
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Scalable Algorithms for Network Design

Permalink
https://escholarship.org/uc/item/56z5m2fg

Author
Medya, Sourav

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/56z5m2fg
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Scalable Algorithms for Network Design

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Sourav Medya

Committee in charge:

Professor Ambuj Singh, Chair
Prithwish Basu, PhD, Raytheon
Charu Aggarwal, PhD, IBM
Professor Xifeng Yan
Professor Amr El Abbadi

September 2019

The Dissertation of Sourav Medya is approved.

Prithwish Basu, PhD, Raytheon

Charu Aggarwal, PhD, IBM

Professor Xifeng Yan

Professor Amr El Abbadi

Professor Ambuj Singh, Committee Chair

July 2019

Scalable Algorithms for Network Design

Copyright c© 2019

by

Sourav Medya

iii

To my parents and all of them who are passionate about science

iv

Acknowledgements

My journey in the PhD has been enriching and enjoyable in many ways. I had the

opportunity to meet some great people who had a significant contribution in my life.

First of all, I would like to express my gratitude to my advisor, Prof. Ambuj Singh

for his encouragement about research and fostering in my personal growth. I would also

like to thank all the members of my committee: Prof. Amr El Abbadi, Prof. Xifeng Yan,

Dr. Charu Aggarwal, and Dr. Prithwish Basu for their valuable advice.

I wish to express my gratitude to masters advisor Prof. Yadati Narahari for showing

me the path to pursue a PhD. My gratitude further extends to my internship advisor

Dr. Lucy Cherkasova and collaborator Dr. Ananthram Swami for valuable research

discussions and career guidance. I would also like to thank Professors Subhash Suri,

Teofilo F. Gonzalez and Omer Egecioglu for being great course instructors and helping

me to develop essentials skills for research.

I am very grateful to my friend, Dr. Arlei Silva. I thank him for many endless

research discussions, plenty of motivational talks, and also making my PhD life extremely

memorable. His idealistic research vision and assiduous attitude have increased my love

and motivation towards science. I am honored to have him as my friend and collaborator.

I had the privilege to work with some great people: Dr. Sayan Ranu, Dr. Palash Dey,

Dr. Petko Bogdanov, Jithin Vachery, Tiyani Ma, Zexi Huang, Mert Kosan, Akash Mittal,

Anuj Dhawan, and Sahil Manchanda. I had the pleasure to spent time with some awesome

colleagues in the Dyanmo lab: Wei, Xuan-Hong, Victor, Hongyuan, Haraldur, Alex,

Omid, Yuanshun, Anh, Rachel, Yuning, Furkan, Sikun, Bo, Minh, Nazli, Kyoungmin,

Aniruddha, Richika, Ashwini, Chandana, and Nikhil.

My PhD life was very cheerful because of a large group of awesome friends in Santa

Barbara: Ebrahim, Soupitak da, Ranajay da, Anish da, Pritam da, Harris, Alam da,

v

Rima di, Nadira di, Amrita di, Swagata, Soumyashree, Shoron, Seemanta, Souradeep,

Chandi da, Srabanti, Kartick, Shantonu da, Ranita di, Anindya da, Tanmoy, Anchal, Era

and Risha. I could not expect more affection. From delicious food to timely help, they

have been always there for me. Thanks to all of them for creating plenty of beautiful

memories of my PhD life. Thanks to my friends Joel and Rauri for the fun times while

volunteering at Habitat.

I am grateful to my loving family. Thanks to my father Ganesh Medya and my

mother Pratima Medya for their endless love. I would also like to thank my brother

Saikat and sister-in-law Gargi for their immense belief in me. Thanks to my other

family members: Chotokaku, Mejomoni, Chotomoni, Sejomoni, Raja, Jeet, Sarojmama,

Mesomosai (boro, mejo), Mamoni, Sagnik, Boromoni, Apu Mesomosai, Kakolimasi for

their valuable support. Without them, I will not be able to make this far.

I would like to thank my wife Swatilekha for her unconditional love. She has been very

supportive through my PhD and even before that. She believed in me and constantly

encouraged me in my academic journey. I consider myself extremely lucky to share my

life with her.

My research has been largely supported by the US Army Research Lab and NSF.

vi

Curriculum Vitæ
Sourav Medya

Education

2019 Ph.D. in Computer Science
University of California, Santa Barbara, USA

2012 Master of Engineering in Computer Science and Engineering
Indian Institute of Science, Bangalore, India

2010 Bachelor of Technology in Computer Science and Engineering
West Bengal University of Technology, Kolkata, India

Publications

1. Sourav Medya, Arlei Silva, Ambuj Singh
Influence Minimization Under Budget and Matroid Constraints [Link]
Under Review, 2019

2. Sourav Medya, Tiyani Ma, Arlei Silva, Ambuj Singh
K-Core Minimization: A Game Theoretic Approach[Link]
Under Review, 2019

3. Akash Mittal, Anuj Dhawan, Sourav Medya, Sayan Ranu, Ambuj Singh
Learning Heuristics over Large Graphs via Deep Reinforcement Learning[Link]
Under Review, 2019

4. Palash Dey, Sourav Medya
Covert Networks: How Hard is It to Hide? [Link]
AAMAS - International Conference on Autonomous Agents and Multiagent Sys-
tems, 2019

5. Sourav Medya, Jithin Vachery, Sayan Ranu, Ambuj Singh
Noticeable Network Delay Minimization via Node Upgrades[Link]
VLDB - International Conference on Very Large Data Bases, 2018

6. Sourav Medya, Petko Bogdanov, Ambuj Singh
Making a Small World Smaller: Path Optimization in Networks [Link]
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2018

7. Sourav Medya, Arlei Silva, Ambuj Singh, Prithwish Basu, Ananthram Swami
Group Centrality Maximization via Network Design [Link]
SIAM International Conference on Data Mining (SDM), 2018

8. Sourav Medya, Ludmila Cherkasova, Ambuj Singh
Predictive Modeling and Scalability Analysis for Large Graph Analytics [Link]
IFIP/IEEE International Symposium on Integrated Network Management (IM),
2017

vii

https://arxiv.org/abs/1901.02156
https://arxiv.org/abs/1901.02166
https://arxiv.org/abs/1903.03332
https://arxiv.org/abs/1903.05832
https://dl.acm.org/citation.cfm?id=3232244
https://ieeexplore.ieee.org/document/8255632/
https://arxiv.org/abs/1702.04082
https://ieeexplore.ieee.org/abstract/document/7987265/

9. Sourav Medya, Petko Bogdanov, Ambuj Singh
Towards Scalable Network Delay Minimization [Link]
IEEE International Conference on Data Mining (ICDM), 2016

10. Sourav Medya, Ludmila Cherkasova, Guilherme Magalhaes, Kivanc Ozonat, Chaitra
Padmanabha, Jiban Sarma, Imran Sheikh
Towards Performance and Scalability Analysis of Distributed Memory Programs on
Large-Scale Clusters [Link]
ACM/SPEC International Conference on Performance Engineering (ICPE), 2016

Reserach Internships

• Qatar Computing Research Institute (QCRI) 6/2016 - 9/2016
Mentors: Dr. Nan Tang and Dr. Saravanan Thirumuruganathan
Research Topic: Queries in Data Streams

• Hewlett Packard Labs, Palo Alto 6/2015 - 9/2015
Mentor: Dr. Lucy (Ludmila) Cherkasova
Research Topic: Scalability Analysis of Distributed Memory Programs

Teaching Experience

• Guest Lecturer: Data Structure and Algorithms (Two lectures), UCSB Spring,

2018

• Project Mentor: IGERT Bootcamp, UCSB Summer, 2017

• Teaching Assistant: Introduction to Programming, UCSB Spring, 2017

• Teaching Assistant: Data Structure and Algorithms, UCSB Fall, 2013

• Teaching Assistant: Introduction to Programming, UCSB Fall, 2012

• Project Mentor: Game Theory Course, IISc Spring, 2012

• Teaching Assistant: C Programming, IISc Fall, 2011

Research Mentorship

• Anuj Dhawan and Akash Mittal, Undergraduate student, IIT, Delhi, India
Learning Combinatorial Graph Algorithms via Network Embedding 2018

• Tiyani Ma, Undergraduate student, University of California Santa Barbara
Network Stability 2017

• Ali Hajimirza (University of Oklahoma) and Jason White (Cal State)
Network Summarization: A Comparison of Methods Summer, 2014

• Kara Goodman (Cal State) and Austen Piers (UCSB)
Multiscale Modeling of Biological Networks Summer, 2014

viii

https://ieeexplore.ieee.org/abstract/document/7837953/
https://dl.acm.org/citation.cfm?doid=2851553.2858669

Service

• Reviewer :
TKDD - ACM Transactions on Knowledge Discovery from Data 2017 - 2018
TKDE - IEEE Transactions on Knowledge and Data Engineering 2015 - 2016

• External Reviewer :
VLDB - ACM International Conference on Very Large Data Bases 2019
WWW - ACM International World Wide Web Conference 2017, 2019
KDD - ACM Conference on Knowledge Discovery and Data Mining 2015 - 2018
SDM - SIAM International Conference on Data Mining 2017
AAAI -AAAI conference on Artificial Intelligence 2016
WSDM -ACM International Conference on Web Search and Data Mining 2016
ICDM - IEEE International Conference on Data Mining 2016

• Member :
Project Mentor IGERT Bootcamp, UCSB 2017
Organizer of IGERT Bootcamp, UCSB 2014

• Committee :
Graduate Student Workshop, UCSB 2013
Open Day (Research Showcase), IISc 2011 - 2012

ix

Abstract

Scalable Algorithms for Network Design

by

Sourav Medya

Networks (or graphs) are a powerful tool to model complex systems such as social

networks, transportation networks, and the Web. Network design problems, including

planning, implementing and augmenting networks for desirable properties, arise natu-

rally in many applications: How to improve commute time in traffic network? How to

contain fake news in social networks? How to preserve a species by conserving impor-

tant properties of an ecosystem? How to promote healthier behaviour among individuals

via their social interactions? However, characterizing the combinatorial effect of these

network modifications leads to challenging optimization problems. From a theoretical

standpoint, different from their search counterparts (e.g. computing shortest path), the

design problems (e.g. optimizing shortest paths) are computationally hard.

My thesis focuses on the development of algorithms for solving large-scale real-world

problems using network design. In this thesis, I will discuss a few network design prob-

lems and their solutions. In the first part, I will describe design problems to optimize

structural properties of a network. More specifically, I will focus on shortest path distance

optimization and improvement of node centrality. In the second part, I will show how

network design can be used in security related applications via leader hiding problem.

Lastly, network modification will be used to improve or control network processes. In

particular I will describe influence minimization and resilience maximization in networks

via making optimal changes. I will present fast algorithms for these problems using

continuous optimization, randomized algorithms and game theoretic techniques.

x

0.1 Permissions and Attributions

The major portion of the materials described in this thesis have either been published

by the author of the thesis or are currently in the process of submission. The author

has major contributions in developing the research of the published and submitted works

mentioned below.

1. The content of chapter 2 has been previously published as:

Medya, S., Vachery, J. Ranu, S., & Singh, A. (2018). Noticeable network delay

minimization via node upgrades. Proceedings of the VLDB Endowment, 11(9),

988-1001.

DOI: 10.14778/3213880.3213889

2. The content of chapter 3 has been previously published as:

Medya, S., Silva, A., Singh, A., Basu, P., & Swami, A. (2018, May). Group cen-

trality maximization via network design. In Proceedings of the 2018 SIAM In-

ternational Conference on Data Mining (pp. 126-134). Society for Industrial and

Applied Mathematics.

DOI: [10.1137/1.9781611975321.14]

3. The content of chapter 4 has been previously published as:

Dey, P., & Medya, S. (2019, May). Covert Networks: How Hard is It to Hide?.

In Proceedings of the 18th International Conference on Autonomous Agents and

MultiAgent Systems (pp. 628-637). International Foundation for Autonomous

Agents and Multiagent Systems.

Paper: [Link]

4. Finally, large portions of the content of Chapter 5 and Chapter 6 are currently in

submission.

xi

https://dl.acm.org/citation.cfm?doid=3213880.3232244
https://epubs.siam.org/doi/abs/10.1137/1.9781611975321.14
http://www.ifaamas.org/Proceedings/aamas2019/pdfs/p628.pdf

For ACM, authors can include partial or complete papers of their own in a disserta-

tion as long as citations and DOI pointers to the Versions of Record in the ACM Digital

Library are included. If interested in reprinting or republishing ACM copyrighted mate-

rial for advertising or promotional purposes or for creating new collective works for resale

orredistribution, please contact the ACM.

xii

Contents

Curriculum Vitae vii

Abstract x
0.1 Permissions and Attributions . xi

List of Figures xvi

List of Tables xix

1 Introduction 1
1.1 Network Design . 1
1.2 Related Work . 2
1.3 Overview of the thesis . 4

1.3.1 Other Work . 7

2 Delay Minimization 9
2.1 Introduction . 10
2.2 Related Work . 14
2.3 Problem Definition . 15

2.3.1 Preliminaries . 15
2.3.2 Hardness and Approximability . 19

2.4 Algorithms . 21
2.4.1 Optimal Solution . 22
2.4.2 Restricted Path Optimization Problem (RPOP) 25
2.4.3 Greedy Selection of Nodes . 28
2.4.4 Sampling . 30

2.5 Experiments . 37
2.5.1 Experimental Setup . 37
2.5.2 GSN and optimal MIP . 40
2.5.3 ISS vs GSN . 41
2.5.4 Comparison with scalable baselines 42
2.5.5 Impact of Parameters on Performance 44

xiii

2.5.6 Total Improvement . 46
2.5.7 Tightness of RPOP . 47
2.5.8 Experiments on Synthetic data 48
2.5.9 Edge Delays . 52

2.6 Conclusion . 52

3 Centrality Maximization 54
3.1 Introduction . 55
3.2 Related Work . 57
3.3 Problem Definition . 58
3.4 Hardness and Inapproximability . 60
3.5 Algorithms . 62

3.5.1 Greedy Algorithm . 62
3.5.2 Sampling Algorithm . 63

3.6 Analysis . 64
3.6.1 Constrained Problem . 65
3.6.2 Analysis of Greedy Algorithm . 65
3.6.3 Analysis of Sampling Algorithm 67

3.7 Experimental Results . 72
3.7.1 GES: RCCO vs CCO . 74
3.7.2 BUS vs. GES . 74
3.7.3 Results for Large Graphs . 75
3.7.4 Parameter Sensitivity . 75
3.7.5 Impact on Other Metrics: . 76

3.8 Conclusions . 77

4 Hiding in Covert Networks 79
4.1 Introduction . 80

4.1.1 Contribution . 82
4.2 Related Work . 83
4.3 Preliminaries . 85

4.3.1 Network Centrality . 85
4.3.2 Problem Definition . 86

4.4 Results for Degree Centrality . 86
4.5 Results for Core Centrality . 93
4.6 Captain Networks . 98

4.6.1 For Multiple Leaders . 98
4.6.2 For Single Leader . 99

4.7 Simulation Results . 100
4.7.1 Evaluation of 2-Approximation Algorithm 100
4.7.2 Captain Networks and Core Centrality 102

4.8 Conclusion and Future Work . 103

xiv

5 Core Resilience 105
5.1 Introduction . 106
5.2 Related Work . 109

5.2.1 K-core computation and applications: 109
5.2.2 Network Resilience/Robustness 110
5.2.3 Resilience of k-core . 110
5.2.4 Shapley Value (SV) and combinatorial problems 111

5.3 Problem Definition . 111
5.3.1 Hardness and Approximability . 113
5.3.2 Parameterized Complexity . 117

5.4 Algorithms . 119
5.4.1 Baseline: Greedy Cut . 119
5.4.2 Shapley Value Based Algorithm 120
5.4.3 Optimizations for GC and SV . 127

5.5 Experiments . 127
5.5.1 Experimental Setup . 128
5.5.2 Quality Evaluation . 130
5.5.3 Running Time . 131
5.5.4 Application: k-core Resilience . 133
5.5.5 K-core Minimization on the Karate Network 134

5.6 Conclusion . 135

6 Controlling Influence 138
6.1 Introduction . 139
6.2 Related Work . 141
6.3 Influence Limitation . 142

6.3.1 Credit Distribution Model . 142
6.3.2 Problem Definitions . 144

6.4 Submodularity . 149
6.5 Curvature and APX-hardness . 152
6.6 Method: BIL . 155
6.7 Method: ILM . 158

6.7.1 Continuous Relaxation . 159
6.7.2 Rounding . 162
6.7.3 Generalizations . 164

6.8 Experimental Results . 164
6.8.1 Experiments: BIL . 167
6.8.2 Experiments: ILM . 169

6.9 Conclusions . 172

7 Conclusion 174

Bibliography 178

xv

List of Figures

2.1 Figure shows how the percentage of improvement is skewed over the num-
ber of pairs. 13

2.2 Example of Path Optimization Problem. We want to optimize the set
of pairs {(a, d), (d, f)} with a budget of two nodes from the candidates
Γ = {b, c, e, g}. 18

2.3 The figures shows the transformed graph G′ as a representation of nodes
u and v and the edge (u, v) in G. The values show the delays of the edges. 22

2.4 The distribution of (a) node-pair flows and (b) node delays in three real
road network datasets. 31

2.5 Comparison between MIP vs GSN: Normalized Flow Improvement for (a-
b) SF, (c-d) BJ. 39

2.6 (a) Approximation quality of ISS against GSN. (b-d)Running times of ISS
and GSN. 40

2.7 (NY) The flow improvement (FI) by varying (a) budget, (b) the number
of samples, and (c) β (%). 42

2.8 (a-c) The running times of ISS and USS by varying (a) (All) the size of
graphs, (b) (NY) the budget, (c) (NY) the number of samples. 42

2.9 The total improvement (TI) on (a) BJ and (c) NY. 46
2.10 (a) Tightness of RPOP and (b) The likelihood to have more than one

improved node in the shortest path between a randomly selected node
pair against β (in percentage). 47

2.11 Comparison of Flow Improvement FI(N) between ISS and other baselines
varying budget (k) (a-c) Synthetic Network Structure: on (a) BA, (b) WS,
and (c) ER graph generation models; (d) when the delays are on the edges. 49

3.1 Example of Coverage Centrality Optimization problem. We want to opti-
mize the centrality of {d, f} with a budget of one edge from the candidates
{(d, a), (d, b), (f, b)}. The coverage centrality of {d, f} is 0 in the initial
graph (a) and 3 in the modified graph (b). Node d belongs to the shortest
paths between (a, e), (a, c) and (a, f) in (b). 59

xvi

3.2 BUS vs. Greedy: Improvement in coverage centrality produced by differ-
ent algorithms. 73

3.3 Comparison with baselines on the EE dataset varying (b) the number of
samples and (c) the budget. 73

4.1 Example construction for hardness from Set Cover where U = {u1, u2, u3, u4}, S =
{S1, S2, S3}, S1 = {u1, u2}, S2 = {u2}, S3 = {u3, u4}. The red nodes are
the leaders and the blue nodes are the followers. 97

4.2 Number of edges added (b) by different algorithms: LB implies a loose
lower bound, HLDA is our algorithm that gives 2-approximation and Ran-
dom denotes a random edge addition algorithm. Clearly, in both networks
while varying edge density (average degree of nodes), the number of edge
addition by our algorithm HLDA is almost same as that of LB. 101

4.3 Summary of the difference in core centralities between a leader and a
captain in a given captain network (with 550 vertices) by varying number
of captains in each group (p) and leaders (h). 102

5.1 K-core minimization for an illustrative example: (a) Initial graph, where
all the vertices are in the 3-core; (b) Removing e1 causes all the vertices
to leave the 3-core; (c) Removing e2 causes only six vertices to leave the
3-core. 107

5.2 Examples of (a) a graph G; (b) its 2-core; and (c) its 3-core structures. . 113
5.3 Example of the changes in the core structure via deletion of an edge: (a)

All the nodes are in the 3-core. (b) In the modified graph, the nodes
{a, b, c, d} are in the 2-core. 113

5.4 Example construction for hardness reduction from SK where U = {u1, u2, u3}, S =
{S1, S2, S3}, S1 = {u1, u2}, S2 = {u1, u3}, S3 = {u2}. 116

5.5 Example construction for parameterized hardness from Set Cover where
U = {u1, u2, u3, u4}, S = {S1, S2, S3}, S1 = {u1, u2}, S2 = {u2, u3}, S3 =
{u3, u4}. 119

5.6 K-core minimization (DN(%)) for different algorithms varying (a-d) the
number of edges in the budget; (e-f) the core parameter k; (g-h) and the
sampling error ε. The Shapley Value based Cut (SV) algorithm outper-
forms the best baseline (LD) by up to 6 times. On the other hand, the
Greedy approach (GC) achieves worse results than the baselines, with the
exception of RD, in most of the settings. SV error increases smoothly with
ε and LD becomes a good alternative for large values of k. 129

5.7 Running times by SV using FB while varying (a) the sampling error ε
and (b) the core parameter k; and (c-d) impact of pruning for GC and
SV algorithms using three datasets. SV is efficient even for small values
of sampling error and its running time decreases with k. GC is up to one
order of magnitude faster with pruning, while SV is up to 50% faster. . 132

xvii

5.8 K-core (k = 3) minimization on the Newman’s Karate network: (a) b = 5
and (b) b = 10. Unfilled circle nodes are not in the 3-core of the original
network. After removal of b dashed (red) edges, filled (blue) circle nodes
remain in the 3-core and unfilled (red) square nodes are removed from the
3-core. 133

5.9 Core resilience for four different networks: (a) DB (co-authorship), (b)
WS (Webgraph), (c) FB (social), (d) ER (random). ER and DB are the
most and least stable networks, respectively. Tipping points are found for
ER and DB. 133

5.10 Core resilience (a, b) and other robustness metrics, clustering coefficient
(c, d) and efficiency (e, f) [1], for the Human and Yeast protein-protein
interaction networks. 137

6.1 Illustrative example of a social graph and CDM with the corresponding
credits over the edges. 146

6.2 We perform our methods for BIL (a) and ILM (b) on the Newman’s Karate
network with |X| = 5, k = 9. Square (red) nodes are in the target set, |X|,
and dotted (red) edges are in the solution set. The edges are incident to
few nodes in the solution for BIL, being strongly biased towards a small
set of nodes. For ILM, we have considered b = 2, which leads to a solution
with more uniform set of edges. 148

6.3 This illustrates a counter example in Theorem 34. 152
6.4 [BIL] (a, c, e) Decrease in Influence (DI) produced by different algorithms.

(b, d, f) DI produced by different algorithms varying the size of the target
set, X with k = 30. 165

6.5 [BIL] Comparison of our greedy algorithm and simulation based baselines
varying number of simulations: (a-b) Quality and (c-d) Running time. . 167

6.6 [ILM] Decrease in Influence produced by different algorithms on (a-b) CA,
(c-d) FXS, and (e-f) FCS. Our algorithm, CG outperforms the baselines
by up to 20%. 169

6.7 [ILM] Decrease in Influence (DI) produced by different algorithms varying
the size of the target set, X when b = 2. 173

xviii

List of Tables

2.1 Table shows the improvement (%) of pairs (%) for budget 8 and 10. . . . 13
2.2 Dataset description and statistics. 38
2.3 (NY) Comparison of Flow Improvement between ISS and other baselines

on NY against varying budget (k) and β. Each cell reports the relative
Improved Flow w.r.t. ISS, i.e. FIISS

FIX
, where X is the method used in that

particular cell. When X does not produce any FI (FIX = 0), FIISS
FIX

=∞. 43
2.4 (BJ) Comparison of Flow Improvement between ISS and other baselines

on BJ against varying budget (k) and β. 43
2.5 (Synthetic Delay:) Comparison of Flow Improvement between ISS and

other baselines on NY against varying budget (k) and type of synthetic
delays. 48

2.6 (Synthetic Flows/Importance:) Comparison of Flow Improvement between
ISS and other baselines on NY against varying budget (k) and type of syn-
thetic flows/importance. 48

3.1 Frequently used symbols . 59
3.2 Summary of the probabilistic approximations. 70
3.3 Dataset description and statistics. 72
3.4 he ratio between the improvement in coverage produced by GES for CCO

and RCCO. 72
3.5 CG data: Comparison of our sampling algorithm (BUS) and the baselines,

including our Greedy (GES) approach, using the CG dataset and varying
the budget k. We evaluate the coverage of BUS relative to the baselines—
i.e. how many times more new pairs are covered by BUS compared to the
baseline. 72

3.6 EU data: Comparison of our sampling algorithm (BUS) and the baselines
using the EU dataset. 74

3.7 Coverage centrality of BUS relative to baselines. 76
3.8 Improvement of other metrics after adding the edges found by BUS: the

numbers are improvement in percentage with respect to the value for the
initial graph. 77

xix

5.1 Frequently used symbols . 112
5.2 Dataset descriptions and statistics. The value of kmax (or degeneracy) is

the largest k among all the values of k for which there is a k-core in the
graph. 128

5.3 SV (approximate) vs. optimal algorithm using two datasets and a small
candidate set size (|Γ| = 50), and k = 5. 130

6.1 Frequently used symbols . 144
6.2 Statistics of the datasets. We generate synthetic actions via IC model for

CA, EE and CY datasets. 164
6.3 [BIL] Running times (in seconds) of Greedy varying number of tuples. The

number of tuples and actions are in thousands. 166
6.4 [BIL] Running Times of Greedy varying graph size for |X| = 30 and

k = 30. 168
6.5 [ILM] Running Times (in min.) of CG varying number of tuples for |X| =

20 and b = 2. 170
6.6 [ILM] Decrease in Influence (%) in FCS by Continuous Greedy (CG) vs

GRR varying the number of tuples. 170
6.7 [ILM] Decrease in Influence (%) in FXS by Continuous Greedy (CG) vs

GRR varying the number of tuples. The number of tuples and actions are
in thousands. 171

6.8 [ILM] Running times (in minutes) of CG varying number of tuples for
|X| = 20 and b = 2 on FXS. 172

6.9 [ILM] Running Time (Scalability) in seconds of CG and Decrease in Influ-
ence (percentage) by CG and GRR varying graph size for |X| = 20, b = 2
and the number of edges removed is 20. 172

xx

Chapter 1

Introduction

1.1 Network Design

The availability of data generated from computer systems is changing computer sci-

ence, providing an opportunity to build smart data-driven systems. This thesis focuses

on complex systems that can be modeled via an abstract framework known as graphs

or networks. For instance, social networks (e.g. Facebook, Twitter) model interpersonal

interactions and protein networks model interactions between protein structures. In par-

ticular, via leveraging structure and dynamics of these, this thesis is intended to improve

real-world and large-scale networks, contributing to the combinatorial optimization, and

the field of network and data science as a whole.

Network design problems include planning, implementing and augmenting networks

for desirable properties, have a wide range of applications in communication, trans-

portation and social networks as well as computational sustainability [2, 3, 4]: How to

contain fake news in social networks (viral marketing[4, 5, 6])? How to select a set of

land parcels for conservation to ensure species viability (computational sustainability

[7])? How to modify a social network to promote healthier behaviors among individuals

1

Introduction Chapter 1

(health care [8])?

The problems become very challenging because of the rapidly growing sizes of real-

world networks, leading to the need for scalable, data-driven approaches. In particular,

some network design problems involve local changes to an existing large network such as

adding/modifying links or nodes as a means to improve its global properties [6, 9, 7, 10,

3, 4].

From a theoretical standpoint, different from search versions (e.g. computing shortest

path), the design ones (e.g. optimizing shortest path) are computationally harder[11].

This thesis is motivated by algorithmic challenges as well as real-world applications of

network design. Network design problems become harder due to the combinatorial na-

ture. These problems discussed in this thesis cover a large range of the spectrum of

intractability. The k-core minimization problem [12] is NP-hard to approximate within

any constant, fixed parameter intractable, and W[2]-hard. For centrality [13] and shortest

path [14] optimization, the problems cannot be approximated within a constant factor

grater than 1−1/e. Additionally, while the approximations of these two remain open, the

influence minimization [15] under budget constraint can be solved within a tight constant

factor approximation of 1− 1/e.

1.2 Related Work

The majority of work on network design aim to solve various objectives via modifying

the network structure and node or edge attributes. The problems differ in the upgrade

models and the objective functions. Paik et al. [16] first introduced a set of design

problems in which vertex upgrades improve the delays of adjacent edges. Afterwards, the

problems regarding improving shortest path distances, centrality of nodes, and controlling

influence have received a significant amount of attention.

2

Introduction Chapter 1

Improving Shortest Paths: Network design problems to improve several global

objectives (vertex eccentricity, diameter, all-pairs shortest paths etc.) by addition of

edges have been addressed in the past literature [10, 17, 18, 19, 20]. Meyerson et al. [10]

designed approximation algorithms for single source and all pairs shortest path mini-

mization. Demaine et al. [19] proposed a constant factor approximation algorithm to

minimize the diameter of a network by adding shortcut edges. Prior work has also stud-

ied the eccentricity minimization problem in a composite network [20]. Lin et al. [3] also

proposed the shortest path improvement problem where the weights are associated with

undirected edges. Nikos et al. proposed a novel procedure to maximize the expected

decrease in shortest path distances from a given node to the remaining nodes via edge

addition [21]. While all of the above problems consider edge improvement, the node

version version of the problem is also studied in [7].

Computing centrality and related design problems. A significant amount of

related work study the computationally complexity of various centrality measures and

improving them. An efficient algorithm to compute the betweenness centrality of a vertex

in a network was proposed by Brandes [22]. More recently, Riondato et al. [23] introduced

an approach to compute the top-k vertices according to the betweenness centrality using

VC-dimension theory. Yoshida [24] studied similar problems for both the betweenness

and coverage centrality measures in a group setting. Mahmoody et al. subsequently

improved the performance of the above algorithms using a novel sampling scheme [25].

There is an active line of research to optimize the centrality of one node as well as of a set

of nodes [26, 27, 28, 29]. There are other work [26, 30] that proposed greedy algorithms

and randomized algorithms to increase different types of centrality of certain vertices.

Controlling or Boosting Influence: The influence boosting or limitation prob-

lems via network modifications are orthogonal to the influence maximization task [31].

3

Introduction Chapter 1

In these modification problems, the objective is to optimize (maximize or minimize) the

content spread via structural or attribute-level change in the network. Previous work

addressed the influence limitation problem in the SIR model [9, 32, 33]. The objective

is to optimize specific network properties in order to boost or contain the content/virus

spread. For instance, Tong et al. proposed methods to add (delete) edges to maximize

(minimize) the eigenvalue of the adjacency matrix. The influence spread optimization

problem also has been studied under the IC model via network design [34, 35, 36, 6, 37]

and injecting an opposite campaign [38, 39]. The same problem via edge addition and

deletion, respectively, were also studied under the Linear Threshold (LT) model by Khalil

et al. [4]. The influence minimization problem was also studied under a few variants

of LT model [5, 40]. Kuhlman et al. [5] solved the minimization problem via edge

removal heuristics in a simpler version of LT. In [40, 41], the authors explored influence

blocking maximization problem in a variant of LT model via node deletion and also

showed supermodular property. In summary, the approaches for optimizing influence

(propagation) are mostly based on the well-known diffusion models such as SIR, LT and

IC. However, Chapter 6 addresses the influence minimization problem based on available

cascade information.

1.3 Overview of the thesis

This thesis consists of five major chapters. The first two explore network design

problems based on structural properties. The third one is focused on security in covert

networks, and the last two chapters study how design controls network processes.

Chapter 2 studies the design problem to improve flows significantly in networks. Re-

duction of delays in end-to-end data flow is an important network optimization task.

Reduced delays enable shorter travel times for vehicles in road networks, faster informa-

4

Introduction Chapter 1

tion flow in social networks, and increased rate of packets in communication networks.

This chapter proposes a network design problem where the goal is to perform k network

upgrades such that it maximizes the number of flows in the network with a noticeable

reduction in delay. The problem is NP-hard, APX-hard, and non-submodular. The key

idea to overcome these computational challenges is to design an importance sampling

based algorithm with provable quality guarantees.

Central nodes in social networks can be influential, driving opinions and spreading

news or rumors. In hyperlinked environments, such as the Web, where users navigate via

clicks, central content receives high traffic, becoming target for advertising campaigns.

Controlling nodes’ centrality via network updates is a challenging task. Performing min-

imal modifications to a network to achieve a desired property falls under the umbrella

of network design problems. Chapter 3 is focused on improving group (coverage and

betweenness) centrality, which is a function of the shortest paths passing through a set

of nodes, by adding edges to the network. The core idea is to apply a greedy algorithm,

and even faster sampling algorithms, for group centrality maximization with theoretical

quality guarantees under realistic constraints.

Chapter 4 is dedicated to solve design problems in covert networks. Covert networks

are social networks that often consist of harmful users. There are various popular mea-

sures to quantify how influential or central any vertex is in a network. As expected,

strategic and influential miscreants in covert networks would try to hide herself from

being detected via these measures by introducing new edges. The corresponding com-

putational problem, called the hiding leader problem is NP-complete for the degree and

closeness centrality measures.This chapter studies the popular core centrality measure

and show that the problem is NP-complete even when the core centrality of every leader

is only 3. On the contrary, this work proves that the problem becomes polynomial time

solvable for the degree centrality measure if the degree of every leader is bounded above

5

Introduction Chapter 1

by any constant. This chapter also shows that, although classical complexity theoretic

framework fails to shed any light on relative difficulty of Hiding Leader for different

centrality measures, the problem is significantly “harder” for the core centrality measure

than the degree centrality one.

K-cores are dense patterns that have applications in community detection, network

visualization and protein function prediction. However, k-cores can be quite unstable to

network modifications, which motivates the question: How resilient is the k-core structure

of a network, such as the Web or Facebook, to edge deletions? We investigate this

question from an algorithmic perspective in Chapter 5. More specifically, we study the

problem of computing a small set of edges for which the removal minimizes the k-core

structure of a network. Besides studying comprehensive characterization of the hardness

of the k-core minimization problem (KCM), we propose a novel algorithm inspired by

Shapley value that is able to leverage the strong interdependencies in the effects of edge

removals in the search space. In experiments, we illustrate how KCM can be applied in

the analysis of the k-core resilience of networks.

The problem of influence limitation is discussed in Chapter 6. The spread of fake

news is a classical example of the abuse of social networks by “bad actors”. In this work,

we study how to limit the influence of a target group in a social network via the removal

of a few users/links. The idea is to control the diffusion processes while minimizing the

amount of disturbance in the network structure. We formulate of the influence limitation

problem is in a data-driven fashion and consider two types of constraints over edge

removals, a budget constraint and also a, more general, set of matroid constraints. These

problems lead to interesting challenges in terms of algorithm design.

6

Introduction Chapter 1

1.3.1 Other Work

There are other problems I have studied during my PhD. A few of them are network

design problems and I will not describe them in details in this thesis. The following is a

summary of these problems.

Network Design Problem [11, 42]

One of the design problems is to improve shortest paths in infrastructure (e.g., airport,

traffic), social, and technological networks. While the problem is intractable, we provide

a probabilistic approximation guarantee for a restricted problem formulation using VC

dimension theory. We also design randomized algorithms that provide scalability and

probabilistic approximations for different versions of the problem.

Machine Learning Models for Scalability Analysis [43, 44]

Many high-performance computing (HPC) and modern large graph processing ap-

plications belong to a class of scale-out applications, where the application dataset is

partitioned and processed by a cluster of machines. Assessing the application scalabil-

ity is one of the primary goals during such application implementation. In my summer

internship, we have worked on the problem of assessing and predicting the scalability

of a distributed memory program in a large-scale cluster. We have introduced a novel

regression-based approach to do so. Our solution involves profiling data from traditional

experiments in a small-sized cluster and an additional set of similar experiments per-

formed with an “interconnect bandwidth throttling” tool, which exposes the bandwidth

impact on the performance. These measurements are used in creating an ensemble of

analytical models. We predict scalability using linear regression models on important

parameters such as the number of cluster nodes and application processes, the dataset

size, and the interconnect bandwidth. The accuracy of our approach is demonstrated

using the popular Graph500 benchmark. Our main contribution is to apply machine

7

Introduction Chapter 1

learning methods towards scalability prediction in large clusters.

Solving Combinatorial Problems using Machine Learning [45]

Optimization problems on graphs appear routinely in various applications such as

viral marketing in social networks [31], computational sustainability [7], and health-

care [8]. These optimization problems are often combinatorial in nature, which results

in NP-hardness. Therefore, designing an exact algorithm is infeasible and polynomial-

time algorithms, with or without approximation guarantees, are often desired and used

in practice [46, 47, 14]. Furthermore, these graphs are often dynamic in nature and the

approximation algorithms need to be run repeatedly at regular intervals. Since real-world

graphs may contain millions of nodes and edges, this entire process becomes tedious and

time-consuming. For instance, advertising through social networks is a common practice

today and needs to solved repeatedly due to the networks being dynamic in nature.

Furthermore, even the greedy approximation algorithm has been shown to not scale on

large networks [48]. We design a deep reinforcement learning framework called GCOMB

to mimic the greedy algorithm. The proposed method utilizes Graph Convolutional

Network (GCN) to generate node embeddings that predicts the potential nodes in the

solution set. These embeddings enable an efficient training process to learn the greedy

policy via Q-learning. This work establishes GCMOB produces high quality results

while being faster than the greedy algorithm. GCOMB is also robust and scalable to

large dynamic networks.

8

Chapter 2

Delay Minimization

In several domains, the flow of data is governed by an underlying network. Reduction of

delays in end-to-end data flow is an important network optimization task. Reduced delays

enable shorter travel times for vehicles in road networks, faster information flow in social

networks, and increased rate of packets in communication networks. While techniques

for network delay minimization have been proposed, they fail to provide any noticeable

reduction in individual data flows. Furthermore, they treat all nodes as equally impor-

tant, which is often not the case in real-world networks. In this chapter, we incorporate

these practical aspects and propose a network design problem [14] where the goal is to

perform k network upgrades such that it maximizes the number of flows in the network

with a noticeable reduction in delay. We show that the problem is NP-hard, APX-hard,

and non-submodular. We overcome these computational challenges by designing an im-

portance sampling based algorithm with provable quality guarantees. Through extensive

experiments on real and synthetic data sets, we establish that importance sampling im-

parts up to 1000 times speed-up over the greedy approach, and provides up to 70 times

the improvement achieved by the state-of-the-art technique.

9

Delay Minimization Chapter 2

2.1 Introduction

Many applications generate data that flow through a network. Examples include

trajectories of vehicles in road networks [49, 50, 51], flow of packets in communication

networks [7], and electricity distribution in power grids [52]. Naturally, the quality of

flow is governed by the network properties. In this chapter, we study the problem of

network optimization to minimize delay in data flow.

To provide a concrete example, consider a road network and trajectories of vehicles

that ply through this network. In a road network, each edge corresponds to a road seg-

ment and a node represents an intersection. Naturally, optimizing the network for smooth

flow of vehicles is of critical importance. The quality of a traffic system is enhanced if the

commuting time is as low as possible. Therefore, an important question in optimizing

a road network is as follows. Given the trajectories and the number of people navigating

through these, how do we optimize the network to reduce the commuting time (delay) for

the maximum number of people? Optimizing the network in this example could mean

widening a road (edge), installing better signalling procedure at an intersection (node) or

deployment of traffic police at critical locations (edge or node) to better regulate vehicles.

An important consideration in this optimization problem is the budget. More specifi-

cally, we never have infinite resources to widen as many roads as needed. Rather, we can

introduce only k changes where k is decided based on the resource constraints. Conse-

quently, the goal is to intelligently perform k network optimizations such that the overall

path delays are minimized.

Applications: A prominent application of the proposed problem is in transporta-

tion infrastructure management for traffic congestion minimization. Metropolitan cities

worldwide are facing severe traffic congestion, which increases pollution, fuel usage, and

unproductive travel time [53]. For example, it is estimated that drivers in the City of

10

Delay Minimization Chapter 2

Chicago cumulatively suffered 302 million hours of travel delay with a total congestion

cost of $7, 222 million in 2014 [54]. The cause of traffic delays could arise from various

factors such as overshooting road capacities, poor road conditions, and sub-optimal sig-

nalling infrastructure. It is therefore of practical importance to analyze road network

data, identify bottleneck points, and propose systematic upgrades to these bottlenecks

so that they work in cohesion to reduce congestion.

There are several applications beyond traffic networks as well. For instance, given

a communication network, end-to-end delays of data packet flow can be improved via

upgrading network devices [7]. The delays of sending packets (data) arise in the device

level. Improving or upgrading the devices, such as upgrading a switch, enable a better

and faster communication system. As another application scenario, consider an airport

network [11] generated by a particular carrier. In the network, airports represent nodes

and the edges correspond to flights offered by the carrier between endpoint cities. Based

on information of the past flights one can associate airports with airline-caused delays

such as security check delay, luggage handling, etc. An important question for a carrier

is how to minimize overall travel time by improving the available infrastructure (e.g.

luggage handling).

The importance of this problem has been recognized in the data mining literature [3,

10]. The problem is modeled as follows. The delay in each node or edge of the network

is quantified using a weight. The length of a path is the summation of its constituent

node and edge weights. A network upgrade involves reducing the weight of a node or an

edge to a small value α ≥ 0. The total delay in the flow from node u to v is therefore

the length of shortest path from u to v. Given a budget k, the goal is to perform k

network upgrades such that the sum (or average) of all pairs shortest path distances in

the network is minimized. Existing techniques, however, ignore two key practical aspects.

1. Noticeable impact: Existing techniques [11, 7] focus on minimizing the sum of

11

Delay Minimization Chapter 2

the shortest path distances across all pairs of nodes in a network. This formulation leads

to negligible reduction in the delay between most of the individual pairs. Consequently,

none of the stakeholders (such as vehicles in road networks) witness any noticeable dif-

ference in their experiences and may not be satisfied even in the improved network.

To substantiate our claim that existing techniques fail to provide noticeable reduction

on individual pairwise delays, we execute the state-of-the-art algorithm [11] on the Los

Angeles road network [11] and present the results in Table 2.1 and Fig. 2.1. Fig. 2.1

presents the distribution of improvement (%) over all node pairs and Table 2.1 presents

the cumulative distribution of improvement (%). As shown in Table 2.1, more than 92%

of the total node pairs do not improve at all. Furthermore, less than 3% of the total

pairs have improvement more than 5%. To mitigate the above outlined issue: in this

chapter, we ask a more practical question:How should we perform k node upgrades such

that the maximum number of shortest paths have a significant reduction in their lengths?

We call a reduction in length significant if the reduced length is at least β% shorter than

its original length, where β is a user-provided input parameter.

2. Node pair importance: Existing techniques assume that the shortest path

between any pair of nodes is equally important. In reality, this is often not the case.

In road networks for example, arterial roads connecting prominent places such as the

downtown, office and residential districts, airport, etc., have far higher traffic than other

roads. Consequently, having a noticeable reduction in the delay in these arterial roads is

of higher importance than other less frequently travelled roads.

Our main contributions are as follows:

• We propose and formalize a novel and practical Path Optimization Problem (POP)

to minimize delays in a network. The proposed problem incorporates practical

aspects such as importance of node pairs and noticeable improvement in quality.

12

Delay Minimization Chapter 2

Improvement (%) k = 8 k = 10
= 0 92.22 92.16
> 0 7.78 7.84

>= 2 6.73 6.78
>= 5 2.44 2.45
>= 10 0.43 0.42

Table 2.1: Table shows the improvement (%) of pairs (%) for budget 8 and 10.

0 50

Improvement %

10 -2

10 0

10 2
%

 P
ai

rs k=5
k=7

Figure 2.1: Figure shows how the percentage of improvement is skewed over the
number of pairs.

• We show that POP is NP-hard as well as APX-hard. We formulate an optimal

mixed integer programming (MIP) formulation.

• To overcome the hardness of POP, we propose an iterative greedy algorithm that

produces comparable results to optimal MIP. To further enhance scalability, we

propose an importance sampling algorithm with probabilistic approximation guar-

antees.

• We perform extensive benchmarking on real-world road networks and establish that

importance sampling obtains a speed-up of three orders of magnitude over greedy

and 70 times better than the state-of-the-art algorithm.

13

Delay Minimization Chapter 2

2.2 Related Work

The majority of work on network design target various objectives via modifying the

network structure and attributes [6, 55, 56]. The problems differ in the upgrade models

and the objective functions. Paik et al. [16] first introduced a set of design problems in

which vertex upgrades improve the delays of adjacent edges. Later, Krumke et al. [57]

generalized this model assuming varying costs for vertex/edge upgrades and proposed

algorithms to minimize the cost of the minimum spanning trees. Lin et al. [3] also

proposed the shortest path improvement problem where the weights are associated with

undirected edges. In the above problems, the upgrade models are different and cannot

be used to solve out problem.

The closest works to our problem are [7] and [11]. Though they consider a variation of

POP, our formulation is different in the sense that we target significant improvement of

the important paths. Both these techniques do not capture the intricacies of significant

improvement and node pair importance and thus, as shown in our comparative evaluation,

the performance suffers (Section 2.5).

Network design problems to improve several global objectives (vertex eccentricity,

diameter, all-pairs shortest paths etc.) by addition of edges have been addressed in the

past literature [10, 17, 18, 19, 20]. Meyerson et al. [10] designed approximation algorithms

for single source and all pairs shortest path minimization. Demaine et al. [19] proposed

a constant factor approximation algorithm to minimize the diameter of a network by

adding shortcut edges. Prior work has also studied the eccentricity minimization problem

in a composite network [20]. All of the above problems, however, consider structural

modification (addition of new edges), and hence are complementary to our setting.

Other related problems involve efficient computation of network centrality. In [23], the

authors compute top-k nodes based on betweenness centrality via sampling. The group

14

Delay Minimization Chapter 2

betweenness problem has been solved in almost linear time [24, 25] by a probabilistic

approximation algorithm. The design problems to improve the centralities of nodes had

been studied in recent past [13, 26, 27, 58]. In these works, the shortest path based

centralities has been improved via edge addition. These words differ from the proposed

problem in both the upgrade model as well as the objective function.

2.3 Problem Definition

In this section, we first define the concepts central to our problem and then analyze

the problem complexity.

2.3.1 Preliminaries

The path optimization problem ingests two sources of data as inputs: a network and

a collection of network flows.

Definition 1 (Network) A network is modeled as a graph (directed or undirected)

G(V,E, L), where V and E are sets of nodes and edges respectively and L is function

L : V → R>0 over V . This function specify the delays (weights) lv := L(v) of individual

nodes.

In several domains, objects flow through a network. For example, in transportation

networks, vehicles move through a road network. Similarly, in a communication network,

data packets move through a sequence of connected routers. We capture the flow of such

objects through the idea of network flows.

Definition 2 (Network Flow) A network flow represents the flow of an object through

a network. Mathematically, each flow corresponds to some path Pv1,vr = (v1, v2, ..., vr)

from the source node v1 to destination vr.

15

Delay Minimization Chapter 2

In a transportation network, the set of network flows would be a set of vehicular

trajectories, and in a communication network, the network flows would constitute the

routes taken by data packets

Definition 3 (Path Delay) The delay of a path is defined as the cumulative delays

(weights) of the nodes along the path, excluding that of the destination node. More for-

mally, if Pv1,vr = (v1, v2, ..., vr) is a path from node v1 to vr, its delay is defined as Σr−1
i=1 lvi.

Weight at the destination node in a path is excluded since the destination node

typically does not add any delays in case of the targeted applications (e.g., commuting

time in the traffic network). The shortest path between two nodes s and t is the one with

the minimum delay among all paths connecting these two nodes and its delay is denoted

as d(s, t). By convention, d(s, s) = 0 for all s ∈ V . Furthermore, if there does not exist

a path between two nodes u and v, then d(u, v) = ∞. We next define the concept of

improving a node.

Definition 4 (Node Improvement) A node is improved by reducing the node delay lv

to a small value α ≥ 0. The nodes (a fixed/budget k number of nodes) to be improved

are chosen from a given candidate set of nodes Γ.

For simplicity, in the rest of the chapter, we assume α = 0. The proposed techniques

and proofs hold for any value of α.

The reduction of delays in few nodes (call it solution set S) may significantly reduce

the delay of the shortest paths. We quantify significant improvement in path delay

through the definition of β-improvement.

Definition 5 (β-Improvement) A node pair (s, t) is β-improved if d(s,t)−d(s,t;S)
d(s,t)

≥ β,

where d(s, t) is the original shortest path and d(s, t;S) is the updated shortest path after

improving nodes in solution set S.

16

Delay Minimization Chapter 2

We use ΛS to denote the set of β-improved node pairs.

As discussed in Sec. 2.1, not all node pairs are equally important. For instance, if

the traffic flow between two prominent regions is much higher than the flow between two

less-visited regions, then it is more important to improve the path between the prominent

regions. This aspect is modeled through node pair flow.

Definition 6 (Node pair flow:) Let F be the collection of all network flows in the net-

work. The flow associated with a node pair (u, v), denoted by ξu,v, is the proportion of

flows originating at u and terminating at v. Mathematically,

ξu,v =

∣∣{f ∈ F | f starts at u and ends at v}
∣∣

|F| (2.1)

In a road network, the flow between a node pair (u, v) can be computed by counting

the number of vehicles that started at u and ended at v. Similarly, in a communication

network, the flow corresponds to the number of packets flowing from u to v. The quality

of a solution set S is quantified as the total flow f(S) among β-improved node pairs.

Mathematically,

f(S) =
∑

(u,v)∈ΛS

ξu,v (2.2)

The path optimization problem is defined as follows.

Problem 1 (Path Optimization Problem (POP)) Given a network G = (V,E, L), the

set of flows F, the improvement parameter β, a candidate set of nodes Γ that can be

improved, and a budget k, find a solution set S ⊂ Γ such that |S| = k and f(S) is

maximized.

Example 1 Figure 2.2 shows a possible solution of size k = 2. Initially, the delays of

the green, red, blue and grey nodes are 0, 5, 10, 20 respectively. Let the candidate set

17

Delay Minimization Chapter 2

S1

gfe

abcd

10
10

10

205 20 5

(a) Initial graph

S1

gfe

abcd

10
10

10

05 0 5

(b) Modified graph

Figure 2.2: Example of Path Optimization Problem. We want to optimize the set of
pairs {(a, d), (d, f)} with a budget of two nodes from the candidates Γ = {b, c, e, g}.

Γ = {b, c, e, g} and β = 60%. Furthermore, let the collection of network flows F be such

that |F| = 150 and ξa,d = 100
150
, ξd,f = 50

150
, and the flow between all other pairs is 0. Figure

2.2b shows an optimal solution, where the modified graph has the delays of b and c are

reduced to 0. Improving b and c results in f({b, c}) = 150
150

= 1 since it produces at least

60% improved shortest path between (a, d) (35 becomes 5) and between (d, f) (15 becomes

5).

Edge Upgrades: We limit ourselves to node upgrades since this is a more generic

formulation and any network with delays on edges can easily be mapped to an equivalent

network with delays on nodes. More specifically, an edge (u, v) with delay le is partitioned

into two edges (u, e) and (e, v), where e is a new node inserted into the network and the

delay on node e is le. By setting Γ to include only the newly added nodes corresponding

to the edges, we solve the problem for edge upgrades. If delays are both on edges and

nodes, Γ may include all candidate nodes and edge-converted-nodes.

Practical Implications: In a practical scenario, the cause of a delay can be multiple.

For example, in a road network, it could arise due to reaching the capacity of a road

segment, poor road quality such as potholes, or sub-optimal signalling infrastructure.

Reducing delays in such cases could therefore mean widening a road (edge), improving

the quality of a road (edge), or upgrading signalling infrastructure at an intersection

18

Delay Minimization Chapter 2

(node). In our problem, however, we do not deal with the exact cause of the delay or the

upgrade mechanism to remove this delay. These domain-specific aspects are abstracted

out and the problem only identifies the delay causing entities, and the impact of removing

these delays.

2.3.2 Hardness and Approximability

Theorem 1 POP (decision version) is NP-hard.

Proof: Consider an instance of the NP-complete Set Cover problem, defined by a

collection of subsets S = {S1, S2, ..., Sm} for a universal set of items U = {u1, u2, ..., un}.

The problem is to decide whether there exist k subsets whose union is U . To define a

corresponding POP instance, we construct an undirected graph with m+ n+ 1 nodes in

V : there are nodes i and j corresponding to each set Si and each element uj respectively,

and an undirected edge (i, j) whenever uj ∈ Si. Node a is added to the graph. Node

a is connected to i for all Si ∈ S. The reduction clearly takes polynomial time. The

candidate set Γ = {i|Si ∈ S}, ξa,j = 1/n for each node j corresponding to uj ∈ U , and

all remaining node pairs have 0 flow between them. All weights are equal (let us say d)

and β = d
2d

= 1
2
.

A set S ′ ⊂ Γ = S, with |S ′| ≤ k is a set cover iff f(S ′) becomes 1. Assume that S ′ is

a set cover and weights are reduced to α = 0 for every node in S ′. Then f(S ′) becomes

1 as the nodes in U are of distance d from a. Note, in the initial graph, the distances

between a and nodes in U are 2d.

On the other hand, assume that the f(S ′) becomes 1 after reducing the weights of

nodes in any set S ′ ⊂ S with |S ′| ≤ k. The only way to have the distance between (a, u)

(u ∈ U), improved by β = d
2d

or 1
2

is by making S ′ a set cover.

19

Delay Minimization Chapter 2

Theorem 2 POP is APX-hard. More specifically, it is NP-hard to approximate POP

within a factor of (1− 1
e
).

Proof: For reduction, we use the Maximum Coverage (MSC) problem. Given a

collection of subsets S1, S2, ..., Sm for a universal set of items U = {u1, u2, ..., un}, the

problem is to choose at most k sets to cover as many elements as possible. We give an

L-reduction [59] from the MSC problem with parameters x and y. Our reduction is such

that following two equations are satisfied:

OPT (IPOP) ≤ xOPT (IMSC) (2.3)

OPT (IMSC)− s(TM) ≤ y(OPT (IPOP)− s(T P)) (2.4)

where IMSC and IPOP are problem instances, and OPT (Y) is the optimal value for

instance Y . s(TM) and s(T P) denote any solution of the MSC and POP instances

respectively. If the conditions hold and POP has an ε approximation, then MSC has an

(1−xy(1−ε)) approximation. However, MSC is NP-hard to approximate within a factor

greater than (1− 1
e
). It follows that (1− xy(1− ε)) < (1− 1

e
), or, ε < (1− 1

xye
) [26]. So,

if the conditions are satisfied, POP is NP-hard to approximate within a factor greater

than (1− 1
xye

).

We apply the same construction as in Theorem 1. However, we use MSC problem

for reduction. Let the solution of IPOP be s(T P). That implies that the number of

β-improved pairs increases by s(T P) · n. Note that, by construction, s(T P) · n = s(TM).

So, it follows that both the conditions are satisfied when x = 1/n and y = n. Thus, POP

is NP-hard to approximate within a factor greater than (1− 1
e
).

We next investigate the existence of submodularity property. A function f(.) is

submodular if the marginal gain from adding an element to a set S is at least as high as

20

Delay Minimization Chapter 2

the marginal gain from adding it to a superset of S. Mathematically, it satisfies:

f(S ∪ {o})− f(S) ≥ f(T ∪ {o})− f(T) (2.5)

for all elements o and all pairs of sets S ⊆ T . For submodular and monotone functions,

the greedy algorithm of iteratively adding the element with the maximum marginal gain

approximates the optimal solution within a factor of (1− 1
e
)[60]. The next theorem shows

that the optimization function related to POP is monotone but does not have submodular

property.

Theorem 3 The objective function f(.) is monotone but not submodular.

Proof: Monotone: Follows from the definition of a shortest path. Let the reduction

of delays in S result in the set of β-improved node pairs, ΛS. Reducing the delay of one

more node v ∈ Γ cannot decrease
∑

(u,v)∈ΛS
ξu,v, i.e., f(S). Thus, f(.) is monotone.

Non-submodular: To prove non-submodularity, we consider the simple example of a

chain graph G of four nodes with unit delays: node x1 is connected to x2, x2 to x3 and x3

to x4 by edges. The intuition is the following: a super-set of nodes as solution might force

the shortest paths improved by β along with the newly added vertex, whereas, a sub-set of

nodes is not sufficient to improve by β. Let us set A = φ,B = {x2}, β = 2
3
, α = 0,Γ = V .

Only the node pair {(x1, x4)} has a flow of 1. In our example, f(B∪{x3}) = 1, f(B) = 0

as β = 2
3
. f(A ∪ {x3}) = 0, f(A) = 0. So, f(B ∪ {x3}) − f(B) > f(A ∪ {x3}) − f(A).

So, f(·) is not submodular.

2.4 Algorithms

POP is not only NP-hard, but also hard to approximate. Furthermore, due to lack

of submodularity, it is hard to even decide on an optimization strategy. We therefore

21

Delay Minimization Chapter 2

u-

v-

u+

v+

l_u

l_v

0

0 0

0

Figure 2.3: The figures shows the transformed graph G′ as a representation of nodes
u and v and the edge (u, v) in G. The values show the delays of the edges.

start with the optimal solution to POP through mixed integer programming (MIP). Next,

we improve efficiency through a greedy approach. Finally, we further expedite greedy

through importance sampling with probabilistic guarantees on the approximation error,

which allows us to scale on real networks containing more than half a million nodes.

2.4.1 Optimal Solution

We formulate the POP problem as a mixed integer program (MIP), in order to obtain

the optimal solution. We use a multi-commodity flow formulation[7] to compute the

shortest path delay between a node pair p = (u, v) ∈P (for simplicity, P = V ×V). To

apply MIP on a given graph G, we first convert it to a directed graph G′ as follows: a

node v is replaced by two nodes v− and v+ with two additional parallel edges from v− to

v+ with delays lv (original node edge, ev) and 0 (upgraded node edge e′v) respectively. If

an edge (u, v) is present in the original graph, there are two edges (u+, v−) and (v+, u−)

with delays 0 in G′. Figure 2.3 shows an example of this transformation procedure for

an edge e = (u, v). The variables used in the MIP formulation are as follows:

• xv: a flag for whether node v is to be upgraded.

• xp: a variable that indicates a pair p is β-improved

22

Delay Minimization Chapter 2

• d′(p):the effective shortest path delay between nodes in pair p

• ∆p: difference between effective improvement and β in pair p.

• budget: the total number of upgraded nodes

• gpv: a continuous variable that indicates the flow of the commodity p on edge ev.

• g′pv: continuous variable that indicates the flow of the commodity p on edge e′v.

• hpe: continuous variable that indicates whether edge e is chosen to be on the shortest

path for the pair p.

In an integral solution, gpv and g′pv denote whether the original node and upgraded

node respectively are chosen to be on the shortest path between the pair p in an integral

solution. We use δ−(v−) and δ+(v+) to denote the set of incoming and outgoing edges

respectively. d(p) denotes the original shortest path distance (we assume this as constant

as it is given) in the initial graph for pair p. M is a large positive constant. The full MIP

formulation is as follows:

max

∑
p∈P

ξp

 such that,

23

Delay Minimization Chapter 2

gps + g′ps = 1, gpt + g′pt = 1 ∀p = (s, t) ∈P (2.6)∑
e∈δ−(s−)

hpe = 0 ∀p = (s, t) ∈P (2.7)

∑
e∈δ+(s+)

hpe = gps + g′ps ∀p = (s, t) ∈P (2.8)

∑
e∈δ−(t−)

hpe = gpt + g′pt ∀p = (s, t) ∈P (2.9)

∑
e∈δ+(t+)

hpe = 0 ∀p = (s, t) ∈P (2.10)

∑
e∈δ+(v+)

hpe = gpv + g′pv ∀p = (s, t) ∈P,∀v 6= s, t ∈ V (2.11)

∑
e∈δ−(v−)

hpe = gpv + g′pv ∀p = (s, t) ∈P,∀v 6= s, t ∈ V (2.12)

g′pv ≤ xv, gpv ≤ 1− xv ∀p = (s, t) ∈P,∀v 6= s, t ∈ V (2.13)

d′(p) =
∑
v∈V

lv · gpv ∀p ∈P (2.14)

∆p =
d(p)− d′(p)

d(p)
− β ∀p ∈P (2.15)

budget =
∑
v∈V

xv, budget ≤ k, xv ∈ {0, 1}∀v ∈ V (2.16)

∆p ≥ −M(1− xp), ∆p < Mxp,∀p ∈P (2.17)

xp ∈ {0, 1} ∀p ∈P (2.18)

hpe, gpv, g
′
pv ≥ 0 ∀p ∈P, e ∈ E, v ∈ V (2.19)

The constraints in MIP formulation for POP are shown in Eqs. (2.6-2.19). The

constraints as Eqs. (2.6-2.12) are used to model the shortest path delay of each terminal

pair as multi-commodity flow. Constraints (2.6-2.10) enforce the nodes s and t to be the

source and sink respectively with one unit of flow in each terminal pair (s, t). The next

two constraints (2.11,2.12) ensure the flow conservation through the rest of the nodes.

24

Delay Minimization Chapter 2

Constraint 2.13 enforces that the upgraded node edge e′v will carry the flow instead of

the original node edge ev, when the node v is upgraded. The original node edge ev carries

the flow when the node v is not upgraded. Constraint 2.14 computes the total effective

delay. Constraint 2.15 computes the difference between effective fractional improvement

of each pair and β. Constraint 2.16 computes the total budget and sets the maximum as

k. It also ensures that the upgrade decision variables for nodes are binary. Constraints

2.18 and 2.19 ensure that improvement decision variables for pairs and flow variables are

binary and non-negative respectively. Constraint 2.17 ensures that xp is 1 when ∆p is

non-negative.

While the above MIP formulation allows us to compute the optimal solution, it is

not scalable to large networks. This motivates us to design approximation algorithms for

POP. For any approximation algorithm, it is desirable to provide theoretical guarantees

on the approximation error. However, since POP is APX-hard, it is NP-hard to even

approximate within a factor of 1− 1
e
. Owing to this property, we first consider a restricted

version of POP and develop a greedy algorithm. Next, we generalize this greedy algorithm

for POP and provide probabilistic error bounds.

2.4.2 Restricted Path Optimization Problem (RPOP)

RPOP introduces the restriction that each node pair can be β-improved by only one

node. In other words, there cannot be two β-improved nodes in the shortest path between

a node pair. We next show that RPOP is a lower bound of POP.

Theorem 4 Let f r(S) be the total flow from all pairs that satisfy the RPOP constraint.

For any solution set S, f r(S) ≤ f(S).

25

Delay Minimization Chapter 2

Proof. Let P r and P be the set of all β-improved node pairs under RPOP and POP

for a solution set S respectively. Since P r ⊆ P ,

f r(S) =
∑

∀(u,v)∈P r
ξu,v ≤ f(S) =

∑
∀(u,v)∈P

ξu,v �

Since RPOP is a lower bound of POP, intuitively, a good solution to RPOP is likely

to yield a good solution to POP as well if the objective functions yield values that are

close to each other. With this intuition, we next show that RPOP is monotone and

submodular.

Theorem 5 The objective function f r(.) is monotone and submodular.

Proof: Monotone: The proof is similar as in Theorem 3.

Submodular: We consider improvement (delay reduction) of two sets of nodes, Va and

Vb where Va ⊂ Vb, and show that f r(Va ∪ {v})− f r(Va) ≥ f r(Vb ∪ {v})− f r(Vb) for any

node v ∈ Γ such that v /∈ Va and v /∈ Vb. Let F (A) be the set of node pairs (s, t) which

are β-improved by a vertex v ∈ A. Then f r(.) is submodular if F (Vb ∪ {v}) \ F (Vb) ⊆

F (Va∪{v})\F (Va). To prove this claim, we use the described constraint. Therefore, each

pair (s, t) ∈ F (Vb) is β-improved by only one node in Vb. As Va ⊂ Vb, adding v to Va will

β-improve some of the pairs which are already β-improved by Vb\Va. Then, for any newly

β-improved pair (s, t) ∈ F (Vb∪{v})\F (Vb), it must hold that (s, t) ∈ F (Va∪{v})\F (Va).

Theorem 6 RPOP is APX-hard, i.e., RPOP cannot be approximated within a factor

greater than (1− 1
e
).

Proof: The proof directly follows from Theorem 2 as the construction respects the

described constraint.

26

Delay Minimization Chapter 2

Since the objective function f r(.) is submodular and monotone, the greedy algorithm

of iteratively adding the node with the maximum marginal gain on Eq. 2.2 approximates

RPOP within a factor of (1− 1
e
) [60]. This result, in conjunction with Theorem 6, allows

us to conclude that greedy is the best possible polynomial-time algorithm for RPOP.

The above conclusion motivates us to propose a greedy heuristic (GSN, Algorithm 1)

for optimizing POP as well. More specifically, we know from Theorem 4 that RPOP is

a lower bound for POP. Furthermore, from an intuitive point of view, in most real life

networks the number of node pairs is much larger than the budget k. Thus, the likelihood

of having more than one improved node in the shortest path between a randomly selected

node pair is low. Consequently, it is likely that the lower bound is tight.

However, an important question remains. Can we provide bounds on the quality of the

greedy solution for POP? We answer this question through the sandwich theorem [61].

The idea of the sandwich theorem is as follows: First, run the greedy algorithm on the

actual function (f(.)) and its lower bound (f r(.)). Let S ′ and Sr be the produced solution

sets respectively. If S = arg maxS∈{S′,Sr} f(S), f(S) has the following lower bound:

Theorem 7 Sandwich Theorem: If f r is a lower bound of f and f r is monotone and

submodular, then

f(S) ≥ C · (1− 1

e
).f(S∗) (2.20)

where C = fr(S∗)
f(S∗)

and S∗ is optimal solution under cardinality constraint for function

f(.).

Proof. f(S) ≥ f r(S) ≥ (1− 1

e
)f r(S∗)

≥ C · (1− 1

e
).f(S∗) Since f r(S∗) = C f(S∗)�

Theorem 7 says that the performance of greedy on POP is directly proportional to the

27

Delay Minimization Chapter 2

Algorithm 1 Greedy Selection of Nodes (GSN)

Require: Network G = (V,E, L) with vertex delays l(v), network flows F, Budget k,
candidate set Γ, β.

Ensure: A subset of k nodes
1: S ← ∅
2: Compute the shortest path between all nodes that is part of some node pair with

non-zero flow to all other nodes in the network. Store the corresponding shortest
path delays in distance matrices A,B

3: while |S| < k do
4: for v ∈ Γ \ S do
5: λv ←

∑
(x,y)∈Λs

ξx,y where Λs is the set of new β-improved pairs when lv = 0

(Use A to compute β-improvement and B to compute marginal gain)
6: end for
7: v′ ← arg maxv∈Γ\S{λv} and then set l(v′) as 0
8: S ← S ∪ {v′}
9: Update d(s, t) in B as l(v′) becomes 0

10: end while
11: return S

tightness of RPOP. More specifically, C = fr(S∗)
f(S∗)

quantifies the tightness of RPOP. The

closer the ratio is to 1, the better is the approximation quality. Our empirical evaluation

in Section 2.5 reveals that C typically lies in the range [0.5, 1].

2.4.3 Greedy Selection of Nodes

Algorithm 1, called GSN, outlines the pseudocode of the greedy algorithm for POP.

In each iteration, it selects the node that produces the maximum marginal gain on

the total flow from β-improved pairs given the current solution set, S (step 7). To enable

this operation, first, GSN pre-computes the shortest path delays between any node that

is part of at least one node pair with a positive flow to all other nodes in the network and

stores them in matrices A and B (step 2). Note, we ignore shortest paths between nodes

u and v, if neither u nor v is part of some node pair with a positive flow, since such paths

do not contribute to the flow improvement. If the network is undirected, computing only

28

Delay Minimization Chapter 2

the upper half of the distance matrix is enough since distances are symmetric. Stored

path delays in A remain unchanged through out the algorithm. On the other hand, B

stores the updated shortest path delays following the node upgrades made in S. A is

used to determine if a pair has been β-improved and B is used to compute the marginal

gain of a node upgrade. S is populated iteratively (3-9) and B is updated in each of

these iterations (line 9). Finally, after k iterations, the solution set S is returned (line

11).

Example 2 Figure 2.2 shows a possible solution of size k = 2 for a small network. The

settings are already described before. In the first step, GSN can choose either node c or e

as both of them individually β-improve (the initial shortest path delay, 15 becomes 5) the

pair (d, f) and thus improves flow of 50
150

. If node c is chosen, then in second iteration,

GSN will choose node b as it β-improves (the initial distance, 35 becomes 5) the pair

(a, d) and thus flow of 100
150

.

Cost Analysis

Computation Cost: The most important steps in GSN are lines 2, 5 and 9. In the

worst case, line 2 computes all-pairs-shortest-paths in time O(n2 log n), where n is the

total number of vertices. Next, it chooses, among the candidate nodes Γ, the one that

maximizes the number of β-improved pairs (line 5), which takes O(|Γ|n2) time. As the

shortest path distances are stored, the computation of β-improved pairs takes O(n2) for

each candidate node. After choosing the best node and improving its delay, the shortest

path distances are updated in B (line 9) consuming O(n2) time. Therefore, the total

running time of GSN is O(n2 log n+ k|Γ|n2).

Memory footprint: Since in the worst case we need to store the distance matrix

for all pairs shortest path delays, the memory footprint is O(n2).

29

Delay Minimization Chapter 2

Both the computation cost and the memory footprint are prohibitively large for large

networks. Clearly, a more efficient approach than greedy (Alg. 1) is required. Towards

that goal, we expedite greedy through sampling and provide theoretical guarantees on

the sampling quality.

2.4.4 Sampling

As in any sampling algorithm, the goal is to carefully select a subset of the data and

compute the answer set by only analyzing this subset. In our particular case, the goal is

to sample a subset of node pairs, and execute the greedy algorithm only on the sampled

subset. The sampling algorithm is effective if the computed answer set is as good as

the answer set that would be computed if the entire dataset is processed. The key step

towards ensuring this quality control is to choose a subset that is representative of the

entire data for the task in hand. Towards that end, we first consider the näıve approach

of uniform sampling.

Uniform Sampling

As the name suggests, in this procedure, we sample uniformly with replacement a set

of ordered node pairs U from the set of all node pairs in V × V . Although the approach

is simple, this sampling algorithm under-utilizes the information hidden in node pair

flows. More specifically, not all node pairs are of equal importance. In our optimization

function (Eq. 2.2), improving the shortest paths on important node pairs has a much

more profound impact than improving pairs that have negligible flow between them.

To better understand the impact of ignoring node pair importance, in Figure 2.4a,

we plot their distribution on three real road networks of Beijing, New York, and San

Francisco. The flow of a node pair (a, b) is the proportion of taxi trips from location a

30

Delay Minimization Chapter 2

10 -7 10 -5 10 -3

Normalized Flow

10 -3

10 1
10 2

%
 N

od
e

P
ai

rs Beijing
NY
SF

(a) Flow

0 50 100
Node Delay (Sec.)

10 -5

10 0

%
 N

od
es

Beijing
NY
SF

(b) Delay

Figure 2.4: The distribution of (a) node-pair flows and (b) node delays in three real
road network datasets.

to b. As can be seen, the distribution follows a power law, which means a small set of

node pairs are highly more popular than the remaining majority. Since a small minority

of the node pairs contribute majority of the node flows, uniform sampling is unlikely to

have a large enough sample of these important node pairs. Consequently, the estimates

computed from the sampled sets may suffer. To overcome this drawback, we propose

Importance Sampling.

Importance sampling

Importance sampling [62, 63] samples elements proportional to their importance.

When applied to POP, importance sampling samples node pairs proportional to their

flow value. Consequently, the sampling is biased towards node pairs that are more rele-

vant to compute the given estimate. The formal definition is as follows.

Definition 7 (Importance Sampling) In importance sampling, a node pair (s, t) is

selected (with replacement) in the sampled set I with probability p̂s,t = ξs,t.

Next, we show that importance sampling is an unbiased estimator of the entire set.

A sampling procedure is unbiased if it is possible to estimate the mean of the entire

set from the sampled set. More formally, E[µ̂(I)] = µξ =
∑
ξs,t

n(n−1)
= 1

n(n−1)
, where µ̂(I)

31

Delay Minimization Chapter 2

is the mean estimator. We define µ̂(I) as the weighted average over the samples in I:

µ̂(I) = 1∑
(s,t)∈I ŵs,t

∑
(s,t)∈I ŵs,t ·ξs,t , where ŵs,t = 1

p̂s,t
. Next, we show µ̂(I) is an unbiased

estimator of µξ.

Lemma 1 µ̂(I) is an unbiased estimate of µξ when ŵs,t = 1
p̂s,t

, i.e., E[µ̂(I)] = µξ.

Proof: E[µ̂(I)] = 1
E[
∑

(s,t)∈I ŵs,t]
· E
[∑

(s,t)∈I ŵs,t · ξs,t
]

If we simplify the first term, we obtain

E

 ∑
(s,t)∈I

ŵs,t

 = |I|.E[ŵs,t] = |I|.
∑

∀(s,t)∈V×V

ŵs,t · ξs,t= n(n− 1)|I|

where, n = |V |. From the second term, we get,

E

 ∑
(s,t)∈I

ŵs,t · ξs,t

 = |I|E[ŵs,t · ξs,t] = |I|
∑

∀(s,t)∈V×V

p̂s,t(ŵs,t · ξs,t)= |I|

Combining these two, E[µ̂(I)] = |I|
n(n−1)|I| = µξ.

Armed with an unbiased estimator, we show that by carefully choosing the size of the

sample set, importance sampling provides an accurate estimation of the marginal gain of

adding a node to the solution set (line 5 in Alg. 1). More formally, we prove the following.

Theorem 8 Let S be the solution set in the current iteration and let I be the set of

sampled node pairs. In this setting, let vg be the node with the highest marginal gain on the

entire set of node pairs and vs be the highest one when only considering the sampled set I.

The difference in the flow is bounded as follows: Pr
[
|f(S ∪ {vg})− f(S ∪ {vs})| < ε

]
>

1 − 1
n2 , where |I| is O(c·logn

ε2
), c = (ξm

µξ
)2, ε is the error bound, and ξm and µξ are the

maximum and average flow of all pairs of nodes respectively.

32

Delay Minimization Chapter 2

Proof. Let µg = f(S∪{vg})
n(n−1)

and µs = f(S∪{vs})
n(n−1)

denote the corresponding means and Yg

and Ys be the corresponding expected means from the samples.

The samples can be viewed as random variables associated with the selection of a

pair of nodes. More specifically, the random variable, Xi, is the flow associated with the

i-th pair of vertices in the importance sample I. Since the samples provide an unbiased

estimate (Lemma 1) and are i.i.d., we can apply Hoeffding’s inequality [64] to bound the

error of the mean estimates:

Pr[|Yg − µg| ≥ θ] ≤ δ (2.21)

where δ = 2 exp
(
−2|I|2θ2

T

)
, T =

|I|∑
i=1

(bi − ai)2, where each Xi is strictly bounded by

the intervals [ai, bi]. Similarly,

Pr[|Ys − µs| ≥ θ] ≤ δ (2.22)

Applying union bound,

Pr[(|Yg − µg| ≥ θ) ∪ (|Ys − µs| ≥ θ)] ≤ 2δ (2.23)

By construction, µg ≥ µs as GSN selects the best next node at each step. On the

other hand, if importance sampling selects vs, it must be that Ys ≥ Yg. As, the sampled

best node is probabilistic, we need to apply union bound over n possible nodes. As a

consequence, Pr[|µg − µs| ≥ 2θ] ≤ 2nδ and Pr[|µg − µs| < 2θ] > 1− 2nδ.

33

Delay Minimization Chapter 2

Now, Pr
[
|f(S ∪ {vg})− f(S ∪ {vs})| < ε

]
=Pr[|µa − µg| <

ε

n(n− 1)
]

>1− 4n exp

−2|I|2
(

ε
2n(n−1)

)2

T

 (2.24)

Since the average flow µξ = 1
n(n−1)

and ξm ≥ bi, ai ≥ 0, we get T ≤ |I|·ξ2
m. Combining

these factors, we get,

1− 4n exp

−2|I|2
(

ε
2n(n−1)

)2

T

>1− 4n exp

−2|I|2
(ε·µξ

2

)2

|I| · ξ2
m

 (2.25)

Combining Eq. 2.24 and Eq. 2.25, we get

Pr
[
|f(S ∪ {vg})− f(S ∪ {vs})| < ε

]
>1− 4n exp

−|I| (ε.µξ)2

2ξ2
m

 (2.26)

By setting the number of samples |I| = 2ξ2m·log(4n3)
(ε·µξ)2

, we have

Pr
[
|f(S ∪ {vg})− f(S ∪ {vs})| < ε

]
> 1− 1

n2

Remarks: Theorem 8 shows the number of samples required to keep the approxi-

mation error compared to the greedy approach in Alg. 1, sufficiently low. The key results

34

Delay Minimization Chapter 2

Algorithm 2 Importance Sampling’s Selection (ISS)

Require: Network G = (V,E,L), Approximation error ε, Sampling factor c, Budget k, candi-
date node set Γ, network flows F, β.

Ensure: A subset of k nodes
1: Choose O(c(log n)/ε2) sample pairs of vertices in I via importance sampling
2: A ← A distance matrix containing the distance of all nodes appearing in the sampled set
|I| to all other nodes in the network.

3: S ← Φ
4: while |S| < k do
5: for (s, t) ∈ I do
6: B ← Re-compute the distances in matrix A after considering the upgraded nodes in

S.
7: end for
8: for v ∈ Γ do
9: λv ←

∑
(x,y)∈Λs

ξx,y where Λs is the set of new β-improved pairs in I when l(v) = 0
(Use A to compute β-improvement and B to compute marginal gain)

10: end for
11: v′ ← arg maxv∈Γ\S{λv}, l(v′)← 0
12: S ← S ∪ {v′}
13: end while
14: Return S

are as follows.

• |I|, which is the sample size, is a function of the error ε and inversely proportional

to ε. Thus, with higher number of samples, our estimates get more accurate.

• The sample size grows logarithmically with the network size.

Efficient greedy through Importance Sampling

Armed with Theorem 8, we next describe how Importance Sampling is used to speed

up greedy. We call this algorithm Importance Sampling’s Selection (ISS). Alg. 2 presents

the pseudocode. In simple terms, Theorem 8 is used to first decide the sample size (line

1), and the Greedy selection of node upgrades is performed by analyzing the impact of an

upgrade only on the sampled set of node pairs. As in greedy(Alg. 1), the algorithm runs

for k iterations and in each iteration, the best node from the candidate set is selected

35

Delay Minimization Chapter 2

based on the sampled node pairs (lines 4-13). Instead of computing the entire distance

matrix, we compute the distance from all nodes in the network to only those nodes that

appears in at least one sampled pair (lines 2 and 6). These distances provide the β-

improved pairs in the sampled set I of pairs of nodes. The remaining operations remain

same as in greedy (Alg. 1).

Computation Cost: First, we sample |I| node pairs based on importance sampling.

Recall from Def. 6, that the importance of a node pair (u, v) is the proportion of flows

from u to v. Let d be the total number of network flows (Def. 2) in the dataset and

each flow is assigned an ID from 1 to d. To sample |I| node pairs proportional to their

importance, we generate |I| random IDs in the range [1, d] and extract the corresponding

flows. The origin and destination nodes of each of these sampled flows form a node pair

in our sample set. The sampling procedure consumes O(|I|) time. As defined in Def. 7,

the sampling is performed with replacement. Hence, the number of times a node pair

appears in I is proportional to its importance.

The costliest steps of our algorithm are lines 2, 5-7 and 8-12. In line 2, we compute a

distance matrix A, which stores the initial shortest path distances between all nodes that

appear in some pair in |I| to all other nodes in the network. This computation consumes

O(|I|n log n) time since the shortest path is computed between each node of a sampled

pair to all other nodes. In steps 5-7, ISS recomputes the shortest paths based on the

node upgrades made so far. This operation again consumes O(|I|n log n) time. Next, the

algorithm estimates the additional number of β-improved pairs after removing the delay

of each of the nodes in the candidate set Γ. (steps 8-10). As the shortest path distances

of all sampled nodes are stored in A, the computation of β-improved pairs takes O(|I|)

for each candidate node upgrade. Therefore, the best node to be upgraded is selected in

O(|Γ||I|) time (step 11-12). This entire process from line 5-12 is then repeated k times

to select the k nodes upgrade to be performed. Combining all these factors, the total

36

Delay Minimization Chapter 2

running time of ISS is O(k|I|n(log n) + k|Γ||I|). Since |I| is a logarithmic function of

n (i.e., |V |), the complexity of ISS reduces to O(kn(log2 n) + k|Γ| log n). Recall that

the computation cost of greedy (Alg. 1) is O(n2 log n + k|Γ|n2). Consequently, we get a

dramatic reduction in running time.

Storage Cost: In addition to the network (O(|V | + |E|) space), ISS stores O(|I|)

node pairs and their importance. The matrices A and B consume O(|I||V |) space.

Since |I| is a logarithmic function of n (i.e., |V |), the space complexity is bounded by

O(|I|+ |I||V |+ |V |+ |E|) = O(n log n+m).

2.5 Experiments

In this section, we benchmark the proposed algorithms and evaluate their approxi-

mation quality and scalability.

2.5.1 Experimental Setup

All experiments are performed using Java on an Intel(R) Xeon(R) E5-2609 8-core

machine with 2.5 GHz CPU and 512 GB RAM running Linux Ubuntu 14.04.

Baselines

We denote our importance sampling algorithm as ISS, the optimal algorithm based

on mixed integer programming as MIP-OPT, and the greedy algorithm as GSN. The

other baselines are as follows: (1) USS (Uniform Sampling’s Selection): We adapt

the state-of-the-art method [11] of uniform sampling and apply towards our problem. (2)

High-Cen [24]: We choose the top-k most central nodes to improve. The central nodes

are present on the maximum number of distinct shortest paths and could potentially β-

improve a large number of node pairs. However, this method does not capture the

37

Delay Minimization Chapter 2

Name #Trajectories Type |V | |E|
Bejing (BJ) 123K Directed 623.9K 672.2K

San Fransisco (SF) 442K Undirected 5.08K 41.7K
New York (NY) 49247K Directed 72.7K 169.8K

Table 2.2: Dataset description and statistics.

dependency among node upgrades. (3) High-Delay: This baseline selects the top-k

nodes with highest delays.

Datasets:

Table 2.2 summarizes the real-world datasets. Each dataset contains the road network

of a city and is extracted from OpenStreetMap1. Each node corresponds to a region and

an edge denotes a street connecting these regions. For network flows, we use the cab

trajectory data from each of the cities listed in Table 3.3.

(1) Beijing (BJ)[65]: We have trajectories of cabs, over a period of 1 week. Each

trajectory contains the sequence of nodes visited in a trip and the timestamps at which

the nodes were visited.

(2) San Francisco (SF)[66]: The dataset has been collected over a duration of one

month and contains taxi pick-up and drop-off information from taxis in San Francisco.

(3) New York (NY) [67]: This is the largest publicly available taxi dataset. It

was collected over a period of four years ranging from 2009 to 2013. It contains records

of yellow and green taxis in the city of New York. We use the trajectories from January,

2013 to March, 2013 to find the importance of the node pairs.

To compute the delay in a node, we first partition the cab trajectories based on their

starting timestamp into four windows of six hours each viz. 00:00 to 06:00, 06:00 to 12:00,

and so on. Next, for each edge, we compute the average time taken to cross it in each

of the four time slots. The delay in an edge is quantified as the difference between the

1http://openstreetmap.org/

38

http://openstreetmap.org/

Delay Minimization Chapter 2

maximum and the minimum average times across the four windows. Finally, the delay

in a node is set to the sum of the delays in all of its incoming edges.

1 2 3 4 5 6 7 8 9 10
Budget (k)

0.4
0.5
0.6
0.7
0.8
0.9
1.0

FI
 (N

)

MIP OPT
GSN

(a) SF (β = 5%)

1 2 3 4 5 6 7 8 9 10
Budget (k)

0.4
0.5
0.6
0.7
0.8
0.9
1.0

FI
 (N

)

MIP OPT
GSN

(b) SF (β = 10%)

1 2 3 4 5 6 7 8 9 10
Budget (k)

0.4
0.5
0.6
0.7
0.8
0.9
1.0

FI
 (N

)

MIP OPT
GSN

(c) BJ (β = 5%)

1 2 3 4 5 6 7 8 9 10
Budget (k)

0.4
0.5
0.6
0.7
0.8
0.9
1.0

FI
 (N

)

MIP OPT
GSN

(d) BJ (β = 10%)

Figure 2.5: Comparison between MIP vs GSN: Normalized Flow Improvement for
(a-b) SF, (c-d) BJ.

Performance metric and parameters

Performance Metric: The quality of a solution set S in a network N is defined in

Eq. 2.2. We call this metric the flow improvement due to S and is denoted as FI(N).

From our formulation of node-pair importance in Def. 6, the total flow in a network is 1.

The solution set S by any algorithm is evaluated based on f(S) =
∑

(u,v)∈ΛS
ξu,v where

ΛS denotes the set of β-improved node pairs. For large graphs, this evaluation is time

consuming as it involves all-pair-shortest-paths computation. To mitigate this scalability

bottleneck, we evaluate the algorithms based on randomly chosen sampled pairs Q. More

39

Delay Minimization Chapter 2

0 5 10 15 20 25 30 35
Budget (k)

0.0
0.2
0.4
0.6
0.8
1.0

Ra
tio

BJ
NY
SF

(a) Ratio

10 15 20 25 30
Budget (k)

104

105

Ti
m

e
(S

ec
.)

GNS
ISS

(b) Running Time in BJ

10 15 20 25 30
Budget (k)

103

104

105

106

Ti
m

e
(S

ec
.)

NY
NY

(c) Running Time in NY

10 15 20 25 30
Budget (k)

101

102

103

104

Ti
m

e
(S

ec
.)

GSN
ISS

(d) Running Time in SF

Figure 2.6: (a) Approximation quality of ISS against GSN. (b-d)Running times of ISS
and GSN.

specifically, the metric is f(S) =
∑

(u,v)∈Λ∗S
ξu,v, where Λ∗S denotes the set of β-improved

node pairs in Q. The size of the sample set Q is set to 50, 000.

Default Parameters: We set Γ, which is the candidate set of nodes that can be

improved, to V , i.e., the set of all nodes. Unless specifically mentioned, the default value

for β is 0.1 or 10%, and the default size of sample set used in ISS (and USS) is 15 log(n).

Note that, we use the number samples in the form of c log(n) where c controls the error

ε (mentioned in Theorem 8).

2.5.2 GSN and optimal MIP

First, we compare the performance of GSN with the optimal solution. As described

in Sec. 2.4.1, the optimal solution is computed using mixed integer programming (MIP).

We implement MIP using CPLEX and validate on the SF and BJ datasets. However,

40

Delay Minimization Chapter 2

we extract a sub-network containing only 1000 nodes from these datasets since MIP

consumes exorbitantly high running times on larger networks. Figure 2.5 presents the

results as we vary β and the budget k. Across both datasets, GNS produces results that

are close to optimal. More specifically, beyond k = 5, GSN is at most 10% away from the

flow improvement achieved by the optimal algorithm. This result validates our intuition

that greedy is an effective heuristic for the proposed problem. Moreover, GSN takes

only a few seconds (< 100 seconds) to produce the nearly optimal results whereas MIP

takes more than a day’s time to terminate. A pattern consistent across both datasets is

that as β increases, the gap between GSN and optimal increases as well. This trend is a

direct consequence of the fact that when β increases, only a group of node upgrades can

β-improve a path and hence higher is the need to fully search the combinatorial space

and identify the best group.

2.5.3 ISS vs GSN

We next compare the performance of GSN with ISS. In Fig. 2.6a, we plot the ap-

proximation quality of ISS with respect to GSN. The approximation quality is the ratio

between the flow improvements produced by ISS and GSN. A high ratio indicates that

ISS produces similar quality results as that of GSN. As can be seen, the ratio is the

highest in BJ, followed by SF and finally NY. This result follows directly from the dis-

tribution of node pair importances. Specifically, it is evident from Fig. 2.4a, that the

node-pair importances are most skewed in BJ, followed by SF, and finally NY. When

the distribution is skewed towards a small number of important node pairs, importance

sampling is better able to estimate the marginal gain of a node upgrade from just the

sampled collection of node pairs. This results in the trend visible in Fig. 2.6a.

Next, we analyze the running times of GSN and ISS. Figs. 2.6b-2.6d present the

41

Delay Minimization Chapter 2

0 10 20 30

Budget (k)

0

0.01

0.02

0.03

F
I (

N
)

USS
ISS
Central
Delay

(a) Varying Budget

0 500 1000

#Samples

0

0.02

0.04

0.06

F
I (

N
)

USS
ISS
Central
Delay

(b) Varying #Sample

5 10 15 20 25

-

0

0.02

0.04

0.06

F
I (

N
)

USS
ISS
Central
Delay

(c) Varying β (%)

Figure 2.7: (NY) The flow improvement (FI) by varying (a) budget, (b) the number
of samples, and (c) β (%).

0 5 10

#Nodes#10 5

0

1000

2000

T
im

e
(s

ec
)

USS
ISS

(a) Scalability

0 20 40

Budget (k)

0

200

400

T
im

e
(s

ec
)

USS
ISS

(b) Vs Budget

0 500 1000

#Sample

0

500

1000

T
im

e
(s

ec
)

USS
ISS

(c) Vs #Sample

Figure 2.8: (a-c) The running times of ISS and USS by varying (a) (All) the size of
graphs, (b) (NY) the budget, (c) (NY) the number of samples.

results. ISS is up to three orders of magnitudes faster than GSN. GSN finds it most

difficult to scale in the NY dataset, where it consumes around 17 days (410 hours) to

terminate. Although, NY is a smaller network than BJ, GSN consumes more time since

the number of node pairs with non-zero importance is much higher in NY and therefore

more shortest path computations are necessary while calculating the marginal gain of an

upgrade.

2.5.4 Comparison with scalable baselines

Next, we compare the performance of ISS with the baseline algorithms listed in

Sec. 2.5.1. We omit GSN from further experiments since it fails to scale.

Tables 2.3 and 2.4 present the results for NY and BJ respectively. To highlight the

42

Delay Minimization Chapter 2

β = 5% β = 10%
k High-Cen USS High-Delay High-Cen USS High-Delay
5 ∞ 27.5 350 ∞ 50.3 2085
10 36000 37.5 110 ∞ 69.6 115
15 40000 40 80 ∞ 46 120
20 42000 42 56.5 20624 47.2 72
25 43000 43 54.8 20772 47.5 46
30 21500 43 54 21000 40.9 46

Table 2.3: (NY) Comparison of Flow Improvement between ISS and other baselines
on NY against varying budget (k) and β. Each cell reports the relative Improved
Flow w.r.t. ISS, i.e. FIISS

FIX
, where X is the method used in that particular cell. When

X does not produce any FI (FIX = 0), FIISS
FIX

=∞.

β = 5% β = 10%
k High-Cen USS High-Delay High-Cen USS High-Delay
5 4.0 25.1 ∞ ∞ ∞ ∞
10 9.1 10.3 ∞ ∞ ∞ ∞
15 5.1 12.2 ∞ 9.1 ∞ ∞
20 2.5 14.8 ∞ 6.2 ∞ ∞
25 1.8 16.8 ∞ 3.1 ∞ ∞
30 1.7 17.7 ∞ 2.4 ∞ ∞

Table 2.4: (BJ) Comparison of Flow Improvement between ISS and other baselines
on BJ against varying budget (k) and β.

efficacy of ISS more prominently, we report the performance improvement of ISS in terms

of ratio. More specifically, each cell reports the ratio

Performance improvement(X) =
FIISS
FIX

(2.27)

where X is the method corresponding to the cell’s column and FIX is the flow im-

provement achieved by that method.

Across both NY and BJ, ISS drastically outperforms all baselines. Some baselines fail

to provide any flow improvement at all and therefore the improvement ratio in those cases

is∞. This impressive performance of ISS stems from two factors. First, unlike ISS, both

43

Delay Minimization Chapter 2

High-Cen and High-Delay are oblivious to the dependencies between the nodes selected

for reduction. Second, although this problem does not exist in USS, USS samples node

pairs uniformly and therefore fails to capture an adequate representation of the important

node pairs. Consequently the performance suffers.

A consistent trend we see across both NY and BJ is that as β increases the per-

formance gap between ISS and other baselines increases. This is another natural con-

sequence of being oblivious to the node dependencies. At a higher β, it is even more

important to know the other nodes in the solution set since such high improvement is

typically possible only when all nodes in the solution set collectively bring down the

shortest path delay by β%.

2.5.5 Impact of Parameters on Performance

The key parameters impacting the performance are the budget k, the number of

samples, and β. Note that the number of samples affects the error ε (Theorem 8). The

running time is affected by the budget, the number of samples and the size of the graph.

We study the impact of these parameters on the quality and running time.

Quality

First, we evaluate the quality in terms of Flow Improvement (FI) against varying

budget. Figure 2.7a shows the results for NY. As the budget increases ISS shows growth

in improving the flows and outperforms all other baselines convincingly.

Next, we vary the number of samples and observe its effects in Figure 2.7b. The

budget (k) is set to 50. Though ISS is able to show a steady growth in quality, others

struggle to make a noticeable impact. This behavior is a direct consequence of not being

sensitive to the importance of node pairs. More specifically, all techniques except ISS

44

Delay Minimization Chapter 2

randomly sample node pairs. As shown in Fig. 2.4a, the node pair importance follows

a power-law distribution and thus a small minority of the pairs contribute majority of

the network flows. The chances of these important pairs to get randomly sampled is

extremely low and thus the performance of the other baselines suffer.

Finally, we show the quality of the algorithms varying β. With the increase of β,

the possibility of improving a node pair reduces and thus the number of improved flows

should reduce. Figure 2.7c validates this intuition.

Scalability

First, we study the growth rate of running time against the network size. In this

experiment, we compute the running time for each of the datasets listed in Table 2.2

and verify how the running time grows with respect to the network size. Figure 2.8a

presents the results. The running time grows at a rate that is slightly higher than linear

with increase in network size. This result is consistent with the theoretical analysis of

the computation cost (Section 2.4.4), where we show that the computation cost of ISS

grows at O(n log2 n) with respect to the network size. On the largest network of Beijing,

ISS finishes with 30 minutes.

Next, we evaluate the growth rate of running time against budget on the NY dataset.

Figure 2.8b presents the results. As expected from the theoretical analysis of computation

cost in Section 2.4.4, the running time grows linearly and consumes less than 7 minutes

across all values of k.

Finally, we analyze scalability against the number of samples on NY dataset and

present the results in Fig. 2.8c. Here, we fix the budget as 30 and vary the number of

samples. As expected, the running time grows linearly with the number of samples.

45

Delay Minimization Chapter 2

5 10 15 20 25 30
Budget (k)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

TI
 (m

illi
on

) ISS
USS

(a) BJ

5 10 15 20 25 30
Budget (k)

0
200
400
600
800

TI
 (m

illi
on

) ISS
USS

(b) NY

Figure 2.9: The total improvement (TI) on (a) BJ and (c) NY.

2.5.6 Total Improvement

In our analysis, we have argued that noticeable improvement for each individual pair

of nodes is important. Does this focus on individual improvement compromise on the

total improvement across the entire network? In the next experiment, we analyze this

question by measuring the performance of ISS on the total improvement (TI) metric. TI

is the total reduction in delay (in minutes) across all trajectories of the datasets. TI is

defined as follows.

TI =
∑
∀Pu,v∈F

(
d(u, v)− d(u, v;S)

)
(2.28)

Here, F is the set of all trajectories, Pu,v denotes a trajectory that starts at node u

and terminates at v. S is the set of upgraded nodes and d(u, v) and d(u, v;S) are the

delays of the shortest paths from u to v before node upgrades and after node upgrades

respectively. We compare the performance of ISS with the state-of-the-art method USS

[11], which is designed specifically for total improvement. For ISS, we set β = 0 since

the goal is to optimize total improvement. Fig. 2.9 presents the results in NY and BJ.

As visible, ISS is up to 8 times better than USS. USS is blind to the idea of node pair

importance and hence its performance suffers.

46

Delay Minimization Chapter 2

1 5 10 20
0.2
0.4
0.6
0.8
1.0

(a) C in BJ

5 10 15 200.00
0.05
0.10
0.15
0.20

Lik
el

ih
oo

d NY
BJ

(b) Likelihood

Figure 2.10: (a) Tightness of RPOP and (b) The likelihood to have more than one
improved node in the shortest path between a randomly selected node pair against β
(in percentage).

2.5.7 Tightness of RPOP

Recall that our motivation to use greedy as the optimization strategy for POP

emerged from the observation that RPOP is a lower bound of POP (Section 2.4.2) and

greedy is the optimal polynomial-time algorithm for RPOP. Theorem 7 establishes an

error bound on the performance of greedy on POP as a function of the tightness fac-

tor C = fr(S)
f(S)

, between RPOP and POP. In the next, experiment, we analyze how the

tightness varies with increase in β.

Fig. 2.10a presents the results in the BJ dataset at k = 30. C decreases with increase

in β. Unsurprisingly, When β is high, it is hard for a single node upgrade to β-improve

a path. Consequently, multiple node upgrades in a path are necessary to achieve β-

improvement. Since RPOP allows only one node upgrade per path, f r(S) (RPOP) stays

much lower than f(S) (POP). As a result C decreases. Overall, C lies in the range

[0.5, 1].

We next analyze another assumption regarding RPOP. We claim in Section 2.4.2 that

intuitively, in most real life networks the number of node pairs is much larger than the

budget k. Thus, the likelihood of having more than one improved node in the shortest

path between a randomly selected node pair is low. Consequently, POP should behave

47

Delay Minimization Chapter 2

Gaussian Uniform
k High-Cen USS High-Cen USS
5 ∞ ∞ ∞ ∞
10 ∞ 829 1700 ∞
15 ∞ 1400 5800 1600
20 ∞ 1600 6900 1900
25 ∞ 1700 8300 2200
30 ∞ 1900 9200 2500

Table 2.5: (Synthetic Delay:) Comparison of Flow Improvement between ISS and
other baselines on NY against varying budget (k) and type of synthetic delays.

Gaussian Uniform
k High-Cen USS High-Cen USS
5 ∞ 2.2 ∞ 2.2
10 ∞ 2.7 ∞ 2.6
15 ∞ 2.0 ∞ 2.0
20 ∞ 2.3 ∞ 2.3
25 ∞ 2.4 ∞ 2.3
30 ∞ 2.5 ∞ 2.3

Table 2.6: (Synthetic Flows/Importance:) Comparison of Flow Improvement between
ISS and other baselines on NY against varying budget (k) and type of synthetic
flows/importance.

similarly to RPOP. We empirically evaluate this likelihood in real large datasets of BJ

and NY. Fig. 2.10b shows that our assumption is indeed true and the likelihood is less

than 0.1 (i.e., 1%) in BJ and 0.08 in NY. k is set to 30 in this experiment.

2.5.8 Experiments on Synthetic data

The three data properties that have a profound impact on the quality of the ap-

proximation algorithms are: 1) the delay distribution of nodes, 2) the flow/importance

distribution of the node pairs, and 3) the graph structure itself. We systematically pick

each of these properties and study its impact on the performance. Towards that end,

48

Delay Minimization Chapter 2

5 10 15 20 25
Budget (k)

0.0
0.1
0.2
0.3
0.4
0.5
0.6

FI
 (N

)
ISS
USS
High-Cen

(a) BA

5 10 15 20 25
Budget (k)

0.000
0.001
0.002
0.003
0.004
0.005
0.006

FI
 (N

)

ISS
USS
High-Cen

(b) WS

5 10 15 20 25
Budget (k)

0.00
0.02
0.04
0.06
0.08
0.10

FI
 (N

)

ISS
USS
High-Cen

(c) ER

5 10 15 20 25 30
Budget (k)

0.00
0.03
0.06
0.09
0.12
0.15
0.18

FI
 (N

) ISS
USS
High-Cen

(d) Edge-NY

Figure 2.11: Comparison of Flow Improvement FI(N) between ISS and other baselines
varying budget (k) (a-c) Synthetic Network Structure: on (a) BA, (b) WS, and (c)
ER graph generation models; (d) when the delays are on the edges.

let X be the property under study. To isolate the impact of property X, we pick a real

dataset and synthetically alter its property X while keeping the other two properties

intact.

1) Synthetic Delay: As shown in Fig. 2.4b, the delay distributions in real trans-

portation networks are highly skewed. Specifically, only a small minority of nodes face

high delays. In this experiment, we benchmark the performance of ISS on uniform and

standard normal distributions. Towards that end, we pick the NY dataset, and assign

node delays synthetically from U(0, 1) and N (0, 1), while retaining the original node pair

flows and network structure. In the case of N (0, 1), it may generate negative numbers.

Since negative delay is not feasible, we add the value of the minimum delay to all the

delays to make them non-negative. Table 2.5 presents the Performance Improvement

49

Delay Minimization Chapter 2

ratio (Eq. 2.27). Clearly, regardless of the distribution, ISS is significantly better than

the competing baselines. This superior performance of ISS is a direct consequence of the

other baselines being ignorant of node pair flows.

2) Synthetic Node Pair Flows: In this experiment, we alter the NY dataset by

assigning the node pair flows synthetically. First, we assign flow values to node pairs from

uniform distribution U(0, 1) and standard normal distribution N (0, 1). As in the case of

synthetic node delays, we shift the normal distribution to exclusively non-negative values

by adding the minimum of all flow values. Finally, for both Uniform and Normal, the

flow values are normalized by dividing them with the sum of all node pair flows. Note

that the NY dataset contains more than 5 billion node pairs and assigning flow values to

all of them is not computationally feasible. In addition, to normalize the flow values, we

also need to store them, and this memory requirement is prohibitively large. To mitigate

this issue, we randomly pick 100 million unique node pairs and assign flow values to only

these. The rest of the node pairs are assumed to have 0 importance. As a comparison,

the real NY dataset has ≈ 11 million node pairs with positive flow.

Table 2.6 shows the performance improvement ratios (Eq. 2.27). and consistent with

previous trends, ISS outperforms both baselines. However, the gap between ISS and

USS is much smaller compared to their performance on the real unaltered datasets.

This result is expected since in the real dataset the node-pair flows follow a power-law

distribution (Fig. 2.4a). In a power law distribution, only a small set of node pairs

contribute significantly to the flow improvement. These highly important pairs are also

likely to be present in the importance sample set. Consequently, the estimate of a node

upgrade computed from this sample set is accurate. In uniform or normal distributions,

since a large number of node pairs contribute to the flow improvement, a small sample

set is unable to capture the entire picture. As a result, the gap between ISS and USS

reduces. We also observe that the performance of High-Cen is worse than both ISS and

50

Delay Minimization Chapter 2

USS. Since the flows of node pairs are synthetic, the likelihood that a central node will

lie on the shortest path between an important pair of nodes is low. The effect is visible

in Table 2.6.

3) Synthetic Network Structure: Finally, we investigate the impact of the net-

work structure. We generate synthetic network structures from three well-studied models:

(a) Barabasi-Albert (BA), (b) Watts-Strogatz (WS) and (c) Erdos-Renyi (ER).

As in the previous two experiments, we alter the NY dataset by synthetically con-

structing the network structure, while retaining the original node-pair and delay distri-

butions. Specifically, we first construct a network through one of the graph generation

models where the size of the network in terms of number of nodes is the same as the

original NY network. Since the number of nodes is the same, we create a mapping from

each node in the original structure to the synthetically generated one. Based on this

mapping, we assign delays and node-pair importances in the synthetic dataset. Note

that although the number of nodes is the same, the number of edges would be different.

Figs. 2.11a-2.11c present the results. Several key insights emerge from this experi-

ment. First, ISS is the best performing technique across all models of graph structure.

Second, all techniques achieve high flow improvement in BA (Fig. 2.11a). Since BA has

scale-free property, there are few nodes of extreme high degree. These nodes typically

also have high centrality and thus, reducing the delays in these central nodes bring a re-

duction in the shortest path delays among a large number of node pairs. Due to this same

reason, all three techniques provide similar flow improvements in the BA model, particu-

larly at a high value of k. In contrast, the flow improvement problem is most difficult in

WS. WS generates small-world networks where the average shortest path delays are small

(in terms of number of hops and not delays). The flow improvement problem is easier

when many shortest paths go through a central node, since in such a case improving the

central node improves many node pairs. When shortest paths are small, the likelihood of

51

Delay Minimization Chapter 2

two shortest paths going through a common node is also small. Consequently, achieving

a high flow improvement through a small number of node upgrades is difficult.

The gap between ISS and the baselines is most pronounced in ER. The structure of

ER is random by construction. In this scenario, the flows of the node pairs and the delays

of the nodes play a crucial role. Unlike USS and High-Cen, ISS takes into account these

aspects and provides up to 5 times more flow improvement.

2.5.9 Edge Delays

Recall from Sec. 2.3, that the proposed algorithm can incorporate delays in either

nodes, edges or a mixture of both. To showcase this ability, we next measure the perfor-

mance of ISS with delays on edges. The delay on an edge is computed as discussed in

Sec. 2.5.1. Fig. 2.11d presents the results. Consistent with previous results, ISS outper-

forms USS and High-Cen significantly. ISS is up to 36 times better than the next best

baseline USS. High-Cen does not provide any substantial improvement as the notion

of edge centrality, i.e., the number of node pairs with at least one shortest path going

through the edge, is an even weaker indicator of a good upgrade than node centrality.

Consequently, the performance suffers.

2.6 Conclusion

In this chapter, we studied and proposed solutions for a novel network design problem

of delay minimization. Different from existing techniques, our formulation incorporated

the practical considerations that the impact of delay minimization should be noticeable

and favor important paths in a network. The proposed problem has diverse applications

in a variety of domains including road, airline, power and communication networks. We

showed that the problem is NP-hard as well as APX-hard. To overcome the exponential

52

Delay Minimization Chapter 2

cost of the optimal solution, we proposed an importance sampling based algorithm with

provable quality guarantees. Through extensive evaluation on multiple real-word traffic

networks, we established that importance sampling is accurate and up to three orders of

magnitude faster than the greedy approach. In addition, importance sampling produces

flow improvement that is up to 70 times better than the state-of-the-art technique. Fi-

nally, our experiments on synthetic datasets established that ISS is robust to variation

in network structure, delay distributions and node-pair importances.

53

Chapter 3

Centrality Maximization

Network centrality plays an important role in many applications. Central nodes in social

networks can be influential, driving opinions and spreading news or rumors. In hyper-

linked environments, such as the Web, where users navigate via clicks, central content

receives high traffic, becoming target for advertising campaigns. While there is an exten-

sive amount of work on centrality measures and their efficient computation, controlling

nodes’ centrality via network updates is a more recent and challenging task. Performing

minimal modifications to a network to achieve a desired property falls under the umbrella

of network design problems. This chapter is focused on improving group (coverage and

betweenness) centrality [13], which is a function of the shortest paths passing through a

set of nodes, by adding edges to the network. Several variations of the problem, which are

NP-hard as well as APX-hard, are introduced. We present a greedy algorithm, and even

faster sampling algorithms, for group centrality maximization with theoretical quality

guarantees under realistic constraints. The experimental results show that our sampling

algorithms outperform the best baseline solution in terms of centrality by up to 5 times

while being 2-3 orders of magnitude faster than our greedy approach.

54

Centrality Maximization Chapter 3

3.1 Introduction

Network design is a recent area of study focused on modifying or redesigning a network

in order to achieve a desired property [2]. As networks become a popular framework for

modeling complex systems (e.g. VLSI, transportation, communication, society), network

design provides key controlling capabilities over these systems, especially when resources

are constrained. Existing work has investigated the optimization of global network prop-

erties, such as minimum spanning tree [57], shortest-path distances [3, 7, 10], diameter

[19], and information diffusion-related metrics [4, 9] via a few local (e.g. vertex, edge-

level) upgrades. Due to the large scale of real networks, computing a global network

property becomes time-intensive. For instance, computing all-pairs shortest paths in

large networks is prohibitive. As a consequence, design problems are inherently challeng-

ing. Moreover, because of the combinatorial nature of these local modifications, network

design problems are often NP-hard, and thus, require the development of efficient ap-

proximation algorithms.

We focus on a novel network design problem, that improves the group centrality.

Given a node v, its coverage centrality is the number of distinct node pairs for which

a shortest path passes through v, whereas its betweenness centrality is the sum of the

fraction of shortest paths between all distinct pair of nodes passing through v. The

centrality of a group X is a function of the shortest paths that go through members of

X [24]. Our goal is to maximize group centrality, for a target group of nodes, via a small

number of edge additions.

There are several applications for group centrality optimization. Broadly speaking,

whenever computing the centrality of a single node, or a group of nodes, is a problem of

interest, one might as well pose the question of how to improve the centrality of one or

more nodes. For instance, in online advertising, links can be added to boost the traffic

55

Centrality Maximization Chapter 3

towards a target set of Web pages.

In a professional network, such as LinkedIn, the centrality of some users (e.g. employ-

ees of a given company) might be increased via connection recommendations/advertising.

In military settings, where networks might include adversarial elements, inducing the flow

of information towards key agents can enhance communication and decision making [20].

From a theoretical standpoint, for any objective function of interest, we can define

a search and a corresponding design problem. In this chapter, we show that, different

from its search version [24], group centrality maximization cannot be approximated by

a simple greedy algorithm. Furthermore, we study several variations of the problem and

show that, under two realistic constraints, the problem has a constant factor approxima-

tion algorithm. In fact, we are able to prove that our approximation for the constrained

problem is optimal, in the sense that the best algorithm cannot achieve a better ap-

proximation than ours. In order to scale our greedy solution to large datasets, we also

propose efficient sampling schemes, with approximation guarantees, for group centrality

maximization.

The main contributions of this chapter are summarized as follows:

• We study a novel general network design problem, the group centrality optimiza-

tion, and prove that it is NP-hard as well as APX-hard.

• We propose a greedy algorithm and faster sampling algorithms for group centrality

maximization.

• We show the effectiveness of our algorithms on several datasets and also prove their

theoretical guarantees for a constrained version of the problem.

56

Centrality Maximization Chapter 3

3.2 Related Work

General network design problems: A set of design problems were introduced by Paik

et al. [16]. They focused on vertex upgrades to improve the delays on adjacent edges.

Krumke et al. [57] generalized this model and proposed minimizing the cost of the min-

imum spanning tree with varying upgrade costs for vertices/edges. Lin et al. [3] also

proposed a shortest path optimization problem via improving edge weights under a bud-

get constraint. Dilkina et al. [7] and Medya et al. [11] studied the same under node

improvement.

Design problems via edge addition: Meyerson et al. [10] proposed approximation

algorithms for single-source and all-pairs shortest paths minimization. Faster algorithms

for the same were designed by Parotisidis et al. [18]. Demaine et al. [19] minimized

the diameter of a network and the node eccentricity by adding shortcut edges with a

constant factor approximation algorithm. Past research had also considered eccentricity

minimization in a composite network [20]. However, all aforementioned problems are

based on improving distances and hence are complementary to our objective.

Centrality computation and related optimization problems: The first efficient algo-

rithm for betweenness centrality computation was proposed by Brandes [22]. Recently,

[23] introduced an approach for computing the top-k nodes in terms of betweenness

centrality via VC-dimension theory. Yoshida [24] studied similar problems —for both

betweenness and coverage centrality— in the adaptive setting, where shortest paths al-

ready covered by selected nodes are not taken into account. Yoshida’s algorithm was later

improved using a different sampling scheme [25]. Here, we focus on the design version

of the problem, where the goal is to optimize the coverage centrality of a target set of

nodes by adding edges. Previous work has studied a constrained version of our problem

where the target set size is one [26, 27, 28]. Note that, as the target set X can be cho-

57

Centrality Maximization Chapter 3

sen arbitrarily in our problem, our solutions and theoretical analysis differ significantly

from theirs. In [21], the authors also assume a single target node while maximizing the

expected decrease in shortest path distances to the remaining nodes via edge addition.

Our work is the first to address the more general and challenging problem of maximizing

the centrality of a group of nodes via budgeted edge additions.

3.3 Problem Definition

We assume G(V,E) to be an undirected1 graph with sets of vertices V and edges

E. A shortest path between vertices s and t is a path with minimum distance (in hops)

among all paths between s and t, with length d(s, t). By convention, d(s, s) = 0, for all

s ∈ V . Let Pst denote the set of vertices in the shortest paths (multiple ones might exist)

between s and t where s, t /∈ Pst. We want to maximize the centrality of the group of

nodes X. We define Z as the set of candidate pairs of vertices, Z ⊆ V \ X × V \ X,

which we want to cover. The coverage centrality of a vertex is defined as:

C(v) = |{(s, t) ∈ Z|v ∈ Pst, s 6= v, t 6= v}| (3.1)

C(v) is the number of pairs of vertices with at least one shortest path going through (i.e.

covered by) v. The coverage centrality of a set X ⊆ V is defined as:

C(X) = |{(s, t) ∈ Z|v ∈ Pst, v ∈ X ∧ s, t /∈ X}| (3.2)

A set X covers a pair (s, t) iff X ∩ Pst 6= ∅, i.e., at least one vertex in X is part of

a shortest path from s to t. Our goal is to maximize the coverage centrality of X over

a set of vertex pairs Z by adding edges from a set of candidate edges Γ to G. Let Gm

1We discuss how our methods can be generalized to directed networks in [68].

58

Centrality Maximization Chapter 3

Symbols Definitions and Descriptions
d(s, t) Shortest path (s.p.) distance between s and t
n Number of nodes in the graph
m Number of edges in the graph

G(V,E) Given graph (vertex set V and edge set E)
X Target set of nodes

C(v), C(X) Coverage centrality of node v, node set X
Γ Candidate set of edges
k budget
Pst The set of nodes on the s.p.s between s and t

Gm, Cm Modified graph and modified centrality
Z Pairs of vertices to be covered
mu Number of uncovered pairs, |Z|

Table 3.1: Frequently used symbols

denote the modified graph after adding edges Es ⊆ Γ, Gm = (V,E ∪ Es). We define the

coverage centrality of X (over pairs in Z) in the modified graph Gm as Cm(X).

ab

c de

f

(a) Initial graph

ab

c de

f

(b) Modified graph

Figure 3.1: Example of Coverage Centrality Optimization problem. We want to
optimize the centrality of {d, f} with a budget of one edge from the candidates
{(d, a), (d, b), (f, b)}. The coverage centrality of {d, f} is 0 in the initial graph (a)
and 3 in the modified graph (b). Node d belongs to the shortest paths between (a, e),
(a, c) and (a, f) in (b).

Problem 2 Coverage Centrality Optimization (CCO): Given a network G =

(V,E), a set of vertices X ⊂ V , a candidate set of edges Γ, a set of vertex pairs Z and

a budget k, find a set of edges Es ⊆ Γ, such that |Es| = k and Cm(X) is maximized.

For simplicity, in the rest of the chapter, we assume Z = V \X ×V \X unless stated

59

Centrality Maximization Chapter 3

otherwise. Thus,

C(X) = |{(s, t) ∈ V \X × V \X|v ∈ Pst, v ∈ X, s < t}| (3.3)

where s < t implies ordered pairs of vertices. Fig. 3.1 shows a solution for the CCO

problem with budget k = 1 for an example network where the target set X = {d, f} and

the candidate set Γ = {(d, a), (d, b), (f, b)}.

Similarly, we can also formulate the group betweenness centrality optimization prob-

lem. Given a vertex set X ⊆ V , its group betweenness centrality is defined as:

B(X) =
∑

s,t∈V \X

σs,t(X)

σs,t
(3.4)

where σs,t is the number of shortest paths between s and t, σs,t(X) is the number of

shortest paths between s and t passing through X. We define the group betweenness

centrality of X in the modified graph Gm as Bm(X).

Problem 3 Betweenness Centrality Optimization (BCO): Given a network G =

(V,E), a node set X ⊂ V , a candidate edge set Γ, a set of node pairs Z and a budget k,

find a set of edges Es ⊆ Γ, such that |Es| ≤ k and Bm(X) is maximized.

While we focus on the CCO problem, the results described here can be easily mapped

to BCO.

3.4 Hardness and Inapproximability

This section provides complexity analysis of the CCO problem. We show that CCO

is NP-hard as well as APX-hard. More specifically, CCO cannot be approximated within

a factor grater than (1− 1
e
).

60

Centrality Maximization Chapter 3

Theorem 9 The CCO problem is NP-hard.

The proof is in [68]. While computing an optimal solution for CCO is infeasible in

practice, a natural question is whether it has a polynomial-time approximation. The next

theorem shows that CCO is also NP-hard to approximate within a factor greater than

(1− 1
e
). Interestingly, different from its search counterpart [24], CCO is not submodular

(see [68]). These two results provide strong evidence that, for group centrality, network

design is strictly harder than search.

Theorem 10 CCO cannot be approximated within a factor greater than (1− 1
e
).

Proof: We give an L-reduction [59] from the maximum coverage (MSC) problem

with parameters x and y. Given a collection of subsets S1, S2, ..., Sm for a universal set of

items U = {u1, u2, ..., un}, the MSC problem is to choose at most k sets to cover as many

elements as possible. Our reduction is such that following two equations are satisfied:

OPT (ICCO) ≤ xOPT (IMSC)

OPT (IMSC)− s(TM) ≤ y(OPT (ICCO)− s(TC))

where IMSC and ICCO are problem instances, and OPT (Y) is the optimal value for

instance Y . s(TM) and s(TC) denote any solution of the MSC and CCO instances,

respectively. If the conditions hold and CCO has an α approximation, then MSC has

an (1 − xy(1 − α)) approximation. However, MSC is NP-hard to approximate within a

factor greater than (1− 1
e
). It follows that (1−xy(1−α)) < (1− 1

e
), or, α < (1− 1

xye
). So,

if the conditions are satisfied, CCO is NP-hard to approximate within a factor greater

than (1− 1
xye

).

We use the same construction as in Theorem 9. For CCO, the set Z contains pairs

in the form (b, u), u ∈ U . Let the solution of ICCO be s(TC). The centrality of node

61

Centrality Maximization Chapter 3

Algorithm 3 Greedy Edge Set (GES)

Require: Network G = (V,E), target node set X, Candidate set of edges Γ, Budget k
Ensure: A subset Es from Γ of k edges

1: Es ← ∅
2: Compute all-pairs shortest path distances
3: while |Es| ≤ k do
4: for e ∈ Γ \ Es do
5: Count(e)←# new covered pairs after adding e
6: end for
7: e∗ ← arg maxe∈Γ\Es{Count(e)}
8: Es ← Es ∪ e∗ and E ← E ∪ e∗
9: Update the shortest path distances

10: end while
11: return Es

a will increase by s(TC) to cover the pairs in Z. Note that s(TC) = 2s(TM) from

the construction (as the graph is undirected, the covered pair is unordered). It follows

that both the conditions are satisfied when x = 2 and y = 1
2
. So, CCO is NP-hard to

approximate within a factor grater than (1− 1
e
). �

Theorem 10 shows that there is no polynomial-time approximation better than (1− 1
e
)

for CCO. Given such an inapproximability result, we propose an efficient greedy heuristic

for our problem in the next section.

3.5 Algorithms

3.5.1 Greedy Algorithm

Algorithm 3 (GES) selects the best edge to be added in each of k iterations, where

k is the budget. Its most important steps are 2 and 7. In step 2, it computes all-pairs

shortest paths in time O(n(m + n)). Next, it chooses, among the candidate edges Γ,

the one that maximizes the marginal coverage centrality gain of X (step 7), which takes

O(|Γ|n2) time. After adding the best edge, shortest path distances are updated. Then,

62

Centrality Maximization Chapter 3

the algorithm checks the pairwise distances in O(n2) time (step 9). The total running

time of GES is O(n(m+ n) + k|Γ|n2).

We illustrate the execution of GES on the graph from Figure 3.1a for a budget k = 2,

a candidate set of edges Γ = {(d, a), (d, b), (f, b)}, and a target set X = {d, f}. Initially,

adding (d, a), (d, b) and (f, b) increases the centrality of X by 3, 0, and 2, respectively,

and thus (d, a) is chosen. In the second iteration, (d, b) and (f, b) increase the centrality

of X by 0 and 1, respectively, and (f, b) is chosen.

Algorithm 4 Best Edge via Uniform Sampling (BUS)

Require: Network G = (V,E), target node set X, Candidate set of edges Γ, Budget k
Ensure: A subset γ from Γ of k edges

1: Q is a set of q pairs of vertices chosen randomly, with replacement, from Mu

2: Es ← ∅
3: while |Es| ≤ k do
4: for (s, t) ∈ Q do
5: Compute and store shortest path distances d(s, v) and d(t, v) for all v ∈ V
6: end for
7: for e ∈ Γ \ Es do
8: Count(e)← # new covered pairs in Q after adding e
9: end for

10: e∗ ← arg maxe∈Γ\Es{Count(e)}
11: Es ← Es ∪ e∗ and E ← E ∪ e∗
12: end while
13: Return Es

3.5.2 Sampling Algorithm

The execution time of GES increases with |Γ| and m. In particular, if m = O(n2)

and |Γ| = O(n), the complexity reaches O(n3), which is prohibitive for large graphs. To

address this challenge, we propose a sampling algorithm that is nearly optimal, regarding

each greedy edge choice, with probabilistic guarantees (see Section 3.6.3). Instead of

selecting edges based on all the uncovered pairs of vertices, our scheme does it based on

a small number of sampled uncovered pairs. This strategy allows the selection of edges

63

Centrality Maximization Chapter 3

with probabilistic guarantees using a small number of samples, thus ensuring scalability

to large graphs. We show that the error in estimating the improvement in coverage based

on the samples is small.

Algorithm 4 (Best Edge via Uniform Sampling, or BUS) is a sampling scheme to select

the best edge to be added in each of the k iterations based on sampled uncovered node

pairs (q and Mu are the number of samples and the set of uncovered pairs respectively).

For each pair of samples, we compute the distances from each node in the pair to all

others. These distances are used to estimate the true number of covered pairs after an

edge addition. In Sec. 3.6.3, we provide a theoretical analysis of the approximation

achieved by BUS.

In terms of time complexity, steps 4-6, where BUS performs shortest-path computa-

tions, take O(q(n + m)) time. Next, the algorithm estimates the additional number of

shortest pairs covered by X after adding each of the edges based on the samples (steps

7-9) in O(|Γ|q2) time. Given such an estimate, the algorithm chooses the best edge to be

added (step 10). The total running time of BUS is O(kq(m+ n) + k|Γ|q2).

3.6 Analysis

In the previous section, we described a greedy heuristic and an efficient sampling

algorithm to approximate the greedy approach. Next, we show that, under some realistic

assumptions, the described greedy algorithm provides a constant-factor approximation

for a modified version of CCO. More specifically, our approximation guarantees are based

on the addition of two extra constraints to the general CCO described in Section 3.3.

64

Centrality Maximization Chapter 3

3.6.1 Constrained Problem

The extra constraints, S1 and S2, considered are the following: (1) S1: We assume

that edges are added from the target set X to the remaining nodes, i.e. edges in a given

candidate set Γ have the form (a, b) where a ∈ X and b ∈ V \ X [26, 28]; and (2) S2:

Each pair (s, t) can be covered by at most one single newly added edge [6, 10].

S1 is a reasonable assumption in many applications. For instance, in online adver-

tising, adding links to a third-party page gives away control over the navigation, which

is undesirable. S2 is motivated by the fact that, in real-life graphs, centrality follows a

skewed distribution (e.g. power-law), and thus most of the new pairs will have shortest

paths through a single edge in Γ. Generalizing our methods to the case where shortest

paths are covered by any fixed number of edges in Γ is straightforward. In our experi-

ments (see Section 3.7.1), we show that solutions for the constrained and general problem

are often close. Moreover, both constraints have been considered in previous work [6, 10].

Next, we show that COO under S1 and S2, or RCCO (Restricted CCO), for short, is still

NP-hard.

Corollary 11 RCCO is NP-hard.

Proof: Follows directly from Theorem 9, as our construction respects both the

constraints. �

3.6.2 Analysis of Greedy Algorithm

The next theorem shows that RCCO’s optimization function is monotone and sub-

modular. As a consequence, the greedy algorithm described in Section 3.5.1 leads to a

well-known constant factor approximation of (1− 1/e) [60].

65

Centrality Maximization Chapter 3

Theorem 12 The objective function f(Es) = Cm(X) in RCCO is monotone and sub-

modular.

Proof: Monotonicity: Follows from the definition of a shortest path. Adding an

edge (u, v) ∈ Es cannot increase d(s, t) for any (s, t) already covered by X. Since u ∈ X

for any (u, v) ∈ Es, the coverage Cm(X) is also non-decreasing.

Submodularity: We consider addition of two sets of edges, Ea and Eb where Ea ⊂ Eb,

and show that f(Ea ∪ {e}) − f(Ea) ≥ f(Eb ∪ {e}) − f(Eb) for any edge e ∈ Γ such

that e /∈ Ea and e /∈ Eb. Let F (A) be the set of node pairs (s, t) which are covered by

an edge e ∈ A (|F (Es)| = Cm(X)). Then f(.) is submodular if F (Eb ∪ {e}) \ F (Eb) ⊆

F (Ea ∪ {e}) \ F (Ea). To prove this claim, we make use of SB. Therefore, each pair

(s, t) ∈ F (Eb) is covered by only one edge in Eb. As Ea ⊂ Eb, adding e to Ea will cover

some of the pairs which are already covered by Eb \Ea. Then, for any newly covered pair

(s, t) ∈ F (Eb ∪ {e}) \ F (Eb), it must hold that (s, t) ∈ F (Ea ∪ {e}) \ F (Ea). �

Based on Theorem 12, if OPT is the optimal solution for an instance of the RCCO

problem, GES will return a set of edges Es such that f(Es) ≥ (1 − 1/e)OPT . The

existence of such an approximation algorithm shows that the constraints S1 and S2 make

the CCO problem easier, compared to its general version. On the other hand, whether

GES is a good algorithm for the modified CCO (RCCO) remains an open question. In

order to show that our algorithm is optimal, in the sense that the best algorithm for

this problem cannot achieve a better approximation from those of GES, we also prove

an inapproximability result for the constrained problem.

Corollary 13 RCCO cannot be approximated within a factor greater than (1− 1
e
).

Proof: Follows directly from Thm. 10, as the construction applied in the proof

respects both the constraints.

66

Centrality Maximization Chapter 3

Corollary 13 certifies that GES achieves the best approximation possible for constrained

CCO (RCCO).

3.6.3 Analysis of Sampling Algorithm

In Section 3.5.2, we presented BUS, a fast sampling algorithm for the general CCO

problem. Here, we study the quality of the approximation provided by BUS as a function

of the number of sampled node pairs. The analysis will assume the constrained version

of CCO (RCCO), but the general case will also be discussed.

Let us assume that X covers a set Mc of pairs of nodes. The set of remaining pairs

is Mu = {(s, t)|s ∈ V, t ∈ V, s 6= t,X ∩ Pst = ∅} and mu = |Mu| = n(n − 1)/2 − |Mc|.

We sample, uniformly with replacement, a set of ordered pairs Q (|Q| = q) from Mu.

Let gq(.) denote the number of new pairs covered by the candidate edges based on the

samples Q. For an edge set γ ⊂ Γ, Xi is a random variable that denotes whether the ith

sampled pair is covered by any edge in γ. In other words, Xi = 1 if the pair is covered

and 0, otherwise. Each pair is chosen with probability 1
mu

. Also, let us define f q = mu
q
gq

as the estimated coverage.

Lemma 2 Given q sampled node pairs from Mu:

E(gq(γ)) =
q

mu

f(γ)

Proof: From the samples, we get gq(γ) = Σq
i=1Xi. By the linearity and additive rule,

E(gq(γ)) = Σq
i=1E(Xi) = q.E(Xi). As the probability P (Xi) = f(γ)

mu
and Xis are i.i.d.,

E(gq(γ)) = q
mu
f(γ). �

Lemma 3 Given ε (0 < ε < 1), a positive integer l, a budget k, and a sample of

67

Centrality Maximization Chapter 3

independent uncovered node pairs Q, |Q| = q, where q(ε) ≥ 3mu(l+k)log(|Γ|)
ε2·OPT ; then:

Pr(|f q(γ)− f(γ)| < ε ·OPT) ≥ 1− 2|Γ|−l

For all γ ⊂ Γ, |γ| ≤ k, where OPT denotes the optimal coverage (OPT = Max{f(γ)|γ ⊂

Γ, |γ| ≤ k}).

Proof: Using Lemma 2:

Pr(|f q(γ)− f(γ)| ≥ δ · f(γ))

Pr
(
| q
mu

f q(γ)− q

mu

f(γ)| ≥ q

mu

· δ · f(γ)
)

Pr
(
|gq(γ)− q

mu

f(γ)| ≥ q

mu

· δf(γ)
)

Pr(|gq(γ)− E(gq(γ))| ≥ δE(gq(γ)))

As samples are independent, the Chernoff bound gives:

Pr
(
|gq(γ)− q

mu
f(γ)| ≥ q

mu
δf(γ)

)
≤ 2 exp

(
− δ2

3

q

mu
f(γ)

)

Substituting δ = εOPT
f(γ)

and q:

Pr(|f q(γ)− f(γ)| ≥ ε ·OPT) ≤ 2 exp
(
− OPT

f(γ)
(l + k)log(Γ)

)

Using the fact that OPT ≥ f(γ):

Pr(|f q(γ)− f(γ)| ≥ ε ·OPT) ≤ 2|Γ|−(l+k)

Applying the union bound over all possible size-k subsets of γ ⊂ Γ (there are |Γ|k)

68

Centrality Maximization Chapter 3

we conclude that:

Pr(|f q(γ)− f(γ)| ≥ ε ·OPT) < 2|Γ|−l,∀γ ⊂ Γ

Pr(|f q(γ)− f(γ)| < ε ·OPT) ≥ 1− 2|Γ|−l,∀γ ⊂ Γ�

Now, we prove our main theorem which shows an approximation bound of (1− 1
e
− ε)

by Algorithm 4 whenever the number of samples is at least q(ε/2) = 12mu(l+k)log(|Γ|)
ε2·OPT (l

and ε are as in Lemma 3).

Theorem 14 Algorithm 4 ensures f(γ) ≥ (1− 1
e
−ε)OPT with high probability (1− 2

|Γ|l)

if at least q(ε/2) samples are considered.

Proof: f(.) is monotonic and submodular (Thm. 12) and one can prove the same

for f q(.). Given the following:

1. From Lemma 3, the number of samples is at least q(ε/2). So, with probability

1− 2
|Γ|l , f(γ) ≥ f q(γ)− ε

2
OPT ;

2. f q(γ) ≥ (1 − 1
e
)f q(γ∗), γ∗ = arg maxγ′⊂Γ,|γ′|≤k f

q(γ′) (submodularity property of

f q(.));

3. f q(γ∗) ≥ f q(γ̄), γ̄ = arg maxγ′⊂Γ,|γ′|≤k f(γ′) (Note that, OPT = f(γ̄))

69

Centrality Maximization Chapter 3

Thm. #Samples Approximations

Thm. 14 O(muklog(|Γ|)
ε2.OPT

) f(γ) > (1− 1
e
− ε)OPT

Cor. 16 O(klog(|Γ|)
ε2

) f(γ) > (1− 1
e
)OPT − ε.mu

Table 3.2: Summary of the probabilistic approximations.

We can prove with probability 1− 2
|Γ|l that:

f(γ) ≥ f q(γ)− ε

2
OPT

≥
(

1− 1

e

)
f q(γ∗)− ε

2
OPT

≥
(

1− 1

e

)
f q(γ̄)− ε

2
OPT

≥
(

1− 1

e

)(
f(γ̄)− ε

2
OPT

)
− ε

2
OPT

>
(

1− 1

e
− ε
)
OPT�

Choosing #Samples: While we are able to achieve a good probabilistic approxi-

mation with respect to the optimal value OPT , deciding the number of samples is not

straightforward. In practice, we do not know the value of OPT beforehand, which affects

the number of samples needed. However, notice that OPT is bounded by the number

of uncovered pairs mu. Moreover, the number of samples q(ε/2) depends on the ratio

mu
OPT

. Increasing this ratio while keeping the quality constant requires more samples. If

OPT (which depends on X) is close to the number of uncovered pairs mu, we need fewer

samples to achieve the bound. In the experiments, we assume this ratio to be constant.

Next, we propose another approximation scheme where we can reduce the number of

samples by avoiding the term OPT in the sample size while waiving the assumption

involving constants.

Let Mu and mu be the set and number of uncovered pairs by X, respectively, in the

70

Centrality Maximization Chapter 3

initial graph. Moreover, we define q̄(ε) so that:

q̄(ε) ≥ 3(l + k)log(|Γ|)
ε2

Corollary 15 Given ε (0 < ε < 1), a positive integer l, a budget k, and a sample of

independent uncovered node pairs Q, |Q| = q̄(ε), then:

Pr(|f q(γ)− f(γ)| < ε ·mu) ≥ 1− 2|Γ|−l,∀γ ⊂ Γ, |γ| ≤ k

The proof is given in [68]. Next, we provide an approximation bound by our sampling

scheme for at least q̄(ε/2) = 12(l+k)log(|Γ|)
ε2

samples.

Corollary 16 Algorithm 4 ensures f(γ) ≥ (1 − 1
e
)OPT − ε.mu with high probability

(1− 2
|Γ|l) if at least q̄(ε/2) samples are used.

This proof is also in [68]. Table 3.2 summarizes the number of samples and corre-

sponding bounds for Algorithm 4. Theorem 14 ensures higher quality with higher number

of samples than Corollary 16. On the other hand, Corollary 16 does not assume any-

thing about the ratio mu
OPT

. The results reflect a trade-off between number of samples

and accuracy.

Theorem 14 and Corollary 16 assume that a greedy approach achieves a constant-

factor approximation of (1− 1/e), which holds only for the RCCO problem (see Sections

3.6.1 and 3.6.2). As a consequence, in the case of the general problem, the guarantees

discussed in this Section apply only for each iteration of our sampling algorithm, but not

for the final results. In other words, BUS provides theoretical quality guarantees that

each edge selected in an iteration of the algorithm achieves a coverage within bounded

distance from the optimal edge. Nonetheless, experimental results show, in practice, BUS

is also effective in the general setting.

71

Centrality Maximization Chapter 3

Dataset Name |V | |E|
Network Science Coauthorship (NS) 0.3k 1k

email-Eu-core (EU) 1k 25k
ca-GrQc (CG) 5K 14K

email-Enron (EE) 36K 183K
loc-Brightkite (LB) 58K 214K
loc-Gowalla (LG) 196K 950K

web-Stanford (WS) 280K 2.3M
DBLP (DB) 1.1M 5M

Table 3.3: Dataset description and statistics.

Ratio
Data k = 5 k = 10 k = 15

NS 1.02 1.14 1.17
EU 1.0 1.1 1.08

Synthetic 1.0 1.0 1.0

Table 3.4: he ratio between the improvement in coverage produced by GES for CCO
and RCCO.

3.7 Experimental Results

Coverage of BUS Time [sec.] Sample
k GES High-ACC High-Deg Random GES High-ACC BUS BUS
10 0.95 2.46 5.41 14.45 > 7K 157.1 5.1 2560
15 0.97 2.92 7.29 9.98 > 7K 156.9 10.1 3840
20 0.98 2.78 9.96 9.59 > 7K 157.2 18.2 5120

Table 3.5: CG data: Comparison of our sampling algorithm (BUS) and the baselines,
including our Greedy (GES) approach, using the CG dataset and varying the budget
k. We evaluate the coverage of BUS relative to the baselines—i.e. how many times
more new pairs are covered by BUS compared to the baseline.

Experimental Setup: We evaluate our algorithms on real-world networks. All

experiments were conducted on a 3.30GHz Intel Core i7 machine with 30 GB RAM and

Ubuntu. Algorithms were implemented in Java.

Dataset: All datasets applied are available online2. Table 3.3 shows dataset statistics.

2Datasets are from (1) https://snap.stanford.edu, (2) http://dblp.uni-trier.de, (3)

72

https://snap.stanford.edu
http://dblp.uni-trier.de

Centrality Maximization Chapter 3

10 12 14 16 18 20
Budget (k)

103

104

105

Im
pr

ov
em

en
t i

n
Co

ve
ra

ge

(a) Quality on EU

10 12 14 16 18 20
Budget (k)

105

106

107

Im
pr

ov
em

en
t i

n
Co

ve
ra

ge

GES
BUS
High-ACC
High-Degree
Random

(b) Quality on CG

Figure 3.2: BUS vs. Greedy: Improvement in coverage centrality produced by different
algorithms.

200 300 400 500 600 700 800
#Samples

0
100
200
300
400
500
600
700

Im
pr

ov
em

en
t i

n
Co

ve
ra

ge BUS
High-ACC
High-Degree
Random

(a) Fixed Budget

5 10 15 20 25 30 35
Budget (k)

0
200
400
600
800

1000
Im

pr
ov

em
en

t i
n

Co
ve

ra
ge BUS

High-ACC
High-Degree
Random

(b) Fixed #Sample

Figure 3.3: Comparison with baselines on the EE dataset varying (b) the number of
samples and (c) the budget.

The graphs are undirected and we consider the largest connected component in our

experiments. The datasets are from different categories: EE and EU are constructed

from email communication; NS, CG and DB are collaboration networks; LB and LG are

OSNs and WS is a webgraph.

Other Settings: We set the candidate edge set Γ as those edges from X to the

remaining vertices that are absent in the initial graph (i.e. Γ = {(u, v)|u ∈ X ∧ v ∈

V \X ∧ (u, v) /∈ E}). The set of target nodes X is randomly selected from the set of all

nodes. Results reported are averages over 10 repetitions.

Baselines: We consider three baselines in our experiments: 1) High-ACC [24, 25]:

http://www-personal.umich.edu/~mejn/netdata/ and the code is available at http://cs.

ucsb.edu/~medya/CODE/SDM18/.

73

http://www-personal.umich.edu/~mejn/netdata/
http://cs.ucsb.edu/~medya/CODE/SDM18/
http://cs.ucsb.edu/~medya/CODE/SDM18/

Centrality Maximization Chapter 3

Coverage of BUS Time [sec.] Samples
k GES High-ACC High-Deg Random GES High-ACC BUS BUS
10 0.96 3.3 5.1 10.1 271 2.3 1.8 2093
15 0.97 5.8 6.7 11.1 423 2.4 3.4 3139
20 0.97 5.2 5.7 8.2 531 2.5 4.5 4186

Table 3.6: EU data: Comparison of our sampling algorithm (BUS) and the baselines
using the EU dataset.

Finds the top k central nodes based on maximum adaptive centrality coverage and adds

edges between target nodes X and the set of top-k central nodes; 2) High-Degree:

Selects edges between the target nodes X and the top k high degree nodes; 3) Random:

Randomly chooses k edges from Γ. We compare our sampling algorithm (BUS) against

our Greedy solution (GES) and show that BUS is more efficient while producing similar

results in terms of quality.

Performance Metric: The quality of a solution set (a set of edges produced by the

algorithm) is the number of newly covered pairs by the target set of nodes after addition

of these edges to the intial graph. We call it improvement in coverage.

3.7.1 GES: RCCO vs CCO

We compare coverage centrality optimization (CCO) and its restricted version (RCCO)

by applying GES to two small real (NS and EU) and one synthetic (Barabasi) network

(|V | = 2k, |E| = 10k). The target set size |X| is set to 5. Table 3.4 shows the ratio be-

tween results for CCO and RCCO varying the budget k. The results, close to 1, support

the RCCO assumptions discussed in Section 3.6.1.

3.7.2 BUS vs. GES

We use only the smallest dataset (CG) in this experiment, as the GES algorithm is

not scalable—it requires the computation of all-pairs shortest paths. For BUS, we set the

74

Centrality Maximization Chapter 3

error ε = 0.3. First, we evaluate the effect of sampling on quality, which we theoretically

analyzed in Theorem 14 and Corollary 16.

Fig. 3.2 shows the number of new pairs covered by the algorithms. Table 3.5 and 3.6

show the running times and the quality of BUS relative to the baselines—i.e. how many

times more pairs are covered by BUS compared to a given baseline on CG and EU data,

respectively. BUS and GES produce results at least 2 times better than the baselines.

Moreover, BUS achieves results comparable to GES while being 2-3 orders of magnitude

faster.

3.7.3 Results for Large Graphs

We compare our sampling algorithm against the baseline methods on large graphs

(EE, LB, LG, WS and DB). Due to the high cost of computing all-pairs shortest paths,

we estimate the centrality based on 10K randomly selected pairs. For High-ACC, we also

use sampling for adaptive coverage centrality computation [24, 25] and the same number

of samples is used. The budget and target set sizes are set as 20 and 5, respectively.

Table 3.7 shows the results, where the quality is relative to BUS results. BUS takes

a few minutes (8, 15, 17, 45, 85 minutes for EE, LB, WS, LG and DB respectively) to run

and significantly outperforms the baselines. This happens as the existing approaches do

not take into account the dependencies between the edges selected. BUS selects the edges

sequentially, considering the effect of edges selected in previous steps.

3.7.4 Parameter Sensitivity

The main parameters of BUS are the budget and the number of samples—both affect

the error ε, as discussed in Thm. 14 and Cor. 16. We study the impact of these two

parameters on performance. Again, we estimate coverage using 10K randomly selected

75

Centrality Maximization Chapter 3

pairs of nodes.

Fig. 3.3a shows the results on EE data for budget 20 and target set size 5. With 600

samples, BUS produces results at least 2 times better than the baselines. Next, we fix the

number of samples and vary the budget. Figure 3.3b shows the results with 10K samples

and 5 target nodes. BUS produces results at least 2.5 times better than the baselines.

Moreover, BUS takes only 30 seconds to run with budget of 30 and 1000 samples. We

find that the running time grows linearly with the budget for a fixed number of samples.

These results validate the running time analysis from Sec. 3.5.2.

BUS (relative to baselines) # Samples
Data High-ACC High-Degree Random BUS
EE 4.88 2.74 51 6462
LB 3.3 2.3 33.8 6796
LG 3.3 4.2 62 4255
WS 1.89 1.95 4.8 2000
DB 2.5 1.6 5 875

Table 3.7: Coverage centrality of BUS relative to baselines.

3.7.5 Impact on Other Metrics:

While this chapter is focused on optimizing Coverage Centrality, it is interesting to

analyze how our methods affect other relevant metrics. Here, we look at the following

ones: 1) influence, 2) average shortest-path distance, and 3) closeness centrality. The

idea is to assess how BUS improves the influence of the target nodes, decreases the

distances from the target to the remaining nodes, and increases the closeness centrality

of these nodes as new edges are added to the graph. For influence analysis, we consider

the popular independent cascade model [31] with edge probabilities of 0.1. In all the

experiments, we fix the number of sampled pairs at 1000 and choose 10 nodes, uniformly

at random, as the target set X. The metrics are computed before and after the addition

76

Centrality Maximization Chapter 3

Influence Distance Closeness
k EE LB LG EE LB LG EE LB LG
25 57.7 12.2 10.7 2.7 1.2 2.2 2.0 2.0 1.0
50 96.8 17.5 92.7 3.8 3.5 3.3 4.9 3.9 4.0
75 134.3 29.1 45.9 5.2 2.1 2.3 5.9 2.3 1.9

Table 3.8: Improvement of other metrics after adding the edges found by BUS: the
numbers are improvement in percentage with respect to the value for the initial graph.

of edges and presented as the relative improvement (in percentage). Because target nodes

are chosen at random, increasing the budget does not necessarily lead to an increase in

the metrics considered.

Results are presented in Table 3.8. There is a significant improvement of the three

metrics as the budget (k) increases. For influence, the number of seed nodes is small, and

thus the relative improvement for increasing k is large. The improvement of the other

metrics is also significant. For instance, in EE, the decrease in distance is nearly 5%,

which is approximately 72K, for a budget of 75.

3.8 Conclusions

We studied several variations of a novel network design problem, group centrality

optimization. This problem has applications in a variety of domains including social,

collaboration, and communication networks. From a theoretical perspective, we have

shown that these variations of the problem are NP-hard as well as APX-hard. Moreover,

we have proposed a greedy algorithm, and even faster sampling algorithms, for group

centrality optimization. Our algorithms provide theoretical quality guarantees under

realistic assumptions and also outperform the baseline methods by up to 5 times on

several datasets. From a broader point of view, we believe that this chapter highlights

interesting properties of network design problems compared to their, more well-studied,

77

Centrality Maximization Chapter 3

search counterparts.

78

Chapter 4

Hiding in Covert Networks

Covert networks are social networks that often consist of harmful users. Social Network

Analysis (SNA) has played an important role in reducing criminal activities (e.g., counter

terrorism) via detecting the influential users in such networks. There are various popular

measures to quantify how influential or central any vertex is in a network. As expected,

strategic and influential miscreants in covert networks would try to hide herself and her

partners (called leaders) from being detected via these measures by introducing new

edges. Waniek et al. [58] show that the corresponding computational problem, called

Hiding Leader, is NP-complete for the degree and closeness centrality measures. We

study the popular core centrality measure and show that the problem [69] is NP-complete

even when the core centrality of every leader is only 3. On the contrary, we prove

that the problem becomes polynomial time solvable for the degree centrality measure

if the degree of every leader is bounded above by any constant. We then focus on the

optimization version of the problem and show that the Hiding Leader problem admits

a 2 factor approximation algorithm for the degree centrality measure. We complement

it by proving that one cannot hope to have any (2 − ε) factor approximation algorithm

for any constant ε > 0 unless there is a ε/2 factor polynomial time algorithm for the

79

Hiding in Covert Networks Chapter 4

Densest k-Subgraph problem which would be considered a significant breakthrough.

We empirically establish that our 2 factor approximation algorithm frequently finds out a

near optimal solution. On the contrary, for the core centrality measure, we show that the

Hiding Leader problem does not admit any (1−α) lnn factor approximation algorithm

for any constant α ∈ (0, 1) unless P = NP even when the core centrality of every leader is

only 3. Hence, our work shows that, although classical complexity theoretic framework

fails to shed any light on relative difficulty of Hiding Leader for different centrality

measures, the problem is significantly “harder” for the core centrality measure than the

degree centrality one.

4.1 Introduction

Social network analysis (SNA) has played a pivotal role in many applications in

multi-agent systems and artificial intelligence [70, 71, 72, 73]. One of the most successful

applications of SNA is in counter-terrorism via analyzing covert networks [74, 75, 76, 77].

Covert network loosely refers to network of criminals, terrorists, illegal activities, etc.

Security personnel regularly use various SNA tools to understand criminal behavior,

catch their leaders, and effectively dismantle such networks [78, 79, 80].

Centrality measure is one of the most useful tools that SNA provides to analyze covert

networks. It assigns scores to the vertices based on their relative influence or importance

in the network [81]; depending on the centrality measure, higher scores may correspond

to important vertices and important vertices are expected to be more central. One of the

simplest and oldest such centrality measures is the degree centrality which ranks vertices

according to their degree [82]. Other important examples include closeness centrality and

betweenness centrality that are measures based on shortest paths [83]. Another centrality

measure is the core centrality [84] which ranks the vertices based on their core number.

80

Hiding in Covert Networks Chapter 4

Intuitively speaking, if a vertex has a high core number, then it is part of some dense

cohesive community within the network. Formally, a k-core is an induced subgraph of

the network where the minimum degree of the vertices is at least k. The core number of

a vertex is the highest integer k such that the vertex is part of some k-core. Therefore,

the core centrality can be more revealing about the position of a node than its degree

centrality—while degree centrality only concerns about the degree of a vertex, the core

centrality elegantly takes into consideration the degrees of the neighbors as well as the

vertex. These two measures are also related in the sense that the core centrality of any

vertex is at most its degree centrality. Due to its sophisticated nature, the core centrality

has been extensively used in the study of covert networks [85, 86, 87] as well as in other

important tasks such as viral marketing and social engagement [88, 89] in social networks.

In this chapter, our goal is to study the centrality measure based secrecy in covert

networks. Indeed, understanding covert networks remains a challenging task mainly due

to incompleteness and dynamic evolution of the data as well as the strategic nature of the

users [90, 91, 92, 93, 94, 95]. Since the criminals often possess technical expertise [96, 97,

98, 99, 100], we are interested in the evolution of terrorist networks under a framework of

strategic users [58]: How is the network designed to hide the central or influential users

aka the leaders?

Waniek et al. [58] first propose the Hiding Leader problem which incorporates the

viewpoint of the leaders of a criminal organization. It also explicitly models knowledge of

the criminals about SNA tools that are used to detect them and thus help in dismantling

their organization. Intuitively, the input in the Hiding Leader problem is a network

with a subset of vertices marked as leaders. The goal is to add fewest edges to ensure

that various SNA tools do not rank any leader high based on centrality measures thereby

capturing the efficiency vs secrecy dilemma that the criminals are believed to possess [85,

101, 102]. Waniek et al. show promising results that the Hiding Leader problem is

81

Hiding in Covert Networks Chapter 4

computationally intractable even for the simplest degree centrality measure.

4.1.1 Contribution

In this chapter, we study the Hiding Leader problem for the core centrality measure

and show that the degree centrality measure is much more computationally vulnerable

than the core centrality measure although the Hiding Leader problem is NP-complete

for both of them. We reinforce our above claim further through extensive empirical

evaluations. Our specific contributions for the Hiding Leader problem are as follows.

• We show that the Hiding Leader problem for degree centrality is polynomial

time solvable if the degree of every leader is bounded by some constant [Theorem

17].

• We present a 2 factor approximation algorithm for the Hiding Leader problem

for degree centrality which optimizes the number of edges added [Theorem 18]. We

complement this by proving that, if there exists a (2 − ε) factor approximation

algorithm for the above problem for any constant 0 < ε < 1, then there exists a ε/2

factor approximation algorithm for the Densest k-Subgraph problem [Theorem

19] which would be considered a substantial breakthrough. To the best of our

knowledge, the state of the art algorithm for the Densest k-Subgraph problem

achieves an approximation ratio of Õ(n1/4) only [103].

• For the core centrality measure, we show that the Hiding Leader problem is

NP-complete even if the core centrality of every leader is exactly 3 [Theorem 20].

We prove that our result is almost tight in the sense that the Hiding Leader

problem is polynomial time solvable if the core centrality of every leader is at most

1 [Theorem 1]. Moreover, we also prove that there does not exist any (1 − α) lnn

82

Hiding in Covert Networks Chapter 4

factor approximation algorithm for any constant α ∈ (0, 1) which optimizes the

number of edges that one needs to add even when the core centrality of every

leader is 3 [Corollary 21].

• We show that a construction of a network by Waniek et al. [58], called “captain

network” there, hides the leaders with respect to the core centrality measure also.

• We empirically evaluate our 2-approximation algorithm for the degree centrality

measure in synthetic networks. We observe that our algorithm almost always pro-

duces near optimal results in practice. In the experimental results, we also show

the extent in which a leader can hide in the captain network with respect to core

centrality.

4.2 Related Work

Waniek et al. first proposed and studied the Hiding Leader problem [58, 104]. They

proved that the problem is NP-complete for both the degree and closeness centrality

measures. They also proposed a procedure to design a captain (covert) network from

scratch which not only hides the leaders based on the degree, closeness, and betweenness

centrality measures, but also keeps the influence of the leaders high in the network. In this

chapter, we provide two approximability results for degree centrality and core centrality

respectively. We also show the problem is harder in the case of core centrality. Liu et al.

[105] studied another related problem to make the degree of each node in the network

beyond a given constant by adding minimal edges.

Other problems that align with privacy issues in social networks were studied before

[106, 107]. In [106], the authors showed how an adversary exploits online social networks

to find the private information about users. Altshuler et al. [107] discussed the threat of

83

Hiding in Covert Networks Chapter 4

malware targeted at extracting information in a real-world social network.

Computing centrality and related problems. A significant amount of related

work study the computationally complexity of various centrality measures. Brandes [22]

first proposed an efficient algorithm to compute the betweenness centrality of a vertex

in a network. More recently, Riondato et al. [23] introduced an approach to compute

the top-k vertices according to the betweenness centrality using VC-dimension theory.

Yoshida [24] studied similar problems for both the betweenness and coverage centrality

measures in a group setting. Mahmoody et al. subsequently improved the performance

of the above algorithms using a novel sampling scheme [25]. There is an active line of

research to optimize the centrality of one node as well as of a set of nodes [26, 27, 28, 13].

Nikos et al. proposed a novel procedure to maximize the expected decrease in shortest

path distances from a given node to the remaining nodes via edge addition [21]. Crescenzi

et al. [26] proposed greedy algorithms to increase centrality of certain vertices and show

effectiveness of their approach through extensive simulation. Kilberg [108] and others

studied behavioral models to understand why certain network topologies are common

in covert networks [98, 109, 110]. Enders and Su [111] and others develop models to

explain various properties like efficiency vs secrecy dilemma etc. of covert networks [112,

113, 114, 115]. Other important direction includes quantifying the influence of vertices;

most prominent among them include Independent Cascade model [116], Linear Threshold

model [31], Bass model [117, 118], etc.

Other network design problems. We also provide a few details about previous

work on other network modification (design) problems. A set of design problems were

introduced in [16]. Lin et al. [3] addressed a shortest path optimization problem via

improving edge weights on undirected graphs. The node version of this problem was also

studied [7, 14, 42]. Meyerson et al. [10] proposed approximation algorithms for single-

source and all-pair shortest paths minimization. Faster algorithms for some of these

84

Hiding in Covert Networks Chapter 4

problems were also presented in [17, 18]. emaine et al. [19] minimized the diameter of a

network by adding shortcut edges.

4.3 Preliminaries

For a positive integer `, we denote the set {1, 2, . . . , `} by [`]. A network or graph

G = (V , E) is a tuple consisting of a finite set V (or V [G]) of n vertices and a set E ⊆ V×V

of edges (also denoted by E [G]). A network is called undirected if we have (x, y) ∈ E

whenever we have (y, x) ∈ E for any x, y ∈ V with x 6= y. A self loop is an edge of the

form (x, x) for some x ∈ V . In this chapter, we focus on undirected networks without

any self loop. The degree of a vertex x is the number of edges incident on it which is

|{e ∈ E : x ∈ e}|. A subgraph of a network G = (V , E) is a network H = (U ,F) such that

U ⊆ V and F ⊆ E ∩ (U × U). For a positive integer k, a subgraph H of a network G is

called a k-core if the degree of every vertex in H at least k. The core number of a vertex

x in a network is the largest integer k such that x belongs to a k-core.

4.3.1 Network Centrality

Let G be any network. Bavelas [81] introduces the notion of centrality of vertices.

Intuitively, centrality measures try to capture the importance of a vertex in a network.

Shaw [82] proposes the degree centrality measure which has turned out to be one of the

most useful measures. The degree centrality of a vertex x in G is the degree degG(x) of

x in the network, that is |{y ∈ V [G] : {x, y} ∈ E [G]}|.

Seidman [84] introduces the idea of core centrality which is particularly useful for

finding network cohesion. For an integer k, a k-core is a subgraph H of G such that

the degree of every vertex in H is at least k. The core number of a vertex x in G is

the largest k such that x belongs to a k-core, that is max{k ∈ N : ∃H ⊆ G, degH(x) ≥
85

Hiding in Covert Networks Chapter 4

k∀x ∈ V [H]}. The core centrality of a vertex x in G is its core number in the network.

Other popular network centrality measures includes closeness centrality [83], betweenness

centrality [119, 120], etc.

4.3.2 Problem Definition

Intuitively, the input in the Hiding Leader problem is a network with a subset

of vertices marked as leaders (and the other vertices are followers), a budget b which is

the maximum number of edges that we can add in the network, and a target d which

is the minimum number of followers whose centrality must be at least as high as the

centrality of any leader in the resulting network (after addition of the new edges). We

now define our problem formally. In Definition 8, c(·, ·) denote either degree centrality

or core centrality.

Definition 8 (Hiding Leader (HL)) Given a graph G = (V , E), a subset L ⊆ V of

leader vertices, an integer b denoting the maximum number of edges that we are allowed

to add in G, an integer d denoting the number of follower vertices in F = V \ L whose

final centrality should be at least as high as any leader, the goal is to compute if there

exists a subsetW ⊆ F×F of edges between followers such that the conditions below hold.

1. |W| ≤ b

2. ∃F ′⊆F |F ′| ≥ d such that c(G ′, f) ≥ c(G ′, l),∀f ∈ F ′, l ∈ L where G ′ = (V , E ∪W).

4.4 Results for Degree Centrality

We present our algorithmic and hardness results for the Hiding Leader problem for

the degree centrality measure in this section. We begin with presenting our polynomial

86

Hiding in Covert Networks Chapter 4

time algorithm for the Hiding Leader problem for the degree centrality measure when

the degree of every leader in the network is bounded above by any constant. On a high

level, our algorithm makes greedy choices as long as it can and uses local search technique

when “stuck.”

Theorem 17 There exists a polynomial time algorithm for the Hiding Leader problem

for degree centrality if the degree of every leader is bounded by any constant.

Proof: Let G be the input graph and k the highest degree of any leader; that is

k = max{degG(l) : l ∈ L}. We are given that k is a constant. If the number of followers is

at most 2k, then there are at most
(

2k
2

)
(which is a constant) new edges that we can add

and we try all possible subsets of it of cardinality at most b. The number of such subsets

is at most 2(2k
2) which is a constant and thus we can output correctly in polynomial time.

So let us assume that the number of followers is at least 2k + 1. Similarly we can also

assume without loss of generality that the budget b is at least 4k2 since otherwise we

will try to add all possible b new edges (there are only O(n2b) = nO(1) possibilities since

k = O(1)) and thus we can output correctly in polynomial time.

Suppose there are already d′ number of followers in G whose degrees are at least k.

If d′ ≥ d, we output yes. Otherwise let us assume without loss of generality that d′ < k.

Let X ⊆ F with |X | = d − d′ be the set of top d − d′ highest degree followers in the

network whose degrees are less than k. Intuitively, our algorithm greedily adds new edges

between two vertices in X whose degrees are less than k until it is stuck and removes

some edge it had added before to make progress. Concretely, our algorithm works as

follows. To distinguish existing (old) edges from newly added edges (by the algorithm)

in G, we color the existing (old) edges as red and whenever we add a new edge, we color

it green. To begin with, all the edges in G are colored red and there is no green edge. We

apply the following step (?) as long as we can. If the number of green edges in G is less

87

Hiding in Covert Networks Chapter 4

than b and there exist two vertices x, y ∈ X such that the degrees of both the vertices

are less than k and there is no edge between them, then we add an edge {x, y} in G and

color it green. Such a pair of vertices (if exists) can be found in O(n2). If such a pair of

vertices does not exist in G, then one of the following four cases must hold.

Case 1: The degree of every vertex in X is at least k. In this case, we output yes.

Case 2: The number of green edges in G is b. In this case, we output yes if the degree

of every vertex in X is at least k; otherwise we output no.

Case 3: There exists exactly one vertex x ∈ X with degree less than k. If the degree

of x is k − 1, then we add an edge between x and any vertex y ∈ F such that there is

no edge between x and y in G and color it green. If the number of green edges in G is

at most b, then we output yes; otherwise we output no. Otherwise we assume that the

degree of x is less than k − 1. If the number of green edges in G is at most 3k2, then

we can add k new green edges on x and answer yes since we have already assumed that

b ≥ 4k2. So let us assume without loss of generality that the number of green edges in G

is more than 3k2. Let {u, v} be a green edge such that there is no edge between x and u

and between x and v in G. Such a green edge {u, v} always exists in G since the degree

of x is less than k− 1 in G and there are more than 3k2 green edges in G. Moreover such

an edge can be found in polynomial time by simply checking all the green edges. We now

remove the green edge {u, v} from G, add two edges {x, u} and {x, v} in G, color both

of them green, and continue (return to the step (?)).

Case 4: For every pair of vertices x, y ∈ X , x 6= y with degree less than k for both

the vertices, there is an edge between them. Let Z ⊆ X be the set of vertices in X with

degree less than k. Since there exists an edge between every pair of vertices in Z in this

case and the degree of every vertex in Z is less than k, we have |Z| ≤ k. If the number

of green edges in G is at most 3k2, then we can add k new green edges on every vertex in

Z and answer yes since we have |Z| ≤ k and b ≥ 4k2. So let us assume that the number

88

Hiding in Covert Networks Chapter 4

of green edges in G is more than 3k2. Let a, b ∈ X be any two vertices. Let N (a) and

N (b) denote the set of neighbors of a and b in X . Since the degrees of both a and b are

less than k, we have |N (a)| < k and |N (b)| < k. Since the degree of every vertex in X

is at most k and the number of green edges in G is at least 3k2, there exists at least one

green edge {u, v} in G which does not incident on any vertex in N (a) ∪ N (b) ∪ {a, b}

(there can be at most 2k2 green edges incident on any vertex in this set). Moreover such

an edge can be found in polynomial time by simply checking all the green edges. We now

remove the green edge {u, v} from G, add two edges {a, u} and {b, v} in G, color both of

them green, and continue (return to the step (?)).

The algorithm always terminates in polynomial time since in every iteration, it adds

a green edge and at most b (< n2) green edges could be added – in cases 3 and 4, we

have added two green edges and removed only one green edge; the algorithm terminates

in cases 1 and 2. Also, whenever the algorithm outputs yes, adding green edges to the

graph makes the degree of at least d followers in the network at least k. Hence, if the

algorithm outputs yes, the instance is indeed a yes instance. So, let us assume that the

algorithm outputs no. Except (in case 3) when there exists exactly one vertex x in the

network with degree less than k and the degree of x is k− 1, whenever we add one green

edge in total (which is the same as adding two green edges and removing one green edge

in cases 3 and 4), the sum of the degrees of all the vertices in X increases by 2. Hence the

number of green edges added in the graph is at most ALG = d∑x∈X
(k−deg(x))/2e. Since

the algorithm outputs no, we have ALG > b. We observe that since any edge increases

the degree of at most 2 vertices, when the algorithm outputs no, the instance is indeed

a no instance. Hence the algorithm is correct.

We now present a simple 2 factor polynomial time approximation algorithm for the

Hiding Leader problem for degree centrality.

89

Hiding in Covert Networks Chapter 4

Theorem 18 There exists a polynomial time algorithm (HLDA) for approximating the

budget b in Hiding Leader within a factor of 2 for degree centrality.

Proof: Let F ′ ⊆ F be the set of followers in F whose degree centrality is at least

the degree centrality of every vertex in L. Let |F ′| = d′. If d′ ≥ d, then we output an

empty set of edges. Let xi ∈ F , i ∈ [d− d′] be the (d− d′) followers with highest degree

centrality among the vertices in F \ F ′. We keep on adding edges with at least one end

point in {xi : i ∈ [d−d′]} until the degree centrality of every xi, i ∈ [d−d′] is at least the

degree of every vertex in L in the resulting graph. When we have d followers with degree

at least the degree of every vertex in L, we output the set of edges that we have added.

The algorithm adds at most
∑d−d′

i=1 (d− deg(xi)) many edges where where deg(xi) is the

degree of the vertex xi in the input graph. Since any new edge can increase the sum of

the degrees of the followers by at most 2, we have OPT≥ ∑d−d′
i=1

(d−deg(xi))/2 ≥ ALG/2 by

the choice of F ′. Hence our algorithm approximates b by a factor of 2.

We now complement our approximation algorithm in Theorem 18 by proving that if

there exists a polynomial time approximation algorithm for the Hiding Leader problem

for degree centrality with approximation factor (2−ε) for any constant ε > 0, then there

exists a constant factor polynomial time approximation algorithm for the Densest k-

Subgraph problem. In the Densest k-Subgraph problem, the input is a graph G and

an integer k and we need to find a subgraph H of G on k vertices with highest density.

The density of a graph on n vertices is the number of edges in it divided by
(
n
2

)
. To

the best of our knowledge, we do not know whether there exists any polynomial time

algorithm which can distinguish a graph containing a clique of size k from a graph where

the density of every sub-graph of size k is at most (ε/2) (any ε/2 factor approximation

algorithm for the Densest k-Subgraph problem would be able to distinguish). In fact,

none of the known algorithms can distinguish even for some sub-constant values for ε

90

Hiding in Covert Networks Chapter 4

(see [121] and references therein). We now show that if there exists a (2 − ε) factor

approximation algorithm for the Hiding Leader problem for any constant 0 < ε < 1,

then there exists an ε/2 factor approximation algorithm with the same running time (of

the Hiding Leader algorithm).

Theorem 19 Suppose there exists a (2− ε) factor polynomial time approximation algo-

rithm for the Hiding Leader problem for degree centrality for some constant ε. Then

there exists a polynomial time algorithm for distinguishing a graph containing a clique of

size k from a graph where the density of every sub-graph of size k is at most ε/2.

Proof: Let G be any graph which satisfies either (exactly) one of the following

properties.

1. Completeness: There exists a clique of size k in G.

2. Soundness: The density of any subgraph of G of size k is at most ε/2.

From G we construct an instance of Hiding Leader. Intuitively, we introduce a

vertex av corresponding to every vertex v ∈ V [G] in G and the edge set among those

vertices is the complement of the corresponding edge set in G. To ensure that, in the

resulting graph, the degree of every vertex av for v ∈ V [G] is n, we add appropriate

number of edges between av and some auxiliary vertices d(v,`) for every v ∈ V [G], ` ∈ [n];

we ensure that the degree of any such auxiliary vertex is at most 1 which will guarantee

that these auxiliary vertices are never part of any optimal solution. Finally we add a

clique on a set {xi : i ∈ [n + k]} of leader vertices so that the degree centrality of every

leader is n + k − 1. Formally, the instance (H,L, d) of Hiding Leader is defined as

91

Hiding in Covert Networks Chapter 4

follows.

V [H] = {av, d(v,`) : v ∈ V [G], ` ∈ [n]} ∪ {xi : i ∈ [n+ k]}

L = {xi : i ∈ [n+ k]}

E [H] = {{au, av} : (u, v) /∈ E [G]}

∪{{xi, xj} : 1 ≤ i < j ≤ n+ k}

∪{{av, d(v,`)} : v ∈ V [G], ` ∈ [degG(v) + 1]}

d = k

We now use the (2 − ε) factor approximation algorithm for the Hiding Leader

problem for degree centrality which outputs that there is a way to add bALG number of

edges so that there exist at least d followers in H whose degree is at least the degree of

any leader. Let bOPT denotes the minimum number of edges that one needs to add to

ensure that there exist at least d followers in H whose degrees are at least the degree of

every leader. Then we have bALG ≤ (2 − ε)bOPT . We output that the graph G contains

a k-clique if bALG ≤ (2 − ε)
(
k
2

)
. Otherwise, we output that the density of any subgraph

of G on k vertices is at most ε/2. We now prove correctness of our algorithm. We first

observe that the degree of every leader in H is n + k − 1, the degree of av ∈ V [H] for

every v ∈ V [G] is n, and the degree of every other vertex is at most 1.

1. Completeness: Let W ⊆ V [G] with |W| = k be a clique in G. Let us consider the

subset X = {av : v ∈ W} ⊆ V [H] \ L. By construction, X forms an independent

set in H and the degree of every vertex in H is n. Since, adding all the edges in

{{au, av} : u, v ∈ W , u 6= v} in H makes the degree of every vertex in X in the

resulting graph n+k−1, we have bOPT ≤
(
k
2

)
. Hence, we have bALG ≤ (2−ε)bOPT ≤

(2− ε)
(
k
2

)
.

92

Hiding in Covert Networks Chapter 4

2. Soundness: In this case, the density of any subgraph of G on k vertices is at most

ε/2. Let Y ⊆ V [H] \L with |Y| = k be a set of any k followers. By the construction

of H, we have |E [Y [H]]| ≥ (1 − (ε/2))
(
k
2

)
. Hence, the minimum number of edges

one needs to add to make the degree of every vertex in Y at least n + k − 1 is at

least k(k − 1) − (ε/2)
(
k
2

)
= (2 − (ε/2))

(
k
2

)
. In particular, we have bALG ≥ bOPT ≥

(2− (ε/2))
(
k
2

)
> (2− ε)

(
k
2

)
.

This concludes the proof of the statement.

4.5 Results for Core Centrality

We present our results for the Hiding Leader problem for the core centrality mea-

sure in this section. Unlike in degree centrality case, the problem becomes NP-complete

even when the core centrality of every leader is only 3. This is almost tight as we prove

that the problem is polynomial time solvable if the core centrality of every leader is at

most 1.

In Theorem 20 below, we prove that the Hiding Leader problem is NP-complete

even when the core centrality of every leader is 3. We reduce the Set Cover problem to

the Hiding Leader problem there. In the Set Cover problem, the input is a universe

U = {u1, u2, ..., un}, a collection S = {S1, S2, ..., Sm} of subsets of U , and an integer t

and we need to compute if there exist at most t sets in S, union of which results in U .

It is well known that the Set Cover problem is NP-complete [122].

Theorem 20 The Hiding Leader problem for the core centrality measure is NP-

complete even when the core centrality of every leader is 3.

Proof: The Hiding Leader problem for the core centrality measure is clearly in

NP. Note that computing core centrality of a node takes polynomial time [89]. To prove

93

Hiding in Covert Networks Chapter 4

NP-hardness, we reduce from the Set Cover problem. Let (U = {u1, u2, ..., un},S =

{S1, S2, ..., Sm}, t) be an instance of the Set Cover problem. To define a corresponding

Hiding Leader problem instance, we construct the graph G as follows.

Intuitively, for each subset Si ∈ S, we create a path of n vertices Xi,1, Xi,2, · · · , Xi,n

in G; (Xi,2, Xi,3), · · · , (Xi,n−1, Xi,n), (Xi,n, Xi,1) are the edges of the above path. We also

add 5 vertices Wi,1 to Wi,5 with eight edges where the four vertices in {Wi,` : 2 ≤ ` ≤ 5}

form a clique with six edges; the other two edges are (Wi,1,Wi,2) and (Wi,1,Wi,5). For

each uj ∈ U , we add a set of 5 vertices {Zj,` : 1 ≤ ` ≤ 5} with eight edges where the four

vertices (leaders) {Zi,` : 2 ≤ ` ≤ 5} form a clique with six edges; the other two edges are

(Zj,1, Zj,2) and (Zj,1, Zj,5). We also have an edge (Xi,j, Zj,1) for every uj ∈ Si. We allow to

add t new edges and demand that the core centrality of at least 4m+n(t+1)+t followers

should be at least as high as the core centrality of every leader. Figure 4.1 illustrates the

structure of our construction for sets S1 = {u1, u2}, S2 = {u2}, S3 = {u3, u4}. We now

94

Hiding in Covert Networks Chapter 4

formally describe our Hiding Leader instance.

V [G] = {Xi,j : Si ∈ S, uj ∈ U} ∪ V1

E [G] = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6 ∪ E7 ∪ E8

V1 = {Wi,p : Si ∈ S, p ∈ [5]} ∪ {Zj,p : uj ∈ U , p ∈ [5]}

E1 = {(Xi,j, Xi,j+1) : j ∈ [n− 1] \ {1}, i ∈ [m]}

E2 = {(Xi,n, Xi,1) : i ∈ [m]}

E3 = {(Wi,1,Wi,p)|i ∈ [m], p = 2, 5}

E4 = {(Wi,1, Xi,j)|uj /∈ Si, i ∈ [m], j ∈ [n]}

E5 = {(Zj,1, Zj,p)|j ∈ [n], p = 2, 5}

E6 = {(Xi,j, Zj,1)|uj ∈ Si, i ∈ [m], j ∈ [n]}

E7 = {(Wi,p,Wi,q)|i ∈ [m], 2 ≤ p < q ≤ 5}

E8 = {(Zj,p, Zj,q)|j ∈ [n], 2 ≤ p < q ≤ 5}

L = {Zj,p|j ∈ [n], p = 2, 3, 4, 5}

b = t, d = 4m+ n(t+ 1) + t

We now claim that these two instances are equivalent. In one direction, let us assume

that the Set Cover instance is a yes instance. By renaming, let us assume that the

collection {S1, . . . , St} forms a valid set cover of the instance. We add the edges in the

set E ′ = {(Xi,1, Xi,2) : i ∈ [t]} in the graph G. Let the resulting graph be H. We claim

that the core centrality of every vertex in {Zi,1 : i ∈ [n]}∪{Xi,j : i ∈ [t], j ∈ [n]}∪{Wi,1 :

i ∈ [t]} ∪ {Wi,j : i ∈ [m], j ∈ [4]} is 3 in H. We first observe that the core centrality of

every leader remains 3 even after adding the edges in E ′. Also, for any i ∈ [m], if the edge

(Xi,1, Xi,2) is added in the graph, the core centrality of the n+ 1 vertices Xi,t, t ∈ [n] and

95

Hiding in Covert Networks Chapter 4

Wi,1 become 3. Hence after addition of the edges in E ′ in G, the core centrality of every

vertex in {Xi,j : i ∈ [t], j ∈ [n]} ∪ {Wi,1 : i ∈ [t]} becomes 3. Since {S1, . . . , St} forms a

set cover for U , the core centrality of every vertex in {Zi,1 : i ∈ [n]} becomes 3. Lastly,

the core centrality of every vertex in {Wi,j : i ∈ [m], j ∈ [4]} was already 3 in G and since

addition of edges never decreases the core centrality of any vertex, the core centrality of

these vertices are at least 3 in H. Hence the Hiding Leader instance is a yes instance.

For the other direction, let us assume that there exists a set E ′ of edges such that in

the graph H = (V [G], E [G] ∪ E ′), the core centrality of at least d vertices in V [G] \ L is

at least 3; let the set of followers with core centrality at least 3 in H be Y ⊆ V [G] \ L.

Since adding edges in the graph never decreases the core centrality of any vertex, we

have {Wi,j : i ∈ [m], j ∈ [4]} ⊆ Y . Let us consider the following subset J ⊆ [m] defined

as: J = {j ∈ [m] : ∃1 ≤ i < k ≤ n with (Xj,i, Xj,k) ∈ F}. Since |F| ≤ b and b = t, we

have |J | ≤ t. We claim that {Sj : j ∈ J } forms a set cover for U . Suppose not, then at

most n− 1 vertices in {Zi,1 : i ∈ [n]} can belong to Y since Z`,1 does not belong to Y if

u` is uncovered. Also, any vertex in {Xi,`,Wi,1 : i ∈ [m] \ J , ` ∈ [n]} does not belong to

Y . Hence, we have |Y| ≤ 4m + t(n + 1) + n − 1 < d which contradicts our assumption

that F forms a valid solution for the Hiding Leader instance. Hence the Set Cover

instance is a yes instance.

Theorem 20 along with well known inapproximability result for the Set Cover

problem immediately give us the following result.

Corollary 21 There does not exists any polynomial time algorithm for approximating

the number of edges one needs to add in the Hiding Leader problem for core centrality

within an approximation ratio of (1− α) lnn for any constant α assuming P 6= NP even

when the core centrality of every leader is 3.

Proof: The result follows from the observation that the reduction in the proof of

96

Hiding in Covert Networks Chapter 4

X1,1

X1,2X1,3

X1,4

W2,1

W2,5
W2,4

W2,3 W2,2

Z4,1

Z4,2 Z4,3

Z4,4Z4,5

Figure 4.1: Example construction for hardness from Set Cover where
U = {u1, u2, u3, u4}, S = {S1, S2, S3}, S1 = {u1, u2}, S2 = {u2}, S3 = {u3, u4}. The
red nodes are the leaders and the blue nodes are the followers.

Theorem 20 is approximation preserving and the (1−α) lnn inapproximability result for

the Set Cover problem for any constant α assuming P 6= NP [123].

We now show that the hardness result in Theorem 20 is almost tight in the sense that

if the core centrality of every leader is at most 1 in the network, then the corresponding

Hiding Leader problem is polynomial time solvable.

Proposition 1 There exists polynomial time algorithm for the Hiding Leader problem

for core centrality if the core centrality of every leader in the network is at most 1.

Proof:

We observe that if the degree of any vertex x is at least 1, then its core centrality

is at least 1. Let F ′ ⊆ F be the subset of followers whose core centrality is at least 1;

say |F ′| = d′. Hence the degree of every vertex in F \ F ′ is 0. We add d(d−d′)/2e new

edges such that the degree of at least d− d′ vertices in F \ F ′ becomes at least 1 in the

resulting graph. We output yes if d(d−d′)/2e ≥ b; otherwise we output no. Since any

optimal solution must add at least d(d−d′)/2e edges, our algorithm is correct.

97

Hiding in Covert Networks Chapter 4

4.6 Captain Networks

In this section, we show the “captain network”, originally proposed by Waniek et

al. [58], also ensures that the core centrality of any leader is at most the core centrality

of any captain. They propose two constructions; one for single leader and another for

multiple leaders.

4.6.1 For Multiple Leaders

We first describe the construction in [58]. The set L of leaders forms a clique. Each

leader li ∈ L has a corresponding group of p captains Ci = {Ci,1, Ci,2, · · · , Ci,p} and

li is connected to all vertices in Ci. Assuming that |L| = h ≥ 2, there are h such

sets of captains {C1, C2, · · · , Ch}. All vertices in the captain sets are connected as a

complete h-partite graph. A captain Ci,j serves two things: 1) It helps to hide the leader

by being higher or of same centrality than the leader with maximum centrality. 2) It

spreads the influence from the leader to the rest of the network. The remaining vertices

X = {X1, X2, · · · , Xm} are each connected to one captain from each group Ci. The

follower set in the network is F = X ∪ C1 ∪ C2 ∪ · · · ∪ Ch. Let us call the resulting graph

GM . We now show that the core centrality of every leader in GM is at most the core

centrality of every captain.

Theorem 22 Given a captain network GM , let r = bm
p
c denotes the minimum number

of connections that a captain Ci,j has with vertices from X. Assuming we have at least 2

leaders and p > 1, the core centralities of the captains are either greater or same as the

leaders.

Proof: In GM , the vertices in X do not contribute in the core centrality of either the

leaders or the captains. We observe that the degree of any vertex in X is h. So their core

98

Hiding in Covert Networks Chapter 4

centrality can be at most h. We claim that the captains and the leaders are in higher core

than h. Consider a induced subgraphG′ ⊂ GM that includes only the leaders, the captains

and the edges between them. In G′, the degree of any captain Ci,j is p(h− 1) + 1; on the

other hand, the degree of any leader li is h−1+p. So, inG′, all the captains and the leaders

are at least in dmin = min{d(G, ci,j), d(G, li)}-core. This comes from the fact that all the

nodes (captains and leaders) have a minimum degree of dmin and thus they are at least in

dmin-core. Note that, d(G, ci,j)−d(G, li) = p(h−1) + 1− (h−1 +p) = (h−2)(p−1) ≥ 0

as h ≥ 2 and p > 1. This implies the captains have higher degree than the leaders in

G′. So, the captains have at least the same core-centrality as the leaders. Our claim is

proved. Additionally, any vertex in X is in h-core and h < dmin assuming p > 1.

Corollary 23 Given the same captain network G, assuming h > 2 and p > 1, the core

centrality of all the captains is strictly larger than the leaders.

Proof: The key idea is that the captains will form a core only among themselves

and that will be higher core than the leaders. Now, for any captain ci,j the degree among

themselves is p(h − 1). Now that, p(h − 1) − (h − 1 + p) = (h − 2)(p − 1) − 1 > 0

or (h − 2)(p − 1) > 1 is possible when h > 2 and p > 1. So, the captains have larger

core-centrality than the leaders.

4.6.2 For Single Leader

We show that in the construction from [58], the core centralities of the leaders and

the captains remain same when h = 1. A single leader l (h = 1) has two sets of p captains

C1 = {C1,1, C1,2, · · · , C1,p} and similarly it has C2. All captain vertices are connected as

a complete bipartite graph. Each remaining vertex in X = {x1, x2, · · · , xm} is connected

to one captain from each group C1 and C2. The follower set is F = {X ∪ C1 ∪ C2}.

99

Hiding in Covert Networks Chapter 4

Corollary 24 Given the captain network described above, let r = bm
p
c denote the mini-

mal number of connections that a captain, ci,j has with vertices from X. Assuming h = 1,

the core centralities of all the captains are same as the leader.

Proof: The proof follows from that of Theorem 22. The leader has degree 2p where

as the captains have degree 1 + p + r. But the vertices in X has only degree 2. So the

leader and the captains will be in the higher core and it will be min{2p, p+1}. Assuming

p ≥ 2 all the captain vertices and the leader will be in p+1-core. If p = 1, all the vertices

in the network will be in 2-core.

4.7 Simulation Results

In this section, we evaluate the performance of our 2 approximation algorithm in

Theorem 18 using synthetic networks. For brevity, let us call our algorithm in Theorem

18 as HLDA and called the lower bound used in Theorem 18 as LB. We also show how

well the leaders can be hidden in the captain network via the core centrality measure.

Solutions were implemented in Java and experiments conducted on 3.30 GHz Intel cores

with 30 GB RAM.

4.7.1 Evaluation of 2-Approximation Algorithm

Settings: We generate synthetic network structures from two well-studied models:

(a) Barabasi-Albert (BA) [124] and (b) Watts-Strogatz (WS) [125]. While both have

“small-world” property, WS do not have a scale-free degree distribution. We generate

both the datasets of 70 thousands vertices for three different edge densities: average

degree of vertices as 2, 4 and 10. In the experiments we choose 20 leaders (|L| = h = 20)

randomly from the top 100 high degree vertices.

100

Hiding in Covert Networks Chapter 4

102 103

d
103

104

105

#E
dg

e
(b

) LB
HLDA
Random

(a) BA (avg. degree = 2)

102 103

d
101

102

103

104

#E
dg

e
(b

) LB
HLDA
Random

(b) WS (avg. degree = 2)

102 103

d

102

103

104

105

#E
dg

e
(b

) LB
HLDA
Random

(c) BA (avg. degree = 4)

102 103

d
101

102

103

104

#E
dg

e
(b

) LB
HLDA
Random

(d) WS (avg. degree = 4)

102 103

d
103

104

105

106

#E
dg

e
(b

) LB
HLDA
Random

(e) BA (avg. degree = 10)

102 103

d

102

103

104

#E
dg

e
(b

) LB
HLDA
Random

(f) WS (avg. degree = 10)

Figure 4.2: Number of edges added (b) by different algorithms: LB implies a loose
lower bound, HLDA is our algorithm that gives 2-approximation and Random denotes
a random edge addition algorithm. Clearly, in both networks while varying edge
density (average degree of nodes), the number of edge addition by our algorithm
HLDA is almost same as that of LB.

Baselines: We compare our algorithm (HLDA) with two baselines. Our first baseline

is the lower bound used in Theorem 18 which we call LB. Our second baseline is Random

which denotes the number of random edges one needs to add to achieve the goal. The

performance metric of the algorithms is the number of edges being added to satisfy the

degree centrality requirement for d followers. Hence, the quality is better when the

number of edges is lower.

Results: Theorem 18 shows that our algorithm (HLDA) proposed for degree cen-

trality gives a 2-approximation. However in practice it gives near optimal results. Figure

4.2 shows the results varying d on four datasets. Note that, the axes are in logarithmic

scale. In all six datasets, the number of solution edges of HLDA is similar to LB. How-

ever, Random cannot produce high quality results. Comparing the datasets (BA and

WS), the algorithms (HLDA and LB) need higher number of edges in BA as the chosen

leaders (randomly chosen from 100 top degree nodes) have much higher degree than the

101

Hiding in Covert Networks Chapter 4

10 15 20 25 30 35 40 45 50

Number of Captains (p)

3
4

5
6

7
8

9
10

11

N
u

m
b

er
of

L
ea

d
er

s
(h

)

−400

−320

−240

−160

−80

Figure 4.3: Summary of the difference in core centralities between a leader and a
captain in a given captain network (with 550 vertices) by varying number of captains
in each group (p) and leaders (h).

followers due to the scale-free degree distribution.

4.7.2 Captain Networks and Core Centrality

In section 4.6, we prove that the core centrality of the leaders can be hidden by the

captains in the captain networks [58] (Theorem 22 and Corollary 23). We empirically

evaluate the core centralities of the the leaders and the captains by varying two param-

eters: the number of captains (p) in each group Ci and the number of leaders (h) for

network with multiple leaders.

Figure 4.3 presents the results for a captain network with 550 vertices. For every

pair of two parameters (p and h), we compute the maximum difference in core centrality

between any leader and any captain. The intensity of the color signifies that the difference

is higher. Higher difference also implies higher disguise for the leaders. Low values of

p result into lower disguise for a leader. On the other hand, a high value of p (large

number of captains in each group) with high values of h produces the maximum amount

102

Hiding in Covert Networks Chapter 4

of disguise. But for a high value of p, if the number of leaders are low, i.e., low h, the

amount of disguise for the leaders decreases.

We summarize our experimental findings as follows.

• HLDA produces near optimal results in practice, where as, Random cannot pro-

duce high quality results. HLDA and LB need more edges to satisfy the degree

requirements for d followers in BA due to the scale-free degree distribution.

• A captain network with large number of leaders (large h) and a large number of

captains in each group (high value of p) produces the maximum amount of disguise.

• A low value of p, i.e., a small number of captains in each group yields lower disguise

for core centrality which is not true for other centralities such as degree, closeness,

and betweenness [58].

4.8 Conclusion and Future Work

We have shown that the Hiding Leader problem for the core centrality measure is

NP-hard to approximate with a factor of (1−α) lnn for any constant α > 0 for optimizing

the number of edges one needs to add even when the core centrality of every leader is

only 3. On the other hand, we prove that the Hiding Leader leader problem for degree

centrality is polynomial time solvable if the degree of every leader is O(1). Moreover,

we also provide a 2 factor polynomial time approximation algorithm for the Hiding

Leader problem for optimizing the number of edges one needs to add to hide all the

leaders. Hence, our results prove that, although classical complexity theoretic framework

fails to compare relative difficulty of hiding leaders with respect to various centrality

measures [58], hiding leaders may be significantly harder for the core centrality than the

degree centrality. We complement our 2 factor approximation algorithm for the Hiding

103

Hiding in Covert Networks Chapter 4

Leader problem for degree centrality by proving that if there exists a (2 − ε) factor

approximation algorithm for the Hiding Leader problem for degree centrality for any

constant 0 < ε < 1, then there exists a ε/2 factor approximation algorithm for the famous

Densest k-Subgraph problem which would be considered a major break through. The

current best polynomial time algorithm for the Densest k-Subgraph problem achieves

an approximation ratio of only Õ(n1/4) [103]. We have also empirically evaluated our

approximation algorithm which shows that our algorithm produces an optimal solution

for most of the cases. We have also shown that the captain networks proposed in [58]

can hide the leaders with respect to core centrality.

104

Chapter 5

Core Resilience

K-cores are maximal induced subgraphs where all vertices have degree at least k. These

dense patterns have applications in community detection, network visualization and pro-

tein function prediction. However, k-cores can be quite unstable to network modifica-

tions, which motivates the question: How resilient is the k-core structure of a network,

such as the Web or Facebook, to edge deletions? We investigate this question from an

algorithmic perspective. More specifically, we study the problem of computing a small

set of edges for which the removal minimizes the k-core structure of a network [12].

This chapter provides a comprehensive characterization of the hardness of the k-

core minimization problem (KCM), including innaproximability and fixed-parameter in-

tractability. Motivated by such a challenge in terms of algorithm design, we propose a

novel algorithm inspired by Shapley value—a cooperative game-theoretic concept— that

is able to leverage the strong interdependencies in the effects of edge removals in the

search space. As computing Shapley values is also NP-hard, we efficiently approximate

them using a randomized algorithm with probabilistic guarantees. Our experiments,

using several real datasets, show that the proposed algorithm outperforms competing

solutions in terms of k-core minimization while being able to handle large graphs. More-

105

Core Resilience Chapter 5

over, we illustrate how KCM can be applied in the analysis of the k-core resilience of

networks.

5.1 Introduction

K-cores play an important role in revealing the higher-order organization of networks.

A k-core [84] is a maximal induced subgraph where all vertices have internal degree of at

least k. These cohesive subgraphs have been applied to model users’ engagement and viral

marketing in social networks [89, 88]. Other applications include anomaly detection [126],

community discovery [127], protein function prediction [128], and visualization [129, 130].

However, the k-core structure can be quite unstable under network modification. For

instance, removing only a few edges from the graph might lead to the collapse of its

core structure. This motivates the k-core minimization problem: Given a graph G and

constant k, find a small set of b edges for which the removal minimizes the size of the

k-core structure [131].

We motivate k-core minimization using the following applications: (1) Monitoring:

Given an infrastructure or technological network, which edges should be monitored for

attacks [132, 133]? (2) Defense: Which communication channels should be blocked in a

terrorist network in order to destabilize its activities [134, 135]? and (3) Design: How to

prevent unraveling in a social or biological network by strengthening connections between

nodes [89, 136]?

Consider a specific application of k-cores to online social networks (OSNs). OSN

users tend to perform activities (e.g., joining a group, playing a game) if enough of their

friends do the same [137]. Thus, strengthening critical links between users is key to

the long-term popularity, and even survival, of the network [138]. This scenario can be

modeled using k-cores. Initially, everyone is engaged in the k-core. Removal of a few

106

Core Resilience Chapter 5

e1

e2

(a) Initial G (b) Modification G′ (c) Modification G′′

Figure 5.1: K-core minimization for an illustrative example: (a) Initial graph, where
all the vertices are in the 3-core; (b) Removing e1 causes all the vertices to leave the
3-core; (c) Removing e2 causes only six vertices to leave the 3-core.

links (e.g., unfriending, unfollowing) might not only cause a couple of users to leave the

network but produce a mass exodus due to cascading effects. This process can help us

to understand the decline and death of OSNs such as Friendster [139].

K-core minimization (KCM) can be motivated both from the perspective of a central-

ized agent who protects the structure of a network or an adversary that aims to disrupt

it. Moreover, our problem can also be applied to measure network resilience [133].

We illustrate KCM in Figure 5.1. An initial graph G (Figure 5.1a), where all vertices

are in the 3-core, is modified by the removal of a single edge. Graphs G′ (Figure 5.1b) and

G′′ (Figure 5.1b) are the result of removing e1 and e2, respectively. While the removal

of e1 brings all the vertices into a 2-core, deleting e2 has a smaller effect—four vertices

remain in the 3-core. Our goal is to identify a small set of edges removal of which

minimizes the size of the k-core.

From a theoretical standpoint, for any objective function of interest, we can define a

107

Core Resilience Chapter 5

search (e.g. the k-core decomposition) and a corresponding modification problem, such as

k-core minimization. In this chapter, we show that, different from its search version [140],

KCM is NP-hard. Furthermore, there is no polynomial time algorithm that achieves a

constant-factor approximation for our problem. Intuitively, the main challenge stems

from the strong combinatorial nature of the effects of edge removals. While removing

a single edge may have no immediate effect, the deletion of a small number of edges

might cause the collapse of the k-core structure. This behavior differs from more popular

problems in graph combinatorial optimization, such as submodular optimization, where

a simple greedy algorithm provides constant-factor approximation guarantees.

The algorithm for k-core minimization proposed in this chapter applies the concept

of Shapley values (SVs), which, in the context of cooperative game theory, measure

the contribution of players in coalitions [141]. Our algorithm selects edges with largest

Shapley value to account for the joint effect (or cooperation) of multiple edges. Since

computing SVs is NP-hard, we approximate them in polynomial time via a randomized

algorithm with quality guarantees.

Recent papers have introduced the KCM problem [131] and its vertex version [142],

where the goal is to delete a few vertices such that the k-core structure is minimized.

However, our work provides a stronger theoretical analysis and more effective algorithms

that can be applied to both problems. In particular, we show that our algorithm outper-

forms the greedy approach proposed in [131].

Our main contributions are summarized as follows:

• We study the k-core minimization (KCM) problem, which consists of finding a

small set of edges, removal of which minimizes the size of the k-core structure of a

network.

• We show that KCM is NP-hard, even to approximate by a constant for k ≥ 3.

108

Core Resilience Chapter 5

We also discuss the parameterized complexity of KCM and show the problem is

W [2]-hard for the same values of k.

• Given the above inapproximability result, we propose a randomized Shapley Value

based algorithm that efficiently accounts for the interdependence among the can-

didate edges for removal.

• We show that our algorithm is both accurate and efficient using several datasets.

Moreover, we illustrate how KCM can be applied to profile the structural resilience

of real networks.

5.2 Related Work

5.2.1 K-core computation and applications:

A k-core decomposition algorithm was first introduced by Seidman [84]. A more effi-

cient solution—with time complexity O(|E|)—was presented by Batagelj et al. [140] and

its distributed version was proposed in [143]. Sariyuce et al. [144] proposed algorithms

k-core decomposition in streaming data. For the case of uncertain graphs, where edges

have probabilities, Bonchi et al. [145] introduced efficient algorithms for the problem.

The k-core decomposition has been used in many applications. K-cores are often applied

in the analysis and visualization of large scale complex networks [129]. Other applications

include clustering and community detection [146], characterizing the Internet topology

[130], and analyzing the structure of software systems [147]. In social networks, k-cores

are usually associated with models for user engagement. Bhawalkar et al. [89] studied

the problem of increasing the size of k-core by anchoring a few vertices initially outside

of the k-core. Chitnis et al. [148] proved stronger inapproximation results for the anchor-

ing problem. Malliaros et al. [149] investigated user engagement dynamics via k-core

109

Core Resilience Chapter 5

decomposition.

5.2.2 Network Resilience/Robustness

Understanding the behavior of a complex system (e.g. the Internet, the power grid)

under different types of attacks and failures has been a popular topic of study in network

science [150, 151, 152]. This line of work is mostly focused on non-trivial properties of

network models, such as critical thresholds and phase transitions, assuming random or

simple targeted modifications. Najjar et al. [153] and Smith et al. [154] apply graph

theory to evaluate the resilience of computer systems, specially communication networks.

An overview of different graph metrics for assessing robustness/resilience is given by [1].

Malliaros et al. [155] proposed an efficient algorithm for computing network robustness

based on spectral graph theory. The appropriate model for assessing network resilience

and robustness depends on the application scenario and comparing different such models

is not the focus of our work.

5.2.3 Resilience of k-core

Adiga et al. [156] studied the stability of high cores in noisy networks. Laishram

et al. [133] recently introduced a notion of resilience in terms of the stability of k-

cores against deletion of random nodes/edges. If the rank correlation of core numbers

before and after the removal is high, the network is core-resilient. They also provided

an algorithm to increase resilience via edge addition. Notice that this is different from

our problem, as we search for edges that can destroy the stability of the k-core. Another

related paper is the work by Zhang et al. [142]. Their goal is to find b vertices such

that their deletion reduces the k-core maximally. The k-core minimization problem via

edge deletion has been recently proposed by Zhu et al. [131]. However, here we provide

110

Core Resilience Chapter 5

stronger inapproximability results and a more effective algorithm for the problem, as

shown in our experiments.

5.2.4 Shapley Value (SV) and combinatorial problems

A Shapley value based algorithm was previously introduced for influence maximiza-

tion (IM) [157]. However, IM can be approximated within a constant-factor by a simple

greedy algorithm due to the submodular property [31]. In this work, we use Shapley value

to account for the joint effect of multiple edges in the solution of the KCM problem, for

which we have shown stronger inapproximability results.

5.3 Problem Definition

We assume G(V,E) to be an undirected and unweighted graph with sets of vertices

V (|V | = n) and edges E (|E| = m). Let d(G, u) denote the degree of vertex u in G. An

induced subgraph, H = (VH , EH) ⊂ G is the following: if u, v ∈ VH and (u, v) ∈ E then

(u, v) ∈ EH . The k-core [84] of a network is defined below.

Definition 9 k-Core: The k-core of a graph G, denoted by Ck(G) = (Vk(G), Ek(G)),

is defined as a maximal induced subgraph that has vertices with degree at least k.

Figure 5.2 shows an example. The graphs in Figures 5.2b and 5.2c are the 2-core and the

3-core, respectively, of the initial graph in Figure 5.2a. Note that, Ck+1(G) is a subgraph

of Ck(G). Let EG(v) denote the core number of the node v in G. If v ∈ Vk(G) and

v /∈ Vk+1(G) then EG(v) = k. K-core decomposition can be performed in time O(m) by

recursively removing vertices with degree lower than k [140].

Let GB = (V,E \ B) be the modified graph after deleting a set B with b edges.

Deleting an edge reduces the degree of two vertices and possibly their core numbers. The

111

Core Resilience Chapter 5

Symbols Definitions and Descriptions
G(V,E) Given graph (vertex set V and edge set E)

n Number of nodes in the graph
m Number of edges in the graph

Ck(G) = (Vk(G), Ek(G)) The k-core of graph G
Nk(G) |Vk(G)|, #nodes in the k-core of G
Mk(G) |Ek(G)|, #edges in the k-core of G

Γ Candidate set of edges
b Budget

V (P) The value of a coalition P
Φe The Shapley value of an edge e

Pe(π) Set of edges before e in permutation π

Table 5.1: Frequently used symbols

reduction in core number might propagate to other vertices. For instance, the vertices

in a simple cycle are in the 2-core but deleting any edge from the graph moves all the

vertices to the 1-core. Let Nk(G) = |Vk(G)| and Mk(G) = |Ek(G)| be the number of

nodes and edges respectively in Ck(G).

Definition 10 Reduced k-Core: A reduced k-core, Ck(G
B) is the k-core in GB, where

GB = (V,E \B).

Example 3 Figures 5.3a and 5.3b show an initial graph, G and modified graph GB

(where B = {(a, c)}) respectively. In G, all the nodes are in the 3-core. Deleting (a, c)

brings the vertices a and c to the 2-core and thus b and d also go to the 2-core.

Definition 11 K-Core Minimization (KCM): Given a candidate edge set Γ, find

the set, B ⊂ Γ of b edges to be removed such that Ck(G
B) is minimized, or, fk(B) =

Nk(G)−Nk(G
B) is maximized.

Example 4 Figures 5.3a shows an initial graph, G, where all the nodes are in the 3-core.

Deleting (a, c) and (e, g) brings all the vertices to the 2-core, whereas deleting (e, c) and

(d, f) has no effect on the 3-core structure (assuming b=2).

112

Core Resilience Chapter 5

(a) Initial graph,
G

(b) The 2-core of
G

(c) The 3-core of G

Figure 5.2: Examples of (a) a graph G; (b) its 2-core; and (c) its 3-core structures.

a b

c d

e f

g h
(a) Initial, G

a b

c d

e f

g h
(b) Modified, GB

Figure 5.3: Example of the changes in the core structure via deletion of an edge: (a)
All the nodes are in the 3-core. (b) In the modified graph, the nodes {a, b, c, d} are in
the 2-core.

Clearly, the importance of the edges varies in affecting the k-core upon their removal.

Next, we discuss strong inapproximability results for the KCM problem along with its

parameterized complexity.

5.3.1 Hardness and Approximability

The hardness of the KCM problem stems from two major facts: 1) There is a combi-

natorial number of choices of edges from the candidate set, and 2) there might be strong

dependencies in the effects of edge removals (e.g. no effect for a single edge but cascading

113

Core Resilience Chapter 5

effects for subsets of edges). We show that KCM is NP-hard to approximate within any

constant factor for k ≥ 3.

Theorem 25 The KCM problem is NP-hard for k = 1 and k = 2.

Proof: First, we sketch the proof for k = 1. Consider an instance of the NP-hard 2-

MINSAT [158] problem which is defined by a set U = {u1, u2, ..., um′} of m′ variables and

collection C ′ = {c1, c2, ..., cn′} of n′ clauses. Each clause c ∈ C ′ has two literals (|c| = 2).

So, each ci ∈ C ′ is of the form zi1 ∨ zi2 where zij is a literal and is either a variable or its

negation. The problem is to decide whether there exists a truth assignment in U that

satisfies no more than n∗ < n′ clauses in C. To define a corresponding KCM instance, we

construct the graph G′ as follows. We create a set of n′ vertices Xc = {vi| ci ∈ C ′}. For

each variable ui ∈ U , we create two vertices: one for the variable (wi1) and another for

its negation (wi2). Thus, a total of 2m′ vertices, Yu = {w11, w12, w21, w22 , . . . , wm′1, wm′2}

are produced. Moreover, whenever the literal ui ∨ ūj ∈ ct, we add two edges, (vt, wi1)

and (vt, wj2) to G′.

For k = 1, KCM aims to maximize the number of isolated vertices (0-core, k=0) via

removing b edges. An edge in the KCM instance (KI) is a vertex vi in G′. Each vertex is

connected to exactly two vertices (end points of the edge in KI) in Yu. Satisfying a clause

is equivalent to removing the corresponding vertex (deleting the edge in KI) from G′. A

vertex in Yu will be isolated when all associated clauses (or vertices) in Xc are satisfied

(removed). If there is a truth assignment which satisfies no more than b = n∗ clauses

in 2-MINSAT, that implies m′ vertices can be isolated in G′ by removing ≤ b vertices

(or deleting ≤ b edges in KCM). If there is none, then m′ vertices cannot be isolated by

removing ≤ b edges in KCM.

To prove for k = 2, we can transform [142] the k = 1 version of the KCM to the k = 2

one.

114

Core Resilience Chapter 5

Notice that a proof for Theorem 25 is also given by [131]. However, our proof applies a

different construction and was developed independently from (and simultaneously with)

this previous work.

Theorem 26 The KCM problem is NP-hard and it is also NP-hard to approximate

within a constant-factor for all k ≥ 3.

Proof: We sketch the proof for k=3 (similar for k>3).

Let SK(U,S, P,W, q) be an instance of the Set Union Knapsack Problem [159], where

U = {u1, . . . un′} is a set of items, S = {S1, . . . Sm′} is a set of subsets (Si ⊆ U),

p : S → R+ is a subset profit function, w : U → R+ is an item weight function, and q ∈ R+

is the budget. For a subset A ⊆ S, the weighted union of set A is W (A) =
∑

e∈∪t∈ASt we

and P (A) =
∑

t∈A pt. The problem is to find a subset A∗ ⊆ S such that W (A∗) ≤ q and

P (A∗) is maximized. SK is NP-hard to approximate within a constant factor [160].

We reduce a version of SK with equal profits and weights (also NP-hard to ap-

proximate) to the KCM problem. The graph G′ is constructed as follows. For each

uj ∈ U , we create a cycle of m′ vertices Yj,1, Yj,2, . . . , Yj,m′ in V and add (Yj,1, Yj,2),

(Yj,2, Yj,3), . . . , (Yj,m′−1 , Yj,m′), (Yj,m′ , Yj,1) as edges between them. We also add 5 vertices

Zj,1 to Zj,5 with eight edges where the four vertices Zj,2 to Zj,5 form a clique with six

edges. The other two edges are (Zj,1, Zj,2) and (Zj,1, Zj,5). Moreover, for each subset Si

we create a set of O((m′)3) vertices (sets Xi,∗ are red rectangles in Figure 5.4), such that

each node has exactly degree 3, and add one more node Xi,1 with two edges incident

to two vertices in Xi,∗ from Xi,1. In the edge set E, an edge (Xi,1, Yj,i) will be added

if uj ∈ Si. Additionally, if uj /∈ Si, the edge (Yj,i, Zj,1) will be added to E. Figure 5.4

illustrates our construction for a set S1 = {u1, u2}, S2 = {u1, u3}, S3 = {u2}.

In KCM, the number of edges to be removed is the budget, b. The candidate set

115

Core Resilience Chapter 5

X1,1

Y2,1

Y2,2 Y2,3

Z3,1

Z3,2

Z3,4

Z3,3

Z3,5

X1,*

Figure 5.4: Example construction for hardness reduction from SK where
U = {u1, u2, u3}, S = {S1, S2, S3}, S1 = {u1, u2}, S2 = {u1, u3}, S3 = {u2}.

of edges, Γ is the set of all the edges with form (Yj,1, Yj,2). Initially all the nodes in

G′ are in the 3-core. Our claim is, for any solution A of an instance of SK there is a

corresponding solution set of edges, B (where |B| = b) in G′ of the KCM problem, such

that f3(B) = P (A) + b(m′ + 1) if the edges in A are removed.

The m′ nodes in any Yj and the node Zj,1 will be in the 2-core if the edge (Yj,1, Yj,2)

gets removed. So, removal of any b edges from Γ enforces b(m′ + 1) nodes to go to the

2-core. But the node Xi,1 and each node in Xi,∗ (O((m′)3) nodes) will be in the 2-core

iff all its neighbours in Yj,is go to the 2-core after the removal of b edges in Γ. Thus,

an optimal solution B∗ will be f3(B∗) = P (A∗) + b(m′ + 1) where A∗ is the optimal

solution for SUKP. For any non-optimal solution B, f3(B) = P (A) + b(m′ + 1) where

A is also non-optimal solution for SUKP. As P (A∗) is at least O((m′)3) by construction

(i.e. P (A∗) � b(m′ + 1)), and P (A∗)
P (A)

cannot be within a constant factor, f3(B∗)
f3(B)

will also

not be within any constant factor.

Theorem 26 shows that there is no polynomial-time constant-factor approximation for

KCM when k≥3. This contrasts with well-known NP-hard graph combinatorial problems

in the literature [31]. In the next section, we explore the hardness of our problem further

in terms of exact exponential algorithms with respect to the parameters.

116

Core Resilience Chapter 5

5.3.2 Parameterized Complexity

There are several NP-hard problems with exact solutions via algorithms that run in

exponential time in the size of the parameter. For instance, the NP-hard Vertex Cover

can be solved via an exhaustive search algorithm in time 2b1n1
O(1) [161], where b1 and

n1 are budget and the size of the graph instance respectively. Vertex cover is therefore

fixed-parameter tractable (FPT) [162], and if we are only interested in small b1, we can

solve the problem in polynomial time. We investigate whether the KCM problem is also

in the FPT class.

A parameterized problem instance is comprised of an instance X in the usual sense,

and a parameter b. A problem with parameter b is called fixed parameter tractable (FPT)

[162] if it is solvable in time g(b)× p(|X|), where g is an arbitrary function of b and p is

a polynomial in the input size |X|. Just as in NP-hardness, there exists a hierarchy of

complexity classes above FPT. Being hard for one of these classes is an evidence that the

problem is unlikely to be FPT. Indeed, assuming the Exponential Time Hypothesis, a

problem which is W [1]-hard does not belong to FPT. The main classes in this hierarchy

are: FPT⊆ W [1] ⊆ W [2] ⊆ . . .W [P] ⊆ XP . Generally speaking, the problem is harder

when it belongs to a higher W [.]-hard class in terms of the parameterized complexity.

For instance, dominating set is in W [2] and is considered to be harder than maximum

independent set, which is in W [1].

Definition 12 Parameterized Reduction [162]: Let P1 and P2 be parameterized

problems. A parameterized reduction from P1 to P2 is an algorithm that, given an instance

(X1, b1) of P1, outputs an instance (X2, b2) of P2 such that: (1) (X1, b1) is a yes-instance

of P1 iff (X2, b2) is a yes-instance of P2; (2) b2 ≤ h(b1) for some computable (possibly

exponential) function h; and (3) the running time of the algorithm is g(b1) · |X|O(1) for a

computable function g.

117

Core Resilience Chapter 5

Theorem 27 The KCM problem is not in FPT, in fact, it is in W [2] parameterized by

b for k ≥ 3.

Proof: We show a parameterized reduction from the Set Cover problem. The Set

Cover problem is known to be W [2]-hard [145]. We sketch the proof for k = 3. A similar

construction can be applied for k > 3.

Consider an instance of the W [2]-hard Set Cover [145] problem, defined by a collec-

tion of subsets S = {S1, S2, ..., Sm} from a universal set of items U = {u1, u2, ..., un}.

The problem is to decide whether there exist b subsets whose union is U . We define a

corresponding KCM instance (graph G) as follows.

For each Si ∈ S we create a cycle of n vertices Xi,1, Xi,2, · · · , Xi,n in V with edges

(Xi,1, Xi,2), (Xi,2, Xi,3), · · · , (Xi,n, Xi,1). We also add 5 vertices Wi,1 to Wi,5 with cliques

of four vertices Wi,2 to Wi,5 and add two more edges, (Wi,1,Wi,2), (Wi,1,Wi,5). More-

over, for each uj ∈ U , we create a cycle of m vertices Yj,1, Yj,2, · · · , Yj,m with edges

(Yj,1, Yj,2), · · · , (Yj,m−1, Yj,m), (Yj,m, Yj,1). We add 5 vertices Zj,1 to Zj,5 with cliques of

four vertices Zj,2 to Zj,5 and two more edges: (Zj,1, Zj,2), (Zj,1, Zj,5). Furthermore, edge

(Xi,j, Yj,i) will be added to E if uj ∈ Si. Additionally, if uj /∈ Si, edges (Wi,1, Xi,j)

and (Yj,i, Zj,1) will be added to E. Clearly the reduction is in FPT. The candidate

set, Γ = {(Xi,1, Xi,2)|∀i = 1, 2, ...,m}. Fig. 5.5 illustrates our construction for sets

S1 = {u1, u2}, S2 = {u2, u3}, and S3 = {u3, u4}.

Initially all nodes are in the 3-core. We claim that a set S ′ ⊂ S, with |S ′| ≤ b,

is a cover iff f3(B) = b(n+1)+n(m+1) where B = {(Xi,1, Xi,2)|Si ∈ S ′}. For any i,

if (Xi,1, Xi,2) is removed, the n nodes {Xi,1, ..., Xi,n} and node Wi,1 go to the 2-core.

If uj ∈ Si, then m + 1 nodes {Yj,1, ..., Xj,m} and Zj,1 go to 2-core after (Xi,1, Xi,2) is

removed. If S ′ is a set cover, all the ujs will be in some Si ∈ S ′ and n(m + 1) nodes

will go into 2-core; so f3(B) = b(n + 1)+n(m+1)—any b edges from Γ would remove

118

Core Resilience Chapter 5

X1,1

X1,2X1,3

X1,4

W2,1

W2,5W2,4

W2,3 W2,2

Y3,1
Y3,2 Y3,3

Z4,1

Z4,2 Z4,3

Z4,4Z4,5

Figure 5.5: Example construction for parameterized hardness from Set Cover where
U = {u1, u2, u3, u4}, S = {S1, S2, S3}, S1 = {u1, u2}, S2 = {u2, u3}, S3 = {u3, u4}.

b(n+ 1) nodes. On the other hand, assume that f3(B)=b(n+1)+n(m+1) after removing

edges in B = {(Xi,1, Xi,2)|Si ∈ S ′}. The only way to have m + 1 nodes removed from

corresponding uj is if uj ∈ Xi and Xi ∈ X. Thus, n(m + 1) nodes will be removed,

making S ′ a set cover.

Motivated by these strong hardness and inapproximability results, we next consider

some practical heuristics for the KCM problem.

5.4 Algorithms

According to Theorems 26 and 27, an optimal solution or a constant-factor approxi-

mation for k-core minimization requires enumerating all possible size-b subsets from the

candidate edge set, assuming P 6=NP . In this section, we propose efficient heuristics for

the KCM problem.

5.4.1 Baseline: Greedy Cut

For KCM, only the current k-core of the graph, G (Vk, Ek) = Ck(G) (|Vk| = Nk,|Ek| =

Mk), has to be taken into account. Remaining nodes will already be in a lower-than-

k-core and can be removed. We define a vulnerable set V Sk(e,G) as those nodes that

119

Core Resilience Chapter 5

would be demoted to a lower-than-k-core if edge e is deleted from the current core graph

G . Algorithm 5 (GC) is a greedy approach for selecting an edge set B (|B| = b) that

maximizes the k-core reduction, fk(B). In each step, it chooses the edge that maximizes

|V Sk(e,G)| (step 3-4) among the candidate edges Γ. The specific procedure for computing

V Sk(e,G) (step 3), LocalUpdate and their running times (O(Mk + Nk)) are described

below. The overall running time of GC is O(b|Γ|(Mk +Nk)).

Algorithm 6. This procedure computes the vulnerable set—i.e., the set of nodes

that will leave the k-core upon deletion of the edge e from G . The size of the set is

essentially the marginal gain of deleting e. If e= (u, v) is deleted, u will be removed iff

d(G , u) = k (the same for v). This triggers a cascade of node removals from the k-core

(with the associated edges). Let vul(w) be the set of nodes already removed from G that

are neighbours of node w. We observe that w will be removed if d(G , w)− |vul(w)| < k.

Note that the procedure is similar to Algorithm 2 (LocalUpdate), having O(Mk + Nk)

running time.

Local Update (Algorithm 7). After the removal of the edge e∗ in each step,

the current graph G is updated (step 9). Recomputing the k cores in G would take

O(Mk) time. Instead, a more efficient approach is to update only the affected region

after deleting the e∗. If an edge e∗ = (u, v) is deleted, u will be removed if d(G , u) = k

(the same for v). This triggers a cascade of node removals (with the associated edges).

Let vul(w) be a set of nodes already removed from G that are neighbours of node w. We

observe that w will be removed if d(G , w)− |vul(w)| < k.

5.4.2 Shapley Value Based Algorithm

The greedy algorithm discussed in the last section is unaware of some dependencies

between the candidates in the solution set. For instance, in Figure 5.3a, all the edges

120

Core Resilience Chapter 5

Algorithm 5 Greedy Cut (GC)

Require: G, k, b
Ensure: B: Set of edges to delete

1: B ← ∅,max← −∞,G ← Ck(G)
2: while |B| < b do
3: e∗ ← arg maxe∈G (Ek)\B |computeV S(e = (u, v),G , k)|
4: B ← B ∪ {e∗}
5: LocalUpdate(e,G , k)
6: end while
7: return B

have same importance (the value is 0) to destroy the 2-core structure. In this scenario,

GC will choose an edge arbitrarily. However, removing an optimal set of seven edges can

make the graph a tree (1-core). To capture these dependencies, we adopt a cooperative

game theoretic concept named Shapley Value [141]. Our goal is to make a coalition of

edges (players) and divide the total gain by this coalition equally among the edges inside

it.

Shapley Value

The Shapley value of an edge e in the context of KCM is defined as follows. Let the

value of a coalition P be V (P) = fk(P) = Nk(G)−Nk(G
P). Given an edge e ∈ Γ and a

subset P ⊆ Γ such that e /∈ P , the marginal contribution of e to P is:

V (P ∪ {e})− V (P), ∀P ⊆ Γ (5.1)

Let Ω be the set of all |Γ|! permutations of all the edges in Γ and Pe(π) be the set of all

the edges that appear before e in a permutation π. The Shapley value of e the average of

its marginal contributions to the edge set that appears before e in all the permutations:

Φe =
1

|Γ|!
∑
π∈Ω

V (Pe(π) ∪ {e})− V (Pe(π)) (5.2)

121

Core Resilience Chapter 5

Algorithm 6 computeVS

Require: e = (u, v),G , k
Ensure: X

1: if d(G , u) = EG (u) then
2: Queue S ← S ∪ {u}, X ← X ∪ {u}
3: end if
4: if d(G , v) = EG (v) then
5: Queue S ← S ∪ {v}, X ← X ∪ {v}
6: end if
7: while S 6= ∅ do
8: Remove y form S
9: for w ∈ N(y) do

10: vul(w)← {z|z ∈ N(w) ∩X}
11: if w 6∈ X & d(G , w)− |vul(w)| < k then
12: Add w to X, S
13: end if
14: end for
15: end while
16: return X

Shapley values capture the importance of an edge inside a set (or coalition) of edges.

However, computing Shapley value requires considering O(|Γ|!) permutations. Next we

show how to efficiently approximate the Shapley value for each edge via sampling.

Approximate Shapley Value Based Algorithm

Algorithm 8 (Shapley Value Based Cut, SV) selects the best b edges according to

their approximate Shapley values based on a sampled set of permutations, S. For each

permutation in S, we compute the marginal gains of all the edges. These marginal gains

are normalized by the sample size, s. In terms of time complexity, steps 4-6 are the

dominating steps and take O(s|Γ|(Nk +Mk)) time, where Nk and Mk are the number of

nodes and edges in Ck(G), respectively. Note that similar sampling based methods have

been introduced for different applications [163, 164, 165].

122

Core Resilience Chapter 5

Algorithm 7 LocalUpdate

Require: e = (u, v),G , k
1: Remove (u, v), update d(G , u), d(G , v), X ← Φ, Y ← Φ
2: if d(G , u) < k then
3: Queue Y ← Y ∪ {u}, X ← X ∪ {u}
4: end if
5: if d(G , v) < k then
6: Queue Y ← Y ∪ {v}, X ← X ∪ {v}
7: end if
8: while Y 6= ∅ do
9: Remove y form Y

10: for w ∈ N(y) do
11: vul(w)← {z|z ∈ N(w) ∩X}
12: if w 6∈ X & d(G , w)− |vul(w)| < k then
13: Add w to X, S
14: end if
15: end for
16: if d(G , y) < k then
17: Remove y from G
18: end if
19: end while

Analysis

In the previous section, we presented a fast sampling algorithm (SV) for k-core mini-

mization using Shapley values. Here, we study the quality of the approximation provided

by SV as a function of the number of samples. We show that our algorithm is nearly

optimal with respect to each Shapley value with high probability. More specifically, given

ε > 0 and δ < 1, SV takes p(1
ε
, 1
δ
) samples, where p is a polynomial in 1

ε
, 1
δ
, to approximate

the Shapley values within ε error with probability 1− δ.

We sample uniformly with replacement, a set of permutations S (|S| = s) from the

set of all permutations, Ω. Each permutation is chosen with probability 1
|Ω| . Let Φ′e be

the approximate Shapley value of e based on S. Xi is a random variable that denotes

the marginal gain in the i-th sampled permutation. So, the estimated Shapley value is

Φ′e = 1
s

∑s
i=1 Xi. Note that E[Φ′e] = Φe.

123

Core Resilience Chapter 5

Algorithm 8 Shapley Value Based Cut (SV)

Require: G, k, b
Ensure: B: Set of edges to delete

1: Initialize all Φ′e as 0, ∀e ∈ Γ
2: Generate S = O(log Γ

ε2
) random permutations of edges

3: B ← ∅,G ← Ck(G)
4: for π ∈ S do
5: for e = (u, v) ∈ Γ do
6: Φ′e ← Φ′e + (V (Pe(π) ∪ {e})− V (Pe(π)))
7: end for
8: end for
9: Φ′e ← Φ′e

|S| , ∀e ∈ Γ

10: Select top b Φ′e edges from B
11: return B

Theorem 28 Given ε (0 < ε < 1), a positive integer `, and a sample of independent

permutations S, |S| = s, where s ≥ (`+1) log |Γ|
2ε2

; then ∀e ∈ Γ:

Pr(|Φ′e − Φe| < ε ·Nk) ≥ 1− 2|Γ|−`

where Nk denotes the number of nodes in Ck(G).

Proof: We start by analyzing the Shapley value of one edge. Because the samples

provide an unbiased estimate and are i.i.d., we can apply Hoeffding’s inequality [64] to

bound the error for edge e:

Pr[|Φ′e − Φe| ≥ ε ·Qe] ≤ δ (5.3)

where δ = 2 exp
(
−2s2ε2Q2

e

R

)
, R =

s∑
i=1

(bi − ai)2, and each Xi is strictly bounded by the

intervals [ai, bi]. Let Qe = Max{V (Pe(π)∪{e})−V (Pe(π))|π ∈ Ω} be the maximum gain

for e in any permutation. Then, R < sQ2
e, as for any Xi the minimum and maximum

124

Core Resilience Chapter 5

values are 0 and Qe respectively. As a consequence:

δ = 2 exp

(
−2s2ε2Q2

e

R

)
< 2 exp

(
−2s2ε2Q2

e

sQ2
e

)
= 2 exp

(
−2sε2

)
Thus, the following holds for each edge e:

Pr[|Φ′e − Φe| ≥ ε ·Qe] < 2 exp
(
−2sε2

)
Using the above equation we compute a joint sample bound for all edges e ∈ Γ. Let

Γ = {e1, e2, ..., e|Γ|} and Ei be the event that |Φ′ei−Φei | ≥ ε ·Qei . So, Pr[Ei] = Pr[|Φ′ei−

Φei | ≥ ε ·Qei] < 2 exp
(
−2sε2

)
. Similarly, one can prove that Pr[|Φ′ei−Φei | ≥ ε ·Nk] ≤ δ′,

where δ′ = 2 exp
(
−2s2ε2N2

k

R

)
< 2 exp

(
−2sε2

)
, as R < sN2

k .

Applying union bound (Pr(∪iEi) ≤
∑

i Pr(Ei)), for all edges in Γ, i.e., ∀i ∈ {1, 2, ...|Γ|},

we get that:

Pr[|Φ′ei − Φei | ≥ ε ·Nk] < 2|Γ| exp
(
−2sε2

)
By choosing s ≥ (`+1) log |Γ|

2ε2
, ∀i ∈ {1, 2, ...|Γ|},

Pr[|Φ′ei − Φei| ≥ ε ·Nk] <
2

|Γ|` , or,

Pr[|Φ′ei − Φei | < ε ·Nk) ≥ 1− 2|Γ|−`

This ends the proof.

Next, we apply Theorem 28 to analyze the quality of a set B produced by Algorithm

8 (SV), compared with the result of an exact algorithm (without sampling). Let the

exact Shapley values of top b edges be Φo
B = {ΦO1,ΦO2,ΦO3, ...,ΦOb} where ΦO1 ≥

ΦO2 ≥ ... ≥ ΦOb. The set produced by Algorithm 8 (SV) has Shapley values, Φa
B =

{ΦA1,ΦA2,ΦA3, ...,ΦAb} where ΦA1 ≥ ΦA2 ≥ ... ≥ ΦAb. We can prove the following result

125

Core Resilience Chapter 5

regarding the SV algorithm.

Corollary 29 For any i,ΦOi ∈ Φo
B and ΦAi ∈ Φa

B, ε (0 < ε < 1), positive integer `, and

a sample of independent permutations S, |S| = s, where s ≥ (`+1) log |Γ|
2ε2

:

Pr(|ΦOi − ΦAi| < 2ε ·Nk) ≥ 1− 2|Γ|−`

where Nk denotes the number of nodes in Ck(G).

Proof: For all edges e ∈ Γ, Theorem 28 shows that Pr(|Φ′e−Φe| < ε·Nk) ≥ 1−2|Γ|−`.

So, with probability 1−2|Γ|−`, |Φ′Oi−ΦOi| < ε·Nk and |Φ′Ai−ΦAi| < ε·Nk. As Φ′Ai > Φ′Oi,

|ΦOi − ΦAi| < 2ε ·Nk with the same probability.

At this point, it is relevant to revisit the hardness of approximation result from

Theorem 26 in the light of Corollary 29. First, SV does not directly minimize the KCM

objective function (see Definition 11). Instead, it provides a score for each candidate edge

e based on how different permutations of edges including e minimize the KCM objective

under the assumption that such scores are divided fairly among the involved edges. Notice

that such assumption is not part of the KCM problem, and thus Shapley values play the

role of a heuristic. Corollary 29, which is a polynomial-time randomized approximation

scheme (PRAS) type of guarantee instead of a constant-factor approximation, refers to

the exact Shapley value of the top b edges, and not the KCM objective function. We

evaluate how SV performs regarding the KCM objective in our experiments.

Generalizations

Sampling-based approximate Shapley values can also be applied to other relevant

combinatorial problems on graphs for which the objective function is not submodular.

Examples of these problems include k-core anchoring [89], influence minimization [34],

and network design [7]).

126

Core Resilience Chapter 5

5.4.3 Optimizations for GC and SV

Here, we discuss optimizations for the Greedy (GC) and Shapley Value based (SV)

algorithms. We propose a general pruning technique to speed up both Algorithms 5 and

8 (GC and SV). For GC, in each step, all the candidate edges are evaluated (step 3). How

can we reduce the number of evaluations in a single step? In SV, in a single permutation,

marginal gains are computed for all the candidate edges (step 5). How can we skip edges

that have 0 marginal gain?. We answer these questions by introducing the concept of

edge dominance. Let Z(e,G) be the set of vertices that would be removed if e is deleted

from G due to the k-core constraint. If e′ = (u, v) has one of the end points u or v in

Z(e,G), then e′ is dominated by e.

Observation 1 If e′ is dominated by e, then Z(e′,G) ⊆ Z(e,G).

In Algorithm 5 (GC), while evaluating each edge in the candidate set (step 3) if e′

comes after e, we skip the evaluation of e′, as |Xe| ≥ |Xe′ | (Obs. 1). In Algorithm

8 (SV), while computing the marginal gain of each edge in a coalition for a particular

permutation π, assume that e′ appear after e. As e ∈ Pe′(π) and using Observation

1, V (Pe(π) ∪ {e}) − V (Pe(π))) = 0. Thus, the computation of the marginal gain of e′

can be skipped. We evaluate the performance gains due to pruning in our experimental

evaluation.

5.5 Experiments

In this section, we evaluate the proposed Shapley Value Based Cut (SV) algorithm

for k-core minimization against baseline solutions. Sections 5.5.2 and 5.5.3 are focused

on the quality results (k-core minimization) and the running time of the algorithms,

127

Core Resilience Chapter 5

Dataset Name |V | |E| kmax Type
Yeast 1K 2.6K 6 Biological

Human 3.6K 8.9K 8 Biological
email-Enron (EE) 36K 183K 42 Email

Facebook (FB) 60K 1.5M 52 OSN
web-Stanford (WS) 280K 2.3M 70 Webgaph

DBLP (DB) 317K 1M 113 Co-authorship
com-Amazon (CA) 335K 926K 6 Co-purchasing
Erdos-Renyi (ER) 60K 800K 19 Synthetic

Table 5.2: Dataset descriptions and statistics. The value of kmax (or degeneracy) is
the largest k among all the values of k for which there is a k-core in the graph.

respectively. Moreover, in Section 5.5.4, we show how k-core minimization can be applied

in the analysis of the structural resilience of networks.

5.5.1 Experimental Setup

All the experiments were conducted on a 2.59 GHz Intel Core i7-4720HQ machine

with 16 GB RAM running Windows 10. Algorithms were implemented in Java.

Datasets: The real datasets used in our experiments are available online and are

mostly from SNAP1. The Human and Yeast datasets are available in [166]. In these

datasets the nodes and the edges correspond to genes and interactions (protein- pro-

tein and genetic interactions) respectively. The Facebook dataset is from [167]. Table

5.2 shows dataset statistics, including the largest k-core (a.k.a. degeneracy). These are

undirected and unweighted graphs from various applications: EE is from email commu-

nication; FB is an online social network, WS is a Web graph, DB is a collaboration

network and CA is a product co-purchasing network. We also apply a random graph

(ER) generated using the Erdos-Renyi model.

Algorithms: Our algorithm, Shapley Value Based Cut (SV) is described in Section

5.4.2. Besides the Greedy Cut (GC) algorithm [131] (Section 5.4.1), we also consider

1https://snap.stanford.edu

128

https://snap.stanford.edu

Core Resilience Chapter 5

100 200 300 400
Budget

0.0
0.5
1.0
1.5
2.0
2.5

DN
 (%

)

SV
GC
RD

LD
JD

(a) DB

100 200 300 400
Budget

0.0

0.5

1.0

1.5

2.0

DN
 (%

)
(b) WS

100 200 300 400
Budget

0
2
4
6
8

10

DN
 (%

)

(c) EE

100 200 300 400
Budget

0.0

0.5

1.0

1.5

2.0

DN
 (%

)

(d) FB

4 6 8 10
k

0

1

2

3

DN
 (%

)

SV
GC
RD

LD
JD

(e) FB

4 6 8 10
k

0.0
0.5
1.0
1.5
2.0
2.5
3.0

DN
 (%

)

(f) WS

0.09 0.27 0.81
0

1

2

3

DN
 (%

)
(g) FB

0.09 0.27 0.81
0.5
1.0
1.5
2.0
2.5

DN
 (%

)

(h) WS

Figure 5.6: K-core minimization (DN(%)) for different algorithms varying (a-d) the
number of edges in the budget; (e-f) the core parameter k; (g-h) and the sampling
error ε. The Shapley Value based Cut (SV) algorithm outperforms the best baseline
(LD) by up to 6 times. On the other hand, the Greedy approach (GC) achieves worse
results than the baselines, with the exception of RD, in most of the settings. SV error
increases smoothly with ε and LD becomes a good alternative for large values of k.

three more baselines in our experiments. Low Jaccard Coefficient (JD) removes the k

edges with lowest Jaccard coefficient. Similarly, Low-Degree (LD) deletes k edges for

which adjacent vertices have the lowest degree. We also apply Random (RD), which

simply deletes k edges from the candidate set Γ uniformly at random. Notice that while

LD and JD are quite simple approaches for KCM, they often outperform GC.

Quality evaluation metric: We apply the percentage DN(%) of vertices from the

initial graph G that leave the k-core after the deletion of a set of edges B (produced by

a KCM algorithm):

DN(%) =
Nk(G)−Nk(G

B)

Nk(G)
× 100 (5.4)

Default parameters: We set the candidate edge set Γ to those edges (Mk(G))

between vertices in the k-core Ck(G). Unless stated otherwise, the value of the ap-

proximation parameter for SV (ε) is 0.05 and the number samples applied is log |Γ|
ε2

(see

129

Core Resilience Chapter 5

Human Yeast
b = 5 b = 10 b = 5 b = 10

OPT 2.88 3.24 11.16 12.05
SV (ε = .1) 2.88 3.06 10.27 11.16
SV (ε = .2) 2.8 3.06 8.48 10.71

Table 5.3: SV (approximate) vs. optimal algorithm using two datasets and a small
candidate set size (|Γ| = 50), and k = 5.

Theorem 28).

5.5.2 Quality Evaluation

KCM algorithms are compared in terms of quality (DN(%)) for varying budget (b),

core value k, and the error of the sampling scheme applied by the SV algorithm (ε).

Varying budget (b): Figure 5.6 presents the k-core minimization results for k=5—

similar results were found for k = 10—using four different datasets. SV outperforms

the best baseline by up to six times. This is due to the fact that our algorithm can

capture strong dependencies among sets of edges that are effective at breaking the k-core

structure. On the other hand, GC, which takes into account only marginal gains for

individual edges, achieves worse results than simple baselines such as JD and LD. We

also compare SV and the optimal algorithm in small graphs and show that SV produces

near-optimal results.

SV and the optimal algorithm: In these experiments, we evaluate the approx-

imation achieved by SV (Algorithm 8) compared to the optimal results using two small

networks (Human and Yeast). The optimal set of b = 5 and b = 10 edges among a

randomly chosen a set of 50 edges is selected as the candidate set Γ inside the k-core.

An optimal solution is computed based on all possible sets with size b in Γ. Table 5.3

shows the DN(%) produced by the optimal solution (OPT) and SV. Notice that the SV

algorithm produces near-optimal results.

130

Core Resilience Chapter 5

Varying core value (k): We evaluate the impact of k over quality for the algorithms

using two datasets (FB and WS) in Figures 5.6e and 5.6f. The budget (b) is set to 400.

As in the previous experiments, SV outperforms the competing approaches. However,

notice that the gap between LD (the best baseline) and SV decreases as k increases. This

is due to the fact that the number of samples decreases for higher k as the number of

candidate edge also decreases, but it can be mended by a smaller ε. Also, a larger k will

increase the level of dependency between candidate edges, which in turn makes it harder

to isolate the impact of a single edge—e.g. independent edges are the easiest to evaluate.

On the other hand, a large value of k leads to a less stable k-core structure that can often

be broken by the removal of edges with low-degree endpoints. LD is a good alternative

for such extreme scenarios. Similar results were found for other datasets.

Varying the sampling error (ε): The parameter ε controls the the sampling error

of the SV algorithm according to Theorem 28. We show the effect of ε over the quality

results for FB and WS in Figures 5.6g and 5.6h. The values of b and k are set to 400 and

12 respectively. The performance of the competing algorithms do not depend on such

parameter and thus remain constant. As expected, DN(%) is inversely proportional to

the value of ε for SV. The trade-off between ε and the running time of our algorithm

enables both accurate and efficient selection of edges for k-core minimization.

5.5.3 Running Time

Here, we evaluate the running time of the GC and SV algorithms. In particular, we

are interested in measuring the performance gains due to the pruning strategies described

above. LD and JD do not achieve good quality results in general, as discussed in the

previous section, thus we omit them from this evaluation.

Running times for SV varying the sampling error (ε) and the core parameter (k) using

131

Core Resilience Chapter 5

0.09 0.27 0.810
10
20
30
40
50
60

Ti
m

e
(s

)
(a) Varying ε

4 6 8 10
k

0
50

100
150
200
250

Ti
m

e
(s

)

(b) Varying k

EE WS CA
100

101

102

103

Ti
m

e
(s

)

GV (Naive)
GV (Pruning)

(c) Pruning, GC

EE CA WS

103

104

Ti
m

e
(s

)

SV (Naive)
SV (Pruning)

(d) Pruning, SV

Figure 5.7: Running times by SV using FB while varying (a) the sampling error ε and
(b) the core parameter k; and (c-d) impact of pruning for GC and SV algorithms using
three datasets. SV is efficient even for small values of sampling error and its running
time decreases with k. GC is up to one order of magnitude faster with pruning, while
SV is up to 50% faster.

the FB dataset are given in Figures 5.7a and 5.7b, respectively. Even for small error,

the algorithm is able to process graphs with tens of thousands of vertices and millions

of edges in, roughly, one minute. Running times decay as k increases due to two factors:

(1) the size of the k-core structure decreases (2) pruning gets boosted by a less stable

core structure.

In Figures 5.7c and 5.7d, we look further into the effect of pruning for GC and SV

by comparing versions of the algorithms with and without pruning using three datasets.

GC becomes one order of magnitude faster using pruning. Gains for SV are lower but

still significant (up to 50%). We found in other experiments that the impact of pruning

for SV increases with the budget, which is due to the larger number of permutations to

be considered by the algorithm.

132

Core Resilience Chapter 5

(a) b = 5 (b) b = 10

Figure 5.8: K-core (k = 3) minimization on the Newman’s Karate network: (a) b = 5
and (b) b = 10. Unfilled circle nodes are not in the 3-core of the original network.
After removal of b dashed (red) edges, filled (blue) circle nodes remain in the 3-core
and unfilled (red) square nodes are removed from the 3-core.

(a) DB (b) WS (c) FB (d) ER

Figure 5.9: Core resilience for four different networks: (a) DB (co-authorship), (b)
WS (Webgraph), (c) FB (social), (d) ER (random). ER and DB are the most and
least stable networks, respectively. Tipping points are found for ER and DB.

5.5.4 Application: k-core Resilience

We show how KCM can be applied to profile the resilience or stability of real networks.

A profile provides a visualization of the resilience of the k-core structure of a network for

different combinations of k and budget. We apply DN(%) (Equation 5.4) as a measure

of the percentage of the k-core removed by a certain amount of budget—relative to the

immediately smaller budget value.

Figure 5.9 shows the results for co-authorship (DB), Web (WS), social network (FB)

and a random (ER) graph. We also discuss profiles for Human and Yeast. Each cell

corresponds to a given k-b combination and the color of cell (X, Y) shows the difference

in DN(%) between b=Y and b=Y −100 for k=X. As colors are relative, we also show

the range of values associated to the the color scheme. We summarize our main findings

133

Core Resilience Chapter 5

as follows:

Stability: ER (Figure 5.9d) is the most stable graph, as can be noticed by the range

of values in the profile. The majority of nodes in ER are in the 19-core. DB (Figure 5.9a)

is the least stable, but only when k>5, which is due to its large number of small cliques.

The high-core structure of DB is quite unstable, with less than 1% of the network in the

20-core structure after the removal of 500 edges.

Tipping points: We also look at large effects of edge removals within small variations

in budget—for a fixed value of k. Such a behavior is not noticed for FB and WS (Figures

5.9b and 5.9c, respectively), for which profiles are quite smooth. This is mostly due to

the presence of fringe nodes at different levels of k-core structure. On the other hand,

ER produced the most prominent tipping points (k=15 and k=20). This pattern is also

found for DB.

5.5.5 K-core Minimization on the Karate Network

In Figure 5.8, we demonstrate the application of our algorithm for KCM using the

popular Newman’s Karate network with two different budget settings, b = 5 and b = 10,

and k fixed to 3. Unfilled circles are nodes initially out of the 3-core. The dashed (red)

edges are removed by our algorithm—often connecting fringe nodes. Filled (blue) circles

and unfilled (red) squares represent nodes that remain and are removed from the 3-core,

respectively, after edge removals.

K-core Resilience: Human vs Yeast

K-cores have been previously applied in the analysis of functional modules in protein-

protein networks [129, 168]. Here, we compare the k-core stability of Human and Yeast

(Figs. 5.10a, 5.10b). Human is shown to be more stable, as can be inferred from the

range of values in the profile—1% to 35% for Human and 3.4% to 100% for Yeast.

134

Core Resilience Chapter 5

Moreover, the profile for Human is smoother than Yeast. These results confirm our

intuition that proteins have a more complex functional structure in Humans compared to

other organisms [169]. We also show similar results for clustering coefficient and efficiency,

which are other popular robustness measures for networks [1], within the same core set

of vertices to facilitate the comparison. Both competing metrics fail to effectively assess

robustness for varying values of k and budget. In particular, the clustering coefficient

of the networks remain mostly unchanged after edge deletions. The effect of network

efficiency minimization over the core of the network does not necessarily increase with

the budget, which is counter-intuitive. More specifically, efficiency minimization often

fails to break dense substructures of the network, even for large values of budget.

5.6 Conclusion

We have studied the k-core minimization (KCM) problem, which consists of finding a

set of edges, removal of which minimizes the size of the k-core structure. KCM was shown

to be NP-hard, even to approximate within any constant when k≥3. The problem is also

not fixed-parameter tractable, meaning it cannot be solved efficiently even if the number

of edges deleted is small. Given such inapproximability results, we have proposed an

efficient randomized heuristic based on Shapley value to account for the interdependence

in the impact of candidate edges. For the sake of comparison, we also evaluate a simpler

greedy baseline, which cannot assess such strong dependencies in the effects of edge

deletions.

We have evaluated the algorithms using several real graphs and shown that our Shap-

ley value based approach outperforms competing solutions in terms of quality. The pro-

posed algorithm is also efficient, enabling its application to graphs with hundreds of

thousands of vertices and millions of edges in time in the order of minutes using a desk-

135

Core Resilience Chapter 5

top PC. We have also illustrated how KCM can be used for profiling the resilience of

networks to edge deletions.

136

Core Resilience Chapter 5

(a) Human (Core resilience) (b) Yeast (Core resilience)

(c) Human (Clustering coeffi-
cient)

(d) Yeast (Clustering coeffi-
cient)

(e) Human (Efficiency) (f) Yeast (Efficiency)

Figure 5.10: Core resilience (a, b) and other robustness metrics, clustering coefficient
(c, d) and efficiency (e, f) [1], for the Human and Yeast protein-protein interaction
networks.

137

Chapter 6

Controlling Influence

Online social networks have become major battlegrounds for political campaigns, viral

marketing, and the dissemination of news. As a consequence, “bad actors” are increas-

ingly exploiting these platforms, becoming a key challenge for their administrators, busi-

nesses and society in general. The spread of fake news is a classical example of the abuse

of social networks by these actors. While some have advocated for stricter policies to

control the spread of misinformation in social networks, this often happens in detriment

of their democratic and organic structure.

In this chapter, we study how to limit the influence [15] of a target group in a so-

cial network via the removal of a few users/links. The idea is to control the diffusion

processes while minimizing the amount of disturbance in the network structure. We for-

mulate the influence limitation problem in a data-driven fashion, by taking into account

past propagation traces. Moreover, we consider two types of constraints over edge re-

movals, a budget constraint and also a, more general, set of matroid constraints. These

problems lead to interesting challenges in terms of algorithm design. For instance, we

are able to show that influence limitation is APX-hard and propose deterministic and

probabilistic approximation algorithms for the budgeted and matroid version of the prob-

138

Controlling Influence Chapter 6

lem, respectively. Experiments show that the proposed approaches outperform several

baselines.

6.1 Introduction

Online social networks, such as Facebook and Twitter, were popularized mostly as

platforms for sharing entertaining content and maintaining friendship. However, they

have been quickly transformed into major battlegrounds for political campaigns, viral

marketing, and the dissemination of news. With this shift, the increase in the number

of “bad actors”, such as tyrannical governments, spammers, and bullies exploiting these

platforms has become a key challenge for their administrators, businesses and society.

A questionable approach to control the diffusion of misinformation in social plat-

forms is via stricter laws and regulations by governments. This control often happens in

detriment of the democratic and organic structure that are central to these platforms.

Instead, a more sensible approach is to limit the impact of bad actors in the network

while minimizing the disruption of its structure.

In this chapter we formalize the influence limitation problem. In particular, we focus

on a setting where the network is modified via the removal (or blocking) of a few edges

or nodes. These modifications can be implemented by social network administrators or

induced by other organizations or governments via advertising campaigns. Although we

focus on influence limitation, our problem is also relevant from the perspective of an

agent that aims to maintain the influence of a set of users. Nodes/edges discovered by

our algorithm are those that should be protected by such an agent. Similarly, while we

focus on the edge version of our problem, the techniques discussed here also apply to the

node version.

The problem of controlling or maintaining influence spread via structural changes in a

139

Controlling Influence Chapter 6

network has attracted recent interest from the research community [9, 5, 4]. However, ex-

isting work assumes that the diffusion process follows classical models—e.g., Independent

Cascade (IC), Linear Threshold (LT), and Susceptible-Infected-Recovered (SIR)—that

require computationally-intensive simulations for validation. Instead, we propose a data-

driven approach for influence minimization based on historical data [170].

Influence limitation (minimization) problems are often studied under budget con-

straints [9, 5], where a fixed number of nodes or edges can be blocked in the network.

However, budget constraints have undesired effects in many settings. For instance, they

might disconnect or disproportionately affect particular sub-networks. Such effects are

in conflict with important modern issues in algorithm design, such as fairness [171]. We

address these challenges by studying the influence limitation problem not only under a

budget constraint but also under a more general set of matroid constraints [60, 172].

This work demonstrates how the formalization of the influence limitation problem

under budget and matroid constraints leads to interesting challenges in terms of algo-

rithm design. Different from the budget version, for which we propose a simple greedy

algorithm, the matroid version requires a more sophisticated solution via continuous re-

laxation and rounding. Yet, we provide a theoretical analysis of the performance of both

algorithms that is supported by the fact that the objective function of the influence lim-

itation problem is submodular. Moreover, we provide strong inapproximability results

for both versions of the problem.

Our contributions are summarized as follows:

• We investigate the novel data-driven influence limitation problem via node/edge

removals. We show that the edge version is more general and covers the node

version of the problem.

• We study our problem under both budget and matroid constraints, discussing how

140

Controlling Influence Chapter 6

these affect algorithmic design.

• We show that the influence limitation problem is APX-hard and propose constant-

factor approximations for both versions of the problem—deterministic and proba-

bilistic aproximation for the budget and matroid version, respectively.

• We show that our methods outperform baseline solutions by up to 35% while scaling

to large graphs.

6.2 Related Work

The influence boosting or limitation problems via network modifications are orthog-

onal to the classical influence maximization task [31]. In these modification problems,

the objective is to optimize (maximize or minimize) the content spread via structural or

attribute-level change in the network.

Previous work addressed the influence limitation problem in the SIR model [9, 32, 33].

The objective is to optimize specific network properties in order to boost or contain the

content/virus spread. For instance, Tong et al. proposed methods to add (delete) edges

to maximize (minimize) the eigenvalue of the adjacency matrix.

The influence spread optimization problem also has been studied under the IC model

via network design [34, 35, 36, 6, 37] and injecting an opposite campaign [38, 39]. Bo-

gunovic [35] addressed the minimization problem via node deletion. On the other hand,

Sheldon et al. [36] studied the node addition problem and proposed expensive algorithms

based on mixed integer programming. Kimura et al. [34] proposed greedy algorithms for

the same. While Chaoji et al. [6] studied the problem of boosting the content spread via

edge addition, Lin et al. [37] investigated the same via influencing initially uninfluenced

users.

141

Controlling Influence Chapter 6

Boosting and controlling the influence via edge addition and deletion, respectively,

were also studied under the Linear Threshold (LT) model by Khalil et al. [4]. They

showed the supermodular property for the objective functions and then applied known

approximation guarantees. The influence minimization problem was also studied under

a few variants of LT model. [5, 40]. Kuhlman et al. [5] solved the minimization problem

via edge removal heuristics in a simpler version of LT. In [40, 41], the authors explored

influence blocking maximization problem in a variant of LT model via node deletion and

also showed supermodular property.

In summary, the approaches for optimizing influence (propagation) are mostly based

on the well-known diffusion models such as SIR, LT and IC. However, our work addresses

the influence minimization problem based on available cascade information.

Optimization over matroids: Matroids have been quite popular for modelling

combinatorial problems [60, 172]. Nemhauser [60] introduced a few optimization prob-

lems under matroids. Vondrak [173] addressed matroid optimization with a continuous

greedy technique for submodular functions. Calinescu et al. [174] and Chekuri et al.

[175] proposed rounding techniques for continuous relaxation of submodular functions

under matroids.

6.3 Influence Limitation

We start with a description of Credit Distribution Model and formulate the influence

limitation problems in Section 6.3.2.

6.3.1 Credit Distribution Model

The Credit Distribution Model (CDM) [170] estimates user influence directly from

propagation traces. Its main advantages compared to classical influence models (e.g.

142

Controlling Influence Chapter 6

Independent Cascade and Linear Threshold [31, 176]) is that it does not depend on

computationally intensive simulations while also relying less on the strong assumptions

made by such models.

Let G(V,E) and L (User, Action, T ime) be a directed social graph and an action log

respectively. A tuple (u, a, t) in action log L indicates that user u has performed action a

at time t. Action a ∈ A propagates from node u to node v iff u and v are linked in social

graph and u performed action a before v. This process defines a propagation (action)

graph of a as a directed acyclic graph (DAG) G(a) = (V (a), E(a)). The action log L is

thus a set of DAGs representing different actions’ propagation traces. For a particular

action a, a potential influencer of a node or user can be any of its in-neighbours. We

denote Nin(u, a) = {v|(v, u) ∈ E(a)} as the set of potential influencers of u for action a

and din(u, a) = |Nin(u, a)|. When a user u performs action a, the direct influence credit,

denoted by γ(v,u)(a), is given to all v ∈ Nin(u, a). Intuitively the CDM distributes the

influence credit backwards in the propagation graph G(a) such that not only u gives credit

to neighbours, but also in turn the neighbours pass on the credit to their predecessors.

The total credit, Γv,u(a) given to a user v for influencing u via action a from v to u in

the propagation graph G(a) is:

Γv,u(a) =
∑

w∈Nin(u,a)

Γv,w(a).γ(w,u)(a) (6.1)

Similarly, one can define the credit for a set of nodes X,

ΓX,u(a) =

1 if u ∈ X∑

w∈Nin(u,a) ΓX,w(a).γ(w,u)(a) otherwise

143

Controlling Influence Chapter 6

Symbols Definitions and Descriptions
G(V,E) Given graph (vertex set V and edge set E)
X Target set of source nodes
C The set of candidate edges
k Budget for BIL

G(a) = (V (a), E(a)) Action/propagation graph (DAG) for action a
Γv,u(a) Credit of node v for influencing u in G(a)
ΓX,u(a) Credit given to set X for influencing u in G(a)

γe(a) = γ(v,u)(a) Direct credit for v to influence u via e = (v, u)
u−→a v It implies there is a path from u to v in G(a)
b Maximum #edges removed from a node in ILM
~y The vector with edge membership probabilities

Table 6.1: Frequently used symbols

The influence σcd(X) is the credit given to X by all vertices:

σcd(G,X) =
∑
u∈V

1

|Au|
∑
a∈Au

ΓX,u(a) (6.2)

Influence probabilities γ(u′,v′) are computed using well-known techniques [177]. How-

ever, our theoretical results do not depend on how γ is computed. We study influence

minimization in two settings: The first is budget constrained optimization, where a limit

on the number of edges to be modified is set as a parameter. The second setting takes

into account a more general class of constraints that can be expressed using the notion

of an independent set.

6.3.2 Problem Definitions

Our goal is to remove a few edges B ⊂ E such that the influence of a target set of

users X is minimized according to the CDM. The credit of target user v for influencing

user u in G(a) is computed based on Equation 6.1. Consider P (v, u) to be the set of

paths from v to u where each path p = {e1, e2, ..., et} is such that e1 = (v, v′), et = (u′, u),

and ei ∈ E(a) for all i and u′, v′ ∈ V (a)− {v, u}. We use γ(w′,w)(a) or γe(a) to represent

144

Controlling Influence Chapter 6

the credit exclusively via edge e = (w′, w) for influencing w in G(a). Therefore, Equation

6.1 can be written as:

Γv,u(a) =
∑

p∈P (v,u)

∏
e∈p

γe(a) (6.3)

A similar expression can be obtained for a target set X:

ΓX,u(a) =
∑

p∈P (X,u)

∏
e∈p

γe(a) (6.4)

where P (X, u) contains only the minimal paths from v ∈ X to u—i.e. @pi, pj ∈ P (X, u)

such that pi ⊆ pj.

We apply Equation 6.4 to quantify the change in credit for a target set of nodes X

and a particular action a after the removal of edge e according to the credit distribution

model:

δa({e}) =
∑
w∈V

(
ΓX,w(a)−

∑
p∈P (X,w)

e/∈p

∏
e′∈p

γe′(a)
)

(6.5)

An edge deletion potentially blocks a few paths from v, reducing its credit (or influ-

ence). We use Gm = (V,E − B) and Gm(a) to denote the graph and the propagation

graph for action a after the removal of edges in B, respectively. The following sections

introduce the budget and matroid constrained versions of the influence limitation prob-

lem.

Budgeted Influence Limitation (BIL)

We start formalizing the budgeted version of our problem:

Problem 4 Budgeted Influence Limitation (BIL): Given a directed graph G(V,E),

an action log L , a candidate set of edges C, a given seed set X, and an integer k < |C|,
145

Controlling Influence Chapter 6

x
vw

t

uy

s

(a) Social Graph, G

x
vw

t

uy

s

.2

.7

.2

.5

.5

.2

.3

.2
1

(b) G(a)

x
vw

t

uy

s

.2

.7

.5

.5

.2.2
1

(c) Modified: Gm(a)

Figure 6.1: Illustrative example of a social graph and CDM with the corresponding
credits over the edges.

find a set B ⊂ C ⊂ E of k edges such that σcd(G
m, X) is minimized or, ∆(B) =

σcd(G,X)− σcd(Gm, X) is maximized where Gm = (V,E \B).

Example 5 In Figure 6.1, we assume the candidate set C = {(t, x), (y, u), (x, u)}, k = 2,

and X = {w, v}. In G(a) (Fig. 6.1b), σcd(G,X) = 4.21 and the deletion of (t, x) ∈ C

will not change the influence of X. The removal of (y, u) and (x, u) (Fig. 6.1c) will make

σcd(G
m(a), X) = ΓX,v + ΓX,w + ΓX,x + ΓX,u + ΓX,y = 1 + 1 + 0.5 + (0.2 + 0.2) + 1 = 3.9.

Theorem 30 The BIL problem is NP-hard.

Proof: We prove the hardness result by reducing the known Influence Maximization

(IM) problem [170] under the credit distribution model (CDM) to our problem, Budgeted

Influence Limitation (BIL). Consider a problem instance IIM [170], where graph G =

(V,E), |V | = n, |E| = m and integer k are given. We create a corresponding BIL

problem instance (IBIL) as follows. The directed social graph is G′ = (V ′, E ′) where

V ′ = V ∪ {x}, x is an additional node. Let C = {(x, v)|v ∈ V }. In IBIL, E ′ = E ∪ C.

We assume that the edges in C are present for every action in IM. C is also candidate

set of edges. Let us assume the set S (of size k) has the maximum influence (σ∗). Now,

it is easy to see that the maximum reduction of the influence of node x in BIL can be

obtained if and only if the edges (k edges) between x and S are removed.

146

Controlling Influence Chapter 6

Node Version: The BIL problem setting generalizes the node version of the influence

minimization problem. The construction is as follows: In the node version, a candidate

node u is divided into two nodes uin and uout associated with the incoming and outgoing

edges of u respectively. A directed edge from uin to uout will be added to the candidate

edge set in BIL for the corresponding candidate node u in the node version.

BIL assumes that any k edges in the candidate set can be removed. As a consequence,

an optimal solution for BIL might make the network disconnected or disproportionately

affect particular portions of the network. Fig. 6.2 exemplifies this issue using the New-

man’s karate1 network. BIL modifications are strongly biased towards a small set of

nodes. Next we present a different formulation for influence limitation that addresses

some of these challenges.

Influence Limitation under Matroid (ILM)

Matroids are abstract objects that generalize the notion of linear independence to sets

[175]. We apply matroids to characterize a class of constraints for influence limitation.

To illustrate the expressive power of matroids as a general class of constraints for opti-

mization problems defined over networks, we focus on a particular setting of influence

minimization. More specifically, we upper bound the number of incoming edges that can

be removed (or blocked) from each node in the network.

Problem 5 Influence Limitation under Matroid (ILM):

Given a directed social graph G(V,E), an action log L , a candidate set of edges C, a

given seed set X, and an integer b, find a set B (where B ⊂ C ⊂ E) such that at most

b edges from B are incident (incoming) on any node in V and σcd(G
m, X) is minimized

where Gm = (V,E −B) or, ∆(B) = σcd(G,X)− σcd(Gm, X) is maximized.

1http://www-personal.umich.edu/ mejn/netdata/

147

Controlling Influence Chapter 6

(a) BIL (b) ILM

Figure 6.2: We perform our methods for BIL (a) and ILM (b) on the Newman’s
Karate network with |X| = 5, k = 9. Square (red) nodes are in the target set, |X|,
and dotted (red) edges are in the solution set. The edges are incident to few nodes in
the solution for BIL, being strongly biased towards a small set of nodes. For ILM, we
have considered b = 2, which leads to a solution with more uniform set of edges.

The effect of ILM enforces network modifications that are more uniformly distributed

across the network. Notice that a valid solution for the budget constrained version (BIL)

might not necessarily be a valid solution for ILM and vice-versa.

Theorem 31 The ILM problem is NP-hard.

It remains to show that ILM follows a matroid—any valid solution is a matroid. We

will show that ILM follows a partition matroid, which is a matroid where the ground

set C is partitioned into non-overlapping subsets C1, C2, · · · , Cl with associated integers

b1, b2, · · · , bl such that a set B is independent iff |B ∩ Ci| ≤ bi.

Observation 2 ILM follows a partition matroid.

The key insight for this observation is that, for any incoming edge, the associated

node is unique to the edge. As an example, if e = (u, v) then the node v is unique to the

edge e. Thus, the ground set C can be partitioned into edge sets (C1, C2, ..., C|V |) based

on the |V | unique incidence edges associated with them. Any feasible solution B (edge

set) is an independent set as B ∩ Cv ≤ b, where v ∈ V . Notice that the more general

148

Controlling Influence Chapter 6

setting where a constant bv is defined for each node in the network is also a partition

matroid.

The BIL and ILM problems are APX-hard and cannot be approximated a factor

greater than (1− 1
e
). We prove these results in Section 6.5 using the notion of curvature

[178].

6.4 Submodularity

A key feature in the design of efficient algorithms for influence limitation is submod-

ularity. Intuitively, submodular functions are defined over sets and have the so called

diminishing returns property. Besides its more usual application to the budgeted ver-

sion of our problem, we also demonstrate the power of submodular optimization in the

solution of its matroid constrained version.

To prove that the maximization function ∆ associated to BIL and ILM is submodular,

we analyze the effect of the removal of a candidate edge e over the credit of the target set

X. Lemma 4 defines the change in credit (δa({e})) in G(a). The notation u−→a v denotes

that there is a path from u to v in G(a).

Lemma 4 For an action a, with corresponding DAG V (a), the change in credit after

the removal of e = (u, v) is as follows: δa({e}) =
(
ΓX,u(a) · γ(u,v)(a)

)
·∑w∈V Γv,w(a).

Proof: If w is not reachable from v, the proof becomes trivial. For v−→a w we use

induction on length l. Let the set of reachable nodes via a path length of l from v in

G(a) be Ra(v, l). We denote Nout(u, a) = {v|(u, v) ∈ E(a)} and the decrease in credit

contribution via the removal of the edge e by any arbitrary node w in Ra(v, l) as δl,wa ({e})

and by all nodes in Ra(v, l) as δla({e}).

149

Controlling Influence Chapter 6

Base case: when l = 0,
∑

w∈V Γv,w(a, 0) = Γv,v = 1. So, the statement is true for

l = 0.

Induction step: Assume that the statement is true when restricted to path lengths l,

for any arbitrary node w where w ∈ Ra(v, l), i.e., δl,wa ({e}) =
(
ΓX,u(a).γ(u,v)(a)

)
.Γv,w(a, l)

Notice that,

δla({e}) =
(
ΓX,u(a).γ(u,v)(a)

)
.
∑

w∈Ra(v,l)

Γv,w(a)

=
∑

w∈Ra(v,l)

δl,wa ({e})

We will prove that the statement remains true for paths of length l + 1 for nodes

w ∈ Ra(v, l + 1).

Now in RHS,

∑
w∈Ra(v,l+1)

(
ΓX,u(a).γ(u,v)(a)

)
.Γv,w(a, l + 1)

=
∑

w∈Ra(v,l+1)

(
ΓX,u(a).γ(u,v)(a)

)
.
∑

y∈Nin(w)

Γv,y(a, l).γ(y,w)(a)

=
∑

y∈Ra(v,l)

(
ΓX,u(a).γ(u,v)(a)

)
.Γv,y(a, l).

∑
w∈Nout(y)

γ(y,w)(a)

=
∑

y∈Ra(v,l)

δl,ya ({e}).
∑

w∈Nout(y)

γ(y,w)(a)

=
∑

w∈Ra(v,l+1)

δl+1,w
a ({e})

We are now able to formalize the change in credit due to a single edge deletion over

all the actions in the action set A .

Lemma 5 Let Gm = (V,E \ {e}), then the change in credit ∆({e}) due to the removal

150

Controlling Influence Chapter 6

of edge e is equal to:

∆({e}) =
∑
a∈A

(
ΓX,u(a).γ(u,v)(a)

)
.
(∑
w∈V

1

|Aw|
Γv,w(a)

)

Lemma 5 follows from Lemma 4 and Equation 6.2. Next, we prove the submodularity

property of the function ∆. This property helps in designing efficient algorithms for both

BIL and ILM.

Theorem 32 The function ∆ is monotone and submodular.

Proof: The function is monotonic for each action a, as the removal of an edge

cannot increase the credit. As a consequence, ∆ (sum of credits over all actions) is also

monotonic.

To prove submodularity, we consider the deletion of two sets of edges, ES and ET

where ES ⊂ ET , and show that ∆(ES∪{e})−∆(ES) ≥ ∆(ET ∪{e})−∆(ET) for any edge

e ∈ C such that e /∈ ES and e /∈ ET . A non-negative linear combination of submodular

functions is also submodular. Thus, it is sufficient to show the property for one action a,

as ∆ has the following form:

∆(B) = σcd(G,X)− σcd(Gm, X)

=
1

|Au|
∑
a∈Au

(Γ′X,u(G, a)− Γ′X,u(G
m, a))

where Γ′X,u(G, a) denotes ΓX,u(a) in G(a).

For the same reason, we assume a single node x ∈ X (ΓX,u =
∑

s∈X ΓV−X+s
s,u). Edge

sets ES and ET are removed from the graph and we evaluate ∆({e}) such that e /∈ ES
and e /∈ ET . Let the credits towards x from node w after removing ES and ET edges be

151

Controlling Influence Chapter 6

v w x y z

u

1 .5 1 1

.5

Figure 6.3: This illustrates a counter example in Theorem 34.

Γ′x,w(GS) and Γ′x,w(GT) (omitting a from Γ′(., a) for simplicity) respectively. Moreover,

we use the notation u−→a v if there is a path from u to v in G(a). There are two possible

cases:

(1) If w−→a v does not hold, then removal of e = (u, v) keeps Γ′x,w(GS) and Γ′x,w(GT)

unchanged and the marginal gains for both ES and ET are 0.

(2) If w−→a v holds, marginal gains for sets ES and ET are equal to Γ′x,u(G
S).γ(u,v).Γ

′
v,w(GS)

and Γ′x,u(G
T).γ(u,v).Γ

′
v,w(GT) respectively. Thus,

Γ′x,u(G
S).γ(u,v).Γ

′
v,w(GS) ≥ Γ′x,u(G

T).γ(u,v).Γ
′
v,w(GT)

as Γ′x,u(G
S) ≥ Γ′x,u(G

T) and Γ′v,w(GS) ≥ Γ′v,w(GT).

These conclude that ∆ is a submodular function.

The next section describes the APX-hardness of both versions of the influence limitation

problem (ILM and BIL) using the notion of curvature [178] and L-reduction [59].

6.5 Curvature and APX-hardness

The ILM problem is NP-hard to approximate within a constant greater than 1 − 1
e
.

We prove the same about the BIL (budget constrained) problem. To show these results,

we first describe a parameter named curvature that models the dependencies between

elements (edges) in maximizing an objective function.

152

Controlling Influence Chapter 6

In ILM, the objective is max{∆(B), B ⊂ C} where B is an independent set. Before

proving APX-hardness, we define the concept of total curvature (ct) [178].

Definition 13 The total curvature of a monotone and submodular function ∆ is defined

by:

ct = 1−minS,ei
∆(S ∪ {ei})−∆(S)

∆(∅ ∪ {ei})−∆(∅)

The total curvature [178] measures how much the marginal gains decrease when an

element is added to a set S. Intuitively, it captures the level of dependency between

elements in a set S. For instance, if the marginal gains are independent (ct = 0) a simple

greedy algorithm will be optimal. Let S∗ be the optimal solution set. The curvature with

respect to optimal (co) [178] is defined as follows:

Definition 14 ∆ has curvature with respect to optimal co ∈ [0, 1] if co is the smallest

value such that for every T :

∆(S∗ ∪ T)−∆(S∗) +
∑

j∈S∗∩T
(
∆(S∗ ∪ T \ {ei})−∆(S∗ ∪ T)

)
≥ (1− co)∆(T)

Vondrak [178] proves the following theorem:

Theorem 33 There is no polynomial time algorithm that generates an approximation

within a factor larger than 1
co

(1 − e−co) for maximizing a monotone and submodular

function under matroid constraints where co is the curvature with respect to optimal.

We use Theorem 33 to prove the APX-hardness of ILM.

Theorem 34 ILM is APX-hard and cannot be approximated within a factor greater than

(1− 1/e).

Proof: ILM is a monotone and submodular optimization problem under a matroid

constraint. We prove the inapproximability result by designing a problem instance where

153

Controlling Influence Chapter 6

the curvature with respect to optimal (co) is 1. Consider the example in Figure 6.3, the

candidate set C = {(w, x), (x, y), (y, z)}, b = 1 and the target set X = {u, v}. In this

setting, one of the optimal sets S∗ = (w, x), (x, y). Assuming T = (y, z) will imply

S∗ ∩ T = ∅. If ∆(S∗ ∪ T) − ∆(S∗) = 0, then co has to be 1. Note that, ∆(S∗ ∪ T) =

∆(S∗) = 2.5, which leads to co = 1. Therefore, ILM cannot be approximated within a

factor greater than 1
1
(1− e−1) and our claim is proved.

Theorem 35 BIL is APX-hard and cannot be approximated within a factor greater than

(1− 1/e).

Proof: We reduce the BIL problem from a problem that is similar to ILM and has

matroid constraints with curvature with respect to optimal as 1. First, we define this

problem as ILMO where maximum b outgoing edges can be deleted form a node (unlike

in ILM where the limit was on incoming edges). However, ILMO is NP-hard, follows

matroid constraints and has curvature 1 (the proofs are straightforward and similar to

the proofs for ILM). Thus ILMO cannot be approximated within a factor greater than

(1− 1
e
) (similarly as Theorem 34).

Now we give an L-reduction [59] from the ILMO problem. The following two equations

are satisfied in our reduction:

OPT (IBIL) ≤ c1 ·OPT (IILMO)

OPT (IILMO)− s(T S) ≤ c2 · (OPT (IBIL)− s(TB))

where IILMO and IBIL are problem instances, and OPT (Y) is the optimal value for

instance Y . s(T S) and s(TB) denote any solution of the ILMO and BIL instances,

respectively. If the conditions hold and BIL has an α approximation, then ILMO has an

(1 − c1c2(1 − α)) approximation. It is NP-hard to approximate ILMO within a factor

greater than (1 − 1
e
). Now, (1 − c1c2(1 − α)) ≤ (1 − 1

e
), or, α ≤ (1 − 1

c1c2e
). So, if the

154

Controlling Influence Chapter 6

conditions are satisfied, it is NP-hard to approximate BIL within a factor greater than

(1− 1
c1c2e

).

Consider a problem instance IILMO, where graph G = (V,E), |V | = n, |E| = m

and integer b and the target set X = {x} are given. This problem becomes a BIL

instance when b = k where k is the budget (in BIL). If the solution of IILMO is s(T S)

then the influence of node x will decrease by s(T S). Note that s(TB) = s(T S) from the

construction. Thus, both the conditions are satisfied when c1 = 1 and c2 = 1. So, BIL is

NP-hard to approximate within a factor grater than (1− 1
e
).

Both the BIL and ILM problems are APX-hard and cannot be approximated within

a constant greater than 1− 1
e
. However, the next two sections describe efficient approxi-

mate algorithms for influence limitation based on submodularity. Algorithm 9 (Greedy)

provides tight approximation (1− 1
e
) for BIL and Algorithm 13 (CG) produces the same

for ILM with high probability.

6.6 Method: BIL

According to Theorem 12, BIL is a monotone submodular maximization problem

under a budget constraint. As a consequence, a simple greedy algorithm produces a

constant factor approximation of (1−1/e) [60] for the problem. We introduce an efficient

version of this greedy algorithm based on properties of the credit distribution model. The

greedy algorithm removes the edge that minimizes the credit of the target set, one at a

time. After each removal, the credit (Γu,v) of node u for influencing v has to be updated.

However, as only one edge e is removed, intuitively, nodes in the entire network should

not be affected but only some in the neighborhood of e. We formalize these observations

and apply them in an efficient algorithm for BIL. The notation u−→a v denotes that there

is a path from u to v in G(a).

155

Controlling Influence Chapter 6

Algorithm 9 Greedy

Require: X, C, k
Ensure: A solution set B of k edges

1: B ← ∅
2: while |B| ≤ k do
3: for e ∈ C \B do
4: e.MC← computeMC(e)
5: end for
6: e∗ ← arg maxe∈C\B{e.MC}
7: B ← B ∪ {e∗} and E ← E \ {e∗}
8: updateUC(e, EP, UC, SC)
9: updateSC(e, EP, UC, SC)

10: end while
11: return B

Algorithm 10 computeMC

Require: e = (u, v), X, UC, SC
Ensure: mc

1: mc = 0
2: for a ∈ A such that SC[u][a] > 0 and EP [u][v][a] > 0 do
3: mca = 0
4: for each user w such that UC[v][w][a] > 0 do
5: mca = mca + UC[v][w][a]/Aw

6: end for
7: mc = mc+ (SC[u][a] · EP [u][v][a]) ·mca
8: end for

Observation 3 For a given action a and DAG G(a), the removal of e = (u, v) changes

Γz,w iff z−→a u and v−→a w.

Let G(a) and {z, w} be an arbitrary DAG and node pair, respectively. Deleting e=(u, v)

can only affect the credit Γz,w—i.e. credit of node z for influencing w—if e is on a path

from z to w in G(a). The edge e is on one of such paths if and only if z−→a u and v−→a w.

The following observations are derived from Lemma 5.

Observation 4 For given DAG G(a), the removal of e = (u, v) reduces Γz,w by (Γz,u ·

γ(u,v)) · Γv,w iff z−→a u and v−→a w.

156

Controlling Influence Chapter 6

Algorithm 11 updateUC

Require: e = (u, v), EP , UC, SC
1: for a ∈ A do
2: γ ← EP [u][v][a]
3: for each user z such that UC[z][u][a] > 0 do
4: for each user w such that UC[v][w][a] > 0 do
5: UC[z][w][a] = UC[z][w][a]− (UC[z][u][a] · γ) · UC[v][w][a]
6: end for
7: end for
8: end for

Algorithm 12 updateSC

Require: e = (u, v), EP , UC, SC
1: for a ∈ A such that SC[u][a] > 0 and EP [u][v][a] > 0 do
2: γ ← EP [u][v][a]
3: for each user w such that UC[v][w][a] > 0 do
4: SC[w][a] = SC[w][a]− (SC[u][a] · γ) · UC[v][w][a]
5: end for
6: end for

Observation 5 For given target set X, an action a and DAG G(a), the removal of

e = (u, v) reduces ΓX,w by (ΓX,u · γ(u,v)) · Γv,w iff z−→a u and v−→a w where z ∈ X.

Algorithm 9 scans the action log L to collect information for comparing the effect

of each candidate edge. This information is maintained in data structures EP, EC, and

SC. More specifically, EP [u][v][a] denotes the edge credit (γ(u,v)(a)) of u for influencing

v when (u, v) exists, UC[u][v][a] is the credit (Γu,v(a)) given to u for influencing v, and

SC[u][a] is the credit (ΓX,u(a)) given to X for influencing u, all for an action a.

The contribution of each edge (see Lemma 5), given the current solution B, is com-

puted using computeMC. Method updateUC (Algorithm 11) identifies the credits that

have been changed upon an edge removal and does so by updating the data structure

UC following Observation 4. Method updateSC does the same for the credits of target

set of nodes X by updating the data structure SC following Observation 5.

The expensive steps of Algorithm 9 are steps 4, 7 and 8. The corresponding meth-

157

Controlling Influence Chapter 6

ods computeMC, updateUC, and updateSC, take O(
∑

a∈A |V (a)|), O(
∑

a∈A |V (a)|2), and

O(
∑

a∈A |V (a)|) time respectively. Thus, the total running time of Greedy is O(k · |C| ·∑
a∈A |V (a)|+k ·∑a∈A |V (a)|2). Notice that the total time complexity does not depend

on the number of nodes (|V |) in the graph, but on the sizes of the action graphs, the

budget and the candidate edge set.

Optimization of Greedy in BIL

We propose an intuitive and simple optimization technique to further improve the

efficiency of Greedy. The question about optimization is the following: do all the edges

in the candidate set (C) of edges need to be evaluated? To answer this, we introduce a

concept of edge dominance. The idea is very intuitive and simple. If an edge e′ = (w, x) is

reachable from the target set through only a particular edge e∗ = (u, v) in all the DAGs,

then we call e′ as the dominated and the edge e∗ as the dominating edge. In other words,

there is no such path from a node in X to w without going through e∗ in G(a) for all

a ∈ A . Note that the if the dominating edge e∗ is removed from the graph, the marginal

contribution towards reducing influence of target set X by removing e′ becomes 0. The

next lemma depicts the dominance of an edge.

Lemma 6 If e′ = (w, x) and e∗ = (u, v) are present in G(a), and ΓX,w = ΓX,u · γ(u,v) ·

Γv, w for all a ∈ A then e′ is dominated by e∗.

6.7 Method: ILM

The greedy algorithm (Algorithm 9) for budgeted influence limitation (BIL) might

not provide a valid solution for the matroid constrainted problem. Based on Observation

2, we apply continuous relaxation and adopt the continuous greedy technique to design

158

Controlling Influence Chapter 6

our algorithm. Furthermore, we propose a fast randomized scheme for rounding the

relaxed solution that works well in practice.

6.7.1 Continuous Relaxation

Let ~y = (y1, y2, ...yc) be the vector with membership probabilities for each edge in the

candidate set C (|C| = c). Moreover, let B be a random subset where ei ∈ C is included

in B with probability yi. From [173], if f is the continuous extension of ∆, then:

f(~y) = EB∼~y[∆(B)] =
∑
B⊆C

∆(B)
∏
ei∈B

yi
∏

ei∈C\B

(1− yi) (6.6)

Let Ein(v) be the edges incoming to v. Our objective is to find a ~y that maximizes

f(~y) with the following constraints:

yi ∈ [0, 1] (6.7)

∑
ei∈Ein(v)

yi ≤ b ∀v ∈ V (6.8)

While Equation 6.7 (constraint S1) maintains the fractional values as probabilities,

Equation 6.8 (constraint S2) enforces the maximum number of edges incident to each

node to be bounded by b. Because the relaxation of ∆ as f is continuous, the optimal

value for f is an upper bound on ∆ (the discrete version). Let B∗ and Y ∗ be the optimal

edge sets for ∆ and f , respectively. Also, let Z be a vector defined as follows: zi = 1 if

ei ∈ B∗ and zi = 0, otherwise. Then, ∆(B∗) = f(Z) and Z maintains the constraints.

As f(Y ∗) is maximum, ∆(B∗) = f(Z) ≤ f(Y ∗).

We show that the new function f is smooth (it has a second derivative), monotone

159

Controlling Influence Chapter 6

Algorithm 13 Continuous Greedy (CG)

Require: X, C, b
Ensure: A vector ~y satisfying constraints (S1) and (S2)

1: Start ~y as a null vector, t = 0
2: while t ≤ τ do
3: Generate s samples B1, B2, ..., Bs where ei belongs to Bj (∀j ∈ [s]) with probability

yi

4: Set weight of an edge, ei as wi =
∑s
j=1 ∆(Bj∪{ei})−∆(Bj)

s

5: Compute an edge set EY maintaining the constraint (S2) and maximizes∑
ei∈EY wi

6: For all ei ∈ EY , set yi = yi + 1/τ
7: t = t+ 1
8: end while
9: return ~y

and submodular. Based on these properties, we can design a continuous greedy algorithm

that produces a relaxed solution for ILM with a constant-factor approximation [173].

Theorem 36 The objective function f is smooth, monotone and submodular.

Proof: Let Y = (y1, y2, ...yc) be the vector with membership probabilities for

each edge in C (c = |C|). Let the set B be a random subset of C where the edge

ei ∈ C is included in set B with probability yi. If f is the continuous extension of ∆,

then,f(Y) = EB∼Y [∆(B)] =
∑

B⊆C ∆(B)
∏

ei∈B yi
∏

ei∈C\B (1− yi). To prove the func-

tion f : [0, 1]C → R is a smooth monotone submodular function, we need to prove the

followings:

i) f has second partial derivatives everywhere.

ii) Monotonicity: For each ei ∈ C, ∂f
∂yi
≥ 0.

iii) Submodularity: For each ei, ej ∈ C, ∂2f
∂yi∂yj

≥ 0.

We derive a closed form similar in [173] for the second derivative and thus it always

exists.

160

Controlling Influence Chapter 6

For each ei ∈ C,

∂f

∂yi
= E[∆(B)|ei ∈ B]− E[∆(B)|ei /∈ B]

As ∆ is monotone, E[∆(B)|ei ∈ B] − E[∆(B)|ei /∈ B] ≥ 0 and thus, f is also

monotone.

For each ei, ej ∈ C, i 6= j,

∂2f

∂yi∂yj
= E[∆(B)|ei, ej ∈ B]− E[∆(B)|ei ∈ B, ej /∈ B]−

E[∆(B)|ei /∈ B, ej ∈ B]− E[∆(B)|ei, ej /∈ B]

As ∆ is submodular, ∂2f
∂yi∂yj

≥ 0 from the above expression. Thus, f is submodular. Note

that if i = j, ∂2f
∂yi∂yj

= 0. In other words, the relaxation f is called multi-linear because it

is linear in every co-ordinate (yi).

Continuous Greedy (CG): The continuous greedy algorithm (Algorithm 13) pro-

vides a solution set ~y such that f(~y) ≥ (1− 1
e
)f(Y ∗) ≥ (1− 1

e
)∆(B∗) with high probability.

The approximation guarantee exploits the facts that ∆ is submodular (Theorem 36) and

ILM follows a matroid constraint (Observation 2). CG is similar to the well-known

Frank-Wolfe algorithm [179]. It iteratively increases the coordinates (edge probabilities)

towards the direction of the best possible solution with small step-sizes while staying

within the feasible region. In [173], the author proves the following:

Theorem 37 The Continuous Greedy (Algorithm 13) returns a vector ~y that satisfies

constraints S1 and S2 and such that f(~y) ≥ (1− 1
e
)∆(B∗) when τ = c2 and s = c5.

The values τ and s correspond to the number of iterations and samples applied by

the CG algorithm. The costliest operations of CG are steps 3, 4 and 5. Step 3 takes

O(c.s) time, as it visits each edge in the candidate set C (|C| = c). Step 4 computes

161

Controlling Influence Chapter 6

the contribution of edges, having worst case time complexity O(s.c
∑

a∈A |V (a)|). Step

5 greedily selects the best set of edges, according to the weights. Therefore, the total

running time of the algorithm is O(τ(s.c
∑

a∈A |V (a)| + c log c)). Though Theorem 37

requires high value of τ and s, in practice, the algorithm produces high quality results

with low values of them (Section 6.8.2).

6.7.2 Rounding

Algorithm 13 returns a vector ~y satisfying constraints Eq. 6.7 and Eq. 6.8 while

producing f(~y) ≥ (1 − 1
e
)∆(B∗). However, as ~y contains probability values (in the

interval [0, 1]), a rounding step is still required for obtaining a deterministic set of edges.

There exists a computationally-intensive lossless rounding procedure for matroids

known as swap rounding [175]. The computation depends on the number of base matroids

which can be very large in the solution set obtained from Algorithm 13. We address the

high time complexity issue by proposing a simpler and faster randomized procedure. We

show that our independent rounding method produces feasible edges with low error and

high probability.

We sort the edges according to their weights (probabilities) and round them while

maintaining feasibility. This fast procedure only makes a single pass over the candidate

edges in C. In order to analyze this randomized procedure, we assume that it is unaware

of the dependency between the edges. Let B be the edge set produced by rounding, i.e.

f(~y) = E[∆(B)], and let Ev ⊂ B be the incoming edges incident on node v. The next

theorem shows that the randomized procedure will produce a feasible set within error ε

with (high) probability 1− 1
n
, where n = |V | is the number of nodes.

Theorem 38 The following holds for the number of edges incoming to v in the rounded

162

Controlling Influence Chapter 6

set:

Pr(|Ev| < (1 + ε)b) ≥ 1− 1

n

where ε =
√

6 logn
b

.

Proof: Let B be the set of edges produced by the rounding procedure. An edge

ei is included in B with probability yi. As ~y is a feasible solution,
∑

ei
yi ≤ b ∀v ∈ V

(Equation 6.8) where ei is incident (incoming) to vertex v. Thus, E(|Ev|) ≤ b. Applying

the Chernoff’s bound:

Pr(|Ev| ≥ (1 + ε)E(|Ev|)) < exp (−E(|Ev|)ε2

3
)

Applying the union bound, ∀v ∈ V , we get:

Pr(|Ev| ≥ (1 + ε)b) < n · exp (−bε
2

3
)

Substituting ε =
√

6 logn
b

, we get:

Pr(|Ev| < (1 + ε)b) ≥ 1− n

n2
= 1− 1

n

We emphasize two implications of Theorem 38: (1) The probability that the rounded

solution is feasible depends on the error ε which is small whenever b is large; (2) The

rounding procedure has a probabilistic bi-criteria approximation, being lossless if the

maximum number of edges to be removed per node is b′ = b(1 + ε). The proposed

randomized rounding scheme is efficient, as it only performs one pass over the candidate

edges C in order to generate its output.

163

Controlling Influence Chapter 6

Dataset Name |V | |E| #Action #Tuple
ca-AstroPh (CA) 18K 197K 1K 56K
email-EuAll (EE) 265K 420K − −

Youtube (CY) 1.1M 2.9M − −
Flixster-small (FXS) 15K 191K 1.8K 30K
Flickr-small (FCS) 15K 1.4M 1.4K 10K

Flixster (FX) 1M 28M 49K 8.2M
Flickr (FC) 1.3M 81M 296K 36M

Table 6.2: Statistics of the datasets. We generate synthetic actions via IC model for
CA, EE and CY datasets.

6.7.3 Generalizations

Matroids can capture other influence limitation settings, especially when edges in

the solution can be naturally divided into partitions. Examples include the limitation

of influence in non-overlapping communities [180, 181], disjoint campaigning [182], and

problems where issues of fairness arise [183]. Moreover, influence boosting problems via

attribute-level modification [37] and edge addition [4] can also be modelled under matroid

constraints.

6.8 Experimental Results

Our solutions were implemented in Java and experiments were conducted on 3.30GHz

Intel core with 30 GB RAM.

Datasets: The datasets used in the experiments are the following: 1) Flixster

[170]: Flixster is an unweighted directed social graph, along with the log of performed

actions. The log has triples of (u, a, t) where user u has performed action a at time t.

Here, an action for a user is rating a movie. 2) Flickr [184]: This is a photo sharing

platform. Here, an action would be joining an interest group. 3) Synthetic: We use

the structure of real datasets that come from different genre (e.g., co-authorship, social).

164

Controlling Influence Chapter 6

10 15 20 25 30 35 40 45
Budget (k)

0

10

20

30

40

DI
 (%

)

Greedy
IC-Gr
LT-Gr
High-Deg

(a) CA (varying k)

10 20 30 40 50
|X|

0

20

40

60

80

100

DI
 (%

)

(b) CA (varying |X|)

10 15 20 25 30 35 40 45
Budget (k)

0

20

40

60

80

100

DI
 (%

)

Greedy
IC-Gr
LT-Gr
High-Deg

(c) FXS (varying k)

10 20 30 40 50
|X|

0

20

40

60

80

100

DI
 (%

)

(d) FXS (varying |X|)

10 15 20 25 30 35 40 45
Budget (k)

0
10
20
30
40
50
60

DI
 (%

)

Greedy
IC-Gr
LT-Gr
High-Deg

(e) FCS (varying k)

10 20 30 40 50
|X|

0

20

40

60

80

DI
 (%

)

(f) FCS (varying |X|)

Figure 6.4: [BIL] (a, c, e) Decrease in Influence (DI) produced by different algorithms.
(b, d, f) DI produced by different algorithms varying the size of the target set, X with
k = 30.

The networks are available online2. We synthetically generate the actions and create

associated tuples. Synthetic actions are generated assuming the Independent Cascade

(IC) [31] model. The “ca-AstroPh” dataset is a Collaboration network of Arxiv Astro

Physics. In the “Youtube” social network, users form friendship with others and can

create groups that other users can join. Table 6.2 shows the statistics of the datasets.

We use the small extracted networks (from Flixster and Flickr) for the quality-related

experiments as our baselines are not scalable. To show the scalability of our methods,

2https://snap.stanford.edu

165

Controlling Influence Chapter 6

FXS: # (tuples, actions)×103

Budget (30, 1.7) (50, 4.8) (75, 6.9)
k = 50 58 61 68
k = 75 73 83 85
k = 100 85 88 91

FCS: # (tuples, actions)×103

(20, 2.6) (30, 3.8) (50, 5.8)
k = 50 208 383 1187
k = 75 269 579 1891
k = 100 356 780 2551

Table 6.3: [BIL] Running times (in seconds) of Greedy varying number of tuples. The
number of tuples and actions are in thousands.

we extract networks of different sizes from the raw large Flixster and Flickr data. For all

the networks, we learn the influence probabilities via the widely used method proposed

by Goyal et al. [177].

We use the small sub-networks (from Flixster and Flickr) for quality-related exper-

iments as our baselines are not scalable. Influence probabilities are learned using the

method proposed in [177].

Performance Metric: The quality of a solution set B (a set of edges) is the per-

centage of Decrease in Influence (DI) of X:

DI(B) =
(σcd(G,X)− σcd(Gm, X))

σcd(G,X)
× 100 (6.9)

The set X is randomly selected from the set of top 150 nodes with highest number of

actions. The candidate set C contains edges that appear at least once in any action

graph. The number of MC simulations for IC and LT-based baselines is at least 1000.

166

Controlling Influence Chapter 6

103 104

#Simulation
0

20

40

60

80

100
DI

 (%
)

Greedy
IC-Gr
LT-Gr

(a) Quality on CA

103 104

#Simulation
0

20

40

60

DI
 (%

)
(b) Quality on FXS

103 104

#Simulation
101

102

103

104

Ti
m

e
(S

ec
on

d)

(c) Time on CA

103 104

#Simulation

102

103

Ti
m

e
(S

ec
on

d)

(d) Time on FXS

Figure 6.5: [BIL] Comparison of our greedy algorithm and simulation based baselines
varying number of simulations: (a-b) Quality and (c-d) Running time.

6.8.1 Experiments: BIL

Baselines: 1) IC-Gr [34]: Finds the top k edges based on the greedy algorithms

that minimize influence via edge deletion under the IC model. 2) LT-Gr [4]:Finds the

top k edges based on the greedy algorithm proposed in [4]. Here, the authors minimize

the influence of a set of nodes according to the LT model via edge deletion. Note that

we also apply optimization techniques proposed in [4] for both of these baselines. 3)

High-Degree: Selects edges between the target nodes X and the top-k high degree

nodes. Other heuristics (Friends of a Friend and random selection) did not produce

better results than High-Deg.

Quality (vs Baselines): We compare our Greedy algorithm (Algorithm 9) against

the baselines on three datasets (CA, FXS and FCS) in Figures 6.4a, 6.4c and 6.4e (target

size is set as 30). Greedy takes a few seconds to run and significantly outperforms the

baselines (by up to 35%) in terms of DI(%). The running time of Greedy is low as it

avoids expensive Monte-Carlo simulations. For CA, the action graphs are generated by

IC model and hence, IC-Gr produces better results than the other two datasets.

Scalability of Greedy: We show the scalability of our Greedy algorithm (Algorithm

9) for increasing number of tuples (#actions) size of the graph. Table 6.3 shows the results

on FXS and FCS. As FCS has higher edge density than FXS, the number of tuples has

higher effect on the running time in FCS. Note that we consider all the edges that appear

167

Controlling Influence Chapter 6

Dataset |V | Actions Tuples |C| Time (sec)
EE 265K 5K 326K 4.1K 637
CY 1.1M 5K 313K 6.3K 950
FX 200K 2.6K 200K 51K 4020

Table 6.4: [BIL] Running Times of Greedy varying graph size for |X| = 30 and k = 30.

in one of the actions in our candidate set of edges. A larger candidate set results in longer

running time. However our algorithm only takes around 2 and 43 minutes to run for 75K

and 50K tuples in FXS and FCS, respectively.

Table 6.4 shows the results varying the graph size. The running times are dominated

by the size of both the graphs and the candidate sets. Greedy takes nearly 16 minutes

on CY with 1M nodes and 6K candidate edges, whereas, it takes 67 minutes on FX with

200K nodes and 51K candidate edges.

Parameter variations: We also analyze the impact of varying the following param-

eters: the number of target nodes (|X|) and the number of simulations for LT-Gr and

IC-Gr. First we vary the size of the target set X. Figures 6.4b, 6.4d, and 6.4f show the

results for CA, FXS, and FCS respectively where budget, k = 30. Greedy provides better

DI (by up to 35%) across all |X| and datasets. With the increase in |X|, DI decreases

for the top three algorithms. A larger |X| would have a higher influence to reduce. Thus,

with the same number of edges removed, the DI would decrease for larger target set. DI

is lower for FCS as it is denser than CA and FXS.

We also evaluate the effect of the number of simulations on LT-Gr and IC-Gr. Figure

6.5 shows the results for |X| = 30 and k = 20. Our algorithm produces better results

even when the baselines perform 104 simulations. By comparing Figures 6.5a and 6.5b,

it is evident that IC-Gr performs better than LT-Gr in CA as the synthetic actions are

generated by IC model. Figure 6.5d also shows that our method is 1-4 orders faster than

the simulation based baselines.

168

Controlling Influence Chapter 6

10 20 30 40
#Edge Removed

0

10

20

30

40

DI
 (%

)

CG
GRR
IC-Gr
LT-Gr

(a) CA (b=1)

10 20 30 40
#Edge Removed

0

5

10

15

20

25

DI
 (%

)

(b) CA (b=2)

10 15 20 25 30 35 40 45
#Edge Removed

0
20
40
60
80

100

DI
 (%

)

CG
GRR
IC-Gr
LT-Gr

(c) FXS (b=1)

10 15 20 25 30 35 40 45
#Edge Removed

0
10
20
30
40
50
60
70
80

DI
 (%

)

(d) FXS (b=2)

10 20 30 40
#Edge Removed

0

20

40

60

80

DI
 (%

)

CG
GRR
IC-Gr
LT-Gr

(e) FCS (b=1)

10 20 30 40
#Edge Removed

0

20

40

60

DI
 (%

)

(f) FCS (b=2)

Figure 6.6: [ILM] Decrease in Influence produced by different algorithms on (a-b)
CA, (c-d) FXS, and (e-f) FCS. Our algorithm, CG outperforms the baselines by up
to 20%.

6.8.2 Experiments: ILM

Baselines and other settings: 1) Greedy with Restriction (GRR): Finds the

feasible edges (respecting the matroid constraint) using a greedy algorithm (BIL). (2-3)

We also apply IC-Gr and LT-Gr with the edge removal constraint for each node. The

number of samples and iterations used in CG are s=20 and τ =100, respectively. After

obtaining the solution vector from CG, we run randomized rounding for 50 times and

choose the best solution.

169

Controlling Influence Chapter 6

FCS: # (tuples, actions)×103

(20, 2.6) (30, 3.8) (50, 5.8)
20 28.1 64.7 180
40 29.1 64.6 181
60 29.2 63.1 167

Table 6.5: [ILM] Running Times (in min.) of CG varying number of tuples for |X| = 20
and b = 2.

Quality (vs Baselines): We compare the Continuous Greedy (CG) algorithm

against the baseline methods on CA, FXS and FCS where |X| = 30 varying the number

of edge removal. Figure 6.6 shows the results when b = 1 and b = 2. CG significantly

outperforms the baselines by up to 20%. GRR does not produce good results as it has

to select the feasible edge that does not violate the maximum edge removal constraint b.

While maintaining feasibility, GRR cannot select the current true best edge.

FCS: # (tuples, actions)×103

#Edge (20, 2.6) (30, 3.8) (50, 5.8)
CG GRR CG GRR CG GRR

20 33 22 50 41 35 20
40 42 32 53 44 45 35
60 44 35 61 54 54 40

Table 6.6: [ILM] Decrease in Influence (%) in FCS by Continuous Greedy (CG) vs
GRR varying the number of tuples.

Scalability of Continuous Greedy: CG (Algorithm 13) is generally slower than

GRR. However, unlike for GRR, increasing the budget does not affect the running time of

CG. We evaluate the running time of CG while increasing the number of tuples (actions)

using FCS in Table 6.5. Table 6.6 shows the results on the quality in DI (%) produced

by CG and GRR (other baselines are not scalable) on FCS data. CG outperforms GRR

by up to 15%. Table 6.8 shows the results on FXS. Because of higher density and thus

larger candidate set, CG takes longer in FCS (Table 6.5). These observations validate

the running time analysis for CG (Section 6.7.1). Table 6.7 shows the results on FXS

170

Controlling Influence Chapter 6

data. CG outperforms GRR by up to 8%. CG consistently produces better results than

GRR.

FXS: # (tuples, actions)×103

#Edge Removed (30, 1.7) (50, 4.8) (75, 6.9)
CG GRR CG GRR CG GRR

20 50 44 48 42 51 44
40 51 47 53 45 60 56
60 60 54 61 55 63 57

Table 6.7: [ILM] Decrease in Influence (%) in FXS by Continuous Greedy (CG)
vs GRR varying the number of tuples. The number of tuples and actions are in
thousands.

Table 6.9 shows results varying the graph size. Running times are dominated by

the size of the graphs and the candidate sets (numbers of actions and tuples are same

as in Table 6.4). CG takes approximately 31 minutes on CY with 1M nodes and 6K

candidate edges, whereas it takes approximately 1.5 hours on FX with 200K nodes and

51K candidate edges. CG also outperforms GRR by up to 9%.

Parameter Variation: The size of the target set X is varied and we observe its

effect in Figures 6.7a and 6.7. We set b = 2, and remove 20 edges for these experiments.

CG provides better DI consistently across different target sizes. As expected, with the

increase of target set size, DI generally decreases for all the algorithms. A larger target

size would have a higher influence to be reduced. Thus, with the same number of edges

removed, the DI would decrease for a larger target set. We compare the Continuous

Greedy (CG) algorithm against the baseline methods on CA, FCS and FXS varying b

(Figure 6.6). CG significantly outperforms the baselines.

171

Controlling Influence Chapter 6

FXS: # (tuples, actions)×103

#Edge Removed (30, 1.7) (50, 4.8) (75, 6.9)
20 7.5 20.7 69.4
40 7.1 16.8 69.4
60 7.4 16.7 69.5

Table 6.8: [ILM] Running times (in minutes) of CG varying number of tuples for
|X| = 20 and b = 2 on FXS.

Dataset |V | |C| CG (Time) CG (DI) GRR (DI)
CY 1.1M 6.3K 1858 55.1 47.2
FX 200k 51K 5690 46.2 37.3

Table 6.9: [ILM] Running Time (Scalability) in seconds of CG and Decrease in Influ-
ence (percentage) by CG and GRR varying graph size for |X| = 20, b = 2 and the
number of edges removed is 20.

6.9 Conclusions

We studied the influence limitation problem via edge deletion. Different from previous

work, our formulation is data-driven, taking into account available propagation traces in

the selection of edges. Our influence limitation problem was framed under two different

types of constraints—budget and matroid. Both versions were shown to be APX-hard

and cannot be approximated within a factor greater than (1 − 1
e
). For the budget con-

strained version, we have developed an efficient greedy algorithm that achieves a good

approximation guarantee by exploiting the monotonicity and submodularity of the ob-

jective function. The matroid constrained version was solved via continuous relaxation

and a continuous greedy technique, achieving a probabilistic approximation guarantee.

Experiments showed the effectiveness of our solutions, which outperform the baselines

using both real and synthetic datasets.

172

Controlling Influence Chapter 6

10 20 30 40
|X|

0

10

20

30

40

DI
 (%

)

CG
GRR
IC-Gr
LT-Gr

(a) Quality on CA

10 20 30 40
|X|

0

15

30

45

60

DI
 (%

)

(b) Quality on FXS

Figure 6.7: [ILM] Decrease in Influence (DI) produced by different algorithms varying
the size of the target set, X when b = 2.

173

Chapter 7

Conclusion

This thesis outlines the scope of network design problems and their applications. We have

built algorithms to improve different objectives in networks. For instance, in Chapter 2,

different from existing techniques, our formulation incorporated the practical consider-

ations that the impact of delay minimization should be noticeable and favor important

paths in a network. We have proposed a scalable, importance sampling-based, traffic

improvement method to reduce commute delays. The algorithm is evaluated on large

traffic data from three major cities (New York, Beijing, and San Fransisco) and shows

70-fold improvement over state-of-the-art techniques.

Chapter 3 have studied several variations of a novel network design problem, group

centrality optimization. This problem has applications in a variety of domains including

social, collaboration, and communication networks. Our randomized algorithms pro-

vide theoretical quality guarantees under realistic assumptions and also outperform the

baseline methods by up to 5 times on several datasets.

We have discussed the the Hiding Leader problem for the core centrality and degree

centrality measures in Chapter 4. The chapter proves several hardness and approxima-

bility results for the same problem in different settings as well as design approximation

174

Conclusion Chapter 7

algorithms. Hence, our results prove that, although classical complexity theoretic frame-

work fails to compare relative difficulty of hiding leaders with respect to various centrality

measures, hiding leaders may be significantly harder for the core centrality than the de-

gree centrality.

This thesis has also designed an algorithm to profile network resilience via the k-core

minimization (KCM) problem in Chapter 5. KCM discovers that the structure of the

human gene is more complex and stable than that of the yeast gene in Chapter 5. The

proposed algorithm is an efficient sampling based heuristic based on Shapley value to

account for the interdependence in the impact of candidate edges.

Finally, the influence limitation problem via edge deletion is described in Chapter 6.

Different from previous work, our formulation is data-driven, taking into account available

propagation traces in the selection of edges and framed under two different types of

constraints—budget and matroid. For the budget constrained version, we have developed

an efficient greedy algorithm that achieves a good approximation guarantee by exploiting

the monotonicity and submodularity of the objective function. The matroid constrained

version was solved via continuous relaxation and a continuous greedy technique, achieving

a probabilistic approximation guarantee.

We have also shown that different from search versions (e.g. computing shortest

path), the design ones (e.g. optimizing shortest path) are computationally harder[11].

The problems discussed in this thesis cover a large range of the spectrum of intractabil-

ity. While the k-core minimization problem [12] is NP-hard to approximate within any

constant, the shortest path [14] optimization problem cannot be approximated within a

constant factor grater than 1− 1/e. These algorithmic challenges led us to design novel

algorithms. The solutions developed in this thesis involve a combination of randomized

algorithms, combinatorial optimization, machine learning and game theory to solve these

problems. This thesis also opens up multiple directions of future research.

175

Conclusion Chapter 7

Dynamic Networks: There are many opportunities for studying network design

problems for a variety of structural properties of networks or network processes. For

instance, an interesting future direction in optimizing centrality is the dynamic version

of the problem [185, 186, 187], where coverage centrality has to be maintained under tem-

poral, and possibly adversarial, edge updates. This problem has interesting connections

with existing work on Game Theory [188].

Applications of Network Design: We have seen many applications of network

design for different objectives. Design would be useful for plenty of other problems

such as opinion formation: How to optimize the dynamics of opinion formation via

design? A major challenge is to measure the effect of the modifications in well-known

models (e.g. DeGroot-Friedkin). Design is also relevant in other applications such as

telecommunication failure and disaster management: How to improve the reliability of

telecommunication networks? How to minimize the disruption of emergency services by

a natural disaster?

Covert Networks: An important future direction is solving security problems in

covert networks. For instance, the average case computational complexity of the Hiding

Leader problem for popular network centrality measures is a challenging problem. Since

the results of Waniek et al. [58] and ours establish that the Hiding Leader problem

is intractable only in the worst case, it could very well be possible that there exist

heuristics that efficiently solve most randomly generated instances. If this is true, then the

apparent complexity shield against manipulating various centrality measures will become

substantially weak. Another immediate future work is to resolve the computational

complexity of the Hiding Leader problem for the core centrality measure when the

core centrality of every leader is at most 2.

Sophisticated Design: Network design problems are not well studied under diffi-

cult circumstances: How to design assuming a complex model that might be an approx-

176

imation (estimation errors, missing data) and might have privacy issues involved? For

instance, in network design problems, the common assumption is that a central designer

has the authority or option to modify the graph optimally. However, the presence of ra-

tional users with strategies as in game theoretic settings will require different objectives

and techniques.

177

Bibliography

[1] W. Ellens and R. E. Kooij, Graph measures and network robustness, arXiv
preprint arXiv:1311.5064 (2013).

[2] A. Gupta and J. Könemann, Approximation algorithms for network design: A
survey, Surveys in Operations Research and Management Science (2011) 3–20.

[3] Y. Lin and K. Mouratidis, Best upgrade plans for single and multiple
source-destination pairs, GeoInformatica 19 (2015), no. 2 365–404.

[4] E. B. Khalil, B. Dilkina, and L. Song, Scalable diffusion-aware optimization of
network topology, in KDD, pp. 1226–1235, 2014.

[5] C. J. Kuhlman, G. Tuli, S. Swarup, M. V. Marathe, and S. Ravi, Blocking simple
and complex contagion by edge removal, in International Conference on Data
Mining (ICDM), pp. 399–408, IEEE, 2013.

[6] V. Chaoji, S. Ranu, R. Rastogi, and R. Bhatt, Recommendations to boost content
spread in social networks, in WWW, pp. 529–538, 2012.

[7] B. Dilkina, K. J. Lai, and C. P. Gomes, Upgrading shortest paths in networks, in
Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, pp. 76–91, Springer, 2011.

[8] B. Wilder, H. C. Ou, K. de la Haye, and M. Tambe, Optimizing network structure
for preventative health, in Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, pp. 841–849, 2018.

[9] H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos, and C. Faloutsos, Gelling,
and melting, large graphs by edge manipulation, in CIKM, pp. 245–254, 2012.

[10] A. Meyerson and B. Tagiku, Minimizing average shortest path distances via
shortcut edge addition, in Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX-RANDOM), pp. 272–285.
Springer, 2009.

[11] S. Medya, P. Bogdanov, and A. Singh, Towards scalable network delay
minimization, in ICDM, pp. 1083–1088, 2016.

178

[12] S. Medya, T. Ma, A. Silva, and A. Singh, K-core minimization: A game theoretic
approach, arXiv preprint arXiv:1901.02166 (2019).

[13] S. Medya, A. Silva, A. Singh, P. Basu, and A. Swami, Group centrality
maximization via network design, in Proc. 24th SIAM International Conference
on Data Mining, pp. 126–134, SIAM, 2018.

[14] S. Medya, J. Vachery, S. Ranu, and A. Singh, Noticeable network delay
minimization via node upgrades, Proceedings of the VLDB Endowment 11 (2018),
no. 9 988–1001.

[15] S. Medya, A. Silva, and A. Singh, Influence minimization under budget and
matroid constraints: Extended version, arXiv preprint arXiv:1901.02156 (2019).

[16] D. Paik and S. Sahni, Network upgrading problems, Networks (1995) 45–58.

[17] M. Papagelis, F. Bonchi, and A. Gionis, Suggesting ghost edges for a smaller
world, in International conference on Information and knowledge management
(CIKM), pp. 2305–2308, 2011.

[18] N. Parotisidis, E. Pitoura, and P. Tsaparas, Selecting shortcuts for a smaller
world, in SIAM International Conference on Data Mining (SDM), pp. 28–36,
SIAM, 2015.

[19] E. D. Demaine and M. Zadimoghaddam, Minimizing the diameter of a network
using shortcut edges, in SWAT, ser.Lecture Notes in Computer Science, H.
Kaplan,Ed. (2010) 420–431.

[20] S. Perumal, P. Basu, and Z. Guan, Minimizing eccentricity in composite networks
via constrained edge additions, in MILCOM, pp. 1894–1899, 2013.

[21] N. Parotsidis, E. Pitoura, and P. Tsaparas, Centrality-aware link
recommendations, in Proc. 9th International ACM Conference on Web Search and
Data Mining, pp. 503–512, 2016.

[22] U. Brandes, A faster algorithm for betweenness centrality, Journal of
mathematical sociology (2001) 163–177.

[23] M. Riondato and E. M. Kornaropoulos, Fast approximation of betweenness
centrality through sampling, in Proc. 7th International ACM Conference on Web
Search and Data Mining, pp. 413–422, 2014.

[24] Y. Yoshida, Almost linear-time algorithms for adaptive betweenness centrality
using hypergraph sketches, in Proc. 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 1416–1425, 2014.

179

[25] A. Mahmoody, E. Charalampos, and E. Upfal, Scalable betweenness centrality
maximization via sampling, in 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 1765–1773, 2016.

[26] P. Crescenzi, G. D’Angelo, L. Severini, and Y. Velaj, Greedily improving our own
centrality in a network, in Proc. 14th Symposium on Experimental Algorithms,
pp. 43–55, 2015.

[27] V. Ishakian, D. Erdos, E. Terzi, and A. Bestavros, A framework for the evaluation
and management of network centrality, in Proc. SIAM International Conference
on Data Mining, pp. 427–438, 2012.

[28] G. D’Angelo, L. Severini, and Y. Velaj, On the maximum betweenness
improvement problem, Electronic Notes in TCS 322 (2016) 153 – 168.

[29] V. Amelkin and A. K. Singh, Fighting opinion control in social networks via link
recommendation, in Proc. of ACM SIGKDD Conference of Knowledge Discovery
and Data Mining (KDD19). ACM, Anchorage, AK, US. https://doi.
org/10.1145/3292500.3330960, 2019.

[30] G. DAngelo, M. Olsen, and L. Severini, Coverage centrality maximization in
undirected networks, in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 501–508, 2019.

[31] D. Kempe, J. Kleinberg, and É. Tardos, Maximizing the spread of influence
through a social network, in Proc. 9th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 137–146, ACM, 2003.

[32] C. Gao, J. Liu, and N. Zhong, Network immunization and virus propagation in
email networks: experimental evaluation and analysis, Knowledge and
Information Systems 27 (2011), no. 2 253–279.

[33] C. M. Schneider, T. Mihaljev, S. Havlin, and H. J. Herrmann, Suppressing
epidemics with a limited amount of immunization units, Physical Review E 84
(2011), no. 6 061911.

[34] M. Kimura, K. Saito, and H. Motoda, Minimizing the spread of contamination by
blocking links in a network., in AAAI, vol. 8, pp. 1175–1180, 2008.

[35] I. Bogunovic, Robust protection of networks against cascading phenomena. PhD
thesis, Master Thesis ETH Zürich, 2012.

[36] D. Sheldon, B. Dilkina, A. N. Elmachtoub, R. Finseth, A. Sabharwal, J. Conrad,
C. P. Gomes, D. Shmoys, W. Allen, O. Amundsen, et. al., Maximizing the spread
of cascades using network design, in UAI, 2010.

180

[37] Y. Lin, W. Chen, and J. C. Lui, Boosting information spread: An algorithmic
approach, in International Conference on Data Engineering (ICDE), pp. 883–894,
IEEE, 2017.

[38] C. Budak, D. Agrawal, and A. El Abbadi, Limiting the spread of misinformation
in social networks, in Proceedings of the 20th international conference on World
wide web, pp. 665–674, ACM, 2011.

[39] N. P. Nguyen, G. Yan, M. T. Thai, and S. Eidenbenz, Containment of
misinformation spread in online social networks, in Proceedings of the 4th Annual
ACM Web Science Conference, pp. 213–222, ACM, 2012.

[40] X. He, G. Song, W. Chen, and Q. Jiang, Influence blocking maximization in social
networks under the competitive linear threshold model, in SIAM International
Conference on Data Mining (SDM), pp. 463–474, SIAM, 2012.

[41] W. Chen, L. V. Lakshmanan, and C. Castillo, Information and influence
propagation in social networks, Synthesis Lectures on Data Management 5 (2013),
no. 4 1–177.

[42] S. Medya, P. Bogdanov, and A. Singh, Making a small world smaller: Path
optimization in networks, IEEE Transactions on Knowledge and Data
Engineering 30 (2018), no. 8 1533–1546.

[43] S. Medya, L. Cherkasova, G. Magalhaes, K. Ozonat, C. Padmanabha, J. Sarma,
and I. Sheikh, Towards performance and scalability analysis of distributed memory
programs on large-scale clusters, in Proceedings of the 7th ACM/SPEC on
International Conference on Performance Engineering, pp. 113–116, ACM, 2016.

[44] S. Medya, L. Cherkasova, and A. Singh, Predictive modeling and scalability
analysis for large graph analytics, in 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), pp. 63–71, IEEE, 2017.

[45] A. Mittal, A. Dhawan, S. Medya, S. Ranu, and A. Singh, Learning heuristics over
large graphs via deep reinforcement learning, arXiv preprint arXiv:1903.03332
(2019).

[46] A. Goyal, W. Lu, and L. V. Lakshmanan, Simpath: An efficient algorithm for
influence maximization under the linear threshold model, in 2011 IEEE 11th
international conference on data mining, pp. 211–220, IEEE, 2011.

[47] K. Jung, W. Heo, and W. Chen, Irie: Scalable and robust influence maximization
in social networks, in 2012 IEEE 12th International Conference on Data Mining,
pp. 918–923, IEEE, 2012.

181

[48] A. Arora, S. Galhotra, and S. Ranu, Debunking the myths of influence
maximization: An in-depth benchmarking study, in Proceedings of the 2017 ACM
International Conference on Management of Data, pp. 651–666, ACM, 2017.

[49] P. Banerjee, S. Ranu, and S. Raghavan, Inferring uncertain trajectories from
partial observations, in International Conference on Data Mining (ICDM),
pp. 30–39, IEEE, 2014.

[50] P. Banerjee, P. Yawalkar, and S. Ranu, Mantra: a scalable approach to mining
temporally anomalous sub-trajectories, in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pp. 1415–1424, ACM, 2016.

[51] N. Garg and S. Ranu, Route recommendations for idle taxi drivers: Find me the
shortest route to a customer!, in Proceedings of the 24th ACM SIGKDD
international conference on Knowledge discovery and data mining, ACM, 2018.

[52] A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, Spontaneous synchrony
in power-grid networks, Nature Physics 9 (2013), no. 3 191–197.

[53] Z. Li, R. A. Hassan, M. Shahidehpour, S. Bahramirad, and A. Khodaei, A
hierarchical framework for intelligent traffic management in smart cities, IEEE
Transactions on Smart Grid PP (2017), no. 99 1–1.

[54] D. Schrank, T. Lomax, and B. Eisele, 2015 urban mobility scorecard and
appendices, Texas A&M Transportation Institute 39 (August, 2015).

[55] S. Mitra, S. Ranu, V. Kolar, A. Telang, A. Bhattacharya, R. Kokku, and
S. Raghavan, Trajectory aware macro-cell planning for mobile users, in Computer
Communications (INFOCOM), 2015 IEEE Conference on, pp. 792–800, IEEE,
2015.

[56] V. Kolar, S. Ranu, A. P. Subramainan, Y. Shrinivasan, A. Telang, R. Kokku, and
S. Raghavan, People in motion: Spatio-temporal analytics on call detail records, in
Communication Systems and Networks (COMSNETS), 2014 Sixth International
Conference on, pp. 1–4, IEEE, 2014.

[57] S. Krumke, M. Marathe, H. Noltemeier, R. Ravi, and S. Ravi, Approximation
algorithms for certain network improvement problems, Journal of Combinatorial
Optimization 2 (1998) 257–288.

[58] M. Waniek, T. P. Michalak, T. Rahwan, and M. Wooldridge, On the construction
of covert networks, in Proc. 16th Conference on Autonomous Agents and
MultiAgent Systems, AAMAS, pp. 1341–1349, 2017.

182

[59] D. P. Williamson and D. B. Shmoys, The design of approximation algorithms.
Cambridge, 2011.

[60] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, Best algorithms for
approximating the maximum of a submodular set function, Math. Oper. Res.
(1978) 177–188.

[61] W. Lu, W. Chen, and L. V. Lakshmanan, From competition to complementarity:
comparative influence diffusion and maximization, PVLDB 9 (2015), no. 2 60–71.

[62] S. Asmussen and P. W. Glynn, Stochastic simulation: algorithms and analysis,
vol. 57. Springer Science & Business Media, 2007.

[63] A. Silva, P. Bogdanov, and A. K. Singh, Hierarchical in-network attribute
compression via importance sampling, in International Conference on Data
Engineering (ICDE), pp. 951–962, IEEE, 2015.

[64] W. Hoeffding, Probability inequalities for sums of bounded random variables,
Journal of the American statistical association 58 (1963), no. 301 13–30.

[65] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang, T-drive:
driving directions based on taxi trajectories, in Proceedings of the 18th
SIGSPATIAL International conference on advances in geographic information
systems, pp. 99–108, ACM, 2010.

[66] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, “CRAWDAD
dataset epfl/mobility (v. 2009-02-24).” Downloaded from
http://crawdad.org/epfl/mobility/20090224, Feb., 2009.

[67] D. Donovan, Brian; Work, New york city taxi trip data (2010-2013), 2016.

[68] S. Medya, A. Silva, A. Singh, P. Basu, and A. Swami, Maximizing coverage
centrality via network design: Extended version, arXiv preprint arXiv:1702.04082
(2017).

[69] P. Dey and S. Medya, Covert networks: How hard is it to hide?, in Proceedings of
the 18th International Conference on Autonomous Agents and MultiAgent
Systems, pp. 628–637, International Foundation for Autonomous Agents and
Multiagent Systems, 2019.

[70] J. Sabater and C. Sierra, Reputation and social network analysis in multi-agent
systems, in Proc. 1st International Joint Conference on Autonomous Agents and
Multiagent Systems, AAMAS, pp. 475–482, 2002.

[71] E. Otte and R. Rousseau, Social network analysis: a powerful strategy, also for
the information sciences, J. Inf. Sci. 28 (2002), no. 6 441–453.

183

http://crawdad.org/epfl/mobility/20090224

[72] F.-Y. Wang, K. M. Carley, D. Zeng, and W. Mao, Social computing: From social
informatics to social intelligence, IEEE Intelligent systems 22 (2007), no. 2.

[73] P. J. Carrington, J. Scott, and S. Wasserman, Models and methods in social
network analysis, vol. 28. Cambridge university press, 2005.

[74] H. Chen, H. Atabakhsh, J. J. Xu, A. G. Wang, B. Marshall, S. Kaza, L. C. Tseng,
S. Eggers, H. Gowda, T. Petersen, et. al., Coplink center: social network analysis
and identity deception detection for law enforcement and homeland security
intelligence and security informatics: a crime data mining approach to developing
border safe research, in Proc. 2005 National Conference on Digital government
research, pp. 112–113, Digital Government Society of North America, 2005.

[75] S. Ressler, Social network analysis as an approach to combat terrorism: Past,
present, and future research, Homeland Security Affairs 2 (2006), no. 2.

[76] J. Xu and H. Chen, Criminal network analysis and visualization, Commun. ACM
48 (2005), no. 6 100–107.

[77] Y. Lu, X. Luo, M. Polgar, and Y. Cao, Social network analysis of a criminal
hacker community, J. Comp. Inf. Sys 51 (2010), no. 2 31–41.

[78] H. Eiselt, Destabilization of terrorist networks, Chaos, Solitons & Fractals 108
(2018) 111–118.

[79] E. Farooq, S. A. Khan, and W. H. Butt, Covert network analysis to detect key
players using correlation and social network analysis, in Proc. 2nd International
Conference on Internet of things and Cloud Computing, pp. 94:1–94:6, ACM,
2017.

[80] D. Knoke, Emerging trends in social network analysis of terrorism and
counterterrorism, Emerging Trends in the Social and Behavioral Sciences: An
Interdisciplinary, Searchable, and Linkable Resource (2015) 1–15.

[81] A. Bavelas, A mathematical model for group structures, Applied anthropology 7
(1948), no. 3 16–30.

[82] M. E. Shaw, Group structure and the behavior of individuals in small groups, The
Journal of psychology 38 (1954), no. 1 139–149.

[83] M. A. Beauchamp, An improved index of centrality, Behavioral science 10 (1965),
no. 2 161–163.

[84] S. B. Seidman, Network structure and minimum degree, Soc. networks 5 (1983),
no. 3 269–287.

184

[85] C. Morselli, C. Giguère, and K. Petit, The efficiency/security trade-off in
criminal networks, Soc. Networks 29 (2007), no. 1 143–153.

[86] M. A. Shaikh and W. Jiaxin, Network structure mining: locating and isolating
core members in covert terrorist networks, WSEAS Transactions on Information
Science and Applications 5 (2008), no. 6 1011–1020.

[87] B. R. Memon, Identifying important nodes in weighted covert networks using
generalized centrality measures, in Proc. European Intelligence and Security
Informatics Conference, pp. 131–140, IEEE, 2012.

[88] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley, and
H. A. Makse, Identification of influential spreaders in complex networks, Nature
physics 6 (2010), no. 11 888.

[89] K. Bhawalkar, J. Kleinberg, K. Lewi, T. Roughgarden, and A. Sharma,
Preventing unraveling in social networks: the anchored k-core problem, SIAM J.
Discrete Math. 29 (2015), no. 3 1452–1475.

[90] V. E. Krebs, Mapping networks of terrorist cells, Connections 24 (2002), no. 3
43–52.

[91] M. K. Sparrow, The application of network analysis to criminal intelligence: An
assessment of the prospects, Soc. Networks 13 (1991), no. 3 251–274.

[92] M. Sageman, Understanding terror networks. University of Pennsylvania Press,
2004.

[93] E. Y. Alimi, L. Bosi, and C. Demetriou, The dynamics of radicalization: a
relational and comparative perspective. Oxford University Press, 2015.

[94] N. Roberts and S. Everton, Monitoring and disrupting dark networks: A bias
toward the center and what it costs us, in Eradicating Terrorism from the Middle
East, pp. 29–42. Springer, 2016.

[95] W. E. Baker and R. R. Faulkner, The social organization of conspiracy: Illegal
networks in the heavy electrical equipment industry, Am. Sociol. Rev (1993)
837–860.

[96] N. F. Johnson, M. Zheng, Y. Vorobyeva, A. Gabriel, H. Qi, N. Velásquez,
P. Manrique, D. Johnson, E. Restrepo, C. Song, et. al., New online ecology of
adversarial aggregates: Isis and beyond, Science 352 (2016), no. 6292 1459–1463.

[97] R. Stevenson and N. Crossley, Change in covert social movement networks: The
inner circleof the provisional irish republican army, Soc. Mov. Stud. 13 (2014),
no. 1 70–91.

185

[98] N. Crossley, G. Edwards, E. Harries, and R. Stevenson, Covert social movement
networks and the secrecy-efficiency trade off: The case of the uk suffragettes
(1906–1914), Soc. Networks 34 (2012), no. 4 634–644.

[99] D. Calvey, Covert research: The art, politics and ethics of undercover fieldwork.
Sage, 2017.

[100] S. Atran, R. Axelrod, R. Davis, and B. Fischhoff, Challenges in researching
terrorism from the field, Science 355 (2017), no. 6323 352–354.

[101] P. Csermely, A. London, L.-Y. Wu, and B. Uzzi, Structure and dynamics of
core/periphery networks, Journal of Complex Networks 1 (2013), no. 2 93–123.

[102] K. Von Lampe, Organized crime: analyzing illegal activities, criminal structures,
and extra-legal governance. Sage Publications, 2015.

[103] A. Bhaskara, M. Charikar, A. Vijayaraghavan, V. Guruswami, and Y. Zhou,
Polynomial integrality gaps for strong SDP relaxations of densest k-subgraph, in
Proc. 23-rd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA,
pp. 388–405, 2012.

[104] M. Waniek, T. P. Michalak, M. J. Wooldridge, and T. Rahwan, Hiding individuals
and communities in a social network, Nature Human Behaviour 2 (2018), no. 2
139.

[105] K. Liu and E. Terzi, Towards identity anonymization on graphs, in Proceedings of
the 2008 ACM SIGMOD international conference on Management of data,
pp. 93–106, ACM, 2008.

[106] E. Zheleva and L. Getoor, To join or not to join: The illusion of privacy in social
networks with mixed public and private user profiles, in Proceedings of the 18th
International Conference on World Wide Web, pp. 531–540, ACM, 2009.

[107] Y. Altshuler, N. Aharony, Y. Elovici, A. Pentland, and M. Cebrian, Stealing
reality: when criminals become data scientists (or vice versa), in Security and
Privacy in Social Networks, pp. 133–151. Springer, 2013.

[108] J. Kilberg, A basic model explaining terrorist group organizational structure,
Studies in Conflict & Terrorism 35 (2012), no. 11 810–830.

[109] F. Demiroz and N. Kapucu, Anatomy of a dark network: the case of the turkish
ergenekon terrorist organization, Trends in organized crime 15 (2012), no. 4
271–295.

186

[110] R. Belli, J. D. Freilich, S. M. Chermak, and K. A. Boyd, Exploring the
crime–terror nexus in the united states: a social network analysis of a hezbollah
network involved in trade diversion, Dynamics of Asymmetric Conflict 8 (2015),
no. 3 263–281.

[111] W. Enders and X. Su, Rational terrorists and optimal network structure, J. Confl.
Resolut. 51 (2007), no. 1 33–57.

[112] R. Janssen and H. Monsuur, Stable network topologies using the notion of
covering, Eur J Oper Res. 218 (2012), no. 3 755–763.

[113] R. Lindelauf, P. Borm, and H. Hamers, The influence of secrecy on the
communication structure of covert networks, Soc. Networks 31 (2009), no. 2
126–137.

[114] P. A. Duijn, V. Kashirin, and P. M. Sloot, The relative ineffectiveness of criminal
network disruption, Scientific reports 4 (2014) 4238.

[115] W. Enders and P. Jindapon, Network externalities and the structure of terror
networks, J. Confl. Resolut. 54 (2010), no. 2 262–280.

[116] J. Goldenberg, B. Libai, and E. Muller, Using complex systems analysis to
advance marketing theory development: Modeling heterogeneity effects on new
product growth through stochastic cellular automata, J. Acad. Mark. Sci. 9 (2001),
no. 3 1–18.

[117] F. M. Bass, A new product growth for model consumer durables, Manag. Sci. 15
(1969), no. 5 215–227.

[118] N. Meade and T. Islam, Modelling and forecasting the diffusion of innovation–a
25-year review, Int. J. Forecast 22 (2006), no. 3 519–545.

[119] J. M. Anthonisse, The rush in a graph, Amsterdam: Mathematische Centrum
(1971).

[120] L. C. Freeman, A set of measures of centrality based on betweenness, Sociometry
(1977) 35–41.

[121] M. Braverman, Y. Kun-Ko, A. Rubinstein, and O. Weinstein, ETH hardness for
densest-k-subgraph with perfect completeness, in Proc. 28-th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 1326–1341, 2017.

[122] M. R. Garey and D. S. Johnson, Computers and Intractability, vol. 174. freeman
New York, 1979.

[123] D. Moshkovitz, The projection games conjecture and the np-hardness of ln
n-approximating set-cover, Theory Comput. 11 (2015) 221–235.

187

[124] A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science
286 (1999), no. 5439 509–512.

[125] D. J. Watts and S. H. Strogatz, Collective dynamics of small-worldnetworks,
Nature 393 (1998), no. 6684 440.

[126] K. Shin, T. Eliassi-Rad, and C. Faloutsos, Corescope: Graph mining using k-core
analysis—patterns, anomalies and algorithms, in Data Mining (ICDM), 2016
IEEE 16th International Conference on, pp. 469–478, IEEE, 2016.

[127] C. Peng, T. G. Kolda, and A. Pinar, Accelerating community detection by using
k-core subgraphs, arXiv preprint arXiv:1403.2226 (2014).

[128] Z.-H. You, Y.-K. Lei, L. Zhu, J. Xia, and B. Wang, Prediction of protein-protein
interactions from amino acid sequences with ensemble extreme learning machines
and principal component analysis, in BMC bioinformatics, vol. 14, p. S10, BioMed
Central, 2013.

[129] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani, Large scale
networks fingerprinting and visualization using the k-core decomposition, in
Advances in neural information processing systems, pp. 41–50, 2006.

[130] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir, A model of internet
topology using k-shell decomposition, Proceedings of the National Academy of
Sciences 104 (2007), no. 27 11150–11154.

[131] W. Zhu, C. Chen, X. Wang, and X. Lin, K-core minimization: An edge
manipulation approach, in Proceedings of the 27th ACM International Conference
on Information and Knowledge Management, pp. 1667–1670, ACM, 2018.

[132] Z. Xiangyu, L. Feng, Y. Rui, Z. Xuemin, M. Shengwei, Z. Zhen’an, and
L. Xiaomeng, Identification of key transmission lines in power grid using modified
k-core decomposition, in Electric Power and Energy Conversion Systems
(EPECS), pp. 1–6, IEEE, 2013.

[133] R. Laishram, A. E. Sariyüce, T. Eliassi-Rad, A. Pinar, and S. Soundarajan,
Measuring and improving the core resilience of networks, in Proceedings of the
2018 World Wide Web Conference, pp. 609–618, 2018.

[134] A. Pedahzur and A. Perliger, The changing nature of suicide attacks: a social
network perspective, Social forces 84 (2006), no. 4 1987–2008.

[135] A. Perliger and A. Pedahzur, Social network analysis in the study of terrorism
and political violence, PS: Political Science & Politics 44 (2011), no. 1.

[136] F. Morone, G. Del Ferraro, and H. A. Makse, The k-core as a predictor of
structural collapse in mutualistic ecosystems, Nature Physics (2018).

188

[137] M. Burke, C. Marlow, and T. Lento, Feed me: motivating newcomer contribution
in social network sites, in Proceedings of the SIGCHI conference on human factors
in computing systems, pp. 945–954, ACM, 2009.

[138] R. Farzan, L. A. Dabbish, R. E. Kraut, and T. Postmes, Increasing commitment
to online communities by designing for social presence, in Proceedings of the ACM
conference on Computer supported cooperative work, pp. 321–330, ACM, 2011.

[139] D. Garcia, P. Mavrodiev, and F. Schweitzer, Social resilience in online
communities: The autopsy of friendster, in Proceedings of the first ACM
conference on Online social networks, pp. 39–50, ACM, 2013.

[140] V. Batagelj and M. Zaveršnik, Fast algorithms for determining (generalized) core
groups in social networks, Advances in Data Analysis and Classification 5 (2011),
no. 2 129–145.

[141] L. S. Shapley, A value for n-person games, Contributions to the Theory of Games
2 (1953), no. 28 307–317.

[142] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin, Finding critical users for
social network engagement: The collapsed k-core problem, in Thirty-First AAAI
Conference on Artificial Intelligence, pp. 245–251, 2017.

[143] A. Montresor, F. De Pellegrini, and D. Miorandi, Distributed k-core decomposition,
IEEE Transactions on parallel and distributed systems 24 (2013), no. 2 288–300.

[144] A. E. Saŕıyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and Ü. V. Çatalyürek,
Streaming algorithms for k-core decomposition, Proceedings of the VLDB
Endowment 6 (2013), no. 6 433–444.

[145] É. Bonnet, V. T. Paschos, and F. Sikora, Parameterized exact and approximation
algorithms for maximum k-set cover and related satisfiability problems,
RAIRO-Theoretical Informatics and Applications 50 (2016), no. 3 227–240.

[146] C. Giatsidis, F. Malliaros, D. M. Thilikos, and M. Vazirgiannis, Corecluster: A
degeneracy based graph clustering framework, in IAAA: Innovative Applications of
Artificial Intelligence, 2014.

[147] H. Zhang, H. Zhao, W. Cai, J. Liu, and W. Zhou, Using the k-core decomposition
to analyze the static structure of large-scale software systems, The Journal of
Supercomputing 53 (2010), no. 2 352–369.

[148] R. H. Chitnis, F. V. Fomin, and P. A. Golovach, Preventing unraveling in social
networks gets harder, in Twenty-Seventh AAAI Conference on Artificial
Intelligence, 2013.

189

[149] F. D. Malliaros and M. Vazirgiannis, To stay or not to stay: modeling engagement
dynamics in social graphs, in ACM international conference on Information &
Knowledge Management, pp. 469–478, 2013.

[150] D. S. Callaway, M. E. Newman, S. H. Strogatz, and D. J. Watts, Network
robustness and fragility: Percolation on random graphs, Physical review letters 85
(2000), no. 25 5468.

[151] R. Albert, I. Albert, and G. L. Nakarado, Structural vulnerability of the north
american power grid, Physical review E 69 (2004), no. 2 025103.

[152] R. Cohen, K. Erez, D. Ben-Avraham, and S. Havlin, Resilience of the internet to
random breakdowns, Physical review letters 85 (2000), no. 21 4626.

[153] W. Najjar and J.-L. Gaudiot, Network resilience: A measure of network fault
tolerance, IEEE Transactions on Computers (1990), no. 2 174–181.

[154] P. Smith, D. Hutchison, J. P. Sterbenz, M. Schöller, A. Fessi, M. Karaliopoulos,
C. Lac, and B. Plattner, Network resilience: a systematic approach, IEEE
Communications Magazine 49 (2011), no. 7.

[155] F. D. Malliaros, V. Megalooikonomou, and C. Faloutsos, Fast robustness
estimation in large social graphs: Communities and anomaly detection, in SIAM
International Conference on Data Mining, pp. 942–953, 2012.

[156] A. Adiga and A. K. S. Vullikanti, How robust is the core of a network?, in Joint
European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 541–556, Springer, 2013.

[157] R. Narayanam and Y. Narahari, A shapley value-based approach to discover
influential nodes in social networks, IEEE Transactions on Automation Science
and Engineering 8 (2011), no. 1 130–147.

[158] R. Kohli, R. Krishnamurti, and P. Mirchandani, The minimum satisfiability
problem, SIAM Journal on Discrete Mathematics (1994) 275–283.

[159] O. Goldschmidt, D. Nehme, and G. Yu, Note: On the set-union knapsack
problem, Naval Research Logistics (NRL) 41 (1994), no. 6 833–842.

[160] A. Arulselvan, A note on the set union knapsack problem, Discrete Applied
Mathematics 169 (2014) 214–218.

[161] R. Balasubramanian, M. R. Fellows, and V. Raman, An improved fixed-parameter
algorithm for vertex cover, Information Processing Letters 65 (1998), no. 3
163–168.

190

[162] J. Flum and M. Grohe, Parameterized complexity theory. Springer Science &
Business Media, 2006.

[163] A. Agarwal, M. Dahleh, and T. Sarkar, A marketplace for data: An algorithmic
solution, arXiv preprint arXiv:1805.08125 (2018).

[164] J. Castro, D. Gómez, and J. Tejada, Polynomial calculation of the shapley value
based on sampling, Computers & Operations Research 36 (2009), no. 5 1726–1730.

[165] S. Maleki, L. Tran-Thanh, G. Hines, T. Rahwan, and A. Rogers, Bounding the
estimation error of sampling-based shapley value approximation, arXiv preprint
arXiv:1306.4265 (2013).

[166] F. Moser, R. Colak, A. Rafiey, and M. Ester, Mining cohesive patterns from
graphs with feature vectors, in SIAM International Conference on Data Mining,
pp. 593–604, SIAM, 2009.

[167] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, On the evolution of user
interaction in facebook, in Proceedings of the 2nd ACM workshop on Online social
networks, pp. 37–42, ACM, 2009.

[168] S. Wuchty and E. Almaas, Peeling the yeast protein network, Proteomics 5
(2005), no. 2 444–449.

[169] M. Zitnik, R. Sosic, M. W. Feldman, and J. Leskovec, Evolution of resilience in
protein interactomes across the tree of life, bioRxiv (2019).

[170] A. Goyal, F. Bonchi, and L. V. Lakshmanan, A data-based approach to social
influence maximization, Proceedings of the VLDB Endowment 5 (2011), no. 1
73–84.

[171] H. Aziz, S. Bouveret, I. Caragiannis, I. Giagkousi, and J. Lang, Knowledge,
fairness, and social constraints., in AAAI, 2018.

[172] C. Chekuri and A. Kumar, Maximum coverage problem with group budget
constraints and applications, in Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, pp. 72–83. Springer,
2004.

[173] J. Vondrák, Optimal approximation for the submodular welfare problem in the
value oracle model, in Proceedings of the 40th Annual ACM Symposium on
Theory of Computing (STOC), pp. 67–74, 2008.

[174] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, Maximizing a monotone
submodular function subject to a matroid constraint, SIAM Journal on Computing
40 (2011), no. 6 1740–1766.

191

[175] C. Chekuri, J. Vondrak, and R. Zenklusen, Dependent randomized rounding via
exchange properties of combinatorial structures, in Foundations of Computer
Science (FOCS), pp. 575–584, IEEE, 2010.

[176] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance,
Cost-effective outbreak detection in networks, in Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pp. 420–429, ACM, 2007.

[177] A. Goyal, F. Bonchi, and L. V. Lakshmanan, Learning influence probabilities in
social networks, in International conference on Web search and data mining
(WSDM), pp. 241–250, ACM, 2010.

[178] J. Vondrák, Submodularity and curvature: The optimal algorithm, .

[179] J. Nocedal and S. J. Wright, Numerical optimization (second edition), 2006.

[180] A. Bozorgi, S. Samet, J. Kwisthout, and T. Wareham, Community-based
influence maximization in social networks under a competitive linear threshold
model, Knowledge-Based Systems 134 (2017) 149–158.

[181] A. Tsang, B. Wilder, E. Rice, M. Tambe, and Y. Zick, Group-fairness in
influence maximization, in IJCAI, 2019.

[182] M. Lake, A new campaign resource allocation model, in Applied Game Theory,
pp. 118–132. Springer, 1979.

[183] A. Yadav, B. Wilder, E. Rice, R. Petering, J. Craddock, A. Yoshioka-Maxwell,
M. Hemler, L. Onasch-Vera, M. Tambe, and D. Woo, Bridging the gap between
theory and practice in influence maximization: Raising awareness about hiv
among homeless youth., in IJCAI, pp. 5399–5403, 2018.

[184] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee,
Measurement and Analysis of Online Social Networks, in Proceedings of the 5th
ACM/Usenix Internet Measurement Conference (IMC’07), 2007.

[185] T. Hayashi, T. Akiba, and Y. Yoshida, Fully dynamic betweenness centrality
maintenance on massive networks, Proceedings of the VLDB Endowment 9
(2015), no. 2 48–59.

[186] K. Lerman, R. Ghosh, and J. H. Kang, Centrality metric for dynamic networks,
in Proceedings of the Eighth Workshop on Mining and Learning with Graphs,
pp. 70–77, ACM, 2010.

[187] T. Takaguchi, Y. Yano, and Y. Yoshida, Coverage centralities for temporal
networks, The European Physical Journal B 89 (2016), no. 2 1–11.

192

[188] E. N. Ciftcioglu, S. Pal, K. S. Chan, D. H. Cansever, A. Swami, A. Singh, and
P. Basu, Topology design under adversarial dynamics, in WiOpt, pp. 1–8, 2016.

193

	Curriculum Vitae
	Abstract
	Permissions and Attributions

	List of Figures
	List of Tables
	Introduction
	Network Design
	Related Work
	Overview of the thesis
	Other Work

	Delay Minimization
	Introduction
	Related Work
	Problem Definition
	Preliminaries
	Hardness and Approximability

	Algorithms
	Optimal Solution
	Restricted Path Optimization Problem (RPOP)
	Greedy Selection of Nodes
	Sampling

	Experiments
	Experimental Setup
	GSN and optimal MIP
	ISS vs GSN
	Comparison with scalable baselines
	Impact of Parameters on Performance
	Total Improvement
	Tightness of RPOP
	Experiments on Synthetic data
	Edge Delays

	Conclusion

	Centrality Maximization
	Introduction
	Related Work
	Problem Definition
	Hardness and Inapproximability
	Algorithms
	Greedy Algorithm
	Sampling Algorithm

	Analysis
	Constrained Problem
	Analysis of Greedy Algorithm
	Analysis of Sampling Algorithm

	Experimental Results
	GES: RCCO vs CCO
	BUS vs. GES
	Results for Large Graphs
	Parameter Sensitivity
	Impact on Other Metrics:

	Conclusions

	Hiding in Covert Networks
	Introduction
	Contribution

	Related Work
	Preliminaries
	Network Centrality
	Problem Definition

	Results for Degree Centrality
	Results for Core Centrality
	Captain Networks
	For Multiple Leaders
	For Single Leader

	Simulation Results
	Evaluation of 2-Approximation Algorithm
	Captain Networks and Core Centrality

	Conclusion and Future Work

	Core Resilience
	Introduction
	Related Work
	K-core computation and applications:
	Network Resilience/Robustness
	Resilience of k-core
	Shapley Value (SV) and combinatorial problems

	Problem Definition
	Hardness and Approximability
	Parameterized Complexity

	Algorithms
	Baseline: Greedy Cut
	Shapley Value Based Algorithm
	Optimizations for GC and SV

	Experiments
	Experimental Setup
	Quality Evaluation
	Running Time
	Application: k-core Resilience
	K-core Minimization on the Karate Network

	Conclusion

	Controlling Influence
	Introduction
	Related Work
	Influence Limitation
	Credit Distribution Model
	Problem Definitions

	Submodularity
	Curvature and APX-hardness
	Method: BIL
	Method: ILM
	Continuous Relaxation
	Rounding
	Generalizations

	Experimental Results
	Experiments: BIL
	Experiments: ILM

	Conclusions

	Conclusion
	Bibliography

