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Abstract

Calibrated blood oxygenation level dependent (BOLD) imaging is a multimodal functional MRI 

technique designed to estimate changes in cerebral oxygen metabolism from measured changes in 

cerebral blood flow and the BOLD signal. This technique addresses fundamental ambiguities 

associated with quantitative BOLD signal analysis; however, its dependence on biophysical 

modeling creates uncertainty in the resulting oxygen metabolism estimates. In this work, we 

developed a Bayesian approach to estimating the oxygen metabolism response to a neural stimulus 

and used it to examine the uncertainty that arises in calibrated BOLD estimation due to the 

presence of unmeasured model parameters. We applied our approach to estimate the CMRO2 

response to a visual task using the traditional hypercapnia calibration experiment as well as to 

estimate the metabolic response to both a visual task and hypercapnia using the measurement of 

baseline apparent R2′ as a calibration technique. Further, in order to examine the effects of cerebral 

spinal fluid (CSF) signal contamination on the measurement of apparent R2′, we examined the 

effects of measuring this parameter with and without CSF-nulling. We found that the two 

calibration techniques provided consistent estimates of the metabolic response on average, with a 

median R2′-based estimate of the metabolic response to CO2 of 1.4%, and R2′- and hypercapnia-

calibrated estimates of the visual response of 27% and 24%, respectively. However, these 

estimates were sensitive to different sources of estimation uncertainty. The R2′-calibrated estimate 

was highly sensitive to CSF contamination and to uncertainty in unmeasured model parameters 

describing flow-volume coupling, capillary bed characteristics, and the iso-susceptibility 
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saturation of blood. The hypercapnia-calibrated estimate was relatively insensitive to these 

parameters but highly sensitive to the assumed metabolic response to CO2.

Keywords

calibrated BOLD; cerebral oxygen metabolism; fMRI; Bayesian estimation

1 Introduction

Functional magnetic resonance imaging (fMRI) based on Blood Oxygenation Level 

Dependent (BOLD) contrast is an important tool for the study of human cognition because 

of its impressive ability to localize sources of evoked neural activity and its safe and 

noninvasive nature. However, while BOLD imaging has been highly useful for answering 

the question of where cognitive processes take place, it has had much less success in 

answering how much activity is associated with a particular process. This is largely because 

BOLD imaging is not directly sensitive to the electrical events that mediate neural signaling, 

nor to any single activity-related physiological process (e.g. blood flow, oxygen 

metabolism), but rather to fluctuations in the rate of MR signal decay attributable to changes 

in the quantity of deoxyhemoglobin in the cerebral vasculature –a quantity that depends on 

the relative values of several physiological variables (Buxton, 2013).

The fundamental gap between what BOLD measures —namely the change in R2* between 

two neurophysiological states —and what is typically of interest, a metric of state change-

associated neural activity, has inspired considerable effort on understanding the biophysical 

processes that transform neural activity changes into detectible changes in R2*, with the goal 

of making it possible to quantitatively interpret BOLD signal changes in terms of 

fundamental physiological processes. From the inception of BOLD imaging, the link 

between deoxyhemoglobin and MR contrast was understood (Bandettini et al., 1992; Ogawa 

et al., 1992), and seminal biophysical modeling work in the early 1990s established the first 

quantitative links between physiological variables such as hemoglobin oxygen saturation, 

blood volume, and hematocrit and MR signal evolution (Ogawa et al., 1993; Yablonskiy and 

Haacke, 1994). In 1998 Davis et al. made a critical step in linking BOLD contrast changes to 

changes in neural activity by positing that by combining BOLD imaging with arterial spin 

labeling (ASL), an MR contrast directly sensitive to cerebral blood flow (CBF) (Detre et al., 

1992; Wong et al., 1997), and a simple biophysical model of R2* decay, one could 

quantitatively estimate a stimulus-evoked change in cerebral oxygen metabolism (CMRO2), 

a physiological parameter thought to capture the integrated energy costs of the underlying 

neural activity (Davis et al., 1998).

The Davis model was a breakthrough for the quantitative experimental study of the BOLD 

response because it presented a straightforward approach to converting BOLD and ASL 

measurements into CMRO2 measurements. The model divided the physiological basis of the 

BOLD response into three general components: (1) Changes in the Oxygen Extraction 

Fraction (OEF), captured by the ratio of CMRO2-CBF changes, (2) changes in cerebral 

venous blood volume (CBV), captured by literature-derived relationships between CBF and 

CBV, and (3) the quantity of deoxyhemoglobin in the baseline state, a scaling parameter 
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captured through a separate “calibration” experiment. Originally this calibration experiment 

entailed the experimentally demanding measurement the BOLD and CBF responses to 

hypercapnia (Davis et al., 1998); however, recently, theoretical and experimental studies 

have suggested that the measurement of R2′, the rate of signal decay that may be refocused 

by a spin echo, in the baseline state provides similar information without the need for 

inhaled gases (Blockley et al., 2012; 2015).

The results of numerous calibrated BOLD studies emphasize the new information beyond 

what is available from the BOLD response that measurements of CMRO2 can provide as 

well as the feasibility of obtaining this information experimentally (Buxton et al., 2014). 

However, estimates of the CMRO2 response can depend significantly on assumptions about 

unmeasured and often unknown physiological parameters, parameters that are implicit to, 

but not explicitly defined in the Davis model. These physiological parameters could be 

factors relevant for the BOLD signal model, such as vascular volume changes, or factors 

relevant for the calibration experiment, such as the assumption of an iso-metabolic response 

to hypercapnia, or assumptions about the method used to measure R2′. These unmeasured 

parameters constitute sources of uncertainty in experimental estimates of the CMRO2 

response that are not easily accounted for using the Davis model or other similarly heuristic 

models (Griffeth et al., 2013).

In this work we describe a novel approach to account for this uncertainty in an experimental 

context. In this framework a detailed biophysical model that incorporates a range of 

important physiological variables is used as a forward model, allowing one to predict 

experimental measurements for a given set of physiological parameters. In addition to 

predicting the BOLD response to activation, the model also predicts the experimental results 

of the calibration experiment, either the BOLD change in the hypercapnia experiment or the 

signal decay curve during a spin echo experiment for the R2′ approach.

In order to use this model to estimate the CMRO2 response consistent with a particular set of 

measurements, it must be inverted. To do this we adopt a Bayesian approach, assigning a 

prior probability distribution to each parameter in the model, then sampling the parameter 

space according to the likelihood that a given set of parameters could generate our measured 

data given an explicitly stated statistical model, building up a collection of samples that can 

be used to determine a posterior probability distribution for the CMRO2 response that 

reflects the uncertainty of that estimate given our a priori uncertainty about the values of the 

unmeasured model parameters.

We applied this approach to an experiment in which we measured BOLD and CBF 

responses in the human visual cortex to a visual stimulus (flickering checkerboard) and to a 

hypercapnia stimulus. In addition, we measured local baseline R2′ using a modified 

technique that was designed to control for uncertainty due to partial volume effects of tissues 

with different T2 values, and to test for the contribution of cerebrospinal fluid (CSF) effects 

to the apparent value of R2′. We then sought to answer the following questions: What is the 

uncertainty associated with an estimate of the CMRO2 response if only the CBF and R2* 

(BOLD) responses to a stimulus are measured? How much does the uncertainty decrease if 

the baseline apparent R2′ is measured in addition to the CBF and R2* responses? How much 
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does the uncertainty decrease if the CO2 stimulus is assumed to be iso-metabolic and is used 

to inform the estimate of the response to the visual task?

Through this analysis we found that, while considerable uncertainty in the CMRO2 response 

may exist even in the absence of population variability or measurement noise, this 

uncertainty can be reduced by improving our prior knowledge of just a few of the many 

unmeasured parameters in the model. Through focused investigation of these parameters and 

better understanding of how they vary across populations of interest, much more precise 

estimates of the CMRO2 response may be obtainable through functional MRI techniques.

2 Theory

BOLD signal decay has its origin in the paramagnetic nature of deoxygenated hemoglobin. 

In the presence of a strong magnetic field, deoxyhemoglobin, which is found in increasingly 

high concentrations as one moves down the vascular tree from arteries to veins, produces a 

magnetic dipole that perturbs the local magnetic field around it, leading to a loss of 

coherence in the precession of proton magnetic moments across an imaging voxel and 

ultimately signal decay. A complete model of this process would require precise knowledge 

of the architecture of the tissue vasculature as well as the hemoglobin oxygen saturation at 

each point in the vascular tree (Gagnon et al., 2015). Similarly, precisely capturing the shape 

of this signal decay curve in an experiment would require many closely spaced and high 

signal-to-noise samples. At this time, neither of these is available for estimating the CMRO2 

response to a neural stimulus in the human brain. As a result, we must necessarily make 

many simplifications to our model of signal decay, through which we hope to capture most 

of the salient features. Similarly, in our experimental measurements, time constraints limit 

both the signal-to-noise of our measurements and the number of samples we can obtain from 

a decay curve, requiring that we use simple metrics to capture the salient features of the 

signal decay (here apparent R2′ in the baseline state and the apparent change in R2* in 

response to a stimulus).

In the discussion that follows we will first describe the forward signal model that we have 

adopted for this work, identifying the key physiological parameters that arise from it and 

motivating the modeling decisions that went into its development. We will then describe how 

we invert this model using a Bayesian probabilistic framework to compare simulated decay 

curves with experimental data.

2.1 Tissue composition

2.1.1 Key assumptions of the model—Brain tissue within an imaging voxel of typical 

volume (~30–100mm3) or region of interest (ROI) is highly heterogeneous, consisting of 

neural parenchyma, a diverging and converging vascular tree that continuously changes in 

vessel diameter and oxygen saturation as one moves from artery to vein, and, potentially, 

non-cellular compartments such as cerebral spinal fluid (CSF). The best way to discretize 

this structure into a finite and tractable number of compartments is unclear, and investigators 

have made different choices in how to do so. The original Davis model considers only signal 

coming from an extravascular parenchymal compartment, which is subject to field 

inhomogeneity produced by a single, uniformly oxygenated venous compartment (Davis et 
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al., 1998). Xiang He et al. expanded this model to include the signal from a single, uniform 

intravascular compartment as well as a CSF compartment (He and Yablonskiy, 2006). 

Following He et al., Dickson et al. adopted a model with intravascular, extravascular, and 

interstitial/CSF compartments, although they attempted to relax the assumption of uniform 

vessel diameter in the He model by modeling the vascular compartment as containing 

vessels coming from a distribution of sizes (Dickson et al., 2010), though with uniform 

saturation. Uludag et al., and later Griffeth et al., excluded the CSF compartment but 

subdivided the vascular compartment into arteries, capillaries, and veins, assigning unique 

but uniform vessel sizes and oxygen saturations to each sub-compartment (Griffeth and 

Buxton, 2011; Uludağ et al., 2009). For this work we have attempted to balance these 

approaches, adopting a five compartment model containing parenchyma, arteries, capillaries, 

veins, and CSF. Each of these compartments is assigned a fractional volume of the total 

imaging volume, denoted Vp, Va, Vc, Vv, and Ve, respectively. The magnitude of the 

measured signal S(t) at time t after excitation is considered to be a weighted sum of the 

signal contributions of each compartment.

(1)

where the parameters ρx, Wx, and Sx(t) represent the spin density, T1-weighting, and 

transverse signal for each compartment, respectively. By subdividing the vascular 

compartment and allowing the volume of each sub-compartment to be uncertain, we hope to 

be able to capture the important features of a continuously changing vascular tree without 

needing detailed knowledge of its architecture.

2.1.2 Signal evolution in the brain parenchyma compartment—Transverse signal 

decay in the parenchymal compartment (Sp(t)) is caused by magnetic field inhomogeneity 

that arises from deoxyhemoglobin molecules in the intravascular space. Multiple factors 

affect the rate of parenchymal signal decay, as well as its behavior in response to a spin echo 

pulse. Important factors include the saturation of the blood, the blood volume, the 

orientation of the blood vessels to the main magnetic field, and the blood vessel diameters. 

As discussed above, none of these parameters has a single value in a physical volume of 

brain tissue; however, with some simplifying assumptions, an approximate model of the 

tissue signal behavior becomes mathematically tractable. The key assumptions made in this 

model are as follows: (1) within each vascular sub-compartment, oxygen saturation and 

vessel radius are uniform; (2) the vessels that comprise each sub-compartment may be 

thought of as randomly oriented and distributed, infinitely long cylinders of uniform 

magnetic susceptibility; (3) vessels in the arterial and venous compartments are large enough 

(diameter ≫10μm) that the signal decay they produce is not affected by the diffusion of 

protons through the extravascular space; while those in the capillary compartment are small 

enough (diameter<10μm) to be significantly effected by diffusion; (4) the effects of each 

vascular compartment on the tissue compartment are multiplicative. In the limit where the 

decay produced by each vascular compartment is truly mono-expontential R2* decay, this is 

equivalent to assuming that the R2* contributions of each vascular compartment are additive. 

For example, if the presence of the venous, capillary, and arterial compartments were each to 
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cause the signal in the tissue compartment to decay by 10% alone, their combined effect 

would be to cause the tissue signal to decay by approximately 27% rather than 30%. This 

approach prevents the total signal loss from being greater than the original signal and is an 

intuitive extension of previous mono-exponential models and single vascular compartment 

models (Yablonskiy and Haacke, 1994).

Under these conditions we can describe the parenchymal signal evolution with the equation

(2)

where R2,p is the deoxyhemoglobin independent rate of R2 decay in the parenchyma, and 

Sp,a, Sp,c, and Sp,v are the contributions of each of the vascular compartments to the 

extravascular signal decay. Because of the relatively large diameters of the arterioles and 

veins, the effect of the arterial and venous compartments on the parenchymal signal can be 

described by analytic expressions for signal decay developed by Yablonskiy and Haacke 

(Yablonskiy and Haacke, 1994).

(3)

(4)

(5)

In Equations 3–5, τc,x describes the fundamental rate constant for signal decay. The 

parameters γ, Δχ0, and B0 represent the gyromagnetic ratio, susceptibility difference 

between fully oxygenated and deoxygenated hemoglobin, and the main magnetic field 

strength, respectively. The values of these parameters are well understood and may be 

derived from the literature (Haynes, 2014; Spees et al., 2001). They are listed in Table 1. The 

parameter Hct represents the hematocrit of the blood and typically is not measured for a 

functional MRI experiment, though it may vary considerably across the healthy population 

(Nicoll et al., 2012). The parameter Yx represents the fractional hemoglobin saturation of the 

blood in compartment x. For arterial blood this parameter may be measured directly with a 

pulse oximeter. For venous blood this value is typically unknown, and has been found to 

range from 50–75% in healthy subjects (Lu and Ge, 2008). The parameter Yoff is a poorly 

understood but important biophysical parameter representing the hemoglobin saturation that 

would produce no magnetic susceptibility difference between blood and tissue.

2.1.2.1 The significance of Yoff: Water, proteins, and lipids, the chief constituents of blood 

and neural tissues, are all diamagnetic, with magnetic susceptibilities of −0.719, −0.774, and 

Simon et al. Page 6

Neuroimage. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



−0.670ppm, respectively (He and Yablonskiy, 2009). Because red blood cells (RBCs) 

contain more protein than the surrounding plasma, when fully oxygen saturated they are 

actually more diamagnetic than the plasma and produce field inhomogeneity. Based on the 

relative concentrations of protein and water in RBCs and plasma, Spees and others 

determined that RBCs have the same susceptibility as the surrounding plasma when 

hemoglobin is 95% saturated (Spees et al., 2001). Reasoning that plasma should have a 

similar biochemical composition to brain tissue, Uludag et al. and also Griffeth et al. 

assumed that at an oxygen saturation of 95%, blood ceases to produce the field 

inhomogeneity that leads to signal decay (Griffeth and Buxton, 2011; Uludağ et al., 2009). 

Others have not considered this term in their analysis, simply assuming Yoff = 1 (Dickson et 

al., 2010; He and Yablonskiy, 2006). Based on literature values for the biochemical 

composition and magnetic susceptibility of grey matter (He and Yablonskiy, 2009), and 

using the formula from Spees et al. for calculating blood susceptibility we calculate that Yoff 

could be as low as 0.89, depending upon the hematocrit and concentrations of non-heme iron 

in the grey matter and blood. The parameter Yoff is important because it essentially scales 

the rate of signal decay produced for vessels with a given oxygen saturation. The closer this 

parameter is to Yx, the less signal decay deoxyhemoglobin in compartment x produces.

2.1.2.2 Diffusion and the effect of the capillary compartment: The effect of the capillary 

compartment on parenchymal signal decay is more challenging to model. In the capillary 

compartment, the vessels are considered to be small enough that the analytic equations 

describing signal evolution around large vessels cannot be applied. At this scale, water 

proton diffusion through the inhomogeneous magnetic field leads to signal dephasing that 

cannot be completely recovered by a spin echo pulse. Several investigators have developed 

Monte Carlo models to describe extravascular signal evolution due to blood vessels of this 

scale and have summarized their results in phenomenological models that describe the 

apparent rates of R2 and R2* for vessels of a few selected radii (Ogawa et al., 1993; Uludağ 

et al., 2009). In order to have more freedom to vary the physiological parameters describing 

the capillary compartment, we chose to reproduce the models rather than using their 

summary phenomenological descriptions.

Briefly, the tissue is treated as a collection of rectangular prisms each containing a single 

vessel. The vessels are treated as very long, straight cylinders of a specified radius and the 

volume of the enclosing prisms was determined such that the vessels would occupy a 

specified fractional volume of their prisms. The affect of a vessel on the surrounding 

magnetic field is determined by its oxygen saturation (Yc), fractional volume (Vc), radius 

(a), orientation with respect to the main magnetic field, and hematocrit (Hctc), taken here to 

be 76% of the large vessel hematocrit (Sakai et al., 1989). To simulate signal evolution in 

this environment, 16 square frequency fields were generated, corresponding to vessels with 

orientation angles that were evenly distributed between 0 and π. Into each frequency field, 

2000 simulated protons were randomly placed. The protons were then allowed to diffuse 

through the fields and accumulate magnetic moment phase offsets. At each time point in the 

simulation the complex sum of all proton magnetic moments was calculated. The output of 

this simulation was a signal evolution curve, discreetly sampled at times corresponding to 

experimental measurements. Inline Supplemental Figure 1 shows the effect of varying Yc, 
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Hct, Vc, and a on capillary-induced parenchymal signal decay (Sp,c(t)) for a spin-echo 

experiment in which the spin-echo time is 48ms or 98ms.

To save computational time, the capillary model was not computed for every combination of 

Y, Hct, Vc,, and a that was encountered in the Bayesian sampling scheme. Instead, Lookup 

tables corresponding to Yc = [0.3,0.4,…,1.0], Hct = [0.25,0.3,…0.5], Vc =[0.001,0.006,…,

0.061], and a = [1,1.5,…,4μm] were generated and stored for each measured time point. For 

sets of parameters in between these sampled values, linear interpolation of these lookup 

tables was used to approximate the capillary contribution to the extravascular signal. The 

value of D, the diffusion constant, was fixed at 1μm2/ms (Ogawa et al., 1993). While, there 

is some uncertainty in the value of this literature-derived parameter, the important parameter, 

in terms of determining the effect of diffusion on signal decay is not D alone, but the 

characteristic diffusion time τD = a2/D, which is on the order of the time required for a water 

molecule to travel the distance of a field generating vessel’s radius (Yablonskiy and Haacke, 

1994). Thus by allowing a to range from 1–4μm, we are effectively allowing τD to vary by a 

factor of 16.

2.1.3 Signal evolution in the intravascular compartment—The magnetic 

environment within a blood vessel is highly complex and heterogeneous due to the presence 

of red blood cells. Without knowledge of the distribution, shape, and movement of these 

cells, as well as the plasma around them, it is very challenging to develop a theoretical 

framework for describing the transverse signal evolution in the intravascular compartments. 

For this reason, we have adopted an empirically derived phenomenological model of 

intravascular signal decay based on the work of Blockley et al. and Zhao et al. (Blockley et 

al., 2012; Zhao et al., 2007). In this model, intravascular signal decay at time t about a spin 

echo at time SE is described by the piecewise continuous mono-exponential decay function

(6)

where R2,x and R2,x* are functions of the Hematocrit (Hctx) and hemoglobin oxygen 

saturation (Yx) of the intravascular compartment:

(7)

(8)

2.1.4 Signal evolution in the CSF compartment—In their model for transverse signal 

decay, He et al. suggested that an imaging volume nominally containing brain tissue 

contains a finite volume of CSF or extracelluar fluid (He and Yablonskiy, 2006). Due to the 

differing biochemical makeups of grey matter and CSF, they reasoned that the magnetic 

moment of the CSF compartment could precess about the transverse plane at a slightly 

different frequency than that of the brain tissue. Because the measured signal is a complex 
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sum of its constituents, they proposed that dephasing between a CSF compartment and a 

parenchymal compartment could contribute to signal loss. Fitting experimental data to their 

model, they estimated that this compartment had an off resonance frequency of 

approximately 5Hz at 3T and comprised ~5% of an average nominally gray matter voxel. 

Using this same model, Dickson et al. estimated the off resonance frequency to be 

approximately 7Hz and the fractional volume to be ~4% of a gray matter volume (Dickson 

et al., 2010). Since this dephasing could be refocused by a spin-echo pulse, we reasoned that 

such an effect could contribute significantly to the apparent rate of R2′, biasing the baseline 

measurement used to calibrate an estimate of CMRO2. As such we included such a 

compartment in our model, with a signal contribution described by the equation

(9)

where R2,e is the rate of R2 decay for CSF and Δν is the off resonance frequency between 

gray matter parenchymal tissue and CSF.

2.2 T1-weighting in each compartment

The signal model described above is used to simulate the signal decay that would be 

measured for experiments with three different types of pulse sequences. The first sequence is 

a PICORE QUIPSS-II ASL sequence with a dual echo readout designed for the 

simultaneous measurement of R2* and CBF-weighted signals (Wong et al., 1998). The 

second sequence is a Gradient Echo Sampling of Spin Echo (GESSE) sequence (Yablonskiy 

and Haacke, 1997) used to measure the baseline apparent R2′. The third sequence is a 

variation of the GESSE sequence in which a fluid attenuated inversion recovery (FLAIR) 

module is added to the standard GESSE sequence in an effort to remove the effects of CSF 

contamination on the measurement of R2′. Because of the different T1 preparations used in 

each of these experiments, the T1-weighting term Wx was modified to reflect each 

experiment. The equations used to describe this parameter were

(10)

where TI refers to the time between the inversion and excitation pulses in the FLAIR 

GESSE sequence, and TI2 refers to the time between inversion and excitation pulses in the 

ASL sequence. This inversion time (TI2) is the relevant time for T1 relaxation because a pre-

saturation pulse is applied to the imaging volume immediately before the inversion pulse. 

For the CSF compartment a T1 of 4000ms was assumed based on literature findings (Lin et 

al., 2001; Lu et al., 2005) and similarly the T1 of the parenchyma was taken to be 1200ms 

(Lu et al., 2005; Wansapura et al., 1999), values appropriate for a field strength of 3T. The 

T1 of blood was calculated for each vascular compartment as a function of hematocrit and 
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oxygen saturation using linear interpolation of the functions described by Lu et al. for 92% 

and 69% oxygen-saturated blood (Lu et al., 2004). Inline Supplemental Figure 2 displays 

calculated blood T1 values across the hematocrit and oxygen saturation ranges relevant to 

this study.

2.3 The metabolic response to neural stimulation

The signal model described above approximates the MR signal behavior for a given set of 

arterial, capillary, and venous oxygen saturations and compartment volumes, as well as 

additional model parameters such as hematocrit. As the model is designed to describe 

changes in metabolism in response to a stimulus, CMRO2 must be related to oxygen 

saturation in the baseline and stimulus states. The fundamental equation used to relate 

oxygen saturation to CMRO2 is the Fick equation, CMRO2 = ε · CBF · (Ya – Yν) = ε · CBF · 

Ya · OEF, where ε represents the oxygen carrying capacity of a milliliter of blood and OEF 

is the oxygen extraction fraction. The change in oxygen metabolism associated with a 

stimulus is thus

(11)

where the subscript stim indicates the stimulus state and the subscript 0 indicates the 

baseline state. The change in CBF is measured, and Ya is easily measured through pulse 

oximetry. Thus determining the change in CMRO2 is reduced to determining which values 

of Yv (or equivalently, which values of OEF) are consistent with the measured data in the 

baseline and stimulus states. Because the capillary compartment is intermediate to the 

arterial and venous compartments, its oxygen saturation is modeled as a weighted averaged 

of the arterial and venous saturations, with the Greek character κ representing the venous 

weighting.

(12)

2.4 Relationships between baseline and stimulus blood volumes

Blood volume changes are modeled through exponential flow-volume coupling constants as 

described by Griffeth et al. (Griffeth and Buxton, 2011). Because some experimental work 

has been done to ground these models for venous volume (Chen and Pike, 2009), capillary 

volume (Stefanovic et al., 2008), and total CBV (Grubb et al., 1974), the models used here 

are described by the equations , and 

, where the subscript stim indicates the stimulus state and the subscript 0 

indicates the baseline state, and the flow-volume coupling parameters ϕ, ϕv, and ϕc are 

typically assumed to be independent of the nature or magnitude of the hemodynamic 

stimulus (Griffeth and Buxton, 2011). From these equations, the change in arterial volume 

may be calculated. The volume of the parenchymal compartment is modeled as shrinking to 
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accommodate to the growth of the intravascular compartments as in (Griffeth and Buxton, 

2011).

2.5 Inverting the model to estimate stimulus induced changes in CMRO2

The discussion above describes our approach to simulating the signal decay curve associated 

with a particular experiment and a particular set of model parameters. From these decay 

curves, we can simulate the characteristic measurements that we would make during a 

particular experiment. For the dual echo ASL experiment, these measurements are the 

fractional change in CBF and the absolute change in apparent value of R2* between rest and 

stimulation. For the GESSE and FLAIR GESSE experiments the measurement is the 

apparent baseline R2′. The following describes how we invert this model to determine the 

probability distribution of CMRO2 changes that are consistent with our model, our explicitly 

defined assumptions about the possible values of unmeasured parameters, and our 

experimental measurements.

Note that we refer to both R2* and R2′ as ‘apparent’ in this work. We do this because, 

strictly speaking, characterizing signal decay by the parameters R2* and R2′ only describes 

systems undergoing mono-exponential decay. Under such ideal conditions, signal decay at 

time t after excitation may be described simply by the equation

(13)

where R2′ represents the rate of signal loss than can be recovered by a spin-echo pulse and 

R2 represents the rate of decay that is irrecoverable. In the system described here, certain 

components are modeled as undergoing strict mono-exponential decay (e.g. the intravascular 

compartments); however, the aggregate system is not. As such, if R2* and R2′ are measured, 

their apparent values will depend on precisely when (i.e. at what time points on the decay 

curve) signal measurements are made. Thus the value of R2′ measured by one experimental 

protocol (e.g. GESSE) is not the same as the value of R2′ measured in the same system by a 

different protocol (e.g. asymmetrical spin-echo). To account for this, we calculate R2* and 

R2′ from our simulated decay curves in the same way that we do for the experiments 

themselves, which is described in detail in Section 3.6 below.

To estimate the uncertainty in an estimate of the CMRO2 response attributable to uncertainty 

in our measurements, as well as to unmeasured model parameters, we adopted a Bayesian 

probabilistic model. In the context of this model, the probability that the underlying, 

unmeasured model parameters, denoted here by the array ξ, and the measurement 

parameters, ψ, take on a particular set of values given the measured data, y, can be expressed 

by Bayes’ Rule

(14)

In this equation p(ξ, ψ | y) represents the probability that ξ and ψ take on a particular set of 

values given the measured data. The expressions p(ξ) and p(ψ) are termed prior probability 
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densities and represent our beliefs about the possible values of these parameters before data 

is collected. The expression p(y | ξ, ψ) is termed the likelihood function and represents the 

probability that we would obtain the observed measurements, y, given that ξ and ψ take on a 

particular set of values. In this study, the array ξ contains the elements OEFstim, OEF0, Va, 

Vv, Va, Ve, ϕ, ϕv, ϕc, R2t0, a, Hct, Yoff, Δν, and κ. If in the analysis we were to use 

assumptions about the CMRO2 response to CO2 to constrain the estimate of the response to 

the visual task, then rCO2 (the ratio of CMRO2 after and before CO2 inhalation) would be 

included in ξ. The array ψ contains the population means μ and variances σ2 associated with 

each of the measurements used in the estimation of the CMRO2 response.

Because Equation 14 cannot be solved analytically, we estimate p(ξ, ψ | y) by drawing 

random samples from the posterior probability density. By drawing sufficient samples, we 

slowly build up a picture of the entire probability distribution (Figure 1). In this study we are 

most interested in the posterior probability distribution of r, the CMRO2 response to a 

stimulus defined in Equation 11. Although this is not one of the parameters in ξ, it may be 

easily calculated for each sample from the parameters in ξ and ψ using Equation 11. The 

algorithm we used to sample this posterior probability distribution is described in Section 

3.7 below.

3. Materials and methods

3.1 Subjects

Six healthy adult subjects (three female) participated in this study (ages 22–29 years). The 

study was approved by the institutional review board at the University of California San 

Diego, and written informed consent was obtained from all participants.

3.2 Imaging

Simultaneous BOLD and CBF-weighed images were acquired on a GE Discovery 750 3T 

scanner with a dual-echo arterial spin labeling (ASL) PICORE QUIPSS II sequence (Wong 

et al., 1998) with a spiral readout. Eight slices (5mm thick/1mm gap) were acquired, with 

slices 2–5 (from inferior to superior) aligned by visual inspection with the calcarine sulcus. 

Pulse sequence parameters were as follows: TR 3.0s, TI1/TI2 700/1800ms, TE1 3.3ms, TE2 

30ms, 90° flip angle, FOV 256mm, matrix 64×64. In addition, a cerebral spinal fluid (CSF) 

reference scan and a minimum contrast scan were acquired for use in quantifying CBF 

(Chalela et al., 2000; Wang et al., 2005). The CSF and minimum contrast scans were single-

shot spiral EPI images with TE 3.3ms, TR 4s and TE 11ms TR 2s, respectively, and the 

same in-plane parameters as the ASL scan. A field map was also acquired for use in 

correcting distortions in the spiral images due to the inhomogeneity of the magnetic field.

Measurements used to estimate R2′ were made using a gradient echo sampling of spin echo 

(GESSE) imaging sequence (Yablonskiy and Haacke, 1997). The GESSE image slices were 

aligned with the centers of the ASL images and had the same in plane resolution and field of 

view. However, in order to reduce the effects of through-plane gradients on the estimate of 

R2′, these images were acquired with a slice thickness of 2mm, with the gap between slices 

increased to 4mm. Two pairs of GESSE image series were collected for this study. Each pair 

of images consisted of an early spin echo series and a late spin echo series, which were 
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acquired as separate scans. The early spin echo occurred 48ms after excitation and the late 

spin echo, 98ms after excitation. The samples of each spin echo decay curve were collected 

asymmetrically. Around the early spin echo curve, 64 samples were collected from 42.77–

82.59ms after excitation at intervals of 0.63ms. Around the late spin echo curve, samples 

were collected from 62.78–102.59ms with the same interval spacing. For the first pair of 

image series, no T1 preparation pulses were used, and the TR was 2s. For the second pair of 

image series, an inversion pulse was added before the excitation pulse with the intention of 

minimizing the cerebral spinal fluid (CSF) signal in the 2nd–5th slices from the bottom of the 

image stack. A TR of 3.5s and inversion time (TI) of 1.38s was chosen to null the CSF 

signal, based on an assumed CSF T1 of approximately 4000ms (Lin et al., 2001; Lu et al., 

2005). The third slice from the bottom of the stack was chosen to occur at the CSF null time. 

Each image slice was acquired sequentially from inferior to superior with a spacing of 

110ms. Based on equation 10, we estimated that the CSF signal in the FLAIR GESSE 

images would be less than 8% of its completely relaxed value in the 5th slice, which was 

least optimally nulled, or less than 20% of the CSF signal in the standard GESSE images. 

Inline Supplemental Figure 3 displays FLAIR GESSE signal intensity as a fraction of 

GESSE signal intensity across slices 2–5 for a single subject, with signal suppression in the 

ventricles consistent with the theoretical prediction.

3.3 Visual stimulus paradigm

Visual Stimuli were produced using MATLAB® (2009a, The MathWorks, Natick, MA) with 

the Psychophysics Toolbox extensions (Pelli, 1997). The visual stimulus consisted of an 8Hz 

black and white flickering radial checkerboard with a central region (visual angle ~1.5deg) 

that was maintained an iso-luminescent gray. The visual stimulus was projected onto a 

screen, which the subject could view through a head coil mounted mirror.

Each study contained two visual task runs during which simultaneous BOLD and CBF 

weighted images were acquired. During each scan cardiac and respiratory activity were 

recorded using a pulse oximeter and respiratory bellows that were built into the MRI 

scanner. Throughout each of the runs, subjects were asked to fixate on the center of the 

screen. In order to maintain the subjects’ attention, random numbers (0–9) were displayed in 

the gray central region of the screen at 1s intervals. The subjects were instructed to press a 

button on a response box each time a number was displayed twice in a row. The first 

functional run was used to locate a region of interest (ROI) in the visual cortex. The stimulus 

paradigm began with 24s of rest followed by 6 cycles of 24s-stimulus, 24s-rest. The second 

functional run was used to quantify the CBF and BOLD responses to a visual stimulus. The 

visual stimulus used for this run was the same as that used for ROI localization, however the 

timing of the stimuli was altered to improve estimation of the baseline signal and to allow 

for full recovery from the post-stimulus undershoot between stimulus cycles. This functional 

run began with 72s rest, followed by 6 cycles of 24s-stimulus, 48s-rest and ended with an 

additional 60s period of rest.

3.4 CO2 stimulus paradigm

Throughout the imaging session, each subject wore a non-rebreathing facemask (Hans 

Rudolph, KS, USA). The inspiratory port was connected to a tube that was open to the air in 
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the scanner room but could be connected to a large gas-tight bag filled with a premixed gas 

(5% CO2, 21% O2, balance N2) by turning a valve.

Each study contained a CO2 stimulus run during which BOLD and CBF weighted images 

were again acquired. The duration of the run was 9min. For the first 3.5 minutes the 

inspiratory port was open to room air while baseline measurements were acquired. A valve 

was then turned, switching the source of air to the 5% CO2 mixture for a period of three 

minutes. For the final 2.5 minutes, the inspiratory port was again open to room air. 

Throughout the run, the subject was asked to keep his or her eyes open and focus on the 

center of the projection screen. To maintain subject attention, the number repetition task was 

again employed throughout the run.

3.5 Preprocessing

Raw ASL images were first corrected for distortions due to the inhomogeneity of the 

magnetic field (Noll et al., 2005). The first four images of each scan were discarded to allow 

the MRI signal to reach steady state. All functional runs were motion corrected and 

registered to the first visual task run using AFNI software (Cox, 1996). In order to minimize 

BOLD contamination of the CBF measurements, CBF-weighted image series were produced 

from the raw first-echo ASL images by surround subtraction (Liu and Wong, 2005). R2* -

weighted (i.e. BOLD-weighted) images were produced from both the first echo and second 

echo ASL images by surround averaging (Liu and Wong, 2005) and used to calculate 

quantitative R2* image series as described below.

All quantitative analysis was performed in a region of interest (ROI) within the visual cortex, 

which was defined by the BOLD and CBF response of each subject to the first visual task. 

Statistical analysis for ROI selection was performed with a general linear model approach 

for the analysis of ASL data as described by Perthen (Perthen et al., 2008). Briefly, a 

stimulus regressor was produced by convolving the stimulus pattern with a gamma density 

function (Boynton et al., 1996). Cardiac and respiratory signals were used as regressors to 

account for the non-stimulus related signal variance produced by physiological processes 

(Glover et al., 2000; Restom et al., 2006). A constant and a linear term were also included as 

regressors. An anatomical mask that included only gray matter voxels in the posterior half of 

the brain and within slices 2–5 from inferior to superior was produced for each subject, and 

ROI selection was restricted to this region. Voxels exhibiting CBF or BOLD activation were 

detected after correcting for multiple comparisons using AFNI AlphaSim (Cox, 1996), using 

an overall significance threshold of p = 0.05 given a minimum cluster size of four voxels. 

For each subject, an active visual cortex region of interest (ROI) was defined as those voxels 

exhibiting both CBF and BOLD activation independently.

Estimates of the deoxyhemoglobin-related R2′ in the brain may be biased by the presence of 

air-tissue interfaces, which produce magnetic field inhomogeneity across the brain that, in 

turn, produces R2′-type signal decay that is unrelated to the quantity and distribution of 

deoxyhemoglobin in an imaging voxel (Dickson et al., 2010; He and Yablonskiy, 2006). We 

used a method described by Dickson and others to correct our GESSE images for the effects 

of through-plane gradients before using them for quantitative analysis, using phase images 

derived from the GESSE image series themselves to generate field maps and making the 
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assumptions that the slice profile was approximately rectangular and that the field 

inhomogeneity could be approximated as linear gradients through each voxel. Details of the 

field correction procedure may be found in (Dickson et al., 2010). After correction, all 

GESSE images series were registered to the first visual task ASL image series using AFNI 

software (Cox, 1996).

3.6 Quantitative data analysis

Before performing quantitative analysis on each subject, the CBF-weighted and R2*-

weighted image series from the second visual task run and CO2 run, as well as the four 

GESSE image series, were spatially averaged across the ROI defined by the subject’s 

response to the first visual task, reducing each four dimensional data set (3 spatial 

dimensions plus time) to a one-dimensional time series. From each pair of R2*-weighted 

time series, a single time series representing the apparent R2* at every sample t was then 

made using the equation, , where S(TE1) and S(TE2) 
represent the remaining signal at the first and second echo times, respectively, at time point 

t, assuming mono-exponential decay. The BOLD or ΔR2* response to a stimulus was 

defined as the difference between the mean value of R2* during the baseline (rest) period 

and the stimulus period. The CBF response to a stimulus, f, was defined as the ratio of the 

mean CBF in the stimulus period to the mean CBF in the rest period. For the visual stimulus, 

the stimulus period was defined as the last 12sec of each visual stimulus cycle and the 

baseline period the initial and final 60s periods of rest (120s total). For the CO2 stimulus, the 

stimulus period was defined as the final two minutes of the stimulus and the rest period as 

the first 3min before the stimulus was applied.

To estimate the apparent R2′ in the baseline state, the GESSE time series were assumed to 

represent mono-exponential signal decay around a spin echo, which can be described by the 

equation

(15)

During the period when the signals are both sampled, the early (48ms) spin-echo decay 

curve is in the third time regime and the late (98ms) spin-echo decay curve is in the second 

time regime. The apparent R2′ could thus be calculated as one half the difference in slopes 

between the logarithms of the late and early spin echo decay curves (Figure 2)

(16)

3.7 Sampling from the posterior probability distribution of the CMRO2 change

To sample the posterior probability density of r, the activation CMRO2 value normalized to 

the baseline CMRO2 value, we used a simple algorithm we designed to efficiently gather 
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samples while fully exploring the parameter space. For this work, we wished to isolate 

uncertainty in the CMRO2 estimate stemming from two sources: 1) uncertainty in the 

measured values due to measurement error and response variability across the population 

sample; and 2) uncertainty due to unknown values of underlying physiological variables in 

the model. For this reason, we considered two cases in the analysis: “absolute” uncertainty, 

which includes contributions from both measurement uncertainty and physiological 

uncertainty (case 1); and “intrinsic” uncertainty due just to the physiological uncertainty 

(case 2). Our approach was as follows:

1. We first chose a statistical model for each measurement yi (e.g. f, ΔR2*, R2′, Ya). In 

order to assess the uncertainty attributable to variance in the measurements across 

the sample population, we assumed a simple model, that each per subject 

measurement  comes from a Gaussian distribution of unknown mean μi and 

variance , and that each measurement is independent and identically distributed. 

To isolate the intrinsic uncertainty due to uncertainty in the unmeasured model 

parameters alone, we assumed that the sample mean for each measurement is 

identical to the population mean.

2. Because the population variance of the measurements, σ2, was not a parameter of 

interest, we next marginalized the joint posterior probability distribution by 

integrating over σ2.

(17)

Because the likelihood function p(yi | ξ, μ, σ2) depends only on μi and , Equation 

17 may be rewritten as

(18)

3. For the Gaussian statistical model, assuming the non-informative prior 

, the marginal posterior probability function p(μi | yi) has the form of 

a t-distribution (Gelman et al., 2014)

(19)

where  and si denote the sample mean and standard deviation of measurement i 
and n is the number of samples. In the case in which measurement variance is 

ignored, the parameters in σ2 are irrelevant, and marginal posterior probability 

function for μi can be written

(20)
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4. To construct samples of the posterior distribution, p(ξ, μ | y), we drew random 

samples from the prior distributions p(ξ) and marginal posterior distributions p(μ | 

y) such that for each set of samples, the forward model would generate the sampled 

population means of R2′ and ΔR2*. To do this we first drew random samples from 

the prior distributions, p(ξi), of each of the unmeasured physiological variables with 

the exceptions of OEF0 and OEFstim. The prior distribution used for each variable 

in ξ was uniform (i.e. equal probability density) within a finite range of values (see 

Table 1), which we denote as p(ξi)~U(ξi,a, ξi,b) where ξi,a is the lowest non-zero 

probability value of parameter ξi and ξi,b is the highest non-zero probability value.

5. We then drew random samples of μi from p(μi | yi) for each measurement used in 

the estimation process.

6. If no calibration data was used in the estimation process (either from measuring R2′ 

or from measuring the CBF and R2* responses to CO2), then OEF0 was simply 

drawn from the prior distribution p(OEF0). If calibration data was used, then the 

value of OEF0 was fit such that the forward model for R2′ or the forward model for 

the ΔR2* response to CO2 would produce the sampled value of  or , 

respectively, depending upon the chosen calibration experiment.

7. After sampling or fitting for OEF0, the parameter OEFstim was fit such that the 

forward model of the ΔR2* response to the stimulus of interest would produce the 

sampled value of .

8. Because p(OEF0) and p(OEFstim) were uniform, if the fit values of OEF0 and 

OEFstim were within the supported domains of their prior distributions, the sample 

was accepted, and the value of r was calculated for that sample using Equation 11. 

Otherwise the sample was rejected.

9. Steps 4–7 were repeated until sufficient samples were obtained. Samples were 

processed in batches of 1000. After each batch was processed, half of the complete 

sample set was randomly and repeatedly resampled. The 95% central interval was 

calculated for each partial sample, and sufficient samples were assumed to have 

been collected when the upper and lower bounds of the 95% central intervals from 

the partial data sets achieved variances of less than 1%.

4 Results

4.1 Summary of baseline and stimulus response measurements

Across subjects average measured baseline apparent R2′ was 3.94+/−0.64s−1 using the 

standard GESSE protocol and 3.05+/−0.41s−1 using the FLAIR GESSE protocol (mean +/− 

std). Average CBF responses to CO2 and to the visual stimulus, with respect to baseline, 

were 24+/−5% and 69+/−16%, respectively. The average ΔR2* responses to CO2 and the 

visual stimulus were −0.63+/−0.16s−1 and −0.74+/−0.17s−1, respectively. The average 

arterial oxygen saturation (Ya) was 0.99+/−0.01. Responses for individual subjects may be 

seen in Table 2.
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4.2 Estimating the CMRO2 response from CBF and ΔR2* alone

Quantitative estimation of the CMRO2 response typically involves a calibration experiment, 

which is designed to capture characteristics of the baseline state that affect the magnitude of 

the BOLD response associated with a given change in CBF and CMRO2. Our first question 

was what could be determined about the magnitude of the CMRO2 response, given our prior 

uncertainty about the unmeasured variables in our model, without such a calibration 

experiment. Figure 3 shows the posterior probability distributions of the CMRO2 responses 

to (a) CO2 and (b) the visual stimulus with and without consideration of measurement noise. 

The shaded bars represent 95% central intervals for each estimate. Even without the effect of 

measurement uncertainty, little may be concluded about the magnitude of the CMRO2 

response without additional information. To the CO2 stimulus, the estimated responses were 

−1.5% [−62 – 10%] (median [95% CI]) and −1.2% [−62 – 8.6%], accounting for and 

ignoring measurement uncertainty, respectively. To the visual stimulus, the estimated 

responses were 22% [−51 – 44%] and 22% [−50 – 39%].

4.3 Calibrating the CMRO2 estimate by measuring baseline apparent R2′

We next asked how much our estimate of the CMRO2 response would be improved by using 

a baseline measurement of the apparent R2′ to calibrate the BOLD response to each 

stimulus. Figure 4 shows the uncertainty associated with estimating the CMRO2 response 

based on R2′ calibration. Compared with no calibration, R2′ calibration greatly decreased 

uncertainty in the estimate of the CMRO2 response. Using the FLAIR preparation to 

suppress CSF contamination of the signal further reduced the uncertainty in the estimate. 

The estimated response to the CO2 stimulus, accounting for measurement noise, was 1.4% 

[−7.6 – 9.1%] (median [95% CI]) for the FLAIR GESSE estimate and 1.0% [−23 – 10%] for 

the standard GESSE estimate. The estimated response to the visual stimulus was 27% [9.9 – 

43%] for the FLAIR GESSE estimate and 25% [−15 – 43%] for the standard GESSE 

estimate. Accounting only for intrinsic uncertainty, the estimated response to the CO2 

stimulus was 1.5% [−2.5 – 5.3%] for the FLAIR GESSE estimate and 1.9% [−22 – 7.0%] 

for the standard GESSE estimate. The estimated response to the visual stimulus was 27% 

[19 – 34%] for the FLAIR GESSE estimate and 27% [−15 – 37%] for the standard GESSE 

estimate.

4.4 Calibrating the CMRO2 response estimate to the visual stimulus by assuming the 
response to CO2

Often, the CMRO2 response to a stimulus of interest is calibrated by measuring the CBF and 

R2* changes that result from breathing air containing elevated levels of CO2, under the 

assumption that it does not produce a change in CMRO2 (Barzilay et al., 1985; Chen and 

Pike, 2010; Davis et al., 1998; Mark et al., 2011; Sicard and Duong, 2005). However, this 

assumption remains controversial and some studies have shown either increases (Horvath et 

al., 1994; Yang and Krasney, 1995) or decreases (Xu et al., 2011; Zappe et al., 2008). As we 

reported above, our estimates of the CO2 response based on apparent R2′ are consistent with 

CO2 having a negligible effect on CMRO2, albeit with some uncertainty. As such we asked 

what the uncertainty in our estimate of the CMRO2 response to a visual stimulus would be if 

we either assumed that the CMRO2 response to CO2 was negligible or assigned to it a 
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modest prior uncertainty (p(rCO2~U(0.95,1.05)) and used it to calibrate the response to the 

visual stimulus instead of using the baseline R2′. All other parameters of the model 

maintained their respective prior uncertainties.

Figure 5 displays the posterior uncertainty of the CMRO2 response to the visual stimulus 

under these conditions. When it was assumed that the CMRO2 response to CO2 was 

negligible, CO2 calibration significantly reduced the uncertainty in the estimate of the 

response to the visual stimulus. Accounting for measurement uncertainty, the response was 

estimated to be 24% [5.6 – 36%] and ignoring measurement uncertainty, 25% [22 – 27%]. 

However, even a small amount of uncertainty in the CO2 response produced considerable 

uncertainty in the estimate of the response to the visual stimulus. Accounting for 

measurement uncertainty, the response was estimated to be 24% [1.8 – 37%], and ignoring 

measurement uncertainty, 24% [16 – 33%].

5 Discussion

In this work we developed a novel Bayesian approach to estimating the CMRO2 response to 

a neural stimulus based on calibrated BOLD data and used it to examine the uncertainty that 

arises in estimates of the CMRO2 response when the values of unmeasured physiological 

model parameters are not precisely known. We examined estimates calibrated by a 

traditional hypercapnia experiment, in which the measured changes in CBF and R2* in 

response to breathing elevated levels of CO2 are used to obtain information about baseline 

deoxyhemoglobin, as well as estimates calibrated by the more novel technique of measuring 

baseline apparent R2′. In order to minimize the effect of multi-exponential T2 decay on the 

estimate of R2′, we employed a novel measurement approach using two GESSE imaging 

sequences with different spin-echo times. Further, in order to examine the effects of CSF-

contamination on the measurement of apparent R2′, we measured this parameter with and 

without a CSF-nulling preparation pulse. We found that the two calibration approaches 

provided highly comparable CMRO2 response estimates on average. However, we found that 

while uncertainty due to measurement variance was a significant source of uncertainty in our 

estimates, likely due to the small sample size of the study, we also found that prior 

uncertainty in the unmeasured model parameters produced considerable intrinsic uncertainty 

in our estimates, and that the magnitude of this uncertainty depended upon the choice of 

calibration experiment.

5.1 Sources of intrinsic uncertainty in R2′-calibrated CMRO2 estimates

As originally envisioned, the calibration experiment was designed to capture information 

about the quantity of deoxyhemoglobin (approximately the product of hematocrit, venous 

blood volume, and oxygen extraction fraction) in a voxel in the baseline state, a quantity 

determined in theoretical work to strongly influence the magnitude of the R2* (BOLD) 

response to a given change in CBF and CMRO2 (Davis et al., 1998). In both theoretical and 

experimental work, the apparent spin echo-recoverable transverse relaxation rate, R2′, has 

been found to reflect this baseline deoxyhemoglobin state, making it a potentially valuable 

calibration metric (Blockley et al., 2012; Fujita et al., 2006; Kida et al., 2000; Yablonskiy, 

1998). We found that measuring baseline apparent R2′ did significantly reduce the 

uncertainty associated with the CMRO2 estimate, compared with that of a calibration-free 
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estimate, but that several unmeasured model parameters contributed significantly to the 

intrinsic uncertainty associated with the measurement.

The largest source of this uncertainty in our analysis was associated with the potential for 

CSF contamination of a nominally gray matter imaging volume in the R2′ experiment, which 

in this model could produce spin-echo recoverable signal loss. Figure 6 illustrates the how 

CSF partial volume produces estimation uncertainty. Figures 6a and 6b display simulations 

of apparent R2′ as a function of CSF fractional volume and resonance frequency offset for an 

otherwise fixed set of model parameters. Figure 6a displays simulations associated with a 

standard GESSE protocol, while Figure 6b displays simulations associated with a protocol 

optimized to minimize the CSF signal. In this simulation, even a very small (<0.05) CSF 

fraction could bias the measurement of R2′ by as much as 50% using the standard approach. 

Suppression of the CSF signal minimized this bias. Figure 6c displays simulations of 

apparent ΔR2* for an iso-metabolic 50% increase in CBF. CSF volume and off-resonance 

also affected the value of ΔR2* in this simulation; however, the effect size was on the order 

of a few percent, orders of magnitude smaller than the R2′ effect. Because the measurement 

bias produced by CSF contamination is greater for R2′ than for ΔR2*, it may cause one to 

overestimate the CMRO2 response if it is not accounted for. If the size and off resonance 

frequency of this compartment are unknown, then attempting to account for them through a 

prior distribution introduces uncertainty into the CMRO2 estimate. Figures 6d and 6e show 

how uncertainty in CSF volume and off-resonance create uncertainty in the estimated 

CMRO2 response to the CO2 stimulus when R2′ is measured without or with CSF 

suppression, respectively. While these parameters strongly influence the estimate based on 

the standard GESSE measurement, they have negligible influence on the FLAIR GESSE 

estimate. Figure 6f shows the probability distributions associated with standard or FLAIR 

GESSE derived estimates of the CMRO2 response to CO2 if, instead of defining a finite 

prior uncertainty on Ve and Δν, the values of these parameters are fixed at 0.035 and 5Hz, 

respectively, comparable to the values reported in (He and Yablonskiy, 2006) and (Dickson 

et al., 2010). Under these conditions, the estimates derived from standard and FLAIR 

GESSE become highly consistent.

Even after suppression of CSF contamination, the intrinsic uncertainty associated with R2′′ 

calibration is not negligible. This is because while R2′ and ΔR2* are similarly sensitive to 

variation in the baseline hematocrit, oxygenation and volume of the venous compartment 

(the drivers of the first-order BOLD effect) they are disparately sensitive to variation in 

several other unmeasured model parameters. The parameters for which this is particularly 

problematic are the blood-tissue iso-susceptibilty parameter Yoff, the flow-volume coupling 

parameters (e.g. ϕ and ϕv), and the parameters that describe the fundamental characteristics 

of the capillary bed, κ and a. That Yoff, ϕ, and ϕv contribute significantly to posterior 

uncertainty in the CMRO2 response is not surprising. The ϕ variables describe changes in 

volume that accompany changes in blood flow. The measurement of R2′ used to calibrate the 

CMRO2 estimate is made in the baseline state and thus contributes no information about 

blood volume changes (Figures 7a and 7d). Yoff is a parameter that essentially increases the 

effective oxygen saturation in each compartment by a fixed amount. This has a large effect 

on the measurement of R2′ (Figures 7a and 7d), because this measurement reflects the 

absolute quantity of “visible” deoxyhemoglobin in the volume (i.e., deoxyhemoglobin that 
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contributes to a BOLD signal change). It has a much smaller effect on ΔR2* (Figures 7b and 

7e) because this measurement describes a change in deoxyhemoglobin, with both the 

baseline and stimulus states affected similarly by the value of Yoff. As a result, if Yoff is 

assumed to be close to one, then for a given baseline physiological state, more “visible” 

deoxyhemoglobin is expected, meaning that R2′ is expected to be large. For a given 

measured R2′, ΔR2*, and f, this means that the estimate of the CMRO2 response will be 

smaller. If Yoff is assumed to be lower, the estimate will be larger. Similarly, if ϕ or ϕv are 

assumed to be larger, the CMRO2 response estimate must be smaller for a given set of 

measurements (figures 7c and 7f).

The effects of κ and a on the estimate of CMRO2 are more subtle. Both parameters scale the 

magnitude of the effect the capillary compartment has on extravascular signal decay, the first 

by determining the oxygen saturation of the capillary vessels, the second by defining the 

characteristic size of the capillary vessels. As capillary oxygen saturation drops and size 

increases, the rate of extravascular signal decay produced by those vessels is increased. 

Some of this decay is refocused by a spin echo, and is thus captured by the measurement of 

R2′. However, some of this decay is not refocused, and may be thought of as more R2-like 

decay. As a result of the increase in R2 decay, the ΔR2* produced by a given set of model 

parameters increases more with increases in κ and a than does R2′. The result is that if κ and 

a are assumed to be larger, the estimated CMRO2 response also will be larger (Figure 8).

5.2 Reducing intrinsic uncertainty in R2′ - calibrated CMRO2 estimates through CSF 
Suppression

In this work, we suggested that we could reduce the uncertainty associated with CSF 

contamination by adding a FLAIR preparation to the GESSE imaging sequence, and it is 

important to consider whether this FLAIR preparation achieved its intended purpose. While 

it is difficult to directly measure the effect of CSF contamination on signal decay, the 

measurements we made of R2′ with and without CSF-nulling were consistent with our 

imaging volume containing a CSF compartment of similar size and off-resonance frequency 

as measured previously (Dickson et al., 2011; He and Yablonskiy, 2006). Further, while a 

direct measurement of the effect size of CSF contamination on R2′ estimation has not been 

previously reported, a first-order comparison of other recent R2′ estimates with our own 

suggests some consistency in effect size across studies and imaging methods. For example, 

in a 2006 study at 1.5T, Fujita et al. measured baseline apparent R2′ in the visual cortex 

using a gradient echo sampling of free induction decay and echo (GESFIDE) sequence 

without CSF-nulling (Fujita et al., 2006), calculating an average apparent R2′ of 2.48s−1 

across subjects. Because to a first order approximation, apparent R2′ is expected to be 

proportional to magnetic field strength (Yablonskiy, 1998), this would equate to an R2′ of 

~5s−1 at 3T, the field strength in this study. In this study we measured an average apparent 

R2′ of ~4s−1 without and ~3s−1 with CSF-nulling. The relatively high numbers reported by 

Fujita et al. compared with our own are consistent with the hypothesis that CSF contributes 

to R2′-like decay, with remaining quantitative discrepancies possibly explained by 

differences in the pulse sequences used to measure apparent R2′. Similarly, in a recent study 

using asymmetrical spin echo (ASE) to measure R2′ without CSF suppression our group 

found an average R2′ of ~3s−1 (Blockley et al., 2015). Again, accounting for differences in 
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the methodologies used to estimate apparent R2′ this estimate is consistent with the CSF-

contaminated R2′ estimate in this work (in our simulations ASE estimates of R2′ are 

approximately ~1s−1 lower than those made using our current dual-GESSE technique due to 

the effect of approximately quadratic exponential signal decay near the spin echo 

(Yablonskiy, 1998) – data not shown).

It is possible that some of the difference in R2′ that was observed between the GESSE and 

FLAIR GESSE-based measurements is attributable not to CSF contamination, but to white 

matter contamination. White matter has a T1 of ~800ms, and thus has increased T1 

weighting in the FLAIR GESSE images vs. the GESSE images (1.56 vs. 1.13 relative to 

gray matter based on Equation 10) (Lu et al., 2005; Wansapura et al., 1999). Because blood 

volume is significantly lower in white matter than gray matter, significant white matter 

contamination of a nominally gray matter voxel will decrease the apparent R2′, and this 

effect should be magnified in the FLAIR GESSE images relative to the GESSE images. We 

considered the effect size that white matter contamination could have on the measurement of 

R2′ and ΔR2*, as well as the uncertainty associated with estimating the CMRO2 response, in 

order to determine whether a white matter compartment of uncertain volume needed to be 

included in our model. Inline Supplemental Figure 4 displays the difference between 

simulated R2′ measurements for GESSE AND FLAIR GESSE-based measurements as a 

function of increasing white matter contamination. In these simulations, significant white 

matter contamination explained a small portion of the observed difference in apparent R2′ 

between GESSE and FLAIR GESSE measurements, but concomitant CSF contamination 

was required to fully explain the observed difference. Further, because white matter 

contamination affects ΔR2* measurements similarly to R2′ measurements, it is less likely to 

contribute strongly to uncertainty in the CMRO2 response (Inline Supplemental Figure 4).

These findings lend support to the idea that CSF partial-volume effects have an effect on 

signal decay that is reasonably well-approximated by the model proposed in (He and 

Yablonskiy, 2006), which was adopted here, and suggest that CSF-suppression should be 

included in protocols designed to measure R2′. However, it will be important in the future to 

consider whether the highly simplified CSF compartment model adopted here and in 

previous work is sufficient to describe the range of effects such a compartment could have 

on the MR signal.

5.3 Sources of intrinsic uncertainty in CO2 – calibrated CMRO2 estimates

Breathing air containing elevated concentrations of CO2 was the original technique proposed 

for calibrating BOLD studies and is still the most commonly used today. Though performing 

this calibration experiment is challenging and may be contraindicated in some patient 

populations, we found here that it has the advantage of being much less susceptible to the 

sources of uncertainty that affect R2′ calibration, likely because variation in the unmeasured 

parameters of the model affects the measurement of apparent ΔR2* similarly in both the 

calibration and activation experiment. We did find, however, that this technique is highly 

sensitive to the assumption that the response to CO2 is iso-metabolic, such that even slight 

prior uncertainty in this response eliminates its advantage over R2′. This could be important 

to an investigator interested in measuring the CMRO2 response to a neural stimulus in a 
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population that could be metabolically sensitive to CO2 or who is interested in the response 

to CO2 itself.

5.4 Comparability of R2′ and CO2 calibration

In this study we found the median estimates of the CMRO2 response to the visual stimulus 

based on R2′ and CO2 calibration to be highly comparable (26% and 24%, respectively). 

Similarly we found the median R2′-calibrated estimate of the CMRO2 response to CO2 

(~1.5%) to be consistent with the assumption that the CO2 response is approximately iso-

metabolic. This is encouraging because it suggests that these two calibration techniques, at 

least on average, provide comparable calibration and thus have the potential to be used 

interchangeably based on the experimental needs of the investigator.

Interestingly, while the intrinsic uncertainty associated with hypercapnia calibration (taking 

the iso-metabolic assumption to be valid) was found to be significantly lower than the 

intrinsic uncertainty associated with R2′ calibration, the absolute uncertainty of the two 

estimates was highly comparable in this study. To get an idea of how many subjects would 

be required before hypercapnia calibration would demonstrate a significant advantage over 

R2′ calibration given the measurement variance and noise model employed in this study, we 

repeated the estimates of the CMRO2 response for each modality, assuming the same 

measurement variances that were found here but an increased sample size. Figure 9 shows 

simulated estimates of the median and 95% central interval for each approach as a function 

of increasing sample size. For R2′ calibration, absolute uncertainty became dominated by 

intrinsic uncertainty for samples greater than approximately 24 subjects, while for 

hypercapnia, uncertainty continued to decrease for larger samples. This suggests that 

hypercapnia calibration may demonstrate more significant advantages over R2′ calibration in 

studies with large cohorts, provided that the iso-metabolic assumption is valid given the 

experimental conditions.

5.5 Study limitations

There are several limitations to this study. First, as we have acknowledged above, while we 

have made an effort here to incorporate into our model of blood oxygenation sensitive signal 

decay parameters that capture the most salient features of a realistic imaging volume, 

including multiple intravascular compartments, an extravascular parenchymal compartment, 

and a contaminating CSF compartment, we have by necessity greatly reduced the 

complexity of a true vascular network. The decisions we made in this process have 

introduced an additional source of uncertainty into our estimates, uncertainty that is difficult 

to quantify without a gold standard for comparison. As efforts continue, for now in animal 

models, to better understand and describe the vascular structure and characteristics of brain 

tissue (Gagnon et al., 2015), resulting model improvements should be readily incorporable 

into the framework we have presented here.

Second, in choosing particular prior probability distributions for each of the parameters in 

this model, we have undoubtedly influenced the estimated posterior probability distribution 

of the CMRO2 response. In choosing prior distributions, we often had few reports from the 

literature with which to constrain our decisions, and so typically simply tried to make each 
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distribution broad enough that it would encompass reported estimates by a wide margin. As 

such, we recognize that some might consider the prior constraints on some of the variables 

too tight and others too broad. In addition, some might consider it inappropriate to make the 

priors on each parameter independent, when it could be reasonable to assume that some, 

such as intravascular compartment volumes, are correlated. In this work, we are not 

advocating the use of these particular priors in future studies and would certainly expect that 

if another investigator had additional information to constrain one or more of them further, 

that she would do so. Rather we are describing an analysis framework within which an 

investigator may explicitly state her assumptions about each model parameter in terms of 

prior probability distributions and account for the uncertainty in her findings given those 

stated assumptions. In addition, we have identified several parameters of which prior 

uncertainty strongly influences posterior uncertainty and which therefore deserve focused 

study if suspected to vary systematically across different populations of interest. For 

example Yoff is dependent upon the concentration of non-heme iron both in blood and in 

brain tissue and thus could change significantly with aging (Zecca et al., 2004), while flow-

volume coupling constants and capillary characteristics could be affected by vascular 

disease.

Third, as is the case with any statistical analysis, the model we have chosen to represent the 

uncertainty in our measurements influences the level of uncertainty in our estimates of the 

CMRO2 response. Because we did not make sufficient independent measurements at the 

individual subject level to confidently estimate measurement variance, we chose to assume 

that the variance in measurements across subjects was attributable to measurement error 

with a distribution that was Gaussian and independent across measurements. This may prove 

to be a somewhat conservative approach to modeling this variability, as it is likely that some 

of the variance across measurements is correlated (e.g. subjects with a large CBF response 

also have a large BOLD response) and that accounting for this correlation would reduce the 

uncertainty in our final estimates. Given enough repeated and independent measurements at 

the individual subject level to estimate measurement error, a more optimal approach might 

be to apply the approach described here to the analysis of each individual subject and then to 

combine the resulting posterior probability distributions within a hierarchical model to 

determine the group posterior probability distribution. Such an approach would, of course, 

require additional consideration of how to treat the prior uncertainty of the unmeasured 

parameters, for example whether a given parameter should be assumed to have an uncertain 

but constant value across the experimental population, or whether it should be assumed to 

vary across the group. We are investigating the effects of such assumptions in an upcoming 

study, but felt that such an investigation was beyond the scope of this present work, which 

was primarily to investigate the intrinsic sources of uncertainty in estimates of the CMRO2 

response.

5.6 Use of detailed biophysical models in experimental analysis

In order to examine the sources of uncertainty in our estimate of the CMRO2 response, we 

developed a detailed model that explicitly takes into account what we believe to be the 

salient physiological parameters of the BOLD response. The model itself is not particularly 

novel, as it is built from the collected work of many previous investigators. However, our 

Simon et al. Page 24

Neuroimage. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



application of such a detailed model to the analysis of experimental data, instead of a more 

heuristic model such as the Davis model or Griffeth model (Davis et al., 1998; Griffeth et al., 

2013), is, to our knowledge, unique to the calibrated BOLD literature. There are both 

advantages and disadvantages to this approach. We found the chief disadvantage to be the 

computational time required to invert the model in order to estimate the CMRO2 response 

from the BOLD and CBF measurements, which is trivial with a model such as the Davis 

model. Sampling the posterior distribution of the CMRO2 response, which we implemented 

in MATLAB, took between 15 minutes and an hour depending on the calibration experiment 

used and the number of samples needed to stabilize the estimate of the 95% central interval. 

Improvements in computational time are very likely obtainable with more a efficient 

sampling algorithm; however, for investigators interested in making voxel-wise estimates, 

time costs could prove to be an important consideration.

However, this approach also offers several important advantages. First, as we have discussed 

at length here, it allows an investigator to explicitly state her assumptions about the 

parameters of the model, incorporate any experimental information she deems appropriate to 

constrain these parameters, and state her uncertainty about her conclusions explicitly in 

terms of the assumptions she has made and the measurements she has acquired. Second, the 

more flexible framework of the detailed model makes it possible to analyze experimental 

data that cannot be easily handled by a more heuristic model. For example, the Davis model 

considers only the effects of a single venous-like compartment on signal decay, implicitly 

assuming that more saturated arterial blood does not contribute significantly to the BOLD 

response. This is not an unreasonable assumption in a population of young, healthy subjects 

whose arterial blood is near the iso-susceptibility oxygen saturation (Yoff). However, it is 

unclear how this model would accommodate a population of hypoxemic subjects, whose 

arterial blood could contribute significantly to the BOLD response. Investigators interested 

in studying subjects with cardiovascular or pulmonary disease, or who are interested in the 

effects of altitude on CMRO2, may find a detailed model more suitable for analyzing their 

experimental data.

Third, this approach allows the relatively simple incorporation of many sources of data that 

are challenging to integrate into existing heuristic models. For example, an investigator 

could measure each subject’s hematocrit and integrate this information directly into the 

model if it were thought to vary systematically across populations of interest. Alternatively, 

an investigator could employ one of several recently developed techniques (e.g. TRUST, 

VSEAN, QUIXOTIC, PROM) to directly measure baseline venous oxygen saturation in 

order to further constrain the estimate of baseline OEF (Bolar et al., 2011; Fan et al., 2012; 

Guo and Wong, 2012; Lu and Ge, 2008).

5.7 Conclusions

The need to use biophysical models with unmeasured parameters in order to estimate the 

CMRO2 response to a neural stimulus from a calibrated BOLD experiment introduces 

uncertainty into the estimated response. We have described here an approach to accounting 

for this uncertainty and examined the principal sources of uncertainty associated with two 

promising methods of calibration, measurement of baseline apparent R2′ and measurement 
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of the CBF and R2* responses to CO2 inhalation. We found that these two calibration 

techniques provided consistent estimates of the CMRO2 response on average. In addition we 

found that while R2′ calibration was sensitive to several of the unmeasured parameters in our 

model, CO2 calibration was sensitive primarily to the assumed CMRO2 response to the 

calibrating CO2 stimulus. Understanding the sources of uncertainty in CMRO2 response 

estimates should help guide experimental design in future calibrated BOLD experiments. In 

addition, the greater flexibility of a detailed model should facilitate the application of the 

calibrated BOLD approach to the study of populations in which cerebral vascular physiology 

may differ from that of normal controls.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• New method of accounting for uncertainty in fMRI-based estimates of CMRO2 

activity

• Identifies key sources of uncertainty in hypercapnia- and R2′-calibrated BOLD

• Adaptation of R2′ estimation technique increases precision of gasless calibration
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Figure 1. Schematic of Bayesian estimation approach
(a) Measured CBF responses to a stimulus of interest and prior beliefs about unmeasured 

model parameters are input into a detailed model as probability distributions. (b) The model 

describes signal evolution for a volume of brain containing five compartments (tissue, CSF, 

arteries, capillaries, veins). (c) The model is used to simulate measurements of apparent 

ΔR2* and R2′ for random samples from the probability distributions described by column a. 

(d) Simulated ΔR2* and R2′ are sampled based on their probability of representing the 

population means of the measured apparent ΔR2* and R2′ values. (e) Over repeated 

sampling the posterior probability distributions of the unmeasured model parameters are 

estimated, including the parameter of interest, the percentage change in CMRO2 associated 

with the stimulus.
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Figure 2. Dual GESSE imaging approach to the estimation of R2′

Representative FLAIR GESSE signal decay curves from a single subject (subject 3) shown. 

The GESSE sequences measure signal decay asymmetrically about SE times of 48 ms (blue 

curve) and 98 ms (red curve). Far from the spin echo, the log decay curves become 

approximately linear, with slopes of -(R2+R2′) and -(R2−R2′), respectively. R2′ can be 

calculated from the difference in these slopes.
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Figure 3. Uncertainty in the estimate of the CMRO2 response based on measurements of R2* 
and CBF responses alone
Uncertainty due to both measurement variance and intrinsic uncertainty in unmeasured 

model parameters (blue line) and due to intrinsic uncertainty alone (red line) in the estimate 

of the CMRO2 response to (a) CO2 and (b) a visual stimulus. Shaded bars indicate 95% 

central intervals. Without additional information from a calibration experiment, little may be 

concluded about the response to either stimulus.
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Figure 4. Uncertainty in estimate of the CMRO2 response when calibrated by measurement of 
baseline apparent R2′ using either a standard GESSE or a CSF-nulling (FLAIR) GESSE 
protocol
Blue curves indicate FLAIR GESSE-based estimates, while red curves indicate standard 

GESSE-based estimates. Top row shows probability density curves accounting for both 

measurement variance and intrinsic uncertainty in estimates of response to (a) the CO2 

stimulus and (b) the visual stimulus. Bottom row (c and d) show density curves accounting 

only for intrinsic uncertainty. Shaded bars indicate 95% central intervals.
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Figure 5. Posterior uncertainty associated with estimate of the CMRO2 response to visual 
stimulus when calibrated by assumed response to CO2
Blue curves indicate conditions under which the CMRO2 response to a separately measured 

CO2 stimulus is assigned a finitely wide but otherwise uninformative prior probability 

distribution. Red curves indicate conditions under which the response to CO2 is assumed to 

be iso-metabolic (a) Posterior probability densities for estimates of CMRO2 response to 

visual stimulus, accounting for both measurement and intrinsic uncertainty. (b) Posterior 

probability distributions to the same stimuli, accounting only for intrinsic uncertainty. 

Shaded bars indicate 95% central intervals.
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Figure 6. Effect of an off-resonance CSF compartment on the measurement of R2′, ΔR2* and the 
estimate of the CMRO2 response
(a) Simulated standard GESSE measurement of apparent R2′ for otherwise fixed model 

parameters as a function of CSF compartment fractional volume and off-resonance 

frequency. (b) Simulated FLAIR GESSE measurement of apparent R2′ for same model 

parameters. (c) Simulated measurement of ΔR2* in response to a 50% increase in CBF and 

0% increase in CMRO2 as a function of CSF fractional volume and off-resonance frequency. 

(d) Scatter plot showing samples from the posterior distribution of the estimated CMRO2 

response to CO2 given the sampled CSF fractional volume and off-resonance frequency 

based on calibration with the standard GESSE protocol. Color indicates the sample estimate. 

(e) Scatter plot showing samples from the posterior distribution of the estimated CMRO2 

response to CO2 based on calibration with the FLAIR GESSE protocol. (f) Posterior 

probability distributions associated with estimate of CMRO2 if fractional volume and off-

resonance frequency are assumed to be fixed rather than uncertain. For a 3.5% fractional 

volume and 5Hz off-resonance frequency, estimates based on the standard and FLAIR 

GESSE R2′ measurements become highly comparable. Shaded bars indicate 95% central 

intervals. For clarity, only intrinsic uncertainty is reflected in the probability distributions.
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Figure 7. Effects of Yoff, ϕv, and ϕ on the measurement of R2′ and ΔR2* and the estimate of the 
CMRO2 response
Left column, Simulated measurements of apparent R2′ for otherwise fixed model parameters 

as a functions of (a) Yoff and ϕv or (d) Yoff and ϕ. Middle column, Simulated measurements 

of ΔR2* in response to a 50% increase in CBF and 0% increase in CMRO2 as functions of 

(b) Yoff and ϕv or (e) Yoff and ϕ. Right column, scatter plots show samples from the 

posterior distributions of the estimated CMRO2 response to CO2 as functions of (c) Yoff and 

ϕv or (f) Yoff and ϕ. Color indicates the sample estimate.
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Figure 8. Effects of capillary diameter and oxygen saturation on the measurement of R2′, R2, 
and ΔR2* and the estimate of the CMRO2 response
(a) Simulated measurement of apparent R2′ for otherwise fixed model parameters as a 

function of capillary radius (a) and arterial-venous oxygen saturation weighting (κ). (b) 

Simulated measurement of ΔR2* in response to a 50% increase in CBF and 0% increase in 

CMRO2 as a function of a and κ. Simulated measurement of apparent R2 as a function of a 
and κ. (d) Scatter plot showing samples from the posterior distribution of the estimated 

CMRO2 response to CO2 as a function of a and κ. Color indicates the sample estimate.
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Figure 9. Simulated effect of sample size on uncertainty for R2′ - and CO2 - calibrated CRMO2 
response estimates
Simulated medians and 95% central intervals are plotted for FLAIR R2′ (red) and CO2 

(blue) based calibration as a function of sample size assuming constant measurement 

variance across sample sizes.
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Table 1

Parameter Names and Values

Variable Parameters

Parameter Symbol Parameter Significance Prior Distribution Literature Value(s) Reference(s)

Va0 Fractional baseline arterial blood volume U(0.005,0.015) 0.01 Roland et al., 
1987; Weber et 
al., 2008

Vc0 Fractional baseline capillary blood volume U(0.01,0.03) 0.02 Roland et al., 
1987; Weber et 
al., 2008

Vv0 Fractional baseline venous blood volume U(0.01,0.03) 0.02 Roland et al., 
1987; Weber et 
al., 2008

Ve0 Baseline CSF volume U(0,0.1) 0.045, 0.049 He and 
Yablonskiy, 2006; 
Dickson et al., 
2010

ϕ exponential CBF-CBV coupling constant U(0.2,0.6) 0.4 Grubb et al., 1974

ϕv exponential CBF-Vv coupling constant U(0.1,0.3) 0.2 Chen and Pike, 
2009

ϕc exponential CBF-Vc coupling constant U(0.1,0.3) 0.2 Stefanovic et al., 
2008

Yoff blood-tissue isosusceptibility saturation U(0.9,1) 0.89, 0.95, 1 He et al., 2009; 
Uludağ et al., 
2009; He and 
Yablonskiy, 2006

κ weighting constant for capillary O2 sat. U(0.5,1) 0.6 Tsai et al., 2003

a characteristic radius of capillary vessels U(1μm,4μm) 2.5 Ogawa et al., 
1993

Hct Hematocrit U(0.35,0.5) Male: 0.39–0.49, 
Female: 0.35–0.45

Nicoll et al., 2012

Δν CSF-tissue off-resonance frequency U(2Hz,8Hz) 5Hz, 7Hz He and 
Yablonskiy, 2006; 
Dickson et al., 
2010

R2t0 Non-hemoglobin tissue T2 relaxation rate 
constant

U(7.5s−1,12.5s−1) 7.5s−1,12.5s−1 Lu et al., 2005; 
Wansapura et al., 
1999

OEF0 Oxygen Extraction Fraction in Baseline 
State

U(0.2,0.5) 0.25–0.5 Lu and Ge, 2008

OEFstim Oxygen Extraction Fraction in stimulus 
State

U(0.05,0.95) NA NA

Fixed Parameters

Parameter Symbol Parameter Significance Value Used Literature Value(s) Reference(s)

ρt brain parenchyma water density 0.84 0.84 Herscovitch and 
Raichle, 1985

ρe CSF water density 1 1 NA

ρa,c,v blood water density 0.87 0.87 Herscovitch and 
Raichle, 1985

T1p brain parenchyma T1 1200ms 1122ms, 1283ms Lu et al., 2005; 
Wansapura et al. 
1999
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Variable Parameters

Parameter Symbol Parameter Significance Prior Distribution Literature Value(s) Reference(s)

T1e CSF T1 4000ms 3817ms, 4163ms Lu et al., 2005; 
Lin et al, 2001

Δχ0 susceptibility difference: de/oxygenated 
hemoglobin

0.264ppm 0.264ppm Spees et al., 2001

γ gyromagnetic ratio 2.675×108rad ms−1 T−1 2.675×108rad ms−1 T−1 Haynes, 2014

B0 Magnetic field strength 3T NA NA

D Diffusion constant for water in tissue 1μm2 ms−1 1μm2 ms−1 Ogawa et al., 
1993
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