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As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is 
critical for public health interventions. Inferring lineage prevalence by clinical testing is 
infeasible at scale, especially in areas with limited resources, participation, or 
testing/sequencing capacity, which can also introduce biases1–3. SARS-CoV-2 RNA 
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concentration in wastewater successfully tracks regional infection dynamics and provides 
less biased abundance estimates than clinical testing4,5. Tracking virus genomic sequences 
in wastewater would improve community prevalence estimates and detect emerging 
variants. However, two factors limit wastewater-based genomic surveillance: low-quality 
sequence data and inability to estimate relative lineage abundance in mixed samples. Here, 
we resolve these critical issues to perform a high-resolution, 295-day wastewater and 
clinical sequencing effort, in the controlled environment of a large university campus and 
the broader context of the surrounding county. We develop and deploy improved virus 
concentration protocols and deconvolution software that fully resolve multiple virus strains 
from wastewater. We detect emerging variants of concern up to 14 days earlier in 
wastewater samples, and identify multiple instances of virus spread not captured by 
clinical genomic surveillance. Our study provides a scalable solution for wastewater 
genomic surveillance that allows early detection of SARS-CoV-2 variants and identification 
of cryptic transmission.  
 
 
SARS-CoV-2 continues to evolve, producing diverse new lineages6. Emerging variants of 
concern (VOCs) and variants of interest (VOIs) demonstrate increased transmissibility, disease 
severity, and/or immune escape7. Timely and accurate quantification of local prevalence of 
SARS-CoV-2 variants is thus essential for effective public health measures. However, existing 
strategies for variant detection based on virus genome sequencing of biospecimens obtained from 
clinical testing (“clinical genomic surveillance”) are expensive, inefficient, and have sampling 
bias because of systemic healthcare disparities, particularly in poor and underserved 
communities1–3.  
 
In contrast, PCR-based wastewater surveillance of SARS-CoV-2 RNA is not subject to clinical 
testing biases and can track temporal changes in overall SARS-CoV-2 prevalence in a region 
4,5,8, but cannot identify epidemiological transmission links or monitor virus lineage prevalence, 
which require genome sequence information. Virus genome sequencing from wastewater 
(“wastewater genomic surveillance”) has the potential to cost-effectively capture community 
virus spread9,10, acting as a surrogate to clinical surveillance in elucidating lineage geospatial 
distributions and track emerging SARS-CoV-2 variants (including new variants for which 
targeted assays do not yet exist), and provide genome sequence data needed for transmission 
network analysis and interpretation11. 
 
However, wastewater genomic surveillance is technically challenging10. Low viral loads, heavily 
fragmented RNA, and PCR inhibitors in complex environmental samples lead to poor 
sequencing coverage12,13. Obtaining high quality sequences from samples with low viral load and 
elevated levels of PCR inhibitors remains an outstanding technical challenge in implementation 
of wastewater genomic surveillance at scale. Additionally, tools for SARS-CoV-2 lineage 
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classification, such as pangolin14 and UShER15, were designed for clinical samples containing a 
single dominant variant, and cannot estimate relative abundances of multiple SARS-CoV-2 
lineages in samples with virus mixtures such as wastewater.  
  
Here, we report a high-resolution approach to study community virus transmission using 
wastewater genomic surveillance, leveraging several technical advances in wastewater virus 
concentration and nucleic acid sequencing, and a computational tool for resolving multiple 
SARS-CoV-2 lineages in short-read sequence data from a mixed sample (lineage deconvolution). 
We obtained near 95% genome coverage even for samples with low viral load, compared with 
40% or below from previous studies11-13, a key advance that allowed us to build a robust pipeline 
to monitor virus lineage prevalence in community wastewater.  
 
Because places of communal living, such as university campuses, are considered key sites for 
virus spread and represent well-controlled and relatively isolated environments, they are ideal for 
comparing the relative utility of clinical and wastewater genomic surveillance16. Accordingly, we 
conducted a high-resolution, longitudinal wastewater genomic surveillance effort at the 
University of California San Diego (UCSD) campus, in parallel with clinical genomic 
surveillance from nasal swabs in the local community, from November 2020 to September 2021: 
ten months that effectively capture the surges in the region caused by the three main VOCs (as 
determined by US CDC) in the United States, Epsilon, Alpha and Delta6. In more recent San 
Diego-wide data collected from September 2021 to February 2022, we studied ongoing 
transmission of the Delta variant and the rapid spread of the Omicron variant and its sublineages.  
 
Our wastewater genomic surveillance approach identified VOCs up to 2 weeks prior to detection 
through clinical genomic surveillance, even though a large proportion of clinical SARS-CoV-2 
samples are sequenced in San Diego relative to other cities in the United States. In addition to 
providing a detailed history of community virus spread, wastewater genomic surveillance also 
identified multiple instances of cryptic community transmission not observed through clinical 
genomic surveillance. Matching wastewater and clinical genome sequences provided 
epidemiological information identifying specific transmission events. Our results demonstrate 
the viability of wastewater genomic surveillance at scale, enabling early detection and tracking 
of virus lineages and guiding clinical genomic surveillance efforts. This work informed public 
health guidance and interventions on the UCSD campus as well as San Diego county in real 
time, and our data and analyses were disseminated to both public health officials as well as the 
general public via custom dashboards (see Data Availability for links).   
 
Results 
 
To directly compare wastewater genomic surveillance to clinical surveillance, we conducted a 
large-scale SARS-CoV-2 genome sequencing study from wastewater samples collected daily 
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from 131 wastewater samplers covering 360 campus buildings, in many cases reaching single 
building-level resolution. To identify epidemiological transmission links and monitor lineages in 
the population, we sequenced all SARS-CoV-2 positive clinical and wastewater samples from 
campus using a miniaturized tiled-amplicon sequencing approach. During this period, we 
collected and analyzed 21,383 wastewater samples: 19,944 wastewater samples from the UCSD 
campus, and, for comparison, 1,475 wastewater samples from the greater San Diego area, 
including the Point Loma wastewater treatment plant (the primary wastewater treatment plant for 
the county with a catchment size of 2.3 million people) and 17 public schools spanning four San 
Diego school districts17. We compared sequencing of 600 campus wastewater samples to 759 
genomes obtained from campus clinical swabs (46.2% of all positive tests on campus), all 
processed by the CALM and EXCITE CLIA labs at UCSD. In addition, we compared 31,149 
genomes obtained from clinical genomic surveillance of the greater San Diego community  to 
sequencing of 837 wastewater samples collected from San Diego county (including  those from 
the UCSD campus) during the same period.  
 
High-resolution spatial sampling reveals micro-scale community spread 
 
We implemented a GIS (geographic information system)-enabled building-level wastewater 
surveillance system to cover 360 buildings on the UCSD campus (Figure 1A). During the period 
of daily wastewater sampling, approximately 10,000 students lived on campus and 25,000 
individuals were on campus on a daily basis. We found that wastewater test positivity correlated 
strongly with the number of clinical positives (Figure 1B and Extended Data Figure 1), 
showing that wastewater effectively captures the community infection dynamics based on total 
viral load. This is also consistent with our past studies that showed SARS-CoV-2 RNA can be 
detected ~85% of the time downstream from buildings containing individuals known to be 
infected9.  
 
Unlike qPCR-based mutant surveillance, genomic surveillance using full-length virus genomes 
can detect which strains of SARS-CoV-2 are circulating in the population, and can identify 
potential transmission links between infected individuals18,19. While targeted qPCR mutant 
panels have the ability to detect specific lineages in wastewater, they only target a small set of 
mutations that must be known beforehand and require development and validation time before 
implementation. To test the utility of wastewater genomic surveillance for studying virus spread 
in the community, we obtained near complete virus genomes for wastewater samples with cycle 
quantification (Cq) values as high as 38 (median genome coverage: 96.49% [75.67% - 100.00%], 
Extended Data Figure 2). However, using two common metrics of virus diversity, Shannon 
entropy (a measure of the uncertainty associated with randomly sampling an allele) and richness 
(the number of single nucleotide variant, or SNV, sites)20, we found that SARS-CoV-2 genetic 
diversity is significantly greater in wastewater samples than clinical samples (Figure 1C, Mann-
Whitney U test, p<0.001 for each, with effect size r=0.99, 0.97 for Shannon Entropy and 
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Richness, respectively). This suggests that multiple virus lineages, likely shed from different 
infected individuals, are often present in wastewater samples, while clinical samples generally 
contain a single virus lineage shed from one individual.  
 
Sample deconvolution robustly recovers the abundance of SARS-CoV-2 lineages in mixed 
samples 
 
Wastewater systems aggregate stool, urine, and other biological waste products carrying viruses 
from multiple infected individuals in the community in a single location, allowing for sampling 
of virus mixtures that are representative of local lineage prevalence. However, existing methods 
for determining virus lineage from sequencing are intended for non-mixed clinical samples and 
can only be used to identify a single (dominant) lineage per sample. 
 
To fully capture the virus diversity in community biospecimens, we developed Freyja, a tool to 
estimate the relative abundance of virus lineages in a mixed sample. Freyja uses a “barcode” 
library of lineage-defining mutations to represent each SARS-CoV-2 lineage in the global 
phylogeny21(Figure 2A). To encode each sample, Freyja stores the SNV frequencies (proportion 
of reads at a site that contain the SNV) for each of the lineage-defining mutations (Figure 2B, 
top). Since SNV frequencies at positions with greater sequencing depth more accurately estimate 
the true mutation frequency, Freyja recovers relative lineage abundance by solving a depth-
weighted least absolute deviation regression problem, a mixed sample analog of minimizing the 
edit distance between sequences and a reference (Figure 2B, bottom). To ensure results are 
meaningful, Freyja constrains the solution space such that each lineage abundance value is non-
negative, and overall lineage abundance sums to one. Importantly, Freyja performs site-specific 
weighting to account for non-constant variance in measured SNV frequency across sites, 
enabling prioritization of information at each site as a function of sequencing depth. Read depths 
are log-transformed, providing robustness to common attributes of real sequencing data such as 
heavily skewed read depth across amplicons. 
 
To validate Freyja, we sequenced “spike-in” synthetic mixtures from five key SARS-CoV-2 
lineages (Lineage A, Beta, Delta, Epsilon, and Gamma) at proportions ranging from 5% to 100% 
in each sample, with between 1 and 5 different lineages per mixture (Figure 2C, and see Table 
1). We found that Freyja robustly recovered the expected lineage abundances for all mixtures, 
even for lineages at 5% abundance (Figure 2D, and see Extended Data Figure 3 for lineage 
specific predictions).To further validate Freyja, we used wastewater samples from the UCSD 
isolation dorms as well as Point Loma wastewater treatment plant, collection sites likely to 
contain mixed-lineage samples, to compare Freyja-detected lineages with qPCR testing for 8 
mutations associated with different variants of concern (N501Y, DelHV69/70, DelY144, K417N, 
K417T, E484Q, P681R and L452R, Figure 2E). We found that Freyja consistently identified the 
same lineages as qPCR testing, but, as expected, also identified additional lineages with SNVs 
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not included in our qPCR panel that were known to be circulating in San Diego at the time of 
collection. Combined, these results show that Freyja robustly estimates viral lineage abundance 
from samples containing a mixture of lineages, including synthetic virus mixtures and field 
wastewater collections.    
 
To compare Freyja with other wastewater analysis pipelines, we tested the performance of other 
wastewater deconvolution methods including the method from Baaijens et al.12, cojac22, and LCS 
23 using the spike-in mixtures (Extended Data Figure 4). We found that Freyja greatly 
outperforms other methods in terms of accuracy, false positive rate, and computational 
efficiency. The method from Baaijens et al. required greater than ten times more computation 
time per sample relative to Freyja (~13.2 minutes vs ~1.1 minutes per sample, respectively). 
Although cojac was fast, the small amplicon length used for the spike-in mixtures caused cojac 
to fail to identify most of the variants entirely, while LCS failed to return estimates within two 
days.    
 
Detection of early and cryptic community transmission in wastewater 
  
SARS-CoV-2 RNA concentrations in wastewater have been shown to be an early indicator of 
rising COVID-19 community incidence9,24 (and see Extended Data Figure 5A), but whether 
wastewater can be used to detect emerging variants, including VOCs and VOIs, prior to their 
observation in clinical surveillance is unknown. To test if wastewater can enable early detection 
of emerging lineages, we applied Freyja to our wastewater sequencing data and compared the 
collection date of VOC positive samples from wastewater with the collection dates of samples 
from clinical genomic surveillance (Figure 3A). With only 2.6% as many sequenced wastewater 
samples as sequenced clinical samples, we detected the Alpha and Delta VOC lineages in 
wastewater genomic surveillance up to 14 days prior to their first detection in genomic clinical 
surveillance (Epsilon was circulating at the start of wastewater collection, and thus could not be 
detected early). To further quantify our uncertainty in prevalence estimates, we used a fast 
bootstrapping approach (Extended Data Figure 6) and found that the resampled distributions 
did not include zero abundance. Since emerging VOC lineages may evade immune responses or 
lessen the effectiveness of public health interventions18, this early detection provides additional 
time to make necessary adjustments to existing countermeasures.     
 
To test if wastewater genomic surveillance can identify changes in the abundance of circulating 
lineages, we compared VOC detection rates in clinical and wastewater sequencing over time. We 
found that both wastewater and clinical genomic surveillance tracked changes in lineage 
abundance, but increases in lineage detection frequency were generally observed first in 
wastewater surveillance. For example, for the Epsilon variant, which was first detected in San 
Diego in September of 2020, we observed increases in detection frequency in wastewater 
approximately 5 days prior to the corresponding increase in clinical genomic surveillance data 
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(Figure 3A, see Methods). We noticed varying periods of ongoing lineage detection across 
VOCs relative to clinical surveillance, possibly due to different virus shedding characteristics 
across lineages 25. For Epsilon specifically, elevated sampling density on the UCSD campus 
relative to elsewhere in the county early on in the experiment, may have biased San Diego wide 
detection trends towards campus trends, particularly during the end of the wave. We also 
observed clear signatures of times with elevated travel, as seen in the pulsing of Alpha detections 
in wastewater around the end of holidays and school breaks. During these periods as well as 
other times of mass student arrival, students were mandated to test immediately upon arrival 
before they moved into their respective on-campus housing. In late March of 2021 following the 
university break, mandated clinical testing identified spread of the Alpha variant exclusively in 
off-campus residents (see Figure 1B), suggesting that campus mitigation protocols kept the 
Alpha outbreak from spreading on campus during this period.  
 
To study the effectiveness of wastewater genomic surveillance at a smaller community scale, we 
restricted our analysis to samples from the UCSD campus. We found that wastewater genomic 
surveillance consistently identified the three major VOCs (Epsilon, Alpha, and Delta) throughout 
their period of occurrence, despite detection gaps of one month or longer in clinical surveillance 
that included regular asymptomatic testing, longer than the expected signal due to extended virus 
shedding 26–28 (Figure 3B). During these gaps, positive samples were collected from multiple 
distinct locations, with most locations not repeated, suggesting that this continued detection in 
wastewater was not simply due to extended shedding. From mid-December to late-March, the 
Alpha variant was detected more than once per week on average in wastewater but was not 
detected by clinical surveillance. Similarly, wastewater surveillance detected continued Delta 
transmission from mid-April to mid-June, but no cases were identified by clinical surveillance. 
This explains in part the long tails of wastewater positivity on campus relative to clinical 
surveillance on campus (Figure 1B), in which we control for extended shedding by excluding 
samples from campus isolation dorms (see Methods for details). The high wastewater positivity 
level in February-March 2020 extends beyond the expected duration of extended shedding, 
indicating that cryptic transmission likely played a significant role in campus virus spread during 
this period. 
To study the effectiveness of wastewater surveillance in detecting and tracking other emerging 
variants, we aggregated all wastewater sequencing data to estimate the temporal profile of 
community lineage prevalence. We found that estimates of lineage abundance using wastewater 
enable early identification of other VOCs/VOIs, even for lineages that are rarely observed in 
clinical surveillance (Figure 4). For example, we detected the Mu (B.1.621) variant via 
wastewater genomic surveillance on July 27th, nearly four weeks prior to its first detection 
through clinical genomic surveillance on campus, on August 23rd (Figure 4A,C). However, 
despite persistent Mu detection in campus wastewater throughout July and early August, we did 
not detect the Mu variant in clinical or wastewater genomic surveillance on campus in 
September, suggesting that local community transmission did not continue. 
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To test if Freyja continues to provide representative estimates of lineage prevalence for mixtures 
containing closely related lineages, we analyzed the rise of the Delta variant (B.1.617.2) and its 
sublineages (AY.*) in San Diego, from June-September 2021 (Extended Data Figure 5B,C). At 
both the UCSD campus and the Point Loma wastewater treatment plant, we identified the rapid 
emergence of B.1.617.2 and its sublineages (AY.*), along with low but persistent levels of the 
P.1 (Gamma) variant. The relative abundances of each of the variants were within 2-fold of 
prevalence estimates observed in clinical nasal swab data, suggesting that Freyja effectively 
identifies prevalence even for closely related lineages, both at the university and county-scale.  
 
In more recent data from Point Loma wastewater treatment plant, we identified the Omicron 
variant (B.1.1.529 and descendants) at an abundance of near 1.7 % on November 27th, more than 
10 days prior to the first clinical detection in San Diego on December 8th (Figure 5A-B). To 
confirm these findings, we applied our VOC qPCR panel to the same samples and consistently 
detected two mutations associated with the Omicron variant (DelHV69/70 and N501Y) in 
samples detected after November 27th, while neither was detected in samples from earlier in 
November (Extended Data Table 3, P681R was included to confirm the presence of Delta).  
 
To visualize the dynamics of competition between the Delta and Omicron variants, we analyzed 
wastewater collected at Point Loma from late September through early February. We found that 
upon introduction to the community, Omicron rapidly rose to dominance and reached roughly 
95% prevalence by December 26th. During the same period, the estimates for 95% Omicron 
abundance in clinical samples tracked via S-gene target failures (SGTFs) was January 7th, 
further suggesting wastewater genomic surveillance is a leading indicator of lineage dynamics 
for emerging variants (Figure 5A, Extended Data Figure 6E). To understand the magnitude of 
lineage abundance, we scaled each sample by the measured virus RNA concentration of the 
sample (Figure 5B). We observed that the absolute amount of circulating Delta variant remained 
largely constant upon the introduction of Omicron, even as it appeared to decrease to a small 
fraction of all viruses in the community.  
 
To study the contribution of individual virus lineages to virus RNA concentration, we further 
analyzed the growth dynamics of Delta and Omicron sub-lineages (Figure 5C-D). We found that 
the many Delta lineages circulating in October and November were rapidly displaced by the 
BA.1 Omicron lineage, which was soon after displaced by the BA.1.1 lineage, suggesting a 
growth advantage over BA.1 and B.1.1.529. We did not observe significant levels of any other 
Omicron sublineages.  
 
Wastewater identifies both known and unknown history of campus infections 
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Phylogenetic analysis of virus genomes can be used to identify fine-scale spatial and temporal 
transmission networks, but it is unknown if wastewater can be used to further refine possible 
sites of transmission, elucidate transmission networks (“who-infected-whom”), or identify 
specific infected individuals19. To investigate the scale, structure, and timing of SARS-CoV-2 
spread on campus, we reconstructed a maximum likelihood phylogenetic tree for each of the 
major VOCs using all high-quality consensus genomes (see Methods for details) obtained from 
the UCSD campus, as well as reference sequences for each lineage obtained elsewhere in the 
United States (Figure 6A-C). In each tree, we identified many independent introductions, some 
of which led to extended transmission on campus. The resulting virus diversity among the VOCs 
present on campus enables ruling out of most transmission links and suggests campus virus 
spread consisted of many separate, small outbreaks. 
 
To analyze the spatial structure of virus spread, we identified collection sites for wastewater 
sequences connected to transmission chains on campus, with building-specific resolution 
(Figure 6 A-C, and see detailed example in Extended Data Figure 7). We observed multiple 
small, linked outbreaks clustered in nearby buildings. Campus isolation protocol required 
students in congregate living to relocate to an isolation room and linkages in the wastewater 
samples from buildings used for isolation reflected this co-location. We also found multiple 
instances of successive exactly matching sequences from wastewater collected from a single 
building, possibly due to continued viral shedding from the same infected individuals from 
extended shedding in stool26–28 or a transmission chain in the building leading to multiple 
infections by genetically identical viruses. 
 
To study the temporal delay between clinical and wastewater lineage detection, we compared 
collection times of sequences from campus wastewater that match sequences from campus 
clinical surveillance (including non-VOC lineages). We found 20 exact sequence matches and 
103 near-matches (SNP distance of 3 or less) but did not observe any overall bias towards earlier 
or later detection in wastewater (Figure 6D), suggesting that on average, wastewater and clinical 
genomic surveillance identify a similar timing of individual detection events. However, despite 
current technical difficulties with isolating haplotypes from diverse virus mixtures, more than 
half of the clinical-wastewater sequence pairs demonstrate earlier detection in wastewater or are 
from the same date.  Importantly, since detection is often delayed or missed by clinical 
surveillance, detections occur first in wastewater (despite a loss of sequences due to limited 
haplotype recovery), further suggesting that wastewater genomic surveillance can reveal the 
presence of specific genome sequences prior to clinical surveillance. 
 
Discussion 
 
We show that improved virus concentration from wastewater, coupled with a method for 
resolving multiple lineages from mixed samples, captures community virus lineage prevalence 
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and enables early detection of emerging variants, often before observation in clinical 
surveillance. By sequencing both clinical and wastewater samples from the UCSD campus, we 
detect VOCs persistently in wastewater even when their appearance in clinical samples is 
intermittent. However, we also found occasions when rarer lineages, like B.1.1.318, were 
detected in clinical samples but not in wastewater. This is not unexpected on campus since many 
students living off-campus did not contribute to campus wastewater but were still clinically 
tested as part of testing mandates and policies. In the larger San Diego community context, this 
suggests that we may not be able to identify lineages circulating at low prevalence (< 1%) using 
a single wastewater collection site. In addition, we note that clinical sequences identified from 
the community may not be observable in the contributing catchment, as precise geolocation of all 
clinical samples was not possible. On the other hand, we also observed rare lineages in 
wastewater not seen in clinical samples from campus or the community. Since campus testing 
mandates are unable to capture all cases (e.g. fully vaccinated individuals were not required to 
test and not all community samples were sequenced), rare lineages can be missed. 
 
The considerable benefits of wastewater surveillance may stem from biases in clinical testing, 
including population testing availability and compliance, university quarantine policies, and 
asymptomatic transmission, which may distort estimates of virus lineage prevalence from 
clinical samples. Wastewater offers less biased and more consistent viral lineage prevalence 
estimates, especially in areas with limited access and/or higher testing hesitancy rates, where 
limited clinical surveillance can delay detection of emerging variants. Since it requires 
considerably fewer samples, it is also more cost-effective than clinical testing, and could serve as 
a long-term passive surveillance tool. This is particularly important for developing public health 
interventions in low-resource and underserved communities, where widespread clinical genomic 
surveillance for SARS-CoV-2 remains limited. 
 
Wastewater is an information-dense resource for estimating the prevalence of specific viral 
lineages, providing a community wide-snapshot not only of overall infection dynamics but of the 
rise and fall of specific VOCs. Our method, Freyja, deconvolutes these information-rich mixtures 
of virus lineages. For a large catchment area, such as San Diego’s Point Loma wastewater 
treatment plant, which covers over 2 million residents, even limited sampling may accurately 
estimate lineage prevalence in the population and provide an early warning indicator of the rise 
of new VOCs (as evidenced by the detection of Omicron at just over 1% abundance 11 days 
ahead of the first local clinical observation). In addition, wastewater genomic surveillance with 
building-level resolution provides a detailed description of the structure and dynamics of 
community virus transmission, and can identify transmission links. It can be used to better direct 
public health interventions, and can do so in real-time when combined with fast-turnaround 
sequencing technologies. This high-resolution approach is of particular utility in community 
gathering and transit sites, such as schools and airports, as well as sites with highly vulnerable ACCELE
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individuals, such as nursing homes and hospitals, where spatially resolved monitoring for 
directing public health interventions is of great importance.  
 
As SARS-CoV-2 continues to evolve, the risk of new VOCs remains high and there is a growing 
need to identify these viruses ahead of their proliferation in the community. Accordingly, 
development of technologies that are cost-effective, reduce biases, and provide leading rather 
than trailing indicators of infection are essential to removing “blind spots” in our understanding 
of local virus dynamics. Although technical issues have made wastewater sequencing difficult to 
perform at scale, our key advances in virus concentration and sample deconvolution provide 
evidence that this approach is now viable. Continued improvements to sequencing turnaround 
speeds, lineage barcoding, and haplotype recovery from mixed samples will further accelerate 
efforts to achieve earlier identification of emerging variants and improve the precision and 
effectiveness of interventions.   
 
Ethics declarations 
The University of California San Diego Institutional Review Boards (IRB) provided human 
subject protection oversight of the of the data obtained by the EXCITE lab for the campus 
clinical samples (IRB approval #210699, #200477). All necessary patient/participant consent has 
been obtained and the appropriate institutional forms have been archived, and any sample 
identifiers included were de-identified. The wastewater component of this project was discussed 
with our Institutional Review Board, and was not deemed to be human subject research as it did 
not record personally identifiable information. 
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Figure Legends 
 
Figure 1: Campus sampling locations and SARS-CoV-2 testing statistics. A. Geospatial 
distribution of the 131 actively deployed wastewater autosamplers and the corresponding 360 
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university buildings on the campus sewer network. Building-specific data have been de-
identified in accordance with university reporting policies. B. Campus wastewater and diagnostic 
testing statistics over the 295 day sampling period (WW = wastewater, positivity is the fraction 
of WW samplers with a positive qPCR signal). C.Virus diversity in wastewater  and clinical 
samples: Boxplots of Shannon entropy (top) and richness (bottom) for each sample type (n=153 
WW -subset chosen to maximize sample independence- see Methods, 5888 Clinical). Box edges 
specify the first and third quartiles, solid line indicates the median, and whiskers delimit the 
maximum and minimum values. Maps were created using ArcGIS® software by Esri and are 
used herein under license. 
 
Figure 2: Sample deconvolution robustly recovers relative virus abundance. A. Subset of 
lineage defining mutation “barcode” matrix. Each row represents one lineage (out of >1000 
lineages included in the UShER global phylogenetic tree), and individual nucleotide mutations 
are represented as columns.  B. Single nucleotide variant frequencies obtained from iVar used for 
recovering relative abundance of each lineage. C. Schematic of the spike-in validation 
experiment. D. Depth-weighted de-mixing estimates of the virus abundance versus 
expected/known abundance. Details on lineage specific predictions are provided in Extended 
Data Figure 3. E. Comparison of wastewater sample deconvolution with VOC qPCR panel, with 
lookup table (bottom) showing amino acid mutations corresponding to each variant. 
 
Figure 3: Freyja recovers early and cryptic transmission of SARS-CoV-2 variants of 
concern A. Timeline and normalized epidemiological curves for VOC detection in both 
wastewater and clinical sequences from San Diego County (includes wastewater samples 
collected from Point Loma wastewater treatment plant, UCSD, as well as public schools in the 
San Diego districts) for the 3 major VOCs in circulation during the sampling period (n=475 
wastewater, n=22,504 clinical). Both Alpha and Delta are detected first in wastewater before 
clinical samples. Markers for clinical detections correspond to the ceiling of the daily detection 
count divided by 30 (e.g. 1-30 samples= one marker, 31-60 = two markers) , while wastewater 
markers correspond to a single detection. B. Timeline and epidemiological curves for VOC 
detection in the campus samples (n= 364 wastewater, 333 clinical). Markers correspond to a 
single detection event for both clinical and wastewater surveillance. All wastewater detections 
correspond to an estimated VOC prevalence of at least 10%. 
 
Figure 4: Deconvolution recovers a fine-grained estimate of virus population dynamics. A. 
Prevalence of SARS-CoV-2 variants in UCSD clinical surveillance, and B. Variant prevalence in 
all clinical samples collected in San Diego County. C,D. Variant prevalence in wastewater at 
UCSD as well as the greater San Diego County. Further analysis of Point Loma wastewater 
samples is shown in Extended Data Figure 5. All curves show rolling average, window ±10 
days. “Other” contains all lineages not designated as VOCs. Bottom panels show the number of 
sequenced samples per day. 
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Figure 5: Community wastewater enables early Omicron detection and reveals lineage 
dynamics.  A. Prevalence of SARS-CoV-2 VOCs in wastewater collected from the Point Loma 
wastewater treatment plant from late September 2021 to early February 2022. B. Estimated VOC 
concentrations, prevalence estimates scaled by normalized viral load in wastewater. C,D. 
Lineage-specific estimates of prevalence and concentration. All curves show an adaptive rolling 
average calculated using a local linear approximation (Savitzky-Golay filter) of virus copies/L, 
with window size  ± 1 sampling date. 
 
Figure 6: Wastewater identifies clinically known and unknown virus transmission. A-C. 
Maximum likelihood phylogenetic trees for each of the dominant variants of concern using high 
quality samples obtained at UCSD, as well as a representative set of sequences from the entire 
United States. Wastewater sequences from the same sampler that differ by 1 or fewer SNPs are 
denoted with a red asterisk. For all sequences, consensus bases were called at sites with >50% 
nucleotide frequency.  Location information is provided for select outbreaks. D. Pairwise 
comparison of collection date for matching and near-matching wastewater and nasal swab 
samples obtained at UCSD. Positive values indicate earlier collection in nasal swabs, and 
negative values indicate earlier detection in wastewater. 
 
 
Methods 
 
Wastewater sampling 
  
High-resolution spatial sampling at the campus level 
131 wastewater autosamplers collecting 24h time-weighted composites were deployed across 
manholes or sewer cleanouts of 360 campus buildings. GIS (geographic information systems) 
informed analyses as well as agent-based network modeling of SARS-CoV-2 transmission on the 
UCSD campus enabled identification of most optimal locations for wastewater sampling. During 
the pilot phase (November 23-Dec 29th 2020), 68 samplers were prioritized to cover 239 
residential buildings identified as the highest risk areas for large outbreaks on campus as a part of 
an observational study of wastewater monitoring in high-density buildings 29. This was based on 
preliminary dynamic modeling which showed the largest potential outbreaks to occur within the 
largest residential buildings 9. In addition to the observational study of wastewater monitoring in 
these high-density buildings, a cluster randomized study was also performed concurrently. This 
included a randomized modified version of a stepped wedge crossover design, in which there 
was random assignment of manholes for wastewater sampling. Clusters of manholes associated 
with residential buildings were randomized to receive wastewater monitors at one of two-time 
steps to evaluate the impact of wastewater monitoring on outbreak size in the associated 
buildings. During the same time period, all students in these residences were mandated to 
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undergo weekly diagnostic testing which was used to validate the utility of building-level 
wastewater monitoring. Furthermore, on-campus residences were initially focused due to the 
relatively static nature of the population which enabled a more robust cross-validation of the 
sensitivity and efficacy of the wastewater surveillance. The coverage of wastewater surveillance 
was then increased to cover the rest of the campus buildings (including non-residential buildings 
on campus) from January 2021. Four of the deployed wastewater samplers covered the 
designated isolation and quarantine buildings on campus. 
 
Wastewater composites were collected from the 131 samplers every day for the on-campus 
residence buildings and Monday through Friday for the nonresidential campus buildings. 19,944 
wastewater samples were collected and analyzed for the presence of SARS-CoV-2 RNA via RT-
qPCR between November 23rd 2020 and September 20th 2021. During this time, 9700 students 
lived in campus residences and 25,000 worked on campus on a daily basis. Between October 
2020 to January 1st 2021, all on-campus residents were mandated to test on a bi-weekly (once 
every 2 weeks) basis and on a weekly basis from January 2nd 2021 (start of the Winter term). 
However, fully vaccinated individuals were not mandated to test on a regular basis. Campus 
protocols required SARS-CoV-2 positive students living in congregate housing to relocate to 
designated isolation housing. Accordingly, our analysis of wastewater positivity (Figure 1B) did 
not include isolation housing samplers, in order to control - as best as possible, a small number 
of students in non-congregate housing spaces were allowed to isolate “in-place”, for example -  
for possible repeat detection due to extended shedding from infected individuals. Automated, 
localized wastewater-triggered notifications were sent to the residents/employees of buildings 
associated with a positive wastewater signal which further led to a surge in testing uptake rates 
by 2 to 40-fold in the associated buildings.  
  
Wastewater sampling at the county level 
24h flow-weighted composites were collected thrice a week from the main pump station for the 
Point Loma wastewater treatment plant, the primary treatment plant serving the greater San 
Diego county with a catchment size of approximately 2.3 million. 132 wastewater samples were 
collected between February 24th 2021 to February 7th, 2022.  
 
Wastewater sample processing and viral genome sequencing 
 
Sample processing 
SARS-CoV-2 RNA was concentrated from 10ml of raw sewage and processed as described 
elsewhere4. In brief, the viral RNA was concentrated using an automated affinity capture 
magnetic hydrogel particle (Ceres Nanosciences Inc., USA) based concentration method after 
which the nucleic acid was extracted and sample eluted in 50uL of elution buffer. The extracted 
RNA was then screened for SARS-CoV-2 RNA via real-time RT-qPCR for 3 gene targets (N1, 
N2 and E-gene). PMMoV (pepper mild mottle virus) was also screened to adjust for changes in 
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load. Positive wastewater samples were sequenced within 1-2 weeks of collection, comparable to 
the delay for clinical samples. To cross-validate the ability of the deconvolution tool in reliably 
resolving mixtures of strains in wastewater, the wastewater samples from the county as well as 
the ones from the isolation dorms on campus (where multiple infected individuals were isolating) 
were also run through a PCR panel targeting 8 mutations associated with the strains designated 
as VOCs. The mutations screened for in wastewater using RT-qPCR included N501Y, 
DelHV69/70, DelY144, K417N, K417T, E484Q, P681R and L452R (Promega Corp. Cat# 
CS3174B02).  
 
Miniaturized wastewater SARS-CoV-2 amplicon sequencing  
The Swift Normalase® Amplicon Panels (SNAP) kit (PN: SN-5X296 (core) COVG1V2-96 
(amplicon primers), Integrated DNA Technologies, Coralville, IA) was used on RNA from 
wastewater samples that were positive for SARS-CoV-2 RNA to prepare the multiplex NGS 
amplicon libraries and indexed using the SN91384 series of dual indexing oligos, yielding up to 
1536 index pairs per pool. A miniaturized version of the protocol was used with the following 
modifications: the Superscript IV VILO (Thermo Fisher, Carlsbad, CA) cDNA synthesis 
reaction was scaled down to ~1/12 the normal reaction volume with 0.333uL of enzyme mix and 
1.333uL of RNA being used. The multiplex amplicon amplification and Ampure XP bead 
purification steps were scaled down ~1/6 the normal reaction volume. The Index adapter PCR 
reaction and Ampure XP bead purification steps were scaled down to ~2/13 the normal reaction 
volume.  The final library resuspension volume was 29uL. 1uL of each library was pooled for an 
initial shallow NGS run on a MiSeq (Illumina, San Diego, CA) using a Nano flow cell.  This 
equal volume pool was used to estimate the differential volumes required for similar read depths 
across samples using a NovaSeq SP or S4 flow cell (Illumina, San Diego, CA). Between 5uL and 
0.2uL of library material, depending on the data provided from the MiSeq Nano run, was 
pipetted into a single pool for the NovaSeq run. Transfer volumes were capped at 5uL to reduce 
pipetting time and because these types of “high volume” samples typically contained a higher 
proportion of likely adapter dimers that inhibit flow cell performance for all samples. A 
Dragonfly Discovery (SPT Labtech, UK) was used to dispense reaction master mixes or water 
depending on the step.  A BlueWasher (BlueCatBio, MA) was used for high throughput 
centrifugal 384-well plate washing during the AmpureXP bead reaction cleanup steps. An IKA 
MS3 Control linear plate mixer (IKA Works Inc, Wilmington, NC) set to 2600 RPM for 5’ was 
used to resuspend the AmpureXP beads during the rehydration steps. A Mosquito Genomics HV 
16 channel robotic liquid handler (SPT Labtech, UK) was used to dispense the RNA, the reaction 
master mixes, and prepare the equal volume pools for the initial MiSeq Nano (Illumina, San 
Diego, CA) balancing runs.  A Mosquito X1 single channel “hit picker” robotic liquid handler 
(SPT Labtech, UK) was used for the final library balancing for the NovaSeq (Illumina, San 
Diego, CA) NGS lanes. 
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Sequencing data were analyzed using the C-VIEW (COVID-19 VIral Epidemiology Workflow) 
platform for initial QC and SARS-CoV-2 lineage assignment and phylogenetics. In brief, 
sequencing reads are aligned with minimap230, and primer sequences trimming and quality 
filtering is applied using the iVar trim method20. Sequencing depth and single nucleotide variant 
(SNV) calls are obtained using samtools mpileup31 and the iVar variants method20.  
 
Controls were included at all stages of sample processing (viral concentration, extraction, qPCR 
and sequencing) to assess potential inhibition and cross-contamination. Most of the sample 
processing steps were performed by liquid handling robots for consistency and to minimize 
human error. Replicates were included for all wastewater samples. If any of the controls failed or 
indicated cross-contamination, the entire batch was rerun. The clinical samples and wastewater 
samples were processed separately for sequencing due to significant differences in viral load 
between the two sample types. 
 
Virus diversity 
As reported previously20, virus SNVs were used to characterize the populations derived from 
wastewater and clinical samples. Richness was defined as the total number of SNV sites, and 
mean Shannon entropy 𝐻𝐻(𝑝𝑝) was defined as 
 

𝐻𝐻(𝑝𝑝) =  
1
𝑁𝑁
�−𝑝𝑝𝑖𝑖 log2 𝑝𝑝𝑖𝑖

𝑁𝑁

𝑖𝑖=1

− (1 − 𝑝𝑝𝑖𝑖) log2( 1 − 𝑝𝑝𝑖𝑖)  

where 𝑝𝑝𝑖𝑖 is the SNV frequency of at the i-th site, of N total sites. For statistical testing, a Mann-
Whitney U test was performed using all wastewater samples that were not sampled from the 
same source within a 10 day period in order to maximize independence across samples, as well 
as all clinical samples. Effect size was calculated using the rank-biserial correlation, 𝑟𝑟 =

2𝑈𝑈
𝑛𝑛𝑊𝑊𝑊𝑊𝑛𝑛𝐶𝐶𝐶𝐶

− 1 where U is the Mann-Whitney test statistic and 𝑛𝑛𝑊𝑊𝑊𝑊 and 𝑛𝑛𝐶𝐶𝐶𝐶 are the numbers of 

wastewater and clinical samples, respectively.  
 

Wastewater sample deconvolution 
 
To infer relative abundance within a wastewater sample, we used a “barcode” matrix containing 
the lineage defining mutations for each known virus lineage, 
 

𝐴𝐴 = �
𝑎𝑎1,1 ⋯ 𝑎𝑎1,𝑁𝑁
⋮ ⋱ ⋮

𝑎𝑎𝑀𝑀,𝑁𝑁 ⋯ 𝑎𝑎𝑀𝑀,𝑁𝑁

� 

 
where 𝑎𝑎𝑖𝑖,𝑗𝑗 denotes the i-th lineage, at mutation j. Lineage defining mutations were obtained from 
the UShER global phylogenetic tree using the matUtils package15.  Similarly, we let b and d 
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encode the frequency of each mutation and the corresponding sequencing depth (using the log-
transform 𝑑𝑑𝑖𝑖 = log2(𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑ℎ𝑖𝑖 + 1) to adjust for large differences in depth across amplicons, 
which we use to control for heteroskedasticity and down-weight the importance of sites with 
little or no sequencing depth), 

𝑏𝑏 =  �
𝑏𝑏1
⋮
𝑏𝑏𝑁𝑁
� , 𝑑𝑑 =  �

𝑑𝑑1
⋮
𝑑𝑑𝑁𝑁
�  

 
We were then able to write this as a constrained (weighted) least absolute deviations problem 

𝑥𝑥� = argmin 𝑥𝑥≥0
∑𝑥𝑥=1

‖𝐴𝐴𝑇𝑇𝑥𝑥 − 𝑏𝑏‖1𝑊𝑊,  where  ‖𝜇𝜇‖1𝑊𝑊 = � 𝑑𝑑𝑖𝑖|𝜇𝜇𝑖𝑖|
𝑁𝑁 

𝑖𝑖=1
 

which yields the “demixing” vector 𝑥𝑥� = [𝑥𝑥 �1 … 𝑥𝑥�𝑀𝑀] that specifies the relative abundances of each 
of the known haplotypes. Analysis was only performed on samples with greater than 70% 
coverage, with the exception of March samples from UCSD for which all samples with greater 
than 50% coverage were used. Constrained minimization was performed in Python using the 
cvxpy convex optimization package32,33.  Mapping of lineages to variant WHO lineages (VOCs, 
VUMs, etc.) was performed using curated lineage data from outbreak.info6. We note that the 
Epsilon variant received different maximum escalation levels at CDC and WHO, which assigned 
VOC and VOI status, respectively. Since the Epsilon variant was widespread in California and 
much of the United States, we use the more “local” CDC designation.  
 
Fast-bootstrapping method 
Bootstrapping was performed at the nucleotide level by resampling each site based on a 
multinomial distribution of read depth across all sites, where the event probabilities are 
determined by the fraction of the total sample reads found at each site, followed by a secondary 
resampling at each site according to a multinomial distribution (i.e. binomial when there was 
only one SNV at a site), where event probabilities were determined by the frequencies of each 
base at the site, and the number of trials is given by the sequencing depth. 1000 resamplings and 
demixings were performed for all samples. 
 
Spike-in mixture experiment 
RNA was isolated from supernatants of a mammalian cell culture infected with one of five 
strains of SARS-CoV-2. (A, B.1.1.7, B.1.351, P.1, or B.1.617.2). 
  
RNA concentration standardization 
Virus concentration was quantified by the UCSD EXCITE COVID testing laboratory using the 
Thermo COVID-19 Test kit (PN:A47814, Thermo Scientific Corporation, Carlsbad, CA).  The 
median Cq values (N-gene, Orf1ab, & S-gene (where applicable)) was calculated and used to 
determine how much the RNA needed to be diluted with water to reach a Cq value of 23.  A post 
dilution RT-qPCR reaction was performed and used to calculate the final dilution of the more ACCELE
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concentrated samples to the new target value of Cq 23.296.  The number of freeze thaw cycles 
between RNA samples was kept the same.  
  
Virus Mixing 
RNA standardized in the prior section was used to make a volumetric mixing array (final volume 
10uL) using a Mosquito X1 HV robotic liquid handler (SPT Labtech, UK).  Pairwise mixes of 
5:95, 10:90, 20:80, 60:40, and 50:50 were made for each virus lineage and in both directions.  
Equal mixes (20%) for each of the five test strains were made.  25% mixes and 33% mixes were 
made for a subset of possible combinations and controls of 100:0 were prepared.  See Extended 
Data Table 1 for complete array. Corrected estimates of the fraction of each virus lineage based 
were performed using the final measured Cq values for each pure virus lineage sample to control 
for issues encountered during the dilution step (repeat Cq measurements had a coefficient of 
variation of  0.007, Extended Data Table 2). Across all 95 mixtures, we observed a coefficient 
of variation of 0.016. Since initial virus concentrations are controlled for using measured Cq 
values, we expect remaining lineage specific bias (see Extended Data Figure 3) is likely due to 
experimental inconsistencies encountered during mixture creation.  
 
Deconvolution method performance comparison 
A subset of the spike-in mixtures (1 of each type, for a total of 95 mixtures) was used to compare 
Freyja36, cojac (using VOC definitions from the public cojac github repository; Lineage A and 
Epsilon definitions were created manually), the Kallisto-based method from Baaijens et al. 2021, 
and LCS. Kallisto was run using 10 cores (with no bootstrapping), and LCS was run using 16 
cores, both on an Intel Xeon processor (2.2GHz). LCS was run for 48 hours, but failed to 
complete. Timing was performed using the “time” command, and included all steps after 
alignment, trimming, and sorting. Times correspond to total CPU time.  
 
 
Estimation of delay in detection frequency 
Estimation of the lag time between epidemiological curves for wastewater and clinical 
surveillance of the Epsilon variant in San Diego was performed by identifying the shift with 
maximal cross-correlation. All time points leading up to the time of initial peak in detection 
frequency were included for both wastewater and clinical data.  
 
Phylogenetic analyses 
Reconstruction of maximum likelihood trees was performed on all SARS-CoV-2 VOC genomes 
with 10x (10 reads or greater per site) genome coverage >95% and quality score >20 obtained 
from UCSD campus sampling, using IQtree34. This analysis included 150 (112 clinical, 38 
wastewater) Epsilon, 49 (37 clinical, 12 wastewater) Alpha, and 160 (136 clinical, 24 
wastewater) Delta lineage genomes from UCSD, in addition to 60 Epsilon, 20 Alpha, and 39 
Delta randomly selected genomes from elsewhere in the United States. We used iVar 20 to 
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identify consensus sequences for all San Diego samples. Bases were only included in the 
sequence if there was a consensus base at the site (>50% nucleotide frequency). We also masked 
known homoplasic sites prior to tree reconstruction35. Analysis of temporal comparison was 
performed on 608 samples (443 clinical, 165 wastewater, all lineages were included) with 10x 
genome coverage >95% and quality score >20 from UCSD. Sample collection SNP distances 
were calculated without considering ambiguous bases and gaps.  
 
Statistics and Reproducibility 
Experiments for retrieving sequences from samples reported in Fig. 5 and Extended Data Figure 
5C were run twice along with positive (spike-in controls of known SARS-CoV-2 lineages 
derived from mammalian cells as well as heat-inactivated SARS-CoV-2 viral particles in 
wastewater) and negative controls. Experiments were repeated  twice for a batch of 207 
wastewater samples. All attempts at replication were successful. For spike-in data reported in Fig 
2 and Extended Data Fig. 3, extraction and RT-qPCR for spike-ins of Lineage A from clinical 
samples were repeated with 20 replicates to check for overall assay variability (reported in 
Extended Data Table 2). 
 
Code availability 
Freyja is hosted publicly on github (https://github.com/andersen-lab/Freyja) and is available 
under a BSD-2-Clause License (doi: 10.5281/zenodo.6585067,  version 1.3.7). Freyja is 
accessible as a package via bioconda  (https://bioconda.github.io/recipes/freyja/README.html) 
in container form via dockerhub (https://hub.docker.com/r/andersenlabapps/freyja). COVID-19 
VIral Epidemiology Workflow (C-VIEW) is  available at https://github.com/ucsd-ccbb/C-VIEW 
as an open-source, end-to-end workflow for viral epidemiology focused on SARS-CoV-2 lineage 
assignment and phylogenetics. C-VIEW uses minimap2 (v2.17), samtools(v1.11), iVar(v1.3.1), 
and pangolin (varying versions). 
 
Data Availability 
All raw wastewater sequencing data is available via the NCBI Sequence Read Archive under the 
BioProject ID PRJNA819090. Consensus sequences from clinical and wastewater surveillance 
are all available on GISAID. Spike-in sequencing data is available via google cloud 
(https://console.cloud.google.com/storage/browser/search-reference_data). The UCSD campus 
dashboard can be accessed at https://returntolearn.ucsd.edu/dashboard/ . The county wastewater 
data from Point Loma are available through the public dashboard that can be accessed at 
https://searchcovid.info/dashboards/wastewater-surveillance/. The SEARCH genomic 
surveillance dashboard is available at https://searchcovid.info/dashboards/sequencing-statistics/.  
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Extended Data Figure/Table Legends 

 

Extended Data Table 1: Platemap of spike-in mixtures used for method validation 

Extended Data Table 2: Consistency of Lineage A Cq values across repeated measurements 

Extended Data Table 3: Omicron surveillance at Point Loma Wastewater Treatment Plant 
 
Extended Data Figure 1: Relationship of daily UCSD campus wastewater sampler 
positivity and campus clinical positives. Black line indicates the linear regression fit 
(slope=1.88 %/clinical positive, intercept = -0.45%) to the data (n=321), with bootstrap 95% 
confidence interval (resampled 1000 times with replacement) shown in gray (median 
slope=1.88%/clinical positive, intercept = -0.47%). 
 
Extended Data Figure 2: Relationship between genome coverage and cycle quantification 
values. 10x genome coverage (fraction of sites with 10 reads or greater)  remains high, even for 
Cq values of nearly 38 (n=786). Points indicate median value in each bin, while error bars 
indicate the median absolute deviation. 
 
Extended Data Figure 3: Lineage-specific prediction of variant abundance in spike-in 
validation samples. A. Schematic of “spike-in” sample design. B-F. Lineage specific prediction. 
Proportions of each lineage in the sample are shown as a pie chart marker (Grey = Lineage A, 
Orange = Alpha, Pink = Beta, Turquoise = Delta, and Purple = Gamma) with error bars 
indicating the standard deviation from the mean, across four replicates (n=380, four samples per 
mixture type). 
 
Extended Data Figure 4: Freyja more accurately estimates virus abundance, with fewer 
false positives. A-B. Estimated vs expected fraction of each lineage in the mixture (n=95, one 
sample per mixture type). The Kallisto-based approach from Baaijens et. al shows a wider range 
of estimates for each known mix fraction, and generally underestimates the fraction. C. False 
positives with abundance greater than 0.5%. 
 
Extended Data Figure 5: The rise of the Delta variant during Summer 2021. A. Mean 
SARS-CoV-2 viral gene copies/L of raw sewage (blue) collected from the Point Loma 
Wastewater Treatment Plant and caseload (gray) reported by the county during the same period. 
SARS-CoV-2 concentrations were normalized by PMMoV (pepper mild mottle virus) 
concentration to adjust for load changes. B. Lineage distribution in UCSD campus wastewater. ACCELE
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C. Monthly lineage averages for wastewater collected at Point Loma Wastewater Treatment 
Plant during the Delta surge (N= 5, 20, 25, 7). 
 
Extended Data Figure 6: Quantification of deconvolution uncertainty in first detection of  
VOCs. A-D. Bootstrap distributions of Freyja abundance estimates obtained by resampling read 
data from each sample corresponding to the first detection of that VOC in San Diego 1000 times 
with replacement. In all boxplots, box edges specify the first and third quartiles, solid line 
indicates the median, and whiskers delimit the maximum and minimum values within 1.5 times 
the inter-quartile range (IQR) of box edges. Outliers are denoted with individual markers. Two 
samplers were found to contain Delta on the same day. First detections were also confirmed 
using a VOC qPCR panel, as shown in Figure 2 and Extended Data Table 3. 95% Confidence 
intervals for variant prevalence for each first detection event: A. Alpha: (0.232, 0.278), B. Delta: 
(0.336, 0.397), C. Delta: (0.676, 0.772),  D. Omicron: (0.017, 0.021). E. Estimated proportion 
of Omicron sequences in clinical data. Omicron estimates tracked via S-gene target failure, 
SGTF (characteristic of Omicron lineage BA.1 and its descendants) qPCR assays for clinical 
samples in San Diego between November 27th, 2021-February 7th, 2022. First detection of 
Omicron through clinical genomic sequencing in San Diego was December 8th. Dotted line 
shows a rolling average with a window size of seven days. 
 
Extended Data Figure 7: Temporal and spatial dynamics of an Epsilon outbreak at UCSD. 
After initial detection on January 3rd 2021, infected individuals were transferred to isolation 
housing where they continued to shed virus. At the end of January, a matching virus was 
detected in a residence nearby the original site of detection. All four samples have perfectly 
matching virus genomes. 
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Extended Data Table 1
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Extended Data Table 2
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Extended Data Table 3
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