated with the
algorithm in Chapter 3, are exactly dynamically feasible with respect to the continuous-
time nonlinear dynamics. However, it was observed in Chapter 4, that when discretizing
the continuous-time nonlinear model to obtain a discrete-time nonlinear model, the optimal
reference trajectory and torques were no longer exactly dynamically feasible with respect to
the discrete-time non-linear model. This led us to introduce a “disturbance” term in position
and velocity, which results from the non-exact dynamic feasibility of the reference trajectory
and feedforward torques. Even though the “disturbance” terms are rather small compared
to the actual desired positions and velocities, the controller synthesis takes these terms into
account. Therefore, the resulting time-varying control law achieves trajectory tracking and
compensates for the effects of the referred “disturbance” terms.

We also presented the details on the synthesis process, including numerical techniques
for the efficient implementation of linearization along the entire reference trajectory. In
order to tune the controller parameters, we used Bryson’s rule in such a manner, so as
to generate time-varying feedback gains that are “comparable” to the constant feedback
gains of a decentralized PD controller. By “comparable”, we found insightful to use the
maximum singular values of the time-varying feedback gain matrices and to make them
approximately match the maximum singular values for the constant PD gains. This allowed
us to implement the resulting time-varying control law in the experimental setup of the
6-axis industrial robot, which verified the feasibility of the proposed method. The results
also suggested the need to further improve the proposed methodology. In other words, they
exposed the main limitations of the proposed algorithm, and motivated the development of
the ensuing methodology presented in Chapter 5.

As a recommendation of future research, it would be interesting to develop the obvious

CHAPTER 6. CONCLUSIONS 91

variant. Namely, do not discretize the continuous-time nonlinear dynamics, and instead
approximate the robot dynamics along the state-reference trajectory as a continuous-time
LTV dynamical system. Then, formulate the tracking problem for the continuous-time
LTV dynamics (the non-exact dynamic feasibility of the trajectory would not be a problem
anymore). At the end, a continuous-time Riccati equation would obtained, which ultimately
has to be discretized at the servo sampling rate, in order to be implemented in the digital
computer.

Finally, in Chapter 5 we presented a novel control synthesis methodology to achieve
trajectory tracking of robot manipulators. The proposed control algorithm was aimed at
overcoming the drawbacks of the closely related ATV controller, presented in Chapter 4. In
this novel approach, the highly nonlinear dynamic model of robot manipulators, moving along
a state-reference trajectory, was approximated by a class of piecewise affine (PWA) dynamical
systems. To construct the referred PWA dynamical system, an algorithm was proposed to
choose only strategic points on the state-reference trajectory, as opposed to utilizing all
points. These points were chosen to guarantee that the linearized system dynamics for
consecutive operating points exhibit a 1% dynamics “variation”, with respect to a proposed
simple metric.

Once the operating points were selected, with their respective (local) linearized system
dynamics, a novel approach was proposed to construct ellipsoidal regions around these oper-
ating points. The purpose of the ellipsoidal regions was to facilitate the scheduling strategy
of controller gains, designed for each local linear system dynamics. A scheduling (or switch-
ing) strategy was proposed as the robot state traverses in the direction of the state-reference
trajectory. The advantages of using ellipsoidal regions to perform controller switching are
that: (i) they are easy to construct, (ii) it is simple and computationally efficient to identify
which ellipsoidal region the current robot-state belongs to.

For each operating point, a local stabilizing MIMO controller is synthesized using an LQR
formulation, which takes into account the local coupled dynamics. The resulting local con-
trol law guarantees: (i) placing the closed-loop equilibrium at the corresponding operating
point, (ii) the local closed-loop equilibrium is asymptotically stable. It was also pointed out
that the resulting PWA control law is designed for the PWA dynamical system. Nonethe-
less, since the PWA system is an approximation of the nonlinear robot dynamics along the
state-reference trajectory, a tailored version of the PWA control law was proposed to attain
trajectory tracking on the robot manipulator. Throughout the chapter, the referred method-
ology was illustrated using two toy examples, a 1-DOF and 2-DOF manipulators, which were
rather crucial in gaining insight, before moving on to the more complicated 6-DOF industrial
manipulator. Finally, the referred PWA control law was implemented in our experimental
setup, which showed its feasibility and superiority over the typical PID controller and the
ATV controller developed in Chapter 4. It was likewise emphasized that the comparison of
controllers is a fair comparison, since the maximum gain amplifications of the feedback gains
for the three different controllers are of comparable magnitude.

Recommendations of future research to build on the work done in this dissertation, re-
garding the control synthesis methodologies for trajectory tracking of robot manipulators,

CHAPTER 6. CONCLUSIONS 92

include:

• Stability analysis of the PWA closed-loop dynamics (5.21) considering switching be-
tween ellipsoidal regions. One would expect that a PWA dynamical system for which
each discrete state’s continuous system is stable would be stable. But this is not nec-
essarily the case. For instance, it is discussed in [46] that a piecewise linear dynamical
system, which switches between two independently stable linear systems ẋ = A1x and
ẋ = A2x, might become unstable under certain switching policies, even thoughA1 and
A2 are Hurwitz. This is unlikely to happen in the PWA closed-loop dynamics (5.21)
since the (local) plant dynamics used for controller synthesis exhibit at the most a 1%
relative dynamics “variation”, with respect to the metric in (5.10). However, it would
be instructive to verify this claim formally through a careful stability analysis. There
is background work to prove stability of piecewise linear systems in [51], which relies
on linear matrix inequalities (LMI’s) to find piecewise quadratic Lyapunov functions.
This work might be adopted to our particular setting.

• From the results obtained in this dissertation, the proposed PWA modeling frame-
work to approximate the highly nonlinear and coupled dynamic model of robot ma-
nipulators, moving along a state-reference trajectory, is not only feasible but also a
powerful concept. The essential ideas are: (i) constructing the PWA dynamical sys-
tem (i.e., strategic operating points, local system dynamics matrices, and ellipsoidal
regions parametrizations), and (ii) the scheduling methodology which switches local
controllers as the robot state, which traverses in the direction of the state-reference
trajectory, transitions from one ellipsoid to another(s). This opens up the possibility to
try out synthesis methodologies for the local controllers from the vast body of powerful
techniques available for linear dynamical systems. For instance, the local controllers
can be designed based on the local coupled dynamics to satisfy requirements of robust
stability and performance using H∞ optimization methods.

93

Bibliography

[1] B. Siciliano et al. Robotics: Modelling, Planning and Control. 1st. Advanced Textbooks
in Control and Signal Processing. Springer-Verlag, 2009.

[2] Mark W Spong, Seth Hutchinson, and Mathukumalli Vidyasagar. Robot modeling and
control. John Wiley & Sons Hobokenˆ eNJ NJ, 2006.

[3] S. M. LaValle. Planning Algorithms. Available at http://planning.cs.uiuc.edu/. Cam-
bridge, U.K.: Cambridge University Press, 2006.

[4] J.E. Bobrow, S. Dubowsky, and J.S. Gibson. “Time-Optimal Control of Robotic Ma-
nipulators Along Specified Paths”. In: The International Journal of Robotics Research
4.3 (1985), pp. 3–17. doi: 10.1177/027836498500400301.

[5] K G Shin and N D McKay. “Minimum-time control of robotic manipulators with
geometric path constraints”. In: IEEE Transactions on Automatic Control 30.6 (1985),
pp. 531–541.

[6] F. Pfeiffer and R. Johanni. “A concept for manipulator trajectory planning”. In:
Robotics and Automation, IEEE Journal of 3.2 (1987), pp. 115–123. issn: 0882-4967.
doi: 10.1109/JRA.1987.1087090.

[7] Zvi Shiller. “Time-energy optimal control of articulated systems with geometric path
constraints”. In: Robotics and Automation, 1994. Proceedings., 1994 IEEE Interna-
tional Conference on. IEEE. 1994, pp. 2680–2685.

[8] John T. Betts. Practical methods for optimal control using nonlinear programming.
Vol. 3. Advances in Design and Control. Philadelphia, PA: Society for Industrial and
Applied Mathematics (SIAM), 2001, pp. x+190. isbn: 0-89871-488-5.

[9] D Costantinescu and EA Croft. “Smooth and time-optimal trajectory planning for
industrial manipulators along specified paths”. In: Journal of Robotic Systems 17.5
(2000), pp. 233–249.

[10] Diederik Verscheure et al. “Time-Optimal Path Tracking for Robots: a Convex Opti-
mization Approach”. In: IEEE Transactions on Automatic Control (2008).

[11] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. 1st. [Online]. Available:
http://www.stanford.edu/ boyd/cvxbook/. Cambridge University Press, 2004.

BIBLIOGRAPHY 94

[12] Denise Lam, Chris Manzie, and Malcolm Good. “Model predictive contouring con-
trol”. In: Decision and Control (CDC), 2010 49th IEEE Conference on. IEEE. 2010,
pp. 6137–6142.

[13] Gene F Franklin, J David Powell, and Abbas Emami-Naeini. “Feedback control of
dynamics systems”. In: Pretince Hall Inc (1986).

[14] Karl Johan Aström and Richard M Murray. Feedback systems: an introduction for
scientists and engineers. Princeton university press, 2010.

[15] Rafael Kelly, Victor Santibáñez, and Antonio Loŕıa. Control of robot manipulators in
joint space. Springer, 2005.

[16] Richard M Murray et al. A mathematical introduction to robotic manipulation. CRC
PressI Llc, 1994.

[17] Roy Featherstone and David Orin. “Robot dynamics: equations and algorithms”. In:
Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Confer-
ence on. Vol. 1. IEEE. 2000, pp. 826–834.

[18] Hassan K Khalil. Nonlinear systems. Upper Saddle River, NJ: Prentice Hall, 2002.

[19] Jean-Jacques E Slotine, Weiping Li, et al. Applied nonlinear control. Vol. 1. 1. Prentice
hall New Jersey, 1991.

[20] Russ Tedrake. “Underactuated Robotics: Learning, Planning, and Control for Efficient
and Agile Machines Course Notes for MIT 6.832”. In: Working draft edition (2009).

[21] Arthur Earl Bryson. Applied optimal control: optimization, estimation, and control.
Taylor & Francis, 1975.

[22] Frank L Lewis, Draguna Vrabie, and Vassilis L Syrmos. Optimal control. Wiley, 2012.

[23] Atsushi Fujimori, Svante Gunnarsson, and Mikael Norrlöf. A gain scheduling control
of nonlinear systems along a reference trajectory. Linköpings universitet, 2005.

[24] Oliver M O’Reilly. Intermediate dynamics for engineers: a unified treatment of Newton-
Euler and Lagrangian mechanics. Cambridge University Press, 2008.

[25] Milos Zefran. “Continuous methods for motion planning”. In: IRCS Technical Reports
Series (1996), p. 111.

[26] Oliver M O’Reilly. Engineering Dynamics: A Primer. Springer Verlag, 2001.

[27] Magnus Rudolph Hestenes. Calculus of variations and optimal control theory. Wiley
New York, 1966.

[28] Dimitri P Bertsekas. “Nonlinear programming”. In: (1999).

[29] Miguel Sousa Lobo et al. “Applications of Second-order Cone Programming”. In: Lin-
ear Algebra and its Applications (1998), pp. 193–228.

[30] M. Grant and S. Boyd. CVX: Matlab Software for Disciplined Convex Programming,
version 1.21. Apr. 2011.

BIBLIOGRAPHY 95

[31] Michael Athans and Peter L Falb. Optimal control: an introduction to the theory and
its applications. McGraw-Hill New York, 1966.

[32] Oskar Von Stryk. Numerical Solution of Optimal Control Problems by Direct Collo-
cation. 1993. url: http://citeseer.ist.psu.edu/69756.html;http://www-
m2.mathematik.tu-muenchen.de/~stryk/paper/1991-dircol.ps.gz.

[33] C De Boor. “A Practical guide to splines (rev. Ed)(Applied Mathematical Sciences,
Vol. 27) POD”. In: (2001).

[34] Cleve B Moler. Numerical computing with MATLAB. Society for Industrial and Applied
Mathematics, 2010.

[35] P.I. Corke. “A Robotics Toolbox for MATLAB”. In: IEEE Robotics and Automation
Magazine 3.1 (1996), pp. 24–32.

[36] Tamar Flash and Neville Hogan. “The coordination of arm movements: an experi-
mentally confirmed mathematical model”. In: The journal of Neuroscience 5.7 (1985),
pp. 1688–1703.

[37] Yoji Uno, M Kawato, and R Suzuki. “Formation and control of optimal trajectory in
human multijoint arm movement”. In: Biological cybernetics 61.2 (1989), pp. 89–101.

[38] Brian D. O. Anderson and John B. Moore. Linear Optimal Control. Prentice-Hall, Inc.,
1971.

[39] Karl J Aström and Bjorn Wittenmark. Computer-controlled systems: theory and de-
sign. Courier Dover Publications, 2011.

[40] Charles P Neuman and Vassilios D Tourassis. “Discrete dynamic robot models”. In:
Systems, Man and Cybernetics, IEEE Transactions on 2 (1985), pp. 193–204.

[41] Richard Ernest Bellman and Stuart E Dreyfus. Applied dynamic programming. Vol. 7962.
Princeton University Press, 1966.

[42] Dimitri P Bertsekas et al. Dynamic programming and optimal control. Vol. 1. 2. Athena
Scientific Belmont, 1995.

[43] Felix R Gantmacher. The theory of matrices. 1. Vol. 131. Chelsea publishing company,
2000.

[44] Joao P Hespanha. “LQG/LQR controller design”. In: California, USA: University of
California, Department of Electrical and Computer Engineering (2007).

[45] Douglas J Leith and William E Leithead. “Survey of gain-scheduling analysis and
design”. In: International Journal of Control 73.11 (2000), pp. 1001–1025.

[46] Mikael Johansson. Piecewise linear control systems - a computational approach. Vol. 284.
Electronic version available at http://springerlink.com/content/6e2xn7v5n4be/. Hei-
delberg, Germany: Lecture notes in control and information sciences, Springer Verlag,
2002.

BIBLIOGRAPHY 96

[47] Alex A. Kurzhanskiy and Pravin Varaiya. Ellipsoidal Toolbox. Tech. rep. UCB/EECS-
2006-46. EECS Department, University of California, Berkeley, 2006. url: http://
www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-46.html.

[48] Gilbert Strang. Introduction to linear algebra. SIAM, 2003.

[49] Lloyd N Trefethen and David Bau III. Numerical linear algebra. 50. Siam, 1997.

[50] Thomas Kailath. Linear systems. Vol. 1. Prentice-Hall Englewood Cliffs, NJ, 1980.

[51] Arash Hassibi and Stephen Boyd. “Quadratic stabilization and control of piecewise-
linear systems”. In: American Control Conference, 1998. Proceedings of the 1998.
Vol. 6. IEEE. 1998, pp. 3659–3664.

[52] H. Asada and J.-J. E. Slotine. Robot Analysis and Control. 1st. John Wiley and Sons,
1986.

[53] Carlos Canudas De Wit, Georges Bastin, and Bruno Siciliano. Theory of robot control.
Springer-Verlag New York, Inc., 1996.

[54] Jos F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones. Optimization Methods and Software 11. 1999.

[55] Mikael Johansson and Anders Rantzer. “Computation of Piecewise Quadratic Lya-
punov Functions for Hybrid Systems”. In: IEEE Transactions on Automatic Control
43 (1998), pp. 555–559.

[56] Pedro Reynoso-Mora and Masayoshi Tomizuka. “LQ-based Trajectory Tracking of
Robotic Manipulators with “Near” Dynamically Feasible Time-optimal Trajectory”.
In: ASME/ISCIE International Symposium on Flexible Automation. 2012.

[57] Pedro Reynoso-Mora, Wenjie Chen, and Masayoshi Tomizuka. “On the Time-optimal
Trajectory Planning and Control of Robotic Manipulators Along Predefined Paths”.
In: American Control Conference. 2013.

[58] Analog Devices (ADIS16400). 2009. url: http://www.analog.com/en/mems/imu/
adis16400/products/product.html.

[59] CompuGauge 3D. 2009. url: http://www.dynalog-us.com/solutions.

97

Appendix A

Experimental Setup for the 6-axis

Industrial Manipulator

In this dissertation, we constantly evaluate the effectiveness of the proposed algorithms in
experiments on a 6-axis industrial manipulator, courtesy of FANUC Corporation. Figure
A.1(a) shows the robot together with additional hardware components. The model of this
multi-joint manipulator is the M-16iB/20, which is a medium-size industrial robot capable
of carrying objects with weights up to 20 kg at a maximum speed of 2000 mm/sec. We have
attached to the robot’s end-effector an “L”-shape payload, made from steel and weighting
18.37 kg. This robot is mainly used in high-speed applications such as: painting/coating,
glueing and sealing, spot and arc welding, material handling, and water-jet cutting.

A.1 Hardware Configuration

Each motor of the M-16iB robot is equipped with a built-in encoder to measure joint position.
The M-16iB robot commercial controller utilizes position and velocity feedback for control.
The desired trajectory is programmed through the teach pendant, and then the commercial
controller ensures the robot follows the desired motion. A disadvantage (from the research
point of view) is that the structure of the commercial robot controller is fixed, which means
it does not offer flexibility in the modification of control algorithms. Therefore, in order to
implement our own control algorithms for research, the commercial robot controller must be
bypassed. For rapid prototyping of new algorithms, it is convenient to design and implement
control algorithms using MATLABr.

The connection diagram of hardware components that allows to bypass the commercial
robot controller is illustrated in Figure A.1(b). The control algorithms can be designed
in MATLABr on the host computer, and then implemented for experiments on the target
computed. A digital servo adapter (DSA) is utilized to connect the real-time target computer
with the FANUC robot controller. By using DSA, the motor torque commands are computed
by our own control algorithms, running on the target computer, and then converted to the

APPENDIX A. EXPERIMENTAL SETUP FOR THE 6-AXIS INDUSTRIAL

MANIPULATOR 98

(a) FANUC M-16iB robot with additional hardware

�������

���	�
�������	��

�����	������

��������
�������� �������

���	�������
��
!�	����
" ���#��	����
"

�����

$%�	����""��
&�������	���#%
�!	

'��"�#�#(

����� ��	
�

�� ���

����

���)��

��*	%�

'�����
	�����

��'���+,,

�-)�.
���	/�

��
����-���	

�0���-

�'	��.�

���	�
-��

���������	��
��

&�������	���#%
�!	
'��"�#�#(

�������)��#	����
"	���
��	�����
"	'�)��12��)��
���	�'�,3/�	�
�
	��4�������	�
�#
����	�����
"	���5	�#
)���

(b) Hardware connection diagram depicting the main components

Figure A.1: FANUC M-16iB industrial robot and its connection diagram of hardware.

APPENDIX A. EXPERIMENTAL SETUP FOR THE 6-AXIS INDUSTRIAL

MANIPULATOR 99

current command for the FANUC robot controller to deliver such a current. Thus the
commercial feedback controller is bypassed. Notice nonetheless that the FANUC robot
controller still plays an important role in current feedback control and brake control. The
current feedback loop is active in the FANUC robot controller to deliver the motor current
that is commanded. The brake function is controlled with a digital input/output board
installed on the target computer as depicted in Fig. A.1(b). The break turns off when the
experiment starts and turns on after the experiment ends. In case of emergency (e.g., robot
motion speed becomes too high), the FANUC robot controller automatically activates the
brake of the motors. The operator can also activate the brake with the emergency button
on the robot teach pendant.

Throughout this dissertation, a 3-axis accelerometer mounted on the robot’s payload is
used to monitor the effects of near time-optimal trajectories. For this purpose, we use an in-
ertia measurement unit (IMU) from Analog Devices ADIS16400 [58], which includes a 3-axis
accelerometer and a 3-axis gyroscope. Likewise, a three-dimensional position measurement
system of the Cartesian coordinates (x, y, z) is utilized to measure the end-effector tool center
point (TCP), which is ground truth for performance evaluation. This position measurement
system, known as CompuGauge 3D [59], features a repeatability of 0.02 mm, accuracy of
0.15 mm, resolution of 0.01 mm, measurement space of 1.5 × 1.5 × 1.5 m3, tracking rate
of up to 5 m/s, and the sampling frequency of up to 1000 Hz. Notice the CompuGauge is
only used for performance evaluation of the Cartesian-space tracking error, i.e., the robot is
entirely servoed using the motor encoders.

A.2 Real-time System

In real-time systems, an exact sampling period is required in order to avoid uncertainties
caused by timing errors. However, most popular operating systems do not guarantee real-
time operation due to unexpected interferences such as virus checking and event logging.
To overcome such implementation issues, xPC TargetTM is used, which is a toolbox of the
MATLABr product family. In this system, two computers are used, Host PC and Target
PC, which are connected via Ethernet as depicted by the hardware diagram in Fig. A.1(b).
MATLABr is installed in the Host PC running on a Windows platform. The controller is
designed in the Host PC by using Simulinkr, another MATLABr product, and MATLABr

coding functions as well. An advantage of using MATLABr and xPC TargetTM is that there
is no need to rewrite code when changes in controller structure occur. After the controller
design is done in the Host PC, the corresponding real-time code is loaded into the Target
PC through Ethernet.

Notice that the Target PC has access to the motor position, the motor velocity, and
the motor current through a high-speed serial buss (HSSB). When the control algorithms
are running on the Target PC, the connection between the two computers is automatically
disabled such that real-time execution of the algorithms in the Target PC is guaranteed.
The sampling rates of all the sensor signals as well as the real-time controller implemented

APPENDIX A. EXPERIMENTAL SETUP FOR THE 6-AXIS INDUSTRIAL

MANIPULATOR 100

Figure A.2: Illustration of the Denavit-Hartenberg notation and parameters.

through MATLABr xPC TargetTM are set to 1 kHz.

A.3 Robot Kinematic Parameters

Throughout this dissertation, we use kinematics concepts extensively, namely, forward and
inverse kinematics. We present the basic concepts on kinematics of robot manipulators
and then use these concepts to perform kinematic modeling on the FANUC M-16iB robot.
Two kinds of kinematics are recognized, forward and inverse kinematics, which map from
joint to Cartesian and from Cartesian to joint spaces, respectively. In the forward and
inverse kinematics, a suitable kinematic parametrization is given by the so-called Denavit-
Hartenberg (DH) parametrization [1, 52]. This convention uses four parameters, known
as the DH parameters, to completely parameterize the relative position and orientation of
adjacent links. Figure A.2 illustrates the referred DH parameters.

A.3.1 DH Notations and Parameters

The DH procedure consists in characterizing the configuration of link i with respect to link
i − 1 by a 4 × 4 homogeneous transformation matrix, representing each link’s coordinate
system [52]. This matrix can be denoted by T i−1

i . The procedure for establishing coordinate
frames at each link, as in Fig. A.2, is described by the following steps:

1. Name each joint starting with 1, 2, . . . , n, where n is the number of degrees of freedom.

2. Attach the zi−1 axis along the axis of rotation of the i-th joint.

APPENDIX A. EXPERIMENTAL SETUP FOR THE 6-AXIS INDUSTRIAL

MANIPULATOR 101

3. Attach the xi axis normal to the zi−1 axis (and of course to zi) with direction from
joint i to joint i+ 1.

4. The yi axis is selected so that (xi, yi, zi) is orthonormal and righthanded. Thus, it is
common not to include this axis in the analysis.

The location of the zero reference frame is selected anywhere along the first axis of rotation.
The last reference frame is attached arbitrarily to the last link, usually at the end-effector.
However, the xn axis must intersect the last axis of rotation at a right angle. The four
parameters (ai, di, αi, θi) in Fig. A.2 are the celebrated DH parameters for each pair of
adjacent links. It can be shown that the homogeneous matrix relating adjacent frames i− 1
and i is given by:

T i−1
i =

cos θi − cosαi sin θi sinαi sin θi ai cos θi
sin θi cosαi cos θi − sinαi cos θi ai sin θi
0 sinαi cosαi di
0 0 0 1

. (A.1)

This matrix depends solely on the four DH parameters. For a revolute joint, αi, ai, and di
are constant while θi varies. As a result, once αi, ai, and di are obtained for a specific link,
the relative location of the corresponding adjacent links is only a function of θi.

A.3.2 Kinematic Modeling of FANUC M-16iB Robot

A suitable home position must be established first. The home configuration denotes the
starting pose of the serial linkage, which we have chosen for the FANUC M-16iB robot as
the posture shown in Fig. A.3. In order to obtain the DH parameters for the FANUC M-16iB
robot, Figure A.4(a) provides accurate information on crucial lengths for establishment of

Figure A.3: Designated home position for FANUC M-16iB robot.

APPENDIX A. EXPERIMENTAL SETUP FOR THE 6-AXIS INDUSTRIAL

MANIPULATOR 102

������������	
��

(a) Reference configuration for FANUC M-16iB robot

θ1

θ2

θ3

θ4

θ5
θ6

x0

z0
x1

z1

x2

z2

x3

z3

x4, x5

z4

z5

x6

z6

Ψ0

Ψ6

(b) Angle conventions (left) and attached frames (right)

Figure A.4: Crucial lengths, positive angle conventions, and attached coordinate frames for
obtaining the DH parameters of FANUC M-16iB robot.

the DH parameters. It is important to explain the meaning of J10,J20,...,J06 in Fig. A.4(a);
they represent the absolute Cartesian coordinates of each joint relative to the World reference
frame. The World reference frame shall be denoted by Ψ0.

An important step is to establish the positive-angle convention for each joint together
with their respective axis of rotations. The corresponding positive-angle convention and
rotation axes are shown in Fig. A.4(b). Finally, defining and attaching each of the reference
frames to the corresponding links is done; the resulting frames are shown in Fig. A.4(b).
These reference frames are attached to the corresponding links starting from the base link.
Once these frames have been specified, the remaining part of kinematic modeling is straight-
forward. The DH parameters for FANUC M-16iB are obtained and presented on Table A.1.

APPENDIX A. EXPERIMENTAL SETUP FOR THE 6-AXIS INDUSTRIAL

MANIPULATOR 103

i αi ai θi di
1 π/2 0.15 0 0.65
2 0 0.77 π/2 0
3 π/2 0.1 0 0
4 −π/2 0 0 0.74
5 π/2 0 0 0
6 0 0 0 0.10

Table A.1: DH Parameters for FANUC M-16iB robot

