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ABSTRACT OF THE DISSERTATION

Exact Learning of Sequences from Queries and Trackers

By

Pedro Ascensão Ferreira Matias

Doctor of Philosophy in Computer Science

University of California, Irvine, 2021

Distinguished Professor Michael T. Goodrich, Chair

Exact learning aims at unambiguously determining an unknown concept from answers to a

carefully crafted set of questions, where each answer, given by an all-knowing oracle, reveals

structural properties of the concept being learned. We consider Exact learning of sequences,

i.e. collections of objects with an intrinsic total order. In this setting, we introduce a new kind

of oracle, whose answers depend on an augmented version of the problem’s input, devised

strategically in advance by the learner, to enable efficient learning of the unknown concept.

In particular, we study the problem of reconstructing the path traversed from s to t in the

known input graph, by placing trackers on a subset T of the vertices, whose intersection with

any s-t path results in a unique sequence, thus enabling exact reconstruction. This problem

has applications to animal migration tracking and securing of large infrastructures. Since

minimizing |T | is NP-complete, we devise approximation and FPT algorithms.

We also study the problem of learning an unknown string over a known fixed alphabet. We

consider classic oracle queries which have been shown to yield linear query complexity lower

bounds, and exploit string periodicity to obtain algorithms with sublinear query complexities.

We also study the problem of reconstructing a periodic string that has been corrupted by

a small number of errors (e.g. due to noisy transmission channels). Finally, we study lower

and upper bounds for learning a general string using jumbled-index queries.

xii



Chapter 1

Introduction

Exact learning is, at its core, a game of guesses much like the well known game of Mastermind,

played between a codemaker and a codebreaker, where the codebreaker’s goal is to learn, as

quickly as possible, the secret code established in advance by the codemaker as a sequence

of 4 colors (order matters). The two players take turns, alternating between a codebreaker’s

guess of the secret code, and the codemaker’s feedback on the correctness of the last guess,

as illustrated in Fig. 1.1. In this game, it is in the codebreaker’s best interest to adjust

his/her strategy upon receiving the feedback given after every guess, so as to maximize the

amount of new information gained and, consequently, minimize the overall number of guesses

(this has been studied extensively in e.g. [6, 91, 107, 154, 176, 213, 297]). Applications of

Mastermind include security and privacy around genomic data [175], as well as bank PIN

data [161].

More generally, exact learning1 aims at unambiguously determining an underlying un-

known concept, by making a series of queries to an oracle, the answers of whom reveal

partial information on the structure of the concept being learned [27, 28]. Naturally, the

learner typically knows the scope of the secret concept, i.e. the class of concepts (possibly of

1In some literature exact learning goes by the name of combinatorial search [13]
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Figure 1.1: Example of a setup of Mastermind [307], where the secret sequence, decided a
priori by the codemaker, is hidden from the codebreaker in the bottom row. The feedback
given by the codemaker after every codebreaker’s guess consists of the number of pegs in
the codebreaker’s guess sequence which are: (i) correct in both color and position, and (ii)
correct in color, but incorrect in position – see [307] for details.

infinite size) which contains the secret. For example, in the case of Mastermind, the learner

knows the secret concept is a string of colors over a fixed alphabet. We are interested in

devising a learning policy that unveils the secret concept using the least amount of queries

possible, i.e. an algorithm of minimum query-complexity. This complexity measure comes

from machine learning and learning theory (see e.g. [6, 29, 98, 138, 286]), as well as complex-

ity theory (where it is also known as decision-tree complexity, see e.g. [58, 310]). Thus, any

amount of computation that does not involve making queries is considered free. We refer

the reader to Section 1.3 for an overview of literature relevant to exact learning and, more

generally, computational learning theory, an active area of research in artificial intelligence

and machine learning.

Exact learning comes in two flavors2: adaptive and non-adaptive. In adaptive exact learning,

we are allowed to choose the next query depending on the set of answers to all the queries

made so far. In contrast, non-adaptive exact learning requires us to fix in advance the set

of queries we wish to ask, before any answer is given. Naturally, the latter setting typically

2There are also settings which combine both adaptive and non-adaptive queries, such as the one studied
in [127], which consists of stages: each stage corresponds to a set of parallel queries and each query can only
depend on answers from previous stages.

2



requires asking more queries. On the other hand, non-adaptive queries can be made in any

order, making parallelization of learning algorithms trivial.

In this dissertation, we restrict the scope of learning concepts to sequences, i.e. ordered

collections of objects. In particular, we study settings of adaptive and non-adaptive exact

learning of strings and paths in a graph, both of which are outlined in the next sections.

1.1 Learning Strings

We devise adaptive algorithms for learning an unknown string S, of known or unknown

size, over a known fixed alphabet, much like the Mastermind example given earlier – see

Chapter 2. In contrast to Mastermind, however, we consider the following types of adaptive

queries:

1. Substring queries, of the form “Is X a substring3 of S?”

2. Subsequence queries, of the form “Is X a subsequence4 of S?”

3. Jumbled-index queries (also known as histogram-index), of the form “Is there a

substring of S whose letter frequencies match the given vector of frequencies?”

Results. The first two queries above, subtring and subsequence, have been shown to yield

linear query complexity lower bounds, as well as asymptotically matching upper bounds. In

this dissertation, we exploit periodicity in strings to achieve sublinear query complexities

for these types of queries [9]. We also study the problem of using substring queries to

reconstruct a near-periodic string, i.e. a periodic string that has been corrupted by a small

3A substring of a string S is a contiguous sequence of letters in S.
4A subsequence of a string S is a string whose letters appear in S with the same relative order, i.e. a

subsequence can be obtained from S by simply dropping some of its letters.

3



number of errors (e.g. due to noisy transmission channels). As far as we know, jumbled-

index queries, which have received much attention of late (e.g. see [7, 19]), have not been

studied before in the context of adaptive string reconstruction, so we believe we are the first

to consider this oracle in an adaptive learning setting. For this latter query type, we prove

that, even if the oracle adversarially provides a location within S of a matching substring,

reconstructing S is not always possible in general, no matter how good our adaptive strategy

is. Thus, we consider the setting where the oracle gives a relevant location chosen uniformly

at random (instead of adversarially), for which we give an efficient randomized algorithm

which succeeds in reconstructing S with high probability.

1.2 Learning Paths in a Graph

Given a graph and two vertices, s and t, the goal is to perform the least amount of queries

that enables learning an unknown path from s to t. To achieve this, we introduce a new

form of oracle, whose answers depend on an augmented version of the problem’s input,

devised strategically in advance by the learner, to enable efficient learning of the unknown

concept. In particular, we study the problem of reconstructing the path traversed from s

to t in the known input graph, by placing trackers on a subset T of the vertices, whose

intersection with any s-t path results in a unique sequence, thus enabling exact learning

[151, 177]. The difficult part using this strategy is, then, the placement of the trackers

themselves. Good placements are studied in depth in Chapters 3 and 4. Once a valid set

of trackers is determined, learning the s-t path traversed becomes straightforward. A trivial

choice for T is the set of all vertices in the graph, however this will most likely not correspond

to the most cost-efficient solution. Thus, we aim at finding the most economic solutions,

ones that minimize the amount of trackers needed (i.e. minimize |T |). Since this task is NP-

complete (for the vast majority of input graphs, including planar graphs – see hardness proof

4



in Chapter 3), we provide approximation algorithms, as well as fixed-parameter tractable

algorithms – see below a summary of our contributions.

Results. We show that the problem of minimizing |T | is NP-complete even for planar

graphs and, for graphs in this class, we provide an efficient algorithm with a 4-approximation

ratio. We then improve on this result by devising a (1 + ε)-approximation algorithm for H-

minor-free graphs, using a separator-based divide-and-conquer approach. Using ideas from

this latter algorithm, we design fixed-parameter tractable algorithms for H-minor-free and

general graphs with, respectively, linear and quadratic sizes (w.r.t. solution size, or natural

parameter). We also present a O(log n)-approximation algorithm for general weighted graphs

(where the goal now is to minimize
∑

t∈T w(t)), using a reduction to Set Cover. We also

show that the problem has an underlying dual set-system of bounded VC-dimension, which

immediately implies a O(log OPT )-approximation algorithm for general unweighted graphs.

Finally, we prove that minimizing |T | is in P when the input graph has bounded-clique width,

via Courcelle’s theorem.

Our (1 + ε)-approximation algorithm for H-minor-free graphs is admittedly much slower

than our 4-approximation algorithm for planar graphs, but it has nevertheless theoretical

relevance. However, as a consequence of our linear kernel for H-minor-free graphs, we get

an efficient O(1)-approximation algorithm for this class.

1.3 Literature Overview on Exact Learning and Other

Learning Models

Exact learning is, occasionally, referred to as combinatorial search – we refer the reader

to Aigner’s book [13] and Katona’s survey [201] for literature using this terminology. As
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pointed out earlier, exact learning falls into the realm of computational learning theory, a

branch of artificial intelligence which studies the limits and performance bounds of learning

(in its broadest sense, but typically forms of learning specialized to the application), using

formal mathematics and tools from theoretical computer science and statistics. For more

information on this topic, we refer the reader to Kearns and Vazirani’s book [203], as well as

Angluin’s survey [31]. The approach of exact learning differs from others in computational

learning theory in the sense that it uses exclusively deductive reasoning.

The exact learning model most commonly studied is believed to have been proposed by

Angluin [27, 28], who initially focused on learning regular languages (i.e. those accepted by

a deterministic finite automaton) using membership queries (i.e. those specifying whether

a given string is an element of the underlying language), as well as other queries, such

as equivalence, superset and subset queries [29]. This model has since been regarded in

terms of learning (more generally) n-variable boolean functions f : {0, 1}n → {0, 1}, where

e.g. a membership query corresponds to asking the value of f(x), for some assignment

x ∈ {0, 1}n. We typically study restricted classes of boolean functions, however, in order

to obtain non-exhaustive strategies that exploit the structure of f . For example, if we do

not know anything about f in advance, we must ask all 2n possible membership queries.

Similarly, even if we know that f evaluates to 1 for exactly one assignment, we cannot hope

to achieve an efficient learning algorithm, even with the help of randomization (at least

in a classical setting, without resorting to quantum computers [284]). Important classes

of boolean functions include those that depend on few relevant variables – a variable is

relevant if switching its value in any n-variable assignment x yields an output that differs

from f(x). This class has been studied extensively in both adaptive and non-adaptive

settings in e.g. [65, 69, 77, 125, 127, 128, 229, 291]. learning of boolean functions has

also been studied using several function representations, including: decision trees (e.g. see

[74, 75, 77, 80, 222]), DNF/CNF formulas and circuits (e.g. see [74, 76, 170, 186, 197]) and

multivariate polynomials (e.g. see [111, 267, 269]).
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Applications. As suggested in e.g. [80], Angluin’s model of learning from membership

queries has applications in a wide range of fields, including: group testing (in and of itself a

greatly motivated field, e.g. see [68, 70, 126]), logic circuit checking (e.g. see [272]), planning

of chemical and biological tests, chemical reactions (e.g. see [32]), error detection in hard-

ware and software, pattern recognition, blood testing, multi-access channel communications,

molecular biology, VLSI testing, medical diagnosis (e.g. see [134]), AIDS screening, game the-

ory, defective coin detection (e.g. see [14]). Other applications of exact learning can be found

in the literature quoted above, as well as in [13, 61, 108, 142, 160, 190, 201, 212, 252]. Some of

the learning policies are indeed used in physical laboratories, e.g. see [43, 44, 142, 157, 160].

Specialized Models of Exact Learning

Since its proposal, Angluin’s model of exact learning [27, 28] has been repeatedly extended

and/or adapted, in the context of a wide variety of fields, to enable efficient learning of

concepts belonging to more restricted classes, as motivated by applications in the respective

field. Below, we give a few examples – we stress that these hardly constitute an exhaustive

enumeration of exact learning specializations.

Graphs. Motivated by problems arising in testing of chemical reactions, Angluin and Chen

considered the problem of exact learning the edge set of a graph [32], giving nearly-optimal

adaptive learning algorithms using edge-detecting queries (i.e. queries specifying whether a

given arbitrarily-sized subset of the vertices induces an edge) that simulate whether there

exists a pair of molecules in a test tube that react. As suggested by the Angluin and

Chen, this problem is equivalent to learning monotone DNF formulas with terms of size

2. Angluin and Chen [32] also provide query-complexity lower bounds for learning non-

uniform hypergraphs. Later, they show that uniform hypergraphs are learnable with high

probability [33] – see also [1, 88, 145, 146, 190]. Non-adaptive learning of uniform hypergraphs
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was considered in [2, 78, 96, 169, 190, 237, 238, 289]. Previous related work, motivated

by applications in genome sequencing, focused on learning subgraphs belonging to specific

classes of graphs, such as Hamiltonian cycles [179–181], matchings [16, 53], or stars and

cliques [15]. Query complexities for these, as well as the work of Angluin and Chen [32] have

since been improved, although not asymptotically [86, 87] (to the best of our knowledge).

Upper and/or lower bounds have been given in the cited papers for both adaptive and

non-adaptive settings, although not surprisingly, most efficient algorithms are adaptive.

Other types of queries have been considered in the adaptive setting of exactly learning graphs,

as motivated by applications arising in e.g. (i) the discovery of the topology of communication

networks, such as the Internet or peer-to-peer networks, or (ii) reconstruction of phylogenetic

trees (or, equivalently, hierarchical clustering). These include the following types of queries,

returning:

(i) the number of edges induced by a given subset of vertices [98, 178, 180, 181, 262],

(ii) a shortest path between 2 given vertices [198, 199, 262],

(iii) the distance (i.e. length of a shortest path) between 2 given vertices [199, 243, 266] or

between a given vertex and all other vertices [52, 156],

(iv) shortest path tree(s) from a given vertex to all vertices [12, 52, 271],

(v) the distance between 2 given leaves in a phylogenetic tree [10, 11, 185, 210, 263, 303],

(vi) the ancestry relationship between 2 given vertices in a rooted tree [10, 11, 301], and

(vii) whether a given vertex lies on a shortest paths between 2 other given vertices (a.k.a.

betweenness query) [3, 192].

Strings. Exact learning of strings over a fixed alphabet has been considered in both the

adaptive and non-adaptive settings, using substring, subsequence and jumbled-index queries
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(described above). We refer the reader to Chapter 2 for an in-depth review of literature

around this topic.

Geometric Concepts. Mass and Turán [234, 235] thoroughly investigated the problem of

adaptive exact learning of several types of geometric objects over a discrete domain. More

specifically, they provide upper and lower bounds for exactly learning geometric concepts

that are defined by points in {0, . . . , n − 1}d, a d-dimensional space, where each dimension

has been discretized into n values. In particular, one of the geometric concepts they studied,

which has been studied extensively in the literature, is the class of d-dimensional axis-parallel

cuboids, denoted boxdn. They proved that Ω(d log n) equivalence queries are required to

exactly learn the cuboid from boxdn, where an equivalence query returns either (i) that a

given hypothesized object (e.g. an element from boxdn) matches the target object (e.g. an

element from boxdn), or (ii) a counter-example that invalidates the given hypothesis. This

lower bound has since been improved to Ω(d2 log n/ log d) [37]. As for upper bounds, the

following simple algorithm requires O(dn) equivalence queries (as explained in [79]): until our

hypothesis is correct, make an equivalence query corresponding to the smallest box that is

consistent with the examples seen previously. This query complexity has since been improved

to O(2d log n) [233] and, later, to O(d2 log n) [94]. The more general case of learning the

union of cuboids in boxdn using equivalence and/or membership queries (i.e. those returning

whether a point is inside the cuboid) have also been studied, e.g. see [79, 90, 92, 93, 236].

Closely related is the problem of learning the union of non-discretized cuboids (e.g. see [66])

under the PAC model [203, 294], which we briefly discuss in the next section.

Other Approaches to Learning

PAC-Learning. Another framework for learning, which is prior to Angluin’s model of

exact learning [27, 28], is the framework of probably approximately correct learning (PAC-
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learning) introduced by Valiant [294]. In the PAC-learning model the learner’s goal is that

of outputting an “hypothesis” concept that most closely approximates the underlying tar-

get concept – this in contrast with exact learning, which requires exact identification of the

target concept. More specifically, let U be a universe of examples, each of which having a

computational representation, and let C ⊆ U be the target concept to be learned, chosen

from a collection of concepts C known to us in advance. Further, let D be a distribution over

U , chosen from a collection of distributions D also known to us in advance. An algorithm

in the PAC-learning model has two input parameters, ε and δ, and access to an oracle who,

when queried, draws an example u ∈ U according to D, and returns u along with a label

classifying the example as positive (u ∈ C) or negative (u /∈ C). When the algorithm halts,

its output is an hypothesis concept H ∈ C, such that, with probability at least (1 − δ), H

misclassifies an example x drawn under D (i.e. x ∈ H ⇐⇒ x /∈ C) with probability at

most ε. An algorithm for PAC-learning shall have query-complexity polynomial in 1/ε, 1/δ

and the sizes of examples and the target concept (e.g. the length of the string representing

these). Algorithms for exact learning with polynomial query-complexity, using only equiv-

alence queries, can be transformed into algorithms in the PAC-learning model, as shown

by Angluin [29], or in the absolute mistake-bound model [229]. Even though many PAC-

learnable discrete concept classes can also be exactly learned using a polynomial number

of equivalence queries only, Blum [64] showed that this is not true in general. For more

information on PAC-learning and its relationship with exact learning, we refer the reader to

Valiant’s seminal paper [294], Kearns and Vazirani book [203], as well as Angluin’s survey

[31].

Inductive Inference. Also related (and prior) to the exact learning model of Angluin

[27, 28] is the model of inductive inference, where one’s goal is that of learning a general rule

from a limited set of observations (see Angluin and Smith [34] for a survey). More specifically,

the goal of inductive inference is to learn a target concept that generalizes (finite) sets of
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positive and negative examples, given to us in advance by either an arbitrary or a stochastic

source, as in the case of PAC-learning – this differs from non-adaptive exact learning in

the sense that one has no choice over the examples. Unlike PAC-learning, whose literature

typically revolves around learning boolean functions (more generally), inductive inference is

mostly studied in the context of recursive functions or formal grammars and, thus, it shares

many techniques from recursion theory.
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Chapter 2

Learning Strings

2.1 Introduction

Exact learning involves asking a series of queries so as to learn a configuration or concept

uniquely and without errors, e.g., see [30]. For example, imagine a game where a player,

Alice, is trying to exactly learn a secret string, S, such as S = "rumpelstiltskin", which is

known only to a magic fairy. Alice may ask the fairy questions about S, but only if they are

in a form allowed by the fairy, such as “Is X a substring of S?”. Any allowable question that

Alice asks must be answered truthfully by the fairy. Alice’s goal is to learn S by asking the

fewest number of allowable questions. Her strategy is adaptive if her questions can depend

on the answers to previous queries. This exact-learning string-reconstruction problem might

at first seem like a contrived game, but it actually has a number of applications.

For example, the magic fairy could represent a corporation with a document database, S,

that supports an API allowing users to perform certain online query operations on S, such

as keyword searches. Further, this corporation may receive financial compensation for each

of its database responses (either directly or through advertisements); hence, the corporation
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might not want the database’s entire contents leaking out. In this case, Alice could represent

a rival corporation that is interested in learning the contents of the database, by asking legal

queries from its API, so that Alice can setup a competing online query service. An optimal

solution to the fairy-querying game would allow Alice to steal the database by asking the

fewest number of questions necessary.

As another example, in interactive DNA sequencing, the fairy’s string is an unknown DNA

sequence, S, and allowable queries are “Is X a substring of S?” Each such question can be

answered by a hybridization experiment that exposes copies of S to a mixture containing

specific primers to see which ones bind to S, e.g., see [278]. An efficient scheme for Alice

to play this fairy-querying game results in an efficient method for sequencing the unknown

DNA sequence.

Yet another application comes from computer security and cryptography, dealing with search-

able encryption (e.g., [122, 282]), where a database returns encrypted answers in response

to queries. In this case, so long as Alice can, for instance, tell encryptions of “yes” apart

from encryptions of “no,” then the fairy-querying game corresponds to a type of side-channel

attack, e.g., see [84, 204, 218, 223, 250, 313].

Thus, we are interested in the exact-learning complexity of adaptively learning an unknown

string via queries of various given types, that is, for exactly reconstructing a string from

queries. Formally, we are interested in minimizing a query-complexity measure, Q(n), which,

in our case, is the number of queries of certain types needed in order to exactly learn a string,

S. This query-complexity concept comes from machine-learning and complexity theory, e.g.,

see [6, 30, 57, 99, 139, 286, 311].
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2.1.1 Related Work

Motivated by DNA sequencing, Skiena and Sundaram [278] were the first to study exact

string reconstruction from adaptive queries. For substring queries, of the form “Is X a

substring of S?”, they give a bound for Q(n) of (σ − 1)n + 2 log n + O(σ), where σ is the

alphabet size. For subsequence queries, of the form “Is X a subsequence of S?”, they prove

a bound for Q(n) of Θ(n log σ + σ log n). Recently, Iwama, Teruyama and Tsuyama [191]

study the problem for binary alphabets, which removes the additive logarithmic term in this

case. These papers do not consider “mixed-up” strings, however, such as strings that are

periodic or periodic with errors. The abundance of repetitions and periodic runs in genomic

sequences is well known and has been exploited in the last decades for biologic and medical

information (see e.g. [54, 55, 129, 140, 144, 217, 255, 258, 280, 304]). It is somewhat surprising

that this phenomenon has not been used to achieve more efficient algorithms. Margaritis

and Skiena [242] study a parallel version of exact string reconstruction from queries, which

are hybrids of adaptive and non-adaptive strategies, showing, e.g., that a length-n string

can be reconstructed in O(log2 n) rounds using n substring queries per round. Tsur [290]

gives a polynomial approximation algorithm for the 1-round case. As in [278], these papers

do not consider bounds for Q(n) based on properties of the string such as its periodicity.

Cleve et. al. [112] study string reconstruction in a quantum-computing model, showing, for

example, that a sublinear number of queries are sufficient for a binary alphabet. This result

does not seem to carry over to a classical computing model, however, which is the subject

of our paper.

Another type of query we consider is the jumbled (or histogram)-index query, first considered

in [81, 82, 109, 155] and studied more recently in, e.g. [8, 20, 23, 24, 215, 247]. Jumbled

indexing has many applications. It can be used as a tool for de novo peptide identification

(as in e.g. [193, 208, 209]), and has been used as a filter for searching an image database

[110, 133, 285, 300, 315]. In this query, which has received much study of late, but has not
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been studied before for adaptive string reconstruction, one is given a Parikh vector, i.e., a

vector of frequency counts for each character in an alphabet, and asked if there is a substring

of the reference string, S, having these frequency counts and, if so, where it occurs in S.

Such reconstruction may aid in narrowing down peptide identification, or focusing on image

retrieval.

Another model for string reconstruction, tangential to ours and studied extensively, is the one

defined by a non-adaptive oracle, where: we are given a set of answers to queries in advance,

and we aim to understand sufficient and necessary conditions on the answers that enable the

exact reconstruction of the string. This model differs from the adaptive one considered in

this chapter in that it focuses on the study of combinatorial properties of strings, rather than

on minimizing the number of queries. Below, we give a detailed review of existing literature

on this model, for each type of query considered in this chapter.

Non-adaptive Substring Queries

There is an extensive line of work focusing on the ability to reconstruct a string given the

multiset of all its length-L substrings. For L ≥ a lg n (a > 1), it is shown in [89, 147, 167]

that, as n approaches infinity, almost every length-n string can be recovered. The following

variants have also been studied: (i) only a subset of the length-L substrings is given, or

each substring is subject to substitution errors of fixed Hamming distance [206, 241]; (ii) the

hidden string is an i.i.d. DNA string [36], combined with a random subset of the length-

L substrings [248], subject to probabilistic substitution errors [249] or edit errors (of fixed

maximum amount) [168]; (iii) the hidden string satisfies several constraints based on its

repeat statistics [72, 292] and input substrings are subject to erasure errors1 [274]; and (iv)

when partial reconstruction of the hidden string is sufficient [275]. On a different note, the

authors of [83, 158] consider instead the case where the input is a special set of substrings

1A letter in the substring is replaced by an ε.
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which is derived from the set of maximal substrings.

Non-adaptive Subsequence Queries

Perhaps the most studied problem in this category is the k-deck problem: given the multiset

of all length-k subsequences of a length-n string S, what is the smallest value of k that

enables the unique reconstruction of S? This problem was introduced in [196], who showed

an upper bound of bn/2c. This bound was improved to (1 + o(1))
√

(n lnn) in [270] and, in

the same year, to b16/7
√
nc + 5 in [221]. The first non-trivial lower bound, of lg / lg lg n,

was given in [312] and later on, was improved to lg n in [240] and to eΩ(
√

logn) in [143].

Recently, Gabrys and Milenkovic [166] considered an extension of the k-deck problem, where

one is also given a number of special subsequences of length n − t, t > 0; they provide

lower and upper bounds that have a dependence on t. Also related to the k-deck problem

is the work of Simon [276], on which subsequences are considered to be of length at most k.

Another relevant problem is trace reconstruction. The input to this problem is a set of traces,

distorted versions of the hidden string obtained by deletion (i.e. subsequences) or other

types of errors, when sending it through a noisy channel. Similarly, the goal is to recover

the hidden string S, either exactly or with some accuracy or probability, using the least

amount of traces. To the best of our knowledge, this problem was first studied in [225], who

provided bounds for the number of input traces, when subject to a worse case fixed number of

substitutions, transpositions, deletions or insertion errors. In the case of exclusively dealing

with deletions, where each letter is deleted with some fixed probability q, Batu, Kannan,

Khanna and McGregor [49] showed that reconstruction is possible w.h.p. for q = O(1/ log n)

and O(log n) traces, when S is chosen uniformly at random. Moreover, they show that,

for arbitrary S and for q = O(1/n1/2+ε), O(1/ε) traces are sufficient to reconstruct a close

approximation of S and O(n log n) traces are sufficient to recover S exactly. Later Kannan

and McGregor [200] extended these results to the case where insertion errors are also allowed,

16



showing that for deletion/insertion error probabilities of q = O(1/ log2 n) and O(log n) traces,

S can be recovered w.h.p. assuming it is chosen uniformly at random. Similarly, they show

that an arbitrary S can be recovered w.h.p., for q = O(1/n1/2+ε) and O(1) traces of length

at most nε. Later, Viswanathan and Swaminathan [298] improved on this, by showing that

deletion/insert error probabilities of q = O(1/ log n) are sufficient to reconstruct S, chosen

uniformly at random. They also show that Ω(log n) traces are necessary to reconstruct

1 − o(1) length-n strings with high probability. Holenstein, Mitzenmacher, Panigrahy and

Wieder [188] showed that, for the case of deletion errors only, of probability q = O(1),

reconstruction is possible w.h.p. using poly(n) traces, when S is chosen uniformly at random.

Finally, Sala, Gabrys, Schoeny, Mazooji and Dolecek [268] studied lower bounds on the

number of input traces formed from a worst-case number of insertion errors, where S is a

member of specific error-correcting codes, i.e. sets of strings constructed strategically to

allow recovering them from a noisy channel is modified.

Non-adaptive Jumbled-Index Queries

Acharya, Das, Milenkovic, Orlitsky and Pan [4, 5], study a non-adaptive version of the

problem of enumerating candidate strings from the composition multiset of the underlying

string. The composition multiset corresponds to the set of answers to all possible queries of

the following type: given a Parikh vector, how many times does a matching substring occur

in the hidden string? Under this model, they extend polynomial techniques used for the

turnpike problem (see [124, 277]) to give: (i) sufficient (but not necessary) conditions for the

ability to uniquely reconstruct a string, (ii) a sufficient characterization of unreconstructable

strings and (iii) a backtracking algorithm that enumerates the set of all candidate strings,

whose cardinality they lower and upper bound.
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2.1.2 Our Results

We provide new and improved results for exactly reconstructing strings from adaptive sub-

string, subsequence, and jumbled-index queries. For example, we believe we are the first

to characterize query complexities for exactly reconstructing periodic strings from adaptive

queries, including the following results for reconstructing a length-n periodic (i.e., “mixed-

up”) string, S = pkp′, of smallest period p, where p′ is a prefix of p and the alphabet has

size σ:

• It requires at least |p| lg σ substring or subsequence queries.

• It can be done with σ|p|+ dlg |p|e substring queries, if n is known.

• It can be done with O(σ|p|+ log n) substring queries, if n is unknown.

• It can be done with σdlg ne+ 2|p|dlg σe subsequence queries, for known n.

• It can be done with 2σdlg ne+ 2|p|dlg σe subsequence queries, if n is unknown.

Perhaps our most technical result is that we show that we can reconstruct a length-n string,

S, within Hamming distance d of a periodic string S ′ = pkp′, of smallest period p, using

O(min(σn, dσ|p| + d|p| log n
d+1

)) substring queries, if n is unknown. We also show that we

can exactly reconstruct a general length-n string, S, using 2σdlg ne + ndlg σe subsequence

queries, if n is unknown. Such queries are another “mixed-up” setting, since there can

be multiple subsequence matches for a given string. Our bound improves the previous

best, decades-old result, by Skiena and Sundaram [278], who prove a query complexity

of 2σ lg n + 1.59n lg σ + 5σ for this case. If n is known, then σdlg ne + ndlg σe subsequence

queries suffice. We believe we are the first to study string reconstruction using jumbled-index

queries, which are yet another “mixed-up” setting, since they simply count the frequency of

each character occurring in a substring. We prove the following results:
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• We can reconstruct a length-n string with O(σn) yes/no extended jumbled-index

queries, which include a count for an end-of-string character, $.

• For jumbled-index queries that return an index of a matching substring, string re-

construction is not possible if this index is chosen adversarially, but is possible using

O(σ + n log n) queries if it is chosen uniformly at random.

2.1.3 Preliminaries

We consider strings over the alphabet Σ = {a1, a2, . . . , aσ} of σ letters. The size of a string

X is denoted by |X|. We use X[i] to denote the ith letter of X and X[i..j] to refer to the

substring of X starting at its ith and ending at its jth letter (e.g., X = X[1..|X|]). We may

ignore i when expressing a prefix X[..j] of X. Similarly, X[i..] is a suffix of X. Occasionally,

we will express concatenation of strings X and Y by X · Y (instead of XY ) to emphasize

some property of the string. A string X concatenated with itself k (resp. infinitely many)

times can be expressed as Xk (resp. X∞). The reversal of a string X is denoted by XR.

A string, S, has period p if S = pkp′, such that k > 0 is an integer and p′ is a (possibly

empty) prefix of p. Further, a string S is periodic if it has a period that repeats at least twice,

i.e. S = pkp′ and k > 12. The following is a well known result concerning the periodicity of

a string, due to Fine and Wilf [159], which we will need later on.

Lemma 2.1 (Periodicity Lemma [159]). If p, q are periods of a string X of length |X| ≥

|p|+ |q| − gcd(|p|, |q|), then X also has a period of size gcd(|p|, |q|).

A doubling search is the operation used to determine a number n from a (typically un-

bounded) range of possibilities. It involves doubling a query value, m, until it is greater

than n, followed by a binary search to determine n itself. Its time complexity is 2blg nc+ 1.

2Our algorithms assume that S is periodic (k > 1), while the Periodicity Lemma (2.1) only requires a
string to have a period (k > 0).
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A more sophisticated version of this procedure exists (see [56]) that actually improves the

time complexity into

blgL(0)c+ blgL(1)nc+ · · ·+ blgL(t−1)nc+ 2blgL(t)nc+ 1,

where L(j)(n) = blgL(j−1)(n)c+ 1 and L(0)(n) = n, for which there exists an optimized value

of t. For simplicity, we use the traditional algorithm, which is asymptotically equivalent.

2.2 Substring Queries

In this section, we study query complexities for a string, S, subject to yes/no substring

queries, IsSubstr, i.e. queries of “Is X a substring of S?”. We focus on the cases where S

corresponds to an originally periodic string, that may have lost its periodicity property due

to error corruption. The nature of the errors is context-dependent. For example, corruption

may be caused by transmission errors, measurement errors, malicious tampering, or even

by the aging process of a natural phenomenon. There are multiple ways to model errors in

strings. Examples include:

• Hamming distance model: corruption is caused by allowing the substitution of a letter

in the string by a different letter of the alphabet

• Edit distance model: a generalization of the Hamming distance that also allows the

insertion or deletion of a letter (see [224])

• Swap distance model: the operation allowed consists of swapping two adjacent letters

in the string (see [232, 299])

• Interchange (or Caley) distance model: it generalizes swap distance, by allowing the

swap of any two letters, not necessarily adjacent (see [21, 26, 85, 194])
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In this chapter, we consider Hamming distance. We say that S is a d-corrupted periodic

string if there exists a periodic string S ′ of period p, such that |S| = |S ′| and δ(S ′, S) ≤ d,

where δ is the Hamming distance. We refer to p as an approximate period of S. Notice

that, depending on d, there might exist multiple strings S ′ with approximate periods of

S. We are interested in reconstructing S, as opposed to S ′, since we can use one of the

existing algorithms to enumerate all possible strings S ′ (see [18, 25, 216]), without incurring

additional queries.

Our main result in this section is the following.

Theorem 2.1. We can reconstruct a length-n d-corrupted periodic string S using

O

(
min

(
σn, dσ|p|+ d|p| log

n

d+ 1

))
queries,

for known d, unknown |p|, regardless of whether we know n, where p is a smallest approximate

period of S.

The algorithm of Theorem 2.1 is a more elaborate version of a reconstruction algorithm for

the special case of d = 0, i.e. when no errors occurred and S = S ′, and when n is not known

in advance.

Theorem 2.2. We can reconstruct a length-n periodic string, S = pkp′, of smallest period

p, using O(σ|p|+ log n) substring queries, assuming both n and |p| are unknown in advance.

The algorithm of Theorem 2.2, in turn, builds from a simple reconstruction algorithm that

handles the case where n is known in advance and d = 0.

For clarity, we will present our results in increasing order of complexity, from the least general

result of d = 0 and known n, to the most general result of arbitrary d and unknown n.

21



Algorithm 1: Reconstructing a periodic string S = pkp′ of known size n and
smallest period p, for k > 1.

1. Let q = ε
2. repeat

Append a letter to q (σ − 1)

until IsSubstr(qg(q)−1) (1 per iteration; |p| iterations)

3. Let T = qg(q)−1

4. While T is a substring of S, append a letter to T
5. While |T | < n and T is a substring of S, prepend a letter to T

 (σ(2|p| − 1))
6. Output T

2.2.1 Uncorrupted Periodic Strings of Known Size

We first give a simple algorithm to reconstruct a periodic string S = pkp′ of smallest period p

and known size with query complexity O(σ|p|), and then show how to improve this algorithm

to have query complexity σ|p| plus lower-order terms. Our algorithms use two primitives

developed by Skiena and Sundaram [278], which we call “append” and “prepend” a letter. In

the append (resp., prepend) primitive, we start with a known substring q of S, and we ask

queries IsSubstr(qai) (resp., IsSubstr(aiq)), for each ai ∈ Σ. Note that if we know that one of

the qai (resp., aiq) strings must be a substring, we can save one query, so that appending or

prepending a letter uses at most σ − 1 queries in this case.

In our simple algorithm, we iteratively grow a candidate period, q, using the append primitive

until qg(q)−1 is a substring, where g(x) = bn/|x|c. Notice that q may be an “unlucky” cyclic

rotation of p, which only repeats g(p)− 1 times, and we need to account for this possibility.

Thus, once we get a substring corresponding to qg(q)−1, we then append/prepend letters until

we recover all of S. For reference, see Algorithm 1, where the number of queries is shown in

parentheses for steps involving queries.

Theorem 2.3. We can reconstruct a length-n periodic string S = pkp′, of smallest period p,

using O(σ|p|) substring queries, assuming n is known in advance and |p| is unknown.
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Proof. The main loop in Algorithm 1 will always terminate, because S is periodic and any

cyclic permutation of p is a substring, when concatenated at least g(p) − 1 times. It is

easy to see that the procedure of iteratively appending letters to q must result in a cyclic

permutation of p, unless the main loop stops earlier. After the main loop, there are at most

2|p|−1 letters left to be recovered, so the overall query complexity is at most σ|p|+σ(2|p|−1),

which is O(σ|p|).

With a little more effort, we can improve the constant factor in the query complexity. The

main challenge to achieving this improvement is that, after the main loop in Algorithm 1, q

may not correspond to a cyclic rotation of p. For example, in S = abababaab · abababaab ·

abababaab, we may get q = abababa, while the actual period is p = abababaab. However,

we show that, when k = n/|p| > 3, the following implication holds indeed: if qg(q)−1 is a

substring, then q must be a cyclic rotation of p.

We begin by giving the details for our improved algorithm for reconstructing a periodic

length-n string S, when n is known, which is shown in Algorithm 2.

Algorithm 2: Reconstructing a periodic string S = pkp′ of known size n and
smallest period p, for k > 3.

start
1. Let q = ε
2. repeat
3. Append a letter to q (σ − 1)

until IsSubstr(qg(q)−1) (1 per iteration; |p| iterations)
4. Let p = TrueRotation(q) (dlg |q|e)
5. Determine p′ and output pkp′

function TrueRotation(q)
Find, using binary search, the largest suffix q[j..], such that
IsSubstr(q[j..] · qg(q)−1) (dlg |q|e)

Return q[j..] · q[..j − 1]

Remark 2.1. A string, p, is a period of a string X of length |X| ≥ i|p| if and only if pj is

a period of X, for all j ∈ {1, 2, . . . , i}.
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Theorem 2.4. We can reconstruct a length-n periodic string S = pkp′, of smallest period p,

using at most σ|p|+ dlg |p|e substring queries, assuming that: n is known in advance, k > 3

and |p| is unknown.

Proof. Consider Algorithm 2. We claim that, immediately after the main loop, the candidate

period q is indeed a cyclic rotation of the true period p. The remainder of the proof then

follows from this.

So let us prove our claim. Let q be the string immediately after the main loop and let

T = qbn/|q|c−1. If |q| = |p|, then q is clearly a cyclic rotation of p. Besides, |q| cannot be

greater than |p|, because the letter-by-letter construction of q would have implied a halt of

the main loop when q had size |p|: any cyclic rotation of p must repeat at least bn/|p|c − 1

times. So let us consider the case |q| < |p|. Since k > 3, we have that n ≥ 4|p|. Moreover,

since T = qbn/|q|c−1, we know that |T | ≥ n − (2|q| − 1) and, thus, |T | ≥ 2|p|. Since T is a

substring of S, T must have a second period of size |p|. Moreover,

|T | ≥ 2|p|

≥ |p|+ |q|

≥ |p|+ |q| − gcd(|p|, |q|)

Thus, by the Periodicity Lemma (2.1), T has a period pT of size gcd(|p|, |q|). Therefore, S

must have a period of size |pT |, and thus, S must have a period of size |q| (by Remark 2.1),

which contradicts the fact that p is the smallest period of S.

Our analysis above is tight in the sense that, for k = 3, it no longer holds: recall the example

given above, where S = abababaab · abababaab · abababaab and q = abababa.

Notice that any reconstruction algorithm requires at least |p| lg σ queries; this follows from

an information-theoretic argument.
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Theorem 2.5. Reconstructing a length-n string, S = pkp′, of smallest period p, requires at

least |p| lg σ IsSubstr queries, even if n and |p| are known.

Proof. There are σ|p| possible periods for S. Since each period corresponds to a different

output of a reconstruction algorithm, A, and each query is binary, we can model any such

algorithm, A, as a binary decision tree, where each internal node corresponds to an IsSubstr

query. Each of the σ|p| possible periods must correspond to at least one leaf of A; hence, the

minimum height of A is lg(σ|p|).

In the next section we consider the case where the underlying string is of unknown size.

2.2.2 Uncorrupted Periodic Strings of Unknown Size

As in Section 2.2.1, we iteratively grow a candidate period q and attempt to recover S by

concatenating q with itself in the appropriate way. The difficulty when n is unknown is that

we can no longer confidently predict g(q). Thus, we can no longer issue a single query to test

if q is the right period. An immediate solution is to use a doubling search. Unfortunately,

this introduces a multiplicative O(log n) term into the query complexity. To avoid it, we

show how we can take advantage of the Periodicity Lemma (2.1) to amortize the extra work

needed to recover S.

Let us describe the algorithm (see Algorithm 3 for reference). We start with an empty

candidate period q. At each iteration, we add a letter to q, using the append primitive

and, using a doubling search, determine the run-length t of q, i.e. the maximum integer t

such that qt is a substring of S. If t = 1, we advance to the next iteration and repeat this

process. If, on the other hand, t > 1, we use q to determine the largest substring T that has

a period of size |q|. This can be done efficiently, using doubling searches, by determining

the largest suffix l of q and the largest prefix r of q, such that IsSubstr(l · qt · r). Once T is
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Algorithm 3: Reconstructing a periodic string S = pkp′, of smallest period p and
unknown size n, for k > 1.

start
1. Let q = ε
2. repeat
3. Append or prepend a letter to q (σ − 1; potentially, 2σ − 1 when k ≤ 2)
4. Determine the run-length t of q (2blg tc+ 1)
5. if t = 1 then Let T = q
6. else
7. Let l be the largest suffix of q such that IsSubstr(l · qt) (2blg |l|c+ 1)
8. Let r be the largest prefix of q such that IsSubstr(l · qt · r) (2blg |r|c+ 1)
9. Let T = l · qt · r

10. Let q = T [..|T | − |q|+ 1]

until IsValid(T ) (2σ)
11. Output T

function IsValid(T ) (2σ)
Let x be the letter to the left of T or ε if there is none (σ)
Let y be the letter to the right of T or ε if there is none (σ)
Return x == ε and y == ε

determined, we check whether it corresponds to S by checking if there is any letter preceding

and succeeding T (see IsValid subroutine). If T corresponds to S, we output it. Otherwise,

we update q to be any largest substring of T whose size is assuredly less than |p|: using

Periodicity Lemma (2.1), we argue in Lemma 2.2 below that, if q is not a cyclic rotation of

p, then p must be as large as almost the entire substring T ; more specifically, it must be the

case that |p| > |T |− |q|+ 1. Thus, we update q to be a length-(|T |− |q|+ 1) prefix of T (any

other substring of T would also work). We use this fact to get a faster convergence to a cyclic

rotation of p, while making sure that we do not overshoot |p|. Indeed, this observation will

enable us to incur a O(log n) additive factor, instead of a multiplicative one. After updating

q, we advance to the next iteration, where a new letter is appended to q, and repeat this

process until T = S.

Lemma 2.2. Let T be the largest proper substring of S = pkp′, of smallest period p, such

that: |q| is the length of the smallest period of T . Then, |p| > |T | − |q|+ 1.
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Proof. Let us assume, by contradiction, that |p| ≤ |T | − |q| + 1. Then, |T | ≥ |q| + |p| − 1

and, thus, |T | ≥ |q|+ |p|− gcd(|q|, |p|). In addition, if p is a period of S, then T must have a

period of size |p|. So, by the Periodicity Lemma (2.1), T also has a period of size gcd(|q|, |p|).

Moreover, since T is the largest proper substring of S, |p| is not a multiple of |q|. Therefore,

T must have a period shorter than |q|, a contradiction.

When k ≤ 2, our algorithm behaves similarly to the letter-by-letter algorithm of Skiena and

Sundaram [278] – after finding a cyclic rotation q of p, our algorithm will continue adding

letters to q until q = S, this time using both the append and prepend primitives.

Next, we give the details of the correctness and query complexity of Algorithm 3. Let

q1, q2, . . . , qm be the sequence of m candidate periods of increasing length, each of which

is the result of the append/prepend primitive at the beginning of every iteration (line 3

of Algorithm 3), e.g. |q1| = 1. Notice that each qi may be expanded (in line 10), so the

difference |qi| − |qi−1| may not necessarily be 1. In addition, let us use ti to denote the

run-length of qi computed in line 4.

Lemma 2.3. Algorithm 3 successfully returns S = pkp′, of smallest period p, if there exists

an iteration i ∈ {1, 2, . . . ,m}, such that qi is a cyclic rotation of p.

Proof. If ti > 1, then it is easy to see that the string T , computed in line 9 in iteration i,

must correspond to S. If ti = 1, then the algorithm essentially switches to the letter-by-letter

algorithm, appending or prepending letters until the end, when qm = S. Correctness of the

stopping condition follows from the correctness of IsValid.

We now show that, indeed, at some iteration i, the candidate period qi is a cyclic rotation

of p.

Lemma 2.4. There exists an iteration i ∈ {1, 2, . . . ,m}, such that qi is a cyclic rotation of

p.
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Proof. Let us assume that there is no such iteration i. Then, since all the qi’s are increasing

in length, it must be the case that there exists an iteration j ∈ {1, 2, . . . ,m− 1}, such that:

|qj| < |p|, but |qj+1| > |p|. However, it follows from Lemma 2.2 (when tj > 1) and the fact

that we add a single letter to qj (when tj = 1) that p must be at least as large as qj+1, a

contradiction.

Let us now argue about query complexity. The following lemma shows that we can charge the

logarithmic factors, incurred in each iteration j, to the work that would have been required

to find the letters introduced in qj+1. This establishes the amortization in query complexity.

We denote the number of queries in iteration j of Algorithm 3 by Q(j).

Lemma 2.5. The number of queries Q(j) performed in iteration j of Algorithm 3 is at most

σ(|qj+1| − |qj|) +O(σ), for j < m, or O(σ + log n), for j = m.

Proof. Let lj and rj denote, respectively, the lengths of the prefix l and suffix r computed

in lines 7 and 8 of Algorithm 3 in iteration j. The query complexity in any iteration j is

Q(j) ≤ 2blg tjc+ 1 + 2blg ljc+ 1 + 2blg rjc+ 1 + 4σ

Let us assume that tj > 1, since otherwise the query complexity is O(σ) and, therefore,

agrees with the query complexity that is stated in the lemma.

When j = m, it must be the case that qm is a cyclic rotation of p, and therefore has size

|p|. Thus, we spend at most: (i) σ queries when appending the pth letter, (ii) 2blg n/|p|c+ 1

queries to determine the run-length tm, and (iii) 2(2blg |p|c+1) queries to determine the suffix

and prefix of lengths lm and rm, respectively. Notice that the combined log factors result in

no less than Θ(log n). Thus, when j = m, the overall query complexity is O(σ + log n).
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When j < m, we have the following:

lg tj ≤ tj − 1 (tj > 1)

=⇒ lg tj ≤ (tj − 2)qj + 1 (qj ≥ 1)

=⇒ lg tj + lg lj + lg rj ≤ (tj − 2)qj + l + r + 1 (lg x < x)

=⇒ 2(lg tj + lg lj + lg rj) ≤ 2((tj − 2)qj + l + r + 1)

=⇒ Q(j) ≤ 2((tj − 2)qj + l + r) + 2 + 3 +O(σ) (def. of Q(j))

=⇒ Q(j) ≤ 2((tj − 2)qj + l + r + 2) +O(σ)

=⇒ Q(j) ≤ 2(|qj+1| − |qj|) +O(σ) (?)

=⇒ Q(j) ≤ σ(|qj+1| − |qj|) +O(σ) (σ ≥ 2),

where (?) follows from the fact that, when tj > 1, |qj+1| = (tj − 1)|qj|+ l + r + 2.

Finally, we are in conditions of proving Theorem 2.2, recalled below for convenience:

Theorem 2.2. We can reconstruct a length-n periodic string, S = pkp′, of smallest period

p, using O(σ|p|+ log n) substring queries, assuming both n and |p| are unknown in advance.

Proof. Correctness follows from Lemmas 2.3 and 2.4. As for the query complexity, it follows

from Lemma 2.5, that the overall query complexity of Algorithm 3 is

m∑
j=1

Q(j)

Let i be the iteration in which |qi| = |p| (see Lemma 2.4) and let us consider the queries
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done up to and after iteration i− 1. Thus, by Lemma 2.5:

m∑
j=1

Q(j) =
i−1∑
j=1

(
σ(|qj+1| − |qj|) +O(σ)

)
+

m∑
j=i

Q(j)

= O(σ|p|) +
m∑
j=i

Q(j),

where the last equality follows from the telescoping nature of the first summation. As for the

second summation, regarding the queries done after iteration i − 1, we consider two cases.

If i = m, then we spend either O(σ) queries if ti = 1, or O(σ + log n) queries if ti > 1, by

Lemma 2.5. If, on the other hand, i < m, then notice that it must have been the case that

tj = 1 for all j ∈ {i, i + 1, . . . ,m}. Thus, the total number of letters in S left to recover at

the end of iteration i− 1 is at most 2|qi| − 1 = 2|p| − 1, each of which is added during each

iteration j ∈ {i, i + 1, . . . ,m} using O(σ|p|) queries in total. Thus, whether or not i = m,

the overall query complexity is

m∑
j=1

Q(j) = O(σ|p|+ log n)

2.2.3 Corrupted Periodic Strings

Let us assume throughout the remainder of this section that S is a d-corrupted periodic

string of approximate period p. Recall that S is a d-corrupted periodic string if there exists

a periodic string S ′ of period p, such that |S| = |S ′| and δ(S ′, S) ≤ d, where δ is the

Hamming distance. Again, the main idea of the algorithm described in this section consists

of: (1) determining a cyclic rotation of a true period (in this case, there might be multiple

true periods), by iteratively growing a candidate period q, and (2) using q to recover S

accordingly. However, in the presence of errors, each of these steps becomes more difficult
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to realize efficiently. For example, in the first step, we might be growing a candidate period

q that includes an error. So, in order to rightfully reject the hypothesis that q is at most

as large as some approximate period p, our algorithm should be able to tell the difference

between (i) |p| = |q| and q includes an error and (ii) |p| > |q|. Otherwise, the algorithm

will keep on growing q until it is equal to S, possibly incurring σn queries. In addition,

the second step of using q to determine S requires more work, since the presence of errors

discards the possibility of simply concatenating q with itself the required number of times.

Because of these issues, it is crucial that our algorithm understands when a candidate period

is or not free of errors. Thus, the algorithm relies on the following.

Lemma 2.6. Let A be any length-(2d+1)|p| substring of a d-corrupted periodic string S of ap-

proximate period p, corresponding to the concatenation of length-|p| substrings q1, q2, . . . , q2d+1.

Then, a cyclic rotation of p must be the only substring qj appearing at least d + 1 times in

q1, q2, . . . , q2d+1.

Proof. Clearly, there is some qi that is a cyclic rotation of p. Moreover, there is some qj that

appears at least d + 1 times in q1, q2, . . . , q2d+1, or the number of errors would exceed d, by

the pigeonhole principle. If i 6= j, then each occurrence of qj, contributes at least 1 error,

resulting in at least d + 1 errors, a contradiction. Finally, qj must be the only string with

d+ 1 appearances in q1, q2, . . . , q2d+1, by the pigeonhole principle.

Algorithm 4: Reconstructing a d-corrupted periodic string S.

1. Let A = ε
2. repeat
3. Append/prepend min(2d+ 1, |S| − |A|) letters to A (σ(2d+ 2))
4. Let q be the candidate period that is a substring of A,

as determined by Lemma 2.6
5. (success, T ) = Expand(q) (O(dσ + d log n

d+1
))

until success
6. Output T
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Function Expand(q) (O(dσ + d log n
d+1

))

1. Let T = q, done = False
2. while δ(T, q∞[..|T |]) ≤ d and not done do
3. Find the largest substring R, such that IsSubstr(T ·R) (2blg |R|c+ 1)
4. Find the largest substring L, such that IsSubstr(L · T ·R) (2blg |L|c+ 1)
5. Let r (l) be the letter to the right (left) of L · T ·R or ε if there is none (2σ)
6. Let done = (r == ε and l == ε)
7. Let T = l · L · T ·R · r
8. if δ(T, q∞[..|T |]) > d then return (False, )
9. return (True, T )

Let us give the details for our algorithm, which is able to recover S, even when its size n is

unknown (see Algorithm 4 for reference). We maintain an initially empty substring, A, of S,

by extending it with 2d+1 letters in each iteration, using the append and prepend primitives

(as described in Section 2.2.1), potentially incurring an extra σ queries for detecting a left

or right endpoint of S. In the case that n = |S| < |p|(2d + 1), the last iteration requires

only min(2d + 1, |S| − |A|) new letters. Thus, after adding letters to A in the ith iteration,

A is a substring of S of size at most i(2d + 1). Before advancing to the next iteration, we

determine the only possible length-i candidate period q that could have originated A with at

most d errors (by Lemma 2.6). At this point we do not know if some approximate period p

has size |p| = i, so we try to use q to recover the rest of the string, halting whenever the total

number of errors exceeds d, in which case we advance to the next iteration and repeat this

process for a new candidate period of size i + 1. This logic is in the subroutine Expand(q),

described next (see the pseudo-code for reference). It initializes a string T to q and expands

it by doing the following at each iteration:

1. Appending to T the largest periodic substring of period −→q , where −→q is the appropriate

cyclic rotation of q that aligns with the right-endpoint of T . This can be done efficiently

by determining the maximum value of x, using a doubling search, for which

IsSubstr(T · (−→q ∞[.. x])),
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incurring 2blg xc + 1 queries. The cyclic rotation −→q can be determined with no ad-

ditional queries, by maintaining the value x′, which is the value of x in the previous

iteration, i.e. −→q is the cyclic rotation of q starting at the index (x′ mod |q|+ 2) of q.

2. Prepending to T the largest periodic substring of period←−q , where←−q is the appropriate

cyclic rotation of q that aligns with the left-endpoint of T . This can be done efficiently

by determining the maximum value of y, using a doubling search, for which

IsSubstr(((←−q R)∞[.. y])R · T ),

incurring 2blg yc + 1 queries. The cyclic rotation ←−q can be determined with no addi-

tional queries in a similar fashion to −→q .

3. Determining, if they exist, the letters immediately to the left and to the right of T ,

using 2σ queries, and adding them to T .

The expansion process in Expand(q) halts when either the total number of errors with respect

to q, δ(T, q∞[..|T |]), exceeds d (in which case we advance to the next iteration), or when

T = S (in which case we return T ).

Remark 2.2. Expand(q) successfully returns S if and only if q is a cyclic rotation of some

approximate period.

Lemma 2.7. The number of queries performed during any call to Expand is O(dσ+d log n
d+1

).

Proof. Each call to Expand uses at most 2(d+1)σ queries to determine the corrupted letters,

as well as the left/right endpoints of S – the total number of iterations of the while loop in

Expand is d + 1, since every iteration except the last introduces at least 2 errors in T , and

each iteration incurs 2σ queries.
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In addition, the number of queries used by Expand(q) during the doubling searches is

|q|∑
j=1

(2blgRjc+ 2blgLjc+ 2) ,

where Rj and Lj denote, respectively, the lengths of the substrings determined via doubling

searches in lines 3 and 4, during the jth call to Expand. Since the total number of iterations is

d+1, there is at most d+2 such Rj’s and Lj’s. Moreover, the above summation is maximized

when all the Rj’s and Lj’s have the same average value of at most (n − d)/(d + 1). This

follows from Jensen’s inequality and concavity of log. Thus, the overall time complexity is

O

(
dσ + d log

n

d+ 1

)
.

Correctness and query complexity of our algorithm follows from Remark 2.2 and Lemmas 2.6

and 2.7, giving us the following result:

Theorem 2.6. We can reconstruct a length-n d-corrupted periodic string S using O(dσ|p|+

d|p| log n
d+1

) queries, for known d, unknown |p|, regardless of whether we know n, where p is

a smallest approximate period of S.

Proof. At the |p|th iteration of the main loop, A has size (2d+1)|p| and, by Lemma 2.6, q must

correspond to a cyclic rotation of some approximate period p. Correctness of reconstruction

then follows from Remark 2.2.

The overall query complexity consists of the queries used to expand A in each iteration and

the queries used in the calls to the subroutine Expand. The former requires at most (2d +

2)σ|p| queries overall, and the latter requires at most O(dσ|p|+ d|p| log n
d+1

), by Lemma 2.7.
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Thus, the overall query complexity is

O

(
dσ|p|+ d|p| log

n

d+ 1

)
.

If n is known, we could save the queries used to check the left and right endpoints of S in

line 5 of Expand, but this does not alter the query complexity asymptotically.

We assume a small enough number of errors, following [25]. Algorithm 4 is an improvement

to the O(σn) letter-by-letter algorithm of Skiena and Sundaram [278] for general strings of

known and unknown size, when d = O(σn/(σ|p|+ |p| log n)). In particular, if d = O(k/(1 +

log n)), then Algorithm 4 is an improvement, where k = bn/|p|c. Thus, our algorithm

performs no worse if there is, on average, at most 1 error in every other O(1 + log n)th non-

overlapping occurrence of p. If the number of errors is not small enough, then one should

run the letter-by-letter algorithm intercalated with ours, to get an upper bound of O(σn)

queries, giving us Theorem 2.1, which we referred to at the beginning of Section 2.2, recalled

here for convenience.

Theorem 2.1. We can reconstruct a length-n d-corrupted periodic string S using

O

(
min

(
σn, dσ|p|+ d|p| log

n

d+ 1

))
queries,

for known d, unknown |p|, regardless of whether we know n, where p is a smallest approximate

period of S.
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2.3 Subsequence Queries

We study the query complexity for a length-n string, S, subject to yes/no subsequence

queries, IsSubseq, i.e., queries of the form “Is X a subsequence of S?”

We begin with a simple lower bound.

Theorem 2.7. Reconstructing a length-n periodic string, S = pkp′, of smallest period p,

requires at least |p| lg σ IsSubseq queries, even if n and |p| are known.

Proof. The proof follows that of Theorem 2.5 for substring queries, which can be found in

Section 2.2.

Let us next describe an algorithm for reconstructing a periodic length-n periodic string,

S = pkp′, of smallest period p. We begin by performing either binary searches (if n is known)

or doubling search (if n is unknown), using queries of the form IsSubseq(ai) to determine

the number of a’s in S, for each a ∈ Σ. From all of these queries, we can determine the

value of n if it was previously unknown. This part of our algorithm requires either σdlg ne

or 2σdlg ne queries in total, depending on whether we knew n at the outset.

If the number of a’s in S is n, for any a ∈ Σ, then we are done, so let us assume the number

of a’s in S is less than n, for each a ∈ Σ. Thus, when we complete all our doubling/binary

searches, for each letter, a ∈ Σ that occurs a nonzero number of times in S, we have a

maximal subsequence, Sa, of S, consisting of a’s. Moreover, since S is periodic with a period

that repeats k times, each Sa is periodic with a period that repeats k times. Unfortunately,

at this point in the algorithm, we may not be able to determine k. So next we create a

binary merge tree, T , with each of its leaves associated with a nonempty subsequence, Sa,

much in the style of the well-known merge-sort algorithm, so that T has height dlg σe. We

then perform a bottom-up merge-like procedure in T using IsSubseq queries, as follows.
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Let v be an internal node in T , with children x and y for which we have inductively deter-

mined periodic subsequences, Sx and Sy, respectively, of S. Let nx = |Sx| and ny = |Sy|.

To create the subsequence, Sv, for v, we need to perform a merge procedure to interleave

Sx and Sy. To do this, we maintain indices i and j in Sx and Sy, respectively, such that we

have already determined an interleaving, Sv[..i+ j], of Sx[..i] and Sy[..j]. Initially, i = j = 0.

We then perform the query IsSubseq(Sv[..i + j] · Sx[i + 1] · Sy[j + 1..ny]). Suppose the an-

swer to this query is “yes”. In this case, we set Sv[..i + j + 1] = Sv[..i + j] · Sx[i + 1]

and we increment i. If, on the other hand, the answer to the above query is “no”, then

we set Sv[..i + j + 1] = Sv[..i + j] · Sy[j + 1], because in this case we know that IsSub-

seq(Sv[..i + j] · Sy[j + 1] · Sx[i + 1..nx]) would return “yes”. If this latter condition occurs,

then we increment j.

Let qv denote this new interleaving prefix, Sv[..i + j], and let k̂ = bn/|qv|c. If qv
k̂qv
′ is a

plausible interleaving of Sx and Sy, where qv
′ is a prefix of qv, then we next ask the query

IsSubseq(qv
k̂qv
′). If the answer is “yes”, then we set Sv = qv

k̂qv
′ and this completes the merge.

Otherwise, we continue incrementally interleaving Sx and Sy, using the current values of i

and j, by iterating the procedure described above. Clearly, this merge procedure asks at

most 2|qv| queries in total.

Lemma 2.8. Let pv be the subsequence of p consisting of the letters from Sv. Then |qv| ≤ |pv|.

Proof. The letter-by-letter construction of qv ensures that qv is the smallest period of Sv.

Since pv is itself a period of Sv no smaller than the smallest, then |pv| ≥ |qv|.

Theorem 2.8. We can determine a length-n periodic string, S = pkp′, of smallest period p

of unknown size, using 2σdlg ne+2|p|dlg σe IsSubseq queries, if n is unknown. If n is known,

then σdlg ne+ 2|p|dlg σe IsSubseq queries suffice.

Proof. The total query complexity includes: (i) the letter decomposition Sa for all a ∈ Σ,
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during the the first stage and (ii) the merge-like composition of all subsequences Sa, during

the second stage. If n is known, the first stage requires |Σ| binary searches, incurring

σdlg ne queries. Otherwise, it requires |Σ| doubling searches, amounting to 2σdlg ne queries.

Regarding the second stage, we claim that any level l of the binary merge tree, T , incurs a

total of at most 2|p| queries, which amounts to a total of at most 2|p|dlg σe queries, when

taking into account all the dlg σe levels of T . Let T (l) be the set of all nodes in T at level l.

Then, ∑
v∈T (l)

|qv| ≤
∑
v∈T (l)

|pv| = |p|.

This follows from Lemma 2.8 and the fact that all {Sv | v ∈ T (l)} are pairwise letter-disjoint.

Since the merge of an internal node v requires a cost of 2|qv|, the total cost incurred in any

level l of T is at most 2|p|.

A simple modification of our algorithm also implies the following.

Theorem 2.9. We can determine a length-n string, S, using 2σdlg ne + ndlg σe IsSubseq

queries, without knowing the value of n in advance. If n is known, then σdlg ne + ndlg σe

IsSubseq queries suffice.

Proof. Modify our subsequence-querying algorithm given in Section 2.3 to remove the queries

for strings of the form qv
k̂qv
′. The proof follows by an analysis similar to that for Theorem 2.8.

This latter theorem improves a result of Skiena and Sundaram [278], who prove a query

bound of 2σ lg n+ 1.59n lg σ + 5σ when n is unknown.
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2.4 Jumbled-index Queries

Jumbled-indexing involves preprocessing a given string, S, so as to determine whether there

exists a substring of S whose letter frequencies match the given Parikh vector, i.e., a vector

ψ = (f1, . . . , fσ) such that fi is the number of occurrences in S of ai ∈ Σ, e.g., see [8,

20, 23, 24, 215, 247]. In this section, we study the query complexity for reconstructing an

unknown length-n string, S, using jumbled-index queries. As observed by Acharya, Das,

Milenkovic, Orlitsky and Pan [4, 5], strings and their reversals have the same “composition

multiset”. This immediately implies the following negative result, which we prove regardless

for completeness.

Lemma 2.9. If S is not a palindrome, then S cannot be reconstructed by yes/no jumbled-

index queries, which return whether there is a substring in S with a given Parikh vector.

Proof. Suppose S 6= SR, where SR denotes the reversal of S. For any substring, T , of S,

there is, of course, a corresponding substring, TR, of SR. Moreover, T and TR have the same

Parikh vector. Thus, S and SR have the same set of responses to yes/no jumbled-index

queries; hence, any set of yes/no jumbled-index queries cannot distinguish S from SR.

Given that simple yes/no jumbled-index queries are not sufficient for string reconstruction,

let us consider an extended type of yes/no jumbled-index query.

• Jumbled-Indexing with End-of-string symbol “$” (JIE): given an extended Parikh vec-

tor, ψ = (f1, . . . , fσ, f$), for the letters in Σ and an end-of-string symbol, $, which is

not in Σ, this query returns a yes/no response as to whether there is a substring of S$

with extended Parikh vector ψ.

Unlike the yes/no jumbled-index queries, this variant enables full reconstruction.

39



Theorem 2.10. We can reconstruct a length-n string, S, using (σ − 1)n JIE queries, if n

is known, or σ(n+ 1) JIE queries, if n is unknown.

Proof. Our method is to use a letter-by-letter reconstruction algorithm via an adaption of

the prepend-a-letter primitive for substring queries. Suppose n is unknown. Let ψ be an

extended Parikh vector for a known suffix, s, of S$; initially, ψ = (0, 0, . . . , 0, 1) and s = $.

Then we perform a jumbled-index query for ψi, for each ai ∈ Σ, where ψi = ψ except that ψi

adds 1 to the fi value in ψ. If one of these, say, ψi, returns “yes”, then we prepend ai to our

known suffix and we repeat this procedure using ψi for ψ. If all of these queries return “no”,

then we are done. If n is known, on the other hand, then we can skip this last test of all-no

responses and we can also save at least one query with each iteration, with the algorithm

otherwise being the same.

We can also consider jumbled-index queries that return an index of a matching substring for a

given Parikh vector, if such a substring exists. Though related, notice that this type of query

is not subsumed by the query studied in Acharya, Das, Milenkovic, Orlitsky and Pan [4, 5],

which returns the number of occurrences (instead of position) of matching substrings in S.

There is some ambiguity, however, if there is more than one matching substring; hence,

we should consider how to handle such multiple matches. For example, if a jumbled-index

query returns the indices of all matching substrings, then σ queries are clearly sufficient to

reconstruct any length-n string, for any n, without knowing the value of n in advance. Thus,

let us consider two more-interesting types of jumbled-index queries.

• Adversarial Jumbled-Indexing (AJI): given a Parikh vector, ψ = (f1, . . . , fσ), this query

returns, in an adversarial manner, one of the starting indices of a matching substring,

if such a string exists. If there is no matching substring, this query returns False.

• Random Jumbled-Indexing (RJI): given a Parikh vector, ψ = (f1, . . . , fσ), this query
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returns, uniformly at random, one of the indices of a substring with Parikh vector ψ if

such a substring exists in S. If there is no such substring, this query returns False.

Unfortunately, for the AJI variant, there are some strings that cannot be fully reconstructed,

but this is admittedly not obvious. In fact, the unreconstructability characterization of

[4, 5] fails for AJI queries, because the symmetry property used in their construction of

pairwise “equicomposable” strings inherently yields matching substrings with symmetric

(e.g. different) positions in S.

Nevertheless, we give a construction of an infinite family of pairwise undistinguishable strings,

i.e. two strings such that, for every possible query, there exists an answer (positive or

negative) that is common to both strings. Clearly, the adversarial strategy is to output

these common answers when given either of these strings. In particular, for all b ≥ 1,

consider the two binary strings of length 4b+ 14 given below, which differ only in the middle

section, consisting of 01 in the first string and 10 in the second:

S1 = 101101(10)b01(10)b010010

S2 = 101101(10)b10(10)b010010

Theorem 2.11. The strings S1 and S2 cannot be distinguished using AJI queries, for b ≥ 1.

Proof. Let n = 4b+14 be the size of the strings. We refer to responses that would be common

to both S1 and S2 as helpless answers. Let us think of a positive answer i to a query (k, l)

in terms of the space occupied by its matching substring, denoted 〈i, i+ k+ l− 1〉. We note

that an answer that does not span the middle section or that spans it in its entirety must

be helpless.

Notice that the first half of either string is the symmetric complement of the second half.

This implies the following: (i) an answer 〈i, j〉 to a query (k, l) exists if and only if an answer
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〈n− j + 1, n− i+ 1〉 exists for the query (l, k) and (ii) an answer is negative to (k, l) if and

only if an answer is negative to (l, k). Therefore, we can restrict ourselves to queries of the

form (k, k + c), where c ≥ 0. We break this down to the following cases:

1. Queries of type (k, k).

We say that an answer is k-centered if it is of the type 〈n/2−(k−1), n/2+1+(k−1)〉.

Since any k-centered answer contains the middle section, it must be helpless. Thus, it is

enough to show, by induction, that all queries (k, k) have k-centered answers. Clearly,

this holds for the base case (1, 1), so let us assume that there exists a (k− 1)-centered

answer a to the query (k − 1, k − 1). Then, because the first half of either string is

the symmetric complement of the second half, the letters preceding and succeeding a

must be the complement of each other. Thus, the k-centered answer must be valid for

the query (k, k).

2. Queries of type (k, k + 1).

Take the k-centered answer and either extend it with one letter to the left, or one

letter to the right. Exactly one of these options is a valid answer to (k, k + 1) (by the

symmetric-complement property of the strings) and either are helpless, since they span

the middle section.

3. Queries of type (k, k + 2).

Consider, as a base case, the answer 〈2, 3〉 to the query (0, 2). Clearly, it is a helpless

answer. Given that the letters at positions 4 + 2j and 5 + 2j are complements of each

other, 〈2, 3 + 2j〉 is a valid answer to the query (j, j + 2), for all 0 ≤ j ≤ b + 2. For

greater values of j, the answer is helpless regardless, since it corresponds to a substring

of length greater than 2b + 7, half of the string length and, therefore, it spans the

middle section.

4. Queries of type (k, k + c), for c ≥ 3.
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It is enough to analyze answers that partially span the middle section (i.e. in exactly 1

letter), since otherwise answers are automatically helpless. Let ∆i denote the number

of 1’s minus the number of 0’s for the answer 〈i, n/2〉, with respect to S2, for all

0 ≤ i ≤ n/2 (e.g. ∆n/2 = 1, corresponds to the first letter in the middle). A simple

passage from right to left, for increasing values of i, reveals that there exist no value

of i for which ∆i = 4, so we do not need to handle the case c ≥ 4. Moreover, the only

values of i for which ∆i = 3 are i = 2 and i = 0, which correspond to answers for

the queries (b + 1, b + 4) and (b + 2, b + 5), respectively. However, these queries have

helpless answers: 〈0, 2b + 4〉 in the former and 〈2, 2b + 8〉 in the latter. For the first

string, a similar exercise reveals that there exist no answers that partially overlap the

middle section and whose difference between the number of 1’s and the number of 0’s

is at least 3.

In contrast, the query variant RJI can be used to reconstruct any length-n string, S, without

knowing the value of n in advance. In particular, it is possible to reconstruct any length-n

string, S, using O(σ + n log n) RJI queries with high probability. Our algorithm for doing

this involves a reduction to a multi-window coupon-collector problem.

Let ψi be a Parikh vector that is all 0’s except for a count of 1 for the letter ai ∈ Σ. Note

that an RJI query using ψi will return one of the ni locations in S with an ai uniformly at

random (if ni > 0). If ni = 0, for any i = 1, 2, . . . , σ, we learn this fact immediately after

one RJI query for ψi, so let us assume, w.l.o.g., that ni > 0, for all i = 1, 2, . . . , σ, after

performing an initial σ number of RJI queries.

Recall that in the coupon-collector problem, a collector visits a coupon window each day

and requests a coupon from an agent, who chooses one of n coupons uniformly at random

and gives it to the collector, e.g., see [245]. The expected number of days required for the
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collector to get all n coupons is nHn, where Hn is the nth Harmonic number. But this

assumes the collector knows when they have received all n coupons (i.e., the collector knows

the value of n).

In a coupon-collector formulation of our reconstruction problem, we instead have σ coupon

windows, one for each letter ai ∈ Σ, where each window i has ni coupons that differ from

the coupons for the other windows, and we do not know the value of any ni. Each day

the collector must choose one of the coupon windows, i, and request one of its coupons

(corresponding to an RJI query for ψi), which is chosen uniformly at random from the ni

coupons for window i. We are interested in a strategy and analysis for the collector to

collect all n = n1 + n2 + · · · + nσ coupons, with high probability (i.e., with probability at

least 1− 1/n).

Note that although we do not know the value of any ni, we can nonetheless test whether the

collector has collected all n coupons. In particular, suppose we have received RJI responses

for all indices, 1, 2, . . . , n, for letters in S, and let ni be the number of ai’s we have found so

far. Let ψ′ = (n1, n2, . . . , nσ), and let ψ′i be equal to ψ′ except that we increment ni by 1. If

an RJI query for each ψ′i returns False, then we know we have fully reconstructed S. Thus, if

n = 1, then we can determine this and S after 2σ RJI queries, so let us assume that n ≥ 2.

Further, we can assume we have a bound, N ≥ 2, which is at least n and at most twice n,

by a simple doubling strategy, where we double N any time a test for n fails and we set N

equal to any RJI query response that is larger than N . Therefore, the remaining problem is

to solve the multi-window coupon-collector problem.

Our strategy for the multi-window coupon-collector problem is simply to visit the coupon

windows in phases, so that in phase i we repeatedly visit window i until we are confident we

have all of its ni coupons, for which the following lemma will prove useful.

Lemma 2.10. Let Ti be the number of trips to window i needed to collect all its ni ≥ 1
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coupons. Then, for any real number β:

Pr (Ti > βni lnN) ≤ ni
Nβ

.

Proof. Adapting a proof from [305], let Zj,r denote the event that the j-th coupon was not

picked in the first r trips to window i. Then

Pr (Zj,r) =

(
1− 1

ni

)r
≤ e−r/ni .

Thus, for r = βni lnN , we have Pr(Zj,r) ≤ e−(βni lnN)/ni = N−β. Therefore, by a union

bound,

Pr (Ti > βni lnN) = Pr

(⋃
j

Zj,βni lnN

)
≤ ni · Pr (Z1,βni lnN) ≤ ni

Nβ
.

Our strategy, then, is to let β ≥ 2 be constant, and in phase i, implement a doubling strategy

where we perform βNi logN RJI queries for ψi, such that Ni is an upper bound estimate for

ni, which we double each time we get more than Ni distinct responses to our queries in this

phase. So by the end of the phase i, ni ≤ Ni ≤ 2ni. This gives us:

Theorem 2.12. A string, S, of unknown size, n, can be reconstructed using O(σ + n log n)

RJI queries, with high probability.

Proof. After an initial O(σ) queries to determine which letters from Σ appear in S, the total

number of remaining queries performed by our method is at most

2
σ∑
i=1

2βNi lnN = 4
σ∑
i=1

βNi lnN,
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by the doubling strategy applied to each letter, ai ∈ Σ, and then globally for N . Further,

σ∑
i=1

βNi lnN ≤
σ∑
i=1

2βni lnN ≤
σ∑
i=1

3βni lnn = 3βn lnn,

with probability at least

1−
σ∑
i=1

ni
Nβ

= 1−
∑σ

i=1 ni
Nβ

= 1− n

Nβ
≥ 1− 1

n
,

by Lemma 2.10, since β ≥ 2.

2.5 Conclusion and Open Questions

We have studied the reconstruction of strings under the following settings, by giving efficient

reconstruction algorithms and proving lower bounds: (i) periodic strings of known and un-

known sizes, with and without mismatch errors, using substring queries; (ii) periodic strings

of known and unknown sizes, using subsequence queries and (iii) general strings, using vari-

ations of jumbled-indexing queries. For the non-optimal algorithms given here, it would

be nice to know whether there exist matching lower bounds, or whether there exist faster

algorithms.

Regarding corrupted periodic strings, different applications suffer from different types of

corruption. In particular, the following error metrics have been considered in the literature:

Pseudo-local metrics such as swap distance [22] or Interchange (Cayley) distance [25]; and

the Levenshtein edit distance [224]. It would be interesting to see whether our reconstruction

algorithms can be adapted to these more general error distances.

The next step is to reconstruct strings that have more complex syntactic regularities than

periods, such as covers [35]. A length m substring C of a string T of length n, is said to be
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a cover of T , if n > m and every letter of T lies within some occurrence of C. We would like

to efficiently reconstruct a coverable string, without knowing its cover a-priori.

Data compression schemes such as, Lempel-Ziv [316, 317] are known to compress any station-

ary and ergodic source down to the entropy rate of the source per source symbol, provided

the input source sequence is sufficiently long. These schemes rely heavily on encoding re-

peated substrings by their starting index and length. In this sense, a periodic string is

highly compressible. We would like to extend our ideas to reconstruct a general string in

time proportional to its LZ compression.

The type of query used for reconstruction is a key factor in the reconstruction complexity.

Much as the error distance, the query type is also application-dependent. A reasonable

query type is the less than matching. Let S1 and S2 be strings of length n over an ordered

alphabet. We say that S1 is less than S2 if S1[i] < S2, ∀i = 1, . . . , n. Other matchings

that have been researched in the literature, are the order preserving matching [97, 121, 207],

and the parameterized matching [41, 42]. In the order preserving matching, we say that

two strings match if the relative order of their elements is the same, for example 1, 2, 3, 2, 1

matches such strings as 1, 100, 101, 100, 1, or 56, 61, 366, 61, 56, i.e., any string where the fist

element is smaller than the second, which is smaller than the third, where the fourth is equal

to the second, and the fifth equals the first. Two equal-length strings S1, S2 over alphabet

Σ are said to parameterize match, if there is a bijection f : Σ → Σ such that S1 = f(S2).

Using these more powerful queries, can we reconstruct a string more efficiently?

Finally, given the impossibility result on reconstructing strings using Adversarial Jumbled-

Indexing queries, it would be interesting to know whether there exists an efficient algorithm

that enumerates all of the undistinguishable strings.
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Chapter 3

Learning Paths in Planar Graphs

3.1 Introduction

In most modern marathons, each runner is provided with a small RFID tag, which is worn on

the runner’s shoe or embedded in the runner’s bib. RFID readers are placed throughout the

course and are used to track the progress of the runners [100, 302]. In spite these measures,

some runners try to cheat by taking shortcuts [306]. To detect all possible course-cutting,

we are interested in the combinatorial optimization problem of placing the minimum number

of RFID readers in the environment of a marathon to determine every possible path from

the start to the finish, including paths that deviate from the official course, just from the

sequence of RFID readers that are crossed by a runner taking a given path. In addition to

detecting marathon course-cutting, solutions to this optimization problem could also allow

for a type of marathon where each runner could be allowed to map out their own path from

the start to finish so long as their path is at least the required length.

Formally, we model a city road network [150, 152, 153] through which a marathon will be

run as an undirected graph, G = (V,E), where V is the set of road intersections and possible
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RFID reader locations in the city, as well as the placements of the start and finish lines, and

E is the set of road segments joining two points in V without having any other elements of

V in its interior. Given a start-finish pair, (s, t), of vertices in G, a tracking set for (s, t) is

a subset, T , of V , such that for any s-t path1 P in G, the sequence ST (P ) of vertices in T

traversed by P uniquely identifies P . In other words, T is a tracking set if ST (P ) 6= ST (Q)

for all distinct s-t paths P and Q. We formally define the optimization problem, which is

called the tracking paths problem, as follows:

Tracking(G, s, t):

Input: An undirected simple graph G = (V,E) and vertices s, t ∈ V .

Question: A smallest tracking set for (s, t) in G.

We denote by Planar-Tracking the problem of tracking paths when the input graph is

planar.

Banik, Katz, Packer and Simakov [48] and Banik, Choudhary, Lokshtanov, Raman and

Saurabh [46, 47] introduced the tracking paths problem, motivated by applications in surveil-

lance and monitoring. Examples of surveillance applications include the following: (i) vehicle

tracking in road networks; (ii) habitat monitoring; (iii) intruder tracking and securing large

infrastructures; (iv) tracing back of illicit Internet activities by tracking data packets. An-

other application would be to determine the nodes in a network that have been compromised

by a spreading infection, given an incomplete transmission history of a pathogen. This infor-

mation can be helpful in identifying and attenuating the negative impact caused by biological

and non-biological infectious agents, such as:

• Contagious diseases (e.g. COVID-19, Severe Acute Respiratory Syndrome) which could

lead to epidemics [173].

1In this chapter, paths do not repeat vertices. We denote a path from u to v by u-v.
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• Fake news and hate speech being disseminated in social networks, as well as violations

of privacy (e.g. sharing without permission highly sensitive content owned by a user,

such as intimate pictures).

• Computer viruses, which spread throughout servers scattered across the Internet.

Some of these applications have been studied empirically or using heuristics in [60, 182, 259,

279] or, in the case of infections, [39, 246, 251, 273]. To the best of our knowledge, the above-

mentioned references [46–48] were the first to approach the problem of tracking paths from a

theory perspective. In this work, we extend some of their work and give new algorithms. Our

main results apply to graphs that can: be embedded on the plane (of interest to surveillance

in road networks and similar infrastructures) or that have bounded clique-width (mainly of

theoretical interest).

3.1.1 Related Work

Banik, Choudhary, Lokshtanov, Raman and Saurabh first introduced Tracking in [46],

where it is shown to be NP-hard by reducing from Vertex Cover, which seems unlikely to

work in the planar case. Although not immediately obvious, they also show that Tracking

is in NP, by observing that every tracking set is also a feedback vertex set, i.e. a set of

vertices whose removal yields an acyclic graph. Finally, they present a fixed-parameter

tractable (FPT) algorithm (parameterized by the solution size k) for the decision version of

the problem, where they obtain a kernel of O(k7) edges.

The concept of tracking set, however, first appeared in Banik, Katz, Packer and Simakov [48],

where they considered a variant of Tracking that only concerns shortest s-t paths, essen-

tially modeling the input as a directed acyclic graph (DAG). Using a similar reduction from

Vertex Cover, they show that this variant cannot be approximated within a factor of 1.3606,
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unless P=NP. They also give a 2-approximation for the planar version of tracking shortest

paths, but they omit any hardness results for this variant.

More recently, Bilò, L. Gualà, Leucci and Proietti [62] generalized the version of the problem

concerning shortest s-t paths, into the case of multiple source-destination pairs, for which

they claim the firstO(
√
n log n)-approximation algorithm for general graphs. They also study

a version of this multiple source-destination pairs problem in which the set of trackers itself

(excluding the order in which they are visited) is enough to distinguish between s-t shortest

paths2. In this setting, they claim a O(
√
n)-approximation algorithm and they show that it

is NP-hard even for cubic planar graphs. The hardness construction intrinsically relies on

the multiplicity of source-destination pairs and, therefore, cannot be adapted to the problem

studied in this chapter. They also give an FPT algorithm (with respect to the maximum

number of vertices at the same distance from the source) for the problem concerning a single

source-destination pair that was introduced in [48].

In [45], Banik and Choudhary generalize Tracking into a problem on set systems3, which

are characterized by a universe (e.g. vertex set) and a family of subsets of the universe

(e.g. s-t paths). They show that this generalized version of the problem is fixed-parameter

tractable, by establishing a correspondence with the well known Test Cover problem.

Our results. We give a 4-approximation for Planar-Tracking (Section 3.2) and prove

that it is NP-complete (Section 3.3). In addition, we show that Tracking can be solved in

cubic time for graphs of bounded clique-width and linear time if the clique decomposition of

bounded width is given in advance (Section 3.4).

2Notice that when tracking shortest paths only and using a single source-destination pair, these two
versions of the problem are the same.

3Also called hypergraphs.
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Figure 3.1: Entry-exit pair illustration, with entry vertex s′ and exit vertex t′.

3.1.2 Definitions

Definition 3.1 (Entry-exit pair). Let (G, s, t) be an instance of Tracking. An entry-exit

pair is, with respect to some simple cycle C in G = (V,E), an ordered pair (s′, t′) of vertices

in C that satisfy the following conditions:

1. There exists a path s-s′ from s to the entry vertex s′

2. There exists a path t′-t from the exit vertex t′ to t

3. Paths s-s′ and t′-t are vertex-disjoint

4. Path s-s′ (resp. t′-t) and C share exactly one vertex: s′ (resp. t′).

Essentially, an entry-exit pair (s′, t′) with respect to a cycle C (see Fig. 3.1) represents two

alternative s-t paths and, thus, requires tracking at least one of them. We say that (s′, t′)

is tracked with respect to C if and only if C \ {s′, t′} contains a tracker. In addition, C is

tracked if and only if there is no entry-exit pair with respect to C that is untracked. If a

cycle contains either (i) 3 trackers or (ii) s or t and 1 tracker in a non-entry/non-exit vertex,

then it must be tracked. We say that these cycles are trivially tracked.

An alternative characterization of a tracking set, first given by Banik, Choudhary, Loksh-

tanov, Raman and Saurabh [47, Lemma 2], is the following.

Lemma 3.1 ([47]). For a graph G = (V,E), a subset T ⊆ V is a tracking set if and only if

every simple cycle C in G is tracked with respect to T .
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3.2 Approximation algorithm

Theorem 3.1. There exists a 4-approximation algorithm for Planar-Tracking.

The overall idea for the approximation algorithm builds on the following two insights:

1. The cardinality of the optimal solution cannot be much smaller than the number of

faces in the graph.

2. The average number of trackers per face does not need to be very large.

The first idea gives us a lower bound on OPT , the cardinality of an optimal solution. The

second gives us an upper bound on ALG , the cardinality of our approximation algorithm.

3.2.1 Lower bound on OPT

We consider the following reduction, which takes care of disconnected components, or com-

ponents that are “attached” to the graph by a cut vertex that is not in an s-t path. We say

that a reduction is safe, if it does not eliminate any untracked cycles.

Reduction 1. While there exists an edge or vertex that does not participate in any s-t

path, remove it from the graph.

Lemma 3.2. Reduction 1 is safe and can be done in polynomial time.

Proof. See proof in [47].

Lemma 3.3. After Reduction 1, every simple cycle in the graph contains at least one entry-

exit pair. This holds for non-planar graphs as well.

53



(a) Valid (b) Invalid (c) Invalid

Figure 3.2: Illustration of valid and invalid choices of vertices u and v in the proof of
Lemma 3.4. Cycle C must correspond to a face in the fixed embedding E .

Proof. Let C by some simple cycle in the graph. After Reduction 1, there must exist an s-t

path that shares an edge with C. The first and last vertices on this path that belong to C

correspond to an entry-exit pair.

Lemma 3.4. In an embedded undirected planar graph G that results from Reduction 1,

OPT ≥ (|F | − 1)/2, where F is the set of faces of G.

On a high level, the proof of Lemma 3.4 is done by keeping a set of “active” trackers while

reconstructing a planar embedding E of G: we start, as a base case, with any simple s-t path

in E and iteratively add faces to it until it matches E . Given a fixed, optimal tracking set T ∗,

the addition of each face requires either (i) adding a new tracker from T ∗ to the active set,

or (ii) deactivating an active tracker, rendering it useless for distinguishing paths on future

faces. As a consequence, each tracker charges at most two faces: the one adding the tracker

and the one deactivating it. This demonstrates that |T ∗| ≥ (|F | − 1)/2.

Let outer(Eτ ) be the set of outer-edges of our planar reconstructing embedding Eτ at time

τ . At time τ = 0, our embedding corresponds to an s-t path and, for all 0 ≤ τ ≤ |F | − 1,

we add exactly one face C from E to Eτ , by connecting two vertices u and v in outer(Eτ )

with a simple path p (see Fig. 3.2). In doing so, we erase an u-v path p′ in outer(Eτ ), so

we have that outer(Eτ+1) = outer(Eτ ) \ p′ ∪ p. In the end, E |F | = E .

By Lemma 3.3, there is at least one entry-exit pair in E with respect to face C, so any
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(a) Tracker on x (red) is inactive due to the
violation of Condition (i).

(b) Tracker on x (red) is inactive due to the
violation of Condition (ii). Notice that x is
entry for exit vertices u and v (with respect
to C), therefore C needs another tracker.

Figure 3.3: Examples of inactive trackers used in the proof of Lemma 3.4.

tracking set must contain a tracker on some vertex of C. During the reconstruction process,

we maintain a list of trackers in sets A and A′, such that (A ∪ A′) ⊆ T ∗, where A contains

active trackers and A′ contains inactive ones. A tracker in vertex v is active at time τ if and

only if it meets both of the following conditions:

Condition (i) v ∈ outer(Eτ )

Condition (ii) There is no s-v path in Eτ that traverses vertices in outer(Eτ )

Intuitively, an active tracker can be used to track future faces, although no more than one (see

below). An inactive tracker, on the other hand, either cannot be used to track future faces

(Condition (i)), or its corresponding vertex is entry/exit for some future face (Condition (ii)),

in which case we require yet another tracker on that face (see Fig. 3.3). Condition (ii) is

necessary for dealing with embeddings of G where at least one of s and t is not in the outer

face.

Proof of Lemma 3.4. First, we argue that each time we add a face during the reconstruction

process described above, we either (i) need to increase the number of active trackers (by

adding it to either A or A′), or (ii) we can get away by re-using and, therefore, deactivating

an active tracker.
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We assume for the rest of the argument that t is on the outer face, because such a planar

embedding is always possible to construct.

Let C be the face added a time τ by connecting vertices u and v in outer(Eτ ), as specified

above. In addition, let T ∗ be any optimal solution (i.e. |T ∗| = OPT ). We consider two

cases, depending on the existence of a tracker in C at time τ :

Case 1: C ∩A = ∅ at time τ .

By Lemma 3.3, there exists a vertex x ∈ C such that x ∈ T ∗. We place a tracker

on x. If x ∈ outer(Eτ+1) we add x to A, otherwise we add it to A′.

Case 2: C ∩A 6= ∅ at time τ .

Let y ∈ C ∩ A be a vertex of C with a tracker. We again consider two cases:

(i) y /∈ {u, v}. Then, y ∈ outer(Eτ ) but y /∈ outer(Eτ+1), which amounts to

moving y from A to A′.

(ii) y ∈ {u, v}. If (u, v) is an entry-exit pair with respect to C, or if the tracker

in y is not active, then there exists x′ ∈ C \{u, v} such that x′ ∈ T ∗. Similarly

to Case 1, we place a tracker on x′, which corresponds to adding x′ either to

A or A′.

Otherwise, the tracker in y is active and (u, v) is not an entry-exit pair with

respect to C. Let us assume without loss of generality that y = u. Then,

the addition of C deactivates the tracker in u by definition of active tracker

(Condition (ii) is now violated), so we move u from A to A′.

Every tracker in A′ is charged by at most two faces: one for adding an active tracker

to A and another for deactivating it and moving it to A′. Therefore, |F | − 1 ≤

|A|+ 2|A′|. Since |A|+ |A′| ≤ |T ∗|, it follows that |F | − 1 ≤ 2OPT .
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(a) Example of a planar graph where
OPT = |F |/2 (in red).

(b) Example of a planar graph where ALG =
2(|F | − 2) (in red).

Figure 3.4: Tight examples for the lower bound on OPT (left) and the upper bound on ALG
(right) in planar graphs.

A tight example for the lower bound on OPT is illustrated in Fig. 3.4a.

3.2.2 Upper bound on ALG

We say that an undirected planar graph is reduced if it cannot be further reduced by Reduc-

tion 1 or any of the following reductions.

Reduction 2. While there exist two adjacent vertices of degree 2, remove one of them (and

its edges) and add an edge connecting its neighbors.

Reduction 3. While there exists vertex v /∈ {s, t} of degree 2 in a 3-cycle, place a tracker

on v and remove it and its edges from the graph.

Reduction 4. While there exist non-adjacent vertices u, v /∈ {s, t} of degree 2 in a 4-cycle,

place a tracker on either u or v and remove it and its edges from the graph.

Notice that all reduction rules are valid for general graphs, not only planar ones. In addition,

Reductions 2, 3 and 4 can be applied interchangeably and in any order until none of them is

applicable, but we will see that they need to be carried out after Reduction 1. Fortunately,

we will not be required to re-apply Reduction 1 after performing the remaining reductions.
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(a) Illustration of Reduction 2, where
deg(u) = deg(v) = 2.

(b) Illustration of Reduction 3, where
deg(s′) ≥ 3, deg(t′) ≥ 3 and deg(v) = 2.

(c) Illustration of Reduction 4, where
deg(s′) ≥ 3, deg(t′) ≥ 3 and deg(u) =
deg(v) = 2.

Figure 3.5: Illustration of Reductions 2, 3 and 4.

We denote the degree of a vertex v by deg(v), where the underlying graph can be determined

from its context.

Claim 3.1. If vertex v is on an entry-exit pair, then deg(v) > 2.

Proof. Trivial by Definition 3.1.

Claim 3.2. Reductions 2, 3 and 4 maintain the property that every cycle in G contains at

least one entry-exit pair (see Lemma 3.3).

Proof. Reductions 2, 3 and 4 only erase faces and vertices of degree 2, which cannot be in

entry-exit pairs (by Claim 3.1), so every simple cycle of the graph still contains an entry-exit

pair.

Lemma 3.5. Reduction 2 is safe and can be done in polynomial time, if done after Reduc-

tion 1.

Proof. Banik, Choudhary, Lokshtanov, Raman and Saurabh [47, Lemma 16] showed that

having three adjacent vertices of degree 2 is redundant. Here, we extend their proof and

show that we can also get rid of the second adjacent vertex of degree 2. Let u and v be

the two adjacent vertices of degree 2, and let u′ be the other neighbor of u. Notice that

58



v, u′ are not adjacent, otherwise the u, v edge would then not belong to an s-t path and

thus be removed by Reduction 1. Hence, no parallel edges are added to the graph after

this reduction. We argue that this reduction is safe by showing that there exists a minimum

tracking set that does not include u and v simultaneously. Take any minimum tracking set T

that includes u and v. We can always move the tracker from u to u′; this remains a tracking

set, because u immediately follows or precedes u′ on any s-t path. This can only decrease

T ’s cardinality. This reduction can be done in time polynomial in n, by repeatedly checking

for the existence of adjacent vertices of degree 2.

Lemma 3.6. Reduction 3 is safe and can be done in polynomial time, if done after Reduc-

tion 1.

Proof. Let v /∈ {s, t} be the vertex of degree 2 in the triangle ∆vs′t′ (see Fig. 3.5b). Then,

it must be the case that s′ and t′ form an entry-exit pair. This follows from (i) the fact that

there exists an entry-exit pair in ∆vs′t′ (by Lemma 3.3) and (ii) the fact that v cannot be in

an entry-exit pair (by Claim 3.1). Then, by Lemma 3.1, any feasible solution must place a

tracker on v. Therefore, v and its edges can be removed, since v is neither a cut-vertex, nor

in any entry-exit pair, so that its removal does not eliminate an untracked cycle. Clearly,

this reduction can be done in O(poly(n)) time.

Lemma 3.7. Reduction 4 is safe and can be done in polynomial time, if done after Reduc-

tion 1.

Proof. Let u, v /∈ {s, t} be the two vertices of degree 2 that connect the same pair of vertices

s′ and t′. Similarly to the proof of Lemma 3.6, s′ and t′ must form an entry-exit pair. So,

by Lemma 3.1, any feasible solution must place a tracker in either u or v. By symmetry, we

can track and remove u and its edges. Therefore, Reduction 4 is safe by Claim 3.1 and the

facts that u is neither a cut-vertex nor in an entry-exit pair.

Remark 3.1. None of Reductions 2, 3 and 4 compromise planarity.
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Algorithm A

Input: Undirected planar graph G = (V,E) and vertices s ∈ V and t ∈ V .

Output: Tracking set.

1. Perform Reduction 1 in G.

2. Perform Reductions 2, 3 and 4 repeatedly until G is reduced.

3. Output remaining vertices of degree at least 3 (except s or t)

Lemma 3.8. Algorithm A outputs a tracking set for the input graph G.

Proof. By Lemmas 3.2, 3.5, 3.6 and 3.7, Reductions 1-4 are safe, so let us assume without

loss of generality that G is reduced. Then, every cycle of G of 5 or more vertices is trivially

tracked, because it must contain at least 3 vertices of degree at least 3 (by Reduction 2). Sim-

ilarly, every 3- or 4-cycle must contain at least 3 vertices of degree at least 3 by Reduction 2

and Reductions 3 and 4 (respectively).

Lemma 3.9. Algorithm A outputs a tracking set of size at most 2(|F | − 2), where F is the

set of faces of the input graph G.

Proof. Notice that each tracker added during Reductions 3 and 4 is associated with the

removal of one face from G. Therefore, it is enough to show that the lemma holds with

respect to a reduced graph G. Let us partition V into V = (V2 ∪ V≥3), where V2 and V≥3

consist of the vertices of degree 2 and degree at least 3, respectively (notice that there cannot

be vertices of degree 1). The lemma statement follows from Lemma 3.8 and the fact that

|F | ≥ |V≥3|
2

+2. This inequality can be derived by plugging the inequality 2|E| ≥ 3|V≥3|+2|V2|

in Euler’s formula for planar graphs: |V | − |E| + |F | = 2, where E is the set of edges of

G.
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A tight example is illustrated in Fig. 3.4b.

Proof of Theorem 3.1. By Lemmas 3.4 and 3.9, Algorithm A is a 4-approximation to

Planar-Tracking.

3.3 Hardness of tracking paths

We show that Planar-Tracking is NP-hard, by reducing from Planar-3-sat, a special

version of the satisfiability problem, shown to be NP-complete by Lichtenstein [226].

In 3-sat, we are given a set X = {x1, . . . , xp} of variables and a 3-CNF formula φ, where each

clause in φ is a disjunction of exactly three distinct literals with respect to X . The goal is to

find a boolean assignment to all variables in X that satisfies φ. Consider the bipartite graph

with a vertex for each clause C in φ and each variable xi ∈ X , and edges (xi, C) if and only if

C contains xi or its negation xi. Lichtenstein [226] showed that Planar-3-sat, the subset

of instances of 3-sat whose underlying bipartite graph is planar, remains NP-complete. In

particular, the definition of Planar-3-sat requires that a cycle can be drawn connecting all

of the variables while maintaining planarity. Later, Knuth and Raghunatan [214] exploited

this condition to show that we can always draw the underlying bipartite graph of a Planar-

3-sat instance in a rectilinear fashion without crossings (example in Fig. 3.6): variables are

arranged in a horizontal line and clauses are horizontal line segments with vertical legs to

represent the literals present in the clause. Vertical legs attach to the appropriate variables

and are labeled red for negated literals and blue, otherwise. In particular, a given clause is

drawn completely above or below the line of variables.

We convert a planar rectilinear drawing D of an instance of Planar-3-sat, with formula φ

and a set X of variables, into a planar drawing G corresponding to the instance of Planar-

Tracking. The reduction is straightforward:
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Figure 3.6: Example of a Planar-3-sat instance drawn in a rectilinear fashion with clauses
A = (x1 ∨ x2 ∨ x3), B = (x1 ∨ x4 ∨ x5), C = (x2 ∨ x3 ∨ x4), D = (x1 ∨ x2 ∨ x5).

Figure 3.7: Example of a Planar-Tracking instance. The orange vertices ensure that no
cycle is untracked (see Fig. 3.9).

(i) transform each variable xi in D into a gadget containing mi copies of literal vertices

xi and xi;

(ii) transform each 3-legged clause into a face containing corresponding literals vertices

and an entry-exit pair;

(iii) choose the boolean assignment according to the placement of trackers, such that

a clause is satisfied if and only if its corresponding face is tracked.

The union of all the variable and clause gadgets constitutes G (see example in Fig. 3.7).

Details of each gadget are given below. For simplicity, we avoid introducing too many

subscripts and we rely on pictures to describe the gadgets.
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Figure 3.8: Illustration of xi’s gadget, containing mi vertices for xi (in blue) and mi vertices
for xi (in red). Vertices colored black require trackers in any minimum tracking set. The
dashed edges are added to force trackers in si and ti.

3.3.1 Variable gadget

Each variable gadget converts a variable xi in D into a connected subgraph corresponding

to Fig. 3.8, with length parameterized by mi. We refer to the set {hk, µk, lk} as column k

and we refer to the vertices {h1, . . . , hmi
} ∪ {l1, . . . , lmi

} as literal vertices.

Each variable gadget is linked with the next one by setting ti = si+1, to form a horizontal

chain of gadgets, where s = s1 and t = tp. For convenience, we force trackers in all the si

(except s), by drawing edges between the α′ (β′) of a variable gadget and the α (β) of the

next variable gadget in the chain. We refer to the resulting drawing as the spine.

There are exactly two minimum tracking sets associated with the variable gadget with source

si and destination ti. One of them corresponds to a true assignment of xi and the other one to

a false assignment. Both of them require tracking the vertices in R = {α, α′, β, β′, µ1, µmi
},

as well as the remaining µk. In addition, the true assignment tracks the even-indexed hk and

odd-indexed lk, while the false assignment tracks the odd-indexed hk and even-indexed lk.

This requires 2mi + 4 trackers in total. We will show that these true and false assignments

are the only minimum tracking sets. To do that, we first prove a couple of helpful lemmas

and make a few observations:

• Each vertex in R belongs to a triangle, such that the other two vertices form an entry-
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exit pair, so must be tracked.

• Each square face, besides the two including h2 and lmi−1, requires 3 tracked vertices.

• Two adjacent vertices cannot both be untracked.

Lemma 3.10. The true/false assignments of xi correspond to tracking sets with respect to

xi’s gadget with source si and destination ti.

Proof. In a true/false assignment of xi, every face of the gadget is trivially tracked, except

the faces including si/ti (which are clearly tracked) and the faces including h2 and lmi−1.

Though the latter faces may only contain 2 trackers (depending on xi’s truth value and/or

mi’s parity), they are nevertheless tracked because one of these trackers cannot be in an

entry-exit pair. The remaining cycles, i.e. the ones which are not faces, are also trivially

tracked: since these cycles must have size at least 6, they must contain 3 trackers given the

observation that no adjacent vertices are untracked.

Lemma 3.11. In a minimum tracking set, each column has exactly 2 trackers.

Proof. Since the true/false assignments achieve this property, we only have to show that

each column requires at least two trackers. Assume that a minimum tracking set has only

one tracker in column 1 < k < mi; it must be on µk. Then all vertices on columns k−1, k+1

must be tracked. For the average number of trackers per column to be at most 2, the number

of trackers per column must be an alternating sequence of . . . 3, 1, 3, 1, . . . , with column 1

and/or column mi only having 1 tracker, which contradicts the square face property.

We are now in conditions of proving our claim regarding the variable gadget.

Lemma 3.12. The true and false assignments are the only minimum tracking sets.
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Proof. Assume that some µk is not tracked in a minimum tracking set, for 1 < k < mi. By

Lemma 3.11, we only have to show that this causes a column to have 3 trackers. If k = mi−1

then column mi must have three trackers. Otherwise, µk+1, hk+1, hk+2 must be tracked, since

they share a square face with µk. If lk+1 is tracked we are done, otherwise, lk+2 must be

tracked. Additionally, µk+2 must be tracked, either by the square face property, or in the

case where k = mi − 2, because it is in R. Then, column k + 2 has 3 trackers.

Now, if all the µk are tracked, then the only minimum tracking sets are the true and false

assignments, by the observation that two adjacent vertices cannot both be untracked and

Lemma 3.10.

3.3.2 Clause gadget

Let C = (`a ∨ `b ∨ `c) be a clause in φ with literals corresponding to variables xa, xb, xc ∈ X .

Its gadget, depicted in Fig. 3.9, is a face FC consisting of:

• literal vertex α from xa’s gadget, corresponding to literal `a;

• adjacent literal vertices β1, β1, β2, β2, β3 from xb’s gadget, corresponding to literals al-

ternating between `b and `b;

• literal vertex γ from xc’s gadget, corresponding to literal `c;

• edges (α, γ), (α, β1), (β3, γ) and the edges from xb’s gadget connecting all of the βk and

βk.

We can increase the lengths of the variable gadgets to any polynomial that provides enough

literal vertices for all clauses. Since D is planar, there are no crossings between clauses. We

also impose the following restrictions:
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Figure 3.9: Illustration of the gadget for clause C = (`a ∨ `b ∨ `c), where the vertices in each
variable gadget are all adjacent. The entry-exit (β1, β2) are responsible for satisfying C.

1. α cannot be one of {h1, lma}; this ensures that the only faces in xa’s gadget that do

not require 3 trackers do not become untracked. We apply the equivalent restriction

to β1, β3 and γ.

2. The α′k/α
′
k, (see Fig. 3.9) cannot belong to any other clause gadget; these correspond

to the 4 literal vertices following α in xa’s gadget and reserving them ensures that non-

clause faces, between nested clauses, are tracked. We apply the equivalent restriction

to the γ′k/γ
′
k.

3. All literal vertices in a clause need to be on the same side of the spine; this restriction

is trivial because D is rectilinear, but it simplifies the analysis.

Lemma 3.13. Clause C is satisfied if and only if its corresponding gadget face FC is tracked.

Proof. The entry-exit (β1, β2) is the only one, with respect to FC , that is tracked if and only

if C is satisfied. The remaining entry-exit pairs are tracked by either a βk or a βk.

Theorem 3.2. There exists a polynomial time reduction from Planar-3-sat to Planar-

Tracking.

Proof. Let (G,G) be an instance of Planar-Tracking that results from applying the

transformation described above to an instance (φ,D) of Planar-3-sat, where G and D

are the underlying planar embeddings. We show that φ is satisfiable if and only if G has a

tracking set of size T = (
∑p

i=1 2mi + 4) + p− 1.
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(⇐) Choose the truth assignment of each variable according to the given tracking set. The

implication follows from Lemma 3.12 and the fact that if some clause in φ was not satisfied,

then its gadget face would have been untracked, a contradiction.

(⇒) Place T trackers on the literal vertices that correspond to the satisfiable truth assign-

ment of every variable and on all non-literal vertices (except s and t). We show that this

corresponds to a tracking set by arguing that every cycle C in G is tracked. We distinguish

between two cases:

Case 1: C contains no clause edges.

Then C is tracked by (almost) the same argument given in Lemma 3.10 that shows

that a truth assignment of xi corresponds to a tracking set with respect to xi’s

gadget. Notice that, because of Restriction 1, clause edges are only added to faces

that require 3 trackers, so this does not change the argument for the faces which

do not require 3 trackers. The only differences are: (i) the addition of the edges

that force trackers in every si, which only helps the argument, and (ii) the fact

that C may span multiple variable gadgets, in which case C must traverse at least

3 trackers on the non-literal vertices between two variable gadgets.

Case 2: C contains clause edges.

Notice that, by construction of G, C must have at least one spine edge. If C

corresponds to a clause face, then it must be tracked by Lemma 3.13. Otherwise,

we show that C contains at least 3 trackers and, thus, is trivially tracked. Let us

think of C as alternating non-empty paths of two types: clause paths, which only

contain clause edges and spine paths, which only contain spine edges. To avoid

dealing with complex cycles, we observe that each spine path in C must contain

at least 1 tracker; this follows from the fact at least one of the 2 vertices sharing a

spine edge must have a tracker (see variable gadget). Thus, let us assume that C
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contains no more than 2 spine/clause paths, or otherwise C immediately contains

3 trackers. Notice that if one of the spine paths spans 2 or more variable gadgets,

then it must traverse at least 3 trackers on the non-literal vertices between two

variable gadgets. Since every clause in φ contains exactly 3 distinct literals and

C is simple, the only cases where none of the spine paths span multiple variable

gadgets are the following:

(i) C contains exactly 2 clause paths in different sides of the spine.

Then, the 2 spine paths connecting the two sides of the spine must traverse 2

trackers each (see variable gadget). Therefore, C contains at least 4 trackers.

(ii) C contains exactly 2 clause paths on the same side of the spine, which both

start or both end at the same variable gadget, one nested in the other.

Then, by Restriction 2 one of the spine paths contains at least 6 vertices,

half of which must be tracked.

Corollary 3.1. Planar-Tracking is NP-hard.

It remains to show that Planar-Tracking is in NP; Banik, Choudhary, Lokshtanov,

Raman and Saurabh [47] prove this in the more general case of Tracking.

3.4 Bounded clique-width graphs

We show that Tracking can be solved in linear time when the input graph has bounded

clique-width, by applying Courcelle’s theorem [113, 116, 118], a powerful meta-theorem that

establishes fixed-parameter tractability of any graph property that is expressible in monadic

second order logic.
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Clique-width, first introduced by Courcelle, Engelfriet and Rozenberg [117] and revisited by

Courcelle and Olariu [120], is an important graph parameter that, intuitively, measures the

closeness of a graph to a cograph – a graph with no induced 4-vertex paths. It is closely

related to tree-width, another influential graph parameter that measures closeness of a graph

to a tree and that was first introduced by Bertelé and Brioschi [59] and later rediscovered by

Halin [183] and Robertson and Seymour [264]. While both parameters are determined based

on specific hierarchical decompositions of a graph, the clique-width is strictly more powerful

in the sense that the class of graphs of bounded clique-width includes all graphs of bounded

tree-width, but not vice-versa. Details on the relationship between these parameters can

be found in Courcelle and Engelfriet [116]. Graphs of bounded clique-width include series-

parallel graphs, outerplanar graphs, pseudoforests, cographs, distance-hereditary graphs, etc.

MSO1 vs MSO2. Second order logic extends first order logic, by allowing quantification

over relations (of any fixed arity) on the elements of the domain of discourse. Monadic second

order logic itself only allows quantification over unary relations (subsets of the domain of

discourse) and, in the logic of graphs, it comes in two flavors: MSO1 and MSO2. The only

distinction between these is that the latter allows edges to be elements of the domain of

discourse (and thus be quantified over), while the former does not. Besides the quantifiers

(∀ and ∃) and the standard logic operations ¬,∧,∨,→, both logics include predicates for

equality (=) and relation membership (∈). In addition, MSO1 includes a predicate (∼) that

determines vertex adjacency and MSO2 includes a predicate for vertex-edge incidence. MSO2

is more expressive, for example: Hamiltonicity can be expressed using MSO2, but not using

MSO1. Details on the distinction between the two logics can be found in [116].

Courcelle’s theorem. Courcelle, Makowsky and Rotics [113, 118] showed that any graph

property expressed in MSO1 or MSO2 is FPT under clique-width and tree-width (respec-

tively). More specifically, they showed that any MSO1-, MSO2-expressible property can be
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tested in f(k, l) · n and g(k′, l′) · (n + m) time (respectively) for graphs of clique-width k

and tree-width k′, where: f and g are computable functions, l and l′ are the lengths of the

logic formulas, n is the number of vertices and m is the number of edges. The result for

MSO2 is valid in optimization problems with linear evaluation functions [119], and so is the

result for MSO1 [118]. Examples of constructing FPT graph algorithms parameterized by

clique-width or tree-width, which are based on automata, are given in [114, 115]. While it

is possible to construct tree decompositions of width k′ in linear time [67], there is no FPT

algorithm for finding clique decompositions of clique-width k > 3. Fortunately, it is possible

to construct a clique decomposition of width exponential in k in cubic time [254]. In this

section, we will take advantage of the latter.

We give an alternative definition for tracking set that is easier to express using the logic of

graphs.

Lemma 3.14 (Tracking set). For an undirected graph G = (V,E), a subset T ⊆ V is a

tracking set if and only if there is no s-t path Pst = Pss′ ∪ Ps′t′ ∪ Pt′t for s′, t′ ∈ V and

corresponding s-s′, s′-t′ and t′-t paths, such that:

1. There exists an alternative s′-t′ path P ′s′t′ 6= Ps′t′ and

2. T ∩ (Ps′t′ ∪ P ′s′t′) ⊆ {s′, t′}.

Proof. This follows directly from Lemma 3.1.

Next, we present the logic formulas required. We use lowercase letters to quantify over

vertices and uppercase letters to quantify over sets of vertices. Further, we use s and t as free

variables and, for convenience, we also use set intersection (∩), union (∪) and containment

(⊆), without explicitly expressing these operations using MSO1.
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Figure 3.10: Illustration of variable sets P , Q, Q′ and R as well as vertex variables s, s′, t′

and t used in expressing IsTrackingSet using MSO1.

IsTrackingSet(T, s, t)

⇐⇒ @P,Q,R [ ∃s′, t′ [ HasPath(P, s, s′) ∧ HasPath(Q, s′, t′) ∧ HasPath(R, t′, t)

∧ P ∩Q = {s′} ∧ Q ∩R = {t′} ∧ P ∩R = ∅

∧ ∃Q′ 6= Q [HasPath(Q′, s′, t′) ∧ T ∩ (Q ∪Q′) ⊆ {s′, t′} ]]]

The first two lines of the above equivalence establish that P , Q and R form an s-t path.

The last line restricts s′ and t′ to be an entry-exit pair with respect to the cycle Q∪Q′ (see

Fig. 3.10) and, in addition, establishes that the cycle Q ∪Q′ is not tracked.

The primitive HasPath(X, a, b), whose input consists of a set X ⊆ V and vertices a, b ∈ V ,

verifies the existence of a simple path between a and b that only uses vertices in X. We

define it as follows:

HasPath(X, a, b)

⇐⇒ @X1, X2 ⊆ X [ X1 ∪X2 = X ∧ a ∈ X1 ∧ b ∈ X2

∧ ¬ (∃u ∈ X1 ∧ ∃v ∈ X2 [u ∼ v ])]

Remark 3.2. HasPath(X, a, b) is correctly expressed under MSO1 and it correctly verifies

that there exists an a-b path using only vertices in X.

Remark 3.3. IsTrackingSet is correctly expressed under MSO1 and it correctly verifies

that the given subset of vertices is a tracking set.

Theorem 3.3. Tracking(G, s, t) can be solved in polynomial time if G has bounded clique-

width. Moreover, if a clique decomposition of bounded width is given, it can be solved in
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linear time.

Proof. This follows directly from Lemma 3.14, Remarks 3.2 and 3.3, and the linear time

algorithm given by Courcelle [118] for any optimization problem on graphs of bounded clique-

width, whose decomposition is given in advance.

3.5 Conclusion and Open Questions

We showed that Planar-Tracking is NP-complete and we give a 4-approximation algo-

rithm. We also show that, for graphs of bounded-clique width, Tracking can be solved in

linear time by applying Courcelle’s theorem, as long as its clique decomposition is given in

advance. A natural direction of future study would be to improve the approximation ratio

of Planar-Tracking, establish constant approximation factors for graphs of larger genus

or, more generally, for Tracking. We address these two latter issues in Chapter 4.

Another open question is to establish the difficulty of Tracking on directed graphs: on

one side planar directed acyclic graphs are not known to be NP-hard and, on the other side,

it is not known whether its general or planar versions are in NP (Fig. 4.9 in Chapter 4).

Finally, it would be interesting to find efficient algorithms for graphs of bounded tree-width or

clique-width without resorting to the finite automaton approach used in Courcelle’s theorem.
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Chapter 4

Learning Paths in Minor-Free Graphs

4.1 Introduction

We consider the problem of learning paths in a graph, introduced in Chapter 3 in the context

of planar graphs. For more information on background and on what motivated us to study

this problem, we refer the reader to Chapter 3. In this chapter, we provide provably good

solutions to the same problem on larger classes of graphs, including H-minor-free and general

graphs. The former is an important generalization of planar graphs (see Fig. 4.1) that could

prove useful when studying this problem in the context of road networks, which may admit

non-constant genus [152]. Like planar graphs, the family of H-minor-free graphs is minor-

closed and, thus, is characterized by a finite set of forbidden minors, those graphs which

cannot be minor of the graph in the family. But, as pointed out in [152], we do not have

evidence of any particular forbidden minors for road networks. Still, studying Tracking

for the class of H-minor-free graphs can provide valuable insight into better approximation

ratios for more general graphs.

We design a (1 + ε)-approximation algorithm and an FPT algorithm with a linear kernel for

73



Figure 4.1: Non-exhaustive illustration of the hierarchy of known classes of sparse graphs,
ranging from planar graphs, at the center, to H-minor-free graphs, circling all other classes.
Planar graphs are those with genus 0. Bounded-genus graphs have positive, but O(1) genus.
Almost-embeddable graphs are, essentially, bounded-genus graphs with a constant number
of vortices and apex vertices. H-minor-free graphs are clique-sums of almost-embeddable
graphs, as characterized by Robertson and Seymour [265].

H-minor-free graphs. For general graphs, we give the first approximation algorithm for the

vertex-weighted version of the problem, with a ratio of O(lg n). We also show that the dual

set system for the unweighted version of the problem has bounded VC-dimension, which

immediately gives us a O(lg OPT )-approximation in this setting, where OPT is the size of

an optimal tracking set.

Let us denote by WeightedTracking the vertex-weighted version, whose goal is to find a

tracking set of least total weight. Further, we denote by k-Tracking the decision version

of Tracking, which asks whether there exists a tracking set of size at most k (for any given

integer k). For conciseness, we refer to the “tracking set of G”, when s and t are clear from

context.

Directly Related Work. Motivated from the additional applications of tracking animals

in migration networks, tracking intruders in buildings, and tracking malicious packets in

computer networks, the tracking paths problem was first introduced by Banik, Choudhary,
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Lokshtanov, Raman and Saurabh [46, 47], who showed that the decision version of this

problem is NP-complete, by a reduction from Vertex Cover and showing containment in NP

by observing that every tracking set must be a feedback vertex set in a subgraph which

excludes redundant components. Recall that a feedback vertex set (FVS) is a set of vertices

whose removal results in an acyclic graph. In addition, they give the first fixed-parameter

tractable (FPT) algorithm, obtaining a kernel with O(k7) edges, when parameterized by

the solution size k. This has since been improved to O(k2) edges for general graphs and

O(k) edges for planar graphs [102]. Other parameterizations also yield FPT algorithms for

Tracking, including the size of vertex cover and the size of cluster vertex deletion set [103].

Eppstein, Goodrich, Liu and Matias [151] show that the tracking paths problem remains

NP-hard even when the input graph is planar and they give a 4-approximation in this case.

Until now, the only other known approximation algorithm was a 2(∆ + 1)-approximation

for degree-∆ graphs [101], which is achieved by taking a 2-approximate FVS and all its

neighbors. Optimal polynomial time algorithms have been derived when the graph has

bounded clique-width [151] (linear time if the corresponding clique-decomposition is given

in advance), as well as for chordal and tournament graphs [101].

Tracking Shortest Paths. The tracking paths problem is related to an earlier tracking

set for shortest paths (TSSP) problem, which was first studied by Banik, Katz, Packer and

Simakov [48]. In the TSSP problem, only shortest s-t paths need to be tracked, thus allowing

one to model the input as a directed acyclic graph. They show that this variant is APX-

hard (and thus, NP-hard), and they present a 2-approximation for the planar version of the

TSSP problem, which is a variant for which we still have no hardness results. Bilò, Gualà,

Leucci and Proietti [62] generalized the TSSP problem, allowing for the existence of multiple

start-finish pairs and requiring tracking sets to distinguish between any two shortest paths

between any two start-finish pairs. In this setting, they give a O(
√
n log n)-approximation

algorithm. They further study a version of this problem in which the set of trackers (ignoring
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the order in which they are traversed) is itself enough to distinguish between any two start-

finish shortest paths1, and they present a O(
√
n)-approximation algorithm in this case.

Moreover, they prove that both of these settings are NP-hard even for cubic planar graphs,

by a reduction from Vertex Cover. Finally, They also give an FPT algorithm (parameterized

by the maximum number of vertices at the same distance from the start s) for the case of

a single start-finish pair, which is the original TSSP problem introduced by Banik, Katz,

Packer and Simakov [48].

Other Related Results. Other related work includes work by Banik and Choudhary [45],

who consider a version of Tracking on hypergraphs. which asks for the smallest subset

of vertices whose intersection with each hyperedge is unique. They prove fixed-parameter

tractability of this problem, by showing a correspondence with the Test Cover problem.

When tracking shortest paths, Banik, Katz, Packer and Simakov [48] also provide a data

structure of size O(n|T |) for an n-vertex graph and a tracking set T which, given the subset

of visited trackers (order does not matter), reconstructs the traversed shortest s-t path P in

O(|P |) time. They also give an optimal polynomial time algorithm for the related problem

Catching the Intruder, which asks for the smallest subset of vertices T such that every

shortest s-t path that visits a vertex of T if and only if it visits a vertex of a given set of

forbidden vertices.

When tracking all paths, Choudhary [101] also present a reconstruction algorithm, which,

given the set of trackers and the sequence of traversed trackers, reconstructs the correspond-

ing s-t path in polynomial time for a fixed number of trackers. Moreover, they consider

a version Tracking where one places trackers on weighted edges, instead of (unweighted)

vertices. They show that this problem can be solved optimally in polynomial time, by prov-

ing that it is equivalent to finding a minimum weighted feedback edge set (i.e. a set of edges

1Notice that, when there is a single start-finish pair, the order of traversed trackers is no longer advanta-
geous, rendering these two versions of the problem equivalent.
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whose removal leaves an acyclic graph), which in turn is equivalent to finding a minimum

spanning tree.

Also related is the NP-hard problem of finding a minimum Loop Cutset (see e.g. [283]),

which asks for a subset of vertices in a directed graph of minimum weight which covers every

cycle (ignoring edges direction), where a cycle C is covered if we select at least one vertex

in C with positive outdegree in C. Becker and Geiger [51] showed that this problem admits

a 2-approximation, by reducing it to the minimum weight FVS problem (unfortunately, this

reduction does not translate to Tracking). Later, Becker, Bar-Yehuda and Geiger [50]

gave a randomized algorithm that outputs the optimal loop cutset with probability at least

1− (1− 1
6k

)c6
k

after O(c · 6kn) steps, where c > 1 is a constant chosen by the user, n is the

number of vertices and k is the size of an optimal loop cutset. Finding small loop cutsets

is a crucial step in Pearl’s method of conditioning [256, 257], an algorithm for probabilistic

inference in Bayesian networks (i.e. it computes posterior distribution of variables given new

evidence, according to Bayes’ Rule).

Our Contributions. Our results are summarized below:

1. Linear kernel for H-minor-free graphs. Previously, we only knew of a linear

kernel for planar graphs [102]. This result also immediately implies an efficient O(1)-

approximation.

2. (1+ε)-approximation for H-minor-free graphs. Previous best was a 4-approximation

for planar graphs [151].

3. O(lg OPT )-approximation for Tracking, where OPT denotes the cardinality of

an optimal tracking set. This is the first algorithm for general graphs with a non-

trivial approximation ratio. Previously, we only knew of a O(
√
n lg n)-approximation

for tracking shortest paths only and its algorithm requires solving a complex dynamic
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program [62].

4. O(lg n)-approximation for WeightedTracking. This is the first approximation

for weighted graphs, among all variants of Tracking above mentioned.

5. Improvements to the quadratic kernel for general graphs of [102]. We simplify

the kernelization algorithm and reduce the constants in the kernel size, while also

completing the case analysis in a proof of a lemma central to the kernelization of [102].

4.2 Preliminaries

Notation and Definitions. A graph is simple if it does not contain any self-loops or

parallel edges. We denote by V (G) and E(G) the set vertices and edges, respectively, of a

graph G. Let us use G−U (resp. G− u) to denote the subgraph of G induced by V (G) \U

(resp. V (G) \ {u}). The degree of a graph G is the largest degree deg(v) among all vertices

v in G. The neighborhood NG(u) of a vertex u w.r.t. G is the set vertices of G adjacent to

u (when it is clear from the context, the subscript in NG(u) is omitted). The neighborhood

NG(U) of a vertex set U is simply the union of the neighborhoods for all vertices u in U .

We denote a bipartite graph by (U ∪ V,E), with vertex set partitioned into U and V , and

edge set E ⊆ U × V . The block-cut tree of a graph is the tree of biconnected components,

and a cut-vertex is a vertex shared by at least two biconnected components, such that its

removal disconnects the graph (see [189] for more information). Finally, a graph that can

be obtained from a graph G by a sequence of edge contractions, edge deletions or vertex

deletions is a minor of G.

Approximation Algorithms. An algorithm is an α-approximation (algorithm) if it re-

turns a solution X whose cardinality is within α of an optimal solution X∗, i.e. |X| ≤ α|X∗|
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for minimization problems and |X| ≥ α|X∗| for maximization problems. We call X an

α-approximate solution.

Fixed-parameter Tractability. A decision problem parameterized by k admits a kernel

if there exists a kernelization algorithm that outputs, in time polynomial in both k and the

size of the instance, a decision-equivalent instance (the kernel) whose size is bounded by

f(k), for some computable function f . If the kernel size is linear (resp. quadratic) in k,

we say that the problem admits a linear (resp. quadratic) kernel. It is well known that a

problem admits a kernel if and only if it is fixed-parameter tractable [123], i.e. it can be

solved in g(k) · nO(1) time, for some parameter k, computable function g and problem size

n. A kernelization algorithm typically consists of the application of a fixed set of reduction

rules, some of which are rejection rules – these return trivial NO-instances, of O(1) size,

indicating a negative answer to the decision problem. For more information on kernelization

algorithms and parameterized complexity, we refer the reader to [123, 141, 253].

4.3 Structural Properties

Definition 4.1 (Entry-exit subgraph). Let (G, s, t) be an instance of Tracking. An entry-

exit subgraph is a triple (G′, s′, t′), where G′ is a subgraph of G, and (s′, t′) is the entry-exit

pair corresponding to vertices in C that satisfy the following conditions:

1. There exists a path s-s′ from s to the entry vertex s′

2. There exists a path t′-t from the exit vertex t′ to t

3. Paths s-s′ and t′-t are vertex-disjoint

4. Path s-s′ (resp. t′-t) and G′ share exactly one vertex: s′ (resp. t′).
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Notice that the same subgraph G′ of G may contain multiple entry-exit pairs, hence the

triple notation (G′, s′, t′).

Definition 4.2 (Entry-exit cycle). An entry-exit cycle is an entry-exit subgraph (C, s′, t′),

where C is a cycle (see Fig. 4.2).

Intuitively, an entry-exit cycle (C, s′, t′) (see Fig. 4.2) represents a choice between two s-t

paths and, thus, requires tracking at least one of them.

We say that a vertex v tracks (C, s′, t′) if v ∈ C \ {s′, t′}. Moreover, we say that (C, s′, t′) is

tracked if there exists a tracker in a vertex that tracks it. A cycle C is tracked if all entry-exit

cycles with entry-exit pairs in C are tracked. If C contains either (i) 3 trackers or (ii) s or

t and 1 tracker in a non-entry/non-exit vertex, then it must be tracked. We say that these

cycles are trivially tracked.

We rely on the following alternative characterization of a tracking set, due to Banik, Choud-

hary, Lokshtanov, Raman and Saurabh [47, Lemma 2], which establishes Tracking as a

covering problem.

Lemma 4.1 ([47]). For a graph G = (V,E), a subset T ⊆ V is a tracking set if and only if

every simple cycle C in G is tracked with respect to T .

Reduction Rules. Let us recall some reduction rules previously used to obtain polynomial

kernels [47, 102] and approximation algorithms [48, 101, 103, 151].

Rule 1. [47] If there exists an edge or vertex that does not participate in any s-t path,

remove it from the graph.

Figure 4.2: Entry-exit pair illustration, with entry vertex s′ and exit vertex t′.
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G1 Gi Gκ
s = s1

tκ = t

s2 si si+1 sκ

t1 ti−1 ti tκ−1

Figure 4.3: The block-cut tree of a graph G reduced by Rule 1 (see Remark 4.4). An
optimal tracking set for (G, s, t) is the disjoint union of all optimal tracking sets for all
instances (Gi, si, ti).

Rule 2. [102] If the degree of s (or t) is 1 and N(s) 6= {t} (N(t) 6= {s}), then remove s (t),

and label the vertex adjacent to it as s (t).

Rule 3. [151] If there exist adjacent vertices a, b /∈ {s, t} such that deg(a) = deg(b) = 2,

then contract the edge ab.

Definition 4.3. We say that an undirected graph G is reduced by Rule X if it cannot be

further by reduced Rule X. Further, we say that G is reduced if it is reduced by Rules 1, 2

and 3.

After exhaustive application of Rules 1 and 2, the graph is either a single edge, (s, t), or

all its vertices have degree at least 2. Henceforth, we assume the latter, since the problem

becomes trivial in the former case. Rule 3, which precludes the existence of adjacent vertices

of degree 2, is used to bound the overall number of degree-2 vertices.

Let us highlight a few additional useful consequences of Rule 1.

Remark 4.1 ([47]). Let G be a graph reduced by Rule 1. Then, every subgraph of G con-

taining at least one edge has at least one entry-exit pair.

Remark 4.2 ([47]). Let G be a graph reduced by Rule 1. Then, any tracking set of G is also

an FVS of G.

Remark 4.3. Let G be a graph reduced by Rule 1. Then the block-cut tree of G is an s-t

path (see Fig. 4.3).

In other words, the latter remark says that the graph G that results from exhaustively

applying Rule 1 consists of a sequence of κ ≥ 1 biconnected components attached together
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by cut-vertices in a way that is analogous to series composition in series-parallel graphs.

Thus, we can turn an instance (G, s, t) of Tracking into one or more subproblems on

biconnected graphs, (Gi, si, ti), one for each biconnected component, for all i ∈ {1, . . . , κ}.

The cut vertices of G define the start-finish pairs of each subproblem, where ti = si+1 (for

all i ∈ {1, . . . , κ− 1}) and s1 = s, tκ = t. as depicted in Fig. 4.3.

Intuitively, a cut-vertex is included in all s-t paths, so placing a tracker on it would be

helpless, giving us the following:

Remark 4.4. Let G be a graph reduced by Rule 1. Then, an optimal tracking set for (G, s, t)

is the disjoint union of optimal tracking sets for all (Gi, si, ti).

Proof. By Remark 4.3, an optimal tracking set must contain the union of optimal tracking

sets for all (Gi, si, ti). Thus, the remark follows if we show that no optimal tracking set

includes a cut-vertex. By Remark 4.3, any cut-vertex v of G disconnects the start s from

the finish t, when removed. It follows that v cannot track any entry-exit cycle, since it will

always be entry/exit for any entry-exit cycle containing it.

Lower Bounds. We expand on a result by Choudhary and Raman [102], which provides

a lower bound on the size of a tracking set, based on the presence of a tree-sink structure in

the graph.

Definition 4.4 ([102]). A tree-sink in a graph G is a pair (Tr, x), where Tr is a subtree of

G with at least two vertices and x, the sink, a vertex not in Tr that is adjacent to all the

leaves2 of Tr in G. We use G(Tr, x) to denote the subgraph induced by (Tr, x). (Notice that

this definition does not preclude the adjacency between non-leaf vertices and x, as illustrated

in Fig. 4.4.)

2We consider a leaf in an unrooted tree to be any vertex of degree 1.
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x

Tr

Figure 4.4: Illustration of a tree-sink (Tr, x).

Lemma 4.2 ([102]). Let (Tr, x) be a tree-sink in a reduced graph G, such that |NTr(x)| = δ.

Further let (s′, t′) be an entry-exit pair of G(Tr, x). Then, if x ∈ {s′, t′}, any tracking set of

G contains at least δ − 1 vertices in V (Tr).

The above lemma is a generalization of the lower bound given by the maximum number

of vertex-disjoint paths between any two vertices [47]. We generalize it further to obtain a

more useful lower bound, established as the maximum degree among non-cut vertices.

Lemma 4.3. Let G′ be a subgraph of a reduced graph G and x a vertex in G′, such that

G′ − x is connected and NG′(x) = δ. Then, any tracking set of G contains at least δ − 2

vertices in G′ − x.

Proof. Let Tr be a tree in G′−x whose leaves are all adjacent to x (i.e. contained in NG′(x)).

Such tree can be constructed by trimming a spanning tree of G′− x: iteratively remove any

leaf that is not adjacent to x in G′. Clearly, (Tr, x) is a tree-sink in G′, and by Remark 4.1,

G(Tr, x) has at least one entry-exit pair. If x is in any such entry-exit pair, the lemma

follows directly from Lemma 4.2, so let us assume otherwise hereafter.

Consider the entry-exit pair (s′, t′) of G(Tr, x) and let us root Tr at s′. As in [102, Lemma 8],

consider the subtrees Tr1, T r2 of Tr determined by the edge separator connecting t′ to its

parent vertex in Tr. In particular, let Tr1 = Tr − Tr(t′) and Tr2 = Tr(t′), where Tr(v)

denotes the subtree of Tr rooted at v ∈ V (Tr). To ensure that every leaf in Tr1 is adjacent

to x, we again repeatedly remove any leaf of Tr1 that is not adjacent to x (these would
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correspond to ancestors of t′ in Tr). Consider the two complementing cases, illustrated in

Fig. 4.5: (1) both Tr1 and Tr2 have at least one leaf adjacent to x and (2) one of Tr1, T r2

has no leaf adjacent to x. The latter case was neglected in [102, Lemma 8].

Case 1. Since there is an edge from x to Tr2, there exists an x− t′ path which does not

intersect Tr1. Thus, (Tr1, x) constitutes a tree-sink with entry-exit pair (s′, x). Similarly,

since there is an edge from x to Tr2, (Tr2, x) constitutes a tree-sink with entry-exit pair

(x, t′). The lemma follows from applying Lemma 4.2 to either: (a) each of the tree-sinks

(Tr1, x) and (Tr2, x), when both Tr1 and Tr2 contain at least two vertices; or (b) to the

tree-sink that contains exactly δ − 1 leaves adjacent to x (the other tree-sink must be a

single vertex when (a) does not hold).

Case 2. Since Tr is rooted at s′ and every leaf of Tr is adjacent to x, it must be the case

that Tr1 has no leaf adjacent to x. Thus, (Tr2, x) is a tree-sink containing all of NG′(x),

so let us apply inductively the same reasoning we did earlier (with roles of s′, t′ reversed),

whereby we consider a subdivision of Tr2 into 2 subtrees as established by the existence

of an entry-exit pair (s′′, t′′) of G(Tr2, x) – for simplicity, we assume that t′′ = t′, since t′ is

exit for a tree containing Tr2. The lemma follows directly by the inductive hypothesis that

any tracking set of G contains at least δ − 2 vertices in Tr2. The base case is a tree-sink

corresponding to a star that contains all of NG′(x), and whose leaves are all adjacent to

x. In this case, an entry-exit pair must belong to the star’s root and one of its leaves (x

cannot be in an entry-exit pair, given our initial assumption that x did not belong to any

entry-exit pair of Tr, a supertree of this one). It follows that Case 1 applies to the base

case setting.

Corollary 4.1. Let δ be the degree of a non-cut vertex in a reduced graph G. Then, any

tracking set of G has size at least δ − 2.
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Figure 4.5: Illustration of proof of Lemma 4.3, with Case 1 on the left (both Tr1 and Tr2

have leaves adjacent to x) and Case 2 on the right (just Tr2 has leaves adjacent to x).

Lemma 4.3 above generalizes [102, Lemma 8], and its proof completes the case analysis given

in [102, Lemma 8]. We use it in Sections 4.4 and 4.5.

4.4 H-Minor-Free Graphs

A graph is H-minor-free if it does not contain a fixed graph H as a minor. In this section,

we present a linear kernel for H-minor-free graphs and use this kernel, as well as some ideas

intrinsic to its construction, to design an efficient polynomial-time approximation scheme

(EPTAS). An EPTAS is a (1 ± ε)-approximate algorithm whose running time is O(nc) for

an input of size n and a constant c independent of ε. This is substantially better than

a polynomial-time approximation scheme (PTAS), whose running time can be as bad as

O(nf(1/ε)), for any computable function f independent of n.

Unlike the minimum FVS problem, which also consists of covering cycles, Tracking is not

minor-closed [102] (i.e., an optimal solution for a minor of Gmay require more trackers than

an optimal solution for G), so the powerful framework of bidimensionality [130, 131, 162]

cannot be used to obtain either linear kernels [163, 230] or PTASs for H-minor-free graphs

[132]. Moreover, Tracking does not possess the “local” properties required by Baker’s

technique to develop EPTASs for planar graphs [40], or apex-minor-free graphs [148, 149].
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Intuitively, these local properties can be verified by locally checking constant-sized neighbor-

hoods; nonlocal problems include minimum FVS and minimum connected dominating set,

in contrast to problems such as minimum vertex cover, maximum independent set, or min-

imum dominating set which possess these local properties. Demaine and Hajiaghayi [132]

developed extensions to Baker’s approach to obtain PTASs to other nonlocal problems (such

as connected dominating set), but these are not applicable to minimum FVS problem, as

pointed by the authors.

4.4.1 Linear Kernel

We first present a linear kernel for H-minor-free graphs. The following theorem about the

sparsity of H-minor-free graphs will be helpful throughout the section.

Theorem 4.1 (Mader [239]). Any simple H-minor-free graph with n vertices has at most

σHn edges, where σH depends solely on |V (H)|.

Since its introduction in [239], the value of the constant σH has been improved [219, 220, 287].

The current value of σH is (α + o(1))|V (H)|
√

ln |V (H)| [288], where α ≈ 0.319.

We now give the following lemma concerning a relationship between the sizes of the vertex

sets in certain bipartite minor-free graphs.

Lemma 4.4. Let B = (U ∪ V,E) be a simple H-minor-free bipartite graph, such that:

(i) every vertex in V has degree at least 2, and

(ii) there exist at most δ neighbors in common between any pair u1, u2 in U , i.e., |N(u1)∩

N(u2)| ≤ δ for all u1, u2 ∈ U .

Then |V | ≤ δσH |U |.
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Proof. To show the bound on the size of vertex set V , we construct a new graph from B

as follows. Replace every vertex v in V and its incident edges in B by an edge connecting

any two of its neighbors. Observe that, this operation results in an H-minor-free graph as

it is equivalent to contraction of any edge incident to v, followed by the deletion of all but

one of the remaining edges incident to v). The resulting graph has vertex set U , exactly

|V | edges, and at most δ parallel edges between any pair of vertices (this follows from (ii)).

By Theorem 4.1, any simple H-minor-free graph with |U | vertices has at most σH |U | edges

and, thus at most δσH |U | edges when there exist at most δ parallel edges between any pair

of vertices.

Next, we give a lemma which will be useful throughout the chapter.

Lemma 4.5. Let F be an FVS of a reduced graph G. Then |V (G−F )| ≤ 4|X|−5, where X

is the cut set defined by (F,G−F ), consisting of edges with endpoints in both F and G−F .

Proof. Let us partition V (G−F ) into V1, V2, V≥3 corresponding to the sets of vertices whose

degree in G − F is (respectively) 1 (a.k.a. leaves), 2 or at least 3. Further, let V X denote

the set of vertices in V (G− F ) which are endpoints of an edge in X, i.e., the set of vertices

in V (G− F ) adjacent to a vertex in F .

Since each vertex in V1 must be adjacent to a vertex in F (G contains no degree-1 vertices

since it’s reduced), we have that V1 ⊆ V X and, thus,

|V1| ≤ |X|

Moreover, |V≥3| ≤ |V1| − 2 (this is a well known fact applicable to any forest). Thus,

|V≥3| ≤ |X| − 2

Next, we bound |V2|. Consider the set V2 \ V X of vertices in V2 which are not adjacent to
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any vertex in F . By Rule 3, the set V2 \ V X induces an independent set. Hence, |V2 \ V X |

is at most the number of edges in the forest that results from replacing each v ∈ V2 \ V X by

an edge connecting v’s neighbors, giving us

|V2 \ V X | ≤ |V1|+ |V≥3|+ |V2 ∩ V X | − 1,

which implies

|V2| ≤ |V1|+ 2|V2 ∩ V X |+ |V≥3| − 1

Thus,

|V (G− F )| ≤ 2V1 + 2|V2 ∩ V X |+ 2|V≥3| − 1

= 2|V1 ∩ V X |+ 2|V2 ∩ V X |+ 2|V≥3| − 1 (V1 ⊆ V X)

≤ 2|X|+ 2|V≥3| − 1

≤ 4|X| − 5

We will use Lemmas 4.4 and 4.5 above to give, in the next lemma, a linear kernel for a

biconnected reduced H-minor-free graph.

Lemma 4.6. Let G be a biconnected reduced H-minor-free graph with start s and finish t.

Then, G has at most (16σ2
H +8σH +1)OPT −5 vertices and at most (20σ2

H +11σH)OPT −6

edges, where OPT denotes the size of an optimal tracking set of G.

Proof. Let T ∗ be an optimal tracking set of (G, s, t), i.e., |T ∗| = OPT . Note that G− T ∗ is

a forest, since T ∗ is an FVS of G. We assume that |T ∗| ≥ 2, since otherwise one could check,

in polynomial time, which vertex of G belongs to T ∗. We now give some claims about the
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structure of G:

Claim 1: Let u1, u2 be two vertices in T ∗. There exist at most 2 trees in G− T ∗ that are

adjacent3 to both u1 and u2.

Claim 2: Every tree in G− T ∗ is adjacent to at least 2 vertices in T ∗.

Claim 3: Every tree in G− T ∗ contains at most 2 vertices adjacent to the same vertex in

T ∗.

The first claim follows from Lemma 4.3. If there existed 3 or more trees adjacent to both u1

and u2, then the graph G′, induced by u1, u2 and the trees, would require at least 1 tracker

in V (G′) \ {u1} and 1 tracker in V (G′) \ {u2}, contradicting the feasibility of T ∗. The last

claim also follows from Lemma 4.3 in a similar fashion. The second claim follows from the

fact that G is biconnected and hence contains no cut-vertices.

To show the bound on the size of the vertex set and the edge set of G, we construct a new

graph as follows. We first contract each tree Tr in G − T ∗ into a tree vertex vTr. Let F

be the set of all tree vertices. Note that this operation may create parallel edges between

a vertex in T ∗ and a tree vertex, but never between two vertices in T ∗ or F . Furthermore,

we remove any edges between vertices in T ∗. The resulting graph is bipartite, with vertex

set partitioned into T ∗ and F , and is H-minor-free (since the class of minor-free graphs is

minor-closed). By Claims 1 and 2, any 2 vertices in T ∗ have at most 2 common neighbors,

and every vertex in F is adjacent to at least 2 vertices in T ∗. Hence, by Lemma 4.4,

|F | ≤ 2σH |T ∗|.

As a consequence of Claim 3, there are at most 2 parallel edges between a vertex in T ∗ and

3In this context, a tree is adjacent to v if it includes a vertex that is adjacent to v.
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a vertex in F . Thus, by Theorem 4.1, the set of edges, X, in the bipartite graph is at most

2 · σH(|F |+ |T ∗|) ≤ (4σ2
H + 2σH)|T ∗|.

Notice that X is the cut set defined by (T ∗, G − T ∗), consisting of edges with endpoints in

both T ∗ and G− T ∗. Hence, by Lemma 4.5, |V (G− T ∗)| ≤ 4|X| − 5, giving us:

|V (G)| ≤ (16σ2
H + 8σH + 1)|T ∗| − 5.

The edges of G consist of (a) edges in G− T ∗ (at most |V (G− T ∗)| − 1), (b) the cut set X,

and (c) edges with both endpoints in T ∗ (at most σH |T ∗| by Theorem 4.1). Thus,

|E(G)| ≤ (4|X| − 6) + |X|+ (σH |T ∗|)

≤ (20σ2
H + 11σH)|T ∗| − 6.

By Remark 4.4 and the application of the above lemma to each biconnected component of

a reduced graph, we obtain the following.

Lemma 4.7. Let G be a reduced H-minor-free graph with start s and finish t. Then G has

at most (16σ2
H +8σH +1)OPT −5 vertices and at most (20σ2

H +11σH)OPT −6 edges, where

OPT denotes the size of an optimal tracking set of G.

Proof. The proof follows from Remark 4.4 and from applying Lemma 4.6 to each biconnected

component of G, as in the proof of Lemma 4.14.

Theorem 4.2. k-Tracking admits a linear kernel when restricted to H-minor-free graphs.

Corollary 4.2. Tracking admits a O(1)-approximation for H-minor-free graphs.
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Even though we develop a (1 + ε)-approximation in the next section, the latter corollary can

be more useful in practice, when running time is a concern.

4.4.2 EPTAS

Given the unsuitability of bidimensionality and Baker’s technique discussed earlier, we shall

resort to the use of balanced separators. Our algorithm relies on an appropriate decom-

position of the graph into regions, which can be accomplished by recursively finding small

balanced separators, sets of vertices whose removal partitions the graph into two roughly

equal-sized parts.

For simplicity, we define balanced separators in the context of unweighted vertices, but this

can be generalized to a weighted setting.

Definition 4.5 (Balanced separator). Let G be a graph, and let X ⊆ V (G) be a subset of

its vertices. We say that X is a balanced separator if V (G) \X can be partitioned into two

sets A, B each of which has size at most 2/3|V (G)|, such that no edge joins a vertex in A

with a vertex in B.

Ungar [293] first showed that every n-vertex planar graph has a balanced separator of

size O(
√
n lg3/2 n). This was later improved by Lipton and Tarjan [227] to

√
8n, and

Goodrich [174] showed how to compute these recursively in linear time.

This result is widely known as the Planar Separator Theorem and its impact cannot be

overstated, with applications in the design of approximation algorithms using the divide-

and-conquer paradigm for various NP-Complete problems [95, 228]. This theorem has been

further refined [105, 135, 136, 164, 171, 244, 281] and generalized to bounded-genus graphs

[137, 172, 205] as well as to H-minor-free graphs [17, 63, 202, 260, 261, 309].

Theorem 4.3 (Minor-free Separator Theorem [17]). Let G be an H-minor-free graph with
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n vertices, where H is a simple graph with h ≥ 1 vertices. Then a balanced separator for

G of size at most c1
H

√
n can be found in O(hO(1)nO(1)) time, where c1

H is a positive constant

depending solely on h.

We use the Minor-free Separator Theorem recursively to decompose the graph into a set R

of edge-disjoint subgraphs, called regions. The vertices of a region R ∈ R which belong to

at least one other region are called boundary vertices and the set of these vertices is denoted

by ∂(R). The remaining vertices of R are called interior vertices and are denote by int(R).

Definition 4.6 (Relaxed r-division). A relaxed r-division of an n-vertex graph G is a de-

composition of G into Θ(n/r) regions, each of which has at most r vertices, such that the

total number boundary vertices is O(n/
√
r), for a positive integer r.

A relaxed r-division was perhaps among the first applications of Lipton and Tarjan’s Planar

Separator Theorem, and it was used to obtain EPTASs for maximum independent set [228]

and for minimum vertex cover [95]. A relaxed r-division is a relaxed version of an r-division,

a decomposition introduced by Frederickson [165] which additionally requires every region

to have O(
√
r) boundary vertices. Both decompositions can be constructed in O(n lg n)

time, by recursively splitting the graph using balanced separators. Typically, an r-division is

constructed from a relaxed r-division – it is shown in [165] that, after constructing a relaxed

division, one can further split the big regions (the ones violating the extra condition) without

asymptotically increasing the total number of regions or boundary vertices. Even though

r-divisions were introduced for planar graphs [165], its derivation can easily be generalized

to any class of graphs that is characterized by the existence of sublinear balanced separators,

including H-minor-free graphs.

Theorem 4.4 (Minor-free Separator Theorem (4.3) + Frederickson [165]). There is an

O(n lg n) algorithm that, given an H-minor-free graph G and a positive integer r, computes

a relaxed r-division of G.
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Proof. Follows from Minor-free Separator Theorem (4.3) and Frederickson [165].

A relaxed r-division is simpler to construct and will be sufficient for our purposes, so we will

use these instead.

Algorithm. Our strategy will be to (i) construct a relaxed r-division of a linear kernel K

of the input H-minor-free graph G (such that K is itself a O(1)-approximate tracking set),

(ii) solve optimally for each region, and (iii) combine the solutions for each region into a

solution for the original graph with quality comparable to that of an optimal solution. This

approach has been used to obtain EPTASs for minimum FVS [71, 314], and (without the

need for a linear kernelization) maximum independent set [228], as well as minimum vertex

cover [95]. However, and in contrast to these problems, the step of constructing a close to

optimal solution from the solutions of each region is not obvious. Indeed, the difficulty of

this step emerges from the very “nonlocal” structure of Tracking, which requires special

attention to the location of the start-finish (s, t) within the graph, in addition to requiring

tracking cycles that escape out of local neighborhoods (as in minimum FVS). The latter issue

complicates not only the intermediate step of solving optimally for each region, but also the

step of combining solutions for each region – an entry-exit cycle spanning two regions may

not be tracked by just the boundary vertices it traverses, depending on the position of s and

t, as illustrated in Fig. 4.6; this is in contrast to minimum FVS, which requires only one

tracker per cycle rendering the combining step trivial.

Our EPTAS is as follows:
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C2

C3

C1

s′
t′

Figure 4.6: Illustration of a relaxed r-division R (boundaries in dashed lines) and the types
of cycles tracked by the output tracking set T (considered in Lemma 4.9). C1-type cycles,
which span a single region R ∈ R are tracked by OPT (R). C2-type cycles, which span
exactly 2 regions, are not guaranteedly tracked by the 2 boundary vertices they traverse,
since these may correspond to an entry-exit pair (s′, t′). C3-type cycles, which span at least
3 regions, are trivially tracked by the ≥ 3 boundary vertices they traverse.

1. Compute a linear kernel K of G by reducing it with Rules 1, 2, 3, such that an

optimal tracking set of K is a constant fraction of K (see Corollary 4.2).

2. Compute a relaxed r-division of K with r = (2c1
Hc

2
H(c3

H + 1)/ε)2, for any choice of

ε > 0 and constants c1
H , c

2
H , c

3
H > 0 specified later. Let R be the set of resulting

regions.

3. For each region R in R, compute an optimal tracking set OPT (R) for the subset of

entry-cycles (with respect to (s, t)) which are completely contained in R.

4. Output T =
⋃
R∈R (OPT (R) ∪ ∂(R) ∪N (R)).

Here, N (R) := NΠ(R)(∂(Π(R))) defines an appropriate neighborhood of the boundary

vertices of R, where Π(R) is the subgraph of R consisting of the union of each path

in R that: (i) is not an edge, (ii) has ∂(R) vertices as endpoints, and (iii) traverses no

internal vertices that are in OPT (R). We let ∂(Π(R)) := ∂(R)∩Π(R). See Fig. 4.7.

Notice that
⋃
R∈R (OPT (R) ∪ ∂(R)) may not constitute a tracking set of K, because there

might exist entry-exit cycles spanning exactly 2 regions, whose entry-exit pairs are the only

vertices with trackers, rendering them untracked (see Fig. 4.6).
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We will now give the details of the algorithm and its correctness. We refer to the Reduction

Rules defined in Section 4.3. As a reminder, after exhaustive application of Rules 1 and 2,

the graph is either a single edge between s and t, or all its vertices have degree at least 2.

Henceforth, we will assume the latter, since a minimum tracking set is trivial in the former.

Rule 3, which precludes the existence of adjacent vertices of degree 2, is used to bound the

overall number of degree-2 vertices.

Notice that none of the reduction rules introduce trackers, so there is no lifting required at

the end of our algorithm, i.e., adding back any trackers introduced during the reduction.

Observation 4.1. No entry-exit cycles are removed during Rules 1, 2 or 3, so a tracking

set of the resulting kernel K is a tracking set of the input graph G. Therefore, any minimum

tracking set of K is also a minimum tracking set of G.

Next, we explain how to compute in polynomial time optimal tracking sets for each region

in a relaxed r-division of a kernel K.

Lemma 4.8. Let C(R) be the set of all entry-exit cycles in G whose vertices are a subset of

V (R), where R is a subgraph of G. Then one can compute a minimum subset of V (R) that

tracks every entry-cycle of C(R) in O(2|V (R)| · nO(1)) time.

Proof. It suffices to enumerate all the 2|V (R)| possible subsets and, for each, verify in O(nO(1))

R

Figure 4.7: Illustration of Π(R) and of N (R) for a region R in a relaxed r-division R.
Vertices in ∂(R) are depicted in red circles. Π(R) consists of the union of all boundary-to-
boundary paths in R (solid black), which are not edges and do not traverse OPT (R) (green
crosses). The dashed lines represent paths in R− Π(R). N (R) is depicted in blue squares.

95



time whether every entry-exit cycle of C(R) is tracked. The verification step can be done in

a way similar to the verification algorithm given by Banik, Choudhary, Lokshtanov, Raman

and Saurabh [47] to show that the problem is in NP: from the observation that every tracking

set X is an FVS (see Remark 4.2), it follows that there is at most O(nO(1)) entry-exit cycles

not tracked by X (see also Lemma 4.17).

Let us now argue that our algorithm computes a (1 + ε)-approximate tracking set. Let

T =
⋃
R∈R (OPT (R) ∪ ∂(R) ∪N (R)) be the output of the algorithm, for the relaxed r-

division R of a kernel K of G.

Lemma 4.9. T is a tracking set of the input graph G.

Proof. It is enough to argue that T tracks every cycle C of K (by Lemma 4.1 and Observa-

tion 4.1). We consider 3 types of cycles, illustrated in Fig. 4.6. If C spans exactly 1 region

R in R, then it is guaranteed to be tracked by feasibility of OPT (R) (see Lemma 4.8). If

C spans at least 3 regions in R, then C is trivially tracked by the trackers in, at least, 3

boundary vertices. Otherwise, let C be a cycle spanning exactly 2 regions. We argue that C

is also trivially tracked. Let R1 and R2 be the two regions spanned by C and let us assume

that C traverses exactly 2 boundary vertices b1 and b2 (if it traverses more boundary vertices,

it must be trivially tracked, and if it traverses less, then it could not span more than one

region). If C contains a tracker in OPT (R1) ∪OPT (R2) \ {b1, b2}, we are done. Otherwise,

C is the union of a path in Π(R1) and a path in Π(R2), by definition of Π. In this case,

however, C must have a third tracker placed in N({b1, b2}) ∩ {int(R1) ∪ int(R2)} (notice

that C contains at least one non-boundary vertex that is a neighbor of b1 or b2, since there

are no parallel edges).

Let us denote by OPT the size of an optimal tracking set of the input graph G. To argue that

|T | ≤ (1+ε)OPT , we will need to argue that the set of trackers in the special neighborhoods
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defined by N (R), for all regions R, have small cardinalities, i.e., roughly equal to O(εOPT ).

This is the key argument to our EPTAS, which the next lemma addresses. Its proof is

not immediately obvious, since the number of neighbors of all boundary vertices could be

Ω(OPT ), a consequence of the quadratic gap between |∂(R)| and |V (R)|. Intuitively, if

these special neighborhoods were too large, then the following properties could not both

be applicable: feasibility of OPT (R) for every region R, and classification of G as minor-

free. Our proof below is of combinatorial nature, so it will not quite capture the topological

intuition behind it, but it is relatively succinct and avoids complex case analysis.

We will use Lemma 4.2 to derive a few structural properties of Π(R), for each R ∈ R, and

exploit these to bound |N (R)|. As a reminder, Π(R) is defined to be the subgraph of R

that is the union of each path in R that: is not an edge, has ∂(R) vertices as endpoints, and

traverses no internal vertices that are in OPT (R), where OPT (R) is an optimal tracking

set of just the entry-exit cycles of region R.

Lemma 4.10. |N (R)| ≤ c3
H |∂(Π(R))|, where c3

H ≥ 9σ2
H + 3σH .

Proof. The proof is similar in spirit to that of Lemma 4.6. Clearly, ∂(Π(R)) is an FVS

for Π(R) (if it were not, there would be untracked cycles in R contradicting feasibility of

OPT (R)), so Π(R) − ∂(Π(R)) is a forest. We assume w.l.o.g. that |∂(Π(R))| ≥ 2. Below,

we make some claims about the structure of Π(R):

Claim 1: Let b1, b2 be two vertices in ∂(Π(R)). There exist at most 3 trees in Π(R) −

∂(Π(R)) that are adjacent4 to both b1 and b2.

Claim 2: Every tree in Π(R)− ∂(Π(R)) is adjacent to at least 2 vertices in ∂(Π(R)).

Claim 3: Every tree in Π(R) − ∂(Π(R)) contains at most 3 vertices adjacent to the same

vertex in ∂(Π(R)).

4In this context, a tree is adjacent to v if it includes a vertex that is adjacent to v.
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The first claim follows from Lemma 4.2 (if there existed 4 or more trees adjacent to both b1

and b2, there would have to be a tracker from OPT (R) in one of the trees, a contradiction).

The last claim follows from Lemma 4.2 in a similar fashion. The second claim follows from

the definition of Π(R) and Rules 1,2.

Let us contract each tree Tr in Π(R)−∂(Π(R)) into a tree vertex vTr and let F be the set of

all tree vertices. Notice that this may create parallel edges between a vertex in ∂(Π(R)) and

a tree vertex, but never between two vertices in ∂(Π(R)) or F . In addition, let us remove

any edges between vertices in ∂(Π(R)). The resulting graph is bipartite, with vertex set

partitioned into ∂(Π(R)) and F , and is H-minor-free (since the class of minor-free graphs is

minor-closed). By Claims 1 and 2, at most 3 vertices in F share the same pair of neighbors,

and every vertex in F has degree at least 2. Hence, by Lemma 4.4,

|F | ≤ 3σH |∂(Π(R))|

As a consequence of Claim 3, there are at most 3 parallel edges between a vertex in ∂(Π(R))

and a vertex in F . Thus, by Theorem 4.1, the set of edges in the bipartite graph is at most

3 · σH(|F |+ |∂(Π(R))|) ≤ (9σ2
H + 3σH)|∂(Π(R))|

The lemma follows from the fact that the edges in the bipartite graph, including the parallel

ones, have a 1-1 correspondence with the vertices in N (R).

Before proving that the output of our algorithm is a (1 + ε)-approximate tracking set, let

us first recall a result from Frederickson [165, Lemma 1]5, which concerns the sum, for

each boundary vertex b of the number of regions ∆(b) containing b in a relaxed r-division

R of a planar graph. Even though this result was given in the context of planar graphs,

5A more detailed proof of [165, Lemma 1] is given in [211] for separators based on edge weights.
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it can easily be generalized to any graph whose subgraphs G′ admit balanced separators

of size O(
√
|V (G′)|). We denote the set of all boundary vertices by ∂(R). Further, let

B(R) =
∑

b∈∂(R) (∆(b)− 1).

Lemma 4.11 ([165]). Let R be a relaxed r-division of an n-vertex graph whose subgraphs G′

admit balanced separators of size at most c
√
|V (G′)|. Then B(R) ≤ c ·n/

√
r, for a constant

c independent of r and n.

We will use the latter lemma to bound the overall number of trackers in the next theorem.

Theorem 4.5. There exists a (1 + ε)-approximation algorithm for Tracking on H-minor-

free graphs (for a fixed H), running in O(2O(1/ε2)nO(1)) time, for a given ε > 0.

Proof. Consider the algorithm given at the beginning of the section. As a reminder, let

T =
⋃
R∈R (OPT (R) ∪ ∂(R) ∪N (R)) be the output of the algorithm, for a relaxed r-division

R of a kernel K of G, where OPT (R) is the optimal tracking set computed with respect

to entry-exit cycles in R. By Lemma 4.9, T is a tracking set. Next, we argue about the

approximation ratio. By a union bound,

|T | ≤ |∂(R)|+
∑
R∈R

|OPT (R)|+
∑
R∈R

|N (R)|.

Let n′ = |V (K)| be the number of vertices in K. Clearly, |∂(R)| ≤ B(R). Moreover, we

have that
∑

R∈R |∂(R)| ≤ 2B(R), so by Lemma 4.10, we have:

∑
R∈R

|N (R)| ≤ 2c3
HB(R).

Let T ∗ be an optimal tracking set of K, i.e., |T ∗| = OPT (by Observation 4.1). Since T ∗ is

a tracking set, but not necessarily an optimal one, for all entry-exit cycles within any region
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R ∈ R, we have that |OPT (R)| ≤ |T ∗ ∩ V (R)|. Thus,

∑
R∈R

|OPT (R)| ≤ OPT +B(R).

Overall, for r = (2c1
Hc

2
H(c3

H + 1)/ε)2,

|T | ≤ OPT + 2(c3
H + 1)B(R)

≤ OPT + 2c1
H(c3

H + 1)n′/
√
r (Lemma 4.11, Theorem 4.3)

≤ OPT + 2c1
Hc

2
H(c3

H + 1)OPT/
√
r (Lemma 4.7, c2

H ≥ 16σ2
H + 8σH + 1)

= (1 + ε)OPT .

The first step of the algorithm, concerning the kernelization, takes O(nO(1)) time, since it

consists of applying Rules 1, 2, 3. The second step, which computes a relaxed r-division can

be done in O(n lg n) time [165], using Lipton and Tarjan’s linear time algorithm [227] to find

a balanced separator. Computing each OPT (R) in step 3 can be done in O(2r · nO(1)) time,

by Lemma 4.8, and thus O(2r · nO(1)/r) time for all R ∈ R. Finally, computing Π(R) and

N (R) can be done in O(nO(1)) time, and thus O(nO(1)/r), for all R ∈ R. Overall, the total

time complexity is is bounded by

O(2r · nO(1))

= O(2O(1/ε2) · nO(1)).
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4.5 General Graphs

In this section, we derive an O(lg n)-approximation algorithm for WeightedTracking

on general graphs, as well as an O(lg OPT )-approximation algorithm for Tracking. To

the best of our knowledge, the only known approximation ratio for general graphs until

now is O(
√
n lg n) for tracking shortest paths only (as opposed to all paths) with multiple

start-finish pairs, a result by Bilò, Gualà, Leucci and Proietti [62]. In addition, we improve

the quadratic kernel of Choudhary and Raman [102] for general graphs and complete the

case-analysis of [102, Lemma 8].

4.5.1 Quadratic Kernel

In this section, we focus on k-Tracking, the decision version of Tracking which asks

whether there exists a tracking set of size at most k. We consider a parameterization with

parameter k itself (often called the natural parameter) and give a kernelization algorithm

that produces a quadratic kernel for general graphs, by building on the quadratic kernel of

Choudhary and Raman [102]. While simpler, our proof of the kernel size completes the case

analysis (see Lemma 4.3) for one of the lemmas central to the kernelization algorithm of

[102] (specifically, [102, Lemma 8]). Moreover, our kernelization algorithm yields a kernel

size with considerably smaller constants. We achieve this by expanding on the notion of

tree-sink structures (see Section 4.3), allowing us to bound the maximum degree among

non-cut vertices in the kernel (see Corollary 4.1).

Our kernelization algorithm is simply the exhaustive application of Rules 1, 2 and 3 (see

Section 4.3) in no particular order, followed by application of Rule 4, and then of Rule 5:

Rule 4. If there exists a non-cut vertex of degree more than k + 2, return a trivial NO-

instance.
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Rule 5. If the number of vertices (resp. edges) is more than 4k2+9k−5 (resp. 5k2+11k−6),

return a trivial NO-instance.

Lemma 4.12. Rule 4 is safe and can be done in polynomial-time.

Proof. Follows from Corollary 4.1.

Next, we show that the last rule is also safe.

Lemma 4.13. Let G be a biconnected reduced graph, with start s and finish t. Then, G has

at most 4OPT 2 + 9OPT − 5 vertices and at most 5OPT 2 + 11OPT − 6 edges, where OPT

denotes the size of an optimal tracking set of G.

Proof. Let T ∗ be an optimal tracking set of G, i.e., |T ∗| = OPT . Since every tracking

set is an FVS of a reduced graph (see Remark 4.2), we can apply Lemma 4.5 and obtain

|V (G− T ∗)| ≤ 4|X| − 5, where X is the set of edges with endpoints in both T ∗ and G− T ∗.

By the fact that G is biconnected and by Corollary 4.1, G has maximum degree OPT + 2

and, hence, |X| ≤ OPT (OPT + 2). It follows that

|V (G)| ≤ 4OPT 2 + 9OPT − 5

The edges of G consist of edges with no endpoint in T ∗ (at most |V (G−T ∗)− 1|) and edges

with at least one endpoint in T ∗ (at most OPT (OPT + 2) by Corollary 4.1), giving us

|E(G)| ≤ 5OPT 2 + 11OPT − 6

We can now apply the latter lemma individually to each biconnected component, giving us

the following.
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Lemma 4.14. Any reduced graph G with start s and finish t has at most 4OPT 2 +9OPT−5

vertices and at most 5OPT 2 + 11OPT − 6 edges, where OPT denotes the size of an optimal

tracking set of G.

Proof. Let Gi denote the ith biconnected component of G, with entry-exit vertices si, ti (see

Remark 4.4). Further, let OPT i denote the size of a minimum tracking set of (Gi, si, ti). It

follows from Remark 4.4 that OPT =
∑

i OPT i. Moreover, Lemma 4.13 gives us |V (Gi)| ≤

p(OPT i), where p(x) = 4x2 + 9x− 5. Thus,

|V (G)| ≤
∑
i

|V (Gi)|

≤
∑
i

p(OPT i) (Lemma 4.13)

≤ p

(∑
i

OPT i

)
(p is degree-2 polynomial)

= p(OPT ) (Remark 4.4)

The number of edges in G can be upper bounded in a similar manner.

The latter lemma immediately implies the safety of Rule 5, as well as anO(
√
n)-approximation

algorithm (output all the vertices in the kernel).

Lemma 4.15. Rule 5 is safe and can be done in polynomial-time.

Correctness of Rules 1, 2 and 3 ([47, 102, 151]), as well as of Rules 4 and 5 (Lemmas 4.12

and 4.15) immediately give us the following.

Theorem 4.6. k-Tracking admits a kernel of size bounded by 4k2 + 9k − 5 vertices and

5k2 + 11k − 6 edges.

The latter theorem improves a quadratic kernel of Choudhary and Raman [102], whose size

is bounded by 140k2 − 45k vertices and 180k2 + 65k edges.
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4.5.2 Approximation Algorithm

We reduce an instance (G, s, t, w′) of WeightedTracking, for a weight function w′ :

V (G) → Q, into an instance (U ,X , w) of SetCover, which asks for the sub-collection of

X of minimum total weight, whose union equals the universe U . Here, (U ,X ) defines a set

system, i.e., a collection X of subsets of a set U , and w is the weight function w : X → Q. It

is well known that there exist greedy polynomial-time algorithms achieving approximation

ratios of (1 + lnM) [106, 195, 231] or of (1 + ∆) [187, 296, 308], where M is the size of the

largest set in X and ∆ is the maximum number, over all elements u in U , of sets in X that

contain u. At first glance, this reduction does not seem to yield a useful approximation ratio,

given the exponential number of entry-exit cycles that need to be covered, but we will show

that one can limit this number to a polynomial of fixed degree.

Let C be the set of all entry-exit cycles in our input graph G, which we assume w.l.o.g. to be

reduced by Rule 1. Further, let CF be the set of all entry-exit cycles in G, each of which con-

tains at most 2 vertices from the subset F ⊆ V . That is, CF := {(C, s′, t′) ∈ C : |C ∩ F | ≤ 2}.

Our algorithm is as follows.
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1. Compute a 2-approximate FVS F of G (see [38, 51, 104]).

2. Use the greedy algorithm of [106, 195, 231] to compute an approximate set covering,

S ⊆ V (G), for an instance (U ,X , w) of SetCover where:

(i) the universe, U , of elements to be covered is CF

(ii) the collection of covering sets, X , is a 1-1 correspondence with V (G), where each

covering set with corresponding vertex v is the subset of CF which are tracked

by v, that is,

X = {{(C, s′, t′) ∈ CF | v tracks (C, s′, t′)}}v∈V (G).

(iii) the weight function w is the weight function w′ defined for WeightedTrack-

ing, given the 1-1 correspondence between X and V (G).

3. Output T = S ∪ F .

Theorem 4.7. WeightedTracking admits an O(lg n)-approximation algorithm.

Let us argue about feasibility first. Let T = S ∪ F be the output of the algorithm for

weighted graphs described in Section 4.5.

Lemma 4.16. T is a tracking set of G.

Proof. By Lemma 4.1, it is enough to argue that every entry-exit cycle of G is tracked by T .

Let F be the FVS computed in the first step of the algorithm and S the set cover computed

in the second step. Since F ⊆ T , any entry-exit cycle containing at least 3 vertices from F

is trivially tracked. All remaining entry-exit cycles are tracked by S ⊆ T , by definition.

Next, we argue about the approximation ratio. The lemma below follows from a proof by

Banik et al. [47] that Tracking is in NP.
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Lemma 4.17. |CF | ≤ O(n8), where n is the number of vertices of the input graph G.

Proof. Since F is an FVS and G is reduced by Rule 1, every entry-exit cycle of CF includes

at least 1 vertex from F (see Remark 4.2) and, by definition, at most 2 vertices from F .

Since G− F is a forest, there exists at most 1 path between every pair of vertices in G− F .

Further, each vertex f in F has at most n − |F | neighbors in G − F , so there are at most(
n−|F |

2

)
cycles which contain f and no other vertex from F . Thus, the number of cycles

containing exactly 1 vertex from F is at most

|F |
(
n− |F |

2

)
≤ n3

Let us now argue about cycles containing exactly 2 vertices f1 and f2 from F . Any such

cycle is defined by a pair of paths P and Q between f1 and f2 traversing vertices in V (G−

F ) ∪ {f1, f2}. Let us first handle cycles where one of the paths P,Q is a single edge, say Q

(because G is simple, the other path, P , must consist of at least 2 edges). Clearly, every

path P is identified by a path in G − F connecting a neighbor p1 of f1 to a neighbor p2 of

f2. Therefore, there exist at most (n − |F |)2 such paths P 6 and, thus, at most (n − |F |)2

cycles where f1 and f2 are connected by an edge. Similarly, for cycles where Q is not an

edge, every path Q is identified by a path in G − F connecting a neighbor q1 6= p1 of f1 to

a neighbor q2 6= p2 of f2. Hence, there are at most (n − |F | − 1)2 such paths Q and, thus,

at most (n− |F |)2 · (n− |F | − 1)2 ≤ (n− |F |)4 cycles where f1 and f2 are not connected by

an edge. Taking into account all pairs f1, f2 in F , the number of cycles containing exactly 2

vertices from F is at most

(
|F |
2

)(
(n− |F |)2 + (n− |F |)4

)
= O(n6)

6In contrast to cycles containing a single vertex from F , the neighbors p1, p2 connected by P may be the
same vertex, hence we allow repetitions when counting the number of pairs of neighbors.
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For every cycle C, there exist at most |V (C)|(|V (C)| − 1) ≤ n2 entry-exit pairs. Therefore,

the number of entry-exit cycles of CF is at most

n2(n3 +O(n6)) = O(n8)

Let us denote by OPT the size of an optimal tracking set of G, and let w(T ) =
∑

a∈T w(a)

be the total weight of T .

Lemma 4.18. w(T ) = O(lg n)OPT .

Proof. By union bound, we have that w(T ) ≤ w(S) + w(F ), where S and F are the sets

computed in steps 1 and 2, respectively, of the above algorithm.

Since F is a 2-approximate FVS and every optimal tracking set is also an FVS (by Re-

mark 4.2), we have that

w(F ) ≤ 2OPT

Let OPTF be the size of an optimal solution to the covering problem of step 2, concerning

all entry-exit cycles in CF . Since every optimal tracking set must track all entry-exit cycles in

CF , we have that OPT ≥ OPTF . Further, the well known greedy algorithm for SetCover

gives us an approximation ratio of at most (1 + ln |CF |). Thus, by Lemma 4.17, w(S) =

O(lg n)OPTF and therefore,

w(S) = O(lg n)OPT

The lemma follows.
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Theorem 4.7, regarding the O(lg n)-approximation for WeightedTracking, follows from

Lemmas 4.16 and 4.18.

Unweighted Graphs. We show that the dual of the above set cover formulation has

bounded VC-dimension [184, 295]. This immediately improves the approximation ratio to

O(lg OPT ) for Tracking (unweighted version) as a consequence of a result by Brönnimann

and Goodrich [73], which establishes an approximation-ratio of O(d lg(dc)) for unweighted

set cover instances with dual VC-dimension d and optimal covers of size at most c.

Let (U ,X ) be a set system and Y a subset of U . We say that Y is shattered if X ∩ Y = 2Y ,

where X ∩ Y := {X ∩ Y | X ∈ X}. In other words, Y is shattered if the set of intersections

of Y with each X ∈ X contains all the possible subsets of Y . The set system (U ,X ) has VC-

dimension d if d is the largest integer for which there exists a subset Y ⊆ U , of cardinality

|Y | = d, that can be shattered.

The dual problem of an unweighted instance (U ,X ) of SetCover is finding a hitting set of

minimum size, where a hitting set is a subset of U that has a non-empty intersection with

every set in X . In our case, it corresponds to finding the smallest subset of entry-exit cycles

that covers every vertex, where a vertex is covered if it tracks least one entry-exit cycle in the

subset. This is equivalent to an unweighted instance of SetCover with set system (V, C∗F ),

where V = V (G) and C∗F := {V (C) \ {s′, t′} : (C, s′, t′) ∈ CF} is the collection of sets, one

for each entry-exit cycle, of vertices which can track that entry-exit cycle.

Lemma 4.19. The set system (V, C∗F ) has VC-dimension at most 9.

Proof. We show that there exists no subset Y ⊆ V of size |Y | ≥ 10 that can be shattered by

C∗F . Since every element of C∗F contains at most 2 vertices from F (by definition of CF ), we

cannot have more than 2 vertices from F in Y (since we would then require an entry-exit

cycle containing at least 3 vertices in F to shatter Y ). Thus, the lemma follows if we show
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Figure 4.8: Illustration of proof of Lemma 4.19, that the dual VC-dimension is bounded.
If a set Y = {y1, y2, . . . , y8} is to be shattered by C∗F , then there must exist cycles C1, C2

traversing, respectively, Y and every other vertex of Y . However, for large enough Y (|Y | ≥
8), the existence of C1, C2 contradicts that F is an FVS.

that no subset Y ⊆ V \ F of size |Y | ≥ 8 can be shattered by C∗F . Let us assume, by

contradiction, that this is possible. Then, if Y ⊆ V \F is to be shattered by C∗F , there must

exist 2 entry-exit cycles (C1, s
′
1, t
′
1) and (C2, s

′
2, t
′
2) in CF (see Fig. 4.8), such that:

• C1 traverses all vertices of Y , say in the order y1, y2, . . . , y|Y | (for all yj ∈ Y ),

• C2 traverses every other vertex of Y traversed by C1, say Y ′ = {y2, y4, . . . , y|Y |}, but

not necessarily in the same order (we assume w.l.o.g. |Y | is even).

Consider the graph consisting of the union of the cycles C1, C2. Let us contract every shared

edge between C1, C2. Note that C1 remains a cycle that traverses Y and C2 remains a cycle

that traverses Y ′ but not any vertex of Y \ Y ′. So we can safely assume that C1 and C2 do

not share any edges. Thus, the union of C1, C2 is a graph with |C1| + |C2| − |Y |/2 vertices

and |C1|+ |C2| edges. Since both entry-exit cycles are in CF , each of C1, C2 shares at most 2

vertices with F . Let us remove such vertices, say there’s k ≤ 4 of them. The result is a graph

with |C1|+ |C2|− |Y |/2−k vertices and, at best, |C1|+ |C2|−2k edges (the removed vertices

cannot be in Y , so they have degree 2). In order for this graph to be acyclic (since F is an

FVS by Remark 4.2, and our contractions preserve cycles) we would then require |Y | < 8

(since any acyclic graph with n vertices has at most n− 1 edges), a contradiction.
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The above lemma, combined with the result of Brönnimann and Goodrich [73] gives us the

following.

Theorem 4.8. Tracking admits an O(lg OPT )-approximation algorithm, where OPT is

the size of an optimal tracking set.

4.6 Conclusion and Open Questions

We have designed a (1 + ε)-approximation algorithm, as well as an FPT algorithm with a

linear kernel for H-minor-free graphs, generalizing our result for planar graphs in Chapter 3.

We also gave the first approximation algorithm of ratio O(lg n) for the vertex-weighted

version of this problem, and we showed that the set system for the unweighted version has

bounded dual VC-dimension, which immediately implied a O(lg OPT )-approximation in the

unweighted setting.

A natural direction for future work would be to obtain a (1 + ε)-approximation for vertex-

weighted H-minor-free graphs, or show that this is not likely, under some reasonable as-

sumption, such as P6=NP. Our EPTAS is not very practical in terms of running time, so we

question whether there exist more efficient solutions in this setting.

Another next step would be characterizing the tractability of Tracking and the extent to

which it can be approximated, when the input graph is directed. If the graph is a tournament,

we know that the problem is in P, but we do not know whether the more general problem is

even in NP – our proof of containment for the undirected case relies on the fact that every

tracking set is a feedback vertex set (for the graph containing all relevant cycles), but this

is no longer the case in the directed case (see Fig. 4.9).
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Figure 4.9: Illustration of a tracking set that is not a feedback vertex set in a directed graph.
For this reason, one cannot reuse the proof of containment in NP when the input graph is
directed, and thus the question of whether it is in NP is still open.
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Chapter 5

Conclusion

We have studied the problem of exact learning of sequences, under two different settings:

learning of strings of a fixed alphabet, and learning of paths in a fixed graph.

When learning strings (Chapter 2), we exploited periodicity to give algorithms that learn,

with sublinear query-complexities, a hidden periodic string using substring and subsequence

oracles. We also gave an algorithm that recovers an near-periodic string using a sublinear

amount of substring queries. When learning general strings using jumbled-indexing queries,

we show that even if the location of a matching substring is given to us in an adversarial way,

one cannot learn the secret string in general, so we gave an efficient randomized learning

algorithm that recovers the string with high probability, when the location of a matching

substring is given uniformly at random.

To learn paths in a graph, we considered an oracle whose answers may depend on the learner’s

placement of trackers in the input graph. We proved that the problem of minimizing the

number of trackers remains NP-complete when the input graph is planar and we gave a 4-

approximation algorithm in this setting, as well as an optimal polynomial-time algorithm for

bounded clique-width graphs (Chapter 3). Later, we designed a (1 + ε)-approximation algo-
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rithm, as well as an FPT algorithm with a linear kernel for H-minor-free graphs (Chapter 4),

generalizing our result for planar graphs. We also gave the first approximation algorithm

of ratio O(lg n) for the vertex-weighted version of this problem, and we showed that the

set system for the unweighted version has bounded dual VC-dimension, which immediately

implied a O(lg OPT )-approximation in the unweighted setting, where OPT is the size of an

optimal tracking set.
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Faster recovery of approximate periods over edit distance. In Proc. 25th International
Symposium on String Processing and Information Retrieval (SPIRE), LNCS, pages
233–240. Springer, 2018.

[217] R. Kolpakov and G. Kucherov. mreps: efficient and flexible detection of tandem repeats
in DNA. Nucleic Acids Res., 31:3672–3678, 2003. http://www.loria.fr/mreps/.

[218] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia. Data recovery on encrypted
databases with k-nearest neighbor query leakage. In Proc. IEEE Symposium on Secu-
rity and Privacy, SP, pages 245–262, 2019.

[219] A. V. Kostochka. The minimum hadwiger number for graphs with a given mean degree
of vertices. Metody Diskret. Analiz., (38):37–58, 1982.

[220] A. V. Kostochka. Lower bound of the hadwiger number of graphs by their average
degree. Comb., 4(4):307–316, 1984.

[221] I. Krasikov and Y. Roditty. On a reconstruction problem for sequences,. J. Comb.
Theory, Ser. A, 77(2):344–348, 1997.

130

http://planarity.org/
http://planarity.org/


[222] E. Kushilevitz and Y. Mansour. Learning decision trees using the fourier spectrum.
SIAM J. Comput., 22(6):1331–1348, 1993.
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