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Abstract

The Toric Code at Finite Temperature
by
Christian Daniel Freeman
Doctor of Philosophy in Physics
University of California, Berkeley
Professor Birgitta Whaley, Co-chair

Professor Joel Moore, Co-chair

Alexei Kitaev’s toric code is a rich model, that has birthed and stimulated the develop-
ment of topological quantum computing, error correction, and field theory. It was also the
first example of a quantum error correcting code that could resiliently store quantum infor-
mation in certain types of noisy environments without the need for active error correction.
Unfortunately, the toric code loses much of its power as a noise-resilient quantum memory
at any finite temperature. Many of the problems with the toric code at finite temperature
are likewise shared among its cousin stabilizer codes. These problems can be traced to the
proliferation of stringlike “defects” in these codes at finite temperature. The aim of this
thesis is then twofold.

First, I characterize both numerically and theoretically the failure modes of the toric code
at finite temperature with fairly modest bath assumptions. I achieve this by numerically
sampling the nonequilibrium dynamics of the toric code using a continuous time monte carlo
algorithm. From this analysis, I was able to derive an exact expression for the low and high
temperature dynamics of the toric code, as well as a regime over which the toric code is
“most” stable to noise.

Secondly, by leveraging the results of this analysis, I construct algorithms that aim to
suppress these noise channels. These algorithms are broadly separated into measurement-
free and few-measurement protocols. The measurement-free algorithms are reminiscent of
dynamical-decoupling pulse sequences, applied in parallel or in serial to a target stabilizer
code, and are entirely unitary. I find that measurement-free algorithms can provide a con-
stant factor increase to the lifetime of a large class of stabilizer codes at finite temperature.
The few-measurement protocols are more complex, but I provide evidence that they can
provide a threshold for the toric code with asymptotically fewer measurements than was
previously known to be achievable.
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Chapter 1

Introduction

This was first demonstrated in a clear way by Alan M. Turing (1912-1954), whose 1936
paper laid the foundations of the earth

King James Programming Tumblr

One of the holy grails of the field of quantum information is the construction fault tolerant
qubits. These objects are the most fundamental, atomistic building blocks of a full quantum
computing architecture—the quantum analogue of the bits of a classical device. Hundreds
of proposals for achieving fault tolerance have been fielded since Peter Shor’s classic 9-qubit
error corecting code—an active protocol for detection of correction of arbitrary single-qubit
errors. What makes the toric code—the focus of this thesis—special, is its connection to a
second, more theoretical (to the extent that any theoretical thing can be “more theoretical”
than any other) goal: the finite temperature quantum memory.

The technical term “quantum memory” is a bit opaque—it evokes the idea of a hard
drive—a register—something permanent and passively stable yet nonetheless quantum me-
chanical. “Permanent”, “passive”, and “stable” are hardly words often used to describe
quantum mechanical devices, and for much of the early years of quantum information, there
was very little expectation they could ever be describable as such. It was only after a
suprising collection of facts were proven about early candidate quantum memories like the
toric code, that people started seriously considering the possibility of a finite temperature
quantum memory.

Probably the most intuitive way to define a quantum memory is by analogy with clas-
sical devices. The bits in the hard drives of classical computers are stable in part thanks
to classical error correcting algorithms, but they’re also fundamentally stable because of a
finite temperature Ising-like phase transition. Below the critical temperature (which is con-
siderably higher than room temperature for, say, a laptop) the probability of a bit flip error
scales like:

PO—=1)~e*t  forT <T. (1.1)
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where ( is an inverse correlation length, T, is the critical temperature, and L is the
physical lengthscale of the bit—i.e., a mesoscopic chunk of iron-rich alloy. Exponentials
grow quickly, thus bit flip errors can be extremely well suppressed by working with a large
enough chunk of ferromagnetic stuff.

A quantum mechanical finite-temperature stable bit would be defined in much the same
way. We would image some array of qubits where bit flip errors and phase flip errors are
exponentially suppressed as a function of system size below some critical temperature:

P(|0) = —[0)) ~ e~GE (1.2)
P(0) = 1)) ~e™®F, forT < T, (1.3)

The “finite temperature” part bears elaboration. Much of the excitement of the toric code
arose from its zero-temperature properties, and much of the body of this thesis details how
the toric code fails at finite temperature. Much of the body of this thesis also concerns how
to go about “fixing” the toric code. So, while having a finite temperature phase transition
would be great for a realistic quantum device, it unfortunately appears to be out of reach for
the near term in two and three dimensions, and all current proposals for quantum memories,
including this one, only achieve fault tolerance using active error detection and correction
methods—i.e., not relying completely on a finite temperature phase transition. For a review
in the state of the art in proposals for theoretical realizations of quantum memories, see [22].

Morally, entirely relying on a finite temperature phase transition probably isn’t practical
for an eventual quantum device, in exactly the same way that we don’t rely entirely on
finite temperature phase transitions for classical devices. Eventual quantum devices will
almost certainly have error detection/correction cycles fundamentally “baked-in” to their
architecture. With this in mind, the protocols I develop in the latter half of this thesis are
motivated by a desire to minimize resource usage—using no measurements at all, or as few
as possible.

1.1 Overview

The remainder of this dissertation is organized into two main sections. The first section
includes chapters 2, 3, 4, and 5 which develop the theoretical minimum for understanding
the later chapters in a self contained way. Chapter 2 introduces quantum error correcting
codes via the 1D Ising model—an analogy which will prove useful in later chapters. Chap-
ter 3 introduces the toric code, and summarizes its surprising zero-temperature properties.
Chapter 4 makes precise what [ mean by “finite temperature” via the Lindblad formalism,
and provides a discrete-time and a continuous-time derivation of the Lindblad equation, em-
phasizing important theoretical quantities used heavily in later chapters. Wrapping up the
background chapters, Chapter 5 treats the continuous time monte carlo algorithm employed
for all of my numerical results, as well as a discussion of Markov Chains which were used for
modeling purposes.
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The second section is composed of chapters 6, 7, and 8 which detail my studies of the Toric
Code at finite temperature, as well as new algorithms I have developed for suppressing finite
temperature noise. Chapter 6 explicitly derives the low and high temperature dynamics for
the toric code subject to an Ohmic, Markovian bath, and is primarily the content of Freeman
et al. [55]. This crossover is most unambiguously demonstrated in Figure 6.9, wherein the
low and high temperature behaviors are shown to follow the proposed theoretical forms of the
error rates. Chapter 7 contains a measurement-free algorithm which can increase the lifetime
of a stabilizer code with string-like errors by a constant factor, and is primarily the content of
Freeman, Herdman, and Whaley [54]. In sum, the performance of this algorithm for different
resource requirements is depicted in 7.6, and the error rate of the system in the presence of
the algorithm is described by 7.14. Finally, Chapter 8 contains a few-measurement algorithm
which provides a threshold for the toric code using asymptotically fewer measurements than
any previous code, and is the work of Freeman et al. [56]. The finite temperature crossover
to the regime where the algorithm functions is depicted in 8.2. Crucially, the measurement
density can be any fixed constant fraction, so long as temperature is sufficiently low. Chapter
9 contains summaries of a variety of side, non-toric-code projects I contributed to over the
years, and Chapter 10 contains spillover discussions and musings on the future.

1.2 High Level Background

While the remainder of the thesis spends several chapters building up the necessary tools
used to understand the results presented in Chapters 7, 8, and 9, this short introductory
section will serve as a high level, “expert” overview of the historical place and motivation of
this work.

This thesis was primarily motivated by a series of papers, centered on efforts from the
Whaley group, starting in the early 2010s. Owing to the growing popularity of laser trap
systems, and the possibility that these experimental setups might’ve been available for ex-
periments in the near term, the group focused on several different research thrusts involving
different ways of emulating different quantum systems in varying “near term” architectures.
The landscape at the time was far different—superconducting qubits were not quite as dom-
inant, NMR systems were not scaling as quickly as some wanted, and ion traps/neutral atom
traps looked to be on the cusp of supporting systems large enough for interesting physics.
Topological systems weren’t exactly new, but the thought of probing them directly in emu-
lated systems / numerically was attractive enough that many groups were trying to devise
schemes for doing so.

Starting with [65], the goal was to implement a scheme for effectively generating a topo-
logically ordered system. As an example, this “stroboscopic” scheme introduced in Ref. [65]
was applied to the toric code, and they showed that, owing to the toric code’s resilience
to unitary-type noise, that it could be simulated even if the scheme used to generate the
emulated toric code was fairly noisy. Shortly thereafter, Ref. [137], using similar methods,
introduced a scheme for coupling an emulated quantum system to a simulated bath. The
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primary target for this paper was an optical lattice type experiment, where a second lattice
could be interleaved with the system lattice, and used as a resource for optically driving the
system to some effective temperature.

At the same time, a handful of groups were (and had been) investigating the thermal
properties of the toric code. The earliest work of which I'm aware to explicitly point out the
thermal breakdown of the toric code is a series of papers by Nussinov and Ortiz in the late
2000s[102, 101], which directly mapped the toric code onto the Ising model, thus demon-
strating its thermal fragility. Contemporaneous with this work, Castelnovo and Chamon[23,
24] demonstrated that the topological entanglement entropy of the toric code retained some
finite temperature resilience, passing through a finite temperature phase transition. These
results contributed to a flurry of schemes to try and restore thermal order in the toric code
through a variety of different mechanisms, like long-range interactions, disorder, and coupling
to bosonic fields[29, 30, 69, 109, 82].

It was around this time that I picked up on a project within the group started by Dylan
Gorman (when he was a senior undergraduate) to try and understand, dynamically, what
was going on with the toric code, as the vast majority of studies before then had considered
only equilibrium arguments. When I joined the Whaley group, it housed around 6 different
Monte Carlo experts, thus it seemed somewhat natural to tackle a numerics-heavy project
in my first year. This work eventually became [55]—i.e., Ch. 6 of this thesis—and the rest
is history.



Chapter 2

Errors at zero temperature

if you can trust what we know, then we can be even more confident that n is prime.

King James Programming Tumblr

Traditionally, quantum error correcting codes are defined in a “zero temperature” setting.
Qubits are imagined to be exposed to some noise source which produces errors of some type
independently at random to each of the qubits. The procedure of introducing uncontrolled
errors to the unitary dynamics of the Schrodinger equation invariably leads one to the von
Neumann equation, and then to the theory of completely positive maps. In this section, I
briefly review the theory of error maps, as well as the stabilizer formalism first introduced
by Gottesman[59]. As a framing device for future chapters, I also work through the theory
of the 1D Ising model reinterpreted as the “simplest” stabilizer code.

The theory of quantum error correction has a rich history with a tremendous number of
different classes of error correcting algorithms. While this thesis focuses on stabilizer codes
in particular, refer to [87] or [107] for a more complete survey of the breadth of alternative
protocols.

2.1 From Schrodinger to von Neumann

Towards an bit-flip error map

To be able to consider something like a random bit-flip error on a quantum mechanical sys-
tem, we will have to move beyond the Schrodinger equation, because Schrodinger dynamics
are purely unitary. That is, the most general sort of time evolution available for a state
vector for Schrodinger type dynamics is some evolution like

P(t) = U(t)$(0) (2.1)
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Where U(t) is some possibly time dependent unitary operator. Usually, this U is the
time evolution operator which depends on the Hamiltonian, H, governing that particular
quantum system—i.e., U = exp (—iHt).

The primary difficulty with this sort of dynamics for the purposes of modeling errors, is
that most errors are not unitary. While some errors arise from incorrectly applied unitary
operators (through poor calibration, experimenter-error, or systematic effect), the vast ma-
jority arise from interactions with uncontrolled environments. Bits are flipped—atoms are
lost from the trap—photons are absorbed—information is irretrievably scrambled, lost, or
leaked. Such processes are not reversible, and the Schrodinger equation considers dynamics
that are manifestly reversible. This suggests something of a puzzle for the fledgling quantum
mechanics practitioner—if these sorts of errors are not unitary, but quantum mechanics is
fully unitary (and is the underlying theory describing the world)-where do they come from?

While the world is fully unitary (as far as we can tell!), trying to describe it with a fully
unitary model is often tremendously inconvenient, or even practically impossible. The full
quantum state of all of the gas particles in a room, for example, is a perfectly well-defined
object, but everyday experience suggests that one need not have full access to the full
wavefunction of every gas particle in a room to be able to make predictions about those gas
particles. That is to say, on scales relevant to the everyday living of humans, the reversible,
unitary nature of quantum mechanics averages out, and leaves us with a world that does not
appear reversible at all. This averaging—this coupling of particles to enormous numbers of
extra degrees of freedom is intimately related to how the process of measurement also breaks
the unitarity of quantum mechanics.

A great deal has been written about this process—i.e., the emergence of the classical world
from the quantum mechanical one—and treating it further would quickly leave the scope of
this thesis. For our purposes, it will suffice to consider the principled, mathematical way of
“averaging” quantum mechanical behavior, which naturally leads to a notion of non-unitary
dynamics not encapsulated by the bare Schrodinger equation.

First, we consider density matrices, p rather than state vectors:

p =) (vl (2:2)

The dynamics of density matrices follow immediately from the Schrodinger equation and
its adjoint, and is called the von Neumann equation:

dp
h— = [H 2.3
iho, = H, /] (2.3)
where H is the Hamiltonian for the system, and [-,-| is the commutator. This equation

is formally solved by,

p(t) — e—z’HtpOez’Ht (24)
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For a generic quantum state, this formalism at first appears only to wildly complicate the
process of performing calculations in quantum mechanics. Instead of one 1, now we have
two! Worse still, these dynamics are still unitary.

The beauty of the density matrix formalism is in its ability to describe a more rich set of
quantum states—states for which it is difficult to write down the corresponding state vector,

|¥).
Pm = (1(/)2 1(/)2> (2.5)

Consider the density matrix,

It’s a short exercise to convince oneself that p,, cannot be formed by taking any ¢ =
a|0) + £ |1) and forming the outer product |¢) (], for any a, B.

Even though it cannot be written as arising from a state vector, it doesn’t mean such
states don’t exist, it simply means some interpretation is in order. States like p,, are the
natural consequence of having uncertainty about a quantum state. Such a state is the natural
description of a situation where we have an equal, incoherent admixture of |0) and |1) states
in some well isolated box. It is likewise the natural description of a single quantum state
that has undergone some uncontrolled interaction with certain types of environments. This
density matrix is also special in that it is, in a fairly precise mathematical sense, a state of
maximal uncertainty about the quantum system of interest.

We can easily arrive at these sorts of states from everyday normal state vectors through
the operation of partial trace. This operation will also take us beyond purely unitary dy-
namics, and into the realm of irreversibility.

First, we subdivide a quantum system into tensor products, [¢) , |¢) 5. Then, the trace
over system B is defined as:

Tra([) 1805 (W14 (1) =Y (Xl 19D 4 18) (V14 (Sl 1X), (2.6)

(2

=Y [A) (Al (2.7)

where {|x),} span subsystem B and {|\),} span subsystem A. The resulting state is a
statistical admixture of states in system A. Systems A and B can be imagined as individual
qubits in a Bell pair, a system qubit and a large environment, or even the left and right
halves of spins on a spin chain. All that is necessary to perform the subdivision is for the
underlying quantum state to have the tensor product structure between the two subsystems.

As a brief aside, it is straightforward to verify that Trg((|0405) + |1415))((0405| +
(141p])) results in p,,. It is no coincidence that performing this averaging operation on an
entangled state results in such an extremely “mixed” state. A reoccurring theme of this
thesis will be the idea that interactions give rise to entanglements, and tracing out such
entanglements causes concomitant losses of quantum information.
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2.2 From Error Maps to Unitaries

The cleanest way to treat errors in a quantum mechanical system is by way of this trace—
we start with a fully quantum mechanical system comprised of a system and a bath, and
then we formally trace out the bath degrees of freedom. This is the natural procedure when
one has an experimental apparatus, and a good sense of the sorts of quantum mechanical
interactions that are occurring within the system of interest.

However, it’s sometimes more operationally useful to start with a specific error model in
mind, and then derive the specific system-bath Hamiltonian that gives rise to that particular
error model. So, for concreteness and simplicity, we will consider a bit-flip type error dynam-
ics on the density matrix for our system, and then work backwards to derive the system-bath
interactions which gives rise to this system dynamics.

For a simple error model, it’s convenient to use the Kraus operator representation of the
error map,

pre1 = SiEip B} (2.8)
= E(pt)

for a system density matrix, p, and for error operators-also called Kraus operators—
satisfying EiEJ E; = 1. 2.8 can be taken as as definition for the sorts of transformations that
can occur to a system density matrix after having traced out another subsystem. Such trans-
formations are called quantum channels, or, in the mathematical literature, trace preserving
completely positive maps (TPCP maps). Of salience for this thesis, these maps are linear,
preserve hermiticity (p = p'), preserve trace (Tr(p) = Tr(E(p))), and preserve positivity
(eigenvalues remain non-negative). For a bit flip channel, the Kraus operators are.

Ey=+\1—-pIl Ei =/po, (2.9)

Intuitively, Ey encodes an identity operation from the environment with probability 1 —

p, and E; encodes a bit flip error with probability p. These probabilities appear under

radicals because the error operators appear in pairs in 2.8. Again, these E; could arise

from many different system-bath interactions, but written this way, only their effect on the

system is retained. We can arrive at one possible system-bath interaction providing these

dynamics by using the Stinespring dilation theorem. For a set of Kraus operators, E;, and

the system states on which they act, |1), we can promote the map in 2.8 to an isometry by
the identification:

Usors = U ) 10)p = 5B ) @ |i) (2.10)

where the environmental states |i) can be thought of as recording the action of the Kraus
operators. This map is an isometry because it really only describes how to boost from the
system Hilbert space S to the system + environment Hilbert space SE by way of adjoining a
|0) ; state to [1), i.e.: |¢)|0) 5. The evolution from an initial state like [¢) |1) 5, for example,
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is left unspecified, but is necessary for defining a properly unitary operator. Promoting this
operator to a full unitary can be done by simply choosing the rest of the matrix elements
so that U is unitary[98]. These environmental states |i) might seem mysterious, but they
represent exactly the quantum states that are necessarily averaged over to produce the
behavior in 2.8. Alternatively, this can be thought of as a definition of the Kraus operators:

B = (i| y Uss2 |0) (2.11)

where (i|, indexes some orthogonal set of environment states, and U is the underlying
isometry acting between the system and the environment, ultimately giving rise to the error
dynamics in the system of interest.

Returning to the bit-flip dynamics, using 2.10, we have:

US—)S’E . U|77D5> |0>E = 1/ 1 —p IS |¢S> & |0>E + \/]_? Oy |77/J5> X |1>E (2.12)

where the environmental state |0), records an “identity” operation by the bath, and
where the bath state |1) records a bit-flip error. Again, this map is almost a unitary. One
possible unitary matrix representation of U is:

V1i—=0p 0 /P 0
0 V1—0p 0 VD
— 2.1
Ublt fl’Lp O \/Z_) O _ /1 _ p ( 3)
VP 0 —/1—p 0
This particular form comes from a more general procedure where one “stacks” the error
operators F; as the first block-column of the unitary, and then fills in the rest of the entries
with the only constraint that it be unitary[98]. Note that the top left entries are exactly Ey
and the bottom left entries are F;. The other entries were chosen to ensure UTU = [.
After a great deal of matrix algebra, this unitary can be rewritten as arising from the

interaction between a system qubit and an environment qubit under an effective Hamiltonian.
That is,

U = exp(—iHsst) (2.14)
Where H,s; takes the form:
Heffz—%mf - gaz@)l (2.15)
+ FT\/]_?I@% + WT\/ﬁam@)ax

VP VP

———1®0, + 0, R0y

2 2
mT/1 — m/1—p

—i—TpI@az + T%@az
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and where our only approximation made is that p is small. It is well known how to
engineer such Hamiltonians in a variety of systems. More transparently, this interaction
factorizes:

T
Hepp = Z[ ® (=1 4+ +/poy — (2+/p/m)oy + /1 —po) (2.16)
+ %az ® (—I + \/pos + (2\/p/m)oy, + /1 —po.)

which is the sum of a local field on the environmental qubit, and an entangling interaction
with the system qubit.

While it can be illuminating to have the interaction in this more physically motivated
form, it’s ultimately more convenient to work with the quantum channel representation of
the bit flip error (i.e., 2.8).

Before proceeding, it’s important to clarify an apparent paradox. We began by saying
that bit-flip type error processes were not easily captured by unitary dynamics, and wrote
down an error map in the more general formalism of density matrices that we claimed could
capture these processes. Then, we immediately used Stinespring’s theorem to write down a
unitary that we claimed gave rise to the bit-flip type error process.

So, can bit-flip errors be captured with unitary dynamics or not?

The apparent paradox resolves when considering the ramifications of having access to
complete information of the environmental qubit. If one knows the complete state |¢) |¢g),
then there is no error process—the system happily evolves under a unitary evolution. The
full quantum state can be perfectly reconstructed for all times. Only when the evolution of
the environment is averaged over—when it is traced out—does the error process manifest.
As we will see, the density matrix is known for all times, but a perfect quantum state cannot
necessarily be reconstructed from a density matrix.

Thus, if a single qubit is interacting with an additional, uncontrolled qubit, the reduced
dynamics of that first, single qubit will “look like” a qubit undergoing an evolution with
uncontrolled bit flip errors acting on it.

Error Dynamics in the System

Having reviewed the procedure for zooming out of a particular quantum channel to see the
unitary dynamics which give rise to it, for the remainder of this thesis, we will zoom back
in and focus on the subsystem dynamics generated by that quantum channel-after all, the
environment is not generally accessible to a quantum engineer.

Combining 2.8 and 2.9, and specializing to the initial density matrix,

10
Pinit = (O O) (2.17)

after n steps, the error map E"(pinit) vields,
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11+ (1 —2p)) 0
o= (5 ) 219

This discrete picture, where the error process is imagined to occur with each individual
application of the error map, &£, can be extended to a continuous picture by making the
identification p — I't/n. In the limit n — oo, then the discrete error process becomes a
continuous error process, where the bit flip errors occur with rate I'. Equivalently,

31+ e 0
o= (15T ) (2.19)

2
A useful tool for diagnosing whether a state vector can be extracted from a given density
matrix is purity, P, and is defined,

P =Tr(p?) (2.20)

P satisties 1/d < P < 1, for system Hilbert space dimension d, and only equals 1 for
density matrices that can be written as |¢) (¢| for some ). Conversely, the closer P is to 1/d,
the closer the density matrix is to the totally mixed state—a state of maximal uncertainty
about the quantum system of interest.

Recapping, the initial goal was to describe the effect of a bit-flip type error process on
a qubit system. The Schrdinger equation by itself was not flexible enough, so we instead
wrote down a quantum channel-an operation on density matrices—that is flexible enough to
describe this error process.

Here, we see the system dynamics due to the presence of bit-flip errors are particularly
disastrous—the system, if prepared initially in a 0 state, will exponentially decay into a
state of maximal uncertainty-equally likely to be measured in either the 0 or 1 state, and
saturating the lower bound for P.

This dynamics arises exactly from tracing out—i.e., averaging over—the interaction of a
system qubit with an environmental qubit, where the interaction Hamiltonian is of the form
2.16.

This exponential decay will be another recurring theme of this thesis. In a sentence,
this thesis is an exercise in trying to correct bit-flip errors—in trying to avoid exactly this
exponential decay in the information stored in the qubit. We will find that codes that
are otherwise quite resilient to certain classes of errors will fall prey to these uncontrolled,
continuous bit-flips in later chapters.

2.3 Stabilizer Codes

Definitions

With some understanding of how errors can be modeled in quantum mechanics, we're
equipped to discuss the tools quantum information theorists have developed to correct them.
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In this section, we briefly review the theory of stabilizer error correcting codes[59, 87]. These
codes are but one in a veritable zoo of different schemes for storing and protecting informa-
tion. We focus on them in this section primarily because stabilizer codes are theoretically
tractable, and are the only sorts of codes studied in this thesis.

Given n qubits, a collection of operators S;, and 2* states [¢),,i = 1,..,2¥ which span a
subspace in which k£ encoded qubits are defined, let,

Si ), = +11v), (2.21)
S5, ;] = 0 (2.22)

for all ¢, 7. Furthermore, suppose there are m error operators £}, j = 1,..,m, and that
for each of them, there exists some not necessarily unique operator S; such that

{E;,S8;} =0 (2.23)

Stabilizer codes are those collections of states |1); and operators {.S;} which satisfy the
above conditions for a collection of error operators { £y}, usually belonging to some subset
of the Pauli group—tensor products of Pauli operators with the identity.

Condition 7.1 demands that the encoded states, |1)) are all +1 eigenstates of the sta-
biliziers, S;. Intuitively, this means that measuring stabilizers does not disturb encoded
states.

Condition 7.2 ensures that all stabilizers mutually commute. This means that it does not
matter what order we measure stabilizers in—they can be measured simultaneously, swept,
randomly sampled etc.

Finally, 7.3, while the most opaque, ensures that error states, or states that are per-
turbed from encoded states by the application of some number of error operators—i.e.,
E,E;...E} |¢),—are related to —1 eigenstates of some stabilizer operators. There may exist
some sequence of errors F; I;... ), which can cause a transition between encoded states. That
is to say, E;E;...E) |1o) = |11) can occur, but there will be some minimum number of errors
necessary to cause such a transition.

All together, these three conditions provide a set of operators, S;, that can be measured
in any order, which do not disturb the encoded states, and which provide some information
about the presence of errors. Depending on what information they provide, errors can
sometimes be corrected perfectly.

For example, given three qubits, let [¢); = | 1) and [¢)s = | 4JJ). Then the set of
operators .S; satisfying (7.1) and (7.2) is {0.0./,0.0.}. One can easily determine that the
set of error operators E; corresponding to these two stabilizer operators is:

{o.11,10,1,11l0,,0,0,1,0.10,,10,0,}. (2.24)

More transparently, this 3-qubit stabilizer code encodes two protected states. If some
noise source were to apply any single qubit o, operator, or any two-qubit ool operator,
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measurement of the set of stabilizer operators would indicate the presence of an error. Fur-
thermore, the code can actually detect and correct single o, errors. For example, a meau-
rement result of —1,+1 of the stabilizers o,0.1 and [o.0., respectively, indicates either an
error on the first qubit or two errors on the latter two qubits. In a sufficiently noisy environ-
ment, these two errors would be indistinguishable—i.e., degenerate—, but for many noise
models, the single error situation is much more likely, thus a single o, operator applied to
the first qubit will more often than not return the qubit back into the protected subspace.

This entire procedure easily generalizes to an arbitrarily long chain of spins. In fact, by
construction, the protected states of such a chain of L spins exactly coincide with the ground
states of a 1D quantum Ising model.

2.4 Perfect decoding of the Ising model

The Ising model is the prototypical spin system considered by both classical and quantum
statistical physics. We will encounter several flavors of Ising systems in this thesis, but the
simplest is the 1-dimensional model, defined by the Hamiltonian on a 1-dimensional array
of spins with periodic boundary:

H=> —Joio}, (2.25)

For J > 0, the ground state is two-fold degenerate, and thus can encode a single qubit
by the the identification |00000...) — [¢), and [11111...) — [¢),.

Now, consider the spin chain initialized to the [|¢), state, and further suppose some
pattern of bit flip errors befalls the system—i.e., 0® are applied with some probability to
each site, independently at random.

In the classical domain, “decoding” for the 1D Ising model is straightforward: one simply
measures the chain of spins, and flips those spins which are not pointing the majority direc-
tion. If on every error detection cycle, a bit flip error occurs with probability p independently
at random on each site, then the probability that an error has occurred is equivalent to the
sum of the probabilities of all the configurations with more than half of the spins flipped.
This grows like:

L\, .
Pbitfliperror = ZJi>L/2 (Z>pz(1 - p)L (226)
< e mle-1/2) (2.27)

where the second inequality follows from Chernoff’s bound[28]|. This bound can be made
tighter, but the relevant dependence is the exponential suppression in the chance of a bit
flip error in L.
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The quantum analogue is similar. One could measure the o, projection of the individual
spins (via coupling to an ancilla, for example), as in the classical case, but this would,
generically, collapse superposition states, resulting in a loss of quantum information.

Instead of accessing the projections of individual spins, one can preserve the quantum
information by measuring the stabilizers, .S;, which indicate the presence of domain walls—
virtual objects indicating a disagreement between neighboring spins. A “majority rule”
update heuristic is equivalent to merging pairs of domains walls via a perfect matching
procedure. This is achieved by adding fictitious labels to spins + and —, where the label
alternates after the presence of any domain wall. Domain walls are then joined so that the
dominant label becomes the only label. I've provided a cartoon of this in Fig. 2.4.

While this procedure protects both classical and quantum Ising chains from bit-flip errors,
it does not preserve all types of quantum mechanical errors. For this, we must turn to a
more complicated code.
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Chapter 3

The Toric Code

there is a season, and a time to avoid exhausting memory.

King James Programming Tumblr

In the previous chapter, we saw how uncontrolled unitary interactions brought about bit-
flip errors in quantum mechanical systems. In generality, quantum mechanical systems are
subject to many more types of errors. Ignoring errors due to the literal loss of a qubit—e.g.,
an atom escaping a laser trap—the full set of errors that any full quantum error correcting
code must handle are Pauli-errors: o,,0,, and 0.

Peter Shor’s 9-qubit code was the first example of an error correcting code that could
successfully detect and correct the full set of Pauli errors. Shortly thereafter, an explosion
of code families erupted throughout the late 90s and early 2000s, all with different tradeoffs
in implementability, code distance (i.e., the number of errors necessary to cause an uncor-
rectable error), and noise threshold.

Essentially all of these proposals were for systems that needed to be actively measured,
and then corrected with some form of feedback to remain in a protected state. Kitaev’s
Toric Code, first constructed in 1997, was the first example of a candidate self-correcting
code—an error correcting code that seemed to be intrinsically resilient to errors, in much
the same way that classical hard drives are resilient to noise because of the stability of the
ordered phase of ferromagnetic materials.

In this chapter, we review some of the primary features of the toric code.

3.1 Preliminaries

Because the toric code can be analyzed as both a stabilizer error correcting code and as a
Hamiltonian, to avoid confusion, we will specialize to the Hamiltonian case for the majority
of this chapter. That is, we will imagine a system of qubits whose evolution is governed by
the toric code Hamiltonian. We will comment on the stabilizer error correcting code version
of the toric code near the end of this chapter in Sec. 3.6.
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The toric code is defined on a square lattice of qubits, with qubit degrees of freedom
residing on the edges of the lattice. The Hamiltonian is a sum over “stars” and “plaquettes”:

Hyo=—J.Y Ay—Ju Y By, (3.1)
v p
HO‘;, B, = Ha;“, (3.2)

jEv JED

Ay

where the A, operator is defined on every cluster of four qubits sharing a vertex, and
where the B, operator is defined on every cluster of four qubits around a square, or plaquette.
These are the stabilizers of the toric code. The coupling constants J. and J,,, are taken to be
positive. Conveniently, the A, and B, commute with each other, and can often be analyzed
separately.

The finite, planar version of the toric code (as a stabilizer code) called the surface code
has become popular in the superconducting qubit community[50], but for this thesis, we
specialize to 2D periodic boundary conditions.

3.2 Ground and excited states

With periodic boundaries, there are four degenerate ground states in the toric code, thus,
independent of lattice dimension, the ground state subspace of the toric code encodes 2
qubits. The four-fold degeneracy of the ground state can be understood from the following
argument:

Without loss of generality, suppose that the toric code is in some ground state, call it
|4)oo- Compare this state to a copy of the ground state modified by the additional application
of a single horizontal line of flipped bits (i.e., a loop of o, operators winding horizontally
around the lattice). Call this second state, with a line of flipped bits [¢),,.

It is straightforward to verify that [¢),, is also +1 eigenstate of every A, and B, so long
as [1),, is, thus [¢),, is also a ground state. It is slightly more involved to show that |¢),,
and |1)),, are orthogonal.

We proceed by introducing the winding operators:

Wi, = H of, Wi,= H oz, (3.3)

Jel2 jeli 2

where I'y 5 represents some closed path of qubits wrapping entirely around the lattice, and
where 1;172 is a closed path along the dual lattice. For a pictorial representation of a piece of
the toric code graph and its dual, see Fiig 3.1. Paths on the lattice are defined by a sequence
of edges between vertices, and paths on the dual lattice are defined by a sequence of edges
between centers of plaquettes. Simultaneously rotating all edges on a pictorial graph of the
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Figure 3.1: A piece of square toric code lattic in solid black lines, with its dual lattice
indicated in light blue dotted lines. Vertices of the dual lattice rest on plaquettes of the
primary lattice, and vice versa. Note that by individually rotating the edges of the black
lattice, one retrieves the dual.

toric code exchanges the lattice with its dual. Note that the winding operators mutually
commute with Hrpg, thus they are simultaneously diagonalizable.

Fix T’y to be a closed loop of o, operators running along some fixed vertical column of
plaquettes—i.e., a closed loop around the dual lattice. Again, W5 commutes with Hrpc, and,
because it is composed entirely of paulis, has eigenvalues +1.

Now, by choice, we can associate [1),, with the +1 eigenvalue of W3, and [¢),, with
the —1 eigenvalue. Because eigenstates of symmetric operators with distinct eigenvalues are
orthogonal, these two states thus must be orthogonal.

To see that there must be four total such states and no more, we resort to a counting
argument. For a square lattice with L vertices on an edge, there are L? unique A, operators,
and L? unique B, operators. The ground state is the simultaneous +1 eigenstate of these
operators, and excited states violate some number of terms in the hamiltonian, yielding —1
measurements on some subset of the stabilizers. We can then count the total number of
states on the toric code by indexing the states based on which ground state we start in, and
by which stabilizers are being violated.

While there are L? unique Ay and B, operators, respectively, only L? — 1 of them,
each, are independent. Thus, there are 2L°~1 . 2L°~1 — 92L°-2 independent patterns of
stabilizer outcomes for A, and B,, total. However, there are 221 total states in the Hilbert
space defined on the lattice. Thus, the full Hilbert space is covered by considering the
422172 — 22L” gtates arising from all possible combinations of stabilizer outcomes associated
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with the four different ground states.

One might worry that some of these combinations of stabilizers might be double counted—
i.e., that some combination of B, violations in one ground state corresponds to the same
state as some combination of B, violations in another ground state. This cannot happen
for the same reason that ground states are orthogonal—the winding operator construction
guarantees that these states are always orthogonal.

Intuitively, the four ground states can be best understood by how they differ from each
other. All four ground states are fairly complicated superpositions of “loops” of spin states.
If spin-down is zero, and spin-up is one, then a plaquette of ones is the simplest of such
loops. Transitioning from one ground state to another involves applying a closed loop of o,
operators winding entirely around the system (or of o, operators winding around the dual
lattice). Because the system has the topology of a torus, there are 2 topologically distinct
ways in which one can draw such a loop.

The winding operators defined above can only discern the parity of the number of such
loops in a given toric code ground state. Thus, the ground states can be organized into the
four combinations of even, odd X even, odd parities of loops winding around the system
horizontally and vertically.

In fact, to a local observer, the four ground states of the toric code are completely
indistinguishable. This is a manifestation of the so-called topological order of the toric code.
One must perform a measurement that interrogates the toric code entirely along the length
of the system to determine which state the system is in at any given time.

3.3 Construction of Ground State

In the previous section, we derived some properties of the ground state manifold that must
be true, but did not actually provide the state itself. There are several ways to construct
the ground state of the toric code, with varying levels of completeness. Here, we provide
an intuitive algorithmic procedure by which one can exactly reconstruct the ground state,
because the details of the exact wavefunction in the basis of spins are fairly involved. We
also provide a simple PEPS procedure for generating the ground state, which is sometimes
numerically convenient. The most convenient representation for the ground states for this
thesis does not use either of these representations, and is treated in the following section.

Starting with a lattice of spins all initialized to the 0, or down state, the following
algorithm generates the state:

In words, this algorithm starts with a state that is initialized to be all 0s. Then, every
unique state that differs from this original state by some number of applications of B, on
different plaquettes are added to a collection C'. One ground state is the equal superposition
of all such states in C'.

The other three ground states can be generated as follows: instead of starting with |¢)
initialized to all zero, instead initialize to all zeros with a column of flipped bits, a row of
flipped bits, or both a column and row of flipped bits, respectively.
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Algorithm 1 Ground State Construction

¢ |#) + All spins initialized to zero (or down)
C—{l¥)}
while ||C|| < 222°~! do
for b in {B,} do
for |¢) in C do
if b|¢) & C then Append b|¢) to C

IR A e A e

: Return \/ﬁ > iec |9)

These four choices (all zeros, 1 horizontal row of flipped bits, 1 vertical row of flipped
bits, both 1 horizontal and 1 vertical row of flipped bits) are not unique. Again, by the
properties of the winding operators, any choice consistent with the parity of the number of
either rows or columns of flipped bits will result in the same generated grounds state. For
example, by starting with 2 rows of flipped bits and 2 columns of flipped bits, the same
ground state is generated as by starting with all bits as zero.

This procedure is exactly equivalent to forming the projector

TT+ A ) (3.4)

S

for the different initial |¢)) as described.

3.4 Quasiparticles

The previous picture of the ground state is instructive for understanding the “loop gas”
picture of the toric code. Note that applications of B, operators essentially form closed loops
of spins on the lattice. Thus, the ground states can be understood as equal superpositions
of every possible combination of closed loops of spins on the lattice.

But this picture is extremely inconvenient for thinking about dynamics, because one must
keep track of the details of exponentially many states. It is instead much more intuitively
clear to think of the different ground states of the toric code as orthogonal vacua—empty
states.

Excited states, then, can be easily tracked by monitoring how the stabilizers respond to
different types of excitations. It is straightforward to verify that applying any continuous,
open string of o, operators to a ground state results in a state that violates at most 2 A,
stabilizers, with total energy 4., above the ground state. Further, any continuous, open
string of o, operators applied to a ground state violates at most 2 B), stabilizers, with total
energy 4., above the ground state energy. These two types of excitations are sometimes
called electric and magnetic quasiparticles—language that derives from interpreting the toric
code as a Z, lattice gauge theory. They are considered “particles” because the only data
relevant for the dynamics of the toric code is the location of the endpoints of the string of
erTors.
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Finally, o, type errors can always be rewritten as combinations of o, and o, errors by
the identity:

0u0b = 1€qpc0c + Oup] (3.5)

for a = x, b = 2z, and ¢ = y, which follows immediately from the commutation and
anti-commutation relations governing the pauli group.

Thus, excited states of the toric code are characterized by the number of open ended
strings of excitations. These excitations always come in pairs—note that even a single o,
or o, will always violate 2 neighboring stabilizers. It is sometimes convenient, then, to
think of the quasiparticles as “residing” on either the stars or plaquettes of the lattice, as a
shorthand for indicating which stabilizer are being violated by a string of errors that starts
on one stabilizer and ends on the other. With a record of which ground state a system was
initialized to, and with a record of where quasiparticles reside, one almost has a complete
specification of the state of the toric code. If one has access to the actual errors applied, then
this fully specifies the state. In reality, the strings of applied errors are not actual observables
in the toric code—only the endpoints are detectable. Additionally, the parity of the error
string—whether it winds left to right/top to bottom, or wraps around the lattice—can be
detected by a reference winding operator. Thus, measurements of the two winding operators
and measurements of stabilizers fully specify the state of the toric code.

It’s important to reemphasize that the actual pattern of errors in the code is not observ-
able (or even detectable!)—only the endpoints, and the total parity of all error strings with
respect to the winding operators. Note that by applying B, operators to some fixed pattern
of o, errors, the endpoints of strings of errors remain fixed, and the parity of the errors with
respect to the winding operators remains fixed, but the pattern of errors changes. That the
pattern appears to change is something of an artifact of the record-keeping scheme. This will
be be made explicit near the end of this chapter in Sec. 3.6 when we discuss error correction
in the toric code.

3.5 Zero temperature resilience

That one must interrogate an entire edge’s worth of qubits to determine which ground state
the system happens to be in is intimately relate do the resilience of the toric code to noise.
It almost immediately implies that, to cause an error to a state encoded in the ground state
subspace of the toric code, the environment must apply a sequence of errors that runs entirely
along the axis of the toric code. In a unitary noise model, as discussed in Sec. 2.1, such
errors are extremely unlikely. Consider a perturbation to the toric code Hamiltonian of the
following form:

HNoisy TC — _JeZAv - JmZBp + nzaf (36)
v P )
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This Hamiltonian is meant to model a toric code in the presence of some noisy field of
strength 7. Note that, if n is perturbatively small—i.e., that n < J,,, ,~—then this perturba-
tion is exactly zero up to L™ order in perturbation theory, for lattice edge length L. This is
because the only nonzero matrix elements of the perturbation require an L-fold interaction
with the perturbing field—i.e., terms like,

Nonzero contributions ~ (1|, 0505...07 1)y, (3.7)

In other words, unitary noise is exponentially suppressed in L, so long as it is sufficiently
small compared to the toric code Hamiltonian energy scale.

Surprisingly, n must grow to be a significant fraction of the Hamiltonian energy scale
before any appreciable splitting appears in the ground state manifold. This splitting as a
function of noise strength is depicted in Fig. 3.2. There, the on-site field must be more than
half the strength of the Hamiltonian before there is any discernible effect, after which there
is a sharp phase transition into a symmetry-broken phase.

This resilience to noise was the primary reason that people expected the toric code to be
a powerful quantum memory.

3.6 Decoders

So far, we have seen that the ground state subspace of the toric code possesses strong
robustness to unitary noise, and that this robustness is related to the extensively long strings
of errors necessary for transitions to occur. But the toric code is also a stabilizer error
correcting code, with stabilizers S = {A;, By}, code states [¢),;, 4,5 € {00,01,10,11}, and
errors in the pauli group. Thus, there exist efficient algorithms whereby, conditioned on the
outcomes of stabilizer measurements, one can return the toric code to an encoded state with
very high probability.

The details of the decoding procedure depend strongly on the type of error model used.
For o, and o, errors applied independently at random with probability p on each edge,
decoders will succeed with high probability so long as p < .109. If one additionally introduces
noisy measurements, but keeps the same error model per site, this threshold drops down
to p < .029 [96]. Further decoding algorithm details or geometric constraints on allowed
operations (e.g., nearest-neighbor only) further constrain the threshold [113].

If the error probability is higher than the threshold, then the system crosses a percola-
tion/correctability phase transition, where it becomes likely that an extensive error string will
exist somewhere in the system. Such a string is not correctable, because it isn’t detectable by
stabilizers. Fig. 3.3 depicts such an uncorrectable error for a numerically simulated system.

The vast majority of these decoders work within this “infinite temperature” limit, wherein
errors occur independently at random on each edge. We can quantify the probability of some
pattern of errors based on the following formula:

P(y) = prH(l — p)N—IlvH (3.8)
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Figure 3.2: Ground state splitting in the toric code as a function of applied field strength.
Adapted from Trebst et al. https://arxiv.org/pdf/cond-mat/0609048.pdf. Our 7 corre-
sponds to their “loop tension”, h.

where 7 is some error pattern, || - || is the number of errors in that error pattern, and N
is the total number of qubits on the lattice.

In general, there are many possible error patterns consistent with any given record of
stabilizers. A powerful error correcting heuristic is to consider the minimum weight error
pattern—i.e., the error pattern with the smallest ||7y|| consistent with some measurement
of stabilizers, as this is a proxy for the most likely actual pattern of errors present in the
system.

This pattern of errors does not necessarily coincide with the real pattern of errors in
the system, nor does it necessarily guarantee that correcting this error will always actually
perform the right corrective operation. The ultimate goal is to perform the most likely
operation to achieve error correction—not simply reverse the most likely pattern of errors
(these are subtly different quantities). Finding the most likely operation to correct the
code involves summing over all possible patterns of errors consistent with a given record of
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Figure 3.3: Carpet of o, errors after error correction for a system at criticality. The string
colored in red is the shortest nontrivial error. All other errors are homologically trivial.
Figure generated from data. The locations where the red string seems to break are simply
points where the error string wraps around the lattice.

stabilizers. Fortunately, using the most likely pattern of errors (rather than the most likely
corrective operation) as a proxy only reduces the threshold by a small amount, and can be
calculated efficiently (whereas the full algorithm for determining the most likely corrective
action has poor scaling).

The most likely pattern of errors, then, is easily found as follows: construct a completely
connected graph, one independent graph for each type of stabilizer, with each node given by
the location of a quasiparticle (i.e., a -1 stabilizer measurement). Edges are defined as the
minimum edge-wise distances between pairs of quasiparticles of the same type. Edmond’s
algorithm provides an efficient (i.e., polynomial time) algorithm for finding the most likely
error, because the most likely error corresponds to the minimum weight perfect matching of
the so-defined graph—a widely studied graph theoretic object[38].

Thus, in the presence of this type of noise, measurements, decoding, and corrective
operations can protect information in the toric code.
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3.7 Zero temperature mapping to RBIM

Establishing that the toric code can be corrected with high probability (i.e., 1 in the ther-
modynamic limit) below the error threshold relies on a statistical physics mapping to the
Random Bond Ising Model (RBIM)[86]. The probability of uncorrectable errors appearing
at p = .109 can be related to the fluctuation of domains of spins in a corresponding RBIM
at certain critical temperature. In this section, we will sketch this mapping.

The RBIM is defined on a square lattice, with (classical) spin degrees of freedom living
on the faces of the lattice. One could alternatively choose to place the spins on vertices, but
identifying the spins with faces will be convenient for the toric code correspondence.

The form of the classical Hamiltonian is:

Ho(s) == > misis (3.9)

<ij>

where < 4,7 > is a sum over nearest neighbor spins, and 7;; = +1, and equals —1
with probability p. This actually defines a family of statistical models, because the 7;; do
not fluctuate thermodynamically—they are fixed, and then the properties of the system are
derived from fluctuations in the spin degrees of freedom. Sometimes, these such 7 are referred
to as quenched random variables[86] The partition function for this system is then,

Z(B,7) = Z e~PH(s) (3.10)

{s}es

for all configurations of spins, S. This partition function sensitively depends on the values
of p and . The statistical mapping between the RBIM and the toric code is only valid when,

28 _ P
e = R (3.11)
so, we specialize to this slice for the remainder of the section. This particular slice of the
phase diagram is called the Nishimori line[114].

The precise details of the mapping are subtle, and rely on a fair amount of algebraic
manipulation, so we refer the reader to Lidar and Brun [86] for a complete treatment.
Intuitively, the presence of an error string can be related to the existence of an extensively
large, fluctuating domain of spin variables in the RBIM.

To be precise, for a given pattern of errors on the toric code, one can also consider the
corrective operation—itself a string of operators—that one would apply to return the toric
code to its ground state. These are depicted in solid red and dotted red, respectively, in Fig.
3.4. For successful corrective operations, all error strings will be closed into topologically
trivial (i.e., not wrapping around an entire axis) loops. The analogue of these loops in the
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Figure 3.4: A small sublattice of the toric code with a string of errors (bold red), a corrective
operation (dotted red), and auxiliary plaquette labels (plus and minus) indicating possible
spin configurations on an equivalent RBIM lattice.

corresponding RBIM are domains of spin variables with differing sign. All adjacent spin
variables with the same sign have a ferromagnetic coupling (7;; = 1), and spin variables with
disagreeing sign have antiferromagnetic coupling (7, = —1).

Thus, when the RBIM has large domains of disagreeing spins, this is analogous to a toric
code system with long error strings. The correctable and uncorrectable phases of the toric
code then correspond exactly to the ordered and disordered phases of the RBIM.

Note that the invariance of the error strings of the toric code to application of the B,
operator are recapitulated by the RBIM Hamiltonian as well. Applying a B, to an error string
is equivalent to flipping both a RBIM spin, s, and the sign of all of the coupling constants
connecting it to its neighbors, 7;;. This is a gauge symmetry of the RBIM Hamiltonian—i.e.,
this is a transformation that leaves the Hamiltonian fixed.

3.8 Finite temperature mapping to 1-D Ising Model

Thus far, we have seen that the toric code is resilient to unitary noise, and if stabilizers are
measured and decoded with sufficient frequency for certain noise models, it can be efficiently
error corrected.

In this section, we’ll see that, despite this resilience, the toric code is not resilient to
thermal noise.
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Figure 3.5: The transformed toric code lattice numbering convention for Wen’s Plaquette
model.

From the Toric Code to Wen’s Plaquette Model

First, we apply the following unitary to the rows (sometimes called the even sublattice) of
the toric code lattice (i.e., half of the total spins):

.= T e 312

k€even

Rotating Hr¢ by this operator, we retrieve,

Ul HrcUy = Y —Kojojo5o; = Hy (3.13)

S7p

where the sum runs over every star and plaquette, and where 1,2,3 and 4 follow the
convention indicated in Fig. 3.5. This result follows readily from the identity,

eTI0M2G . G702 — (cos(0)d + sin(0)n x @) - & (3.14)

That is, U, maps Hrc into a model called Wen’s Plaquette Model (WPM)[130]. As we
have only performed a change of basis, WPM has the same spectrum as the toric code.

From Wen’s Plaquette Model to the 1-D Ising Model

From here, it’s only a matter of comparing partition functions derived from the WPM Hamil-
tonian and the Ising model Hamiltonian. Following Zhang, Kou, and Deng [140], first, let
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J— €T z T z
W; = 01,05,05.04; (3.15)

The operator w; clearly has eigenvalues £1, and commutes with every other w;,,;. Thus,
the partition function,

7 = tr(e PHw) (3.16)

factorizes as:

7 = H(4e’f3K + 4¢7PK) o cosh(BK )Y 2 (3.17)
k

where k runs from 1 to 2L%? — 2—i.e., the number of independent terms in Hy,. But
this is exactly the partition function for the 1-D Ising model with no applied field (both
quantum and classical) on 2L% — 2 sites. While the 1-D Ising model has a zero temperature
ordered phase, it does not have any finite temperature order-disorder transition. Thus, it is
thermodynamically unstable at all finite temperatures.

Then, working backwards through the mapping, Wen’s plaquette model does not have
a finite temperatured ordered phase, thus the toric code does not have a finite temperature
ordered phase.
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Chapter 4

Errors at finite temperature

ye may be able to extract the bare, untagged datum and send this to the environment.

King James Programming Tumblr

In the previous chapter, we saw a collection of properties of the toric code—its resilience
to unitary noise, its error-correctability—but we also saw a very simple argument for why
the toric code cannot be stable to noise at any finite temperature.

Up until this point, I've been loose with this notion of “temperature”, essentially only
using it as a free variable in partition functions. The purpose of this chapter is to make
“temperature” overwhelmingly precise, because it is not immediately obvious what “tem-
perature” even means in a quantum mechanical setting. While it is straightforward to, for
example, define and construct thermal density matrices like:

and interpret them as “classical” quantum states, it does not provide any intuition for
why one uses such states, or what at all they have to do with temperature.

Clarifying this intuition entails an overview of the Lindblad formalism, as well as a
discussion of different types of environments, and how they give rise to something that can
be identified as a temperature for quantum mechanical systems.

4.1 The Lindblad Equation - A Simple Discrete
Derivation

We have already seen how tracing out the part of the system dynamics give rise to error
dynamics in our system in 2.1. The Lindblad equation is the result of performing this tracing-
out procedure with some additional assumptions about the sort of interaction occurring
between the system and the environment, or bath.
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First, we will write our total system 4 bath wavefunction as,

W) = [¢s) ® [d) (4.2)
This explicitly imposes a delineation of the total system into two components—the system

qubits and the bath qubits. Next, we assume these two systems are interacting via some
operator U that can be decomposed as

U=) S;0B (4.3)
J

We won’t worry about the precise form of the S; and B; operators for now.
After the interacting via this unitary, the system dynamics are,

ps =Trp(U W) (U] U) (4.4)
:ZTIB«SJ ’¢S> <¢s| S;/) ® (Bj |¢b> <¢b| B]T,)) (4,5)
= (&0l BBy 164) S5 1) (v ] (46)

where between the second and third lines we have made use of the identity

> (kIO ) (0u] O k) = (] O' k) (k] O |¢hy) (4.7)
= (6| O'O |¢) (4.8)

because the trace runs over a complete set of states in the bath—i.e., Y, ., . |k) (k| =

Igan. It will be convenient to work with the eigenvectors of the bath matrix elements,
(¢w| B;,Bj |op) = M;jr, so let py and Ay satisfy:

Then, define the sums of system operators (weighted by the appropriate matrix elements
from the bath):

J
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This set of operators {Ay} are exactly the Kraus operators already encountered in Sec.
2.1. Thus, we can rewrite,

Z J’S Ws ¢s‘ST

_Z Z)\k,ukjuk] S |¢s> <wS‘S

-3 z Vg Sy 1) (Wl V Ak ST
ik

= 3 (Au i) (8] A (411
k

where we have made use of the singular value decomposition of M into a product of the
matrix formed by its eigenvectors, uy, a diagonal matrix of eigenvalues, A\, and finally the
conjugate transpose matrix of eigenvectors, ;.

Eq. 4.11 is a fully general discrete master equation for the reduced dynamics of the system
in the presence of some interaction with a bath via U. There are several lengthy derivations
of the full Lindblad equation, which is a specialization to a particular limit approximation to
this equation, in the literature [1, 104, 12]. Here, following Lidar and Brun [86] we provide
a simple heuristic derivation for a perturbatively small interaction with a bath. This is the
weak coupling limit. Further, we assume that, with each interaction with the bath, the bath
is reset into its initial starting state. This is a simple way of imposing Markovianity—simply
that the bath retains no memory of interactions with the system. This property emerges
naturally in real bath models when there’s a separation of timescales between interactions
in the bath and interactions within the system. Let,

U= Z S; ® B; = e 2k kb (4.12)
J

k k k

Where terms of O(e?) are retained on the second line. Collecting these terms and replacing
the Sy in Eq. 4.11 with the appropriate terms from Eq. 4.13, one retrieves
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P, = Z AkpSAL
k

—ps — i€ Y _ (D] bi[dn) skps +i€ps Y (Gu| bi |60) s

k k
2
+e¢ E Mk SkPsSk!

ok
€ €
5 Z Mk 88k Ps — 5 Z Mk Ps Sk Sk (4.14)
ok k!

where mygp = (dp| b,t,bk |pp). After a small amount of rearranging, this becomes:

. 1
Pl = ps — 1€[Hpamb, ps] + Z e (akpsaz — é{alzak, ps}) (4.15)
k

where the aj, are defined in the same way as 4.10, and where Hyam, = D, (0] bk |05) sk,
often called the Lamb Shift Hamiltonian. This nomenclature arises because the Lamb shift
is similar in spirit to the Lamb shift in atomic spectra—it’s a contribution to the dynamics
that is purely unitary, and causes a shift to the energy levels of the system. Because we're
often only interested in the non-unitary part of the dynamics being captured by the Lindblad
equation, it is often useful to absorb this term into a change of basis, or to simply absorb it
into the definition of the Hamiltonian. We will do the latter.

Remembering that this equation specifies the evolution for a single interaction with the
bath over a timescale we choose, then we can define that time interval to be dt, and rear-
range once more, dividing both sides through by that time interval and re-including the von
Neumann equation contribution:

2

Ps—ps _Ops _ . € P Loy
T = ot - _Z[Hs:ps] + ; &(akpsak - §{akaka ps}) (416)

This is almost the Lindblad equation. Finally, making the identification (¢/v/6t)ay, = Ly,
we retrieve:

dps , 1
ot = _Z[H&pS] + Z (LkpSLIJ[; - §{L2Lkaps}) (417)
k

This equation describes the evolution of a system interacting weakly with a Markovian—
i.e., memoryless—bath. We will make extensive use of this equation in later chapters to
describe the evolution of the toric code in thermal contact with a reservoir. In particular,
the rates \/Lﬁ will entirely determine the interesting thermal properties for stabilizer codes

at finite temperature.
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4.2 The Lindblad Equation - The Long Continuous
Derivation

We still have yet to see a notion of “temperature”. In this section, we will finally define
temperature in the quantum mechanical setting. To do so, we will have to be slightly more
careful in deriving an equation governing the dynamics of a system interacting continuously
with some bath. A notion of temperature will naturally emerge as a condition on the sorts
of bath states that give rise to “well-behaved” system evolutions. This derivation follows the
rough trajectory of Breurer and Petruccione [21] with frequent deviations for clarity.

A Series of Approximations

We will again assume some sort of interaction Hamiltonian between a bipartition of a quan-
tum system into system and bath. To simplify the derivation, we work in the interaction
picture with respect to the system Hamiltonian, simply so that there are not too many
extraneous Hamiltonian terms wandering around the derivation.

The time evolution of the full system + bath density matrix in the interaction picture is
given by formally integrating the von Neumann equation:

pr(t) = prlto) = i [ dulHy(w), pi(u) (419

to

Then, we're free to insert this solution back into the von Neumann equation:

Ip1(t)
ot

= —i[H;(t), pr(1)]
= —i[H(t), ps(0) — i/o du[H(u), pr(u)]] (4.19)

The first approximation will be the assumption that interactions with the bath are suit-
ably weak so that the joint state can always be approximated as p;(t) = ps(t) ® p, for a time
independent bath state, p,. This is called the Born approximation. Then, the trace over the
bath degrees of freedom yields,

apést(t) — _/0 duTrp{[Hr(t), [H1(u), pr(u)]]} (4.20)

Because of the dependence of the nested commutator on s, this equation is generically
quite difficult to solve without further assumptions. The time-local form of this equation
replaces replaces prs(s) with prs(t), simplifying the integral. The resulting equation after
these two replacements is called the Redfield equation:
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Oprs(t)
ot

= —/0 duTry{[H;(t), [Hi(u), prs(t) @ ps]]} (4.21)

This integral is still difficult to solve because of the possibly arbitrary time dependence of
the Hamiltonian. The Markov approximation, used somewhat haphazardly in the previous
section, mollifies this by first making the exact integral change of variables from v — (t —u),
and then the inexact extension of the bounds of the integral to oo. This approximation is
valid so long as the integral decays sufficiently quickly as v moves away from ¢. This is
equivalent to the statement that the bath has a very short memory—if the integral decays
exponentially quickly in ¢ — u, then extending the bounds of the integral to co does not
appreciably change the integral. These replacements all together are often referred to as the
Born-Markov approximation, and yield,

Oprs(t)
ot

_ /O " A Tro{ [ (8), [Hi(t — ), prs(t) © pol]} (4.22)

The final approximation necessary to (re)arrive at the Lindblad equation is the Secular
approximation. For this approximation it will be convenient to reintroduce a form for the
interaction Hamiltonian,

k

We can also build the spectrally resolved operators,

sp(w) = Z .55 1T (4.24)

e —e=w

where € and € are projectors onto system eigenstates, and the double sum runs over
all pairs of system eigenstates satisfying the equality ¢ — ¢ = w. The a, can be recon-
structed from these frequency resolved operators by taking the sum ) ax(w) = a;. These
w-dependent operators are convenient for reasoning about system transitions, and will pro-
vide the appropriate granularity with which to take the Secular approximation shortly.

Now, consider the interaction Hamiltonian in the interaction picture (where we co-rotate
with the system Hamiltonian, H,:

H; = Z eHotsy (w) @ bye st (4.25)
k,w

This simplifies if we make use of the commutation relations for the s;(w), namely:
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(€l [Ha, se(w)] €)= (] (Hssk(w) — s(w) Hy) |€)
= (e| esp(w) — spe" |€) 6(e' — e — w)
= (el (—w)se |€)
—[H, sp(w)] = (—w)sk(w) (4.26)
—[H,, sp(w)] = (@)s

Thus, inserting the commutator in 4.25, we retrieve:

€

x> —+
—~
S
=
>~
[N}
J
~—

HI = Z €iHSt$k(W)6_iHst X bk

_ZS ’L(Hs )t 71H5 ® b
= Z e s (w) ® by, (4.28)

Now, we can insert this form of the interaction Hamiltonian into the Born-Markov master
equation (Eq. 4.22).

801857;(15) == /O°° dSTTb{[(kEU; e_iwtsk(w) ® by), [(Z e_w(t_“)sk(w) ® br), prs(t) @ pyl]}

k,w

=3 ) eI (w) (sk/ (W)ps()sh(w) — sh(wW)s (W)ps(t) + hoc)  (4.29)

kk'  ww!

where the constants 'y, are the Fourier transforms,

szk’ (w) = /Ooo du €iquI‘b{bL(t)bk/(t - U)pb} (430)

Finally, we are prepared to make the Secular approximation. Eq. 4.29 is the sum of many
terms, rotating with many different frequencies. The Secular approximation drops all terms
from this sum for which w’ # w (this is sometimes called the rotating wave approximation
(RWA)). This approximation is often made independent of whether or not it is suitable,
simply because it turns a complicated double sum into a tractable, simple sum. If there
happens to be an intrinsic separation of timescales, where the timescale set by the system-
bath coupling is much slower than these transition timescales, then these terms can be safely
neglected (i.e., this can be interpreted as a sort of weak-coupling limit). Intuitively, we are
not concerned with involving oscillatory terms like expiw't for w’ incommensurate with w,
because these terms average out. Care must be taken, however, for frequencies close to w.
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Finally, to re-arrive at the Lindblad equation, we need only decompose the bath correla-
tion functions as:

T (w) = %m, (@) + ihe () (4.31)

that is, its real and imaginary parts. We will primarily be concerned with the real parts
of the bath correlation functions,

g () = /_ " due™ sy (u) 510 (0)) (4.32)

oo

It can be shown [21] that the imaginary parts of T' contribute to the Lamb-Shift con-
tribution that we encountered previously in the discrete case 4.15. In terms of these bath
correlation functions, the Lamb shift terms appear as,

HLamb = Z Z Ak’k’ (W)SL(W)Sk' (W) (433)

w  kk'

Collecting all terms and refactoring, we once again rearrive at the Lindblad equation, but
now with a formula relating the bath correlation functions to the rates with which different
Lindblad operators act:

O0SE) i Ha 1]+ 3 S 2w () 50 ()ors D15 () — 3 5L Do) prs(t)})

w  kk'
(4.34)

Temperature and the KMS Condition

It is a result from classical thermodynamics that one expects the equilibrium distribution of
ergodic states to follow,

Pthermal X e_ﬁH (435)

for inverse temperature 3, and for a Hamiltonian, H [75]. For our quantum bath, we will
demand the same—that its density matrix is a Gibbs state, but we will additionally demand
(as a consequence of the Born-Markov assumptions) that the presence of the thermal bath
necessarily drives the system to a thermal Gibbs state. To prove that this familiar, classical
thermal state is indeed the stationary state of the system in the presence of these dynamics,
we make use of the Kubo-Martin-Schwinger boundary conditions (the KMS Condition) [79]:



CHAPTER 4. ERRORS AT FINITE TEMPERATURE 36

(DL (£)bi (0)) = (bwsb (¢ + 1)) (4.36)
which is satisfied by thermal states like Eq. 4.35. Verifying:
Proof.

(bE(£)b (0)) thermal

—BHypt ,
I e OUM(U
Try(e=PHb)
—BHy piHyt )t —iHpty, |
- T, e PHvettivth e br (0)
Try(e—0H)
eiHb(t+iﬂ) bT e—i(Hb—i-iﬁHb—i,BHb)t
= Try | by (0 k
Ty | Ok ( ) TI'b(€7f8Hb)
eiHb(t+iﬂ) bT e—iHb(t+iB) e~ BHb
= Try | b (0 k
s | b (0) Try(e—PH)
bi(t +iB)e P
= Tr, | b (0)-2
Iy | Ok ( ) Tl"b(efﬁHb)
= <bk’ (O)b]t; (t + Z./8)>thermal (437)

]

The KMS Condition is also extremely useful in establishing a relationship between the
forward and reverse transition rates, v(w) and (—w), which we use extensively in later
chapters. This relationship is often called detailed balance:

Bw

’}/kk/ =e ")%/k-((,d) (438)

This follows immediately from the KMS Condition, and the self-adjointness of the rate
matrix, vy
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Proof.

8

Yer (—w) = du e (b}, (u)by (0))

I
83

83

du 676w+iw(“7iw) <bk (O)b;rc/ (U)>

/
| e o w)
/

3

— e Bw /OO du €iw(u)<bk(0)b;r€/ (u+13))

o0

=P / " du e (b (u)bi (0))

o0

= ¢ Ppi(w)
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(4.39)

[]

Finally, we need one more commutator, and we’ll be equipped to prove the stationarity

of the thermal system state,

Bw

[pThcrmala Sk (w>] = (6 - 1>3k (w>pThcrmal

But this follows almost immediately from Eqs. 4.26 and 4.27.
Proof.

PThermal Sk (CU) — Sk (w)pThermal
= ¢ g (W) — sp(w)e PHs

o~ BlH—w) ¢~ BH:

= sp(w) — s(w)
= sp(w)e P (e — 1)

or, equivalently:

pThermalsk(w) 26’8 wsk(w)pThermal

pThermalsz (Cd) :e—ﬁw SL (w)pThermal

(4.40)

(4.41)

Finally, inserting prpermal into Eq. 4.34, (and noting that pryema commutes with the

Lamb Shift term,
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a erma . 1
pTgt 1 =0=— Z[HLamba PIS(t)] + ; %’Wtk’ ((.U) (Sk/ (w)pThermalsz(w) — §{SL(LU)S]€/ (Cd), pThermal})

=0 + Z Z Vkk! (w) (Sk’ (w)pThermals}l(w) - %{SL@‘J)S]C’ ((U), pThermal})

w kK
f L 1 f
= 2D i (@) (50 (@) Prnermarsh (@) — 5 5(@) 50 (@) prhermat — 5P hermat st (@) e ()
w kK
- Z Z kK (w) (Sk’ (W)pThermalsl (W) - S}; (W)Sk/ (W)pThermal)
w kK
=0 (4.44)

where we commuted prperma through to the right between the third and fourth lines, and
where the last line follows in expectation because of the cyclic property of the trace—i.e.,
Tr(sk/pThermalsL) = TY(SLSk/pThermal)- Thus, a thermal system state is a fixed point of the
evolution of the Lindblad equation.

To recap, in the previous section, we saw how imposing that our bath be in a thermal state
necessarily caused a fixed point of the system to also be a thermal state. As a consequence of
holding the bath at a fixed temperature, this temperature necessarily sets the temperature
scale of the system thermal state’s long-time fixed point of the Lindblad evolution. It’s
quite a bit more difficult to show that this fixed point might be unique, because there are
conditions in which it is not. Keeping in mind that this thesis is nominally about error
correction, that this fairly minimal coupling scheme to an environment necessarily caused a
system to evolve into a thermal state after some amount of time should be worrisome—the
thermal state is the worst possible state to use to try to encode quantum information!

Nonetheless, this result should not be surprising. We already saw back in Sec. 2.2 that
even a very simple unitary interaction between two qubits gave rise to system dynamics that
ultimately drove the system into a totally mixed state. Understanding these interactions,
and, in particular, the timescales of these interactions, controlled by 4w will be a central
component of future chapters.
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Chapter 5

An interlude on numerical methods

34:7 What man is there that knoweth not how to go about doing arithmetic on
polynomials.

King James Programming Tumblr

Before we can dive in to how exactly thermal environments destroy order in stabilizer
error correcting codes, we will take a short excursion into the theory of Markov processes.
For the remaining chapters, I regularly use these tools to probe stabilizer codes at finite
temperature. This chapter serves as a self-contained treatment of the theory behind those
tools. Most introductory texts on statistical methods treat Markov processes in detail, but
I found [110, 133] to be quite useful.

5.1 Markov Processes

We have, in fact, already encountered Markov processes in both their discrete and continuous
variants. The steady state solution to the bit-flip error dynamics of Sec. 2.2 was a discrete
Markov chain in disguise, and the Lindblad equation derived in the previous chapter describes
a continuous time Markov process. In this section, we briefly review the theory of Markov
processes, and how they can be solved.

Definitions

Most generally, Markov chains are collections of random variables, X (¢), where the “time”
index may be either discrete or continuous, satsifying the Markov property:

P(X(n+1)= zpp1 | X(n) = xp, X(n—1)= zp_1, X(n—2) = xp_9,..., X(0) = )
=PX(n+1)= zp11 | X(n) = x,) (5.1)
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Yab

Yac
Yca Vbe

Figure 5.1: A directed graph representation of an example Markov chain with possible state
variables a, b, and c¢. Transition probabilities / transition rates are encoded by the directed
quantities ;;.

where we are using X (¢) to refer to the random variable at a particular time, and lowercase
x; to refer to a particular realization of that random at that time. In words, random variables
have the Markov property when the probability distribution for the next instantiation of the
variable depends only on the current value of the random variable. Often, it is convenient
to represent these sorts of systems via a directed graph (see Fig. 5.1, where vertices of the
graph encode states (i.e., z;), and the edges encode transition probabilities.

For continuous time processes, the above Markov property holds, but it must be gener-
alized slightly to account for arbitrary time intervals, and takes the form,

where 7;; encodes the transition rates between system states. Note that in either situa-
tion, the equation for the probabilities of populations of different states as a function of time
can be formed by constructing the appropriate matrix equation. Defining the population
vector P(t), for discrete processes:

P(k) = (Ti;)" P(0) (5-3)

for an initial population vector P(0), and for transition probabilities I';;. For continuous
processes, is the solution to the matrix differential equation:
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P oy
— P(t) = "' P(0) (5.4)

In either case, taking the matrix power (discrete) or matrix exponential (continuous)
of v is considerably easier after diagonalizing . In general, then, the stationary / long-
time behaviors of these equations are entirely controlled by the eigenvalues and eigenvectors
of the transition matrix 7. As a word of caution, these transition matrices take slightly
different forms for discrete versus continuous processes, which is already implicit in the
above definitions, but bears elaboration for the sake of clarity. For discrete processes, the
rows of I';; are strictly positive and sum to 1 to conserve probability. That is,

Z Fd@serete -1 (5 5)
ij .
J
These matrices are often called stochastic matrices, and form a Lie group. For contin-
uous processes, the ~;; are not probabilities, but are instead transition rates, thus these v;;

are somewhat unimaginatively called transition rate matrices, and satisfy a different set of
condition:

> At =0 (5.6)
J

Do = (57)
J

These transition rate matrices form a Lie algebra—in particular, they are the infinitesimal
generators of the group of stochastic matrices[85].

Error maps as Markov chains

Recasting the error process considered in Sec. 2.2 as a Markov chain is nearly immediate:
the single-qubit density matrix, p, can always be reshuffled into a column vector with the
same four entries, and the stochastic matrix for bit flip errors is simply:

Fbit flip _

kN O O |
o O OO
o O OO

oo

which has eigenvalues and eigenvectors,
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1
)\1 :1, '171 == 0 (59)
0
1
1
-1
(5.11)

Inspecting the form of these eigenvalues and vectors, we see immediately that any initial
population vector’s projection onto the second eigenvector will decay exponentially as the
Markov process proceeds in time. Additionally, the stationary distribution, with eigenvalue
1 falls out immediately: the equal population vector. That is, after infinite time, we expect
the presence of bit-flip error dynamics to drive us into a state of maximal uncertainty, with
equally likelihood of being in the 0 or 1 state.

The Lindblad equation as a Markov chain

If the system’s Hamiltonian spectrum is degenerate (which will not be the case for the
toric code), or if the Lindblad operators only ever connect single eigenstates to other, single
eigenstates rather than superpositions of eigenstates (which will be the case for our particular
bath model), then the equations of motion for the diagonal entries of the density matrix
decouple from the off-diagonal elements under evolution by the Lindblad equation. In this
case, the equations of motion for the diagonal entries—i.e., the populations—will take the
form of a continuous time Markov process. Sandwiching Eq. 4.34 with bras and kets for a
single component of the diagonal of the density matrix, we retrieve[21]:

d <6iclif &) _ d]j;t(t) = (Zw«(ﬁj — &) (&5] sk |€) (&l s [€) P5(t)

J k,k!

— (€5 — €5) (el sk |e) (5] swe |€z->Pi(t)> (5.12)

The underlined quantities, involving the bath correlation functions and system operator
matrix elements are the components of the transition rate matrix for the corresponding
Markov process, which we’ll denote 7 to disambiguate it from the bath correlation functions,
Y- This equation is still in the form of Eq. 5.4 if we identify

Ve = Vi (€5 — €3) (€] s |€3) (€] swe |€) (5.13)
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Note that we're free to rewrite Eq. 5.4 in the following way:

dP(#) -
= j i P (t)

= X wh

= (D _7Pi(t)) + 7aPi(t)
i#i
= (Y TR®) - (Y 7FP(®)
i i
= (X TB (0 ~ A1)
(5.14)

where we have used Eq. 5.7 between lines 3 and 4, and the last step extends the sum to
include j = ¢ because this is equivalent to adding 0. Thus, the diagonal populations of the
density matrix under Lindblad evolution are a continuous Markov process.

5.2 Continuous time Monte Carlo

At first glance, the results of the previous chapter are encouraging—we are but a simple
eigenvalue problem away from determining the thermal behavior of our stabilizer code of
choice. Unfortunately, the dimensionality of this problem ends up being prohibitively large.
Even restricting to the lowest order processes involving only say, 2 quasiparticles in a system
with side-dimension L, there are (L;) o L* such states in the system. Worse, in practice,
the computational cost of eigendecomposition scales as O(n?) (or O(n~?%) with sparsity), or
O(L'?). Even making use of all available sparsity cannot reduce this below O(L?). Because
practical implementations of surface codes will likely involve thousands to millions of qubits,
eigendecomposition simply cannot scale to systems of practical relevance.

Instead, we will solve the Lindblad equation via continuous time Monte Carlo—a compu-
tationally efficient method for sampling random trajectories of the evolution of the system.
This method was originally called kinetic Monte Carlo [138], but is also called the N-fold
Way by a group that contemporaneously and independently discovered the algorithm|[11].

The algorithm

The continuous time monte carlo algorithm is detailed in Alg. 2. In words, the system
is initialized, and a total decay rate X\ is calculated, which represents the sum of all the
transition rates out of the current state. A measures approximately how fast the system
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will transition out of any given state. Then, using a number r chosen uniformly at random
from the interval (0, 1), we generate a waiting time 0T via the expression _Tllog(r). This
quantity represents one random sampling of the amount of time one would expect to wait
given an exponentially distributed random variable with parameter A (see below). Then, we
choose a new state to transition into randomly so that the probability of transitioning into
any given state is proportional to the fraction of that state’s transition rate relative to the
total decay rate. As we will see, this guarantees detailed balance, and will ensure that we
faithfully sample the real dynamics of the markov process. Equivalently, this ensures that
the probability of transitioning into any given state is proportional to the transition rate
into that state.

Algorithm 2 Continous time monte carlo of markov processes
i), t = 0 < Initial conditions
R DYPSR|
7 < Uniform(0, 1)
o1 +tlog(r)
k—1 %55 ki
Choose new state k so that E#i L<r< Z#i 5
Set |iy — |k), t = t+ 0T
Go to 2. and repeat until ¢t > T},4.

This algorithm arises from the following sequence of observations. For an infinitesimal
interval dt, the probability of a system remaining stationary—i.e., not transitioning into a
new state—is,

Pi(0t) =1=Xot, A=> 75 (5.15)
i#]

For a finite interval, we need only take the limit,

At
Pri(At) = limy (1 - A?>y (5.16)

— ¢ (5.17)

Thus, on average, the system remains stationary for a time A~!, and then transitions
somewhere. Thus, the probability of making a transition out of a given state within the
time interval 0t after a waiting time t is the product,

Wi (1)0t = Piyi(t) - 7ij0t (5.18)

where w;_,;(t) is the transition probability density at time t between states i and j.
Finally, comparing the transition probability densities between transitions to two different
states, we see:
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Wing _ Jij (5.19)
Wik ik

That is: the ratio of transition probability densities between two outgoing states is pro-
portional to the ratio of outgoing rates, verifying our state selection choice in the algorithm
in step 5.

Thus, a single “run” of the algorithm produces one independent trajectory of the dynam-
ics of the system. In practice, observables can be collected by running many independent
copies of the algorithm from the same initial conditions, and then averaging observables at
discrete time intervals. This was the workhorse algorithm for collecting data used in the
remaining chapters.

Discrete vs. continuous time monte carlo

Intuitively, the algorithm proceeds by initializing the system in some state, randomly se-
lecting a waiting time in a way consistent with the transition rates of the system, and then
transitioning forwards, again respecting the relative likelihoods of different outgoing states.
This procedure is not overly complicated, but one might wonder why we used this procedure
rather than a discrete time algorithm, so as not to have to worry about sampling waiting
times correctly.

For the systems we studied, there was often a large separation in timescales between
different processes. In other words, it was often the case that 7,; > v for many 7, kl
pairs, often by a factor of one hundred or more. Thus, any discrete time picture would be
doomed to evolve through long stretches of time where nothing of consequence was occurring,
because the simulation necessarily would have to be performed at the shortest time-interval
of relevance. The continuous time picture allows us to sidestep this problem entirely, and
only ever take timesteps when the we are promised that something has occurred.
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Chapter 6

The toric code at finite temperature

10:20 Are not my days few? cease then, and let me not fall into a loop here.

?7?7King James Programming Tumblr

The toric code was known to be a poor quantum memory since at least Nussinov and
Ortiz’s study of the thermal properties of the code using Davies generators[102]. In the
following Chapter I provide the first dynamical treatment of the error pathways of the toric
code at finite temperature. This chapter is the content of the manuscript Freeman et al.

[55).

6.1 Introduction

The fact that the potential power of a large scale quantum computer has not yet been real-
ized experimentally is due largely to the fragility of quantum information. A “conventional”
quantum computer stores quantum information in spatially localized qubits—consequently
local noise can generate errors that destroy the locally stored quantum information. The
theoretical possibility of a fault tolerant quantum computer is well understood in the lit-
erature; in general this requires building redundancy into the experimental systems such
that errors can be detected and corrected. Although fault tolerance via such active error
correction is theoretically feasible, the overhead required to perform active error correction
has thus far kept a large scale quantum computer out of reach.

An alternative approach to fault-tolerant quantum computing is based on building phys-
tcally robust quantum hardware with passive error correction. The notion of a topological
quantum computer builds on the possibility of storing quantum information nonlocally in
a robust quantum phase of matter with topological order [76, 51, 129, 95]; consequently,
these phases of matter appear to hint at the potential design of a self-correcting quantum
computer. Indeed, while in equilibrium with a zerotemperature reservoir, a topological qubit
is “topologically protected,” in that errors due to local perturbations are suppressed expo-
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nentially in the system size. Despite this promise, subsequent work has demonstrated that
topological phases in two dimensions (2D) are thermally fragile because topological order
is destroyed at any nonzero temperature [23, 102, 63, 89, 71]. While higher-dimensional
topological phases are robust at finite temperature [26, 24, 4, 17, 14, 60, 5, 64], it is only
in 2D that such phases can act as a universal quantum computer based on topologically
protected operations [76, 52, 92, 93, 95]. This shortcoming seems to preclude the possibility
of a universal topologically protected quantum computer.

Accordingly, the 2D toric code fails to be a true fault-tolerant quantum memory in
2D [76, 35, 13, 2, 3, 18, 136, 30, 82, 25]. However, while topological order is destroyed at
any finite temperature in the thermodynamic limit, on a finite-size system the topological
order of the toric code nevertheless persists up to a finite-size crossover temperature [23].
This suggests the possibility of operating a topological qubit in a low-temperature regime
where topological order persists due to finite-size effects. While finite-size effects reduce the
zero-temperature robustness to unitary perturbations|76], the existence of a lowtemperature
regime below the crossover temperature suggests that such finite-size effects may increase the
thermal robustness. Consequently, characterizing how the memory lifetime of a topological
qubit depends on finite-size effects, especially in the low-temperature regime, is of practical
importance.

In this paper, we use real-time Monte Carlo simulations to study the relaxation dynamics
of finite-size topological qubits defined by the toric code, in contact with a thermal reservoir.
Previous work using related methods focused on the high-temperature scaling of decoherence
times [29, 109, 111, 70]; here we focus on the dynamics at low temperatures. We find a low-
temperature regime that is well described by thermal relaxation dominated by quasiparticle
pairs undergoing topologically nontrivial random walks. At higher temperatures, the deco-
herence is dominated by local creation and annihilation of quasiparticle pairs. The transition
between these two regimes allows for a dynamical definition of the crossover temperature
T*. We find that T ~ 1/In N, which agrees with the scaling of a transition temperature
defined from the topological entanglement entropy at equilibrium[23]. Additionally we find
that both the finite-size and finite-temperature scaling are stronger below than above T*.

The structure of this paper is the following: in Sec. 6.2 we present the relevant back-
ground of the toric code; Sec. 7.5 introduces a microscopic master equation of the toric code
interacting with a bath as well as an effective model of the low-temperature dynamics; Sec.
6.4 presents a numerical study of topologically nontrivial random walks on a torus that we
use to construct the low-temperature effective model; and, finally, Sec. 6.5 presents a nu-
merical study of the microscopic master equation for the toric code interacting with a bath
and an analysis of these results in comparison with the low-temperature effective model.
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6.2 The toric code

The toric code Hamiltonian

The toric code provides a simple exactly soluble model with a topologically ordered ground
state that may provide topologically protected qubits at 7' = 0 [76, 35]. The toric code is
defined on a square lattice, where Ising spins sit on the links of the lattice. We define the
linear dimension of the lattice as L and the number of spins N = 2L2?. The Hamiltonian
involves four-spin interactions around the plaquettes and vertices of the lattice:

Hyo=—Jo Y Ay—Ju Y By, (6.1)
v p
A, = HO'JZ-, B, = Haf, (6.2)

jEv JED

where the sums over v and p are over the vertices and plaquettes of the lattice, respectively
(see Fig. 6.1). The ground states are the +1 eigenstate of all A, and B, operators, since
all such operators commute. On a torus, there are four degenerate ground states that are
distinguished by the expectation values of non-local winding operators Wy, Wy ,:

wiy= I] of. wi,= ] o5 (6.3)

J€l12 j€f‘172

where I'y o and ].’:‘172 are topologically non-trivial loops along the links and plaquettes of the
lattice, respectively, that wind around each of the two axes of the torus. There is a finite
gap A, = 4J.,,, to excited states that are —1 eigenstates of some A, and/or B,. These
correspond to e-type and m-type anyonic quasiparticle excitations, respectively [76].

The toric code as a quantum memory

Consider the WY, basis for the degenerate ground state subspace; we may label the four
ground states by the eigenvalues of W7 ,:

(o) = {wiy,

where +/— represent the 1 eigenstates of W7 and W, respectively. We choose this basis
to be the logical basis for a two qubit quantum memory. To simplify the discussion of errors
we will consider the limit J,, — oo, so that only e-type quasiparticles have finite energy.
The lowest excited eigenstates have a single pair of localized e-type quasiparticles which are
connected to a ground state by operation of an error string:

v ) = So[Tow][Wo),  Se[Tuw] = ] of- (6.5)

jGFv’v/

i), |9 ) . %) ) (6.4)
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Figure 6.1: The vertex (A4,) and plaquette (B,) operators of the toric code as defined in
(8.16). Edges marked in red are operated on by o while those marked in blue are operated
on by o*.

Here, v and ©v' are the vertices where the quasiparticles are located and the string I, .
connects v and v'. Error strings that form topologically non-trivial loops generate the WY,
operators and drive transitions between ground states; such error strings create mnoncor-
rectable errors, i.e., errors in the logical subspace that cannot be corrected. Correctable
errors, or self-correcting errors, are those error strings that close without causing a change
in winding number.

Under local perturbations to Hrc, such topologically nontrivial error strings only occur
at order L in perturbation theory; consequently both the splitting of the ground state de-
generacy and transitions between ground states are suppressed exponentially, and thus this
ground state subspace is “topologically protected” from such unitary perturbations [77, 16,
15, 120, 122, 37, 90, 74]. The toric code can thus act as a self-correcting quantum memory
at zero temperature.

The toric code at finite temperatures

Despite the topological protection at zero temperature, in the thermodynamic limit the
topological order of the toric code is destroyed at any finite temperature [102, 23]. Conse-
quently, a topological qubit would be thermally fragile. While topologically nontrivial error
strings due to wunitary perturbations are exponentially suppressed in the system size, non-
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trivial error strings may also be generated by non-unitary perturbations, e.g., from contact
with a thermal reservoir. Non-correctable errors due to non-unitary perturbations are not
exponentially suppressed in the system size.

The thermal fragility of the 2D toric code can be understood from a simple picture of
the dissipative dynamics generated from local interactions with an external bath. A local
system-bath interaction can generate a trivial error string by flipping a single spin, thus
creating a single pair of neighboring quasiparticles:

o7 [Wo) = |ey, €ur) (6.6)

where v and v" are the vertices on either end of the link j. The rate of such a process is
suppressed exponentially in the inverse temperature, due to the energy gap A to such excited
states. Such a trivial error is correctable by applying another o7. However, additional trivial
error strings of, with j # j' applied to v or v" will generate a longer, non-trivial error
string at no energy cost. Consequently, local coupling to a bath can drive a random walk
of quasiparticle pairs around the lattice with a rate that is only suppressed by a single
Boltzmann factor. Such random walks may generate topologically nontrivial error loops and
return the system back to the ground state subspace. If an error loop has an odd winding
number, this error loop has caused a non-correctable error by driving a transition between
ground states. Alternatively, if the error loop has an even winding number, the error is self-
correcting. Indeed, Alicki et al. have placed a system-size-independent upper bound on the
relaxation time of a pure toric code ground state that explicitly demonstrates this thermal
fragility of the toric code in the thermodynamic limit [2, 3]. Additionally, the analysis of
Nussinov and Ortiz demonstrates the lack of “spontaneous topological symmetry breaking”
at finite-temperature, as the autocorrelation time of the winding operators is sub-exponential
in lattice dimension in the thermodynamic limit [102, 101].

Crossover temperature

While the toric code is thermally fragile at all non-zero temperatures in the thermodynamic
limit, we can also consider how this fragility is affected by the finite size of a lattice. As
outlined above, the dissipative error processes which lead to thermal fragility occur when
there is a single quasiparticle pair present. Since the number of excitations in equilibrium
is suppressed by the Boltzmann factor at low temperatures, we expect that at sufficiently
low temperatures the number of quasiparticles in equilibrium will be vanishingly small. We
can then define an equilibrium crossover temperature T, which distinguishes the thermally
fragile regime from a low temperature regime with reduced dissipative error processes by:

Ne e o1 = T2 ~ (6.7)

InN"

Castelnovo and Chamon define an equilibrium crossover temperature 77, above which the
topological entanglement entropy vanishes [23]. They find that this equilibrium definition of
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T™ scales inversely with the log of the system size, and that this becomes a zero tempera-
ture phase transition in the thermodynamic limit. Conversely, on a finite sized system the
crossover temperature 1™ defines a low temperature regime where topological order persists
as a finite-size effect. This opens the possibility of using finite-size effects to exploit the zero
temperature topological order at finite temperatures. The usefulness of this low temperature
regime for quantum information processing depends on the scaling of the relaxation time in
this regime. Robustness to unitary perturbations requires a sufficiently large system size to
minimize the splitting of the degeneracy and the matrix elements between ground states,
while the thermal fragility increases with system size. Thus one may expect that there is an
optimal size for computational performance.

Below, we directly address this question of the finite-size scaling of the relaxation time of
a toric code ground state in contact with a thermal reservoir. This analysis complements the
growing literature concerning active error correction on the toric code by use of the stabilizer
space and associated stabilizer operations [35, 18, 30, 72]. Usually, stabilizer error analy-
sis is considered in the context of effectively infinite temperature thermal instability[29], in
contrast to the finite-temperature dynamics presented here. A complete toolkit for under-
standing and controlling errors in physical implementations of the toric code would need a
predictive low temperature model, as well as a recipe for understanding how the fidelity of
stabilizer operations affects the finite temperature operation of the toric code. Here we focus
on the robustness of the passive error correcting (i.e., self-correcting) dynamics under the
action of the toric code Hamiltonian in contact with a thermal reservoir.

6.3 Dynamics of the Toric Code in contact with an
external bath

Microscopic Quantum Master Equation

We present a microscopic model of the real-time non-equilibrium dynamics of the toric code
in contact with a thermal reservoir. Due to the fact that the spectrum of Hp¢ has a finite
gap to excited eigenstates with localized quasiparticle excitations, such dynamics may be
described by a Lindblad master equation[2, 3|:

p= 3 2eupel, — clewn - pcle ©5)

here p is the toric code system density matrix and {c,} is a set of Lindblad operators
generated by local system-bath interactions. We will consider the limit where .J,,, > J., such
that at low temperatures the system will remain in the +1 eigensector of all B, operators
and only e-type quasiparticles will be excited by the reservoir. We will only consider local
system-bath couplings, for which the bath generates single spin flips in the system. The
relevant Lindblad operators are:

{co} = {VW T VITEG V—E5, } (6.9)
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Figure 6.2: A torus with a self-correcting error string (left) and an uncorrectable error string
(right).

where E¢'

o (Ef,) creates (annihilates) a pair of quasiparticles at neighboring vertices and

T¢ , translates a quasiparticles across a link. These operators are defined by:
et 1 T
Evv’ = Zo-vv’ (1 - Av) (1 - AU’) )
1
T:,UI - ZO';Ev/ (1 — A’U) (]_ + AU’) . (610)

Since the Lindblad form of the master equation only connects diagonal elements of the
density matrix p to other diagonal elements, expectation values of diagonal elements will
evolve independently of off-diagonal density matrix elements. Correspondingly, the time
evolution of diagonal matrix elements reduces to a classical master equation:

dp,
dt :PYOZ(PHO _Pn)+Z(7—Pn+ _7+Pn>
no

+3 (1P —-Py) (6.11)

where n labels an eigenstate of Hrc, P, = pn, are the diagonal matrix elements (probabil-
ities) and {70,74+,7_} are the rates at which the operators {T¢, E*T, E¢} act, respectively.
Similarly, in (7.8), for a given n, the indices of ng, ny, and n_ label the sets of eigenstates
connected to |n) by the operators T, Ef, and E°, respectively. The ratio v, /v_ is fixed by
detailed balance to be
T+ AT (6.12)
v_
but the nature of the bath and the coupling strength determines 7y and the magnitude of
v— (or equivalently ~. ).



CHAPTER 6. THE TORIC CODE AT FINITE TEMPERATURE 53

We consider here an Ohmic, Markovian bath with a power spectrum given by:

w

J (w) = we™ we (6.13)
with w. a high frequency cutoff much larger than J.. Taking w, to infinity gives rise to decay
rates of the form[29]:

w

Y (W) =¢ 'm (6.14)

where £ sets the strength of the phenomenological system-bath coupling. This leads to the
following rates:
§ £A £A

70537 Y+ = e/BA_lv V- = 1_6—,BA' (615)

We are most interested in the dynamics deriving from the initial condition of a pure
ground state. We characterize the relaxation from a pure ground state by considering the
time evolution of the expectation value of the winding operators:

(Wi, (8)) =Tr [p(t) W] . (6.16)

The population dynamics are governed by the creation of quasiparticle pairs that undergo
random walks on the torus and then annihilate. Thermal transitions between ground states
occur when the quasiparticle pair undergoes a topologically non-trivial random walk before
annihilating. The decay of the expectation values in (6.16) from their values in a pure state
with eigenvalue +£1 can be due to both topologically nontrivial random walks generating
transitions between ground states, as well as transitions to excited states via propagating,
open error strings. Consequently, the statistics of such topological random walks affect the
scaling of the lifetime of a ground state.

Comparison to Ising Model Dynamics

Nussinov and Ortiz showed that one can take advantage of the equivalence of the partition
function of the toric code and that of 1D classical Ising chains to compute equilibrium
properties of the toric code [102, 101]. However, one can not readily take advantage of this
mapping for the study of non-equilibrium properties. While the partition function is only a
function of the spectrum of the system, non-equilibrium dynamics depend on the nature of
the (local) coupling to the external reservoir. Since the mapping of the toric code to an Ising
chain maps a 2D model onto a 1D model, local couplings of the toric code to an external
reservoir in general can lead to non-local couplings in the corresponding Ising model. Thus,
a simple model of the 1D non-equilibrium dynamics of the Ising chains locally coupled to
an external bath cannot describe the non-equilibrium dynamics of the toric code with a
local bath coupling. Fundamentally, the dynamics of each system at low temperatures are
governed by the random walk of defects (anyons in the toric code, domain walls in the Ising
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models); the defects of the Ising model undergo 1D random walks, whereas those of the toric
code undergo 2D random walks. Consequently, we cannot directly compute the finite-size
relaxation times of the toric code ground states from an analysis of the dynamics of the Ising
chain. It is nevertheless useful to discuss the nature of thermal relaxation in a finite-sized
Ising chain to help inform our discussion of such dynamics in the toric code.

Consider a periodic 1D chain of L classical Ising spins s; = =1 with energy

E= —JZ SiSi+1, (617)

where J > 0 is a ferromagnetic coupling constant. The ground state of (6.17) is a ferromag-
net, but the long range order is destroyed at all nonzero temperatures. Excitations above
the degenerate ground states are pairs of domain walls with energy cost A = 4.J. If a pair
of domain walls undergoes a topologically non-trivial 1D random walk, this drives a thermal
transition between ground states, which is we will refer to as “ground state relaxation”. At
sufficiently low temperatures on a finite-sized system, we can expect that these 1D topolog-
ically nontrivial walks will dominate the relaxation time of the magnetization. Such a low
temperature regime must occur when there is less than a single pair of defects in equilibrium:

L-e®T <« 1. (6.18)

At low enough temperatures, there may be a separation of time scales such that v, <
Yo < 7v—. Intuitively, the domain wall production rate, v,, can be tuned much less than
the domain wall annihilation rate, v_, simply by lowering the temperature (c.f. (6.12)). For
certain choices of bath model, the domain wall hopping rate, 7o, can be tuned between the
latter two rates. On a finite size lattice the time scale for an extensive random walk of the
defects can be estimated by the diffusion equation to be of the order of L?/~,. We consider
the low temperature regime of a finite size lattice where v, < 70/L?. In this limit, the rate
of topologically nontrivial walks occurring is determined by the rate of production of defect
pairs and by the probability that such pairs undergo a topologically nontrivial walk before
annihilating. This is because any domain wall pairs which proceed to an extensive random
walk will carry out their walk and annihilate much faster than another pair of defects will
be created.

We consider only the lowest order processes at first order in .. Once a defect pair is
created, the probability of the pair separating instead of trivially annihilating is of the order of
70/7—. The lowest order processes will annihilate upon their first return to neighboring links.
Processes for which the defect pair do not annihilate after the first return to neighboring
links will occur at higher order in 7o /v_. Consequently the overall order of these lowest order
processes is v 70/7—. We may then introduce a phenomenological form of the relaxation rate
from a ferromagnetic ground state:

Lrsing(8, N) ~ 0 - e L. P, (L). (6.19)

The linear scaling in L arises from the number of locations for domain wall pairs to be
created. The factor P{L (L) is the probability that any given domain wall that does not
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immediately annihilate eventually undergoes a topologically nontrivial random walk. A
symmetry argument shows that P (L) ~ L™! (see Appendix 6.9). This linear scaling of
PfL(L) suggests that the relaxation rate of the Ising model is size independent: Tgng ~
~A/T
Yo - € .
In Ref. [58] Glauber solved the exact dynamics of the Ising chain in contact with a
thermal reservoir. Glauber uses a bath where 7, is taken to be a constant and

Y o1 1
’)/T — 5—1 _efA/T' (620)
The relaxation time of this model is found to be
Yo
L' Glauber = 1T AT (6.21)

At low temperatures, I'giawer = Yo~ 2/T, in agreement with the expected size independent

form of the low temperature single defect pair model(6.19), despite the fact that vo/7_- < 1
is not satisfied.

Low temperature phenomenological dynamics

We can now make an analogous argument for the toric code. At sufficiently low temperatures
on a finite-sized lattice, the relaxation rate from a ground state should be dominated by the
dynamics of a single quasiparticle pair. Transitions between ground states are generated by
pairs of excitations that annihilate after undergoing a topologically non-trival 2D random
walk with an odd winding number. The low temperature regime dominated by single defect
pairs occurs when

L2 e 8T « 1. (6.22)

We consider a separation of time scales for the Ohmic bath defined by (6.15):

N <y L \/geMT (6.23)
Tl <yt = % <1 (6.24)

In this regime, the lowest-order processes are of the order of,
Yot~ T e AT (6.25)

and we write a phenomenological ground state relaxation rate of the form,
Pro(8, L) ~&-T-e T L P (L). (6.26)

Analogous to the phenomenological relaxation rate for the Ising model (i.e., (6.19)), the term
£-T-e /. 2 encodes the rate at which free quasiparticle pairs are produced. The number
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Figure 6.3: A depiction of the operation of the Lindblad operators in the master equation
describing the interaction of the toric code with an external bath, as defined in (8.4).

of spins where a defect pair can be created is N = 2L2  The scaling of the topological
factor Ps5(L), which is the probability of a 2D topologically nontrivial walk (i.e., a walk
with odd winding number) will control finite-size scaling of I'rc; only if Psh(L) ~ L=2 will
the relaxation rate of the toric code be system size independent, as for the classical Ising
chain. Note that P}, (L) is, in general, a function of temperature (see Appendix A).

High temperature phenomenological dynamics

At high temperatures, the relaxation of a toric code ground state will be dominated by
the growing population of quasiparticles, rather than the dynamics of a single quasiparticle
pair. In this regime, v, =~ 7. = 7y and the relaxation rate, i.e., the rate of decay of
the expectation values (W¢,), is due to error strings created across the length of the W¢,
operator. Consequently we expect the decay to be linear in system size:

T'py ~ 4L (6.27)

This linear scaling arises from the short time dynamics of the master equation (8.2) [124]
and is independent of the topological processes that contribute to PS% (L) and dominate the
low temperature regime.
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Low temperature effective model of ground state transitions

We will now use the form of the scaling of non-trivial annihilation probabilities discussed
above to construct an effective low temperature minimal Markov model of the toric code
ground state subspace. The ground state Markov model is defined by the master equation

dP
— =TP(t 6.28
- =TP() (6.25)
where P = (P, ., P, _,P_,, P__) is the vector of all ground state probabilities and T" is the
matrix of transition rates between ground states.
Here we assume the low temperature form of the transition rate between ground states
to take the form of (6.26); correspondingly the matrix elements of I' take the form

Lij = AP} (6.29)

where I';; corresponds to the transition ¢ — j, A is a rate of production of anyon pairs that
undergo a nontrivial random walk, and P;; is the probability that a given anyon pair will
undergo a topologically nontrivial walk causing the transition ¢ — 7. We take the form of A
to be:

A=2L2% [1— e 6.30
%( 6%+(2L2—7)%+7>’ (6:30)

where 2L?v, is the rate of pair creation for the entire lattice. The remaining factor in brackets
is exactly the probability that an adjacent pair of quasiparticles on an otherwise empty lattice
does not annihilate. The numerical factors (i.e., 6, (2L* — 7), 1) simply index the number of
edges that can be acted upon by the different Lindblad operators for the lattice configuration
with a single pair of adjacent quasiparticles. By detailed balance, the probability of a given
Lindblad operator acting on the system (e.g., E¢) is then just the ratio of the rate of that
operator (e.g., v_) to the weighted sum of the rates of the other available operators, weighted
by the number of edges available to each operator (e.g., 679 + (2L% — 7) 74 +7v_). Thus, )
accounts for the creation rate of quasiparticle pairs that do not immediately annihilate, or
those pairs which can generate nontrivial random walks.

The form of PZ*;Z is determined by whether the matrix element is relating ground states
that differ by a winding on one axis of the torus or on both. We define P§} and Pj, to be the
probabilities of a topologically nontrivial annihilation that has an odd winding about one
axis and both axes of the torus, respectively. Then the form of P;; is:

P if 7, 5 differ by one winding number
Pf} =4 P§ if 4, 7 differ by both winding numbers (6.31)
2P — P ifi=j
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We may solve this Markov model exactly by integrating (6.28): for P, (t = 0) = 1 we
obtain:

Pry(t) = i(l e A Qe*Qt(PﬁJrPa%)/\)
1
Py (t) =P (t) = 1 <1 — 674“33)‘)
P = 3(1 + e PN g 2 (FRAPR)N), (6.32)

When P§! ~ Pi ~ Ps}, we see that all P(t) are well described by an exponential decay with
rate 4Psh (L)) at a finite temperature, T (see Appendix 6.8).

6.4 Topologically non-trivial random walks on the
torus

Scaling of topologically non-trival wallks

As discussed above, at sufficiently low temperatures on a finite size lattice, we expect the
relaxation time of a toric code ground state to depend on the statistics of topologically
nontrivial random walks on the torus. In this section we present a numerical study of discrete
random walks on a square lattice on a torus using Monte Carlo simulations. Without loss
of generality, we may map the processes of pair creation, two-particle random walk, and
annihilation to a single random walker undergoing a random walk that starts and ends at
the origin. We can compute the probability of a quasiparticle pair generating a transition
between ground states after annihilation from the statistics of topologically non-trivial walks
of the single walker with odd winding.

To estimate the scaling of P$% (L), we consider a related quantity: the probability that
two random walkers will annihilate after n steps p(n). Topological walks must have radius of
L; given that the radius of a 2D random walk scales as v/n, we may assume that topological
walks hve a minimum number of steps that scales as nipo ~ L?. Psh(L) may then be
estimated as

P~ / " dn p(n). (6.33)

topo

This rough estimate assumes that all walks larger than a certain length are necessarily
topologically nontrivial.

Restricting to a planar square lattice with trivial topology, the annihilation probability
pP(n) can be computed to give the asymptotic behavior for large n as [94]:

1

P(2n) ~ ———.
p” (2n) 2n(In2n )’

(6.34)
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For small n, the exact result may be computed numerically via a recursion relation [94]. We
then can estimate the scaling of P}, by integrating the planar result:

P ( ) Ntopo Ntopo (11’1 ntopo)2 In Ntopo
1
ST 6.35
InL ( )

We expect then that the poly-log scaling of pP(n) will lead to an inverse logarithmic finite-size
scaling of P§%. Below we compute Ps} numerically and demonstrate this finite-size scaling
empirically.

Monte Carlo study of topologically non-trivial random walks on
the torus

In the low temperature limit, quasiparticle dynamics are dominated by trivial events where
pairs that are created and immediately annihilate as v_ > ~y. Additionally, for nontrivial
walks, once the anyon pair returns to occupy nearest neighbor sites on the lattice, the pair
will annihilate with high probability. To model this low temperature regime, we consider
an annihilation to occur as soon as a single random walker returns to a site adjacent to
the origin Fig. 6.4. This can be understood as a “zero temperature” limit to the true
quasiparticle statistics, as it ignores higher order processes that occur at finite temperature
involving quasiparticle trajectories that meet in annihilation geometries, but then do not
annihilate. Explicitly, this approximation amounts to taking v. — oo. Additionally, to
improve efficiency of the Monte Carlo simulations, we start the walker at one of eight starting
positions away from the origin; we account for the relative probabilities for reaching these
starting positions via exact enumeration of the combinatorics of short topologically trivial
walks (see Fig. 6.4). The random walker undergoes a discrete time random walk on the
square lattice on a torus until it returns to one of the four vertices adjacent to the origin.

Using this approach, we compute the probability that two random walkers will annihilate
after n steps, p*(n), and the average number of steps before annihilation, (n). For the true
finite temperature toric code, the annihilation probability for nearest neighbor quasiparticles
is less than one, as it is a function of ~5/7_. The finite temperature probabilities PS% (L)
may be computed from the zero temperature limit via a “resummation” method described
in Appendix 6.8.

Fig. 6.5 shows the annihilation probability on a torus p*(n) as a function of the number of
steps n for the zero temperature model with several system sizes L, as computed via Monte
Carlo. We see that pf(n) agrees with pP(n) up to a certain value of n for each lattice size.
We can therefore define a characteristic “departure time” ng(L), as:

PP (QZi)énZt)@nd) _ i (6.36)
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Figure 6.4: The eight starting geometries (translucent green, blue) for Monte Carlo sim-
ulations of random walks. The solid green site denotes the origin at which the “fixed”
quasi-particle sits. Blue configurations were sampled twice as often as green configurations,
owing to the different likelihoods of different starting geometries. The simulation was termi-
nated when the traveling quasiparticle reached one of the translucent red vertices—i.e. an
annihilation geometry.

Random walks that annihilate at small n are not sensitive to the topology of the finite-
size lattice. Thus, ng reflects the characteristic number of steps at which the random walk
distribution is affected by the finite size torus topology. For n > ng, we see that p*(n) > pP(n)
up to a characteristic number of steps. We therefore define the “crossing time” n. where
p*(n) crosses pP(n) and then drops significantly. Fig. 6.6 shows the scaling of both dynamical
quantities, n. and ng as a function of system size L. Both are seen to be well described by
power laws:

Ne,d ~ LAed (637)

with o, = 2.343 £ 0.001 and oy = 1.66 £ 0.04.

We also compute the initial and final topological sectors of each walk; this allows us
to compute the probability of topologically nontrivial annihilation, Psk (L), where the walk
generates a topologically non-trivial path with odd winding. Fig. 6.7 shows the finite size
scaling of Psh(L); for larger system sizes, we find

P2 (L) ~ 2D (6.38)
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Figure 6.5:  Probability of annihilation p*(n) after n steps on the torus for the model
described in section 6.4, as computed via Monte Carlo. We see that the value of p'(n) agrees
with the planar value pP(n) (see (6.34) and [94]) up until a characteristic value of n where
it is possible for the walker to make topologically nontrivial walks on a finite size lattice.

where ¢, = 0.472 £ 0.003.

We may understand the scaling of Psh,(L) from an analysis of p*(n). Since the deviations
of p*(n) from pP(n) for n > ny are due to topologically nontrivial walks which contribute
to P55 (L), we can place approximate bounds on PS4 (L) from p*(n). As an upper bound to
PSL(L), we assume that all walks for n < ng generate topologically nontrivial windings that
contribute to Psh(L); therefore we define the integrated probability:

Py = / " dn p? (n). (6.39)

As both pP and p' integrate to unity, P, is approximately equal to the same integral over
p*. Py includes both topologically trivial walks and topologically nontrivial walks that have
even winding; consequently we expect P to provide an upper bound to PS%,(L).
Alternately, we can make the approximation that topologically nontrivial walks are only
the excess probability for ng < n < n.. By making the assumption that p*(n > n.) = 0 (see
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Figure 6.6: The finite-size scaling of the characteristic departure (ng) and crossing (n.)
times from an analysis of the Monte Carlo data shown in Fig. 6.5. The lines represent the
best fit power laws to the three largest system sizes.

Fig. 6.5), we may approximate this excess by:
P = / dn pP (n), (6.40)

again relying on the normalization of p* and pP. While P, should over-count the events that
contribute to PSL (L) in the region ng < n < n. (as only odd winding topological events
contribute), the approximation p*(n > n.) ~ 0 leads to an underestimation of PiL (L), i.e.
P. provides a lower bound on P55 (L).

Fig. 6.7 shows the finite size scaling of P, (L) and P, (L) and confirms that these provide
a lower and upper bound to P, (L), respectively. Thus as with P$% (L), we find that P, (L)
and P, (L) scale as (In L)™!; the lines in Fig. 6.7 represent a fit to (In L),

To see the origin of this (In L)~! scaling, we can use the asymptotic form of pP(n) and
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Figure 6.7: The probability of topologically non-trivial annihilations on a torus, Pk (L)
as a function of system size, as computed by Monte Carlo simulations. Also shown are the
bounds P, and P,, which are computed from p'(n) and pP(n), as described in the text. The
lines represent fits to (In L)™' of the three largest system sizes.

the power law scaling of n.4 from (6.37), to approximate both P, and Py:

neq  Med(INneg) NN g
1
~ : 6.41
Oécyd InL ( )

Consequently, we can understand the origin of the (In L)™' scaling which we predicted for
PsL(L) to fundamentally be due to the particular form of the polylog scaling of pP(n). We
note that this inverse logarithmic scaling of Psh(L) implies a nontrivial finite-size scaling of
['rc; indeed for the phenomenological form from Eq. (6.26) we have I'r¢ ~ L?/1In L.

6.5 Real time Monte Carlo Simulation of the toric
code dynamics

Numerical method

We now present Monte Carlo simulations of the real time dynamics of the toric code in
contact with an Ohmic bath, as described in section 6.3. We use a continuous real time
Monte Carlo method [30] to numerically solve the master equation given in (7.8). We focus
on the relaxation dynamics of the system when prepared initially in a pure ground state.
We define the operator:

1
Mew = 5 (W7 4 1) (W5 +1); (6.42)
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Figure 6.8: Time evolution of the expectation value of the I1, ; operator (defined in section
6.5) computed via Monte Carlo, where 1/4 has been subtracted to reveal the exponen-
tial decay. These simulations were initialized to a pure ground state with L = 128 with
T = {0.02,0.08,0.14,0.2} respectively for subfigures (a)-(d). The black lines represent ex-
ponential fits to the Monte Carlo data. Note the stretched exponential behavior for early
times in (¢). 7o has been set to 1.

which is one for the |¥§ ") ground state and vanishes for all other ground states. We then
compute the expectation value (IT, | (¢)) to study the decay from [¥§ ™).

The exponential nature of the decay of 1, (¢) is displayed in Fig. 6.8, where the lines
represent exponential fits to the Monte Carlo data. We find such decays are well described
by exponential decays at all but intermediate temperatures (see Fig. 6.8 c.), where short
time deviations lead to a stretched exponential decay. We fit I1, . (¢) to an exponential:

1
I, (t) = 1 (14 37T+ (6.43)
to extract the relaxation rate I'y .. The additional systematic uncertainty of the rate I', |
due to the stretched exponential behavior in intermediate regimes does not appreciably affect
the analysis. Fig. 6.9 shows I'y | /e*/T computed for four system sizes over a range of tem-
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Figure 6.9: Ground state relaxation rates as a function of temperature for system size

= {16,32,64,128} corresponding to (a)-(d) respectively. The solid lines are the low
temperature phenomenological model, (T¢), (6.26), and the high temperature fit, Ty, (6.27).
The vertical dashed line represents the dynamical crossover temperature 73 . Note that
', (T) is a monotonic, increasing function of T’; the rescaling by exp(—A/T) generates the
nonmonotonicity. A has been set to 1.

peratures. We see three temperature regimes for each system size: a low temperature regime
where I', ~ Te /T a high temperature regime where I'y | ~ e~®/7 and an intermediate
temperature regime smoothly connecting these two forms of the temperature scaling.

Low Temperature regime

Fig. 6.9 shows the low temperature model predictions of (6.26) as well as the Monte Carlo
data. The regime of linear behavior of I'y, /e=*/T and corresponding agreement with the
effective model at low temperatures allows us to identify this regime as the low temperature
regime where the finite-size scaling of the relaxation time is determined by the scaling of
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topologically non-trivial random walks. Fig. 6.10 shows the finite-size scaling of I'; , in this
low temperature regime, where we have performed a data collapse to remove the leading
temperature dependence of (6.28). We find good agreement with the parameter free low
temperature model (6.28) (with temperature dependent Ps} (L) obtained by the resummation
procedure in appendix A) which has an approximate L?/In L scaling. This non-trivial finite-
size scaling is a key feature of this low temperature regime.

On increasing temperature, we can understand the transition out of this low temperature
regime as follows. The separation of timescales breaks down as the ratio L? - v, /v grows
larger. As the temperature increases, the decay rate is significantly affected by multi-pair
processes which are not accounted for in (6.28). Interactions between multiple pairs of
quasiparticles modify the annihilation probability distributions used in the low temperature
model. Additionally, at higher temperatures, as the lifetime of quasiparticle pairs increases,
the decay of II, is sensitive to trivial error strings (i.e., single applications of E°') acting
across the edges shared with the winding operators. At higher temperatures, these trivial
error strings dominate the decay rate.

High temperature regime

At higher temperatures in Fig. 6.9, we see that I',, ~ e~*/T; this is the high temperature
regime described by (6.27) where we expect a linear scaling in system size. In Fig. 6.11 we
show a fit to the linear finite-size scaling for several different temperatures, where we have
scaled the I', , by the rate of formation of quasiparticle pairs, v,. This one parameter linear
fit to the scaled data gives a single functional form for all system sizes and temperatures

F++ = CTH’}/+L> (644)

where we find the constant ¢y, = 2.5 £ 0.1. If only the lowest order process trivial anyon
pairs contributed to the decay across both winding operators, we would have cp, = 2.
Obtaining a fit to the finite-size scaling with cp, > 2 suggests that higher order processes
are also providing significant contributions. The solid red line in Fig. 6.9 shows that this
one parameter high temperature fit is in good agreement with the Monte Carlo data in the
high temperature regime. We note that the linear finite-size scaling of ', is distinct from
the L?/1In L scaling in the low temperature regime (see Fig. 6.10).

Dynamical Crossover Temperature

Analysis of the results shown in Fig. 6.9 strongly suggests that we can identify two dis-
tinct regimes where the relaxation rate is dominated by distinct physical processes. We can
therefore define a dynamical crossover temperature T3, which signifies the crossover between
these regimes. We define T | as the local maxima on Fig. 6.9 where the linear temperature
scaling breaks down; this does not correspond to a maximum of I', , itself, which is mono-

tonically increasing as a function of temperature, since we have removed the temperature



CHAPTER 6. THE TORIC CODE AT FINITE TEMPERATURE 67

x 104

[ Ty fit ]

[ & T =o0.02 ]

- ¥ T =0.03 ’

2F @8 T =o0.04 _
= [ ¥ T =0.05 )
&= [ ]
+ | i i
cl e i i
>t -7 ]
+ 1F .
= ]

0-IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII:

0 1 3

2
L2/ln L x 103

Figure 6.10: Low temperature regime: Finite-size scaling of I',, in the low temperature
regime where we have collapsed the temperature dependence of the data according to (6.26).
The solid lines are the low temperature model (7") predictions as described in (6.28); these
lines nearly completely overlap due to the weak residual temperature dependence in (6.26).
The dotted line indicates the best fit to purely linear scaling in L which is expected in the
high temperature regime (Ty).

dependence of the Boltzmann factor by rescaling. Clearly T3  is a function of system size,
since the low-temperature regime shrinks as L increases; Fig. 6.12 displays the finite-size
scaling of T | as well as the equilibrium crossover temperature Ty, computed in [[23]] from
the topological entanglement entropy. We find an inverse logarithmic scaling of T3, with
system-size, in agreement with the scaling of 77, .

6.6 Discussion

We have demonstrated the non-trivial finite size scaling of the relaxation time of the toric
code in contact with a thermal reservoir, using numerical simulations of real time dynamics
of quasiparticles. We have identified a low temperature regime in which the relaxation
dynamics are dominated by topologically non-trivial random walks of quasiparticle pairs;
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Figure 6.11: High temperature regime: finite-size scaling of ', in the high temperature
regime. The solid line represents a fit of all high temperature data (Ty) to a linear scaling
in L. The dotted line indicates a best fit to the poly-log scaling L?/logL which is expected
in the low temperature regime (7¢).

consequently the finite-size and temperature scaling of this regime are distinct from the
high temperature regime above the crossover temperature. We find that both the finite-size
and finite temperature scaling are stronger in this low temperature regime than at higher
temperatures where the behavior coincides with the expected scaling in the thermodynamic
limit[124].

In the low temperature regime, we find the relaxation rate to scale as L?/In L, in contrast
to the scaling as L above T} . Consequently, the lifetime of topological qubits will increase
faster in this regime as the system size is decreased, than above 77 . We also find that the
relaxation rate is suppressed by an additional factor of 7" in the low temperature regime; the
memory lifetime will increase with inverse temperature 3 = 1/T as fe®?, faster than the e®”
scaling of the lifetime above 7. We note that the particular form of the additional crossover
suppression is dependent on the nature of the bath, since it arises from the temperature
scaling of the diffusion rate for the ohmic bath studied here, 79 = £ET. In contrast, for a
super-Ohmic bath v, = 0; however, the effective diffusion rate will scale as e=22/T due to
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Figure 6.12: The dynamical crossover temperature 77, as a function of system size L. The
line represents the fit to In(L)™! scaling for the largest system sizes. Also shown is the

equilibrium crossover temperature T} as defined in Ref. [23].

indirect hopping of quasiparticles from 2nd order pair creation events [29]. Consequently the
low temperature suppression will be even stronger for a super-Ohmic bath.

This work may help guide the design of ground state relaxation of optimal topological
qubits. While it is now evident that true topological protection is not achievable for the
2D toric code in the thermodynamic limit, as a practical matter in a finite size realization,
one may wish to balance robustness to unitary perturbations, which is maximized by using
the largest possible system, against thermal robustness, which decreases with system size.
The stronger finite-size and temperature scaling of the relaxation time (corresponding to the
quantum memory lifetime) in the low temperature regime suggests that the optimal balance
will be achieved below Ty . The corresponding optimal size will of course depend on the
prefactors of the scaling relations and will therefore be dependent on both the microscopic
form of the coupling to the bath and the unitary perturbations.

Thus, although the topological order required for topological protection of quantum in-
formation processing is destroyed at all temperatures in the thermodynamic limit, we have
identified a dynamical low temperature regime for finite size systems which may prove prac-



CHAPTER 6. THE TORIC CODE AT FINITE TEMPERATURE 70

tically useful for quantum information processing.
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6.8 Resummation method

The probabilities of return were calculated by numerically tabulating the fraction of random
walks that arrived at the annihilation geometries depicted in Fig. 6.4. At finite temperature,
quasiparticles have a nonzero probability of not annihilating after reaching these positions,
and continuing a random walk. Only in the ‘zero temperature’ limit do these quantities
represent the true annihilation statistics for the quasiparticles. To distinguish between these,
we define P§! and Pj as the “zero temperature” probabilities of return.

To calculate this temperature dependent annihilation probability, we define:

P_ﬁ if 4, j differ by one axis
Pjl =4 P} _ if4,j differ by both axes (6.45)
1—2P¢ —PY ifi=j
?‘} represents the transition matrix for a discrete Markov chain. This matrix encodes
the zero temperature transit probabilities for a quasiparticle pair to meet in an annihilation
geometry. To account for the possibility of both annihilation and continued traversal, we

define:
_ ( (1-7)Pg 0)7 (6.46)

y_
(670 + (2L2 = T) v + fy_) ’ (6.47)

where 7 is the probability that an adjacent pair of quasiparticles annihilates, I is the 4 x 4
identity matrix, and where O represents a 4 x 4 zero matrix. The initial state vector for
this Markov chain represents a single pair of quasiparticles initialized to one of the starting
configurations in a given sector. By convention, these are the +4,+—, —+, —— sectors for
the first four entries of the state vector. The latter four entries encode the probabilities of
a pair of walkers annihilating in a given sector after some number of steps. The long time
steady state solution of this larger Markov chain then determines the temperature dependent
probabilities that a given quasiparticle pair causes a transition.

T =
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Figure 6.13: Various configurations of domain walls in 1 dimension. a) An “annihilation
geometry”, where the domain walls (in red) are separated by a single spin. b) A “free” pair
of domain walls. This configuration will annihilate trivially with probability 1/2. ¢) Domain
walls are further separated. d) Domain walls are separated by half the system size. The
rightmost domain wall is the same as the leftmost domain wall due to periodic boundary
conditions.
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For example, consider a pair initialized to the ++ sector, with an initial state vector
(1,0,0,0,0,0,0,0)". The state in the long time limit is
lim %*.(1,0,0,0,0,0,0,0)" =

k—o0

(0,0,0,0,1 —2P2 — P2 P2, P2 P2)" (6.48)

In the higher temperature limit all transition probabilities tend towards 1/4. The zero tem-
perature limit corresponds to the bare probabilities P_ﬂ and P_g%. The temperature dependent
Pj} , are used in the manuscript in sections IIT and V. The “zero temperature” limits are
used exclusively in section IV.

6.9 Finite size scaling in the 1D Ising model

Here we demonstrate the scaling of P4, discussed in 6.3. Consider a pair of domain walls on
a 1D periodic chain of L classical Ising spins separated by two spins (i.e., configuration (b)
in Fig. 6.13). In such a configuration, it is equally likely for the domain walls to move one
unit to the left or right. If either of the domain walls is separated from the other by only a
single spin, they are in an “annihilation geometry” (i.e., configuration (a) in Fig. 6.13), and
in the 7" — 0 limit will annihilate with unit probability.

Without loss of generality, fix one domain wall as an “origin”. A pair initially in config-
uration (b) from Fig. 6.13 will either annihilate with probability 1/2, or become separated
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by at least 241 spins with probability 1/2. In random walks for which the domain walls
become separated by 2+1 spins (i.e., configuration (c) in Fig. 6.13), the domain walls will
either annihilate trivially with conditional probability 1/2 or become separated by at least
4+1 spins with conditional probability 1/2.

In this way, the set of random walks available to a domain wall pair separated by d + 1
spins can always be partitioned into those that return to the annihilation geometry, and those
that separate the domain wall pair by an additional d spins, because the inverse process that
results in an annihilation event is a random walk that separates the domain walls by an
additional d spins. Once d + 1 is exactly half the system size, the probability of the domain
walls separating by an additional d spins is equivalent to annihilating nontrivially, as the
free domain wall “wraps around” and annihilates from the opposite side of the fixed domain
wall.

For simplicity, if we suppose the system size is of the form L = 2" + 2 for some positive
integer n, then domain walls which are separated by L/2 spins (equivalently, 2"~ + 1 spins)
have a conditional probability of 1/2 of annihilating either trivially or nontrivially. The
total probability of the domain walls reaching this configuration is just the product of the
conditional probabilities of the domain walls reaching 2 + 1, 4 + 1, ..., 2°~! 4+ 1 spins of
separation. Thus: P} = 1/2", or by rearrangement: P} = 1/(L — 2).



73

Chapter 7

Autonomous algorithms without
measurements

the control structure of a programming language is more than raiment.

King James Programming Tumblr

After tracing the breakdown of the toric code’s resilience to the random movements of
quasiparticle excitations, I constructed error correction algorithms that specifically targeted
these sorts of error processes. In the spirit of trying to retain as much of the “quantum
memory” properties of the toric code as possible, algorithms considered in this chapter do
not make use of measurements of stabilizers in any conditional way. The text of this chapter
is the manuscript Freeman, Herdman, and Whaley [54].

7.1 Introduction

For the past two decades, significant effort has gone into devising schemes for encoding
quantum information in reliable and retrievable forms. Stabilizer error correcting codes
are thought to be an effective strategy for performing this encoding, because they allow
an efficient means of detecting and correcting errors. Among these, topological stabilizer
codes (or topological quantum memories), are particularly promising strategies for storing
quantum information due to their intrinsic robustness to errors at zero temperature, their
ability to be efficiently implemented via a local Hamiltonian[49], as well as the existence of
efficient strategies for performing error detection and correction[125, 36, 57] which have been
demonstrated in recent experiments[99]. Several exhaustive studies have been performed on
calculating error thresholds for these topological codes, like Kitaev’s toric code, both in the
presence and absence of error correcting protocols[13, 125, 50, 36, 135].

However, these topological codes are well known to be poor passive quantum memories at
finite temperature in less than four spatial dimensions[102, 101, 23, 3, 29, 30, 136, 124, 126,
55] (for a thorough review, see Ref. [22]). For physically realistic coupling to an environment,
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local noise processes drive the creation of localized defects. In the absence of an error
correcting protocol, the propagation of these defects can then lead to decoherence of the
memory. For the case of the toric code, these error strings are particularly pathological, and
cause the maximum lifetime of an encoded qubit to decay exponentially with temperature
with a timescale independent of system size[3]. While experimentally intractable, fault
tolerant topological quantum memories are known to exist in four and six dimensions[35, 9].

On the other hand, a variety of active error correction protocols exist for efficient detection
and correction of errors. As long as error rates and the temperature are low or, alternatively,
as long as detection and correction are fast enough, the lifetime of these codes can in principle
be extended indefinitely. But these decoding strategies implicitly rely on resources that may
not always be available or efficiently physically implementable. For example, performing
a measurement on a quantum system requires a fresh ancilla qubit for each measurement.
Thus, continuously measuring any quantum system requires continuously recycling ancilla
qubits for measurement—a procedure which will necessarily be rate limiting for near term
quantum architectures[127].

An error correcting strategy for topological codes without the need for stabilizer measure-
ment is desirable. At face, ignoring the power of the stabilizer group will assuredly provide a
suboptimal strategy. But given limited resources and rates of measurement it is worthwhile
to understand the limits of strategies which do not require syndrome measurements, and to
determine if such strategies can augment known decoding schemes.

We provide here a new protocol for error correction of pairs of localized defects which
modifies an existing dissipative protocol. We achieve this by applying a specially designed
periodic sequence of unitary operators to a code of choice. This pattern of operators is
designed to encourage defects in the system to dissipate more quickly. In this work, we
explicitly treat the theory for the 1D Ising model at finite temperature, and describe how
this approach may be extended to other stabilizer codes, such as the toric code. While
dissipative protocols have previously been employed to generate hamiltonians[65, 128], to
prepare encoded ground states[34], to mediate long range interactions[69, 106, 73], and to
“trap” defects[6, 57|, a measurement-free protocol that explicitly targets string-like error
processes has not been proposed to date. While it does not completely eliminate errors,
the protocol presented here provides a significant enhancement of the lifetime of a finite-size
system.

It is known that stabilizer Hamiltonians at finite temperature in dimension less than three
have a system-size independent upper bound to their lifetime[18, 3, 30, 136, 63, 82, 116, 117].
These “no-go” theorems necessarily limit the extent to which the method proposed here can
be carried out. In fact, a size-independent constant enhancement of a system’s lifetime may
be the best one can get with a purely local unitary protocol like the one presented here.
Thus, this scheme, by itself, will not generate a topologically protected quantum memory at
finite temperature for one or two dimensions. It is nonetheless worthwhile to understand how
far purely local protocols can be pushed, because a large constant increase in the lifetime of
a quantum architecture could mean the difference between a physically realistic architecture
that can be fault tolerantly operated versus one that cannot, as discussed in Sec. 7.5.
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The rest of the paper is structured as follows: in Sec. 7.2, we briefly review the theory
of stabilizer codes, discuss where our strategy falls on the continuum of different active and
passive strategies used in the literature for implementing these codes, and sketch how they
can be modeled at finite temperature. In Sec. 7.3, we describe how the 1D Ising model can be
treated as a stabilizer code and discuss the low temperature dynamics of the model. In Sec.
7.4, we construct our autonomous protocol, built out of local unitary operators, and discuss
the scaling behavior of the protocol. We also demonstrate evidence for the enhancement of
the lifetime of the 1D Ising model. In Sec. 7.5, we sketch how our protocol generalizes to
higher dimensions and to other stabilizer codes, including the toric code.

7.2 Stabilizer Codes

Definitions

In this section, we briefly review the theory of stabilizer error correcting codes[59, 87]. Given
n qubits, a collection of operators S;, and 2" states [¢);,i = 1,.., 2% which span a subspace
in which £ encoded qubits are defined, let,

Sil)i = +1[¥)i (7.1)
[S,5;] =0 (7.2)

for all 7, j. Furthermore, suppose there are m error operators E;,j7 = 1,..,m, and that
for each of them, there exists some not necessarily unique operator S; such that

{E;,S;}=0 (7.3)

Stabilizer codes are those collections of states |1)); and operators {.S;} which satisfy the
above conditions for error operators belonging to some subset of the Pauli group—tensor
products of Pauli operators with the identity.

For example, given three qubits, let |¢); = | 1) and |[¢)2 = | JJ)). Then the
set of operators S; satisfying (7.1) and (7.2) is {0,0.1,I0,0.}. One can easily deter-
mine that the set of error operators E; corresponding to these two stabilizer operators is:
{o.11,I0,1,110,,0,0.1,0.,10,,10,0,}.

More transparently, this 3-qubit stabilizer code encodes two protected states. If some
noise source were to apply any single qubit o, operator, or any two-qubit oio? operator,
measurement of the set of stabilizer operators would indicate the presence of an error. Fur-
thermore, the code can actually detect and correct single o, errors. For example, a meau-
rement result of —1,+1 of the stabilizers o,0.1 and [o.0., respectively, indicates either an
error on the first qubit or two errors on the latter two qubits. In a sufficiently noisy environ-
ment, these two errors would be indistinguishable—i.e., degenerate—, but for many noise
models, the single error situation is much more likely, thus a single o, operator applied to
the first qubit will more often than not return the qubit back into the protected subspace.
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Active State Preparation versus Dissipative Hamiltonian
Engineering

Here we will refine our discussion by broadly classifying error correcting approaches into (1)
state preparation strategies and (2) Hamiltonian engineering strategies.

The target of both strategies is the same: the generation of an encoded stabilizer state.
In state preparation, a stabilizer encoded state is prepared by the application of a sequence
of unitaries. However, ignoring noise sources, the natural Hamiltonian which describes the
system is H = 0. The target of such a strategy is generation of the stabilizer state itself.
Implicitly, some sort of active error measurement and correction needs to be performed once
the target state is reached.

In contrast, in Hamiltonian engineering approaches[137], the encoded state is reached
by implementing a Hamiltonian on a set of qubits which has a stabilizer encoded state as
its ground state. The stabilizer state is then preserved by keeping a quantum system at a
sufficiently low temperature to suppress errors.

Mixtures of these strategies exist. For example, one could use a Hamiltonian engineering
approach to generate a stabilizer encoded state, and then immediately turn off the Hamil-
tonian once the desired state was reached, preserving the state at further times with active
error correction. Alternatively, one could use Hamiltonian engineering to prepare the state,
and then use a combination of dissipation with an additional protocol to detect or correct
errors. We will focus here on this latter strategy. Specifically, we will be concerned with
systems being dissipatively driven towards the ground state of a Hamiltonian which encodes
a stabilizer state, and we will build an autonomous error correction protocol to mitigate the
ways in which dissipation alone fails to protect the encoded state. Furthermore, we are not
explicitly concerned with the process of state creation, and always assume that our systems
are initialized to an encoded state.

Error Correcting Master Equation

To dissipatively generate a stabilizer code, one forms the system Hamiltonian as the sum of
the stabilizer operators for the code of interest, i.e., H = —)_..5;. This guarantees that the
ground state of that hamiltonian will be the encoded subspace. Furthermore, this ensures
that configurations of the system with errors present are excited states.

To model dissipation in such a code, we employ here a Lindblad master equation. Without
loss of generality, but to simplify analysis, we assume that the bath only operates on the
system with purely local errors, and that these local errors correspond to the E; (see (7.3))
of the stabilizer code of interest. The dynamics may be described by the Lindblad equation:

p= 3 2eupel, — clewn — pele (7.4
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Here p is the system density matrix for some candidate system and {c,} = {\/7wLw} are
Lindblad operators arising from interactions with a bath, where the L, act on the system
with characteristic rates 7,. Error processes can then be represented by products of the
Lindblad operators: {cLc?---c"}.

A necessary condition for error correction to occur to n'* order in the error processes is
to apply the inverses of the error processes sufficiently rapidly. If we restrict ourselves to
stabilizer codes on lattices, then the recipe for error correction is straightforward: measure
the stabilizers of the code and apply correction operations conditioned on the results of the
stabilizer measurements.

While it is in principle possible to measure all of the stabilizers of a given system simul-
taneously because they all commute, it will be convenient to decompose a given correction
protocol into groups of terms involving operators only acting within a characteristic length
scale \. This is useful because it provides a natural scale for treating stabilizer codes with
fixed resources, and it allows the interpretation of different protocols as the implementation
of a certain kind of effective long-range interaction.

Error Correction Thresholds and Scaling

Much of the power of stabilizer codes arises from the existence of error thresholds. Specif-
ically, as the stabilizer code is made sufficiently large, the probability of returning to the
original code state goes to 1 as long as measurement /correction cycles occur sufficiently fast
compared to the threshold error rate. This can give rise to a competition between the re-
sources necessary to perform error correction/detection for stabilizer codes involving many
qubits, versus the scaling of the error rate of the code with system size.

For concreteness, consider a stabilizer code, with correction/detection steps idealized
by operators O acting over a length scale A as in Fig. 7.1. How these operators scale
with system size depends crucially on the particular code and the specific error correction
scheme. For example, it is known[62] that a purely local scheme with A independent of
system size can achieve a threshold in the toric code via a cellular automata construction
at the expense of a reduction in the error threshold. This scheme requires measurements
and classical decoding. Contrariwise, the naive implementation of minimum weight perfect
matching using Edmond’s algorithm to error correct the toric code requires measurements as
well as global classical processing—that is, the lengthscale A of the error correcting operator
O which implements Edmond’s algorithm grows with system size, but with the a larger
resulting threshold. In this way, global resources can be converted to local resources at the
expense of the magnitude of the fault tolerance threshold.

For protocols that both do not yield a threshold and do not use measurements, like ours,
the tradeoff between resources and system lifetime is less obvious. In anticipation of the
following sections, one might expect a larger A protocol would dominate over a smaller A
protocol, because the larger A protocol corrects “more” errors. However, this is not generi-
cally the case, and the success of a given error correcting procedure depends nontrivially on
A, L, and the fundamental noise rates of the system.
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Figure 7.1: A snapshot of a linear stabilizer code with detection/correction operators O. The
optimal error correction operator has nontrivial system size scaling, and in general depends
on the particular code being used.

We spend a large fraction of the remainder of the manuscript elaborating on our protocol’s
scaling properties. Because we seek a protocol without measurements, we first motivate our
construction with the conventional error correction operator for the 1D Ising model in Sec.
7.4, and then detail our measurement-free construction in Sec. 7.4. Next, we explicitly derive
how the lifetime of the 1D Ising model is improved by our measurement-free construction,
and connect the scaling of the enhanced lifetime to the scaling properties of the protocol
with A in Sec. 7.4. Finally, we elaborate on how our protocol can be generalized to higher
dimensions in Sec. 7.5, including its expected scaling properties.

7.3 1D Ising Model

1D Ising Model as a Stabilizer Code

The choice of 3-qubit stabilizer code introduced in 7.2 was deliberate, because it can naturally
be extended and interpreted as the ground state of a 1-dimensional Ising model.
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L
Hiprsing = —A Z olottt (7.5)
i=1

The ground state subspace of this model is two-fold degenerate and is comprised of the
states | T --- 1) and | | -+ |). These ground states are exactly the L-qubit analogues of
the 3-qubit code treated previously. These states are stabilized by the set of all adjacent
pairwise o, operators {I[---Iotc®™ I ... T}, where i runs from 1 to L. These are precisely
the operators appearing in the Hamiltonian of the 1D Ising model. For the remainder of our
analysis, we assume without loss of generality that A = 1.

Furthermore, o, errors are equivalent to excited states. In the simplest case, errors can be
corrected by resorting to a simple majority rule—if most spins point in a particular direction,
the correction protocol returns the state to the encoded ground state corresponding to that
direction.

1D Ising Model at Finite Temperature

By coupling the Ising model to an external reservoir, one might hope to dissipatively drive
the 1D Ising model into one of these encoded states. However, the 1D Ising model has no
finite temperature ordered phase, so at all finite temperatures, the system evolves towards the
unique thermal state. Furthermore, this timescale over which the system relaxes to a thermal
state is known to be independent of the size of the chain, given modest bath assumptions[58].
Thus, dissipation by itself cannot protect the 1D Ising model, and an additional protocol
needs to be implemented in order to correct thermal errors. While dissipation cannot protect
the 1D Ising Model at finite temperature, it is instructive to understand the details of how
thermal fluctuations lead to instability in this simple case, because very similar processes
are responsible for the instability of many other stabilizer codes at finite temperature. In
previous work, we examined the dynamics of this model, as well as of the toric code, at finite
temperature[55]. In particular, we identified a low temperature regime where the dynamics
are well described by a simple random walk model. We briefly summarize the analysis below.

When studying the error dynamics, it is convenient to consider the dual lattice of the
Ising model: we imagine a new 1D lattice with sites interleaved between the sites of (7.5)
and associate auxiliary spin values b; with them. The auxiliary site’s spin values are uniquely
determined by the products b; = 20t where site b; defined by this equation sits between
site + and ¢ + 1. We can identify these extra variables with domain walls. If adjacent spin
variables disagree, then the auxiliary site sitting between them will have b; = —1. If all but
a contiguous block of spins disagree, then all auxiliary sites will have b; = 1 except for those
two sites which sit at the two boundaries of the contiguous blocks of spins. Describing the
dynamics of these domain walls is equivalent to describing the spin dynamics, because if one
knows all the auxiliary variables plus any single spin value, o, one can reconstruct all of the
remaining spin variables o?.
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For simplicity, we assume a bath that operates on the system only by creating, destroying,
or translating domain walls. Then, for sufficiently low temperatures, occasionally the bath
will cause an adjacent domain wall pair to appear in the system. Bath fluctuations will cause
this pair of domain walls to fluctuate across the system, effectively causing the domain walls
to undergo a 1D random walk. When domain walls are adjacent, it is energetically favorable
for them to be dissipated. If domain walls fuse before traversing the length of the system,
the encoded state will be preserved. But if domain walls undergo a random walk such that
one winds entirely around the system, this effectively performs an uncorrectable error on the
encoded qubit because the system will have transitioned from one encoded ground state to
the other encoded ground state[55].

Microscopic Master Equation

When the bath operates on the system with purely local spin flip errors which only create,
destroy, and translate domain walls, the Lindblad operators are of the form:

{ea} = { VAT VA= D} VD } (7.6)

When resolved in the Pauli basis and factored, these operators take a simple form:

1
D} =7 Uo.D) (1 + I0.02) (1 + 0:0.1)
1
Dy, =1 (lo,I)(1 —10,0,)(1—0.0.1)
1
T, =1 (lo,I)(1—1lo.0.)(1+0.0.1) (7.7)

A short calculation verifies ), LZ-LIT = [. Physically, these operators represent the cre-
ation of a domain wall pair at dual lattice sites b and b+ 1 (DZ), annihilation of a pair of
domain walls at dual lattice sites b and b+ 1 (Dy), and the translation of a domain wall
from b to b+ 1 (the adjoint translates b+ 1 to b) (7}). Intuitively, these operators are built
from projectors (1 & lo,0,) which pick out those configurations relevant to each process.
For example, the combination (1+ Io.0.) (1 + 0,0,1) projects onto the subspace with no
domain walls between the first and second or second and third spins. The leftmost (/o,1)
term then performs the spin flip, effectively creating a domain wall.

Additionally, these operators only connect diagonal elements of the density matrix to
other diagonal elements. This reduces the time evolution of the diagonal matrix elements to
a classical master equation:
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dP,
di :'YOZ(Pno _Pn)+z<7—Pn+ _7+Pn)
no

+Y (v Pu. —7-P) (7.8)

Where P, := py,, and the indices ng, ny, and n_ run over those eigenstates connected to
n'" state by a single application of the operator Tj, Dz, or Dy, respectively. The rates with
which these operators are applied, i.e. 79,74, and v_, are set by the specific choice of bath
model. For simplicity, we consider here a Markovian bath. The rates of such a bath are
determined by:

(7.9)

Vo) =€ |

Where w is the amount of energy exchanged when a particular Lindblad operator acts on
the system. The relevant rates for our study are v_, 7., and 7, corresponding to domain
wall pair annihilation, pair creation, and translation, with energy scales of —4A, 4A, and
0, respectively. Different n correspond to different types of baths—for n = 1 the bath is
Ohmic, and for n > 2, the bath is Superohmic[29]. For our purposes, it will be more
convenient to treat 7y as a tunable parameter to study the scaling behavior of our protocol.
Qualitatively, 7o scales linearly with T for Ohmic baths and equals zero for Superohmic
baths. For simplicity, we work in units where & = 1.

For more details of the master equation approach used to study this model, see Ref. [55].

7.4 The Protocol

Protocol Considerations for the 1D Ising Model With
Measurements

While we are interested in protocols that do not use measurements, we first review a conven-
tional measurement-based protocol for performing error correction in the 1D Ising model.

In the absence of resource constraints, it is straightforward to construct the operators
which correct errors in the 1D Ising model. According to the schematic shown in Fig. 7.1,
the A = 2 analogue of O is simply the domain-wall annihilation operator, D, from (8.4).
In more generality, for larger A the corresponding O is the operator which, given an even
number of domain walls, annihilates all domain wall pairs in the region being operated upon.
For example, the circuit for the A = 3 version of this operator is depicted in Fig. 7.2. Note
that for an odd number of domain walls, there is not an unambiguous choice for how to
annihilate domain walls because a free, unpaired domain wall is always left over.
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Figure 7.2: Circuit for performing error suppression for a subregion of the 1D Ising model.
Qubits ¢; through ¢, are lattice sites on an Ising chain. s; through sz are ancillas used
to read out the syndrome measurements of ZZ on the nearest-neighbor Ising lattice sites.
Based on the results of the syndrome measurements, the conditional unitary operator CU
corrects the errors present. A table which defines C'U is provided in Appendix 7.8. This
entire circuit represents a possible realization of one such operator O from Fig. 7.1.

Thus, the most straightforward conventional error correcting protocol is simply to mea-
sure the system’s stabilizers often enough that one can unambiguously locate pairs of domain
walls and then perform correction operations, as indicated in Fig. 7.2. This can be repre-
sented by a sequence of measurement operators, the stabilizer for the 1D Ising model, S;,
interleaved by conditional application of corrective unitaries: DSWAP and DWALL. These
operators have the following representation in the Pauli basis:

1

DWALL = 3 (Il +1o,] —o0,l0,+ 0,0.0,) (7.10)
1

DSWAP = 5 (III+ 1ol +o0.l0, —0,0.0,) (7.11)

where there is a pair of these operators for each triple of lattice sites. In Fig. 7.2, the
details of the 4-qubit operator O are abstracted away (see Appendix 7.8), but it can be
decomposed into applications of DSWAPs and DWALLSs, conditioned on syndrome measure-
ments. A simple calculation shows [Hjsing, DSWAP] = 0 and [Hjgng, DWALL] = +4A.
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Intuitively, DWALL destroys (creates) a domain wall pair at the dual lattice site in-
between the three qubits being operated on if and only if a domain wall pair is present (or,
all of the spins are aligned), respectively. DSWAP translates a domain wall, either left or
right if and only if a single domain wall exists between the 3 spins being operated on.

Error correction protocols for the 1D Ising model can thus be understood as procedures
for efficiently dissipating domains walls before they propagate too far. We leverage this
intuition in the following sections to build a procedure that dissipates domain walls without
explicit knowledge of the locations of those domain walls.

A Protocol Without Measurements

Because we seek a protocol without explicit measurements, the natural operators for such a
procedure are DWALL and DSWAP. DWALL is inconvenient, both because the bath already
acts to dissipate excitations and because it can lead to the generation of extra, uncontrolled
domain walls more easily than the DSWAP operator. Consequently, we only use DSWAPs
in our protocols.

If we restrict our attention to the low temperature regime with the rate assumption
L~y << 1, then the lifetime of the Ising chain is governed by the dynamics of single pairs
of defects. For error correcting purposes, it is convenient to classify the common geometries
of pairs of domain walls. First, correctable errors are those errors for which the pair of
domain walls is not yet separated by L/2 or more. Non-correctable errors are those domain
wall configurations in the complement of this set. In the language of error correction, the
distance for this code is | L/2|-more transparently, correctable errors are those errors which
will be correctly matched by a perfect decoder. Furthermore, we need to distinguish between
trivial and nontrivial defect pairs. A domain wall pair is trivial if two domain walls sit on
neighboring dual lattice sites. Again, assuming we operate in the low temperature regime,
these trivial defect pairs annihilate with rate y_—that is, much faster than other time scales
of the problem. Nontrivial pairs are those pairs which are not on neighboring dual lattice
sites.

Designing a successful protocol for the Ising model amounts to designing a sequence of
DSWAPs that efficiently dissipates nontrivial, correctable defect pairs. If we let x be the rate
at which DSWAPs can be applied, then we expect an enhanced lifetime given the following
rate assumptions:

7- >> x/O(poly(L)) ~ 7o > 74 (7.12)

To wit, DSWAPs are applied at a rate much slower than the inherent annihilation rate
of the system—this is so DSWAPs do not turn trivial defect pairs into nontrivial defect pairs.
Furthermore, y is chosen to be close to the inherent translation rate so that correctable,
nontrivial defect pairs can be brought adjacent to one another and then be dissipated by
the bath before they have time to translate out of the correctable range of the protocol.
The O(poly(L)) factor multiplying x accounts for the fact that different protocol require
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some polynomial in L number of swaps to sweep across the entire lattice. For a proof of the
polynomial scaling in L, see Appendix 7.9.

In the absence of a corrective protocol, this intrinsic hopping rate of the Ising model gives
rise to a simple, background error rate[58, 55],

o Yo
Iy = 15 AT AT (7.13)

Protocol Construction

In this section we construct an autonomous error correction protocol for the 1D Ising model
with a variable length-scale A\. The design of the protocol reduces to attempting to perform
a sequence of DSWAPs that will necessarily cause any arbitrarily placed pair of domain walls
within a region of length 2\ to become neighbors. We refer the reader to Appendix 7.9 for
a more complete discussion of this strategy.

There are a variety of ways to construct protocols which achieve this in a number of
DSWAPs that scales polynomially in the length of the system. Here we focus on protocols
which we call A-mixing. By definition, these are protocols which, in the absence of errors,
never translate domain walls a distance A or greater. For an Ising model of length L, A runs
from 1 to |L/2]. In the language of error correction, the protocol can be designed to correct
errors of distance 1 to distance |L/2].

First, the dual lattice is subdivided into non-intersecting subregions of length A. Then,
two adjacent regions are chosen, and a A\-mixing protocol is applied over that subregion of
total length 2\. DSWAPs are chosen to move defects towards the shared boundary of the
two regions, but not to mix defects between the boundaries. The non-intersection of the
two regions is crucial: if the protocol did not have this feature, it would actually increase
the error rate, effectively increasing the inherent translation rate, and thus diffusion rate of
defects in the system. Fig. 7.3 depicts a circuit for this protocol for A = 3 and Fig. 7.4
depicts the same circuit acting on the domain wall variables. Fig. 7.5 illustrates a snapshot
of this entire procedure for a representative error process involving two domain walls sitting
in neighboring A-domains.

This circuit should be reminiscent of the cartoon sketched in Fig. 7.1. For our purposes,
the operator O from Fig. 7.1 is the full sequence of DSWAPs in Fig. 7.3 dressed by the
probabilistic action of creation/annihilation /translation operators by the bath on the system.

We provide code for this algorithm in the Appendix 7.10, including how the A-mixing
subprotocols are constructed.

Error Modes and Scaling

In this section, we examine how uncontrollable thermal errors lead to loss of the qubit in the
presence of the protocol.
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Figure 7.3: Sequence of DSWAPs, denoted C, for a A = 3 A-mixing protocol. If a pair
of domain walls exist anywhere between sites ¢; through ¢;, then they will necessarily be
brought adjacent to each other by this sequence of swaps. Gates are applied sequentially
with waiting time 1/x between each gate.

Figure 7.4: The same sequence from Fig. 7.3 but shown acting on domain-wall variables.
Here, it is clear that the sequence of DSWAPs is designed not to mix domain walls between
the two regions of size A = 3. Site b; sits between ¢; and ¢o, by between ¢, and g3, etc.



CHAPTER 7. AUTONOMOUS ALGORITHMS WITHOUT MEASUREMENTS 86

P A >! ¢ A A
Seleleelele Tole o] loelele

Slelele elee ole! | Jolo olele

A A A
Sfelele ¢lele ele]e elele olele

Figure 7.5: One possible snapshot of the error correction process. a) depicts a system with
two domain walls present, each sitting in adjacent A-domains. b) depicts the state of the
system after the protocol has been applied-domain walls have been shuttled to the shared
boundary. In ¢), the bath dissipates the domain walls, and the system returns to the ground
state.
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In the presence of a corrective protocol, and assuming the correction rate y is close to
the translation rate of the system but still much less than the annihilation rate, the rate of
the lowest order error process is given by,

Yo Yo 1 f(N)
)\XV_L—Q—Z)\ L

This rate is the product of (i) the baseline production rate of defect pairs, Ly, (ii) the
probability of a defect pair not immediately annihilating, 3—3, (iii) the probability of a defect

Toye = Lyy > (7.14)

exiting a corrective region, 1—;’(, (iv) the probability of a nontrivial random walk across the

chain m, divided by a factor proportional to the number of correcting regions on the
lattice. Thus, for fully parallel application f(\) oc A. Without the protocol, the probability
that a pair of domain walls undergoes a random walk that winds around the entire system
scales like ﬁ, but when the protocol is implemented, the effective lattice size is slightly
reduced: the particle need only come within approximately a distance 2\ of its partner for
the protocol to fuse them. Thus, I'cy. is the leading order estimate for the rate at which
domain wall pairs are “missed” by the protocol, and cause uncontrolled transitions between
the two ground states of the model.

This effective rate is valid as long as x is fast enough to compete with =y, but not so
fast as to compete with pair annihilation, «_, and other higher order processes in 70 and Z?
Further, we assume that random walks occur much faster than the intrinsic creat1on rate,
or vo/L? >> ~v,, and that we can model the random walk as occuring instantaneously—
for sufficiently large lattice sizes, the breakdown of this assumption would introduce an
additional vy dependence into this error rate to account for the nonzero amount of time it
takes defects to traverse the lattice. For regimes studied here, 79 and x run from 10,000 to
100,000 times faster than the intrinsic pair creation rate, v..

It might be tempting to examine the form of (7.14) and expect that errors vanish in the
limit of 7y — 0, but a new effective translation rate appears once vy << .. In this regime,
two pairs of domain walls can appear next to one another, and a consecutive annihilation
event produces a lone of pair of domain walls separated by two dual-lattice sites. In this
way, an effective translation rate is set by the rate at which these doubled-pair creation
events occur. We do not consider this limit further, but it is the natural error process for
superohmic baths at low temperature.

To model the breakdown of (7.14) as  is varied, we can approximate the lifetime, =

) Ea
as being effectively reduced by some factor proportional to x:

1 1 X \2 X \2
N 1= g\, L, Y0, v, ve) + O((2)2 4 (2)2), 7.15
Tone Fcyc( x9N, L, v0, 7= 7+) ((7_) (%) ) (7.15)

with g(A, L) a protocol-dependent scaling function. Heuristically, for fixed A, one expects
that g should scale linearly with the number of parallel domains of size A because, for twice
as many domains, twice as many pairs will be pulled apart by the protocol that would have

otherwise fused. At the same time, for a fixed number of domains, i.e. fixed {(, any given
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pair of lattice sites is only ever operated on by a DSWAP for a fraction of the corrective
cycle. So, for fixed y and fixed %, as A is increased, domain walls may spend a longer amount
of time sitting on a boundary before being caught by the protocol. For the protocol used in
this paper, this is cubic in A. Thus,

L
g(>\7 L7707777’)/+) (8 g(W/O?fY*?nyr))\gX = 9(7077777+>>\2L (716)

This scaling behavior suggests a critical cycling rate, x., at which the lifetime is maximally
improved by the protocol. Differentiating (7.15) with respect to A yields the critical rate, up
to the rate function g,

1

 2X2Lg(Y0,7-,74)

where any residual prefactors and terms involving vy, v, and y_ have been absorbed
into g¢.

Xe (7.17)

Memory Enhancement and Scaling

We now present numerical results demonstrating the enhanced lifetime of the Ising Model
when subjected to A-mixing protocols in serial and in parallel. For serial application, only
a single corrective operation was applied every 1/y units of time. For parallel application,
L/(2)\) simultaneous corrective operations were applied every 1/x, where each operation
acted on a nonintersecting region of length (2\).

For the following analysis, we define the lifetime as the average time it takes a 1D Ising
model initialized to the spin up state to transition to the spin down state. In the absence
of the protocol, that is, in the low-y limit, this lifetime asymptotes to approximately the
lifetime given by (7.13).

For the details of the Monte Carlo algorithm, see Ref. [55]. The only nontrivial choice
required at the level of simulation is how to treat the competition between the application
DSWAPs and bath operators. For simplicity, we assume if a bath operator takes longer than
1/x to occur, that the DSWAP occurs unhindered. Likewise, if a bath operator takes less
than 1/x to occur, the transformation associated with that bath operator occurs unhindered,
be that a pair creation, pair annihilation, or single translation. More complicated choices
could be made, like choosing a probabilistic failure rate of a DSWAP as a function of the
ratio of the competing timescales, but we do not expect the result of a such a treatment to
greatly affect our analysis.

Fig. 7.6 depicts the scaling of the 1D Ising model’s lifetime with A\ at fixed L, where
a smaller A results in more domains being operated on in parallel. Specifically, for parallel
simulations, the protocol was performed simultaneously on L/(2\) domains. These domains
were chosen such that DSWAPs were only being applied on non-overlapping regions of char-
acteristic size A\. Here, increasing parallelization manifestly increases the lifetime of the
model. For small y, the protocol does nothing, and the memory converges to the value of
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the memory in the absence of any corrective protocol, i.e. (7.13). For x approaching ~_,
the protocol begins to compete with the process of pair annihilation, and begins turning
trivial defect pairs into nontrivial pairs. This actually reduces the lifetime below that of
the protocol-free value. In the intermediate regime, the optimal lifetime grows linearly with
the number of parallel blocks employed in the algorithm. For this particular protocol, the
number of parallel blocks was 48/\.

Fig. 7.7 depicts the scaling of lifetime with A, as in Fig. 7.6, but for a serial application
of the protocol. For serial application, only a single DSWAP operator ever operates on
the system over a timescale y~!. Decreasing \ also manifestly increases the maximum
enhanced lifetime of the protocol. Thus, for fixed-resource architectures, smaller \ necessarily
outperforms larger A implementations.

Fig. 7.8 and Fig. 7.9 depict the scaling of the lifetime with L at fixed A for parallel
application. Remarkably, the L dependence of the models can be completely removed by
rescaling the data by (7.14), and rescaling x to xL as depicted in Fig. 7.9. This rescaling
reveals the turnaround in the scaling of the lifetime for yL/vy = 54.2 4 2.8, whereafter it
transitions from linear scaling in x to a power law decay.

Fig. 7.10 depicts the scaling of the critical cycling rate y. versus the inverse system
length 1/L. This scaling agrees with the error ansatz of (7.17).

We note that substituting . from (7.17) into (7.14) yields 1/Tcye ~ £=222—or that
the maximum enhanced lifetime is asymptotically independent of system size. Thus, even
for much larger system sizes, the maximum achievable lifetime will not greatly exceed the
maximum lifetime for the L = 192 result in Fig. 7.8.

7.5 Higher Dimensions and Generalization

The Toric Code

The argument and construction from the previous section immediately generalizes to any
higher dimensional stabilizer codes with stringlike error operators. The immediate analogue
is Kitaev’s Toric Code, whose Hamiltonian is defined as a sum over vertex and plaquette
operators acting on the edges of a square lattice,

Hye=—J.Y Ay—Ju Y By, (7.18)
v p
AUEHO';, BPEHJ;’?, (7.19)

jEV J€ED

The low temperature dynamics of the toric code are governed by the proliferation of
localized excitations that are created by string-like error operators, with dynamics similar to
to those of the 1D Ising model. However, toric code dynamics differ in two ways: first, there
are now two types of defects in the toric code-defined as —1 eigenstates of the A, and B,
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Figure 7.6: Lifetime of the Ising model, '™, expressed in terms of inverse units of Iy
(i.e., (7.13)) as a function of the correction rate, x, rescaled by the translation rate, 7, for
different values of A and for fixed system size L = 96, temperature, T' = .07, and translation
rate, 7o = .0007. Protocols were implemented in parallel on 48/X blocks (see text). In the
absence of the protocol, the lifetime of the Ising model for these parameters corresponds to
approximately I'y ! ie. (7.13). This is the value which all three protocols converge towards
in the limit of x/7y << 1. Note the decrease in lifetime for y/vo =~ 1, as well as the
universal scaling in the lifetime up until the A-dependent cutoff (i.e., (7.17)), which increases
as A\ decreases. The only remaining mismatch between the curves is due to the residual A
dependence in the 1/(L —2 — 2)) term of (7.15).
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Figure 7.7: Lifetime of the Ising model as a function of the correction rate, y, rescaled by the
translation rate, 7, for different values of A, and for fixed system size, L = 96, temperature,
T = .07, and translation rate, 79 = .0007. Protocols were implemented serially (see text).
The scaling of lifetime with y is characteristically similar to the parallel case; however, the
maximal lifetime is correspondingly smaller for the serial implementation. Note that smaller
A still yields a larger enhanced lifetime.

operators, located on the vertices and plaquettes of the square lattice, respectively. Because
of the non-trivial braiding statistics of these two defects, a nontrivial winding resulting from
the interaction with the bath gives rise to uncontrolled errors that can be mapped onto
logical Z and logical X operations, depending on which type of defect incurs the nontrivial
winding. These erroneous operations can be suppressed by operating at low temperature
and by tuning the relative strength of the plaquette and star terms in the Hamiltonian.
Secondly, both of these defects undergo two-dimensional random walks rather than one-
dimensional random walks. This difference in dimension gives rise to a modified form of the
toric code’s finite temperature error rate, due to the differing nontrivial topological random
walk probability for two dimensions versus one.

Operationally, these differences only require small modifications of the autonomous pro-
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Figure 7.8: Lifetime of the Ising model as a function of the correction rate, y, rescaled by
the translation rate, 7, for different values of system size, L, and for fixed A = 3, T' = .07,
70 = .0007. Protocols were implemented in parallel on L/2\ blocks (see text). Note the
linear scaling in y for small values, as well as the shift in the maximum of the lifetime as a
function of L.

tocol. Namely, there need be two DSWAP operators:
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Figure 7.9: This figure contains the same data as Fig. 7.8, but with the x axis rescaled to x L,
and the 1/T'¢y. axis rescaled by (7.14). Hence, the linear scaling in x, and the slight residual
system size dependence have been removed. Note the steep, sudden dropoff in lifetime after
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Figure 7.10: The critical cycling rate, x., rescaled by the translation rate, vy, as a function
of % for A =3, T = .07, o = .0007. Protocols were implemented in parallel on L/2\ blocks.
This scaling is consistent with the error model ansatz in (7.17). Fit to 1/L in red. Errors
are dominated by systematic effects, not sampling error.

These unitary operators translate an A-type (B-type) excitation from a vertex v (plaque-
tte p) to an adjacent vertex v’ (plaquette p’). Second, the A-mixing protocol shuttles defects
towards a shared boundary of length A\ between subdomains of charactersitic area \2.

Because subregions share a boundary of length A rather than a single site, as in the one-
dimensional case, the cycling protocols require at most a factor of A more swaps to complete
a cycle. The protocol then takes the following simple form:

1. Choose a species of quasiparticle

2. Divide the lattice into domains of characteristic area \?

3. Pick two A-domains which share a boundary

4. Pick two candidate defect locations within these two A-domains.

5. If these defect locations are within the same A-domain, apply DSWAPs until they
would be nearest neighbors. If they are in different A-domains, apply DSWAPs until they
meet at the shared boundary.
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6. Repeat (5) until all pairs of defect locations are exhausted.

7. Repeat (3) through (6) until all pairs of A domains which share a boundary are
exhausted.

8. Repeat (1) through (7) until all species of quasiparticle are exhausted.

This protocol is also highly parallelizable, both by operating on multiple pairs of A-
domains, and by acting on simultaneous pairs of defect sites within pairs of A-domains.

The General Problem

We can always divide a d-dimensional lattice into N = L¢/\¢ domains and try to devise an
algorithm that fuses defects between adjacent domains. For our protocol, defects are shuttled
towards d — 1-dimensional boundaries between adjacent domains of volume \¢. From this,
we can generalize the low temperature dynamics of equation (7.14) to the d-dimensional case
as follows:

fA9)
Ld ’
where L is the edge length of the d-dimensional volume enclosed by the system, P4(L, \)
encodes the probability of a nontrivial topological random walk of a pair of defects in d
dimensions with system size L and domain lengthscale A, and f(A?) oc A? is a protocol
dependent function which depends on the implementation details of the algorithm.

Theorem (1) guarantees that an algorithm exists which can perform the cycling in a
number of steps polynomial in the dimension of the lattice. However, this Theorem does not
guarantee that a A-mixing protocol exists which solves the problem. In general, for higher
dimensions, there are always defect patterns of distance O(A) which are uncorrectable by
our A-mixing protocol. The design strategy is then to try and maximize this minimum
uncorrectable distance by careful tiling of the graph of interest.

To be more explicit, if a single pair of defects appears on the graph, uncorrectable errors
are generated only when one of the defects escapes to an adjoining region which does not
share a boundary with its pair. A cartoon of this process is depicted in figure Fig. 7.11. For
one dimension, this cannot happen in one step after an adjacent pair of defects appears. More
specifically, if a single pair of adjacent defects appears on the lattice, no single DSWAP will
cause such an error to occur, by design, and no single bath operation will cause an adjacent
pair of defects to be in nonadjacent regions of size A\. In one dimension, at worst a pair will
be created, shuttled around by the protocol, and then translate by a bath operator across a
boundary, resulting in an uncorrectable error.

This distinction is important because poor choice of tiling in higher dimension can result
in uncorrectable errors that occur in a single step after pair creation. For example, compare
the single hop in the upper half of Fig. 7.12 to the lower half. A defect pair appearing at a
corner can transition to an uncorrectable configuration in a single step, whereas in the lower
tiling, this is not possible for any initial configuration of adjacent defect pairs. This can be
checked by simple enumeration of the possible defect locations and single-hop geometries.

Deye L%J—ij—f%@, A) (7.29)
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Figure 7.11: A single random application of the bath hopping operator causes a defect to
move between adjacent regions of size A. Once a pair of defects are separated by this distance,
the protocol will not be able to correct them with certainty.
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This shifted square lattice tiling depicted in the lower half of Figure 7.12 generalizes to
three dimensions, and is necessary for equation (7.29) to describe the leading order error
process.

Hybrid DSWAP-Stabilizer Codes

While we have demonstrated that our protocol gives rise to an enhanced lifetime for a
topological code with string-like error operators, it is also possible and desirable, to use
our DSWAP cycling protocol with a more traditional stabilizer detection-correction scheme
simultaneously. We postpone numerical analysis of such a scheme for future work, but we
sketch such a protocol in this section.

For concreteness, we specialize here to the case of the toric code. Error detection and
correction in the toric code requires (1) measurement of all stabilizer syndrome operators and
(2) application of a perfect-matching algorithm to determine which pairs of defects to fuse.
Whether or not such an algorithm will be successful depends on the density of errors at the
time of measurement. Given a stabilizer measurement rate 7, in the “infinite temperature”
limit (i.e., 7" — oo in (8.5)), each edge is acted upon by an error operator with an error
probability p. Operationally, the bath is equally likely to create a pair of defects as it is
to dissipate a pair. The resulting dynamics are analogous to an uncorrelated “white noise”
model.

It is well known that if p is below some critical value, p., it is possible to correct the
errors in the toric code with certainty. Equivalently, p. sets the minimum rate at which
measurement, must occur so that detection is possible in principle. Call this rate ..

For the protocol to have an effect, we must operate in a regime where pair annihilation
is favored over pair creation. For simplicity, we work in the low temperature regime where
single defect pairs dominate. In this regime, an uncorrectable error has occurred when a
single pair of defects becomes separated by more than half the linear lattice dimension. In
the presence of the DSWAP cycling protocol, the rate associated with such an event occuring
is modified by some constant factor:

1 1
=g (7.30)

FToric Code Cycling FToric Code

where I'toric Code Cycling 18 the error rate of the toric code in the presence of a cycling
protocol, and I'rorie code 18 the error rate in the absence of the protocol.

For g > 1, i.e., when our protocol actually enhances the lifetime of the code, this effec-
tively reduces the critical detection rate 7. by the same factor. This is because the protocol
effectively reduces the rate at which undetectable pairs are created.

Thus, if a physical realization of a stabilizer error detection/correction cycle is rate limited
due to hardware or fundamental noise constraints, the DSWAP cycling protocol provides one
avenue towards reducing the critical measurement/detection rate purely by application of
local unitaries.
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7.6 Discussion

In summary, we have provided a dissipative error correction protocol that enhances the
lifetime for models with string-like defects (see Sec. 7.4). In particular, we have combined
a local dissipative thermal protocol with carefully designed unitaries, in order to further
encourage defect dissipation. Furthermore, we have derived an enhanced lifetime for the
one-dimensional Ising model in the presence of our protocol, i.e. equation (7.14), determined
the scaling behavior of the optimal protocols, i.e. equation (7.17), and provided numerical
evidence for the enhanced lifetime of the Ising model in the presence of our protocol given
certain rate assumptions (see Figs. 7.6 through 7.10). Practically, this algorithm increases
the lifetime of the system linearly with system size up to a system-size independent cutoff,
illustrated in Fig. 7.8, as anticipated from No-Go theorems. Furthermore, we have sketched
how this protocol can be generalized to higher dimensional models like the toric code, and
used in conjunction with traditional stabilizer error detection/correction schemes (see Sec.
7.5 and 7.5).

The efficacy of these sorts of protocols is intimately related to the scaling of the protocol
with system size and protocol parameters, as we have demonstrated. Notably, the best
performing versions of our protocol have small A\, and, in a sense, only correct the shortest
distance errors. This may seem counterintuitive from the perspective of designing protocols
which correct as many errors as possible. For example, suppose we wish to compare a A = 3
protocol with total cycle time 7 to a A = 4 protocol with the same cycle time 7. Note that
by fixing total cycle time, we are implicitly requiring that the A\ = 4 protocol be performed
more quickly at the level of individual application of DSWAPs (because there are more
DSWAPs in a complete A = 4 cycle than a A = 3 cycle), but we require that the complete
error correcting cycle of each protocol is completed in the same amount of time. Naively, we
would expect the A\ = 4 protocol to do better, because it is dissipating errors over a longer
length scale, but in the same amount of time. Fig. 7.7 indicates a narrow region where this
is the case, but, generically, this is not the case.

This can be traced to the poor scaling of the maximal lifetime with A, as represented
by equation (7.17). Essentially, the protocols which correct larger distance errors—i.e.,
large A-fixing protocols—employ so many gates that all of the gains of correcting longer
distance errors are erased by the time it takes to actually perform the protocol, even when
implementing the protocol in parallel.

Additionally, the form of equation (7.14) suggests that larger systems manifestly have
lower error rates, because I'gy. o XLL for low temperature and L >> A. For sufficiently large

systems this once again breaks down due to equation (7.17) (see also, Fig. 7.10). Namely,
for a fixed cycling rate yo, making the system larger only increases the lifetime so long as
Xo < Xe- Thus, the more favorable scaling of the lifetime with y at larger system sizes is
precisely offset by the poor scaling of x.. This can be seen immediately by inserting y. from
(7.17) into (7.14). This replacement yields the expected scaling of our “best” measurement-
free protocol, which scales asymptotically as ~ %—i.e., upper bounded by a constant.



CHAPTER 7. AUTONOMOUS ALGORITHMS WITHOUT MEASUREMENTS 100

These shortfalls could be circumvented by allowing for longer range unitaries. For ex-
ample, the DSWAP operator could be replaced by a generalized operator DSWAP, which
transports domain walls over longer distances. Our insistence on building the protocol en-
tirely out of local DSWAP gates was to perform as honest an analysis as possible with respect
to the power of this type of protocol. But if a particular architecture could exchange defects
over long distances just as easily as short ones, this would immediately allow for algorithms
with better scaling. We hope to examine the optimality of these sorts of protocols in future
work.

In the long term, this program is meant to identify the simplest possible set of ingredients
necessary to provide protection for a stabilizer code based quantum memory. Many partial
ingredients are known, like the No-Go theorems mentioned in Sec. 8.1. Practically, the
goal is a protocol designed around the dynamics of the excitations of the stabilizer codes of
interest with miminimal usage of resources, but which still results in an error threshold so
that a state can be preserved indefinitely. With this work, we have demonstrated a constant
factor improvement with only local unitaries dressing the system.
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7.8 Syndrome Decoding for 1D Ising Model

The corrective operator O in Fig. 7.2 can be written as a collection of conditional applications
of DSWAP and DWALL, where the applications of the operators are conditioned on the
measurements of the stabilizers. We adopt the notation Oi93 to indicate the application of
the operator O on qubits 1,2 and 3. The operator O is given explititly in Table 1.

7.9 MATCHSEQ and Error Correction

Polynomial Scaling

Define the game MATCHSE(Q as follows: two nonadjacent vertices on a simply connected
graph G are colored black, called defects, the rest white. The player is allowed to perform a
conditional swap, or DSWAP, on any two adjacent vertices, which exchanges black vertices
and white vertices, and does nothing to pairs of white vertices. If black vertices become
adjacent, they immediate fuse and become white vertices. Crucially, the player does not
know which vertices are colored black.
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St | 82 | s3 O
1 1 1 1
1 1 | -1 1
1 | -1 1 I
1 | —-1]-1 DWALLjys,
-1 1 1 I
—11] 1 | =1 | DSWAP;953DWALLjs4
—-1]-1]1 DWALLj93
-1 -1] -1 I

Table 7.1: Corrective operations given certain measurements of the stabilizers s; through s3
in Fig. 7.2. If an odd number of domain walls are detected, the identity is applied.

[M@3)| | 1
[M(4)] | 3
(M) | 6
[M(6)] | 10
(M(T)[ ] 18

Table 7.2: Minimum number of DSWAPs required to necessarily fuse any two defects on a
linear chain with open boundary conditions. Computed via breadth first search.

“Winning” M ATCHSEQ amounts to performing a sequence of moves which guarantees
that a pair of arbitrarily placed vertices fuses.

Define the pairing sequence M (G,) to be the sequence of conditional swaps necessary to
bring any configurations of two defects adjacent to one another at least once on a graph G
with v vertices. Define the pairing number |M(G,)| to be the pairing sequence with minimal
length. Table 1 tabulates the first few nontrivial pairing numbers for the special case of G
equal to a linear chain of length L.

Theorem 1. The number of DSWAPs necessary to win MATCHSEQ for an arbitrary
finite, connected graph G is polynomial in the number of vertices in the graph G.

Proof: Let M*(G) be a winning strategy on an arbitrary graph G. Suppose an arbitrary
vertex is added to G, called v*, with up to |G| edges. Call this modified graph G’. Then,
performing M*(G) on G’ either fuses two arbitrarily placed defects, or there’s a single de-
fect on the new vertex, and the remaining vertex has just been permuted around in G. A
candidate M (G") is then:

1. Perform M* on G.
2. Pick a vertex, v/, on (G. Supposing a defect is on v/, perform a sequence of DSWAPs that
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brings that defect adjacent to the new vertex, v*.
3. Perform the reverse of the sequence of DSWAPs in (2), and repeat (2) with a new v’
4. Repeat (2) and (3) until all vertices in G are exhausted.

The number of DSWAPs needed for step (2) is at most |v|, i.e., the number of vertices
in G. Thus, the total complexity of steps 2 through 4 is O(|v|?). This admits a recurrence
relation:

[M(Goir)] < [M(Go)] + b o], (7.31)

Where b is a constant < 1. b = 1 corresponds to the case that the new vertex is only
connected to one vertex in the original graph GG. Solving this recurrence relation in the limit
that the inequality is always saturated yields |M(G,)| < O(Jv[®). Tt is worth emphasizing
that this is not the minimal such solution to MATCHSEQ), just one that is easily provably
polynomial in |G|. The likely graph structures of interest to an experimentalist, i.e., linear
chains, square lattices, admit more favorable algorithms with softer polynomial scaling.

Strategies

For a given winning strategy, M*(G), it will be convenient to classify the strategy based
on the maximum distance that any given defect is moved. In the sequel, we will construct
M*(G) out of a concatenation of M*(G;), where G; are subgraphs of G. Thus, if only a single
defect happens to be in the subgraph G;, we would like to bound the maximum displacement
of that defect by the strategy.

Let d(M) be the maximum distance any given defect is moved by a given strategy. For
winning strategies, d(M) is at least half of the maximum distance between defects and at
most permutes defects around the entire graph, so |v| > d(M) > |v|/2. Define a strategy
M*(G) to be k-mizing if d(M) = k.

We introduce this terminology because most physical realizations of MATCHSEQ will
have a background rate of uncontrollable DSWAPs, driven by coupling to a bath. k-

mixing strategies are necessary in such cases to be partially resilient to these random “error”
DSWAPs.

Mapping onto 1D Ising Model

Vertices in the problem setup for MATCHSEQ correspond to the dual lattice of the Ising
chain, and the process of fusion is simply dissipation of adjacent domain wall pairs by the
bath.

However, we caution that the mapping onto MATCHSEQ is only partial: defects on the
Ising chain hop in the absence of any experimental intervention, so the Ising chain is more
akin to a game of MATCHSEQ with a random, background DSWAP rate. Further, there can
be more than two pair of excitations on the Ising chain, but for low temperature, the regime
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Figure 7.13: An example of the result of applying a winning sequence M (G) to a graph with
defect pairs present. No matter where the defects are, the sequence of DSWAPs brings pairs
adjacent, whereupon they immediately fuse.
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where the protocol works best, this is exceedingly rare. Lastly, defect pairs don’t necessarily
fuse immediately—fusion happens at the timescale set by the system-bath coupling, the type
of bath model, and the temperature, so rate at which DSWAPs are applied must be chosen
carefully for optimal lifetime enhancement.

7.10 Algorithm for 1-D Ising Model

Here we provide python code for a A-mixing algorithm for the Ising chain. The output of
the algorithm is a sequence of locations. Our convention is such that location ¢ indicates a
DSWAP should be applied that exchanges defects between sites ¢ and 7 + 1. Heuristically,
the algorithm attempts to shuffle defects towards the shared boundary of the disjoint sites
0,1,2,....A-1 and A A+1,....2\-1. That is, it attempts to translate defects so that they are
adjacent to each other at sites A — 1 and A. After completing this cycle, the algorithm
repeats for the next two adjacent domains, A, ...,2\ — 1 and 2A,...,3\A — 1. This continues
until the lattice has been exhausted.

The following python code generates a complete sequence of DSWAPSs given a lattice size
and A length.

def SwapProtocol(L, lamb):
prot = []
numofdomains = L / lamb
for d in xrange(numofdomains):
for k in xrange(lamb):
for m in xrange(k):
prot.append((lamb-1-k+m+d*lamb)%L)
for i in xrange(lamb):
for j in xrange(i):
prot.append((lamb+i-j-1+d*lamb)%L)
return prot

The protocol is parallelized by operating simultaneously on specific pairs of domains.
To be more explicit: denote the first A\ sites as A;, the next A sites Ay and so on. The
algorithm can be naturally partitioned into a sequence of DSWAPs that translates defects to
the shared boundary of A; and Ay (call this sequence (A1, A\z)), followed by a sequence that
translates defects to the shared boundary between Ay and Az, (call this sequence (Mg, A3)),
etc. To parallelize, apply the sequence (Aj, Ay) simultaneously with (A, A4), (A5, Ag), etc.
When complete, apply the sequence (A9, A3) with (A, A5) etc. This exhausts the protocol.
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Chapter 8

Autonomous algorithms with
measurements

The representation described here, although conceptually simple, is not efficient and
would not have condemned the guiltless.

King James Programming Tumblr

After developing algorithms that did not use measurements and finding that those algo-
rithms could not restore the exponential scaling of the toric code lifetime with size, we turned
to algorithms that used asymptotically as few measurements as possible. In this chapter, we
demonstrate the existence of a finite temperature threshold for a 1D stabilizer code under an
error correcting protocol that requires only a fraction of the syndrome measurements. Below
the threshold temperature, encoded states have exponentially long lifetimes, as demonstrated
by numerical and analytical arguments. We sketch how this algorithm generalizes to higher
dimensional stabilizer codes with string-like excitations, like the toric code. The text of this
chapter is the recent manuscript Freeman et al. [56].

8.1 Introduction

Quantum memories are an essential component for many quantum technologies, including
quantum computing and quantum repeaters. In analogy to modern classical memories, one
ideally wants a stable quantum memory that requires little or no active intervention and error
correction. Unfortunately, no physical system that passively preserves quantum information
indefinitely at finite temperatures and in an experimentally accessible number of dimensions
is known [118]. Instead, the operation of all known practical quantum memories require
a combination of passive elements (i.e. dissipative cooling) and active measurement and
correction cycles to keep quantum information protected. In this work, we study the degree
to which the amount of active measurement and correction can be reduced while maintaining
quantum memory stability (our notion of stability, to be quantified later, corresponds to
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exponentially long lifetime for encoded states below some finite threshold temperature). We
develop a new decoding and correction protocol that enables one to trim the number of
measurements to a fraction of the complete set of measurements normally considered, and
still maintain quantum memory stability.

We restrict our attention to quantum memories defined through stabilizer codes. For near
term architectures, stabilizer codes[59] have emerged as the leading candidate for encoding
quantum information and subsequent active error correction in quantum hardware, with
small scale architectures actively being developed and deployed|[78, 115, 31, 32]. A tremen-
dous amount of effort has gone into developing novel decoding and correction schemes for
stabilizer codes, particularly the toric code. Different schemes often emphasize different de-
coding features, like efficient decoding[80, 125, 36], locality[20, 119, 62, 66|, robustness to
particular sorts of noise[100, 10, 134], or use of dissipation[54, 69, 68, 57, 106, 105, 29, 30,
61, 65, 137, 128, 34, 73, 6].

In previous work [55], we analyzed the finite temperature dynamics of the toric code,
verifying the well-known no-go theorems for the upper bound to the lifetime of the toric
code at finite temperature[18, 3, 30, 136, 63, 82, 116, 117]. Using this analysis, we were
able to construct a measurement-free protocol for protecting the encoded qubits of the toric
code [54], but these protocols again were limited by the no-go theorems, and only provided
a multiplicative constant increase to the lifetime.

Building off this previous work, here we examine the extent to which a limited amount
of measurement can increase the lifetime of stabilizer codes with string-like excitations. In
sum, we demonstrate an algorithm that, for any constant density of measurements for a
stabilizer code with stringlike excitations undergoing dissipation at a fixed temperature,
exhibits a threshold temperature, below which exponentially long lifetimes can be achieved
in the encoded space. The threshold temperature scales with the amount of measurement
used—fewer measurements result in a smaller threshold temperature, whereas more complete
measurement raises the threshold temperature. This tradeoff is commensurate with and
complements what is known about decoding the stabilizer codes in the presence of noisy,
but complete measurements|[97].

The remainder of the manuscript is structured as follows: Section 8.2 briefly reviews
the theoretical tools used for performing simulation of stabilizer codes at finite temperature.
The content of this section is also expanded upon in refs [55, 54]. Section 8.3 includes
the full description of our limited measurement algorithm, including a discussion of the
expected low temperature error processes that cause the algorithm to fail, and a heuristic
justification for the expectation of a threshold temperature below which a stable quantum
memory is feasible. Section 8.4 details our numerical investigations of our algorithm for the
1D Ising model. Finally, Sec. 8.5 sketches how this algorithm could be generalized to higher
dimensions, and Sec. 8.6 provides some concluding analysis and discussion.
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Repetition Stabilizer Code 1d Ising Stabilizer Hamiltonian
Encoded States Ground states
Bit flip errors Excited states
Decoding and error correction Identical or by cooling

Table 8.1: A short summary of the similarities and differences between the Ising model
considered as a code (left panel) versus as a hamiltonian (right panel).

8.2 Stabilizer codes at Finite Temperature

Definitions

In this section, we briefly review the theory of the 1D Ising model, as well as the Marko-
vian open quantum systems formalism for evaluating its finite temperature dynamics. The
Hamiltonian for the 1D Ising model is

Hygng = —AY,0l0t! (8.1)

where, for the remainder of the manuscript, unless explicitly stated otherwise, we assume
A = 1. This is exactly the Hamiltonian version of the repetition stabilizer code[54]. Note
that the terms o'c’™ correspond exactly to the parity check stabilizer operators of the
repetition code (see Table 8.1).

In the parlance of the 1D Ising model, bit flip errors are often also classified via the dual
variables called domain walls or defects. Defects are simply locations on the 1D Ising chain
where a stabilizer operator yields a measurement of —1—i.e., locations where neighboring
spins point in different directions. With periodic boundary, the number of these locations is
always even, and a single bit flip event either creates a pair of such defects, deletes a pair of
defects, or causes a defect to translate by one unit.

As long as less than half the system has had errors, a majority rule decoder that has
access to measurements of the full set of stabilizers o¢oi! will reliably be able to correctly
identify and remove errors. When errors are completely independent (i.e., at very high
temperature), we can define random variables z; = 1 when an error occurs on site ¢, and 0
otherwise. If these errors occur with probability p on each spin, independently at random
every error detection cycle, then Chernoff’s bound gives an upper bound to the probability
of an error in the encoded space, P(¥;x; > L/2) < exp[—LpQ‘S—jé] for § = 1/2p — 1. Thus,
for complete measurement, errors in the encoded subspace are exponentially suppressed in
system size, so long as the error rate is sufficiently small.

For much of the remainder of the manuscript, we consider how the decoding scheme
changes when one does not have access to the full set of stabilizer measurements.

Following Ref. [54], we consider a simple local Ohmic, Markovian bath to model finite
temperature effects. This is modeled by the following master equation in Lindblad form:
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p= 3 2eipe] — clesp = pele 52)

Here p is the density matrix, with Lindblad operators ¢; chosen to take the form:

{e(a)} = {VAO) T, VA @) D], VA=A D:} (8.3)

where T;, translates a defect by one unit, Dg creates a pair of defects, D, dissipates a pair of
defects, and 7(+) is a rate function dependent on the details of the bath. This bath is chosen
to model the dynamics of local, single bit-flip errors. In the Pauli basis, these operators take
the following form.

)

1
D} = (Io.1) (1 + I0.02) (1 + 0:0.1)

1
D; =2 (Io,I)(1—10,0,)(1—0,0.1)
1
T; =1 (Io,I)(1—10,0.)(1+0.0.1), (8.4)

By convention, we define 7 to index the first qubit in these operators.
Finally, the remaining details of the bath are specified by the spectral density, which
determines the rates with which the different Lindblad operators act:

(8.5)

v(w)Zf'm

where n = 1 corresponds to an Ohmic spectral density, which is the choice we make for
the remainder of the manuscript. With this choice, in the absence of any error correcting
protocol, it can be shown that the 1D Ising model has a system size independent thermal
logical error rate given by[54]

7(0)

Fo = 14 el/T

(8.6)

We define the bare lifetime of qubits evolving under the 1D Ising model Hamiltonian in
contat with an Ohmic thermal bath to be I';".

Finite Temperature vs. Infinite Temperature

The majority of the error correction literature assumes an error model akin to an “infinite
temperature limit”. More precisely, an array of physical qubits receives errors from some
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set of error operators E; independently at random with some probability p during every
error correction cycle. The threshold theorems state that there exists some critical error
probability p. below which it is possible to return an error correcting code to its encoded
state with unit probability for asymptotically large systems; e.g., for the toric code, p. =~ .109
[125].

In contrast, thresholds at finite temperature are usually quoted in terms of a critical
temperature. That is, there must exist some critical temperature 7T, below which codes
can be reliably corrected. Unfortunately, this definition obscures a great deal of physics—
different choices of bath model can greatly affect the dynamics of the error processes, to the
extent that a quoted “critical temperature” often implicitly specifies a choice of bath model.
Because different bath interactions can give rise to different system dynamics, the choice of
bath also directly affects the strategy used for error correction. For example, it is known
that the toric code’s threshold temperature is altered by considering a space-correlated bath
rather than an uncorrelated one [100].

The main consequence of choosing an Ohmic bath is that it sets the amplitude of the
excitation hopping process. That is, 7(0) is determined by the w — 0 limit of the spectral
density of the bath, and for the Ohmic bath taking the w — 0 limit of Eq. 8.5 yields y(0) ~ T'.
Ultimately, this means that the hopping rate of domain walls is controlled by this choice of
bath model. At finite temperatures, this introduces correlations into the patterns of errors
that effect the system, and so it is no longer possible to talk about an “independent error
probability per site”. In contrast to the behavior of 7(0), the other operationally important
feature of the bath, the ratio of defect creation and annihilation rates, is set by detailed
balance to Boltzmann-like scaling (i.e., 7(A)/~v(—A) = exp(—A/T)), and is independent of
the choice of bath spectrum.

In the most extreme case, at sufficiently low temperature, pairs of neighboring defects are
most often immediately dissipated by the bath upon creation via a D, operator. However,
if a pair creation is followed by a pair hopping event — i.e., a DZ followed by a T}, — the error
can no longer be immediately dissipated by the local action of the bath. Subsequently the
defects will undergo a one-dimensional random walk, and topologically non-trivial random
walks will cause uncorrectable logical errors.

Thus, error correcting the 1D Ising model at low temperature with this sort of bath
dynamics reduces to attempting to identify these randomly-migrating rare pairs of defects.
While a majority-rule decoding scheme works in both low and high temperature limits for
the Ising model, if the number of measurement resources is restricted, the standard majority
rule scheme breaks down because of the intrinsic uncertainty regarding unmeasured defects.
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Figure 8.1: This cartoon illustrates the “centering” procedure for detected defects on a unit
cell. Spin variables are in gray, and domain wall variables are in blue (no defect present)
and red (defect present). When a defect is detected on a measurement patch (blue box), it
is swapped to the center of the measurement patch via the DSWAP operator (black arrows).
The defect immediately adjacent to it is also swapped onto the measurement patch so as
not to pull apart defect pairs that would have otherwise dissipated. Measurement patch
lengthscale A indicated by arrow on top, and unit cell lengthscale A indicated by arrow on
bottom. The measurement fraction is defined as m = A, /.

8.3 Few Measurement Error Correction Algorithm

The Algorithm

In this section, we sketch a new algorithm which reliably removes errors in the 1D Ising
model below a threshold temperature, which we determine numerically. The primary tech-
nical innovation of this algorithm, and its generalization to quantum memories based on
any stabilizer Hamiltonian, is that it does not require measurement of the complete set of
stabilizer operators for a given stabilizer code—only a fixed subset. We assume i) that the
system is subject to periodic measurements on periodically spaced measurement “patches”,
i1) that measurement readout and processing occurs much faster than any system timescale,
and i7i) that the system is subject to a thermal bath as described in Sec. 8.2.
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The algorithm can be summarized in five steps:

1. Measure stabilizers on patches, keeping record of the age of defects that are already
on patches—i.e., the amount of time a defect is continuously detected on a patch—as well
as defect locations.

2. Perform “centering” on patches with defects (see Fig. 8.1), based on centering protocol
introduced in Ref. [54].

3. Calculate probability of fusion (explicitly given in Eq. 8.18) for all pairs of measured
defects residing on the measurement sites. This probability serves as an estimate for whether
two defects should be paired or not for the purposes of error correction.

4. Probabilistically perform error correction based on probabilities calculated in step 3.

5. Repeat steps 1 — 4.

Step 2 encourages defects to remain localized at measurement patches. This center-
ing protocol can be performed entirely unitarily by the DSWAP operator, which takes the
following form in the Pauli basis,

1
DSWAP,; = 3 (Il + 1o, + 0,10, —0,0.0),) (8.7)

where ¢ indexes the location of the first qubit being acted upon by the operator by convention.

If a domain wall exists either between the first and second qubit or the second and third
qubit, then the DSWAP operator exchanges those domain walls. If there are no domain walls,
it acts as the identity. By concatenating a sequence of DSWAPs, i.e. DSWAP; DSWAP,
DSWAP, 5 ..., domain walls can be shuttled to the center of the measurement patch for
efficient tracking.

The centering process, illustrated in Fig. 8.1, aids the probability of fusion calculation
by ensuring that the coordinates and measurement times are representative of when and
where defects are actually created. If defects escape from measurement patches, then upon
being measured again, the time recorded by the measurement patch now underestimates how
old the defect actually is, biasing the probability estimate. This centering operation greatly
reduces the probability of defect escape. Any remaining underestimate of defect lifetimes
can be fixed by a more elaborate record keeping protocol (See Appendix 8.9).

Note that the pattern of DSWAPs used in Fig. 8.1 also swaps the neighboring, un-
measured defect onto the measurement patch. This is to ensure that the protocol does not
inadvertently create a new separated pair of defects in the system by shifting only one defect
in a potentially adjacent pair.

Fusion Probability Calculation

To perform error correction properly, we need to be able to estimate the probability that
two given measured defects are a pair, given that they have been measured at two particular
measurement patches at two different times. For notational convenience, we define:

dy : dy = defect d; and dy are a pair (8.8)
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and
dfl’tl = defect d; measured at time ¢; at patch x; (8.9)
Then, we aim to calculate the fusion probaility:
P(dy : do|d"™ A d3>™?), (8.10)

i.e., the probability that two detects measured at spacetime coordinates (z1,t;) and (xo,t2)
are part of the same defect pair, and therefore should be fused in a correction step.
To calculate this probability, we proceed via Bayes rule:

P(dy : dy|d7" A d32"?) = (8.11)

P(di" N d5>"|dy : do) P(dy : da)
P A d5*")

The individual terms on the right hand side of equation 8.11 are straightforward to interpret.
dfi’t" indicates a defect residing on a measurement patch centered on spacetime coordinate
zi,t;. PV Ad3?"?|dy : dy) represents the probability that two measured defects would be
at (z1,t1) and (xo,ty) given that they are indeed a pair. P(d; : dy) represents the probability
that two measured defects, d; and dy, are in fact a pair. Finally, P(d7"" A d3>") is the
probability that two defects are measured, one at (x1,t;), and the other at (x9,t5).

P(d}""™ Ad3>"|dy - dy) can be related to the probability that a one dimensional diffusion
process with diffusion constant D will perform an excursion with a displacement |zo — 1| or
greater in a time ty — t1, i.e., will perform an excursion that can reach measurement patches
at 1 and zo. Explicitly,

P(dilv1,t1 A d§27t2|d1 . dg) (8.12)

|I27I1‘ ]. |I2 — .731|2
=1-2 dr———ex e e—
/0 27TD|t2—t1| p< 2D‘t2—t1’>

_ _erf(M>
2,/Dlts — 1|

For our analysis, we will choose D o 7. The exact correspondence between D and 7
depends on the details of the error correction algorithm itself, so, in practice, we treat the
constant of proportionality as an empirically tuned parameter. Furthermore, we approximate
any detected defects as arising from a pair that was created an equal distance between the
measurement patches at locations z; and x5 for the purposes of calculating the probability
in Eq. 8.12.

As we discuss in Appendix 8.8, the remaining two factors are not as important for the
decoding scheme as the likelihood term in Eq. 8.12. In practice, we find that using the
expression from Eq. 8.12 alone is sufficient to provide resilient error correction. We defer
further discussion to the appendix.



CHAPTER 8. AUTONOMOUS ALGORITHMS WITH MEASUREMENTS 113

Error dynamics

In this section, we discuss parameter regime in which we expect the error correcting algorithm
to perform well. We then derive the logical error rate for a simple error model, under
some simplifying assumptions about the error dynamics. While this error model does not
account for the complete error dynamics of the full 1D Ising model in the presence of our
protocol, we argue how it nonetheless serves as a worst-case approximation to the true error
dynamics. Finally, we describe how this protocol provides a threshold for any finite density
of measurements.

Correspondence between model and full error dynamics

In this section, we detail the approximations and rate assumptions that are necessary for the
error correcting algorithm to perform well. The primary approximations made are concerning
(1) fast defect detection, (2) accurate pairing, (3) defects escaping measurement patches,
and (4) defect interactions.

(1). If defects are produced in between measurement patches faster than they are de-
tected, then this algorithm cannot in principle correct errors. Thus, we require that the char-
acteristic diffusion time for defects in the bulk to migrate to a measurement patch, v, T(\)2,
where A\, = A — \,,,, to be much shorter than the characteristic timescale over which a pair
of defects is created in the bulk, 75 'exp A/T. Thus, working at low temperature ensures
the validity of this approximation.

(2). If defects are paired incorrectly more often than they are paired correctly, then
the algorithm will fail. Let 77! be the rate of the error process and 7' be the rate of a
non-erroneous error correction operation. To ensure that (771/7; ") < 1 (see Eq. 8.14), we
must work in the diffuse limit, where the average number of defects per unit cell is much less
than 1. This is equivalent to Ay, << 1. This ensures that, when defects are being processed
by the algorithm, that more often than not, defects will be correctly paired simply because
it’s unlikely there are any other defects nearby. Thus, assuming condition (1)—that defects
are detected quickly—defect pairs satisfying Eq. 8.12 are more likely than not to be genuine
pairs.

(3). While the simple model does not account for defects escaping measurement patches,
this can occur in the real system when a series of translation events occurs between mea-
surements. For a measurement rate , these processes are of O(v4 (v0/7-)(70/x) /%), for
measurement patches of size \,,, assuming x > 7. Thus, this process can be suppressed
by working with a larger sized measurement patch, or with a measurement rate suitably
larger than the intrinsic translation rate of the system, . At worst, the age of defects that
escape measurement patches but that are subsequently recaptured may be underestimated
by the algorithm, because the “age” of the defect would be erroneously reset to zero. This
would then erroneously underestimate the distance the algorithm would plausibly search for
a pairing defect—i..e, the denominator of the error function in Eq. 8.12 could be artificially
small because the “real” defect age is actually older. While these sorts of errors can poten-
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tially spoil the error correcting protocol at very long distances—much larger than considered
in this manuscript—these errors can be corrected with a modified version of our algorithm
without any additional measurement resources, detailed in Appendix 8.9.

(4). In reality, defects can annihilate without the protocol intentionally pairing them.
To leading order, at low temperature, these processes are “self-correcting”. That is, a pair
of neighboring defects enters the system, and then is subsequently annihilated. In principle,
it is possible for a sequence of k free pairs of defects to appear in the bulk—one pair per unit
cell—of which, k — 1 are then subsequently erroneously “corrected”, resulting in two defects
separated by a distance kX, but this process is exponentially slow in the average defect unit
cell density, which we already choose to be small via condition (2). That is, the error rate
due to the erroneous separation of defects by a distance Ak is oc (Ay,)E.

A simple error model

To bound the error rate of the Ising model in the presence of our protocol, we study a
simple error model for “spurious error correction” events. A representative example of one
of these events is when two pairs of defects are detected in the system (four defects total on
four distinct measurement patches), and the protocol erroneously pairs one defect from each
distinct pair. Because the density of defects is low at low temperature, this error process is
similar to an error process that occasionally randomly translates one defect of a pair some
distance. The distance one of the pair becomes separated depends on the age of the defect,
as well as whether the erroneously paired defect was to the left or the right of the original
pair of defects.

Thus, the simplified error model is defined as follows: suppose that a single pair of defects
is in the system, and that no new pairs will be introduced. One of the pair is fixed on a
measurement patch, and the other is, at time t = 0, undetected and residing somewhere in
the bulk between measurement patches. We will model spurious error correction by an error
process that translates the unmeasured defect by a distance 24/790t. As time increases, the
characteristic distance over which this error process can occur also increases, in accordance
with the typical pair-wise separation between two defects performing a random walk. This
typical distance is exactly the factor used by the error correction algorithm to determine if
a pair of defects should be corrected or not.

An uncorrectable error will occur if the bulk defect remains undetected up until it crosses
half the system. For unit cells of size A, the probability that this occurs is roughly (7.1 /7; ),
where k is the number of times the error process must occur for the error process to have
separated the defects a distance (L/2)), 7! is the rate of the error process and ;' is the
rate of a non-erroneous error correction operation. After a timescale q - 74, the defect pairs
will have been separated a distance equal to

V4 Y0Ta (8.13)

assuming that they are never correctly paired. This grows as ¢'/2, thus, k scales approx-
imately as (L/A)%. Finally, assuming there are L/\ such simultaneous independent error
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processes in the system—one for each measurement patch—then the total error probability
scales as

P(error) < (L/A) (77t /7t EV7, (8.14)
For sufficiently low temperatures (see Sec. 8.3), 7! is much smaller than 7;, thus the full
probability of erroneous corrective operations is exponentially small in system size.

While our toy error model is “non-interacting” —that is, it assumes L /X independent error
processes which, in sum, take the form described in Eq. 8.14—a more careful treatment
of the error process, including interactions between defects, as in the real model, would
result in an error probability smaller than the one calculated here. In Sec. 8.4, we provide
numerical evidence that the lifetime of the Ising model in the presence of the protocol scales

exponentially with the number of measurement patches, as anticipated by the upper bound
in Eq.8.14.

Error correction at any measurement density

A key feature of the protocol is the ability to provide an error correcting threshold temper-
ature at any finite measurement density. In particular, for a fixed measurement density m,
and fixed measurement and bulk length scales A, and \,, respectively, it is still possible to
satsify the rate assumptions of Sec. 8.3 by tuning temperature sufficiently low. Each rate
assumption does not explicitly depend on total system size L, only unit cell size \.

In practice, larger A, (alternatively, smaller m) will result in lower threshold temperatures
simply because the temperature must be lower to satisfy the rate assumptions of conditions
(1) and (2). We provide explicit evidence of this scaling in Fig. 8.5.

8.4 Finite Temperature Simulations

In this section, we present the numerical simulations of the protocol on finite-size systems of
length L. We consider systems with unit cells of size A with \,, = 3 measured sites in each
unit cell, and a measurement fraction of m = A, /.

Fig. 8.2 depicts the scaling of the system lifetime enhancement with temperature for
several system sizes. Below a certain temperature, the system lifetime increases exponentially
with system size. Due to finite size effects, it is difficult to extract an unambiguous threshold
temperature, but below T" &~ 0.16, the lifetime increases exponentially with larger system
size. We estimate the threshold by fitting T'(T)™! to 1 + exp(—a * (T — Ti,)). The inset of
Fig. 8.2 shows the finite-size scaling of Ty, which suggests that T}, remains non-zero in the
limit of L — oo; this demonstrates that this protocol has a finite-temperature threshold in
the thermodynamic limit. In this limit, we find T3, = .155(6).

Fig. 8.3 (top) depicts the finite-size scaling of the lifetime enhancement for temperatures
below and above the threshold. Note that for systems above T = 0.16, larger system sizes
asymptote to a constant lifetime enhancement, whereas for models below T ~ 0.16, the
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Figure 8.2: Lifetime enhancement of several system sizes L as a function of temperature T’
using a measurement fraction of m = 3/7. Dotted line indicates example fit for threshold
temperature T}, extraction for L = 224 data. Below T' & 0.16, we find the lifetime to grow
exponentially with L, indicative of a finite-temperature threshold. Inset: finite size scaling
of Ty, with inverse length 1/L. Extrapolation to the infinite system limit yields a threshold
temperature of Ti, = .155(6).



CHAPTER 8. AUTONOMOUS ALGORITHMS WITH MEASUREMENTS 117

107: T T T T ]

-9 T=0.09 - T=0.15 —$ T=0.21 .

106 <% T=0.12 4 7T=0.18 % T=0.24 ;

10° | ,

T I = ]
ST - = _j
b C = I — 7
102 | e — —®E— T T ]

n i, .

10" | TE— = = - - —w — — = ]

X - - . - 3

100' %%ﬁ—i—— = — & — —IZ—E—‘—_—T——* .

E | | | | 3

E |

- _ = 3

- 10_1:E //’:;//,,1 4
= : F—F % - - = - — 3
=] ﬁﬁf d-3---F === |
N §
— 107 F =¥ E
S / E

—t
9
t
S T
el LLLLL

50 100 150 200
L

Figure 8.3: (Top) Lifetime enhancement for temperatures both below and above the thresh-
old as a function of system size L, using a measurement fraction m = 3/7. Note the mono-
tonic growth in lifetime at low temperatures, as well as the plateau in lifetime for moderately
sized systems. A 3/7 measurement fraction was used for this data. (Bottom) The same data
rescaled by an additional factor I';', to emphasize the origin and scaling of the plateau in
system lifetimes.
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lifetime grows monotonically with system size. We find that beyond L = 100, finite size
effects are significantly reduced, as small-system sizes cannot easily suppress second order
errors, such as defects escaping from measurement patches or multiple pairs of defects in
the system. Such errors are actually uncorrectable for systems where L/A < 4—hence the
plateau appearing around L = 50 to L = 100. Above these system sizes, the exponential
scaling returns. This plateau is of height O(I';?)—the characteristic timescale of these
“second-order” events. This scaling is made apparent in Fig. 8.3 (bottom), where the
lifetime has been scaled by of I'y? for each temperature.

Fig. 8.4 depicts the lifetime enhancement as a function of temperature for several different
measurement fractions as well as different energy scales, A. It is evident that measuring a
smaller fraction of the lattice causes the threshold temperature to shift downwards. This
dependence of the threshold temperature on the measurement fraction is depicted explicitly
in Fig. 8.5 (left panel).

The scaling of the threshold temperature with A is presented in Fig. 8.5 (right panel).
By contrasting the left and right panels of Figure 8.4, one can deduce the relative benefits of
error suppression via more measurement resources versus error suppression via hamiltonian
engineering (i.e., a larger gap to excitation).

8.5 (Generalization to Higher Dimension

In this section, we sketch how the algorithm presented in Sec. 8.3 generalizes to a higher
dimensional stabilizer quantum memory—the 2D toric code. Where the dynamics of the
1D Ising model are typified by one dimensional random walks of defects, the nonequilibrium
dynamics of the toric code are driven by two dimensional random walks of quasiparticle
excitations. Consider the toric code hamiltonian:.

Hyo=-A) Ay —An> B, (8.15)
v P
A, = Haj, B, = Hcr]’-”, (8.16)
JEv Jjep

where v denotes the 4-spin vertices of the square lattice, and where and p denotes the 4-
{oit! stabilizers, quasiparticle

excitations for the toric code are associated with -1 eigenstates of the A, and B, stabilizers
Broadly speaking, the algorithm is identical, but instead of having “patches” of measure-
ment, there are measurement “rails”, as indicated in Fig. 8.6. One such set of rails must
another set of measurement rails for the A, stabilizers. The error detection and correction
can then be performed completely in parallel for both types of excitations, as they are inde-

qubit plaquettes on the edges of a 2D square lattice[76]. While domain wall excitations in
the 1D ising model are associated with -1 eigenstates of the oo

as defined in Eq. 8.16.

exist for both types of excitations in the toric code—that is, one for the B, stabilizers, and
pendent. “Centering” of defects on rails amounts to shift-swapping defects into the center of
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Figure 8.4: (Top) The lifetime enhancement as a function of temperature for several mea-
surement fractions m of 32 (i.e., L = 32-3/m. Note the threshold temperature decreases
with m. (Bottom) Lifetime enhancement as a function of temperature for a variety of energy
scales A (see Eq. 8.1) for an L = 224 system with m=3/7.
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Figure 8.5: The threshold temperatures as a function of measurement fraction, m (left), and
the Hamiltonian energy scale A (see Eq. 8.1)(right). At zero measurement fraction, the
critical temperature is 0, and at unit measurement fraction, the critical temperature is O(1).

the measurement rail[54]. We conjecture that a sparse measurement strategy with randomly
placed measurement patches of fixed diameter might exist for sufficiently large and suffi-
ciently cold systems. However, the rail geometry of Fig. 8.6 is the simplest geometry that
allows us to argue for a threshold temperature for the toric code, based on a generalization of
the simple error model used for the Ising model in Sec. 8.3. The only difference between the
upper bound to the expected scaling of the probability of uncorrectable errors in the toric
code versus the expected scaling of the Ising model (i.e., Eq. 8.14) is the prefactor becomes
o (L/N)? for the toric code instead of L/\, where L represents the linear dimension of the
toric code.

8.6 Discussion

We have provided numerical and theoretical evidence of a limited measurement error cor-
rection protocol for a stabilizer code with string-like excitations. The primary technical
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Figure 8.6: Here we sketch one possible m = 63/144 (for a 12x12 unit cell) geometry for the
measurement rails for a realization of our protocol. More sparse geometries can be realized
simply by moving the rails of measurement farther apart. Measured sites are in light blue,

and vertex locations for the toric code are circles. Spin variables (not pictured) reside directly

between neighboring vertices.
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innovation of our algorithm is a Bayesian decoding scheme for pairing defects based on par-
tial information, sketched in Sec. 8.3. When combined with the measurement-free defect
localization technique developed in Ref. [54], this decoding scheme performs error correction
efficiently and results in a stable quantum memory at temperatures below an empirically
determined threshold temperature. So long as an appropriate geometry of measurement
devices is in place, and so long as defects undergo diffusive motion via coupling to a thermal
bath, this scheme can be extended to higher dimensional stabilizer systems like the toric
code, as demonstrated in Sec. 8.5.

Our results for variable measurement fraction complement what is known about decoders
in the presence of noisy measurements[97]. Figures 8.4 (top) and 8.5 (left) demonstrate how a
reduction in the measurement fraction in the lattice corresponds to a concomitant decrease
in the threshold temperature, similar to how thresholds are known to be reduced when
increasing the noise on measurements.

More fundamentally, our algorithm can be understood as an entropy reduction scheme.
Configurations that give rise to errors in the encoded subspace are exponentially suppressed
as system size is made larger. This is in contrast with “energetic” suppression—that is,
suppression by widening the gap to excitations, A (or equivalently lowering the operating
temperature). This tradeoff between entropic and energetic contributions is depicted in
Figures 8.4 (top versus bottom) and 8.5 (left versus right). Depending on the resource
requirements of a particular architecture, the threshold temperature can be tuned either by
engineering a larger gap, A, or by changing the number of measurements used. In practice,
this will depend on the lowest effective temperature available, the maximum measurement
rate, as well as the practical difficulty of employing more measuring devices.
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8.8 Bayesian Decoding for the Ising Model

In this section, we provide further discussion of Eq. 8.11, as well as analytic and numerical
arguments for how it can be more simply approximated.

First, we decompose P(d; : d3) into two pieces: a combinatorial piece, and a dynamical
piece.

For the combinatorial piece, note that a necessary condition for pairing to be possible
is for both defects belonging to a pair to actually be measured. That is, there might be
a large number of measured defects dy, ds, ..., d,,  , but the pairing defect for some of these
defects might not be measured. Among those defects which are both measured, and which
have their pair also measured, then the probability of selecting two defects that are a pair
is simply the combinatorial factor 1/ (Nmeasmed;a“ de‘"“ts) where Nyeasured pair defects counts the
average number of measured defects for which their pair is also measured.

The dynamical piece is the probability that d; and dy are defects whose pairs are also
measured. This probability depends on how quickly defects make excursions to measurement
sites, as well as how quickly defects are being paired—either erroneously or correctly—by
the protocol. We can crudely lower bound this by taking the equilibrium defect distribution,
and calculating the probability that a pair of defects lands on a measurement patch. A,,/A
sites have measurement operators, thus (\,,/A)Lv; is an underestimate of the number of
defects on measurement patches. This is an underestimate because the protocol is actually
more efficient at concentrating defects on measurement patches than equilibrium dynamics is.
Given L+, pairs, this amounts to a binomial counting argument, and the expected number
of measured pairs is simply Ly, (A,,,/A)?. Thus, a lower bound to the equilibrium probability
of two selected defects being a measured pair is simply (L, (A /A)?)/(Lyy) = (Am/N)2

As mentioned in Sec. 8.3, P(d7"" Ad3>"?) is the probability that two defects are measured,
one at (z1,t1), and the other at (z3,t3). This can be decomposed:

P A ) = 1
P(dalc1,t1 A d:2c2,t2|d1 . dg)P(dl : d2)+
P(dglnl,tl A d1252,t2|d1/{d2)(1 — P(dl : dQ))

The first term is precisely Eq. 8.12, multiplied by P(d; : ds), which we estimated above.
The second term represents the probability of two measurement events, conditioned on those
events not being part of a pair. This is essentially the probability that two independent mea-
surement events have occurred, which is approximately the probability that two independent
creation events have occurred (assuming defects are measured suitably efficiently). For a
suitably large system at moderately low temperature, this probability can be estimated as
o ([t — t1[)/((L+)7?) := 0(L, T, At).

In practice, at low temperature for moderately sized systems, P(d; : ds) is very nearly
1. This arises from the low density of defects meaning that only rarely are there even a
pair of defects in the system. Of course, if system size is made sufficiently large, this bare
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probability will become diminished, but it is still the case that defects within a separation
distance 24/ D|ty — t1| are, more often than not, a pair at low temperature. For the same
reason, P(d}"" A d3>"?|dyjdy) is very nearly 0 because this probability is roughly equivalent
to the probability that two independent pair creation events have occurred, which is unlikely
at low temperature and moderate system size. Again, for sufficiently large systems this
probability grows, but it is likewise the case that this probability is small for defects within
a distance 24/ D|ty — t1|. Then, if we write P(d; : ds) = 1 — €(L,T), and perform some

rearranging:

P(dy : dy|dT" A d32"?) = (8.18)
1
PV Adg2 "2 |dy fdo)e(L,T)
P(dSV I AdG2"2 | dy d2) (1—€(T))
1

= 5(L,T,At)

1 1—e(L,T)
+ P(d7V A2 2 |dy:d)
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Thus, only when P(d{*" A d3>"?|d; : dy) << §(L,T, At) is this factor not equal to 1. This
naturally occurs when comparing defects that are much farther apart than diffusive motion
would usually allow. For example: for a very large system, if one defect of a pair is measured
at site 0 and another defect belonging to another independent pair is measured at site L/2
shortly thereafter (compared to the timescale for defect motion), it is exceedingly unlikely
for these two measured defects to be a pair because it’s exponentially unlikely for such a
long random excursion to occur. In this way, the factor P(d}""" A d3>**|dy : dy) serves
as an indicator function which answers the question, “Could these two defects have arisen
from a random walk starting in the same place?”. The factor §(L, T, At) sets the cutoff
for a plausible excursion—i.e., when the error function is much less than this term, the
denominator of 8.18 blows up, and the probability of performing that fusion is essentially
Z€ero.

In practice, the precise details of these additional factors arising from Bayes theorem
aren’t too important for the protocol to function, and we find that using the conditional
probability P(di"'" A d3*™|dy : dy) itself as a proxy for the full expression from Bayes
theorem is sufficient to reliably correct errors. We provide some heuristic comparisons of
different decoding schemes in Appendix 8.10.



CHAPTER 8. AUTONOMOUS ALGORITHMS WITH MEASUREMENTS 125

8.9 Alternative Algorithm for Estimating Defect
Lifetimes

The algorithm, as presented in Sec. 8.3, is susceptible to errors due to systematically un-
derestimating defect lifetimes. In practice, this error rate is small—small enough that it was
not detectable in our numerical studies—but it is nonetheless present and has the potential
to spoil the increase in lifetime with system size for the protocol. In this section, we outline
how this problem introduces a system size independent uncorrectable lengthscale into the
algorithm, and we provide an alteration to our presented algorithm that can account for
these errors, restoring the expected system size scaling.

The maximum correctable lengthscale

If we denote the timescale over which defects escapes measurement patches on average as
Tesc, then a defect pair that is separated by much more than /D7 will be overwhelmingly
likely to escape from its measurement patch before the denominator of Eq. (8.12) can grow
large enough to match the defect to its pair—potentially spoiling the system size scaling of
the algorithm.

In practice, by occasionally scaling the size of the measurement patches, \,,, keeping
the ratio of measured sites to unmeasured sites fixed, this maximum distance can be tuned
larger. For our simulations, we did not need to perform this measurement patch scaling,
because the rate of defect escape was so small, even for )\,, = 3. Care must be taken,
however, because measurement patches cannot be made arbitrarily large without violating
the condition mentioned in point (2).

Now, Suppose two defects come into a configuration where they are separated by a
distance C'v/ DT for an integer C' and system diffusion constant D. We will estimate the
C' after which it is just as likely for a defect pair to be corrected by the algorithm as it is to
cause an error. Without loss of generality, define the left defect to be at position 0.

Suppose the left defect has recently escaped a measurement patch and been recaptured,
thus its estimated age is 0. For the error correcting protocol to be able to pair these defects,
it must remain on its measurement patch for a time C' - 7... But over a timescale 7., the
defect is equally likely to escape its measurement patch as it is to remain on it, resetting
its effective age. Treating this as a binomial process, we need to estimate the expected
amount of time it takes the defect to remain on its measurement patch for C' consecutive
timescales 7Tes.. Call this timescale T(C, 1) for C' consecutive events with timescale 7. More
colloquially—this is equivalent to the expected number of coin flips before a coin has a run
of C' “heads” in a row. For an event with probability p of occurring, this takes the form

p ¢ -1

T(C,7)="71 -

(8.19)
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Thus, after a time T(C,7), a defect could, in principle, be paired with another defect a
distance C' \/ZDT) away by the algorithm.

Recall that a diffusion process with constant D will, in 0t time, become displaced by
a distance dx = v/ Ddt. Because the defects are trapped by the measurement patches, the
diffusion rate must be renormalized: dz = /D3t - (A)/(YoTesc)- This is because it takes a
time 7o for a defect to actually perform escape from a measurement patch to perform a
random step, and this random step has a characteristic length equal to the length of the unit
cell, \. Thus, on average, it takes a time 0t = C?y72./\ for a diffusive process to perform
an excursion of distance C'v/DTegc.

Note that when the timescale over which it takes a defect to remain on a patch C'
consecutive times equals the timescale it takes a defect to travel a distance C' \/ZDTQSC), it
is no longer likely for error correction to work. This only becomes worse as defects become
more separated—the pairing defect is more likely to diffuse than it is likely that its pair
will remain trapped on a measurement site. Setting these timescales equal results in the
transcendental equation,

7—esc2c = ’70027—2 //\ (820)

esc

Asymptotically for large Tese /A, C' = log (70Tesc/A). Thus, the lengthscale v/ DTes. 10g (YoTese/A)
is approximately the maximum correctable lengthscale for our protocol, in the absence of
any other corrective measures. Note that, for our system parameters, this is many thousands
of unit cells, and therefore was not detectable by our finite system size analysis.

Accurate lifetime estimation

To ameliorate this issue, we can modify our protocol with additional steps to keep track of
defect lifetimes. That is, within step 1 of the algorithm, perform the following subprotocol:

Let each measurement patch, m;, have two internal clocks, T} and Tj.

1. If a measurement patch becomes unoccupied without a corrective operation being
applied, record the time at which the patch was measured as empty, 77 = T.,py, and
keep the most recent lifetime, t,5. in memory with a decay constant set by 7geeqy. Thus,
T = tage(t) = tageo 5D(—(t — Tompty) o).

2. If a defect is subsequently remeasured on this patch at time ¢;, treat it within the
original protocol as if it had been measured at time #,4.(¢;). So long as a defect is on the
measurement patch, leave Ty constant, and update T1 = Teoyrrent, Where Tpyppens 1S the current
system clock time.

3. If a defect is subsequently measured on patch m; with no “active” memory of a
lifetime—i.e., T4 < .01—calculate the probabilities given by Eq. 8.18 between m; and all
other unoccupied measurement patches, m;, using Ttyrrent — 1° f as the diffusion timescale in
Eq. 8.18 for the current system time, T, ens. Then, probabilistically set Ti equal to T3,
and then reset TJ to 0.
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Figure 8.7: Comparison of three different functional forms used as proxies for P(d; : da).

Protocol 1 is simply the error function expression given by Eq. 8.12. Protocol 2 is the

|9 —a1|?
_2D2|t2—1t1‘
in the last line of Eq. 8.18. In practice, each approximation for P(d; : ds) is seen to perform

approximately equally well.

probability density memp( ). Protocol 3 is the more complicated expression

Finally, we impose that 7jecqy is several times larger than the diffusive timescale for defects
to migrate between measurement patches, but still much smaller than the characteristic
timescale over which unpaired defect creation occurs within a unit cell. This ensures that
lifetimes T4 decay reasonably quickly if a pair of defects happens to self-annihilate far away
from a measurement patch, and will be near 0 should a new creation event occur, but also
ensures that lifetimes are kept in memory long enough to be useful for subsequent re-detection
events of escaped defects.
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8.10 Alternative decoding schemes

While the approximate Bayesian fusion probability expressed in Eq. 8.18 works well in
practice, we find empirically that the precise prefactors of the probability calculation are
not terribly important for the decoder functioning correctly. That is, we find that the final
expression in Eq. 8.18 works about as well as P(d}"" A d5*"|d; : dy), and that even using
the raw probability density,

1 |fL’2 — ZL‘1|2
S =Y Fe— Y PRm— 8.21
27TD|t2—t1|exp< 2D|t2—t1| ( )

from Eq. 8.12 serves as a decent proxy for the probability, even if this is mathematically
dubious in principle.

What is most important for the function of the protocol is that the fusion probability
correctly incorporates the expectation that defects are diffusive. An amount of sloppiness in
this calculation is tolerable, because the defects are efficiently trapped by the protocol, and
remain trapped for a long time relative to the diffusive timescales for the system. But so
long as defects that are plausibly “close” to one another are the defects that are fused, then
we find the protocol to extend system lifetimes effectively.

We plot a comparison of the three aforementioned decoding schemes in Fig. 8.7
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Chapter 9

Additional topics

1:44 For, lo, as soon as we introduce change into our computational models, many notions
that were previously straightforward become problematical.

King James Programming Tumblr

Throughout my graduate work at Berkeley, I also worked on a variety of topics unrelated
to the broader research program of developing a finite temperature fault tolerant quantum
memory. This chapter presents brief motivations and short summaries of those other works.

9.1 Tensor Networks, Transport, and Efficient State
Ansatzes

Background

A generic quantum state of n qubits requires 2" complex amplitudes to fully specify. While
this cost is prohibitive for describing all but the smallest quantum mechanical systems on
classical computers, it is possible to very accurately approximate quantum states, or even
exactly describe broad classes of physically relevant states if one chooses the right sort of
state ansatz using purely classical resources.

Quantum state approximation has a long and productive history. The modern thrusts in
the field mostly share a common ideological if not technical underpinning with Steve White’s
Density Matrix Renormalization Group (DMRG) technique from the early 90s[132]. The
common thread of these techniques is to carefully choose a basis of states that well describes
a class of quantum states (e.g. ground states of physically interesting Hamiltonians) that is
also simultaneously numerically efficient to calculate. DMRG, in essentially the same form
as it was originally proposed, is still used to calculate observables for systems that have
approximately one-dimensional symmetries, like spin chains[131, 84] or even the electronic
properties of polymers[7].
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The modern interpretation of techniques like DMRG casts it as a variational optimization
of a set of local degrees of freedom[27]|. For example, suppose we aim to describe the ground
state of a one-dimensional spin chain on N sites with qubit degrees of freedom on each site.
Then, the most general ground state wavefunction could be written:

U(zy, 2, 2n) = B2 ¢ |Gay) (9.1)

where ¢; are complex amplitudes, and ¢,, are some complete basis for the Hilbert space
on N sites (e.g., ¢», € {|1), [1)}®. If, however, we know that the relevant physics for the
problem can captured entirely with local information (i.e., perhaps we know, a priori, that
a mean field approximation will give a decent approximation to the exact observables of the
problem), we might intuit that this function can be reparameterized by local variables as a
so-called Matriz Product State[27] (MPS):

U(y, 2, an) = Y ANBRCE.Y,N 1 20 (9.2)

L0592

where the A, B, .., Z objects’ lower indices run from 1 to an upper index d called the
bond dimension. These 2 by d by d objects A/ are called tensors. Often, especially in
translationally invariant systems, the different tensors A, B etc. are numerically identical.

Note that by choosing d large enough, this class of states can describe any state that
Eq. 9.1 can. The modern understanding of DMRG casts it as one particular procedure for
variationally updating the parameters of the different Af’; at fixed d so that the resulting
state well describes the physics of some problem of interest.

Of course, this is only one choice for how to locally parameterize an ansatz for a quantum
state. Drawn as a graph, the MPS parameterization can be visualized as a linear chain, where
vertices in the chain index the different Af”;, and the edges indicate different tensor indices,
as in Fig. 9.1. By considering more complicated graphs, more rich classes of quantum states
can be considered.

One particular state ansatz, pioneered by Guifré Vidal, called the Multiscale Entangle-
ment Renormalization Ansatz (MERA) was shown to be particularly useful for describing
systems with specific entanglement properties[123]. Specificallyy, MERA states can well de-
scribe systems with entanglement area laws, and power-law decaying correlations. In a long
series of follow-up works, Glen Evenbly and Vidal used MERA as well as related schemes

to attack numerous one and two dimensional lattice system of interest in the physics litera-
ture[40, 47, 43, 44, 42, 41, 39, 46, 45].

Transport in spin chains

With the power of MERA-style methods for lightly entangled systems well established, it
was surprising that these tools had not yet been applied to so-called non-equilibrium steady
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Figure 9.1: Graphical shorthand for tensors. Unique tensors are associated with vertices of
graphs. Edges connecting vertices correspond to summed indices. Free edges are free indices.

states (NESS). Such states are typified by two (or more) thermodynamic reservoirs held at
different temperatures (or chemical potentials), with some out-of-equilibrium flow occurring
between the reservoirs through a channel connecting them.

In joint work with Raghu Mahajan, Sam Mumford, Norm Tubman, and Brian Swingle,
we showed that these NESS states are lightly entangled under modest conditions, and nu-
merically studied the transport properties of several toy systems Mahajan et al. [88]. The
primary technical result was the proof of the existence of an efficiently calculable MERA-style
tensor network representation for NESS states under the condition of local thermodynamic
equilibrium. This condition is equivalent to the assumption that the density matrix of the
system can be written as:

pnEss o e @) (9.3)
where (x) can be interpreted as a local temperature, and e(x) is the energy density.
My primary contribution to the manuscript was extensive numerical calculations of trans-

port properties of a toy out-of-equilibrium fermionic system defined as follows. Consider a

one-dimensional fermionic chain partitioned into three contiguous segments: L, C, and R.

The base Hamiltonian for the full wire is the simple hopping model,
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H =N —w(clepyr + ciﬂcx) (9.4)

where N = N+ Nc+Npg, and where ¢, ¢ are the usual fermionic creation and annihilation
operators. Between the segments connecting L and C and the segments C and R, the hopping
matrix element was set to a separate, tunable variable w’. Additionally, in the L and R
regions, Lindblad operators of the form L; = ufc drove the left and right regions to different
tunable temperatures. We solved these systems primarily through exact diagonalization.

We found that many transport properties for this many-body system, like the linear
response conductance, thermal conductance, and mutual information, were well described by
a simple two-site model in the thermodynamic limit, due to the system’s simple entanglement

structure. This work was also extended to open fermionic systems by Zanoci and Swingle
[139].

Monte Carlo tensor network renormalization

When building tensor network states, the most common procedure for determining the “rel-
evant” basis states for a calculation is use of a dimensionality reduction technique like the
Singular Value Decomposition (SVD). That is to say, the tensors, A; ; appearing in the state
ansatz, are decomposed into a product of tensors, A; ; = U; , S, Vn ; where S is diagonal. By
retaining the largest entries of .S,,,, and truncating the others, one can often retain accuracy
while drastically reducing the size of the tensors under study. Unfortunately, this process
generically introduces an unavoidable truncation error, which, while small, is necessary to
avoid if one wishes to capture long range physics, especially in critical systems.

One promising technique for avoiding this truncation error while still working with tensors
of a reduced dimensionality is Tensor Network Monte Carlo [48]. With fixed bond dimension,
this technique allows one to faithfully sample the distribution of singular values for the tensors
used in an ansatz, thus exactly ezxactly capturing physics at all important length scales. This
can be understood as a time-space tradeoff—by working with a fixed, small bond dimension,
more time must be spent averaging over monte carlo samples (i.e., relevant singular values)
to accurately calculate observables.

In joint work with William Huggins, Miles Stoudenmire, Norm Tubman, and Birgitta
Whaley, we extended this technique to more complicated renormalization-based tensor net-
work geometries, and provided benchmark calculations on the 2D classical Ising model, ex-
plicitly demonstrating this time-space tradeoff by comparing convergence times with choice
of bond dimension size[67]. My role in this work was largely advisory, and William Huggins
performed the entirety of the coding and analysis of the data.

ASCI in Practice

Although it is not a tensor network based algorithm, Tubman’s recently developed Adap-
tive Sampling Configuration Interaction (ASCI) belongs, in spirit, to the same family of
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algorithms that intelligently search for the most important basis states (in this case, deter-
minants) for use in studying an electronic structure problem[121]. In short, ASCI iteratively
improves a wavefunction ansatz by deterministically searching through the space of deter-
minants for determinants that score highly according to a specific objective function. For
generic ASCI, this objective function is the CI coefficient:

i HyuCp

"B, - Hy (9

where CJ is the configuration interaction coefficient of the j determinant, Ej is the
energy of the wavefunction on the k™ iteration of the algorithm, and H;; are Hamiltonian
matrix elements between determinants ¢ and j.

This method has proven powerful for tackling many-electron systems with better per-
formance than competing techniques. In joint work with Norm Tubman, Daniel Levine,
Diptarka Hait, Martin Head-Gordon, and Birgitta Whaley, we demonstrated the power of
ASCI on a variety of chemically interesting/difficult problems, and benchmarked different
versions of ASCI which utilized different sorting methods. My primary contribution to this
work was the calculation of energies of various transition metal dimers using a mixture of
in-house code developed by Norm Tubman as well as the quantumyackagelibrary.

9.2 Topology and Geometry in Neural Networks

Late in my graduate career, I became interested in the fundamental theory of neural net-
works. These tools began to explode in popularity around 2012 when a confluence of better
algorithmic techniques, better hardware, and renewed interest allowed researchers to con-
struct larger and more powerful neural networks than had been considered possible previ-
ously|81].

At their simplest, neural networks are high-dimensional function approximators com-
prised of matrix multiplications convolved with the application of some nonlinear function,
repeated some number of times. That is, for data-pairs we wish to approximate, {(z;,v:)},
a neural network is a function, f, defined by some set of variables # which maps the x;
approximately to the y;. This function can be written:

(@) = i o(WELo(W2p(W)))...) (9.6)

where the § = {IWW*} are matrices and are exactly the free parameters to be optimized,
¢ is some nonlinear function (commonly tanh, relu, or sigmoids), and L is some number of
layers of computation. These functions are commonly visualized as stacks of computations
in a graph, see, e.g., Fig. 9.2.

In general, this optimization problem is usually solved by constructing a loss function
(sometimes, cost function), for example:
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Figure 9.2: A cartoon of a neural network mapping an input vector x; to a single output.
Grey boxes indicate the combined process of multiplying input data by a matrix followed by
application of a nonlinearity. Edges indicate flow of data through the graph.

L{{(z,9)},0) = {|f (s, 0) — yil*)s (9.7)

and then using some variety of stochastic gradient descent to determine an optimal (or
sufficiently good) set of parameters # which minimize the loss. This function is so named
because it represents the penalty, cost, or what is lost by having a particular set of parameters
for a given optimization problem.

In practice, this optimization problem is ludicrously high dimensional, with the number of
parameters 6 often well exceeding the number of input-output pairs {(x;,y;)} being used. It
is, then, an outstanding question why this procedure results in “good” optimization solutions,
even though it is wildly overparameterized.

I became interested in the properties of these loss functions, because I was surprised
how little was known about them. Considerable effort had been spent (and is still spent)
characterizing the local and global minima of these functions[33], but significantly less was
known about, for example, the level sets of these functions. By level sets, I mean families of
parameters {¢} such that L({(z,y)}, ) = Lo for some fixed Ly.
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In joint work with Joan Bruna, I aimed to characterize these level sets both numerically
and theoretically[53]. We discovered that the characteristic curvature of these level sets
grows as a power law with inverse loss—in other words, the better the neural network one
considers, the family of neural networks that perform equally as well as that network lives on
a manifold that grows more jagged as neural network performance increases. This discovery
was not too surprising—it is intuitively obvious that the optimization problem becomes
harder as loss values decrease.

More surprisingly, we discovered that these level sets were connected at essentially all
loss values studied for neural networks used in practice. In other words, it is almost always
possible to find a continuous path from one model 84 that achieves loss Ly to another model
fp that achieves loss L such that the loss along the connecting path remains fixed at Ly.

For this work, I devised (several) algorithms for determining connecting paths between
models, as well as the code used for solving the neural network optimization problem. Ad-
ditionally, Joan and I leveraged this observation into a new proof that deep linear networks
(i.e., networks like Eq. 9.6 for which ¢ is the identity function) have no local minima, al-
though Joan did the majority of the heavy-lifting for this proof. Finally, we also proved than
1-layer networks with relu style nonlinearity, asymptotically do not have any local minima,
where relu is defined as x for > 0, and 0 for x < 0. In particular, if dLg is the largest
amount one needs to increase in the loss function above Lg to continuously navigate from
04 to 0p, we demonstrated a bound on the size of § Ly which asymptotically approaches 0 as
the number of parameters increases.
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Chapter 10

Conclusion

25:34 But the field of computer science and Al research. All attracted bright people who
contributed great things to the church

7:2 And it came to pass, that he who fleeth from the noise and confusion of ordinary
software engineering or academic research.

26:58 These are the two binary numbers to be added
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10.1 Overview and Outlook

Over the course of this thesis, we have developed a set of theoretical tools necessary to
understand, first, why the toric code fails as a quantum memory at finite temperature, and
second, some algorithmic tricks one can perform to try to restore some order to the stabilizer
codes like the toric code.

First, we characterized the finite temperature dynamics of quasiparticle defects in the
toric code, and then we leveraged successively more expensive resources (first unitaries, then
measurements), to attempt to dissipate these error modes, in the hopes of restoring the
scaling of the lifetime of the toric code with system size.

Ultimately, we were able to restore the favorable scaling with system size, but at the
necessary cost of introducing some amount of measurement. It’s an open question, but I
conjecture it is possible to retain this favorable scaling while also relaxing the measurement
scheme to use purely local information exchange, like in Chris Harrington’s cellular automata
type schemes[62]. Specifically: this thesis resolves that any constant density of measurements
may be used, but it’s possible that once locality constraints are introduced, there could be
a finite threshold in measurement density that depends on the locality constraint.

It also remains entirely open whether a true finite temperature fault tolerant quantum
memory actually exists in three dimensions. Whether 4 dimensions are necessary, or whether
a fractal construction of intermediate dimension can be made is an open question.
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While these questions remain, there is still intense effort in developing new and better
stabilizer codes for use in near term machines. While these codes are usually not used as
Hamiltonian stabilizer codes, the field continues to evolve rapidly.

10.2 Contemporaneous and ongoing works on
quantum memories

These ideas are but a small corner of a greater effort to build objects like quantum memories.
I would be remiss to not outline, or at least signal-boost several other efforts to construct
similar objects that have occurred contemporaneously with my work.

Several contemporaneous efforts have been made to construct models that have strong
topological protection. Haah’s code is a beautiful example of a three dimensional stabilizer
code with interesting self-correction properties, and its existence contributed to my intuition
that a self correcting quantum memory probably exists, but may be terribly difficult to
actually construct[60]. Bombin’s work in color codes has similarly been foundational to
my understanding of topological stabilizer codes|8, 86]. Pastawski, Yoshida, Harlow, and
Preskill’s holographic code construction was the most exciting new idea I encountered in
my graduate career, and I've followed its development with interest[103]. Probably the
most exciting recent work marrying the broad literature of symmetry protected phases and
quantum memories is from Roberts and Bartlett [108], where they demonstrate a three
dimensional system that retains topological order at finite temperature—though it is yet
unknown whether a qubit can be stored in the phase. There have been several attemps to
build fractal quantum memories, first by Brell[19], where the quantum memory resides on a
lattice with intermediate fractal dimension between 2 and 3. Personally, I find the question
of the minimal dimension necessary for a true quantum memory to exist to be fascinating,
and fully expect that it need not be, (we hope), exactly 4, or any other integer necessarily.

There has also been a tremendous amount of work into different ways to “fix” the toric
code. A research effort concerning so-called welded toric codes introduced by Michnicki has
resulted in three-dimensional codes that have power-law energy barriers with size[91], though
followup work demonstrated that neither welded codes, nor Haah’s code was topologically
ordered above zero temperature, these models are concrete progress towards the vision of the
topological qubit[112]. Landon-Cardinal’s quest for topological stability has been inspiring
throughout my thesis, as have been his papers on topological order in stabilizer systems,
particularly [82, 83]. Similarly, Hutter’s ingenuity in trying to add gadgets to stabilizer
systems to stabilize them has been motivating and thoroughly impressive, particularly in
(70, 68].

Finally, the best summary of the state of quantum memory research circa my tenure at
Berkeley is the thoroughly excellent review by Brown et al. [22], which I could not recommend
more highly to any newcomers to this field.
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10.3 Epilogue

It has been fascinating to work in this field as real quantum devices have catapulted from
theoretical dreams to delicate, experimental realities. The race is far from won, however,
and there still remains tremendous work to do before quantum computers can be made
practically useful. In fact, the quest for a finite temperature fault tolerant quantum memory
is still largely unfulfilled. If this thesis as well as the broader literature on quantum memory
is any indication, construction of a truly fault tolerant finite temperature quantum memory
may even require completely new ideas.

Ironically, it’s entirely possible that practically useful quantum devices will exist before
we prove that finite temperature quantum memories can (or can’t) be constructed. The
prevalence of high fidelity active quantum error corrected memories may even obviate the
need for a passive version. This is the arc of speculative technologies in a sentence—that
sometimes, something else entirely just works better.

There is something uniquely frustrating about the stubbornness with which nature refuses
to provide a say one way or the other regarding finite temperature quantum memories, how-
ever. The tightness of the 4-dimensional bound sometimes feels like a complexity-theoretic
barrier—almost as if nature allowing a 4 —e dimensional finite temperature quantum memory
would cause some drastic and improbable collapse of a problem hierarchy. Nature taunts us
with robust classical memories every time we stumble upon a magnet—where then, are its
quantum cousins?

Whether we find one or not, the next decade will be increasingly more Quantum than
those before it. The construction of a viable machine is now largely an engineering problem,
and the inevitable hype of new technologies notwithstanding, quantum computers will be
transformative. I can only look forward to seeing what will happen.
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