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Abstract

Cross-validated likelihood is investigated as a tool for automatically determining
the appropriate number of components (given the data) in finite mixture modelling,
particularly in the context of model-based probabilistic clustering. The conceptual
framework for the cross-validation approeich to model selection is direct in the sense that
models are judged directly on their out-of-sample predictive performance. The method
is applied to a well-known clustering problem in the atmospheric science literature using
historical records of upper atmosphere geopotential height in the Northern hemisphere.
Cross-validated likelihood provides strong evidence for three clusters in the data set,
providing an objective confirmation of earlier results derived using non-probabilistic
clustering techniques.



1 Introduction

Cross-validation is a well-known technique in supervised learning to select a model from a
family of candidate models. Examples include selecting the best classification tree using
cross-validated classification error (Breiman et al., 1984) and variable selection in linear
regression using cross-validated predictive squared error (Hjort, 1995). Crc«s-validation
has also been used in unsupervised learning in the context of kernel density estimation for
automatically choosing smoothing parameters (e.g., Silverman, 1986). However, it has not
been applied to the problem of determining cluster structure in clustering problems, i.e.,
solving the problem of how many clusters to fit to a given data set. This may be due in
part to the fact that for many clustering techniques there is no obvious score-function (for
the number of clusters) to cross-validate. However, probabilistic model-based clustering
(using finite mixture densities) is an exception, in that any score function which measures
the quality of fit of the density also provides a candidate function for model selection.

In this paper cross-validated likelihood is investigated as an appropriate score function
for model selection in probabilistic clustering, in particular for choosing the number of
component densities in finite mixture models. Section 2 briefly reviews the application of
mixture models to clustering. Section 3 discusses the use of cross-validated likelihood for
choosing the number of mixture components. In Section 4 the method is applied to a well-
known problem in atmospheric science, namely determining the number of "regimes" (or
clusters) in records of upper atmosphere pressure taken daily since 1947 over the Northern
Hemisphere. The cross-validation methodology provides an objective validation of earlier
results from non-probabilistic clustering studies in the atmospheric science literature.

2 Clustering using Mixture Models

There is a long traxJition in the statistical literature of using mixture models to perform
probabilistic clustering (e.g, see Everitt and Hand, 1980; Titterington, Smith and Makov,
1986; and McLachlan and Basford, 1988). A key feature of the mixture approach to cluster
ing is the ability to handle uncertainty about cluster membership in a probabilistic manner
by allowing overlap of the clusters. Furthermore, the probabilistic model provides a frame
work for finding the optimal weights, locations, and shapes of the component clusters in a
principled manner.

Let A be a d-dimensional random variable and let x represent a particular value of
AT, e.g., an observed data vector with d components. A finite mixture probability density
function for 2C can be written as

where k is the number of components in the model and each of the Qj are the component
density functions. The are the parameters associated with density component gj and the
aj are the relative "weights" for each component j, where cxj = 1 and aj > 0^1 < j < k.

> denotes the set of parameters for the overall mixture model
with k components.

Let = {^1,...,^} denote the training data from which the model parameters
are estimated. Assuming independent observations from an underlying true density /(x),



the log-likelihood of is defined as

=logp(Z)'̂ ° |̂$('>) =£log(^^a,-9,(£|£,)). (2)
(Notethat there are alternative objective functions which can be maximized in the clustering
context, e.g., see Bensmail et al. (1997) for clustering using the "classification likelihood"
function). Direct maximization of the mixture log-likelihood expression in Equation 2 is
difficult except in trivial special cases. Thus, much of the popularity of mixture models in
recent years is due to the existence of efficient iterative estimation techniques for obtaining
maxima of this likelihood. In particular, the expectation-maximization (EM) procedure
(Dempster et al. 1977; McLachlan and Krishnan, 1997) is a general technique for obtaining
maximum-likelihood parameter estimates in the presence of missing data. In the mixture
model context, the "missing data" are interpreted as the unknown or hidden labels that
identify which data points originated from which mixture component. The EM procedure
typically converges in parameter space to a local maximum of the log-likelihood function, but
there is no guarantee of global convergence. Hence, the procedure is often initialized from
multiple randomly chosen initial estimates and the largest of the resulting set of maxima
is chosen as the final solution. It is well-known that there are various singular solutions
to the maximum likelihood equations with infinitely large likelihood (such as having a
cluster containing only one data point). Thus, in practice, the search for parameters is
usually constrained to interior regions of parameter space whichdo not contain such spurious
solutions (Hathaway, 1985).

The application of parameter estimation techniques (such as EM) assume that k (the
number of components) is fixed. In practice, it is frequently the case that k is unknown,
and, thus, one would like to also be able to infer some information about k from the data.
Likelihood (as defined in Equation (2)) is of no direct use, since the likelihood on the training
data can always be increased by increasing k irrespective of the true model. It is also well
known that standard hypothesis testing methods (such as testing the hypothesis k ~ 2
against k = 1) fail in this context due to the breakdown of the standard assumptions on the
asymptotic properties of the estimators (Feng and McCulloch, 1996). Alternatives, such as
the bootstrap likelihood ratio (Aitkin et al., 1981; McLachlan, 1987) have been proposed,
but not extensively investigated.

Bayesian and penalized likelihood methods provide more general approaches for "hon
est" estimates of the number of components. Penalized likelihood methods (such as AIC,
BIC, MDL etc.) are typically based on approximations based on asymptotic arguments.
They have the advantage of being relatively simple to implement since one simply penalizes
the log-likelihood by an additive factor. However, as pointed out by Titterington, Makov,
and Smith (1986), there are significant limitations on the applicability of these standard
methods to mixture problems. Baxter and Oliver (1997) discuss the use of penalized like
lihood methods which are not based on asymptotic arguments; however, their results are
obtained only for univariate problems with one or two mixture components.

The fully Bayesian approach is to treat the number of components A: as a parameter and
obtain a posterior distribution on k given the data and the models. Even for the relatively
simple Gaussian mixture model, this posterior cannot be calculated in closed form and must
either be approximated analytically or estimated via sampling techniques. For example,
Richardson and Green (1996) provide a Bayesian treatment of mixture modelling with an



unknown number of components using Monte Carlo Markov Chain (MCMC) methods.
The Bayesian and penalized likelihood approaches can be viewed from a single per

spective by noting that the penalized likelihood methods can each be derived as different
approximations to the full Bayesian solution (see Chickering and Heckerman (1997) for
a full discussion of this viewpoint). Thus, in practice, existing model selection methods
for mixture densities largely rely on approximations of one form or another. For any of
th^e approximations (whether it be penalized likelihood, direct approximations to Bayes,
or Monte Carlo sampling of the Bayesian solution) the results obtained can be dependent in
a non-transparent manner on the quality of the underlying approximations or simulations.
In the next section we discuss the use of cross-validation as an alternative approach.

3 Cross-validated Likelihood

Let /(x) be the "true" probability density function for x and let = {xj,..
a random sample from / as before. A set of finite mixture models with k components are
fitted to Z>, where k ranges from 1 to fcmax- Thus, we have an indexed set of estimated
models, 1 < k < fcmaxi where e£Lch has been fitted to the same
data set

Let = /($jb(T'train)|L^train) denote the log-likelihood of the fitted model with k
components, where the parameters have been fit to the training data Dtrain a-nd the log-
likelihood has been evaluated on the same data (as in Ekjuation 2). is a non-decreasing
function of k since the increased flexibility of more mixture components allows better fit to
the data (increased likelihood) as is increased. Thus, cannot directly provide any
clues as to the true mixture structure in the data, if such structure exists.

Imagine instead that one has a large test data set which was not used in fitting any
of the models. Let = /jt($A:(D'™")|D'^') be the log-likelihood, in a manner analogous
to Ekjuation 2, where the models are fit to the training data but the log-likelihood is
evaluated on data with Attest data points. One can interpret this "test log-likelihood"
as a function of the "parameter" k, keeping all other parameters and Dtrainfixed. Intuitively,
this test likelihood should be a more useful estimator (than the training data likelihood

for comparing mixture models with different numbers of components. (This t^t log-
likelihood is also known as the log predictive score in the Bayesian model selection literature
(e.g., see Good, 1952)).

For convenience of notation, let /fc(^) denote the model with k components with pa
rameters #fc(D*'̂ '̂") fitted using and let

•Z($fc(D^™")|D'®®')Ik = -•

be the negative test log-likelihood per sample. Taking the expectation of ik with respect to
all trdning data sets of size N drawn from f{x),

EM =
^*te8t L

— x: B[iog A(£,•)]



i.e., the expected value of ik is the Kullback-Leibler (KL) distance between f{x) and fk{x),
minus a constant which is independent of k. Thus, the test log-likelihood (scaled
appropriately) is an unbiased estimator (within a constant) of this KL distance. The KL
distance in turn defines how far the model fkix) is from the true / and is strictly positive
unless fk{x) = f(x). Thus, the test log-llkelihood is an unbiased estimator of the KL
distance between truth and the models under consideration, and this motivates its use as a
model selection criterion in this context.

Of course one typically does not have a large independent test data set such as
available. Thus, a practical alternative is to use If for model selection instead, namely,
a cross-validated estimate of In cross-validation the data are repeatedly partitioned
into two sets, one of which is used to build the model and the other is used to evaluate the
statistic of interest. Let M be the number of partitions. For the «th partition let Si be the
data subset used for evaluation of the log-likelihood and D \ Si be the remainder of the data
used for building the model. Thus, the cross-validated estimate of the test log-likelihood
for the kth model is defined as:

1 ^

where ^k{D \ Si) denotes the parameters for the kth model estimated from the ith training
subset, and l{^k[D \ 5i)|5',) is the log-likelihood evaluated on the data in Si using the
parameters estimated from the data D\Si.

It is worth noting that cross-validation will necessarily be less efficient in its use of the
data compared to a fully Bayesian approach, i.e., it estimates for models trained on
somefraction l3 of the data (the training partition size), rather than on the full data. Thus,
in this sense, the fully Bayesian approach is in principle more efficient in its use of the
available data. Of course, as mentioned earlier, implementing the Bayesian approach in
practice involves approximation of one form or another and, indeed, cross-validation itself
can be viewed as a different type ofapproximation in the Bayesian context (Dawid, 1984).

In general, consider the case when the model family under consideration includes the
true data generating distribution /(x); let this particular model have ktme components.
Both the Bayesian and cross-validation methodologies will tend to converge to fctme (as a
function of k, from below) as the samplesize is increased, i.e., for verysmall data sets there
are only enough data to support the A: = 1 hypothesis, but gradually as the sample size
N IS increased the selected model k increases until it "locks-on" to ktme- For cases where
truth is not within the model family, the Bayesian approach encounters some conceptual
difficulties (see for example the discussion ofRaftery, Madigan, and Volinsky (1996), pages
346-347). In contrast, it is clear from the KL distance equations above, that the cross-
validation methodology will directly seek that model from within the model family which
is closest to truth.

There are a number of different cross-validation methodologies and they largely differ
in how the partitions are chosen, "u-fold" cross validation uses v disjoint test partitions
{5i,...,5v} each of size N/v. Well known examples are v = ("leave-one-out") and
o = 10 (which is used in CART for example (Breiman et al, 1984)). For model selection
in linear regression, Burman (1989), Shao (1993), and Zhang (1993) have each investigated



a particular CV procedure where M partitions are generated independently with a fixed
fraction (3 being used as test samples, and \ —(3 being used for parameter estimation in
each case. (Burman calls it "repeated-learning-testing" or RLT, and Shao calls it "Monte
Carlo cross validation" or MCCV—the latter acronym will be used in this paper). The
main difference between this and the u-fold method is that each data point may be used as
a test point more than once.

Smyth (1996) compares the performance of a variety of model selection methods, in
cluding MCCV, 10-fold cross-validation, BIC, and the Autoclass algorithm (Cheeseman and
Stutz, 1996) which is an analytic approximation to the full Bayesian solution. In that work,
Autoclass and MCCV (with = 0.5) were determined to be roughly equally accurate in
terms of model selection, BIC tended to under-estiraate the true number of components,
and 10-fold cross-validation was often unreliable. In general, there appears to be no ob
vious systematic method to automatically determine the best to use for a particular
problem when the true structure is unknown, although the choice of /? = 0.5 appears to
be reasonably robust across a variety of problems (Smyth, 1996). In terms of choosing
the number of different partitions Af, the larger the value the less the variability in the
log-likelihood estimates. In practice, values of M between 20 and 50 appear adequate for
most applications.

Finally, it is worth noting that there is an extra computational cost incurred by repeated
cross-validation, namely fcmax different models are to be estimated and evaluated M different
times. Compared to the simpler penalized likelihood methods (such as AIC or BIC) this is
an increase in computation by a factor M. It is not clear how cross-validation compares to
simulation-based (Bayesian) MCMC methods in terms of computational cost. Each method
is somewhat "open-ended" in that the more computation one is willing to expend, the better
the results on average. It seems likely that the typical cross-validation methodology will
be closer in computational cost to a typical MCMC implementation than to the penalized
likelihood methods.

4 Application of the Cross-Validated Clustering Method to
Atmospheric Geopotential Height Data

4.1 Problem Background

Detection and identification of "regime-like" behavior in atmospheric circulation patterns is
a problem which has attracted a significant amount of attention in atmospheric science. (As
defined in the atmospheric science literature, regimes are recurrent and persistent spatial
patterns which can be identified from atmospheric data sets (Cheng and Wallace, 1993;
Kimoto and Ghil, 1993)). The most widely-used data set for these studies consists of
daily measurements since 1947 of geopotential height on a spatial grid of over 500 points in
the Northern Hemisphere (NH). Geopotential height is the height in meters at which the
atmosphere attains a certain pressure (e.g., one has 500mb height data, 700mb height data,
etc.). It can loosely be considered analogous to atmospheric pressure, particularly since one
can visualize the data using contour maps with "lows," "highs", "ridges," and so forth.

Research on low-frequency atmospheric variability using geopotential heights during
the past decade has demonstrated that on time scales longer than about a week, large-scale
atmospheric flow fields appear to exhibit recurrent and persistent regimes. Direct identifi-
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Figure 1; Scatter plot of NH winter data projected into first 2 EOF directions.

cation of these regimes in observed flow fields is difficult. This has motivated the use of a
variety of cluster analysis algorithms to objectively classify observed geophysical fields into
a small set of preferred regimes or categories, e.g., fuzzy clustering (Mo and Ghil, 1988),
kernel density estimation and "bump hunting" (Kimoto and Ghil, 1993), hierarchical clus
tering (Cheng and Wallace, 1993), and least-squares (or fc-means) clustering (Michelangeli,
Vautard, and Legras (1995)).

While these approaches have produced useful and repeatable results (in terms of sig
nificant cluster patterns), there is nonetheless a degree of subjectivity in the application of
these clustering techniques which is undesirable. In particular, none of these methods have
provided a fully objective answer to the question of how many clusters exist. Thus, among
the different studies, it is not clear how many different regimes can be reliably identified.

We analyzed the same data as has been used in almost all of the other clustering studies
on this topic (e.g., Kimoto and Ghil (1993)), namely, daily observations of the NH 700-mb
geopotential heights on a 10°x 10° diamond grid (with 541 grid points), compiled at NOAA's
Climate Analysis Center. The data are subject to a number of specific preprocessing steps
(full details are provided in Smyth, Ghil and Ide (1998)). For the purposes of this paper
it is sufficient to know that the daily 541 spatial grid points (or maps) are treated as
541-dimensional data vectors and then projected into a subspace defined by a few leading
principal component directions for this 541-dimensional space. We will use the atmospheric
science terminology of "empirical orthogonal functions" (or EOFs; Preisendorfer (1988)) to
refer to the principal component directions in the rest of the paper. Projections used in the
results described here range from the first 2 to the first 12 EOFs. Figure 1 shows data from
the 3960 days defined as "winter" projected onto the first two EOFs. This projected winter
data set is the "standard" data set which has been typically used in clustering studies in



Table 1: Cross-validated log-likelihood and estimated posterior probabilities, as a function
of k, from 20 random partitions of 44 winters.

Cross-validated log-likelihood
Posterior probability

k = l

-29165

0.0

the past and it is on this data set that the application of cross-validation for model selection
is investigated below.

4.2 Application of Mixture Model Clustering

We applied the mixture model cross-validation methodology to the data described in Section
4.1, using Gaussian components with unconstrained (full) covariance matrices. (These
results, and various extensions, are described in more detail in Smyth, Ghil, and Ide (1998)).
In all experiments the number of cross-validation partitions was M = 20 and the fraction
of data (3 contained in each test partition was set to 0.5. The number of clusters (mixture
components) was varied from k = 1,.. .15. The log-likelihoods for Ar > 6 were invariably
much lower than those for A: < 6 so for clarity only the results for A: = 1,..., 6 are presented.
The estimated cross-validated log-likelihoods and approximate posterior probabilities on k
are tabulated in Table 1 (the posterior probabilities are simply the exponentiated and
normalized log-likelihoods). There is clear evidence for 3 clusters, i.e., the cross-validation
estimate of the posterior probability for 3 clusters is eifectively 1 and all others are effectively
zero. Figure 2 shows the three-cluster solution (means and covariance shapes) in the two-
dimensional EOF-space.

Note that the absolute values of the log-likelihoods are irrelevant—strictly speaking, like
lihood is only defined within an arbitrary constant. Figure 3 shows the test log-likelihoods
on the 20 different cross-validation partitions, relative to the log-likelihood on each partition
of the A: = 3 model (dotted line equal to zero). A: = 3 clearly dominates. Note that for
any particular partition A: = 3 (the dotted line with value 0) is not necessarily always the
highest likelihood model, but on average across the partitions it is significantly better than
the other possible values for k.

4.3 Robustness of the Results

Numerous runs on the same data with the same parameters but with different randomly-
chosen winter partitions (M = 20) always provided the same result, namely, an estimated
posterior probability of p{k = 3) > 0.999 in all cases. The relative cross-validated likelihoods
over 10 different runs are shown in Figure 4.

We also investigated the robustness of the method to the dimensionality of the EOF-
space. The maps were projected into different subspaces, namely the first d EOF dimensions,
with d = 2,..., 12. As a function of the dimensionality d, the posterior probability mass was
concentrated at A; = 3 (i.e., p{k = 3) « 1) until d = 6, at which point the mass "switched" to
become concentrated at Ar = 1 (i.e., p(k = 1) » 1)). Thus, as the dimensionality increases
beyond d = 6, the cross-validation method does not provide any evidence to support a
model more complex than a single Gaussian bump. This is to be expected since the number
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Figure 2: Scatter plot of NH winter data projected into the first 2 EOF directions with
estimated means and covariance matrix shapes (ellipse) superposed as fitted by the EM
procedure with a 3-component Gaussian mixture model. The ellipses represent contours of
the density function which are 3-sigma from the means.
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Figure 3: Log-likelihood of the test partition data on each cross-validation iteration (from
1 to 20) relative to the log-likelihood of the k —3 model for (from top) (a) A: = 1, (b) = 2,
(c) k = 4, (d), k = 5, and (e) k = 6.
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Figure 4: Cross-Vcilidated log-likelihoods for A; = relative to the cross-validated
log-likelihood of the A; = 3 model for 10 such diiferent randomly-chosen cross-validation
partitions

of parameters in a A:-component Gaussian mixture model grows as k<f. Since the total
amount of data to fit the models is fixed, as the dimensionality d increases the estimates of
the more complex models are less reliable and cannot be justified by the data.

For the three-component Gaussian model we investigated the variability in the physical
grid maps obtained across different numbers of EOF dimensions. Note that each data point
in a projected EOF space can be represented as a pressure map on the original grid (since
each point is a linear combination of EOF vectors, and each EOF vector is a map). Thus,
cluster centers in the EOF space can be "mapped back" to equivalent grid points in the
original spatial grid to create spatial contour maps. Using the first d EOF dimensions,
d = 3,..12, a Gaussian mixture model with 3 components was fit to the data for each
d. For each value of d, 3 physical maps were obtained from the centers of the 3 Gaussians.
The pattern correlations (as defined in Wallace and Cheng (1993), page 2676) were then
calculated between each of these maps (from d dimensions) and the corresponding maps
obtained from 2 EOF dimensions. The results are shown in Table 2. It is clear that here
is a very high correlation between the 2d EOF maps and each of the maps obtained in up
to 12 EOF dimensions. This indicates that as the dimensionality of the EOF space grows
beyond d = 2, the clusters in any of these dimensional spaces are essentially the same as
for the the two-dimensional sub-space.

4.4 Comparisons with Bayesian and Penalized Likelihood Techniques

Autoclass 2.0 (Cheeseman and Stutz, 1996) was applied to the same data as described
above. The default version of Autoclass (full covariance matrices) returned A; = 3 as by far



Table 2: Pattern correlation coefficients between maps fitted using d EOF dimensions,
3 < d < 12, and maps fitted using 2 EOF dimensions.

EOF Dimensionality d rj r2 I ^r2

0.961

0.960

0.957

0.946

0.951

0.946

0.953

0.951

0.943

0.946

0.978

0.974

0.947

0.946

0.945

0.931

0.938

0.946

0.927

0.945

0.998

0.999

0.976

0.957

0.945

0.938

0.941

0.949

0.934

0.935

the most likely choice for the number of clusters, i.e., no other k values had any significant
posterior probability. For the same data wealsocalculated the BIC criterion which penalizes
the training log-likelihood by an additive factor of -k/2\ogN. The BIC criterion was
maximized at ^ = 1 (by a substantial margin). Thus, the cross-validation and Bayesian
methods are in agreement (with A; = 3), while BIC is more conservative.

4.5 Interpretation and Discussion of the Cluster Results

An important aspect of this problem is the scientific interpretation of the clusters obtained.
The scientific interpretation is obtained by projecting the cluster centers (the Gaussian
means) "back" to the grid-space as described earlier, and then directly interpreting the
physical significance of the resulting spatial patterns.

Figure 5 shows the three maps corresponding to the three Gaussian centers on the left
ajid the three maps corresponding to the "most distinct clusters of the wintertime 500mb
field" on the right (Cheng and Wallace, 1993; also in Wallace, 1996). These two sets of
maps have a high degree of qualitative similarity to each other. The upper maps (a) and
(b) both clearly possess a distinctive ridge over the Gulf of Alaska. The middle maps (c)
and (d) are characterized by a very distinctive blocking pattern over southern Greenland.
The bottom maps (e) and (f) have a more complex pattern described as the "Rockies ridge"
in Cheng and Wallace (1993, p.2680). The Cheng and Wallace results are considered among
the most authoritative on this topic, and these particular three spatial patterns (or regimes)
are frequently discussed in the atmospheric science literature.

Cheng and Wallace's methodology for arriving at three clusters was based on a combina
tion ofad hoc resampling techniques andsubjective judgement of the hierarchical clustering
results. In their own words, "the more reproducible clusters are strung out along three well-
defined branches of the family tree" (Cheng and Wallace, 1993). It is interesting to note
that the cross-validation results described in this paper were obtained completely indepen
dently, i.e., the cross-validation data analysis was carried out without knowledge at that
time of the Cheng and Wallace result. Thus, the cross-validation results provided an objec
tive and independent validation of the earlier work. For further discussion of the physical
interpretation of the results see Smyth, Ghil, and Ide (1998).
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An obviousquestion is whether or not the results are sensitive to the projection method
ology being used, i.e., would projection pursuit for example lead to different clusters? The
answer would appear to be no. The similarity of the maps in Figure 5 (where one set is
obtained in EOF-space and the other set by directly clustering the grid patterns) indicates
that the EOF projection does not impact the resulting clusters. Cheng and Wallace (1993)
also reached the same conclusion, by finding that hierarchical clustering in EOF space
produced essentially the same clusters as the clusters obtained with no EOF projection.

5 Discussion and Conclusion

Cross-vaJidated likelihood can play a useful practical role in model selection among different
mixture density models. The conceptual framework is simpler than the typical penalized
likelihood or Bayesian approac:h in that models are directly judged on their out-of-sample
predictive ability, as estimated in a cross-validated fashion. The simplicityof the framework
makes it directly applicable to a wide variety of practical problems. In this paper, only the
problem of finding the correct numbers of components for Gaussian mixture models was
discussed. However, one can in principle easily apply the methodology to a much broader
class of mixture problems, such as selecting among different independence structures (e.g.,
see Bensmail et al (1997) and Thiesson et al (1998)) or model selection in the context of
Markov models (e.g., see Smyth (1997) for an application to hidden Markov models).

Directions for further work on cross-validated likelihood include a bias-variance charac
terization for better understanding of the trade-offs involved in choosing (see for example
the work of Shao (1993) and Zhang (1993) in a regression context and Kearns (1996) in
a classification context), and comparative studies between penalized likelihood, Bayesian,
and cross-validation methodologies. In related work, Smyth and Wolpert (1998) extend
the framework in this paper to model averaging, again using cross-validation to empirically
determine the model weighting coefficients rather than using posterior probabilities on the
models obtained from a Bayesian analysis.

A final point concerns the acceptance of any model selection methodology by domain
experts (in this case, atmospheric scientists). The scientists participating in this work
indicated a much greater willingness to trust a methodology based on cross-validation than
a Bayesian analysis. This trust was due in large part to the direct interpretation which can
be given to the cross-validation result (i.e., one seeks the model which predicts best on out-of-
sample data). In contrast, the Bayesian formulation of the problem wasperceived as indirect
and less appealing. To put it another way, the scientists were far more willing to defend a
cross-validation model selection procedure among their peers than they would be willing to
defend a Bayesian model selection procedure. This is an important point. It is suggestive
that while in theory a fully Bayesian analysis can be viewed as the optimal approach, in
practice a cross-validation methodology can be a prcictical alternative, particularly when
data and computational resources are relatively plentiful.
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